WO2014168276A2 - Fuel additive and manufacturing method - Google Patents

Fuel additive and manufacturing method Download PDF

Info

Publication number
WO2014168276A2
WO2014168276A2 PCT/KR2013/003455 KR2013003455W WO2014168276A2 WO 2014168276 A2 WO2014168276 A2 WO 2014168276A2 KR 2013003455 W KR2013003455 W KR 2013003455W WO 2014168276 A2 WO2014168276 A2 WO 2014168276A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
alcohol
fuel
metal
metal nitride
Prior art date
Application number
PCT/KR2013/003455
Other languages
French (fr)
Korean (ko)
Other versions
WO2014168276A3 (en
Inventor
김문찬
이정림
Original Assignee
주식회사 오일시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오일시티 filed Critical 주식회사 오일시티
Publication of WO2014168276A2 publication Critical patent/WO2014168276A2/en
Publication of WO2014168276A3 publication Critical patent/WO2014168276A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency

Definitions

  • the present invention is used in addition to the fuel wear resistance and good lubrication, active combustion state in the engine to reduce the exhaust gas, improve fuel efficiency, and add fuel to the alcohol, gasoline engine, diesel engine to prevent phase separation And fuel additives used in addition to fuels used in marine engines, aircraft engines and boilers.
  • This fuel additive is trying to focus on fuel economy of vehicles to respond gradually to environmental problems. Therefore, it is the most important factor to reduce fuel consumption by activating the combustion state inside the engine to complete combustion.
  • a polyoxyalkylene glycol-based surfactant has been used, or additives for adjusting the viscosity-improving polymer or friction coefficient have been used, and chemical additives can be used for certain ferrous metal parts or nonferrous metal parts.
  • side effects occur, such as increasing the corrosion of the lubricant for.
  • fuel additives such as surfactants, enzyme surfactants, aromatic compounds, iron nanoparticles, etc.
  • fuel additives such as surfactants, enzyme surfactants, aromatic compounds, iron nanoparticles, etc.
  • Patent 10-0390973 is an enzyme-based fuel additive, D-lactide, L-lactide, DL-lactide, D-glycolide, L-glycolide, DL-glycolide, D-malide, L- At least one lactide selected from the group consisting of malid, DL-malid, D-tartaride, L-tartaride, DL-tartaride, D-citride, L-citide and DL-citide
  • a fuel additive composition which comprises a fuel additive composition comprising 0.01 to 90% by weight of a derivative, 0.01 to 90% by weight of at least one carrier selected from the group consisting of gasoline, kerosene, diesel and purified water and 0.01 to 10% by weight of MTBE.
  • Application No. 10-2002-0003553 discloses 0.01 to 90% by weight of one or more oxyacid intramolecular esters selected from the group consisting of basic oxyacid intramolecular esters, basic oxyacid intramolecular esters and basic oxyacid intramolecular esters and kerosene 10 to A fuel additive composition of 99.99% by weight is disclosed.
  • Application No. 10-2012-0089897 discloses a variety of hydrocarbon compounds which are produced by refining or petrochemical processes, and Bacillus sp.
  • a fuel additive composition using a bio-surfactant produced by khr-10-mx (KRIBB microbial accession number KCTC 8533P) is disclosed.
  • Patent No. 10-0743160 uses alcohol as a main fuel and aminopoly prepared by reacting rosin's organic acid (hereinafter referred to as “rosin acid”) that can be extracted from rosin with polyalkylene ether and ammonia.
  • rosin acid rosin's organic acid
  • Patent 10-0853463 discloses 15 to 35 parts by weight of xylene, 20 to 35 parts by weight of ethanol, 10 to 20 parts by weight of isoparaffin, 5 to 20 parts by weight of normal heptane, 15 to 20 parts by weight of toluene, based on 100 parts by weight of the total composition, A fuel additive composition comprising 1 to 5 parts by weight of isooctane, 1 to 10 parts by weight of hydrogen peroxide and 1 to 10 parts by weight of titanium dioxide is disclosed.
  • Patent 10-1020236 discloses that nanoparticles of iron oxide or iron hydroxide are prepared from ferrous sulfate by a chemical synthesis method, and surface-modified the nanoparticles are lipophilic by adding a surfactant thereto and then dispersed in an organic solvent.
  • a fuel additive composition is disclosed that consists of the features.
  • the present inventors solve the technical problem that conventional additives using surfactants or enzymes or fuel additives using nanoparticles of iron oxides or iron hydroxides do not achieve sufficient combustion efficiency, fuel economy reduction effect and emission reduction effect.
  • the present invention was completed by developing a fuel additive composition in which the additive induces complete combustion when the fuel is burned in the engine, thereby increasing the output power and the combustion efficiency.
  • the present invention is sufficient combustion efficiency as additives using surfactants or enzymes, such as conventional polyoxyalkylene glycol, or fuel additives using amino particles of amino polyoxyalkylene rosin esters or biological surfactants, iron oxides or iron hydroxides. It was devised to solve such technical problems because it did not achieve the effect of reducing the fuel consumption and reducing the exhaust gas, the object of the present invention is used in alcohol engine, gasoline engine, diesel engine, ship engine, airplane engine and boiler It is applied to fuels that are used to induce complete combustion, which contributes to reducing harmful emissions, increasing combustion efficiency and reducing fuels, and providing fuel additives and a method of manufacturing the same to prevent the separation of fuel and alcohol phases for alcohol-added fuels. It's there.
  • surfactants or enzymes such as conventional polyoxyalkylene glycol
  • fuel additives using amino particles of amino polyoxyalkylene rosin esters or biological surfactants, iron oxides or iron hydroxides.
  • the present invention relates to a fuel additive in which at least one metal nitride (A) is uniformly dispersed in at least one alcohol (B), the particle diameter of the metal nitride particles is 10nm to 5 ⁇ m to be.
  • the metal nitride (A) is nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride, alkyl boron nitride, titanium nitride, At least one selected from titanium oxynitride, and the alcohols (B) are methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, pentanol, isopentyl alcohol, hexanol, heptanol, octanol, iso Hexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine, triisopropanolamine are selected from one or more, and the metal nitride (A) and the alcohols (B) are
  • the fuel additive manufacturing method is nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride, alkyl boron having a particle diameter of 10nm to 5 ⁇ m
  • the present invention relates to a fuel additive in which the above metal nitrides (A) are uniformly dispersed in at least one alcohol (B).
  • Metal nitride (A) and alcohols (B) are added to the fuel, and metal nitride (A) is used for nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, At least one selected from tungsten oxynitride, boron nitride, alkyl boron nitride, titanium nitride and titanium oxynitride, and alcohols (B) include methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, At least one selected from pentanol, isopentyl alcohol, hexanol, heptanol, octanol, isohexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine, triisopropanol
  • the metal nitride (A): alcohol (B) ratio is exceeded, the metal nitride is difficult to be evenly dispersed in the alcohol and it is difficult to expect a desired emission reduction or fuel saving efficiency.
  • the size of the metal nitride (A) should be used having a particle size of 5 ⁇ m ⁇ 10nm, if it has a smaller particle size is difficult to manufacture and finely dispersed in the fuel it is difficult to show the effect, the particle size larger than 5 ⁇ m If it has a high risk of plugging the fuel injection nozzle and forming a thick film on the inner wall of the cylinder to interfere with the piston movement rather than friction heat generation, output reduction and fuel economy worse.
  • the method for producing a fuel additive composition of the present invention is nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride having a particle diameter of 10nm to 5 ⁇ m
  • Example 7 and Comparative Example 4 were tested in CVS-75 mode using a 4-stroke gasolin direct injection engine with a displacement of 2,000 cc, and the fuel used in this engine was gasoline with 30% methanol added thereto. The results of the experiment were shown by the addition.
  • 10 g of cobalt nitride (A), 10 g of lithium nitride (A), and 10 g of manganese nitride are placed in 100 g of methanol (B), 100 g of propanol (B), 100 g of butanol and 100 g of pentanol, and After 10 minutes of agitation at 500, it was placed in the engine used in the experiment containing 200 liters of fuel and tested for fuel economy and exhaust gas.
  • 100 g of gallium nitride (A) and 100 g of tungsten nitride (A) having a particle size of 0.5 ⁇ m were placed in 500 g of pentanol (B), 500 g of hexanol, 500 g of heptanol, and 500 g of octanol, and then the homogenizer at 1,000 rpm for 30 minutes. After stirring, the engine was used for the experiment containing 200 liters of fuel and tested for fuel efficiency and exhaust gas.
  • 100 g of titanium nitride (A), 100 g of titanium oxynitride (A), and 100 g of boron nitride (A) having a particle diameter of 20 nm were made from 1 kg of trimethanolamine (B), 1 kg of triethanolamine (B), and monoisopropanolamine (B). The mixture was put into 1 kg and stirred at a rpm 500 for 20 minutes with a homomixer, and then put into an engine used in an experiment containing 200 liters of fuel.
  • 0.1 g of nickel nitride (A) and 0.1 g of manganese nitride (A) having a particle size of 0.5 ⁇ m were added to 0.5 g of diisopropanolamine (B) and 0.5 g of triisopropanolamine (B), and then mixed with a general mixer for 3 minutes at 30 rpm. After stirring, the engine was used for the experiment containing 200 liters of fuel and tested for fuel efficiency and exhaust gas.
  • Gasoline fuel containing 30% methanol was tested by phase separation at low temperature and by adding water, and the exhaust gas and fuel economy were tested.
  • Table 1 shows the results of measuring the fuel efficiency, the exhaust gas and the degree of phase separation according to the type and content of the fuel additive added from the examples and the comparative examples.
  • Example 1 Example Exhaust gas Fuel efficiency improvement (%) Phase separation temperature (°C) Water input not phase separated at 25 °C (%) CO reduction rate (%) Hydrocarbon reduction rate (%) Soot reduction rate (%)
  • Example 1 36 73 30 31 ⁇ ⁇ Example 2 37 78 32 37 ⁇ ⁇ Example 3 38 80 33 39 ⁇ ⁇ Example 4 31 67 26 28 ⁇ ⁇ Example 5 38 79 33 39 ⁇ ⁇ Example 6 37 78 32 38 ⁇ ⁇ Example 7 46 92 29 36 -40 2.5 Comparative Example 1 0 0 0 0 ⁇ ⁇ Comparative Example 2 -3 -9 -2 -5 ⁇ ⁇ Comparative Example 3 2 5 One 2 ⁇ ⁇ Comparative Example 4 0 0 0 0 -8 0.003
  • the additive used in the present invention when the fuel is combusted in the engine, the additive used in the present invention induces complete combustion, thereby increasing power output and combustion efficiency, thereby reducing fuel consumption. Preventing the phase separation of alcohols, consequently reducing greenhouse gases and using energy more efficiently, could contribute significantly to improving the atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Disclosed are a fuel additive and a method for manufacturing same, the fuel additive being added to fuel used in alcohol, gasoline, diesel, ship and airplane engines and in boilers to induce complete combustion, thus contributing to reductions in toxic exhaust gas and fuel usage, and an increase in fuel efficiency, and in fuel in which alcohol is added, a phase separation is prevented, which reduces toxic exhaust gas and improves fuel cost, allowing a simultaneous reduction in greenhouse gases from the CO2 reduction, and thus the present invention can contribute significantly to improving the atmospheric environment by effective use of energy and reduction in carbon dioxide, a greenhouse gas.

