WO2014168163A1 - Photoelectric conversion element, dye-sensitized solar cell, metal-complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell - Google Patents

Photoelectric conversion element, dye-sensitized solar cell, metal-complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell Download PDF

Info

Publication number
WO2014168163A1
WO2014168163A1 PCT/JP2014/060250 JP2014060250W WO2014168163A1 WO 2014168163 A1 WO2014168163 A1 WO 2014168163A1 JP 2014060250 W JP2014060250 W JP 2014060250W WO 2014168163 A1 WO2014168163 A1 WO 2014168163A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
group
anc
formula
ring
Prior art date
Application number
PCT/JP2014/060250
Other languages
French (fr)
Japanese (ja)
Inventor
晃逸 佐々木
渡辺 康介
小林 克
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014168163A1 publication Critical patent/WO2014168163A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, a metal complex dye, a dye solution, a dye-adsorbing electrode, and a method for producing a dye-sensitized solar battery.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof.
  • a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy.
  • silicon-based solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country.
  • silicon is an inorganic material, there is a limit to improving throughput and cost.
  • Non-Patent Document 1 The dyes described in Patent Documents 1 and 2 and Non-Patent Document 1 are not always satisfactory in terms of spectral sensitivity characteristics and photoelectric conversion efficiency in the long wavelength region at a wavelength of 800 to 850 nm. Improvement was desired. In view of the above situation, the present invention improves the photoelectric conversion efficiency by improving the spectral sensitivity characteristic in the long wavelength region in the absorption characteristic of the metal complex dye, and in addition, the photoelectric conversion element and the dye excellent in durability It is an object of the present invention to provide a sensitized solar cell, a metal complex dye used for the sensitized solar cell, a dye solution, a dye adsorption electrode, and a method for producing a dye-sensitized solar cell.
  • the conventional metal complex dyes are not necessarily sufficient for the spectral sensitivity characteristic in the long wavelength region
  • the present inventors have found that the spectral sensitivity property in the long wavelength region, particularly the sensitivity characteristic at 800 to 850 nm, that is, the quantum yield (IPCE).
  • IPCE quantum yield
  • a nitrogen atom coordinated to the central metal ion via a lone pair As a result, as a ligand used together with a tridentate ligand having a function of adsorbing to the surface of the semiconductor fine particles, a nitrogen atom coordinated to the central metal ion via a lone pair, and The above nitrogen using a bidentate ligand formed by combining a nitrogen atom, an oxygen atom or a sulfur atom as a coordinating atom to which an anion coordinates, and coordinating with a central metal via a lone electron pair Spectral sensitivity characteristics in the long-wavelength region of the photoelectric conversion element are improved by making the atom a ring-constituting atom that forms a more electron-deficient nitrogen-containing aromatic ring that further includes an electron-withdrawing atom than the carbon atom.
  • the object of the present invention has been achieved by the following means.
  • a photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, The photoelectric conversion element in which this photoreceptor layer has the semiconductor fine particle by which the metal complex dye represented by following formula (I) was carry
  • M represents a metal ion.
  • LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
  • LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
  • LX represents a monodentate ligand.
  • Y represents a counter ion necessary for neutralizing the electric charge.
  • n represents an integer of 0 to 4.
  • Ring D 1 represents a nitrogen-containing aromatic ring
  • ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring.
  • a 12 and A 13 are each independently, N - R L, O - or S - represents a.
  • a 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N.
  • R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
  • Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated.
  • R AL represents a substituent other than Anc 1 to Anc 3
  • b1 represents an integer of 0 to 4.
  • R LDa represents a substituent having no Anc 1 , Anc 2, or Anc 3 , nL1 to nL3 each independently represents an integer of 0 to 3, and nL4 represents an integer of 0 to 2.
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • M represents a metal ion.
  • LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
  • LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
  • LX represents a monodentate ligand.
  • Y represents a counter ion necessary for neutralizing the electric charge.
  • n represents an integer of 0 to 4.
  • Ring D 1 represents a nitrogen-containing aromatic ring
  • ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring.
  • a 12 and A 13 are each independently, N - R L, O - or S - represents a.
  • a 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N.
  • R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
  • Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated.
  • R AL represents a substituent other than Anc 1 to Anc 3
  • b1 represents an integer of 0 to 4.
  • R LDa represents a substituent having no Anc 1 , Anc 2, or Anc 3 , nL1 to nL3 each independently represents an integer of 0 to 3, and nL4 represents an integer of 0 to 2.
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • a dye-adsorbing electrode for a dye-sensitized solar cell in which the metal complex dye according to (8) or (9) is supported on the surface of a semiconductor fine particle provided in a semiconductor electrode.
  • the carbon-carbon double bond may be either E-type or Z-type in the molecule, or a mixture thereof.
  • substituents, etc. linking groups, ligands, etc.
  • substituents etc.
  • a special notice is given.
  • each substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like.
  • substituents and the like when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
  • a ring such as an alicyclic ring, an aromatic ring, or a hetero ring may be further condensed to form a condensed ring.
  • each substituent may be further substituted with a substituent unless otherwise specified.
  • the photoelectric conversion efficiency is improved by improving the spectral sensitivity characteristic in a long wavelength region, and in addition, the photoelectric conversion element, the dye-sensitized solar cell, which are excellent in durability, It is possible to provide a method for producing a metal complex and a metal complex dye, a dye solution, a dye-adsorbing electrode, and a dye-sensitized solar cell used in the above.
  • the photoelectric conversion element of the present invention has a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer body layer containing an electrolyte, and a counter electrode.
  • This photoreceptor layer has semiconductor fine particles carrying a metal complex dye represented by the following formula (I).
  • the metal complex dye of the present invention is represented by the following formula (I).
  • M represents a metal ion.
  • LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
  • LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
  • LX represents a monodentate ligand.
  • Y represents a counter ion necessary for neutralizing the electric charge.
  • n represents an integer of 0 to 4.
  • Ring D 1 represents a nitrogen-containing aromatic ring
  • ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring.
  • a 12 and A 13 are each independently, N - R L, O - or S - represents a.
  • a 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N.
  • R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
  • Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated.
  • R AL represents a substituent other than Anc 1 to Anc 3
  • b1 represents an integer of 0 to 4.
  • M-M is a central metal ion of the metal complex dye, and examples of these metals include atoms in groups 6 to 12 of the long-period periodic table. Specific examples of such atoms include Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn, and Zn.
  • M is preferably Os 2+ , Ru 2+ or Fe 2+ , and Ru 2+ is particularly preferable.
  • the valence of M may change due to an oxidation-reduction reaction with surrounding materials.
  • the ligand LD is a ligand that binds to the metal ion M in a bidentate, and is classified as a donor ligand.
  • the ligand LD is coordinated to the metal ion M by a nitrogen atom having a lone electron pair and an anion.
  • the nitrogen atom having a lone electron pair is a nitrogen atom coordinated to the metal ion M through the lone electron pair, and further includes an atom having a stronger electron withdrawing property than the carbon atom, and is further deficient in electrons.
  • the anion that coordinates to the metal ion M is a nitrogen anion, an oxygen atom anion, or a sulfur anion.
  • the lone electron pair is an electron pair (a set of two electrons) that does not participate in a covalent bond among the outermost electron pairs of the nitrogen atom, and the nitrogen atom has one pair of the lone electron pair.
  • the anion is also preferred.
  • an anion of a nitrogen atom, an oxygen atom, or a sulfur atom is regarded as a coordination atom that coordinates to the metal ion M as an anion even if it has a lone pair.
  • the anion is regarded as a coordinating atom as the stable coordination structure. That is, in the case of> NH, —OH, —SH, it is considered that the anions of> N ⁇ , —O ⁇ , —S 2 — are coordinated.
  • the nitrogen atom coordinated through the lone pair is a nitrogen atom having no hydrogen atom.
  • the atom whose coordination atom is an anion is a nitrogen atom, an oxygen atom and a sulfur atom, and a nitrogen atom is preferable.
  • These atoms may be ring-constituting atoms or atoms contained in a simple group (substituent, preferably an atom in a substituent that is substituted with a ring structure).
  • a nitrogen atom it can be a ring constituent atom constituting a heteroaromatic ring, and such a heterocyclic constituent atom is preferable.
  • each atom serving as an anion is preferably a heterocyclic atom or a substituent on the ring.
  • this ring is preferably an aromatic hydrocarbon ring or a heteroaromatic ring
  • the heteroaromatic ring is a nitrogen-containing heteroaromatic ring (including a heteroaromatic ring having a heteroatom other than a nitrogen atom). Further preferred.
  • Such bidentate ligand LD is specifically represented by any of the following formulas (2L-1) to (2L-3).
  • Ring D 1 represents a nitrogen-containing aromatic ring
  • ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring.
  • a 12 and A 13 are each independently, N - R L, O - or S - represents a.
  • a 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N.
  • R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
  • the ring D 1 is a nitrogen-containing aromatic ring, has an active hydrogen on at least one nitrogen atom of the ring (—NH—), and the —NH— moiety is an anion ( ⁇ N ⁇ ⁇ ) and can be bonded to the metal ion M.
  • —N ⁇ — on ring D 1 in formula (2L-1) is a nitrogen anion from which a hydrogen atom bonded to the nitrogen atom constituting ring D 1 is eliminated.
  • a nitrogen-containing aromatic ring is preferably a 5- to 7-membered ring and may be condensed.
  • Examples include an imidazole ring, a triazole ring, a tetrazole ring, a benzimidazole ring, a 1H-indazole ring, a purine ring, a pyrrole ring, and a pyrazole ring in which the atom bonded to the metal ion M is a nitrogen atom at the 1st position.
  • a triazole ring, a tetrazole ring, a pyrrole ring, and a pyrazole ring in which the atom bonded to the metal ion M is a nitrogen atom at the 1-position is preferable.
  • the nitrogen-containing aromatic ring is preferably a group represented by the following formulas (a-1) to (a-6) derived from an imidazole ring, a pyrazole ring, a triazole ring, a tetrazole ring or a pyrrole ring.
  • (A-1), (a-2) or a group represented by (a-5) is more preferred, and a group represented by (a-2) is particularly preferred.
  • Rd represents a substituent.
  • b1 represents an integer of 0 to 2
  • b2 represents an integer of 0 to 3
  • b3 represents 0 or 1.
  • Rd include a substituent T described later.
  • Rd and b1 to b3 have the same meanings as Rd and b1 to b3 in the formulas (a-1) to (a-6) described above, and the preferred ranges are also the same.
  • b4 represents an integer of 0 to 4
  • b5 represents an integer of 0 to 5.
  • Rd may be present not only on the benzene ring but also on the pyrrole ring.
  • Rd is preferably a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, a fluoroalkyl group, an aryl group, a halogen atom, an alkoxycarbonyl group, a cycloalkoxycarbonyl group, or a group formed by combining these, more preferably A straight chain or branched alkyl group, a cycloalkyl group, an alkenyl group, a fluoroalkyl group, an aryl group or a group formed by combining these, particularly preferably a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, a fluoro group. An alkyl group and a group formed by a combination thereof.
  • Rd preferably does not have an adsorbing group that adsorbs to the surface of the semiconductor fine particles.
  • the adsorbing group adsorbed on the surface of the semiconductor fine particles is a group represented by Anc 1 to Anc 3 in the ligand LA described later. Even if Rd contains a group corresponding to the adsorbing group, it is included as a group that binds to the metal ion M and is not adsorbed on the surface of the semiconductor fine particles.
  • a 1 to A 4 each independently represent CR LD (R LD is a hydrogen atom or a substituent not having the following Anc 1 , Anc 2 and Anc 3 ) or N, and A 1 At least one of A 4 represents N. That is, the ring structure represented by the formula (2L R ), which will be described later, which includes a ring-constituting nitrogen atom coordinated to the metal ion M via a lone pair and A 1 to A 4 , It has 2 to 5 nitrogen atoms among ring members.
  • a ring structure formed by including a plurality of nitrogen atoms having electron withdrawing properties stronger than carbon atoms as ring constituent atoms becomes a nitrogen-containing aromatic ring having fewer electrons than a pyridine ring structure.
  • the ring-constituting nitrogen atom constituting such a nitrogen-containing aromatic ring is coordinated to the metal ion M via a lone electron pair, in combination with the ligands LA and LX described later, a photoelectric conversion element Both the spectral sensitivity characteristics and the durability in the long wavelength region can be improved. From the viewpoint of improving spectral sensitivity characteristics and durability, one to three of A 1 to A 4 are preferably N, and more preferably one or two are N.
  • Such a nitrogen-containing aromatic ring has two or more N as ring constituent atoms and does not have a nitrogen atom that becomes an anion.
  • a pyrazine ring, a pyrimidine ring, a pyridazine ring, a triazine Preferable examples include a ring, a tetrazine ring, and a ring in which benzene is condensed.
  • R LDa is a substituent that does not have the following Anc 1 to Anc 3 .
  • Examples of the substituent R LD and the substituent R LDa include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, and a cycloalkyl group.
  • Oxy group, aryloxy group, heterocyclic oxy group, amino group, alkylthio group, cycloalkylthio group, arylthio group, heteroarylthio group, polyalkylene ether group, halogen atom are preferred, alkyl group, alkenyl group, alkynyl group, aryl Group, heterocyclic group, alkoxy group, aryloxy group, amino group, alkylthio group and arylthio group are more preferable, and alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, amino group, alkylthio group and arylthio group are More preferred Ku, alkyl group, alkenyl group, alkynyl group, an aryl group, a heterocyclic group is particularly preferred.
  • the substituents R LD and R LDa may be a group formed by combining a plurality of the above-described substituents.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic ring A group selected from the group consisting of a group, an aryloxy group and an alkylthio group, a group consisting of an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an aryloxy group, an alkylthio group, an amino group and a cycloalkyl group
  • a group to which at least one selected from the above is bonded.
  • the substituents R LD and R LDa are not an anionic functional group and partly an anion in that the above-described ring-constituting nitrogen atom is easily coordinated to the metal ion M through a lone pair. It is preferably not included.
  • nL1 to nL3 are each independently an integer of 0 to 3
  • nL4 is an integer of 0 to 2.
  • nL1 to nL3 are all preferably integers of 0 to 2
  • nL1 to nL4 are particularly preferably 0 or 1, and most preferably 1.
  • the ring D 2 is an aromatic hydrocarbon ring or a heteroaromatic ring, preferably a 5- to 7-membered ring, and may be condensed.
  • the aromatic hydrocarbon ring include an aromatic ring group corresponding to the aryl group of the substituent T described later
  • examples of the heteroaromatic ring include a heterocyclic group corresponding to the heterocyclic group of the substituent T described later.
  • aromatic hydrocarbon ring or heteroaromatic ring a benzene ring, a naphthalene ring, a thiophene ring, a furan ring, a pyridine ring, a pyrazole ring, and a pyrrole ring are preferable, and a benzene ring is particularly preferable.
  • a 12 is, N - R L, O - or S - a and is present as a substituent on the ring D2 (substituted) amino group, the same meanings as residues obtained by removing active hydrogen from hydroxyl or thiol group.
  • R L is a hydrogen atom or a substituent not having the following Anc 1 to Anc 3 ; an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, a heterocyclic group, an alkoxy group, Alkenyloxy group, alkynyloxy group, cycloalkyloxy group, aryloxy group, heterocyclic oxy group, (substituted or unsubstituted) amino group, alkylthio group, cycloalkylthio group, arylthio group, halogen atom are preferred, alkyl group, alkenyl group Group, alkynyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, (substituted or unsubstituted) amino group, alkylthio group, arylthio group are more preferable, alkyl group, al
  • Examples of the substituted amino group include —NHSO 2 Ry (Ry represents an alkyl group).
  • —NHSO 2 Ry include —NHSO 2 CH 3 , —NHSO 2 C 2 H 5 , —NHSO 2 C 3 H 7 and the like.
  • Ring D 2 may further have a substituent T in addition to A 12 .
  • the substitution position o, m and p of the benzene rings represent the position relative to A 12.
  • the ring structure in formula (2L-2) is synonymous with the ring structure in formula (2L-1), and preferred ones are also the same.
  • the divalent linking group L LD represents —C ( ⁇ O) —, —C ( ⁇ S) —, —C ( ⁇ NR L ) —, —C (R L ) 2 —.
  • R L has the same meaning as R L of formula (2L-2), is a preferred also the same, particularly preferred are hydrogen atom.
  • a 13 is synonymous with the residue obtained by removing the active hydrogen from the (substituted) amino group, hydroxyl group or thiol group bonded to the linking group L LD , and specifically has the same meaning as A 12 and is preferably A. 12 is the same.
  • the ring structure in formula (2L-3) is synonymous with the ring structure in formula (2L-1), and preferred ones are also the same.
  • Me in specific examples represents a methyl group
  • Et represents an ethyl group
  • t-Bu represents a t-butyl group
  • Ph represents a phenyl group.
  • ligands LD are disclosed in, for example, US Patent Application Publication No. 2010/0258175, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. , 2011, 50, 2054-2058, and the methods described in the references cited in these documents, or a method according to these methods.
  • the ligand LA is a tridentate ligand represented by the following formula (AL-1) or (AL-2). This ligand LA has adsorbing groups Anc 1 to Anc 3 adsorbed on the surface of the semiconductor fine particles.
  • Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which these protons are dissociated.
  • the proton-dissociated group is, for example, the above-mentioned anions (for example, —CO 2 ⁇ , —SO 3 ⁇ , —PO 3 H ⁇ , —PO 3 2 ⁇ ) or a salt thereof.
  • —CO 2 H or a group in which its proton is dissociated is preferable.
  • R AL represents a substituent other than Anc 1 to Anc 3 .
  • R AL includes the substituent T described later.
  • R AL is an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaromatic ring group, a substituted amino group (especially an alkylsulfonamide group (the carbon number of the alkyl group is Although not particularly limited, it is preferably 1 to 6.))) is preferred, and an aryl group is more preferred.
  • the heteroaromatic ring group is preferably a thiophene ring group, a furan ring group, or a thiazole ring group, and more preferably a thiophene ring group.
  • R AL may be a group in which a plurality of these groups are bonded, may form a ring by combining at least two groups if R AL there are multiple.
  • b1 represents an integer of 0 to 4, preferably 0 or 1, and more preferably 1.
  • ligand LA Specific examples of the ligand LA are shown below, but the present invention is not limited thereto.
  • Anc 1 to Anc 3 are shown in a state where dissociable protons are not dissociated. However, these protons dissociate, for example, tetrabutylammonium ion ( + NBu 4 ).
  • Triethylammonium ion ( + NHEt 3 ) lithium ion, sodium ion, potassium ion, cesium ion, and the like may form a salt that forms an ion pair.
  • ligand LA represented by the formula (AL-2) are shown below.
  • the ligand LA can be synthesized by a metal-halogen exchange reaction, a cross coupling reaction, a Kunafener gel condensation reaction, or the like.
  • LX represents a monodentate ligand and is an acyloxy anion, acylthioanion, thioacyloxyanion, thioacylthioanion, acylaminooxyanion, thiocarbamate anion, dithiocarbamate anion, thiocarbonate anion, dithiocarbonate Nate anion, trithiocarbonate anion, acyl anion, thiocyanate anion, isothiocyanate anion, cyanate anion, isocyanate anion, alkylthioanion, (hetero) arylthioanion, alkoxy anion, (hetero) aryloxyanion, saturated or unsaturated hetero A thioanion or oxyanion bonded to a ring, an amide anion or imide anion bonded to a saturated or unsaturated heterocycle, a silylthioan On, silyl oxyanion, silyl
  • Examples of the atomic group having a lone pair include triarylphosphine (for example, triphenylphosphine) and nitrogen-containing aromatic ring (for example, pyridine).
  • triarylphosphine for example, triphenylphosphine
  • nitrogen-containing aromatic ring for example, pyridine
  • the ligand LX contains an alkyl group, an alkenyl group, an alkynyl group, an alkylene group or the like, these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, a cycloalkyl group, etc. may be substituted or unsubstituted, and may be monocyclic or condensed.
  • the ligand LX is preferably a cyanate anion, an isocyanate anion, a thiocyanate anion, an isothiocyanate anion, a selenocyanate anion, an isoselenocyanate anion, more preferably an isocyanate anion, an isothiocyanate anion, an isoselenocyanate anion, An isothiocyanate anion is particularly preferred.
  • ligand LX Specific examples of the ligand LX are shown below, but the present invention is not limited to these.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group.
  • -Counter ion Y- Y represents a counter ion when a counter ion is necessary to neutralize the charge.
  • a dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the metal complex dye.
  • the metal complex dye may be dissociated and have a negative charge, for example, because the substituent has a dissociable group. In this case, the charge of the entire metal complex dye is electrically neutralized by Y.
  • the counter ion Y is a positive counter ion
  • the counter ion Y is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium ion (For example, tetraalkylphosphonium ions such as tetrabutylphosphonium ions, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions, metal complex ions, or protons.
  • the positive counter ion is preferably an inorganic or organic ammonium ion (such as triethylammonium or tetrabutylammonium ion) or a proton.
  • the counter ion Y may be an inorganic anion or an organic anion.
  • hydroxide ion, halogen anion eg, fluoride ion, chloride ion, bromide ion, iodide ion, etc.
  • substituted or unsubstituted alkylcarboxylate ion acetate ion, trifluoroacetic acid etc.
  • substituted Or an unsubstituted aryl carboxylate ion eg, benzoate ion
  • a substituted or unsubstituted alkyl sulfonate ion eg, methane sulfonate, trifluoromethane sulfonate ion
  • a substituted or unsubstituted aryl sulfonate ion eg, p- Toluenesulfonic acid ion
  • an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
  • Negative counter ions include halogen anions, substituted or unsubstituted alkyl carboxylate ions, substituted or unsubstituted alkyl sulfonate ions, substituted or unsubstituted aryl sulfonate ions, aryl disulfonate ions, perchlorate ions , Hexafluorophosphate ions are preferred, and halogen anions and hexafluorophosphate ions are more preferred.
  • -N- N in the formula (I) represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
  • ⁇ Substituent T> In this specification, about the display of a compound (a complex and a pigment
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T. Further, in the present specification, when only described as a substituent, it refers to this substituent T, and each group, for example, an alkyl group, is only described. The preferred range and specific examples of the corresponding group of the substituent T are applied.
  • substituent T examples include the following groups.
  • An alkyl group preferably having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, trifluoromethyl, etc.
  • Alkenyl groups preferably having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl groups preferably having 2 to 20 carbon atoms, such as ethynyl, butynyl, phenylethynyl, etc.
  • cycloalkyl groups preferably Has 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl and the like, cycloalkenyl group (preferably having 5 to 20 carbon atom
  • alkoxycarbonyl group preferably having 2 to 20 carbon atoms such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • a cycloalkoxycarbonyl group preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl, etc.
  • Cyclohexyloxycarbonyl, etc. aryloxycarbonyl groups (preferably having 6 to 20 carbon atoms, such as phenyloxycarbonyl, naphthyloxycarbonyl, etc.)
  • amino groups preferably having 0 to 20 carbon atoms, alkylamino groups, alkenyls
  • An acyl group preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl, benzoyl, etc.
  • an acyloxy group preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexylcarbonyloxy).
  • Benzoyloxy, etc. carbamoyl group (preferably an carbamoyl group having 1 to 20 carbon atoms, alkyl, cycloalkyl or aryl, such as N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.)
  • N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, benzoylamino, etc.), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably having 1 to 20 carbon atoms, for example, Methylthio, ethylthio, isopropylthio, benzylthio, etc.), cycloalkylthio groups (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopen
  • a silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted by alkyl, aryl, alkoxy and aryloxy, such as triethylsilyl, triphenylsilyl, diethylbenzylsilyl, dimethylphenylsilyl, etc.), silyloxy group ( Preferably, it is a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, dimethylphenylsilyloxy, etc.), hydroxyl group Cyano group, nitro group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), carboxyl group, sulfo group, phosphonyl group, phosphoryl group, boric acid group.
  • the compound or the substituent includes an alkyl group, an alkenyl group, etc.
  • these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, or the like may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • the metal complex dye represented by the formula (I) of the present invention is a method according to each method described in Patent Documents 1 and 2 and Non-Patent Document 1 described above, and a synthesis method in Examples described later. It can be synthesized by a similar method.
  • the photoelectric conversion element 10 of the present invention includes, for example, as shown in FIG. 1, a conductive support 1, a photoreceptor layer 2 containing semiconductor fine particles sensitized by a dye (metal complex dye) 21, and a hole transport layer. It consists of a certain charge transfer layer 3 and a counter electrode 4.
  • the co-adsorbent is adsorbed on the semiconductor fine particles 22 together with the dye (metal complex dye) 21.
  • the conductive support 1 provided with the photoreceptor layer 2 functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 is shown as a system 100 using a dye-sensitized solar cell that can be used for a battery for causing the operating means M to work with the external circuit 6.
  • the light-receiving electrode 5 includes a conductive support 1 and a photoreceptor layer 2 containing semiconductor fine particles adsorbed with a dye (metal complex dye) 21.
  • the photoreceptor layer 2 is designed according to the purpose, and may be a single layer structure or a multilayer structure.
  • the dye (metal complex dye) 21 in one photosensitive layer may be one kind or a mixture of various kinds, but at least one of them uses the metal complex dye of the present invention described above.
  • the light incident on the photoreceptor layer 2 excites the dye (metal complex dye) 21.
  • the excited dye has high energy electrons, and the electrons are transferred from the dye (metal complex dye) 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion.
  • the dye (metal complex dye) 21 is an oxidant, but the electrons on the electrode work in the external circuit 6 and pass through the counter electrode 4 so that the oxidant of the dye (metal complex dye) 21 and By returning to the photoreceptor layer 2 where the electrolyte is present, it functions as a solar cell.
  • the material used for the photoelectric conversion element or the dye-sensitized solar cell and the method for producing each member may be any ordinary material and each member used in the photoelectric conversion element or the dye-sensitized solar cell.
  • the conductive support is preferably a support made of glass or plastic having a conductive film layer on the surface, such as a metal, which is conductive in itself.
  • a support in addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) may be used.
  • the surface On the support, the surface may have a light management function.
  • an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated, A light guide function described in JP-A-2002-260746 can be mentioned.
  • the thickness of the conductive film layer is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the conductive support is substantially transparent. “Substantially transparent” means that the light transmittance is 10% or more, preferably 50% or more, and particularly preferably 80% or more.
  • a glass or plastic coated with a conductive metal oxide is preferable.
  • the metal oxide tin oxide is preferable, and indium-tin oxide and fluorine-doped oxide are particularly preferable.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the glass or plastic support. When a transparent conductive support is used, light is preferably incident from the support side.
  • the semiconductor fine particles are preferably metal chalcogenide (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles.
  • metal chalcogenide for example, oxide, sulfide, selenide, etc.
  • perovskite fine particles Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles or used as a semiconductor electrode.
  • the particle diameters of the semiconductor fine particles are 0.001 to 1 ⁇ m as primary particles and 0.01 to 100 ⁇ m as the average particle diameter of the dispersion as the average particle diameter using the diameter when the projected area is converted into a circle. preferable.
  • Examples of the method for coating the semiconductor fine particles on the conductive support include a wet method, a dry method, and other methods.
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area.
  • the preferred thickness of the photoreceptor layer which is a semiconductor layer, varies depending on the use of the device, but is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles may be fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 400 to 60 ° C.
  • the coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support.
  • the amount of the metal complex dye of the present invention is preferably 5 mol% or more.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles. By using such a dye amount, the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
  • the counter ion of the specific metal complex dye is not particularly limited, and examples thereof include alkali metal ions and quaternary ammonium ions.
  • the semiconductor fine particles are adsorbed with the added metal complex dye represented by the above formula (I).
  • a method of adsorption will be described later.
  • the surface of the semiconductor fine particles may be treated with amines.
  • Preferable amines include pyridines (for example, 4-tert-butylpyridine, polyvinylpyridine) and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
  • the photoelectric conversion element for example, the photoelectric conversion element 10
  • the dye-sensitized solar cell for example, the photoelectrochemical cell 20
  • at least the metal complex dye of the present invention is used.
  • the metal complex dye of the present invention may be used in combination with another dye.
  • the dye used in combination include Japanese Patent No. 3731852, Japanese Patent Publication No. 2002-512729, Japanese Patent Application Laid-Open No. 2001-59062, Japanese Patent Application Laid-Open No. 2001-6760, Japanese Patent No. 3430254, Japanese Patent Application Laid-Open No. 2003-212851, and International Publication No. 2007/91525.
  • the squarylium cyanine dyes described in each of the above publications such as JP2004-063274, JP2005-123033, JP2007-287694, Organic dyes described in JP-A-2008-71648, JP-A-2007-287694, and International Publication No. 2007/119525 pamphlet or specification, Angew. Chem. Int. Ed. , 49, 1-5 (2010), etc., Angew. Chem. Int. Ed. , 46, 8358 (2007), and the like.
  • the dye used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
  • the ratio of the mass of the metal complex dye of the present invention to the mass of the other dye is preferably 95/5 to 10/90, and 95/5 to 50/50. Is more preferable, 95/5 to 60/40 is further preferable, 95/5 to 65/35 is particularly preferable, and 95/5 to 70/30 is most preferable.
  • the charge transfer layer used in the photoelectric conversion element of the present invention is a layer having a function of replenishing electrons to the oxidant of the dye, and is provided between the light receiving electrode (photoelectrode) and the counter electrode (counter electrode).
  • Typical examples include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, a so-called gel electrolyte in which a polymer matrix is impregnated with a liquid in which the redox couple is dissolved in an organic solvent, and a molten salt containing the redox couple. It is done.
  • a liquid electrolyte is preferred for increasing efficiency.
  • Nitrile compounds, ether compounds, ester compounds and the like are used as the organic solvent for the liquid electrolyte, but nitrile compounds are preferred, and acetonitrile and methoxypropionitrile are particularly preferred.
  • iodine and iodide iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable
  • alkyl viologens for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzenes for example, hydroquinone, naphthohydroquinone, etc.
  • divalent And combinations of trivalent iron complexes for example, combinations of red blood salts and yellow blood salts
  • divalent and trivalent cobalt complexes and the like.
  • a combination of iodine and iodide iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium io
  • the cobalt complex is preferably a complex represented by the following formula (CC).
  • LL represents a bidentate or tridentate ligand.
  • X represents a monodentate ligand.
  • ma represents an integer of 0 to 3.
  • mb represents an integer of 0-6.
  • CI represents a counter ion when a counter ion is required to neutralize the charge.
  • CI includes Y in the formula (I).
  • LL is preferably a ligand represented by the following formula (LC).
  • Z LC1 , Z LC2 and Z LC3 each independently represent a nonmetallic atom group necessary for forming a 5- or 6-membered ring.
  • Z LC1 , Z LC2 and Z LC3 may have a substituent and may be closed with an adjacent ring via the substituent.
  • X LC1 and X LC3 represent a carbon atom or a nitrogen atom.
  • q represents 0 or 1; Examples of the substituent include the above-described substituent T.
  • X is preferably a halogen ion.
  • the ligand represented by the above formula (LC) is more preferably a ligand represented by the following formulas (LC-1) to (LC-3).
  • R LC1 to R LC9 each represents a substituent.
  • q1, q2, q6 and q7 each independently represents an integer of 0 to 4.
  • q3 and q5 each independently represents an integer of 0 to 3.
  • q4 represents an integer of 0-2.
  • examples of the substituent for R LC1 to R LC9 include an aliphatic group, an aromatic group, and a heterocyclic group.
  • Specific examples of the substituent include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, and heterocyclic rings.
  • Preferred examples include alkyl groups (eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.), aryl groups (eg phenyl, tolyl, naphthyl).
  • alkyl groups eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.
  • aryl groups eg phenyl, tolyl, naphthyl
  • alkoxy groups eg methoxy, ethoxy, isopropoxy, butoxy etc.
  • alkylthio groups eg methylthio, n-butylthio, n-hexylthio, 2-ethylhexylthio etc.
  • aryloxy groups eg phenoxy, naphthoxy etc.
  • arylthio groups eg, phenylthio, naphthylthio, etc.
  • heterocyclic groups eg, 2-thienyl, 2-furyl, etc.
  • cobalt complex represented by the formula (LC) include the following complexes.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • organic solvent for dissolving the redox couple these are aprotic polar solvents (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc. ) Is preferred.
  • aprotic polar solvents for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.