Description

연료 첨가제 및 제조방법Fuel Additives and Manufacturing Methods
본 발명은 연료에 첨가하여 사용하여 내마모성이 있고 윤활성이 좋으며, 엔진내의 연소상태를 활발하게 하여 배출가스를 줄이고 연비를 향상시키고 알콜이 첨가된 연료는 상분리를 방지하는 알콜엔진, 휘발유 엔진, 디젤엔진, 선박용엔진, 항공기 엔진 및 보일러에 사용되는 연료에 첨가하여 사용하는 연료 첨가제에 관한 것이다.The present invention is used in addition to the fuel wear resistance and good lubrication, active combustion state in the engine to reduce the exhaust gas, improve fuel efficiency, and add fuel to the alcohol, gasoline engine, diesel engine to prevent phase separation And fuel additives used in addition to fuels used in marine engines, aircraft engines and boilers.
본 연료 첨가제는 점차 환경문제에 대응하기 위하여 차량의 연료절약에 초점을 맞추는데 노력을 하고 있다. 따라서 엔진 내부의 연소상태를 활발하게 하여 완전연소에 이르게 하여 연료 소비를 감소시키는 가장 중요한 요소가 된다. 이와같은 효과를 달성하기 위하여 폴리옥시알킬렌글리콜 계통의 계면활성제를 사용하거나, 점도개선 고분자나 마찰계수 조정을 위한 첨가제들을 사용하여 왔는데, 화학 첨가제을 사용하면 특정한 철강 금속(ferrous metal) 부품 또는 비철금속 부품에 대한 윤활제의 부식성을 증가시키는 등 부작용이 발생하는 단점이 있어 왔다.This fuel additive is trying to focus on fuel economy of vehicles to respond gradually to environmental problems. Therefore, it is the most important factor to reduce fuel consumption by activating the combustion state inside the engine to complete combustion. In order to achieve this effect, a polyoxyalkylene glycol-based surfactant has been used, or additives for adjusting the viscosity-improving polymer or friction coefficient have been used, and chemical additives can be used for certain ferrous metal parts or nonferrous metal parts. There has been a disadvantage that side effects occur, such as increasing the corrosion of the lubricant for.
이전에는 연료 첨가제로 계면활성제 종류나 효소 계면활성제, 방향족 화합물, 철 나노입자등을 사용하였는데, 배출가스 저감이나 연비향상등에 대하여 뚜렷한 효가를 얻지 못하고 있다.Previously, fuel additives, such as surfactants, enzyme surfactants, aromatic compounds, iron nanoparticles, etc., were used. However, there is no clear effect on emission reduction or fuel efficiency improvement.
특허 10-0390973은 효소계 연료첨가제로, 과일에서 추출한 D-락티드, L-락티드 , DL-락티드, D-글리코라이드, L-글리코라이드, DL-글리코라이드, D-말리드, L-말리드, DL-말리드, D-타르타리드, L-타르타리드, DL-타르타리드, D-시트리드, L-시트리드 및 DL-시트리드로 이루어진 그룹 중에서 선택되는 하나 이상의 락티드 유도체 0.01 내지 90 중량%, 휘발유, 등유, 경유 및 정제수로 이루어진 그룹 중에서 선택된 하나 이상의 담체 0.01 내지 90 중량% 및 MTBE 0.01 내지 10 중량%로 이루어진 연료첨가제 조성물로 이루어진 연료첨가제 조성물이 개시되어 있다.Patent 10-0390973 is an enzyme-based fuel additive, D-lactide, L-lactide, DL-lactide, D-glycolide, L-glycolide, DL-glycolide, D-malide, L- At least one lactide selected from the group consisting of malid, DL-malid, D-tartaride, L-tartaride, DL-tartaride, D-citride, L-citide and DL-citide A fuel additive composition is disclosed which comprises a fuel additive composition comprising 0.01 to 90% by weight of a derivative, 0.01 to 90% by weight of at least one carrier selected from the group consisting of gasoline, kerosene, diesel and purified water and 0.01 to 10% by weight of MTBE.
출원번호 10-2002-0003553에는 염기성 옥시산 분자내 에스테르, 염기성 옥시산 분자내 에스테르 및 염기성 옥시산 분자내 에스테르로 이루어진 그룹 중에서 선택되는 하나 이상의 옥시산 분자내 에스테르 0.01 내지 90 중량% 및 등유 10 내지 99.99 중량%로 이루어진 연료첨가제 조성물이 개시되어 있다.Application No. 10-2002-0003553 discloses 0.01 to 90% by weight of one or more oxyacid intramolecular esters selected from the group consisting of basic oxyacid intramolecular esters, basic oxyacid intramolecular esters and basic oxyacid intramolecular esters and kerosene 10 to A fuel additive composition of 99.99% by weight is disclosed.
출원번호 10-2012-0089897에는 정유공정 또는 석유화학공정에서 부산(副産)되는 다종의 탄화수소 화합물과, Bacillus sp. khr-10-mx (생명공학연구원(KRIBB) 미생물 수탁번호 KCTC 8533P)가 생산하는 생물학적 계면활성제(bio-surfactant)를 이용하는 연료첨가제 조성물이 개시되어 있다.Application No. 10-2012-0089897 discloses a variety of hydrocarbon compounds which are produced by refining or petrochemical processes, and Bacillus sp. A fuel additive composition using a bio-surfactant produced by khr-10-mx (KRIBB microbial accession number KCTC 8533P) is disclosed.
또한, 특허 10-0743160에는 대체연료로 알코올을 주원료로 사용하며, 송진에서 추출될 수 있는 로진의 유기산(이하 “로진산”라 한다.)을 폴리알킬렌에텔 및 암모니아와 반응시켜 제조된 아미노폴리옥시알킬렌로진에스테르 화합물로서, 에탄올 함유 가솔린계 자동차용 대체연료의 세정제, 방식제, 상분리 방지제로서의 기능을 할 수 있는 연료첨가제 조성물이 개시되어 있다.In addition, Patent No. 10-0743160 uses alcohol as a main fuel and aminopoly prepared by reacting rosin's organic acid (hereinafter referred to as “rosin acid”) that can be extracted from rosin with polyalkylene ether and ammonia. As an oxyalkylene rosin ester compound, a fuel additive composition capable of functioning as a cleaning agent, an anticorrosive agent, and a phase separation preventing agent of an ethanol-containing gasoline-based alternative fuel for automobiles is disclosed.
특허 10-0853463에는 전체 조성물 100 중량부에 대하여 자일렌 15∼35 중량부, 에탄올 20∼35 중량부, 이소파라핀 10∼20 중량부, 노르말헵탄 5∼20 중량부, 톨루엔 15∼20 중량부, 이소옥탄 1∼5 중량부, 과산화수소 1∼10 중량부 및 이산화티타늄 1∼10 중량부로 이루어진 연료첨가제 조성물이 개시되어 있다. Patent 10-0853463 discloses 15 to 35 parts by weight of xylene, 20 to 35 parts by weight of ethanol, 10 to 20 parts by weight of isoparaffin, 5 to 20 parts by weight of normal heptane, 15 to 20 parts by weight of toluene, based on 100 parts by weight of the total composition, A fuel additive composition comprising 1 to 5 parts by weight of isooctane, 1 to 10 parts by weight of hydrogen peroxide and 1 to 10 parts by weight of titanium dioxide is disclosed.