  • the polymer (polymer matrix) used in the gel electrolyte matrix include polyacrylonitrile and polyvinylidene fluoride.
  • the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlor
  • aminopyridine compounds As an additive to the electrolyte, in addition to the aforementioned 4-tert-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine compounds and nitrogen-free heterocycles can be added.
  • a method of controlling the water content of the electrolytic solution may be taken.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist.
  • an inclusion compound of iodine and cyclodextrin may be used, and conversely, a method of constantly supplying water may be used.
  • Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • a molten salt may be used as the electrolyte, and preferred molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. These cationic systems may be combined with specific anions. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
  • lithium iodide and at least one other lithium salt are mixed with polyethylene oxide to give fluidity at room temperature. Etc.
  • the electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter).
  • the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • a method of confining the matrix polymer, the crosslinkable polymer compound or monomer, the crosslinking agent, the electrolyte, and the solvent in the polymer may be used.
  • a matrix polymer a polymer having a nitrogen-containing heterocyclic ring in the main chain or side chain repeating unit, a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or having a ureido structure
  • Polymers liquid crystalline compounds, ether-bonded polymers, polyvinylidene fluoride, methacrylate / acrylate, thermosetting resins, cross-linked polysiloxane, polyvinyl alcohol (PVA), polyalkylene glycol and dextrin, etc.
  • Examples include inclusion compounds, systems to which oxygen-containing or sulfur-containing polymers are added, and natural polymers.
  • An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex between a cation moiety and iodine in one polymer may be added to these.
  • a system containing a cross-linked polymer obtained by reacting a bifunctional or higher functional isocyanate with a functional group such as a hydroxyl group, an amino group, or a carboxyl group may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, and a solvent having a specific dielectric constant.
  • the liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth solids such as filters.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487, 2012, or the like may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole or polysilane, and a spiro compound in which two rings share a tetrahedral structure such as C or Si, or an aromatic such as triarylamine. Group amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • the redox couple becomes an electron carrier.
  • the total concentration is preferably 0.01 mol / 1 or more, more preferably 0.1 mol / 1, and particularly preferably 0.3 mol / 1 or more.
  • the upper limit in this case is not particularly limited, but is usually about 5 mol / 1.
  • a coadsorbent In the photoelectric conversion element of this invention, it is preferable to use a coadsorbent with the metal complex dye of this invention or the pigment
  • a coadsorbent a coadsorbent having at least one acidic group (preferably a carboxyl group or a salt group thereof) is preferable, Examples include compounds having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • an acidic group is a substituent having a dissociable proton.
  • the acidic group include a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, a boric acid group, and the like, or a group having any one of these.
  • a carboxy group, a phosphonyl group or a group having this is preferred.
  • the acidic group may take a form of releasing a proton and dissociating, or may be a salt.
  • the counter ion is not particularly limited, and examples thereof include positive ions in the counter ion Y.
  • the acidic group may be a group bonded through a linking group, and examples thereof include carboxyvinylene group, dicarboxyvinylene group, cyanocarboxyvinylene group, carboxyphenyl group and the like as preferable acidic groups.
  • nA is preferably 2 to 4.
  • These specific compounds include the compounds exemplified as the compounds having the steroid skeleton described above.
  • the co-adsorbent used in the present invention has an effect of suppressing inefficient association of dyes by adsorbing to semiconductor fine particles and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte.
  • the amount of coadsorbent used is not particularly limited, but it is preferably 1 to 200 mol, more preferably 10 to 150 mol, and particularly preferably 20 to 50 mol with respect to 1 mol of the dye. It is preferable from the viewpoint of being effectively expressed.
  • the counter electrode (also referred to as a counter electrode) preferably serves as a positive electrode for a dye-sensitized solar cell (photoelectrochemical cell).
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • at least one of the conductive support and the counter electrode must be substantially transparent.
  • the conductive support is preferably transparent, and sunlight is preferably incident from the support side. In this case, it is more preferable that the counter electrode has a property of reflecting light.
  • the counter electrode of the dye-sensitized solar cell glass or plastic on which metal or conductive oxide is vapor-deposited is preferable, and glass on which platinum is vapor-deposited is particularly preferable.
  • the dye-sensitized solar cell it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating.
  • the characteristics of the dye-sensitized solar cell of the present invention thus obtained are preferably an open circuit voltage of 0.01 to 1.5 V and a short-circuit current density of 0.001 to 20 mA / cm when AM 1.5G is 100 mW / cm 2. cm 2 , form factor 0.1 to 0.9, conversion efficiency 0.001 to 25%.
  • the present invention relates to Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, and Japanese Patent Application Laid-Open No. 2004-15. It can be applied to the photoelectric conversion elements and dye-sensitized solar cells described in Japanese Patent No. 2613 and Japanese Patent Laid-Open No. 9-27352.
  • a semiconductor electrode also referred to as a dye adsorption electrode
  • the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
  • the solvent to be used include, but are not particularly limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and alcohols, amides, nitriles, hydrocarbons, and a mixed solvent of two or more of these are preferable.
  • the mixed solvent is preferably a mixed solvent of an alcohol and a solvent selected from amides, nitriles or hydrocarbons. Further preferred are alcohols and amides, mixed solvents of alcohols and hydrocarbons, and particularly preferred are mixed solvents of alcohols and amides. Specifically, methanol, ethanol, propanol, butanol, dimethylformamide, and dimethylacetamide are preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the formula (CA) is preferable.
  • the dye solution of the present invention is one in which the concentration of the metal complex dye or coadsorbent is adjusted so that the solution can be used as it is when a photoelectric conversion element or a dye-sensitized solar cell is produced. preferable.
  • the metal complex dye of the present invention is preferably contained in an amount of 0.001 to 0.1% by mass.
  • the water content of the dye solution is particularly preferably adjusted. Therefore, in the present invention, the content (content) of water is preferably adjusted to 0 to 0.1% by mass. Similarly, adjustment of the water content of the electrolytic solution in the photoelectric conversion element or the dye-sensitized solar cell is also preferable for effectively achieving the effects of the present invention. For this reason, the water content (content rate) of the electrolytic solution is preferable. Is preferably adjusted to 0 to 0.1% by mass.
  • the electrolytic solution is particularly preferably adjusted with a dye solution. In the present invention, a dye-sensitized solar cell semiconductor electrode in which a metal complex dye is supported on the surface of a semiconductor fine particle provided in the semiconductor electrode using the dye solution is preferable. Moreover, it is preferable to manufacture the dye-sensitized solar cell by which the metal complex pigment
  • Example 1 [Synthesis of Metal Complex Dye] The following metal complex dyes Dye-1-5, 12, 24, 26, 29, 31, 34, 36 and 41, Dye-2-2, and Dye-3-2, 3 and 6 were obtained as follows. Synthesized.
  • Compound LD-1-9a (2-acetyl-5-bromopyrimidine) (25 g) synthesized by the method described in International Publication No. 2012/126672 is dissolved in 1000 mL of THF (tetrahydrofuran) under a nitrogen atmosphere, and 200 mL of water, 63 g of 5-hexylthiophene-2-boronic acid pinacol ester, 86 g of potassium carbonate, and 7 g of tetrakis (triphenylphosphine) palladium were added, and the mixture was heated to reflux for 7 hours.
  • THF tetrahydrofuran
  • LD-1-9b Under a nitrogen atmosphere, 25 g of LD-1-9b was dissolved in 500 mL of THF (tetrahydrofuran), and while stirring at 0 ° C., 12 g of sodium ethoxide was added and stirred for 15 minutes. Thereafter, 37 g of ethyl trifluoroacetate was added dropwise thereto and stirred at 70 ° C. for 20 hours. The solution after stirring was returned to room temperature, and then an aqueous ammonium chloride solution was dropped to separate the solution. The organic phase was concentrated to obtain 34 g of a crude product LD-1-9c.
  • THF tetrahydrofuran
  • the obtained crude product was dissolved in 600 mL of ethanol under a nitrogen atmosphere, 9 g of hydrazine monohydrate was added with stirring at room temperature, and the mixture was heated at an external temperature of 90 ° C. for 12 hours. Thereafter, 20 mL of concentrated hydrochloric acid was added thereto and stirred for 1 hour. The solution after stirring was concentrated, 150 mL of sodium bicarbonate water and 150 mL of ethyl acetate were added, the reaction product was extracted into ethyl acetate, and after separation, the organic phase was concentrated. After recrystallization from acetonitrile, 24 g of ligand LD-1-9 was obtained.
  • a metal complex dye Dye-1-5 was synthesized according to the following scheme using the obtained ligand LD-1-9.
  • the reaction solution was cooled to room temperature, and the precipitated black solid was collected by filtration.
  • the obtained black solid was purified by silica gel column chromatography to obtain 4.6 g of Dye-1-5b.
  • the mixture was stirred as it was at room temperature for 1 hour, and a 1N solution of trifluoromethanesulfonic acid in methanol was slowly added dropwise thereto until the pH reached 3.0.
  • the gradually precipitated crystals were collected by filtration, and the obtained crystals were washed with methanol and dried to obtain 1.3 g of the target metal complex dye Dye-1-5.
  • LD-1-25c was synthesized in the same manner as the synthesis of the ligand LD-1-9 except that LD-1-25a was used instead of LD-1-9b.
  • This LD-1-25a is disclosed in Acta Chem. Scand. , 43, 62 (1989). Subsequently, 125 mL of 1.6M n-butyllithium hexane solution was added dropwise with stirring 22.2 g of diisopropylamine and 104 mL of tetrahydrofuran at ⁇ 40 ° C. in a nitrogen atmosphere, and then stirred for 30 minutes.
  • a metal complex dye Dye-1-12 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
  • LD-2-16a and N- (tert A coupling product was obtained in the same manner as the synthesis of LD-1-9b except that -butoxycarbonyl) indole-2-boronic acid was used.
  • the obtained coupling product was dissolved in an appropriate amount of dichloromethane, and an excess amount of trifluoroacetic acid was added to perform Boc deprotection to obtain LD-2-16b.
  • a ligand LD-2-16 was synthesized by the same method as the above-described reaction for synthesizing the ligand LD-1-25 from LD-1-25c. Subsequently, using the obtained ligand LD-2-16, a metal complex dye Dye-1-24 was synthesized in the same manner as in the synthesis of the metal complex dye Dye-1-5.
  • the ligand LD- 9 was synthesized in the same manner as the synthesis of the ligand LD-1-9 except that LD-3-1a was used instead of LD-1-9b. 3-1 was synthesized. Subsequently, using the obtained ligand LD-3-1, a metal complex dye Dye-1-26 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
  • the ligand LD-2-16 In the synthesis of the ligand LD-2-16, except that 2- (methylthio) phenylboronic acid was used instead of N- (tert-butoxycarbonyl) -2-methylindole, the ligand LD-2-16 Similarly to the synthesis, LD-6-13c was synthesized from LD-2-16a. 20 g of the obtained LD-6-13c was dissolved in 200 mL of hexamethylphosphoric triamide (HMPA) under a nitrogen atmosphere, 3.5 g of sodium methanethiolate was added, and the mixture was stirred at 140 ° C. for 12 hours.
  • HMPA hexamethylphosphoric triamide
  • LD-9-16a was synthesized according to the method described in Japanese Patent No. 4338192, and this was synthesized by the same reaction as that for synthesizing LD-1-25 from the above-mentioned LD-1-25c. Converted to 16b. Under a nitrogen atmosphere, 15.4 g of LD-9-16b was dissolved in 300 mL of DMSO (dimethyl sulfoxide), 2.5 g of sodium cyanide was added, and the mixture was stirred at 120 ° C. for 2 hours. The solution after stirring was cooled to room temperature, 1500 mL of water was added, the precipitated solid was filtered, and the filtrate was washed with water to obtain a crude product of LD-9-16c.
  • DMSO dimethyl sulfoxide
  • the crude product of LD-9-16c was dissolved in 300 mL of ethanol, 15 mL of 1N aqueous potassium hydroxide solution was added, and the mixture was heated to reflux for 13 hours. After the refluxed solution was cooled to room temperature, 500 mL of water and 500 mL of ethyl acetate were added for liquid separation.
  • the crude product obtained by concentrating the organic phase was purified by silica gel column chromatography to obtain 7.6 g of a ligand LD-9-16. Subsequently, using the obtained ligand LD-9-16, a metal complex dye Dye-1-41 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
  • Dye-2-2a was synthesized according to the following scheme as a precursor of metal complex dye Dye-2-2.
  • LA-2-6a Am. Chem. Soc. , 130, 11013 (2008).
  • LA-2-6b is described in J. Am. Chem. Soc. , 134, 7488 (2012).
  • 3.4 g of LA-2-6a was dissolved in 40 mL of metaxylene, 4.4 g of LA-2-6b and 1.2 g of tetrakis (triphenylphosphine) palladium were added, and the mixture was stirred at 120 ° C. for 20 minutes. Stir for hours. After the stirred solution was cooled to room temperature, 2N aqueous sodium hydroxide solution (50 mL) and toluene (40 mL) were added thereto for liquid separation.
  • LA-2-6c The crude product obtained by concentrating the organic phase was purified by silica gel column chromatography to obtain 2.6 g of LA-2-6c. Subsequently, 2.6 g of LA-2-6c was dissolved in 100 mL of THF (tetrahydrofuran) under a nitrogen atmosphere, and 20 mL of water, 1.6 g of 2,4,6-trimethylbenzeneboronic acid, and potassium carbonate 8. 6 g and 0.7 g of tetrakis (triphenylphosphine) palladium were added and heated to reflux for 10 hours. After the refluxed solution was returned to room temperature, 100 mL of 1N dilute hydrochloric acid and 100 mL of ethyl acetate were added thereto for liquid separation.
  • THF tetrahydrofuran
  • the crude product obtained by concentrating the organic phase was purified by silica gel column chromatography to obtain 2.5 g of LA-2-6d. Further, under a nitrogen atmosphere, 1 L of ethanol and 1.3 g of ruthenium (III) chloride hydrate were added to 2.5 g of LA-2-6d, and the mixture was heated to reflux for 10 hours. After the refluxed solution was cooled to room temperature, the produced crystals were filtered and washed with ethanol to obtain 3.5 g of a precursor Dye-2-2a. Using the precursor Dye-2-2a synthesized as described above, a metal complex dye Dye-2-2 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
  • Dye-3-2a which is an intermediate of the metal complex dye Dye-3-2
  • 3.2 g of potassium iodide were added to 15 mL of diglyme, and the mixture was stirred at 110 ° C. for 2 hours.
  • the stirred solution was cooled to room temperature, water (15 mL) and ethyl acetate (30 mL) were added, and the reaction product was extracted into ethyl acetate. After liquid separation, the organic phase was concentrated, and the obtained black solid was purified by silica gel column chromatography to obtain 214 mg of Dye-3-3a. This was hydrolyzed with an ester site in the same manner as in the synthesis of the metal complex dye Dye-3-2, to obtain the target metal complex dye Dye-3-3.
  • Example 2 [Dye-sensitized solar cell] A dye-sensitized solar cell was produced by the following procedure. A photoelectrode having the same configuration as that of the photoelectrode 12 shown in FIG. 5 described in Japanese Patent Laid-Open No. 2002-289274 is manufactured, and this photoelectrode is replaced with the photoelectrode shown in FIG. A dye-sensitized solar cell of 10 mm ⁇ 10 mm scale having the same configuration as the dye-sensitized solar cell 20 of FIG. 3 except that the photoelectrode was used was produced. The specific configuration is shown in FIG. In FIG.
  • 41 is a transparent electrode
  • 42 is a semiconductor electrode
  • 43 is a transparent conductive film
  • 44 is a substrate
  • 45 is a semiconductor layer
  • 46 is a light scattering layer
  • 40 is a photoelectrode
  • 20 is a dye-sensitized solar cell
  • CE is The counter electrode
  • E is an electrolyte
  • S is a spacer.
  • Paste A A titania slurry was prepared by placing spherical TiO 2 particles (anatase, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles A) in a nitric acid solution and stirring. Next, a cellulosic binder was added to the titania slurry as a thickener and kneaded to prepare paste A.
  • a titania slurry was prepared by stirring spherical TiO 2 particles A and spherical TiO 2 particles (anatase, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles B) in a nitric acid solution. .