특허 10-1020236에는 황산제1철로부터 화학적 합성법에 의해 철산화물 또는 철수산화물의 나노입자를 제조하고, 이에 계면활성제를 가해 상기 나노입자를 친유성으로 표면 개질한 후, 이를 유기용매에 분산한 것을 특징으로 이루어진 연료첨가제 조성물이 개시되어 있다.Patent 10-1020236 discloses that nanoparticles of iron oxide or iron hydroxide are prepared from ferrous sulfate by a chemical synthesis method, and surface-modified the nanoparticles are lipophilic by adding a surfactant thereto and then dispersed in an organic solvent. A fuel additive composition is disclosed that consists of the features.
이에, 본 발명자들은 종래의 계면활성제나 효소를 이용한 첨가제 또는 철산화물 또는 철수산화물의 나노입자를 사용한 연료 첨가제로는 충분한 연소효율과 연비저감효과 및 배출가스 저감효과를 달성하지 못하는 기술적인 문제점을 해결하기 위해 연구하던 중, 엔진내부에서 연료가 연소될 때 첨가제가 완전연소를 유도하여 출력증강과 연소효율을 높여주는 연료 첨가제 조성물을 개발하여 본 발명을 완성하였다.Accordingly, the present inventors solve the technical problem that conventional additives using surfactants or enzymes or fuel additives using nanoparticles of iron oxides or iron hydroxides do not achieve sufficient combustion efficiency, fuel economy reduction effect and emission reduction effect. During the study, the present invention was completed by developing a fuel additive composition in which the additive induces complete combustion when the fuel is burned in the engine, thereby increasing the output power and the combustion efficiency.
발명의 요약Summary of the Invention
본 발명은 종래의 폴리옥시알킬렌글리콜등의 계면활성제나 효소를 이용한 첨가제 또는 아미노폴리옥시알킬렌로진에스테르나 생물학적 계면활성제, 철산화물 또는 철수산화물의 나노입자를 사용한 연료 첨가제로는 충분한 연소효율과 연비저감효과 및 배출가스 저감효과를 달성하지 못하였으므로 이와 같은 기술적인 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 알콜엔진, 휘발유엔진, 디젤엔진, 선박엔진, 비행기엔진 및 보일러에 사용되는 연료에 적용되어 완전연소를 유도하여 유해 배출가스 감소, 연소효율증대 및 연료절감에 기여하고, 알콜이 첨가된 연료에 대해서는 연료와 알콜의 상이 분리되는 것을 방지하는 연료 첨가제와 그 제조방법을 제공하는 데에 있다.The present invention is sufficient combustion efficiency as additives using surfactants or enzymes, such as conventional polyoxyalkylene glycol, or fuel additives using amino particles of amino polyoxyalkylene rosin esters or biological surfactants, iron oxides or iron hydroxides. It was devised to solve such technical problems because it did not achieve the effect of reducing the fuel consumption and reducing the exhaust gas, the object of the present invention is used in alcohol engine, gasoline engine, diesel engine, ship engine, airplane engine and boiler It is applied to fuels that are used to induce complete combustion, which contributes to reducing harmful emissions, increasing combustion efficiency and reducing fuels, and providing fuel additives and a method of manufacturing the same to prevent the separation of fuel and alcohol phases for alcohol-added fuels. It's there.
상기 및 그 밖의 목적을 달성하기 위하여, 본 발명은 하나 이상의 금속나이트라이드(A)가 하나 이상의 알콜류(B)에 균일하게 분산된 연료 첨가제에 관한 것으로, 금속나이트라이드의 입자의 입경은 10nm 내지 5μm이다. In order to achieve the above and other objects, the present invention relates to a fuel additive in which at least one metal nitride (A) is uniformly dispersed in at least one alcohol (B), the particle diameter of the metal nitride particles is 10nm to 5μm to be.
상기 금속나이트라이드(A)는 니켈나이트라이드, 코발트나이트라이드, 리튬나이트라이드, 망간나이트라이드, 갈륨나이트라이드, 텅스텐나이트라이드, 텅스텐옥시나이트라이드, 보론나이트라이드, 알킬보론나이트라이드, 티타늄나이트라이드, 티타늄옥시나이트라이드 중에 1종 이상 선택되며, 상기 알콜류(B)는 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알콜, 이소부틸알콜, 펜탄올, 이소펜틸알콜, 헥산올, 헵타놀, 옥타놀, 이소헥실알콜, 트리메탄올아민, 페녹시에탄올, 모노이소프로판올아민, 디이소프로판올아민, 트리이소프로판올아민 중에 1종이상 선택되며, 상기 금속나이트라이드(A)와 상기 알콜류(B)는, 금속나이트라이드(A) : 알콜류(B) = 1 : 10,000 ~ 10 : 1의 중량비를 가지며, 상기 금속나이트라이드(A) 및 알콜류(B)는 전체 연료 양에 대하여 10ppm(0.001중량%) 내지 100,000ppm(10중량%)이다.The metal nitride (A) is nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride, alkyl boron nitride, titanium nitride, At least one selected from titanium oxynitride, and the alcohols (B) are methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, pentanol, isopentyl alcohol, hexanol, heptanol, octanol, iso Hexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine, triisopropanolamine are selected from one or more, and the metal nitride (A) and the alcohols (B) are metal nitride (A) Alcohols (B) = 1: 10,000 ~ 10: 1 has a weight ratio, the metal nitride (A) and alcohols (B) is 10ppm (0) relative to the total amount of fuel .001 weight percent) to 100,000 ppm (10 weight percent).