  • rod-like TiO 2 particles C anatase, diameter: 100 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles C
  • a transparent electrode 41 (conductive support) in which a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44) was prepared. Then, the paste 1 was screen-printed on the SnO 2 conductive film and then dried. Then, it baked on the conditions of 450 degreeC in the air. Furthermore, by repeating screen printing and baking using the paste 2, a semiconductor electrode having the same configuration as the semiconductor electrode 42 shown in FIG. 2 (light receiving surface area; 10 mm ⁇ 10 mm, layer thickness) is formed on the SnO 2 conductive film.
  • the dye was adsorbed to the photoelectrode (semiconductor electrode) containing no dye as follows. First, anhydrous ethanol dehydrated with magnesium ethoxide was used as a solvent, and the metal complex dyes listed in Table 2 below were dissolved therein so as to have a concentration of 3 ⁇ 10 ⁇ 4 mol / L. Each dye solution was prepared by adding 20 mol of an equimolar mixture of chenodeoxycholic acid and cholic acid to 1 mol of the metal complex dye. The water content of this dye solution was measured by Karl Fischer titration and found to be less than 0.01% by mass. Next, the semiconductor electrode was dipped in this solution, pulled up and dried at 50 ° C. to complete a photoelectrode in which the dye was adsorbed by about 1.5 ⁇ 10 ⁇ 7 mol / cm 2 on the semiconductor electrode.
  • a platinum electrode thinness of Pt thin film; 100 nm
  • an iodine redox solution containing iodine and lithium iodide as the electrolyte E were prepared.
  • a DuPont spacer S (trade name: “Surlin”) having a shape corresponding to the size of the semiconductor electrode is prepared, as shown in FIG. 3 described in Japanese Patent Application Laid-Open No. 2002-289274.
  • the dye-sensitized solar cell (sample No.) using the photoelectrode is formed by making the photoelectrode, the counter electrode CE and the spacer S face each other and filling the above electrolyte (by forming a charge transfer layer). 1-13 and c1-c3) were completed. The performance of each dye-sensitized solar cell thus prepared was evaluated.
  • IPCE quantitative sensitivity characteristics at wavelengths of 800 nm and 850 nm> IPCE (quantum yield) at a wavelength of 300 to 1000 nm was measured with an IPCE measuring device manufactured by Pexel. Among these, IPCE at 800 nm and 850 nm was evaluated according to the following criteria.
  • IPCE is 1.1 times or more than IPCE of Comparative Compound (1)
  • Evaluation Criteria AAA Thermal degradation rate is 1.1 times or more with respect to thermal degradation rate of comparative compound (1)
  • AA Thermal degradation rate is 1.06 times or more with respect to thermal degradation rate of comparative compound (1) Less than 1 time
  • D Thermal degradation rate of Comparative Compound (1) Less than 1.00 times the rate Table 2 shows the durability.
  • the comparative compounds (1) to (3) are metal complex dyes described below. Comparative compound (1): Patent Document 2 Comparative compound (2): Non-patent document 1 Comparative compound (3): Patent Document 1
  • the ligand LD used with the tridentate ligand LA is a nitrogen atom coordinated to the metal ion M via a lone pair and has a strong electron withdrawing property.
  • both of the spectral sensitivity characteristics at 800 nm and 850 nm were measured with sample No.
  • Each of the dye-sensitized solar cells 1 to 13 showed good photoelectric conversion efficiency with respect to each of the dye-sensitized solar cells using the comparative compounds.
  • the evaluation (durability) of the thermal deterioration of the dye-sensitized solar cell evaluated by the above heat resistance test is good for each dye-sensitized solar cell using the comparative compound, and the sensitivity characteristics in the long wavelength region Succeeded in achieving both durability.
  • the durability of the metal complex dye and the photoelectric conversion element is achieved by exerting a balance between strengthening the binding force between the metal ion M and the nitrogen-containing aromatic ring and suppressing the thermal dissociation of the ligand LX. It is thought that the sex can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A metal-complex dye used in a photoelectric conversion element of the present invention is represented by the following formula (I): M(LD)(LA)(LX)·(Y)n … formula (I) In the formula (I), M represents a metal ion, LD represents a bidentate ligand represented by any of formulas (2L-1) to (2L-3), LA represents a tridentate ligand represented by formula (AL-1) or formula (AL-2), LX represents a monodentate ligand, Y represents a counter ion necessary for neutralizing charge, and n represents an integer of 0 to 4. The metal-complex dye of the present invention is equipped with such a specific bidentate ligand, thereby making it possible to improve both the spectral sensitivity characteristic and the durability of the photoelectric conversion element in a long wavelength region.

Description

光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
 本発明は、光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法に関する。 The present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, a metal complex dye, a dye solution, a dye-adsorbing electrode, and a method for producing a dye-sensitized solar battery.
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。その中でも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。 Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof. In particular, a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy. Among them, silicon-based solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country. However, since silicon is an inorganic material, there is a limit to improving throughput and cost.
 そこで色素増感太陽電池の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果(特許文献1参照)である。彼らは、ポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。 Therefore, research on dye-sensitized solar cells has been conducted energetically. In particular, it was the research results of Graetzel et al. (See Patent Document 1) of Lausanne University of Technology, Switzerland. They adopted a structure in which a dye composed of a ruthenium complex was fixed on the surface of a porous titanium oxide thin film, realizing conversion efficiency comparable to that of amorphous silicon. As a result, dye-sensitized solar cells that can be manufactured without using an expensive vacuum apparatus have attracted attention from researchers all over the world.
 現在までに、光電変換素子に使用される金属錯体色素として一般的にN3、N719、Z907、J2と呼ばれる色素等が開発されている。
 長波なルテニウム錯体としてはターピリジン配位子を有する「ブラックダイ」が知られており(特許文献1)、最近は、可視光の長波長領域の分光感度特性の向上を目的に、ターピリジン配位子を有するルテニウム金属錯体色素が多数提案されている(特許文献2または非特許文献1参照)。
To date, dyes generally called N3, N719, Z907, and J2 have been developed as metal complex dyes used in photoelectric conversion elements.
As a long-wave ruthenium complex, a “black dye” having a terpyridine ligand is known (Patent Document 1). Recently, for the purpose of improving spectral sensitivity characteristics in the long wavelength region of visible light, a terpyridine ligand is known. Numerous ruthenium metal complex dyes have been proposed (see Patent Document 2 or Non-Patent Document 1).
特許第4298799号公報Japanese Patent No. 4298799 米国特許出願公開第2010/0258175号明細書US Patent Application Publication No. 2010/0258175
 特許文献1および2ならびに非特許文献1に記載された各色素は、波長800~850nmにおける長波長領域の分光感度特性や光電変換効率の点で必ずしも満足できるものではなく、耐久性にいたっては改善が望まれていた。
 本発明は、上記状況を鑑み、金属錯体色素の吸収特性において、この長波長領域における分光感度特性を向上させることで光電変換効率が向上し、加えて耐久性にも優れた光電変換素子、色素増感太陽電池、これに使用する金属錯体色素、色素溶液、色素吸着電極ならびに色素増感太陽電池の製造方法を提供することを課題とする。
The dyes described in Patent Documents 1 and 2 and Non-Patent Document 1 are not always satisfactory in terms of spectral sensitivity characteristics and photoelectric conversion efficiency in the long wavelength region at a wavelength of 800 to 850 nm. Improvement was desired.
In view of the above situation, the present invention improves the photoelectric conversion efficiency by improving the spectral sensitivity characteristic in the long wavelength region in the absorption characteristic of the metal complex dye, and in addition, the photoelectric conversion element and the dye excellent in durability It is an object of the present invention to provide a sensitized solar cell, a metal complex dye used for the sensitized solar cell, a dye solution, a dye adsorption electrode, and a method for producing a dye-sensitized solar cell.
 本発明者らは、従来の金属錯体色素が、必ずしも長波長領域における分光感度特性に十分でないことから、長波長領域における分光感度特性、特に800~850nmにおける感度特性、すなわち量子収率(IPCE)の向上を種々検討した。
 この結果、半導体微粒子表面に吸着する機能を有する3座の配位子と共に用いる配位子として、中心金属イオンに対して孤立電子対を介して配位する窒素原子と、中心金属イオンに対してアニオンが配位する配位原子として窒素原子、酸素原子または硫黄原子を組み合わせることで形成される2座配位子を用い、かつ中心金属に対して孤立電子対を介して配位する上述の窒素原子を、炭素原子よりも電子求引性の強い原子をさらに含む、より電子不足な含窒素芳香族環を構成する環構成原子にすると、光電変換素子の長波長領域における分光感度特性を向上させるのに効果的であることを見出した。しかも、このような2座配位子は、分光感度特性だけでなく、光電変換素子の耐久性をも改善できることを見出した。
 これらの知見に基づき本発明者等はさらに研究を重ね、本発明をなすに至った。
Since the conventional metal complex dyes are not necessarily sufficient for the spectral sensitivity characteristic in the long wavelength region, the present inventors have found that the spectral sensitivity property in the long wavelength region, particularly the sensitivity characteristic at 800 to 850 nm, that is, the quantum yield (IPCE). Various improvements were investigated.
As a result, as a ligand used together with a tridentate ligand having a function of adsorbing to the surface of the semiconductor fine particles, a nitrogen atom coordinated to the central metal ion via a lone pair, and The above nitrogen using a bidentate ligand formed by combining a nitrogen atom, an oxygen atom or a sulfur atom as a coordinating atom to which an anion coordinates, and coordinating with a central metal via a lone electron pair Spectral sensitivity characteristics in the long-wavelength region of the photoelectric conversion element are improved by making the atom a ring-constituting atom that forms a more electron-deficient nitrogen-containing aromatic ring that further includes an electron-withdrawing atom than the carbon atom. It was found to be effective. Moreover, it has been found that such a bidentate ligand can improve not only the spectral sensitivity characteristic but also the durability of the photoelectric conversion element.
Based on these findings, the inventors have further studied and have come to make the present invention.
 すなわち、本発明の課題は、以下の手段によって達成された。 That is, the object of the present invention has been achieved by the following means.
(1)導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、
 該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
   M(LD)(LA)(LX)・(Y)n     式(I)
 式中、Mは金属イオンを表す。
 LDは下記式(2L-1)~(2L-3)のいずれかで表される2座配位子を表す。
 LAは下記式(AL-1)または(AL-2)で表される3座配位子を表す。
 LXは単座配位子を表す。
 Yは電荷を中和するのに必要な対イオンを表す。nは0~4の整数を表す。
(1) A photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode,
The photoelectric conversion element in which this photoreceptor layer has the semiconductor fine particle by which the metal complex dye represented by following formula (I) was carry | supported.
M (LD) (LA) (LX) · (Y) n Formula (I)
In the formula, M represents a metal ion.
LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
LX represents a monodentate ligand.
Y represents a counter ion necessary for neutralizing the electric charge. n represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、*は金属イオンMへの結合位置を表す。
環Dは含窒素芳香族環を表し、環Dは芳香族炭化水素環またはヘテロ芳香族環を表す。A12およびA13は、各々独立に、N、OまたはSを表す。A~Aは、各々独立に、CRLDまたはNを表し、A~Aのうち少なくとも1つはNを表す。LLDは、-C(=O)-、-C(=S)-、-C(=NR)-、-C(R-および-C(=C(R)-からなる群より選ばれる2価の連結基を表す。RおよびRLDは、各々独立に、水素原子、または、下記Anc、AncおよびAncを有しない置換基を表す。
In the formula, * represents a bonding position to the metal ion M.
Ring D 1 represents a nitrogen-containing aromatic ring, ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring. A 12 and A 13 are each independently, N - R L, O - or S - represents a. A 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N. L LD is -C (= O)-, -C (= S)-, -C (= NR L )-, -C (R L ) 2 -and -C (= C (R L ) 2 )- Represents a divalent linking group selected from the group consisting of R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、Anc~Ancは、各々独立に、-COH、-SOH、-POまたはこれらいずれかのプロトンが解離した基を表す。RALはAnc~Anc以外の置換基を表し、b1は0~4の整数を表す。 In the formula, Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated. R AL represents a substituent other than Anc 1 to Anc 3 , and b1 represents an integer of 0 to 4.
(2)Mが、Fe2+、Ru2+またはOs2+である(1)に記載の光電変換素子。
(3)A~Aのうち1~3個がNである(1)または(2)に記載の光電変換素子。
(4)式(2L-1)~(2L-3)において、金属イオンMに結合する、窒素原子とA~Aとを含んで形成される下記式(2L)で表される環構造が、下記式(2L-1)~(2L-4)のいずれかで表される環構造である(1)~(3)のいずれか1つに記載の光電変換素子。
(2) The photoelectric conversion element according to (1), wherein M is Fe 2+ , Ru 2+ or Os 2+ .
(3) The photoelectric conversion device according to (1) or (2), wherein 1 to 3 of A 1 to A 4 are N.
(4) In the formulas (2L-1) to (2L-3), a ring represented by the following formula (2L R ) formed by including a nitrogen atom and A 1 to A 4 bonded to the metal ion M The photoelectric conversion element according to any one of (1) to (3), wherein the structure is a ring structure represented by any of the following formulas (2L R -1) to (2L R -4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、RLDaはAnc、AncおよびAncを有しない置換基を表し、nL1~nL3は各々独立に0~3の整数を表し、nL4は0~2の整数を表す。 In the formula, R LDa represents a substituent having no Anc 1 , Anc 2, or Anc 3 , nL1 to nL3 each independently represents an integer of 0 to 3, and nL4 represents an integer of 0 to 2.
(5)半導体微粒子に、さらに、酸性基を1つ以上有する共吸着剤が担持されている(1)~(4)のいずれか1つに記載の光電変換素子。
(6)吸着剤が、下記式(CA)で表される(5)に記載の光電変換素子。
(5) The photoelectric conversion device according to any one of (1) to (4), wherein a semiconductor adsorbent further carries a co-adsorbent having one or more acidic groups.
(6) The photoelectric conversion element according to (5), wherein the adsorbent is represented by the following formula (CA).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。 In the formula, R A1 represents a substituent having an acidic group. R A2 represents a substituent. nA represents an integer of 0 or more.
(7)(1)~(6)のいずれか1つに記載の光電変換素子を有する色素増感太陽電池。(8)下記式(I)で表される金属錯体色素。
   M(LD)(LA)(LX)・(Y)n     式(I)
 式中、Mは金属イオンを表す。
 LDは下記式(2L-1)~(2L-3)のいずれかで表される2座配位子を表す。
 LAは下記式(AL-1)または(AL-2)で表される3座配位子を表す。
 LXは単座配位子を表す。
 Yは電荷を中和するのに必要な対イオンを表す。nは0~4の整数を表す。
(7) A dye-sensitized solar cell having the photoelectric conversion element according to any one of (1) to (6). (8) A metal complex dye represented by the following formula (I).
M (LD) (LA) (LX) · (Y) n Formula (I)
In the formula, M represents a metal ion.
LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
LX represents a monodentate ligand.
Y represents a counter ion necessary for neutralizing the electric charge. n represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、*は金属イオンMへの結合位置を表す。
環Dは含窒素芳香族環を表し、環Dは芳香族炭化水素環またはヘテロ芳香族環を表す。A12およびA13は、各々独立に、N、OまたはSを表す。A~Aは、各々独立に、CRLDまたはNを表し、A~Aのうち少なくとも1つはNを表す。LLDは、-C(=O)-、-C(=S)-、-C(=NR)-、-C(R-および-C(=C(R)-からなる群より選ばれる2価の連結基を表す。RおよびRLDは、各々独立に、水素原子、または、下記Anc、AncおよびAncを有しない置換基を表す。
In the formula, * represents a bonding position to the metal ion M.
Ring D 1 represents a nitrogen-containing aromatic ring, ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring. A 12 and A 13 are each independently, N - R L, O - or S - represents a. A 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N. L LD is -C (= O)-, -C (= S)-, -C (= NR L )-, -C (R L ) 2 -and -C (= C (R L ) 2 )- Represents a divalent linking group selected from the group consisting of R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式中、Anc~Ancは、各々独立に、-COH、-SOH、-POまたはこれらいずれかのプロトンが解離した基を表す。RALはAnc~Anc以外の置換基を表し、b1は0~4の整数を表す。 In the formula, Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated. R AL represents a substituent other than Anc 1 to Anc 3 , and b1 represents an integer of 0 to 4.