또한, 연료 첨가제 제조방법은 10nm 내지 5㎛의 입경을 갖는 니켈나이트라이드, 코발트나이트라이드, 리튬나이트라이드, 망간나이트라이드, 갈륨나이트라이드, 텅스텐나이트라이드, 텅스텐옥시나이트라이드, 보론나이트라이드, 알킬보론나이트라이드, 티타늄나이트라이드, 티타늄옥시나이트라이드 중에 1종 이상 선택되어진 금속나이트라이드(A), 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알콜, 이소부틸알콜, 펜탄올, 이소펜틸알콜, 헥산올, 헵타놀, 옥타놀, 이소헥실알콜, 트리메탄올아민, 페녹시에탄올, 모노이소프로판올아민, 디이소프로판올아민, 트리이소프로판올아민 중에 1종 이상 선택된 알콜류(B)를 준비하는 단계; 상기 금속나이트라이드(A), 알콜류(B)가, 금속나이트라이드(A) : 알콜류(B) = 1 : 10,000 ~ 10 : 1의 중량비로 혼합되는 단계; 호모믹서나 호모지나이저 또는 일반믹서 중 하나 이상을 사용하여 5분이상 60rpm 이상으로 교반시켜 금속나이트라이드(A)를 알콜류(B) 내에 균일하게 분산시키는 단계를 포함한다.In addition, the fuel additive manufacturing method is nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride, alkyl boron having a particle diameter of 10nm to 5㎛ At least one metal nitride selected from the group consisting of nitride, titanium nitride and titanium oxynitride (A), methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, pentanol, isopentyl alcohol, hexanol, Preparing at least one alcohol (B) selected from heptanol, octanol, isohexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine, triisopropanolamine; The metal nitride (A) and alcohols (B) are mixed at a weight ratio of metal nitride (A): alcohols (B) = 1: 10,000-10: 1; Stirring at least 5 minutes and at least 60 rpm using a homomixer or homogenizer or a general mixer to uniformly disperse the metal nitride (A) in alcohols (B).
발명의 상세한 설명 및 바람직한 구현예Detailed Description of the Invention and Preferred Embodiments
본 발명은 이상의 금속나이트라이드(A)가 하나 이상의 알콜류(B)에 균일하게 분산된 연료 첨가제에 관한 것이다.The present invention relates to a fuel additive in which the above metal nitrides (A) are uniformly dispersed in at least one alcohol (B).
금속나이트라이드(A)와 알콜류(B)를 연료에 첨가하여 사용하는데, 금속나이트라이드(A)는 니켈나이트라이드, 코발트나이트라이드, 리튬나이트라이드, 망간나이트라이드, 갈륨나이트라이드, 텅스텐나이트라이드, 텅스텐옥시나이트라이드, 보론나이트라이드, 알킬보론나이트라이드, 티타늄나이트라이드, 티타늄옥시나이트라이드중 1종 이상 선택되며, 알콜류(B)에는 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알콜, 이소부틸알콜, 펜탄올, 이소펜틸알콜, 헥산올, 헵타놀, 옥타놀, 이소헥실알콜, 트리메탄올아민, 페녹시에탄올, 모노이소프로판올아민, 디이소프로판올아민, 트리이소프로판올아민 중 1종 이상 선택되고, 이들의 첨가량은 금속나이트라이드(A) : 알콜류(B) = 1 : 10,000 ~ 10 : 1의 중량비, (A) + (B)는 전체 연료량에 대하여 10ppm(0.001중량%) 내지 10중량% 이다. Metal nitride (A) and alcohols (B) are added to the fuel, and metal nitride (A) is used for nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, At least one selected from tungsten oxynitride, boron nitride, alkyl boron nitride, titanium nitride and titanium oxynitride, and alcohols (B) include methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, At least one selected from pentanol, isopentyl alcohol, hexanol, heptanol, octanol, isohexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine, triisopropanolamine, and the amount of these added is Metal nitrides (A): alcohols (B) = 1: 10,000 to 10: 1 weight ratio, (A) + (B) is 10ppm (0.001% by weight) to 10 in the total fuel amount Amount%.
상기 금속나이트라이드(A) : 알콜류(B) 비율을 초과하게 되면 금속나이트라이드가 알콜류에 고르게 분산되기 어렵고 원하는 배출가스 저감이나 연료절감 효율을 기대하기 어렵다.When the metal nitride (A): alcohol (B) ratio is exceeded, the metal nitride is difficult to be evenly dispersed in the alcohol and it is difficult to expect a desired emission reduction or fuel saving efficiency.
상기 (A) + (B)함량이 전체 연료량에 대하여 10ppm(0.001중량%)이하로 첨가되면, 촉매효과가 나타나지 않아서 연소효율 증가가 일어나지 않고 연비 향상의 효과가 없으며, 전체 연료조성물에 대하여 (A) + (B) 함량이 10중량%를 초과하게 되면, 연료 전체의 단위부피당 탄소수가 감소하여 출력감소가 나타나고 연비가 오히려 5% 내외로 저하된다.When the (A) + (B) content is added below 10 ppm (0.001% by weight) based on the total amount of fuel, there is no catalytic effect, so that combustion efficiency does not increase and fuel efficiency is not improved. When the content of +) (B) exceeds 10% by weight, the number of carbons per unit volume of the entire fuel decreases, resulting in a decrease in output and a fuel economy of about 5%.
상기 금속나이트라이드(A)의 크기는 5㎛ ~ 10nm 크기의 입경을 갖는 것을 사용하여야 하며, 이보다 작은 입경을 갖게 되면 제조하기도 어렵고 연료 내에 미세분산되어 그 효과를 나타내기 어려우며, 5μm보다 큰 입경을 갖게 되면 연료 분사노즐을 막을 위험이 크고 실린더 내벽에 후막을 형성하여 피스톤 운동을 오히려 방해하여 마찰열 발생과 출력 저감 및 연비가 나빠지게 된다. The size of the metal nitride (A) should be used having a particle size of 5㎛ ~ 10nm, if it has a smaller particle size is difficult to manufacture and finely dispersed in the fuel it is difficult to show the effect, the particle size larger than 5μm If it has a high risk of plugging the fuel injection nozzle and forming a thick film on the inner wall of the cylinder to interfere with the piston movement rather than friction heat generation, output reduction and fuel economy worse.
본 발명의 연료 첨가제 조성물의 제조방법은 10nm 내지 5㎛의 입경을 갖는 니켈나이트라이드, 코발트나이트라이드, 리튬나이트라이드, 망간나이트라이드, 갈륨나이트라이드, 텅스텐나이트라이드, 텅스텐옥시나이트라이드, 보론나이트라이드, 알킬보론나이트라이드, 티타늄나이트라이드, 티타늄옥시나이트라이드 중 1종 이상 선택된 금속 나이트라이트와, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알콜, 이소부틸알콜, 펜탄올, 이소펜틸알콜, 헥산올, 헵타놀, 옥타놀, 이소헥실알콜, 트리메탄올아민, 페녹시에탄올, 모노이소프로판올아민, 디이소프로판올아민, 트리이소프로판올아민 중 1종 이상 선택된 알콜류(B)를 준비하고, 상기 금속나이트라이드(A)와 알콜류(B)를 금속나이트라이드(A) : 알콜류(B) = 1 : 10,000 ~ 10 : 1의 중량비로 혼합한 후, 호모믹서나 호모지나이저 또는 일반믹서나 이들을 혼합 사용하여 5분이상 60rpm 이상으로 교반시켜 금속나이트라이드(A)가 알콜류(B) 내에 균일하게 분산되는 것을 포함한다. 이하, 본 발명은 하기의 실시예 및 비교예에 의거하여 설명된다. 하기 실시예 및 비교예는 본 발명을 설명하기 위한 것일 뿐이며, 본 발명이 하기의 실시예 및 비교예로 한정되는 것은 아니다. 실시예1 ~ 실시예6 과 비교예1 ~ 비교예 3의 실험에 사용된 장치는 배기량 11,000cc이며 4-stroke turbocharged common rail 엔진을 엔진다이나모메터에 연결하여 ND-13 mode로 시험 하였으며, 이 엔진에 사용되는 연료는 경유 200리터였고, 여기에 연료첨가제를 첨가하여 실험한 결과를 나타내었다. 