(9)式(2L-1)~(2L-3)において、金属イオンMに結合する、窒素原子とA~Aとを含んで形成される下記環構造(2L)が、下記式(2L-1)~(2L-4)のいずれかで表される環構造である(8)に記載の金属錯体色素。 (9) In the formulas (2L-1) to (2L-3), the following ring structure (2L R ) formed including a nitrogen atom and A 1 to A 4 bonded to the metal ion M is represented by the following formula: The metal complex dye according to (8), which is a ring structure represented by any one of (2L R -1) to (2L R -4).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中、RLDaはAnc、AncおよびAncを有しない置換基を表し、nL1~nL3は各々独立に0~3の整数を表し、nL4は0~2の整数を表す。 In the formula, R LDa represents a substituent having no Anc 1 , Anc 2, or Anc 3 , nL1 to nL3 each independently represents an integer of 0 to 3, and nL4 represents an integer of 0 to 2.
(10)(8)または(9)に記載の金属錯体色素を溶解してなる色素溶液。
(11)有機溶媒中に、金属錯体色素を0.001~0.1質量%含有させ、水を0.1質量%以下に抑えてなる(10)に記載の色素溶液。
(12)色素溶液が、さらに、酸性基を1つ以上有する共吸着剤を含有する(10)または(11)に記載の色素溶液。
(13)共吸着剤が、下記式(CA)で表される(12)に記載の色素溶液。
(10) A dye solution obtained by dissolving the metal complex dye described in (8) or (9).
(11) The dye solution according to (10), wherein 0.001 to 0.1% by mass of a metal complex dye is contained in an organic solvent, and water is suppressed to 0.1% by mass or less.
(12) The dye solution according to (10) or (11), wherein the dye solution further contains a co-adsorbent having one or more acidic groups.
(13) The dye solution according to (12), wherein the co-adsorbent is represented by the following formula (CA).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。 In the formula, R A1 represents a substituent having an acidic group. R A2 represents a substituent. nA represents an integer of 0 or more.
(14)半導体電極が備える半導体微粒子表面に、(8)または(9)に記載の金属錯体色素が担持された色素増感太陽電池用の色素吸着電極。
(15)(14)に記載の色素吸着電極、電解質および対極を用いて組み立てる色素増感太陽電池の製造方法。
(14) A dye-adsorbing electrode for a dye-sensitized solar cell in which the metal complex dye according to (8) or (9) is supported on the surface of a semiconductor fine particle provided in a semiconductor electrode.
(15) A method for producing a dye-sensitized solar cell assembled using the dye-adsorbing electrode, electrolyte and counter electrode according to (14).
 本明細書において、特に断りがない限り、炭素-炭素二重結合については、分子内にE型およびZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。特定の符号で表示された置換基や連結基、配位子等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環、例えば脂環、芳香族環、ヘテロ環、はさらに縮環して縮合環を形成していてもよい。
 本発明においては、各置換基は、特に断らない限り、さらに置換基で置換されていてもよい。
In the present specification, unless otherwise specified, the carbon-carbon double bond may be either E-type or Z-type in the molecule, or a mixture thereof. When there are a plurality of substituents, linking groups, ligands, etc. (hereinafter referred to as substituents, etc.) indicated by a specific code, or when a plurality of substituents etc. are specified simultaneously or alternatively, a special notice is given. As long as there is no, each substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified. In addition, a ring such as an alicyclic ring, an aromatic ring, or a hetero ring may be further condensed to form a condensed ring.
In the present invention, each substituent may be further substituted with a substituent unless otherwise specified.
 本発明により、金属錯体色素の吸収特性において、長波長領域における分光感度特性を向上させることで光電変換効率が向上し、加えて耐久性にも優れた光電変換素子、色素増感太陽電池、これに使用する金属錯体および金属錯体色素、色素溶液、色素吸着電極ならびに色素増感太陽電池の製造方法を提供することができる。 According to the present invention, in the absorption characteristic of a metal complex dye, the photoelectric conversion efficiency is improved by improving the spectral sensitivity characteristic in a long wavelength region, and in addition, the photoelectric conversion element, the dye-sensitized solar cell, which are excellent in durability, It is possible to provide a method for producing a metal complex and a metal complex dye, a dye solution, a dye-adsorbing electrode, and a dye-sensitized solar cell used in the above.
本発明の光電変換素子の一実施態様について、層中の円部分の拡大図も含めて模式的に示した断面図である。It is sectional drawing typically shown including the enlarged view of the circular part in a layer about one embodiment of the photoelectric conversion element of this invention. 本発明の光電変換素子の別の実施態様の色素増感太陽電池を模式的に示す断面図である。It is sectional drawing which shows typically the dye-sensitized solar cell of another embodiment of the photoelectric conversion element of this invention.
 本発明の光電変換素子は、導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する。この感光体層は下記式(I)で表される金属錯体色素が担持された半導体微粒子を有している。 The photoelectric conversion element of the present invention has a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer body layer containing an electrolyte, and a counter electrode. This photoreceptor layer has semiconductor fine particles carrying a metal complex dye represented by the following formula (I).
<<金属錯体色素>>
 本発明の金属錯体色素は、下記式(I)で表される。
   M(LD)(LA)(LX)・(Y)n     式(I)
 式中、Mは金属イオンを表す。
 LDは下記式(2L-1)~(2L-3)のいずれかで表される2座配位子を表す。
 LAは下記式(AL-1)または(AL-2)で表される3座配位子を表す。
 LXは単座配位子を表す。
 Yは電荷を中和するのに必要な対イオンを表す。nは0~4の整数を表す。
<< metal complex dye >>
The metal complex dye of the present invention is represented by the following formula (I).
M (LD) (LA) (LX) · (Y) n Formula (I)
In the formula, M represents a metal ion.
LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
LX represents a monodentate ligand.
Y represents a counter ion necessary for neutralizing the electric charge. n represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式中、*は前記金属イオンMへの結合位置を表す。
環Dは含窒素芳香族環を表し、環Dは芳香族炭化水素環またはヘテロ芳香族環を表す。A12およびA13は、各々独立に、N、OまたはSを表す。A~Aは、各々独立に、CRLDまたはNを表し、A~Aのうち少なくとも1つはNを表す。LLDは、-C(=O)-、-C(=S)-、-C(=NR)-、-C(R-および-C(=C(R)-からなる群より選ばれる2価の連結基を表す。RおよびRLDは、各々独立に、水素原子、または、下記Anc、AncおよびAncを有しない置換基を表す。
In the formula, * represents a bonding position to the metal ion M.
Ring D 1 represents a nitrogen-containing aromatic ring, ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring. A 12 and A 13 are each independently, N - R L, O - or S - represents a. A 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N. L LD is -C (= O)-, -C (= S)-, -C (= NR L )-, -C (R L ) 2 -and -C (= C (R L ) 2 )- Represents a divalent linking group selected from the group consisting of R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、Anc~Ancは、各々独立に、-COH、-SOH、-POまたはこれらいずれかのプロトンが解離した基を表す。RALはAnc~Anc以外の置換基を表し、b1は0~4の整数を表す。 In the formula, Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated. R AL represents a substituent other than Anc 1 to Anc 3 , and b1 represents an integer of 0 to 4.
- 金属イオンM -
 Mは、金属錯体色素の中心金属イオンであり、これらの金属としては、長周期型周期律表の6~12族の原子が挙げられる。
 このような原子としては、具体的には、Ru、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、MnおよびZnが挙げられる。
 本発明においては、Mは、Os2+、Ru2+またはFe2+が好ましく、なかでもRu2+が好ましい。
 なお、金属錯体色素が光電変換素子中に組み込まれた状態においては、Mの価数は、周囲の材料との酸化還元反応により変化することがある。
-Metal ion M-
M is a central metal ion of the metal complex dye, and examples of these metals include atoms in groups 6 to 12 of the long-period periodic table.
Specific examples of such atoms include Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn, and Zn.
In the present invention, M is preferably Os 2+ , Ru 2+ or Fe 2+ , and Ru 2+ is particularly preferable.
In the state where the metal complex dye is incorporated in the photoelectric conversion element, the valence of M may change due to an oxidation-reduction reaction with surrounding materials.
- 配位子LD -
 本発明において、配位子LDは金属イオンMに2座で結合する配位子であり、ドナー配位子に分類されるものである。この配位子LDは、孤立電子対を有する窒素原子とアニオンとで金属イオンMに配位する。孤立電子対を有する窒素原子は、この孤立電子対を介して金属イオンMに配位する窒素原子であって、炭素原子よりも電子求引性の強い原子をさらに含む、より電子不足な、後述する式(2L)で表される含窒素芳香族環を構成する窒素原子(環構成窒素原子)である。
 金属イオンMに配位するアニオンは、窒素アニオン、酸素原子アニオンまたは硫黄アニオンである。
-Ligand LD-
In the present invention, the ligand LD is a ligand that binds to the metal ion M in a bidentate, and is classified as a donor ligand. The ligand LD is coordinated to the metal ion M by a nitrogen atom having a lone electron pair and an anion. The nitrogen atom having a lone electron pair is a nitrogen atom coordinated to the metal ion M through the lone electron pair, and further includes an atom having a stronger electron withdrawing property than the carbon atom, and is further deficient in electrons. A nitrogen atom (ring-constituting nitrogen atom) constituting the nitrogen-containing aromatic ring represented by the formula (2L R ).
The anion that coordinates to the metal ion M is a nitrogen anion, an oxygen atom anion, or a sulfur anion.
 ここで、孤立電子対とは、窒素原子の最外殻の電子対のうち共有結合に関与しない電子対(2個の電子の組)であり、窒素原子は該孤立電子対を1対有する。
 窒素原子、酸素原子または硫黄原子は、いずれも孤立電子対を有したままでアニオン、>N、-O、-Sとなるが、金属イオンMに配位する原子は孤立電子対よりもアニオンが優先される。したがって、本発明では、窒素原子、酸素原子または硫黄原子のアニオンは、孤立電子対を有していても、アニオンとして金属イオンMに配位する配位原子とみなす。
 なお、例えば、>NH、-OH、-SHは、いずれも、水素原子が解離しないで、すなわちアニオンとならない状態で、それぞれの孤立電子対を介して金属イオンMと配位したとしても、本発明においては、その安定配位構造として、アニオンが配位原子であるものとみなす。すなわち、>NH、-OH、-SHの場合は、>N、-O、-Sのアニオンが配位したとみなす。
Here, the lone electron pair is an electron pair (a set of two electrons) that does not participate in a covalent bond among the outermost electron pairs of the nitrogen atom, and the nitrogen atom has one pair of the lone electron pair.
Nitrogen atom, an oxygen atom or a sulfur atom, an anion while both had a lone pair of electrons,> N -, -O -, -S - becomes a, than the coordinating atom lone pair of electrons to a metal ion M The anion is also preferred. Therefore, in the present invention, an anion of a nitrogen atom, an oxygen atom, or a sulfur atom is regarded as a coordination atom that coordinates to the metal ion M as an anion even if it has a lone pair.
Note that, for example,> NH, —OH, and —SH are all present even if they are coordinated with the metal ion M via their respective lone pair in a state where the hydrogen atom is not dissociated, that is, is not an anion. In the invention, the anion is regarded as a coordinating atom as the stable coordination structure. That is, in the case of> NH, —OH, —SH, it is considered that the anions of> N , —O , —S 2 are coordinated.
 上記に基づくと、孤立電子対を介して配位する窒素原子は水素原子を有さない窒素原子である。 Based on the above, the nitrogen atom coordinated through the lone pair is a nitrogen atom having no hydrogen atom.
 一方、配位原子がアニオンである原子は、窒素原子、酸素原子および硫黄原子であり、窒素原子が好ましい。これらの原子は、環構成原子であっても、単なる基(置換基、好ましくは環構造に置換する置換基中の原子)に含まれる原子であってもよい。特に、窒素原子の場合、ヘテロ芳香環を構成する環構成原子となりえるものであり、このようなヘテロ環構成原子であることが好ましい。
 本発明において、アニオンとなる各原子は、ヘテロ環構成原子であるか、環上の置換基であるのが好ましい。また、この環は芳香族炭化水素環またはヘテロ芳香族環であることが好ましく、ヘテロ芳香族環は含窒素ヘテロ芳香族環(窒素原子以外のヘテロ原子を有するヘテロ芳香族環を含む。)がさらに好ましい。
On the other hand, the atom whose coordination atom is an anion is a nitrogen atom, an oxygen atom and a sulfur atom, and a nitrogen atom is preferable. These atoms may be ring-constituting atoms or atoms contained in a simple group (substituent, preferably an atom in a substituent that is substituted with a ring structure). Particularly, in the case of a nitrogen atom, it can be a ring constituent atom constituting a heteroaromatic ring, and such a heterocyclic constituent atom is preferable.
In the present invention, each atom serving as an anion is preferably a heterocyclic atom or a substituent on the ring. Further, this ring is preferably an aromatic hydrocarbon ring or a heteroaromatic ring, and the heteroaromatic ring is a nitrogen-containing heteroaromatic ring (including a heteroaromatic ring having a heteroatom other than a nitrogen atom). Further preferred.
 このような2座配位子LDは、具体的には、下記式(2L-1)~(2L-3)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000019
Such bidentate ligand LD is specifically represented by any of the following formulas (2L-1) to (2L-3).
Figure JPOXMLDOC01-appb-C000019
 式中、*は金属イオンMへの結合位置を表す。
 環Dは含窒素芳香族環を表し、環Dは芳香族炭化水素環またはヘテロ芳香族環を表す。
 A12およびA13は、各々独立に、N、OまたはSを表す。
 A~Aは、各々独立に、CRLDまたはNを表し、A~Aのうち少なくとも1つはNを表す。
 LLDは、-C(=O)-、-C(=S)-、-C(=NR)-、-C(R-および-C(=C(R)-からなる群より選ばれる2価の連結基を表す。
 RおよびRLDは、各々独立に、水素原子、または、下記Anc、AncおよびAncを有しない置換基を表す。
In the formula, * represents a bonding position to the metal ion M.
Ring D 1 represents a nitrogen-containing aromatic ring, ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring.
A 12 and A 13 are each independently, N - R L, O - or S - represents a.
A 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N.
L LD is -C (= O)-, -C (= S)-, -C (= NR L )-, -C (R L ) 2 -and -C (= C (R L ) 2 )- Represents a divalent linking group selected from the group consisting of
R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
 このような配位子LDを、後述の配位子LAおよび配位子LXと組み合わせて用いると、長波長領域の光電変換効率および耐久性が増加する。 When such a ligand LD is used in combination with a ligand LA and a ligand LX described later, photoelectric conversion efficiency and durability in a long wavelength region are increased.
 式(2L-1)において、環Dは、含窒素芳香族環であり、その環の少なくとも1つの窒素原子上に活性水素を有し(-NH-)、その-NH-部分がアニオン(-N-)になって金属イオンMに結合することが出来る。したがって、式(2L-1)における環D上の-N-は、環Dを構成する窒素原子に結合した水素原子が脱離した窒素アニオンである。
 このような含窒素芳香族環としては、5~7員環が好ましく、縮環していてもよい。例えば、イミダゾール環、トリアゾール環、テトラゾール環、ベンゾイミダゾール環、1H-インダゾール環、プリン環、ピロール環、金属イオンMに結合する原子が1位の窒素原子であるピラゾール環等が挙げられ、イミダゾール環、トリアゾール環、テトラゾール環、ピロール環、金属イオンMに結合する原子が1位の窒素原子であるピラゾール環が好ましい。この含窒素芳香族環は、これらの中でも、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環またはピロール環に由来する、下記式(a-1)~(a-6)で表される基が好ましく、(a-1)、(a-2)または(a-5)で表される基がより好ましく、(a-2)で表される基が特に好ましい。
In the formula (2L-1), the ring D 1 is a nitrogen-containing aromatic ring, has an active hydrogen on at least one nitrogen atom of the ring (—NH—), and the —NH— moiety is an anion ( −N −) and can be bonded to the metal ion M. Accordingly, —N — on ring D 1 in formula (2L-1) is a nitrogen anion from which a hydrogen atom bonded to the nitrogen atom constituting ring D 1 is eliminated.