실시예 7과 비교예 4는 배기량 2,000cc의 4-stroke gasolin direct injection 엔진을 사용하여 CVS-75 모드로 시험하였으며, 이 엔진에 사용된 연료는 메탄올이 30% 첨가된 휘발유이며, 여기에 연료첨가제를 첨가하여 실험한 결과를 나타내었다. The method for producing a fuel additive composition of the present invention is nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride having a particle diameter of 10nm to 5㎛ At least one metal nitrite selected from alkyl boron nitride, titanium nitride, titanium oxynitride, methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, pentanol, isopentyl alcohol, hexanol, Prepare at least one alcohol (B) selected from heptanol, octanol, isohexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine, triisopropanolamine, and the metal nitride (A) After mixing alcohols (B) in the metal nitride (A): alcohols (B) = 1: 10,000 ~ 10: 1 by weight ratio, homomixer The call using homogenizer or mixer or normal mixing them by stirring at 60rpm over 5 minutes or longer includes a metal nitride (A) is uniformly dispersed in the alcohol (B). Hereinafter, the present invention will be described based on the following examples and comparative examples. The following examples and comparative examples are only for illustrating the present invention, and the present invention is not limited to the following examples and comparative examples. The apparatus used in the experiments of Examples 1 to 6 and Comparative Examples 1 to 3 has a displacement of 11,000 cc and a 4-stroke turbocharged common rail engine was connected to the engine dynamometer and tested in ND-13 mode. The fuel used for the fuel oil was 200 liters of diesel fuel, and the results of the experiment with the addition of the fuel additive were shown. Example 7 and Comparative Example 4 were tested in CVS-75 mode using a 4-stroke gasolin direct injection engine with a displacement of 2,000 cc, and the fuel used in this engine was gasoline with 30% methanol added thereto. The results of the experiment were shown by the addition.
실시예 1Example 1
입경 2㎛ 크기의 니켈나이트라이드(A) 5g을 에탄올(B) 5g에 넣고 일반믹서로 rpm 60으로 5분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.5 g of nickel nitride (A) with a particle size of 2 µm was added to 5 g of ethanol (B), stirred at 60 rpm with a general mixer for 5 minutes, and placed in an engine used in an experiment containing 200 liters of fuel. Was tested.
실시예 2Example 2
입경 1㎛ 크기의 코발트나이트라이드(A) 10g과 리튬나이트라이드(A) 10g과 망간나이트라이드 10g을 메탄올(B) 100g과 프로판올(B) 100g과 부탄올 100g과 펜탄올 100g에 넣고 호모믹서로 rpm 500으로 10분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.10 g of cobalt nitride (A), 10 g of lithium nitride (A), and 10 g of manganese nitride are placed in 100 g of methanol (B), 100 g of propanol (B), 100 g of butanol and 100 g of pentanol, and After 10 minutes of agitation at 500, it was placed in the engine used in the experiment containing 200 liters of fuel and tested for fuel economy and exhaust gas.
실시예 3Example 3
입경 0.5㎛ 크기의 갈륨나이트라이드(A) 100g과 텅스텐나이트라이드(A) 100g을 펜탄올(B) 500g과 헥사놀 500g과 헵타놀 500g과 옥타놀 500g에 넣고 1,000 rpm으로 호모지나이저로 30분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.100 g of gallium nitride (A) and 100 g of tungsten nitride (A) having a particle size of 0.5 µm were placed in 500 g of pentanol (B), 500 g of hexanol, 500 g of heptanol, and 500 g of octanol, and then the homogenizer at 1,000 rpm for 30 minutes. After stirring, the engine was used for the experiment containing 200 liters of fuel and tested for fuel efficiency and exhaust gas.
실시예 4Example 4
50nm 크기의 텅스텐나이트라이드(A) 2g과 텅스텐옥시나이트라이드(A) 2g을 페녹시에탄올(B) 2kg과 이소프로필알콜 2kg과 이소부틸알콜 2kg과 이소펜틸알콜 2kg과 이소헥실알콜 2kg에 넣고 호모믹서로 rpm 500으로 20분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.2 g of 50 nm tungsten nitride (A) and 2 g tungsten oxynitride (A) are placed in 2 kg of phenoxyethanol (B), 2 kg of isopropyl alcohol, 2 kg of isobutyl alcohol, 2 kg of isopentyl alcohol and 2 kg of isohexyl alcohol. After 20 minutes of stirring at 500 rpm with a mixer, the engine was used for an experiment containing 200 liters of fuel and tested for fuel efficiency and exhaust gas.
실시예 5Example 5
입경 20nm 크기의 티타늄나이트라이드(A) 100g과 티타늄옥시나이트라이드(A) 100g과 보론나이트라이드(A) 100g을 트리메탄올아민(B) 1kg과 트리에탄올아민(B) 1kg과 모노이소프로판올아민(B) 1kg에 넣고 호모믹서로 rpm 500으로 20분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.100 g of titanium nitride (A), 100 g of titanium oxynitride (A), and 100 g of boron nitride (A) having a particle diameter of 20 nm were made from 1 kg of trimethanolamine (B), 1 kg of triethanolamine (B), and monoisopropanolamine (B). The mixture was put into 1 kg and stirred at a rpm 500 for 20 minutes with a homomixer, and then put into an engine used in an experiment containing 200 liters of fuel.
실시예 6Example 6
입경 0.5㎛ 크기의 니켈나이트라이드(A) 100g과 망간나이트라이드(A) 50g을 디이소프로판올아민(B) 10g과 트리이소프로판올아민(B) 10g에 넣고 호모지나이저로 rpm 2,000으로 30분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.100 g of nickel nitride (A) and 50 g of manganese nitride (A) having a particle diameter of 0.5 µm were added to 10 g of diisopropanolamine (B) and 10 g of triisopropanolamine (B), and stirred with a homogenizer at 2,000 rpm for 30 minutes. Fuel consumption and emissions were tested in engines used in the experiments containing 200 liters of fuel.
비교예 1Comparative Example 1
연료에 첨가제를 넣지 않고 연비와 배출가스를 시험하였다.Fuel economy and emissions were tested without adding additives to the fuel.
비교예 2Comparative Example 2
입경 0.5㎛ 크기의 니켈나이트라이드(A) 0.1g과 망간나이트라이드(A) 0.1g을 디이소프로판올아민(B) 0.5g과 트리이소프로판올아민(B) 0.5g에 넣고 일반믹서로 rpm 30으로 3분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.0.1 g of nickel nitride (A) and 0.1 g of manganese nitride (A) having a particle size of 0.5 µm were added to 0.5 g of diisopropanolamine (B) and 0.5 g of triisopropanolamine (B), and then mixed with a general mixer for 3 minutes at 30 rpm. After stirring, the engine was used for the experiment containing 200 liters of fuel and tested for fuel efficiency and exhaust gas.
비교예 3Comparative Example 3
입경 0.5㎛ 크기의 니켈나이트라이드(A) 2kg과 망간나이트라이드(A) 2kg을 디이소프로판올아민(B) 10kg과 트리이소프로판올아민(B) 10kg에 넣고 호모믹서로 rpm 1,000으로 30분 교반한 후 200리터 용량의 연료가 들어 있는 실험에 사용된 엔진에 넣고 연비와 배출가스를 시험하였다.2 kg of nickel nitride (A) and 2 kg of manganese nitride (A) having a particle size of 0.5 µm were added to 10 kg of diisopropanolamine (B) and 10 kg of triisopropanolamine (B), and stirred at a rpm 1000 for 30 minutes using a homomixer. Fuel economy and emissions were tested in engines used in experiments containing liter liters of fuel.
비교예 4Comparative Example 4
30% 메탄올이 함유되어 있는 가솔린 연료에 저온에서의 상분리 실험과 수분 첨가에 의한 실험을 하였고 배출가스와 연비를 시험하였다.Gasoline fuel containing 30% methanol was tested by phase separation at low temperature and by adding water, and the exhaust gas and fuel economy were tested.
실시예들과 비교예들로부터 첨가된 연료 첨가제의 종류 및 함량에 따른 연비 및 배출가스와 상분리 정도를 측정한 결과를 하기 표 1에 나타내었다. Table 1 shows the results of measuring the fuel efficiency, the exhaust gas and the degree of phase separation according to the type and content of the fuel additive added from the examples and the comparative examples.
표 1
실시예 배출가스 연비향상(%) 상분리 온도(℃) 25℃에서 상분리안되는 수분투입량(%)
CO저감율(%) 탄화수소저감율(%) 매연저감율(%)
실시예1 36 73 30 31
실시예2 37 78 32 37
실시예3 38 80 33 39
실시예4 31 67 26 28
실시예5 38 79 33 39
실시예6 37 78 32 38
실시예7 46 92 29 36 -40 2.5
비교예1 0 0 0 0
비교예2 -3 -9 -2 -5
비교예3 2 5 1 2
비교예4 0 0 0 0 -8 0.003
Table 1
Example Exhaust gas Fuel efficiency improvement (%) Phase separation temperature (℃) Water input not phase separated at 25 ℃ (%)
CO reduction rate (%) Hydrocarbon reduction rate (%) Soot reduction rate (%)
Example 1 36 73 30 31
Example 2 37 78 32 37
Example 3 38 80 33 39
Example 4 31 67 26 28
Example 5 38 79 33 39
Example 6 37 78 32 38
Example 7 46 92 29 36 -40 2.5
Comparative Example 1 0 0 0 0
Comparative Example 2 -3 -9 -2 -5
Comparative Example 3 2 5 One 2
Comparative Example 4 0 0 0 0 -8 0.003
표 1에서 보는 것과 같이 본 발명의 실시예처럼 연료에 첨가제를 첨가하여 일산화탄소, 탄화수소 등의 유해 배출가스를 줄여주어, 매연저감율이 26 ~ 33%에 이르고, 탄화수소 저감율이 67 ~ 92%에 이르며, 연비를 28 ~ 39% 향상시켜, 연소효율이 좋아져서 연료를 적게 사용하게 되므로 CO2 저감으로 온실가스 감축효과를 동시에 얻을 수 있으며, 에너지의 효율적 이용과 온실가스인 이산화탄소 배출을 그만큼 감축하여 대기환경개선에 크게 기여할 수 있는 효과를 동시에 얻을 수 있다. 또한 메탄올이 첨가된 휘발유 연료의 경우 상분리 온도를 낮추어 주어 상분리를 억제하고 수분에 의한 상분리를 억제하며 연비를 향상 시키고 유해 배출가스를 줄여준다.As shown in Table 1, by adding an additive to the fuel as in the embodiment of the present invention to reduce harmful emissions such as carbon monoxide, hydrocarbons, soot reduction of 26 to 33%, hydrocarbon reduction of 67 to 92%, to improve the fuel efficiency 28 ~ 39%, so the combustion efficiency can be enhanced, it uses less fuel, and to obtain a GHG reduction in CO 2 reducing effect at the same time, by so reducing the effective use and greenhouse gas emissions of energy air Quality At the same time, the effect can be greatly contributed to the improvement. In addition, in the case of gasoline fuel containing methanol, the phase separation temperature is lowered to suppress phase separation, inhibit phase separation by moisture, improve fuel efficiency, and reduce harmful emissions.
이상에서는 본 발명의 바람직한 구체예 및 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments and examples of the present invention, those skilled in the art can variously modify the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. And can be changed.
본 발명의 연료 첨가제 및 제조방법은 엔진내부에서 연료가 연소될때 본 발명에 사용된 첨가제가 완전연소를 유도하여 출력증강과 연소효율을 높여주어 연비를 절감하며, 알콜이 첨가된 연료에 대해서는 연료와 알콜의 상이 분리되는 것을 방지하여 결과적으로 온실가스를 줄이며 에너지를 효율적으로 사용하여 대기환경개선에도 크게 기여할 수 있을 것이다. In the fuel additive and the manufacturing method of the present invention, when the fuel is combusted in the engine, the additive used in the present invention induces complete combustion, thereby increasing power output and combustion efficiency, thereby reducing fuel consumption. Preventing the phase separation of alcohols, consequently reducing greenhouse gases and using energy more efficiently, could contribute significantly to improving the atmosphere.