Such a nitrogen-containing aromatic ring is preferably a 5- to 7-membered ring and may be condensed. Examples include an imidazole ring, a triazole ring, a tetrazole ring, a benzimidazole ring, a 1H-indazole ring, a purine ring, a pyrrole ring, and a pyrazole ring in which the atom bonded to the metal ion M is a nitrogen atom at the 1st position. , A triazole ring, a tetrazole ring, a pyrrole ring, and a pyrazole ring in which the atom bonded to the metal ion M is a nitrogen atom at the 1-position is preferable. Among these, the nitrogen-containing aromatic ring is preferably a group represented by the following formulas (a-1) to (a-6) derived from an imidazole ring, a pyrazole ring, a triazole ring, a tetrazole ring or a pyrrole ring. , (A-1), (a-2) or a group represented by (a-5) is more preferred, and a group represented by (a-2) is particularly preferred.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式中、Rdは置換基を表す。b1は0~2の整数、b2は0~3の整数、b3は0または1をそれぞれ表す。b1が2のとき、またはb2が2以上のとき、複数のRd同士が互いに結合して環を形成してもよい。Rdとしては、例えば、後述の置換基Tが挙げられる。 In the formula, Rd represents a substituent. b1 represents an integer of 0 to 2, b2 represents an integer of 0 to 3, and b3 represents 0 or 1. When b1 is 2 or b2 is 2 or more, a plurality of Rd's may be bonded to each other to form a ring. Examples of Rd include a substituent T described later.
 ここで、式(a-1)~(a-4)において、隣接するRd同士が環を形成した場合も含めると下記構造の基が挙げられる。 Here, in the formulas (a-1) to (a-4), including the case where adjacent Rd's form a ring, a group having the following structure is exemplified.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式中、Rd、b1~b3は前述の式(a-1)~(a-6)中のRd、b1~b3と同義であり、好ましい範囲も同じである。b4は0~4、b5は0~5の各整数を表す。なお、式(a-1a)、(a-1b)において、Rdはベンゼン環だけでなく、ピロール環にも有してもよい。 In the formula, Rd and b1 to b3 have the same meanings as Rd and b1 to b3 in the formulas (a-1) to (a-6) described above, and the preferred ranges are also the same. b4 represents an integer of 0 to 4, and b5 represents an integer of 0 to 5. In the formulas (a-1a) and (a-1b), Rd may be present not only on the benzene ring but also on the pyrrole ring.
 Rdとして好ましくは直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基、アリール基、ハロゲン原子、アルコキシカルボニル基、シクロアルコキシカルボニル基およびこれらを組み合わせてなる基であり、さらに好ましくは直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基、アリール基およびこれらを組み合わせてなる基であり、特に好ましくは直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基およびこれらを組み合わせてなる基である。 Rd is preferably a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, a fluoroalkyl group, an aryl group, a halogen atom, an alkoxycarbonyl group, a cycloalkoxycarbonyl group, or a group formed by combining these, more preferably A straight chain or branched alkyl group, a cycloalkyl group, an alkenyl group, a fluoroalkyl group, an aryl group or a group formed by combining these, particularly preferably a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, a fluoro group. An alkyl group and a group formed by a combination thereof.
 Rdは、半導体微粒子表面に吸着する吸着基を有していないのが好ましい。なお、半導体微粒子表面に吸着する吸着基は、後述の配位子LAにおけるAnc~Ancで表される基をいう。なお、Rdが該吸着基に相当する基を含んだとしても、金属イオンMに結合する基として含むものであり、半導体微粒子表面に吸着するものではない。 Rd preferably does not have an adsorbing group that adsorbs to the surface of the semiconductor fine particles. The adsorbing group adsorbed on the surface of the semiconductor fine particles is a group represented by Anc 1 to Anc 3 in the ligand LA described later. Even if Rd contains a group corresponding to the adsorbing group, it is included as a group that binds to the metal ion M and is not adsorbed on the surface of the semiconductor fine particles.
 式(2L-1)において、A~Aは、各々独立に、CRLD(RLDは水素原子もしくは下記Anc、AncおよびAncを有しない置換基)またはNを表し、A~Aのうち少なくとも1つはNを表す。すなわち、金属イオンMに孤立電子対を介して配位する環構成窒素原子とA~Aとを含んで形成される後述する式(2L)で表される環構造は、6個の環構成原子のうち窒素原子を2~5個有する。このように、環構成原子として、炭素原子よりも電子求引性の強い窒素原子を複数含んで形成される環構造は、ピリジン環構造よりも電子不足な含窒素芳香族環になる。このような含窒素芳香族環を構成する環構成窒素原子が孤立電子対を介して金属イオンMに配位すると、後述する配位子LAおよびLXの配位と相俟って、光電変換素子の長波長領域における分光感度特性および耐久性を共に向上させることができる。
 分光感度特性および耐久性の向上の点で、A~Aのうち1~3個がNであるのが好ましく、1個または2個がNであるのがより好ましい。
 このような含窒素芳香族環は、環構成原子として2個以上のNを有し、かつアニオンになる窒素原子を有してないものであり、例えば、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、テトラジン環もしくはこれらにベンゼンが縮環した環が好適に挙げられる。
In the formula (2L-1), A 1 to A 4 each independently represent CR LD (R LD is a hydrogen atom or a substituent not having the following Anc 1 , Anc 2 and Anc 3 ) or N, and A 1 At least one of A 4 represents N. That is, the ring structure represented by the formula (2L R ), which will be described later, which includes a ring-constituting nitrogen atom coordinated to the metal ion M via a lone pair and A 1 to A 4 , It has 2 to 5 nitrogen atoms among ring members. Thus, a ring structure formed by including a plurality of nitrogen atoms having electron withdrawing properties stronger than carbon atoms as ring constituent atoms becomes a nitrogen-containing aromatic ring having fewer electrons than a pyridine ring structure. When the ring-constituting nitrogen atom constituting such a nitrogen-containing aromatic ring is coordinated to the metal ion M via a lone electron pair, in combination with the ligands LA and LX described later, a photoelectric conversion element Both the spectral sensitivity characteristics and the durability in the long wavelength region can be improved.
From the viewpoint of improving spectral sensitivity characteristics and durability, one to three of A 1 to A 4 are preferably N, and more preferably one or two are N.
Such a nitrogen-containing aromatic ring has two or more N as ring constituent atoms and does not have a nitrogen atom that becomes an anion. For example, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a triazine Preferable examples include a ring, a tetrazine ring, and a ring in which benzene is condensed.
 式(2L-1)における環構造、すなわち下記式(2L)で表される環構造は、具体的には、下記式(2L-1)~(2L-4)のいずれかで表される環構造であるのが好ましく、式(2L-1)~(2L-3)のいずれかで表される環構造であるのがより好ましい。 The ring structure in the formula (2L-1), that is, the ring structure represented by the following formula (2L R ) is specifically represented by any of the following formulas (2L R -1) to (2L R -4). And a ring structure represented by any one of formulas (2L R -1) to (2L R -3) is more preferable.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式中、RLDaは下記Anc~Ancを有しない置換基である。 In the formula, R LDa is a substituent that does not have the following Anc 1 to Anc 3 .
 上記置換基RLDおよび置換基RLDaとしては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、シクロアルキルオキシ基、アリールオキシ基、ヘテロ環オキシ基、アミノ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、ヘテロアリールチオ基、ポリアルキレンエーテル基、ハロゲン原子が好ましく、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アミノ基、アルキルチオ基、アリールチオ基がより好ましく、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アミノ基、アルキルチオ基、アリールチオ基が更に好ましく、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基が特に好ましい。
 置換基RLDおよびRLDaは、上述の置換基を複数組み合わせてなる基であってもよく、例えば、上記環構造に結合する基として、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アリールオキシ基およびアルキルチオ基からなる群より選択される基に、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アリールオキシ基、アルキルチオ基、アミノ基およびシクロアルキル基からなる群より選択される少なくとも1種が結合した基が挙げられる。
 なお、置換基RLDおよびRLDaは、上述の環構成窒素原子が金属イオンMに孤立電子対を介して配位しやすくする点で、アニオン性の官能基ではなく、またアニオンを一部に含んでいないのが好ましい。
 式中、nL1~nL3は各々独立に0~3の整数であり、nL4は0~2の整数である。nL1~nL3はいずれも0~2の整数であるのが好ましく、nL1~nL4は、いずれも、0または1であることが特に好ましく、1であることが最も好ましい。
Examples of the substituent R LD and the substituent R LDa include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, and a cycloalkyl group. Oxy group, aryloxy group, heterocyclic oxy group, amino group, alkylthio group, cycloalkylthio group, arylthio group, heteroarylthio group, polyalkylene ether group, halogen atom are preferred, alkyl group, alkenyl group, alkynyl group, aryl Group, heterocyclic group, alkoxy group, aryloxy group, amino group, alkylthio group and arylthio group are more preferable, and alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, amino group, alkylthio group and arylthio group are More preferred Ku, alkyl group, alkenyl group, alkynyl group, an aryl group, a heterocyclic group is particularly preferred.
The substituents R LD and R LDa may be a group formed by combining a plurality of the above-described substituents. For example, as a group bonded to the ring structure, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic ring A group selected from the group consisting of a group, an aryloxy group and an alkylthio group, a group consisting of an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an aryloxy group, an alkylthio group, an amino group and a cycloalkyl group And a group to which at least one selected from the above is bonded.
The substituents R LD and R LDa are not an anionic functional group and partly an anion in that the above-described ring-constituting nitrogen atom is easily coordinated to the metal ion M through a lone pair. It is preferably not included.
In the formula, nL1 to nL3 are each independently an integer of 0 to 3, and nL4 is an integer of 0 to 2. nL1 to nL3 are all preferably integers of 0 to 2, and nL1 to nL4 are particularly preferably 0 or 1, and most preferably 1.
 式(2L-2)において、環Dは芳香族炭化水素環またはヘテロ芳香族環であり、5~7員環が好ましく、縮環していてもよい。芳香族炭化水素環は、後述する置換基Tのアリール基に相当する芳香環基が挙げられ、ヘテロ芳香族環は、後述する置換基Tのヘテロ環基の相当するヘテロ環基が挙げられる。芳香族炭化水素環またはヘテロ芳香族環としては、これらの中でも、ベンゼン環、ナフタレン環、チオフェン環、フラン環、ピリジン環、ピラゾール環、ピロール環が好ましく、ベンゼン環が特に好ましい。
 A12は、N、OまたはSであり、環D2上に置換基として存在する(置換)アミノ基、水酸基またはチオール基から活性水素を除去した残基と同義である。これらの中でも、このA12が金属イオンMに配位した後、この配位結合に関与せずにA12上に残っている孤立電子対の塩基性が十分に小さく、プロトンの付加によってA12になることが起こりにくく、吸収特性の長波長領域の吸収特性により優れる点で、O、Sが好ましく、Oがより好ましい。
 Rは、水素原子、または、下記Anc~Ancを有しない置換基であり、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、シクロアルキルオキシ基、アリールオキシ基、ヘテロ環オキシ基、(置換または無置換)アミノ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、ハロゲン原子が好ましく、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、(置換または無置換)アミノ基、アルキルチオ基、アリールチオ基がより好ましく、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、(置換または無置換)アミノ基、アルキルチオ基、アリールチオ基が更に好ましく、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、(置換または無置換)アミノ基が特に好ましい。置換アミノ基としては、-NHSORy(Ryはアルキル基を表す。)等が挙げられる。-NHSORyとしては、具体的には、-NHSOCH、-NHSO、-NHSO等が挙げられる。
 環Dは、A12のほかに、更に置換基Tを有していてもよい。なお、ベンゼン環の置換位置o、mおよびpはA12に対する位置を表す。
 式(2L-2)における環構造は、式(2L-1)における環構造と同義であり、好ましいものも同じである。
In the formula (2L-2), the ring D 2 is an aromatic hydrocarbon ring or a heteroaromatic ring, preferably a 5- to 7-membered ring, and may be condensed. Examples of the aromatic hydrocarbon ring include an aromatic ring group corresponding to the aryl group of the substituent T described later, and examples of the heteroaromatic ring include a heterocyclic group corresponding to the heterocyclic group of the substituent T described later. Among these, as the aromatic hydrocarbon ring or heteroaromatic ring, a benzene ring, a naphthalene ring, a thiophene ring, a furan ring, a pyridine ring, a pyrazole ring, and a pyrrole ring are preferable, and a benzene ring is particularly preferable.
A 12 is, N - R L, O - or S - a and is present as a substituent on the ring D2 (substituted) amino group, the same meanings as residues obtained by removing active hydrogen from hydroxyl or thiol group. Among them, the after A 12 is coordinated to the metal ion M, basic lone pairs remaining on A 12 to not participate in the coordination bond is sufficiently small, A 12 by the addition of a proton O and S are preferable, and O is more preferable in that it is less likely to become H + and is more excellent in absorption characteristics in the long wavelength region of the absorption characteristics.
R L is a hydrogen atom or a substituent not having the following Anc 1 to Anc 3 ; an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, a heterocyclic group, an alkoxy group, Alkenyloxy group, alkynyloxy group, cycloalkyloxy group, aryloxy group, heterocyclic oxy group, (substituted or unsubstituted) amino group, alkylthio group, cycloalkylthio group, arylthio group, halogen atom are preferred, alkyl group, alkenyl group Group, alkynyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, (substituted or unsubstituted) amino group, alkylthio group, arylthio group are more preferable, alkyl group, alkenyl group, alkynyl group, aryl group, hetero Ring group, (substituted or unsubstituted) amino group, a An alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, and a (substituted or unsubstituted) amino group are particularly preferable. Examples of the substituted amino group include —NHSO 2 Ry (Ry represents an alkyl group). Specific examples of —NHSO 2 Ry include —NHSO 2 CH 3 , —NHSO 2 C 2 H 5 , —NHSO 2 C 3 H 7 and the like.
Ring D 2 may further have a substituent T in addition to A 12 . Incidentally, the substitution position o, m and p of the benzene rings represent the position relative to A 12.
The ring structure in formula (2L-2) is synonymous with the ring structure in formula (2L-1), and preferred ones are also the same.
 式(2L-3)において、2価の連結基LLDは、-C(=O)-、-C(=S)-、-C(=NR)-、-C(R-および-C(=C(R)-からなる群より選ばれる2価の連結基であって、これらの中でも、A13のアニオンの安定性が高く、配位した後の錯体の耐久性が高くなるという点で、-C(=O)-、-C(=S)-、-C(=NR)-が好ましく、-C(=O)-、-C(=S)-がより好ましく、-C(=O)-が特に好ましい。Rは式(2L-2)のRと同義であり、好ましいものも同じであるが、特に好ましいものは水素原子である。
 A13は、連結基LLDに結合した(置換)アミノ基、水酸基またはチオール基から活性水素を除去した残基と同義であり、具体的にはA12と同義であって、好ましいものもA12と同じである。
 式(2L-3)における環構造は、式(2L-1)における環構造と同義であり、好ましいものも同じである。
In the formula (2L-3), the divalent linking group L LD represents —C (═O) —, —C (═S) —, —C (═NR L ) —, —C (R L ) 2 —. And a divalent linking group selected from the group consisting of —C (═C (R L ) 2 ) —, among these, the stability of the anion of A 13 is high, and the durability of the complex after coordination -C (= O)-, -C (= S)-, and -C (= NR L )-are preferred, and -C (= O)-and -C (= S)- Is more preferable, and —C (═O) — is particularly preferable. R L has the same meaning as R L of formula (2L-2), is a preferred also the same, particularly preferred are hydrogen atom.
A 13 is synonymous with the residue obtained by removing the active hydrogen from the (substituted) amino group, hydroxyl group or thiol group bonded to the linking group L LD , and specifically has the same meaning as A 12 and is preferably A. 12 is the same.
The ring structure in formula (2L-3) is synonymous with the ring structure in formula (2L-1), and preferred ones are also the same.
 以下に、配位子LDの具体例を示すが、これによって、本発明が、これらに限定されるものではない。
 本明細書において、具体例中のMeはメチル基、Etはエチル基、t-Buはt-ブチル基、Phはフェニル基を表す。
Although the specific example of ligand LD is shown below, this invention is not limited to these by this.
In the present specification, Me in specific examples represents a methyl group, Et represents an ethyl group, t-Bu represents a t-butyl group, and Ph represents a phenyl group.