Claims (5)

  1. 하나 이상의 금속나이트라이드(A)가 하나 이상의 알콜류(B)에 균일하게 분산된 연료 첨가제.A fuel additive in which at least one metal nitride (A) is uniformly dispersed in at least one alcohol (B).
  2. 제 1항에 있어서, 상기 금속나이트라이드의 입자의 입경은 10nm 내지 5㎛인 연료 첨가제.The fuel additive of claim 1, wherein a particle diameter of the particles of the metal nitride is 10 nm to 5 μm.
  3. 제 1항 또는 제2항에 있어서, 상기 금속나이트라이드(A)는 니켈나이트라이드, 코발트나이트라이드, 리튬나이트라이드, 망간나이트라이드, 갈륨나이트라이드, 텅스텐나이트라이드, 텅스텐옥시나이트라이드, 보론나이트라이드, 알킬보론나이트라이드, 티타늄나이트라이드, 티타늄옥시나이트라이드 중에 1종 이상 선택되며, 상기 알콜류(B)는 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알콜, 이소부틸알콜, 펜탄올, 이소펜틸알콜, 헥산올, 헵타놀, 옥타놀, 이소헥실알콜, 트리메탄올아민, 페녹시에탄올, 모노이소프로판올아민, 디이소프로판올아민, 트리이소프로판올아민 중에 1종이상 선택하는 연료 첨가제. The method of claim 1 or 2, wherein the metal nitride (A) is nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride , At least one selected from alkyl boron nitride, titanium nitride and titanium oxynitride, the alcohols (B) are methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, pentanol, isopentyl alcohol, At least one fuel additive selected from hexanol, heptanol, octanol, isohexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine and triisopropanolamine.
  4. 제 1항에 있어서, 상기 금속나이트라이드(A)와 알콜류(B)는, 금속나이트라이드(A) : 알콜류(B) = 1 : 10,000 ~ 10 : 1의 중량비를 가지며, 상기 금속나이트라이드(A) 및 알콜류(B)는 전체 연료 양에 대하여 10ppm(0.001중량%) 내지 100,000ppm(10중량%)인 연료 첨가제.The metal nitride (A) and the alcohol (B) has a weight ratio of metal nitride (A): alcohol (B) = 1: 10,000 to 10: 1, the metal nitride (A) And alcohols (B) are 10 ppm (0.001 wt%) to 100,000 ppm (10 wt%) with respect to the total amount of fuel.
  5. 10nm 내지 5㎛의 입경을 갖는 니켈나이트라이드, 코발트나이트라이드, 리튬나이트라이드, 망간나이트라이드, 갈륨나이트라이드, 텅스텐나이트라이드, 텅스텐옥시나이트라이드, 보론나이트라이드, 알킬보론나이트라이드, 티타늄나이트라이드, 티타늄옥시나이트라이드 중에 1종 이상 선택되어진 금속나이트라이드(A), 메탄올, 에탄올, 프로판올, 부탄올, 이소프로필알콜, 이소부틸알콜, 펜탄올, 이소펜틸알콜, 헥산올, 헵타놀, 옥타놀, 이소헥실알콜, 트리메탄올아민, 페녹시에탄올, 모노이소프로판올아민, 디이소프로판올아민, 트리이소프로판올아민 중에 1종 이상 선택된 알콜류(B)를 준비하는 단계;상기 금속나이트라이드(A), 알콜류(B)가, 금속나이트라이드(A) : 알콜류(B) = 1 : 10,000 ~ 10 : 1의 중량비로 혼합되는 단계;호모믹서나 호모지나이저 또는 일반믹서 중 하나 이상을 사용하여 5분이상 60rpm 이상으로 교반시켜 금속나이트라이드(A)를 알콜류(B) 내에 균일하게 분산시키는 단계를 포함하는 연료 첨가제 제조방법.Nickel nitride, cobalt nitride, lithium nitride, manganese nitride, gallium nitride, tungsten nitride, tungsten oxynitride, boron nitride, alkyl boron nitride, titanium nitride having a particle diameter of 10 nm to 5 μm, At least one metal nitride selected from titanium oxynitride (A), methanol, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, pentanol, isopentyl alcohol, hexanol, heptanol, octanol, iso Preparing at least one alcohol (B) selected from hexyl alcohol, trimethanolamine, phenoxyethanol, monoisopropanolamine, diisopropanolamine, and triisopropanolamine; the metal nitride (A) and alcohol (B) may include Metal nitride (A): alcohols (B) = 1: 1 to 10,000 in a weight ratio of 10: 1 mixing; homomixer or homogenizer or general mix Use of one or more than 60rpm and stirred for more than five minutes The method fuel additive, comprising the step of uniformly dispersing the metal nitride (A) in the alcohol (B).
PCT/KR2013/003455 2013-04-12 2013-04-23 Fuel additive and manufacturing method WO2014168276A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0040323 2013-04-12
KR1020130040323A KR101330186B1 (en) 2013-04-12 2013-04-12 Additive for fuel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
WO2014168276A2 true WO2014168276A2 (en) 2014-10-16
WO2014168276A3 WO2014168276A3 (en) 2015-05-07

Family

ID=49986767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003455 WO2014168276A2 (en) 2013-04-12 2013-04-23 Fuel additive and manufacturing method

Country Status (2)

Country Link
KR (1) KR101330186B1 (en)
WO (1) WO2014168276A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594100B (en) * 2018-12-07 2021-04-02 东华大学 C3N4Cu/Sn loaded alloy material and preparation and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026028A1 (en) * 1996-12-09 1998-06-18 Orr William C Fuel compositions exhibiting improved fuel stability
US20040237384A1 (en) * 1997-12-08 2004-12-02 Orr William C. Fuel compositions exhibiting improved fuel stability
JP2005508441A (en) * 2001-11-09 2005-03-31 ロバート・ダブリュー・キャロル Method and mixture for improving fuel flammability
US20080066376A1 (en) * 2006-06-09 2008-03-20 National Taiwan University Of Science And Technology Catalytic liquid fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026028A1 (en) * 1996-12-09 1998-06-18 Orr William C Fuel compositions exhibiting improved fuel stability
US20040237384A1 (en) * 1997-12-08 2004-12-02 Orr William C. Fuel compositions exhibiting improved fuel stability
JP2005508441A (en) * 2001-11-09 2005-03-31 ロバート・ダブリュー・キャロル Method and mixture for improving fuel flammability
US20080066376A1 (en) * 2006-06-09 2008-03-20 National Taiwan University Of Science And Technology Catalytic liquid fuel

Also Published As

Publication number Publication date
WO2014168276A3 (en) 2015-05-07
KR101330186B1 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
JP2005502764A (en) Diesel fuel, its production and use
CN109207214A (en) A kind of gasoline additive of environment-friendly type and preparation method thereof
CN114907891A (en) Clean fuel and preparation method thereof
AU2011269623B2 (en) Clear, high efficient and environmentally friendly gasoline product
JP5020434B2 (en) Fuel additive and fuel processing method
WO2018155944A1 (en) Exhaust reduction composition
WO2014168276A2 (en) Fuel additive and manufacturing method
CN107828452A (en) Environmental protection promotees the diesel fuel additives of combustion
CN106811246A (en) A kind of automobile-used boat alcohol ate calorific value Synergistic additives and preparation method
CN106701219A (en) Navigation alcohol fuel combustion-supporting additive for automobile and manufacturing method thereof
AU767978B2 (en) Diesel fuel additive composition and method for the treatment of diesel fuels
CN111394140B (en) Composite diesel additive, special diesel for mining machinery and application and production method thereof
US7794512B2 (en) Supplying tungsten to a combustion system or combustion system exhaust stream containing iron
CN106190362A (en) Motor vehicle fuel function additive
CN1891795B (en) Petrol additive
CN105779042A (en) Oil-saving environment-friendly gasoline quality improver, preparation method thereof and gasoline composition containing same
US7699900B2 (en) Fuel additive
CN109536217A (en) A kind of methanol gasoline and preparation method thereof
TWI808502B (en) Carbon neutral gasoline and diesel enhanced formula
CN105331405A (en) Energy-saving and environment-friendly gasoline additive with maintenance function and preparation method thereof
WO2012064091A2 (en) Fuel additive composition and fuel composition comprising same
CN117603742A (en) High-activity green detergent and preparation method and application thereof
US20090178331A1 (en) Fuel Additive
CN112391213A (en) Diesel oil concentration fuel-saving composition and preparation method thereof
CN108117898A (en) A kind of energy-saving and environment-protecting diesel fuel additive

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 13881794

Country of ref document: EP

Kind code of ref document: A2