 まず、式(2L-1)で表される配位子LDの具体例を示す。 First, specific examples of the ligand LD represented by the formula (2L-1) are shown.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(2L-2)で表される配位子LDの具体例を以下に示す。 Specific examples of the ligand LD represented by the formula (2L-2) are shown below.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(2L-3)で表される配位子LDの具体例を以下に示す。 Specific examples of the ligand LD represented by the formula (2L-3) are shown below.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 これらの配位子LDは、例えば、米国特許出願公開第2010/0258175号明細書、特許第4298799号公報、Angew. Chem. Int. Ed., 2011, 50, 2054-2058に記載の各方法、およびこれら各文献で挙げられている参照文献に記載されている方法、もしくはこれらの方法に準じた方法で合成することができる。 These ligands LD are disclosed in, for example, US Patent Application Publication No. 2010/0258175, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. , 2011, 50, 2054-2058, and the methods described in the references cited in these documents, or a method according to these methods.
- 配位子LA -
 配位子LAは、下記式(AL-1)または(AL-2)で表される3座の配位子である。この配位子LAは半導体微粒子表面に吸着する吸着基Anc~Ancを有している。
-Ligand LA-
The ligand LA is a tridentate ligand represented by the following formula (AL-1) or (AL-2). This ligand LA has adsorbing groups Anc 1 to Anc 3 adsorbed on the surface of the semiconductor fine particles.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式中、Anc~Ancは、各々独立に、-COH、-SOH、-POまたはこれらのプロトンが解離した基を表す。
 ここで、プロトンが解離した基とは、例えば、上記のアニオン(例えば、-CO 、-SO 、-PO、-PO 2-)もしくはその塩である。
 本発明においては、-COHもしくはそのプロトンが解離した基が好ましい。
In the formula, Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which these protons are dissociated.
Here, the proton-dissociated group is, for example, the above-mentioned anions (for example, —CO 2 , —SO 3 , —PO 3 H , —PO 3 2− ) or a salt thereof.
In the present invention, —CO 2 H or a group in which its proton is dissociated is preferable.
 式(AL-1)および式(AL-2)において、RALはAnc~Anc以外の置換基を表す。RALとしては、後述の置換基Tが挙げられる。RALは、後述する置換基Tの中でも、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ芳香族環基、置換アミノ基(特にアルキルスルホンアミド基(アルキル基の炭素数は特に限定されないが、好ましくは1~6である。))が好ましく、アリール基がより好ましい。ここで、ヘテロ芳香族環基としてはチオフェン環基、フラン環基、チアゾール環基が好ましく、チオフェン環基がより好ましい。
 RALは、複数のこれら基が結合してなる基であってもよく、またRALが複数存在する場合は少なくとも2つの基が結合して環を形成してもよい。
 b1は0~4の整数を表し、0または1が好ましく、1がより好ましい。
In the formula (AL-1) and the formula (AL-2), R AL represents a substituent other than Anc 1 to Anc 3 . R AL includes the substituent T described later. R AL is an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaromatic ring group, a substituted amino group (especially an alkylsulfonamide group (the carbon number of the alkyl group is Although not particularly limited, it is preferably 1 to 6.))) is preferred, and an aryl group is more preferred. Here, the heteroaromatic ring group is preferably a thiophene ring group, a furan ring group, or a thiazole ring group, and more preferably a thiophene ring group.
R AL may be a group in which a plurality of these groups are bonded, may form a ring by combining at least two groups if R AL there are multiple.
b1 represents an integer of 0 to 4, preferably 0 or 1, and more preferably 1.
 以下に、配位子LAの具体例を示すが、これによって、本発明が、これらに限定されるものではない。
 なお、下記配位子LAにおいて、解離可能なプロトンが解離していない状態で、Anc~Ancを表記したが、これらのプロトンが解離して、例えば、テトラブチルアンモニウムイオン(NBu)、トリエチルアンモニウムイオン(NHEt)、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン等とイオン対を形成した塩となっていてもよい。
Specific examples of the ligand LA are shown below, but the present invention is not limited thereto.
In the ligand LA described below, Anc 1 to Anc 3 are shown in a state where dissociable protons are not dissociated. However, these protons dissociate, for example, tetrabutylammonium ion ( + NBu 4 ). , Triethylammonium ion ( + NHEt 3 ), lithium ion, sodium ion, potassium ion, cesium ion, and the like may form a salt that forms an ion pair.
 まず、式(AL-1)で表される配位子LAの具体例を示す。 First, specific examples of the ligand LA represented by the formula (AL-1) are shown.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(AL-2)で表される配位子LAの具体例を以下に示す。 Specific examples of the ligand LA represented by the formula (AL-2) are shown below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 配位子LAは、金属-ハロゲン交換反応、クロスカップリング反応、クネーフェナーゲル縮合反応などにより合成することができる。 The ligand LA can be synthesized by a metal-halogen exchange reaction, a cross coupling reaction, a Kunafener gel condensation reaction, or the like.
- 配位子LX -
 配位子LXは、単座の配位子を表し、アシルオキシアニオン、アシルチオアニオン、チオアシルオキシアニオン、チオアシルチオアニオン、アシルアミノオキシアニオン、チオカルバメートアニオン、ジチオカルバメートアニオン、チオカルボネートアニオン、ジチオカルボネートアニオン、トリチオカルボネートアニオン、アシルアニオン、チオシアネートアニオン、イソチオシアネートアニオン、シアネートアニオン、イソシアネートアニオン、アルキルチオアニオン、(ヘテロ)アリールチオアニオン、アルコキシアニオン、(ヘテロ)アリールオキシアニオン、飽和または不飽和ヘテロ環に結合するチオアニオン若しくはオキシアニオン、飽和または不飽和ヘテロ環に結合するアミドアニオン若しくはイミドアニオン、シリルチオアニオン、シリルオキシアニオン、シリルアミドアニオン若しくはシリルイミドアニオンからなる群から選択されるアニオンもしくはこれらの基が配位する単座配位子、またはハロゲン原子、水酸化物イオン(HO)、硫化水素イオン(HS)、アミドイオン(NH )、シアノ、カルボニル、ジアルキルケトン、カルボンアミド、チオカルボンアミドおよびチオ尿素からなるアニオン、原子もしくは化合物(アニオンに水素原子が置換された化合物を含む)の群より選ばれる単座配位子が挙げられる。また、孤立電子対を有する原子団として、トリアリールホスフィン(例えばトリフェニルホスフィン)、含窒素芳香族環(例えばピリジン)なども挙げられる。
 なお、配位子LXがアルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換されていても無置換でもよく、単環でも縮環していてもよい。
-Ligand LX-
Ligand LX represents a monodentate ligand and is an acyloxy anion, acylthioanion, thioacyloxyanion, thioacylthioanion, acylaminooxyanion, thiocarbamate anion, dithiocarbamate anion, thiocarbonate anion, dithiocarbonate Nate anion, trithiocarbonate anion, acyl anion, thiocyanate anion, isothiocyanate anion, cyanate anion, isocyanate anion, alkylthioanion, (hetero) arylthioanion, alkoxy anion, (hetero) aryloxyanion, saturated or unsaturated hetero A thioanion or oxyanion bonded to a ring, an amide anion or imide anion bonded to a saturated or unsaturated heterocycle, a silylthioan On, silyl oxyanion, silyl amide anion or anion or coordinating monodentate ligands are those radicals selected from the group consisting of silyl imide anion or a halogen atom, a hydroxide ion (HO -), hydrogen sulphide ions (HS ), amide ions (NH 2 ), cyano, carbonyl, dialkyl ketone, carbonamide, thiocarbonamide and thiourea, anions, atoms or compounds (including compounds in which anions are substituted with hydrogen atoms) And monodentate ligands selected from the above. Examples of the atomic group having a lone pair include triarylphosphine (for example, triphenylphosphine) and nitrogen-containing aromatic ring (for example, pyridine).
In addition, when the ligand LX contains an alkyl group, an alkenyl group, an alkynyl group, an alkylene group or the like, these may be linear or branched, and may be substituted or unsubstituted. Moreover, when an aryl group, a heterocyclic group, a cycloalkyl group, etc. are included, they may be substituted or unsubstituted, and may be monocyclic or condensed.
 本発明においては、配位子LXは、シアネートアニオン、イソシアネートアニオン、チオシアネートアニオン、イソチオシアネートアニオン、セレノシアネートアニオン、イソセレノシアネートアニオンが好ましく、イソシアネートアニオン、イソチオシアネートアニオン、イソセレノシアネートアニオンがより好ましく、イソチオシアネートアニオンが特に好ましい。 In the present invention, the ligand LX is preferably a cyanate anion, an isocyanate anion, a thiocyanate anion, an isothiocyanate anion, a selenocyanate anion, an isoselenocyanate anion, more preferably an isocyanate anion, an isothiocyanate anion, an isoselenocyanate anion, An isothiocyanate anion is particularly preferred.
 以下に、配位子LXの具体例を示すが、本発明はこれらに限定されるものではない。ここで下記具体例中のMeはメチル基、Etはエチル基、Phはフェニル基を表す。 Specific examples of the ligand LX are shown below, but the present invention is not limited to these. In the following specific examples, Me represents a methyl group, Et represents an ethyl group, and Ph represents a phenyl group.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
- 対イオンY -
 Yは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。一般に、色素が陽イオンまたは陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、金属錯体色素中の金属、配位子および置換基に依存する。
 置換基が解離性基を有することなどにより、金属錯体色素は解離して負電荷を持ってもよい。この場合、金属錯体色素全体の電荷はYにより電気的に中性とされる。
-Counter ion Y-
Y represents a counter ion when a counter ion is necessary to neutralize the charge. In general, whether a dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the metal complex dye.
The metal complex dye may be dissociated and have a negative charge, for example, because the substituent has a dissociable group. In this case, the charge of the entire metal complex dye is electrically neutralized by Y.
 対イオンYが正の対イオンの場合、例えば、対イオンYは、無機もしくは有機のアンモニウムイオン(例えば、テトラブチルアンモニウムイオンなどのテトラアルキルアンモニウムイオン、トリエチルベンジルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えば、テトラブチルホスホニウムイオンなどのテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン、トリエチルフェニルホスホニウムイオン等)、アルカリ金属イオン、金属錯体イオンまたはプロトンである。正の対イオンとしては、無機もしくは有機のアンモニウムイオン(トリエチルアンモニウム、テトラブチルアンモニウムイオン等)、プロトンが好ましい。 When the counter ion Y is a positive counter ion, for example, the counter ion Y is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium ion (For example, tetraalkylphosphonium ions such as tetrabutylphosphonium ions, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions, metal complex ions, or protons. The positive counter ion is preferably an inorganic or organic ammonium ion (such as triethylammonium or tetrabutylammonium ion) or a proton.
 対イオンYが負の対イオンの場合、例えば、対イオンYは、無機陰イオンでも有機陰イオンでもよい。例えば、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、が挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビスベンゼン-1,2-ジチオラトニッケル(III)等)も使用可能である。負の対イオンとしては、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、置換もしくは無置換のアルキルスルホン酸イオン、置換もしくは無置換のアリールスルホン酸イオン、アリールジスルホン酸イオン、過塩素酸イオン、ヘキサフルオロホスフェートイオンが好ましく、ハロゲン陰イオン、ヘキサフルオロホスフェートイオンがより好ましい。 When the counter ion Y is a negative counter ion, for example, the counter ion Y may be an inorganic anion or an organic anion. For example, hydroxide ion, halogen anion (eg, fluoride ion, chloride ion, bromide ion, iodide ion, etc.), substituted or unsubstituted alkylcarboxylate ion (acetate ion, trifluoroacetic acid etc.), substituted Or an unsubstituted aryl carboxylate ion (eg, benzoate ion), a substituted or unsubstituted alkyl sulfonate ion (eg, methane sulfonate, trifluoromethane sulfonate ion), or a substituted or unsubstituted aryl sulfonate ion (eg, p- Toluenesulfonic acid ion, p-chlorobenzenesulfonic acid ion, etc.), aryl disulfonic acid ion (eg, 1,3-benzenedisulfonic acid ion, 1,5-naphthalenedisulfonic acid ion, 2,6-naphthalenedisulfonic acid ion, etc.), alkyl Sulfate ion (eg methyl sulfate) Ion), sulfate ion, thiocyanate ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, picrate ion, and the like. Furthermore, an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there. Negative counter ions include halogen anions, substituted or unsubstituted alkyl carboxylate ions, substituted or unsubstituted alkyl sulfonate ions, substituted or unsubstituted aryl sulfonate ions, aryl disulfonate ions, perchlorate ions , Hexafluorophosphate ions are preferred, and halogen anions and hexafluorophosphate ions are more preferred.
- n -
 式(I)中のnは0~4の整数を表し、0または1が好ましく、0がより好ましい。
-N-
N in the formula (I) represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
<置換基T>
 本明細書において化合物(錯体、色素を含む)の表示については、当該化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本明細書において置換・無置換を明記していない置換基(連結基および配位子についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 また、本明細書において、単に置換基としてしか記載されていない場合は、この置換基Tを参照するものであり、また、各々の基、例えば、アルキル基、が記載されているのみの時は、この置換基Tの対応する基における好ましい範囲、具体例が適用される。
<Substituent T>
In this specification, about the display of a compound (a complex and a pigment | dye are included), it uses for the meaning containing the salt and its ion besides the said compound itself. In addition, in the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group and a ligand) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
Further, in the present specification, when only described as a substituent, it refers to this substituent T, and each group, for example, an alkyl group, is only described. The preferred range and specific examples of the corresponding group of the substituent T are applied.
 置換基Tとしては、下記の基が挙げられる。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル、トリフルオロメチル等)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、ブチニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、シクロアルケニル基(好ましくは炭素数5~20で、例えばシクロペンテニル、シクロヘキセニル等)、アリール基(好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20で、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシ、アリルオキシ等)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロペニルオキシ、4-ブチニルオキシ等)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、4-メチルシクロヘキシルオキシ等)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシ、プリニルオキシ)、
Examples of the substituent T include the following groups.
An alkyl group (preferably having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, trifluoromethyl, etc.), Alkenyl groups (preferably having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.), alkynyl groups (preferably having 2 to 20 carbon atoms, such as ethynyl, butynyl, phenylethynyl, etc.), cycloalkyl groups (preferably Has 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl and the like, cycloalkenyl group (preferably having 5 to 20 carbon atoms, for example, cyclopentenyl, cyclohexenyl and the like), aryl group (preferably Has 6 to 26 carbon atoms, for example, phenyl, 1-na Til, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), a heterocyclic group (preferably a 5- or 6-membered ring having 2 to 20 carbon atoms and having at least one oxygen atom, sulfur atom or nitrogen atom) Heterocyclic groups are preferred, for example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc., alkoxy groups (preferably having 1 to 20 carbon atoms, such as methoxy, Ethoxy, isopropyloxy, benzyloxy, etc.), alkenyloxy groups (preferably having 2 to 20 carbon atoms, such as vinyloxy, allyloxy, etc.), alkynyloxy groups (preferably having 2 to 20 carbon atoms, such as 2-propenyloxy, etc.) , 4-butynyloxy, etc.), a cycloalkyloxy group (preferably having 3 to 2 carbon atoms) For example, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, 4-methylcyclohexyloxy, etc.), aryloxy groups (preferably having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4 -Methoxyphenoxy, etc.), heterocyclic oxy groups (for example, imidazolyloxy, benzimidazolyloxy, thiazolyloxy, benzothiazolyloxy, triazinyloxy, purinyloxy),
アルコキシカルボニル基(好ましくは炭素数2~20で、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、シクロアルコキシカルボニル基(好ましくは炭素数4~20で、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニル、シクロヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノ、トリアジニルアミノ等)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニル、ベンゾイル等)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイル、N-フェニルカルバモイル等)、 An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.), a cycloalkoxycarbonyl group (preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl, etc.) , Cyclohexyloxycarbonyl, etc.), aryloxycarbonyl groups (preferably having 6 to 20 carbon atoms, such as phenyloxycarbonyl, naphthyloxycarbonyl, etc.), amino groups (preferably having 0 to 20 carbon atoms, alkylamino groups, alkenyls) Including amino group, alkynylamino group, cycloalkylamino group, cycloalkenylamino group, arylamino group, heterocyclic amino group, for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethyl Amino, N-allylamino, N- (2-propynyl) amino, N-cyclohexylamino, N-cyclohexenylamino, anilino, pyridylamino, imidazolylamino, benzoimidazolylamino, thiazolylamino, benzothiazolylamino, triazinylamino, etc.) A sulfamoyl group (preferably an alkyl, cycloalkyl or aryl sulfamoyl group having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-cyclohexylsulfamoyl, N-phenylsulfamoyl, etc. ), An acyl group (preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl, benzoyl, etc.), an acyloxy group (preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexylcarbonyloxy). , Benzoyloxy, etc.), carbamoyl group (preferably an carbamoyl group having 1 to 20 carbon atoms, alkyl, cycloalkyl or aryl, such as N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.) ,
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルスルホンアミド、N-シクロヘキシルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオ、4-メチルシクロヘキシルチオ等)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニル、ベンゼンスルホニル等)、 An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, benzoylamino, etc.), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably having 1 to 20 carbon atoms, for example, Methylthio, ethylthio, isopropylthio, benzylthio, etc.), cycloalkylthio groups (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopentylthio, cyclohexylthio, 4-methylcyclohexyl) Thio), arylthio groups (preferably having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), alkyl, cycloalkyl or arylsulfonyl groups (preferably carbon In the formula 1 to 20, for example, methylsulfonyl, ethylsulfonyl, cyclohexylsulfonyl, benzenesulfonyl, etc.),
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリエチルシリル、トリフェニルシリル、ジエチルベンジルシリル、ジメチルフェニルシリル等)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシ、ジメチルフェニルシリルオキシ等)、ヒドロキシル基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)、カルボキシル基、スルホ基、ホスホニル基、ホスホリル基、ホウ酸基である。 A silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted by alkyl, aryl, alkoxy and aryloxy, such as triethylsilyl, triphenylsilyl, diethylbenzylsilyl, dimethylphenylsilyl, etc.), silyloxy group ( Preferably, it is a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, dimethylphenylsilyloxy, etc.), hydroxyl group Cyano group, nitro group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), carboxyl group, sulfo group, phosphonyl group, phosphoryl group, boric acid group.
 化合物または置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。 When the compound or the substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
 以下に、上記式(I)で表される金属錯体色素の具体例を示すが、本発明はこれらに限定されるものではない。 Specific examples of the metal complex dye represented by the above formula (I) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 本発明の金属錯体色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。 In the metal complex dye of the present invention, the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
 本発明の式(I)で表される金属錯体色素は、上述の特許文献1および2ならびに上述の非特許文献1に記載された各方法に準じた方法、さらに後述する実施例における合成方法に準じた方法で、合成することができる。 The metal complex dye represented by the formula (I) of the present invention is a method according to each method described in Patent Documents 1 and 2 and Non-Patent Document 1 described above, and a synthesis method in Examples described later. It can be synthesized by a similar method.
<<光電変換素子および色素増感太陽電池>>
 本発明の光電変換素子10は、例えば、図1に示すように、導電性支持体1、色素(金属錯体色素)21により増感された半導体微粒子を含む感光体層2、正孔輸送層である電荷移動体層3および対極4からなる。ここで本発明においては、半導体微粒子22に、色素(金属錯体色素)21とともに、共吸着剤が吸着されていることが好ましい。感光体層2を設置した導電性支持体1は光電変換素子10において作用電極として機能する。本実施形態においては、この光電変換素子10を外部回路6で動作手段Mに仕事をさせる電池用途に使用できるようにした色素増感太陽電池を利用したシステム100として示している。
<< Photoelectric conversion element and dye-sensitized solar cell >>
The photoelectric conversion element 10 of the present invention includes, for example, as shown in FIG. 1, a conductive support 1, a photoreceptor layer 2 containing semiconductor fine particles sensitized by a dye (metal complex dye) 21, and a hole transport layer. It consists of a certain charge transfer layer 3 and a counter electrode 4. Here, in the present invention, it is preferable that the co-adsorbent is adsorbed on the semiconductor fine particles 22 together with the dye (metal complex dye) 21. The conductive support 1 provided with the photoreceptor layer 2 functions as a working electrode in the photoelectric conversion element 10. In the present embodiment, the photoelectric conversion element 10 is shown as a system 100 using a dye-sensitized solar cell that can be used for a battery for causing the operating means M to work with the external circuit 6.
 本実施形態において受光電極5は、導電性支持体1、および色素(金属錯体色素)21の吸着した半導体微粒子を含む感光体層2よりなる。感光体層2は目的に応じて設計され、単層構成でも多層構成でもよい。一層の感光体層中の色素(金属錯体色素)21は一種類でも多種の混合でもよいが、そのうちの少なくとも1種は、上述した本発明の金属錯体色素を用いる。感光体層2に入射した光は色素(金属錯体色素)21を励起する。励起された色素はエネルギーの高い電子を有しており、この電子が色素(金属錯体色素)21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素(金属錯体色素)21は酸化体となっているが、電極上の電子が外部回路6で仕事をしながら、対極4を経由して、色素(金属錯体色素)21の酸化体および電解質が存在する感光体層2に戻ることで太陽電池として働く。 In the present embodiment, the light-receiving electrode 5 includes a conductive support 1 and a photoreceptor layer 2 containing semiconductor fine particles adsorbed with a dye (metal complex dye) 21. The photoreceptor layer 2 is designed according to the purpose, and may be a single layer structure or a multilayer structure. The dye (metal complex dye) 21 in one photosensitive layer may be one kind or a mixture of various kinds, but at least one of them uses the metal complex dye of the present invention described above. The light incident on the photoreceptor layer 2 excites the dye (metal complex dye) 21. The excited dye has high energy electrons, and the electrons are transferred from the dye (metal complex dye) 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion. At this time, the dye (metal complex dye) 21 is an oxidant, but the electrons on the electrode work in the external circuit 6 and pass through the counter electrode 4 so that the oxidant of the dye (metal complex dye) 21 and By returning to the photoreceptor layer 2 where the electrolyte is present, it functions as a solar cell.
 本発明において光電変換素子もしくは色素増感太陽電池に用いられる材料および各部材の作成方法については、光電変換素子もしくは色素増感太陽電池における通常の材料および各部材を採用すればよく、例えば米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,0843,65号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。 In the present invention, the material used for the photoelectric conversion element or the dye-sensitized solar cell and the method for producing each member may be any ordinary material and each member used in the photoelectric conversion element or the dye-sensitized solar cell. US Pat. No. 4,927,721, US Pat. No. 4,684,537, US Pat. No. 5,0843,65, US Pat. No. 5,350,644, US Pat. No. 5,463,057, US Pat. No. 5,525,440, JP-A-7-249790, JP-A-2004-220974, and JP-A-2008-135197.
 以下、主たる部材について概略を説明する。 Hereinafter, an outline of main members will be described.
- 導電性支持体 -
 導電性支持体は、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスもしくはプラスチックの支持体であるのが好ましい。支持体としては、ガラスおよびプラスチックの他、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いてもよい。支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859号公報に記載の高屈折膜および低屈性率の酸化物膜を交互に積層した反射防止膜、特開2002-260746号公報に記載のライトガイド機能が挙げられる。
-Conductive support-
The conductive support is preferably a support made of glass or plastic having a conductive film layer on the surface, such as a metal, which is conductive in itself. As the support, in addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) may be used. On the support, the surface may have a light management function. For example, an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated, A light guide function described in JP-A-2002-260746 can be mentioned.
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることが更に好ましく、特に好ましくは0.05~20μmである。 The thickness of the conductive film layer is preferably 0.01 to 30 μm, more preferably 0.03 to 25 μm, and particularly preferably 0.05 to 20 μm.
 導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上であることが特に好ましい。透明導電性支持体としては、ガラスもしくはプラスチックに導電性の金属酸化物を塗設したものが好ましい。金属酸化物としてはスズ酸化物が好ましく、インジウム-スズ酸化物、フッ素ドープド酸化物が特に好ましい。このときの導電性の金属酸化物の塗布量は、ガラスもしくはプラスチックの支持体1m当たり0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。 It is preferable that the conductive support is substantially transparent. “Substantially transparent” means that the light transmittance is 10% or more, preferably 50% or more, and particularly preferably 80% or more. As the transparent conductive support, a glass or plastic coated with a conductive metal oxide is preferable. As the metal oxide, tin oxide is preferable, and indium-tin oxide and fluorine-doped oxide are particularly preferable. The coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the glass or plastic support. When a transparent conductive support is used, light is preferably incident from the support side.
- 半導体微粒子 -
 半導体微粒子は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
-Semiconductor fine particles-
The semiconductor fine particles are preferably metal chalcogenide (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles. Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like. . Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合するか、または半導体電極として用いてもよい。 Examples of the crystal structure of titania include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles or used as a semiconductor electrode.
 半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子を導電性支持体上に塗設する方法として、湿式法、乾式法、その他の方法が挙げられる。 The particle diameters of the semiconductor fine particles are 0.001 to 1 μm as primary particles and 0.01 to 100 μm as the average particle diameter of the dispersion as the average particle diameter using the diameter when the projected area is converted into a circle. preferable. Examples of the method for coating the semiconductor fine particles on the conductive support include a wet method, a dry method, and other methods.
 透明導電膜と半導体層(感光体層)の間には、電解液と電極が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。光電極と対極の接触を防ぐために、スペーサーやセパレータを用いることが好ましい。半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。一般に、半導体微粒子を含む層(感光体層)の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体層である感光体層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間焼成してもよい。支持体としてガラスを用いる場合、製膜温度は400~60℃が好ましい。 It is preferable to form a short circuit prevention layer between the transparent conductive film and the semiconductor layer (photoreceptor layer) in order to prevent a reverse current due to direct contact between the electrolyte and the electrode. In order to prevent contact between the photoelectrode and the counter electrode, it is preferable to use a spacer or a separator. The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. For example, in a state where the semiconductor fine particles are coated on the support, the surface area is preferably 10 times or more, more preferably 100 times or more the projected area. Although there is no restriction | limiting in particular in this upper limit, Usually, it is about 5000 times. In general, the greater the thickness of the layer containing the semiconductor fine particles (photoreceptor layer), the greater the amount of dye that can be carried per unit area and the higher the light absorption efficiency, but the longer the diffusion distance of the generated electrons, the greater the charge recombination. The loss due to will also increase. The preferred thickness of the photoreceptor layer, which is a semiconductor layer, varies depending on the use of the device, but is typically 0.1 to 100 μm. When used as a dye-sensitized solar cell, the thickness is preferably 1 to 50 μm, more preferably 3 to 30 μm. The semiconductor fine particles may be fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 400 to 60 ° C.
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の金属錯体色素の使用量は5モル%以上とすることが好ましい。また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。
 前記色素が塩である場合、前記特定の金属錯体色素の対イオンは特に限定されず、例えばアルカリ金属イオンまたは4級アンモニウムイオン等が挙げられる。
The coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g. The total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. In this case, the amount of the metal complex dye of the present invention is preferably 5 mol% or more. Further, the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles. By using such a dye amount, the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
When the dye is a salt, the counter ion of the specific metal complex dye is not particularly limited, and examples thereof include alkali metal ions and quaternary ammonium ions.
 このように、半導体微粒子は、加えられた上記式(I)で表される金属錯体色素で吸着されてなる。吸着する方法は後述する。色素を吸着させた後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてピリジン類(例えば4-tert-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。 Thus, the semiconductor fine particles are adsorbed with the added metal complex dye represented by the above formula (I). A method of adsorption will be described later. After adsorbing the dye, the surface of the semiconductor fine particles may be treated with amines. Preferable amines include pyridines (for example, 4-tert-butylpyridine, polyvinylpyridine) and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
 本発明の光電変換素子(例えば光電変換素子10)および色素増感太陽電池(例えば光電気化学電池20)においては、少なくとも上記の本発明の金属錯体色素を使用する。 In the photoelectric conversion element (for example, the photoelectric conversion element 10) and the dye-sensitized solar cell (for example, the photoelectrochemical cell 20) of the present invention, at least the metal complex dye of the present invention is used.
 本発明においては、本発明の金属錯体色素と他の色素を併用してもよい。
 併用する色素としては、特許第3731752号、特公表2002-512729号、特開2001-59062号、特開2001-6760号、特許第3430254号、特開2003-212851号、国際公開第2007/91525号パンフレット、特開2001-291534号、特開2012-012570号の各公報もしくは明細書などに開示のRu錯体色素、特開平11-214730号、特開2012-144688号、特開2012-84503号等の各公報に記載のスクアリリウムシアニン色素、特開2004-063274号、特開2005-123033号、特開2007-287694号、
特開2008-71648号、特開2007-287694号、国際公開第2007/119525号パンフレットの各公報もしくは明細書に記載の有機色素、Angew.Chem.Int.Ed.,49,1~5(2010)などに記載のポルフィリン色素、Angew.Chem.Int.Ed.,46,8358(2007)などに記載のフタロシアニン色素が挙げられる。併用する色素として好ましくは、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が挙げられる。
In the present invention, the metal complex dye of the present invention may be used in combination with another dye.
Examples of the dye used in combination include Japanese Patent No. 3731852, Japanese Patent Publication No. 2002-512729, Japanese Patent Application Laid-Open No. 2001-59062, Japanese Patent Application Laid-Open No. 2001-6760, Japanese Patent No. 3430254, Japanese Patent Application Laid-Open No. 2003-212851, and International Publication No. 2007/91525. Ru complex dyes disclosed in each pamphlet, JP-A No. 2001-291534, JP-A No. 2012-012570, or the specification thereof, JP-A No. 11-214730, JP-A No. 2012-144688, JP-A No. 2012-84503 The squarylium cyanine dyes described in each of the above publications, such as JP2004-063274, JP2005-123033, JP2007-287694,
Organic dyes described in JP-A-2008-71648, JP-A-2007-287694, and International Publication No. 2007/119525 pamphlet or specification, Angew. Chem. Int. Ed. , 49, 1-5 (2010), etc., Angew. Chem. Int. Ed. , 46, 8358 (2007), and the like. The dye used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
 本発明の金属錯体色素と他の色素を併用する場合、本発明の金属錯体色素の質量/他の色素の質量の比は、95/5~10/90が好ましく、95/5~50/50がより好ましく、95/5~60/40がさらに好ましく、95/5~65/35が特に好ましく、95/5~70/30が最も好ましい。 When the metal complex dye of the present invention is used in combination with another dye, the ratio of the mass of the metal complex dye of the present invention to the mass of the other dye is preferably 95/5 to 10/90, and 95/5 to 50/50. Is more preferable, 95/5 to 60/40 is further preferable, 95/5 to 65/35 is particularly preferable, and 95/5 to 70/30 is most preferable.
- 電荷移動体層 -
 本発明の光電変換素子に用いられる電荷移動体層は、色素の酸化体に電子を補充する機能を有する層であり、受光電極(光電極)と対極(対向電極)との間に設けられる。代表的な例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質、酸化還元対を含有する溶融塩などが挙げられる。効率を高めるためには液体電解質が好ましい。液体電解質の有機溶媒はニトリル化合物、エーテル化合物、エステル化合物等が用いられるが、ニトリル化合物が好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
-Charge transfer layer-
The charge transfer layer used in the photoelectric conversion element of the present invention is a layer having a function of replenishing electrons to the oxidant of the dye, and is provided between the light receiving electrode (photoelectrode) and the counter electrode (counter electrode). Typical examples include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, a so-called gel electrolyte in which a polymer matrix is impregnated with a liquid in which the redox couple is dissolved in an organic solvent, and a molten salt containing the redox couple. It is done. A liquid electrolyte is preferred for increasing efficiency. Nitrile compounds, ether compounds, ester compounds and the like are used as the organic solvent for the liquid electrolyte, but nitrile compounds are preferred, and acetonitrile and methoxypropionitrile are particularly preferred.
 酸化還元対として、例えばヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合わせ(例えば赤血塩と黄血塩の組み合わせ)、2価と3価のコバルト錯体の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせ、2価と3価のコバルト錯体の組み合わせが好ましい。 As an oxidation-reduction pair, for example, iodine and iodide (iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable) Combinations, combinations of alkyl viologens (for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate) and reduced forms thereof, combinations of polyhydroxybenzenes (for example, hydroquinone, naphthohydroquinone, etc.) and oxidized forms thereof, divalent And combinations of trivalent iron complexes (for example, combinations of red blood salts and yellow blood salts), combinations of divalent and trivalent cobalt complexes, and the like. Of these, a combination of iodine and iodide, and a combination of divalent and trivalent cobalt complexes are preferred.
 前記コバルト錯体は、なかでも下記式(CC)で表される錯体が好ましい。 The cobalt complex is preferably a complex represented by the following formula (CC).
  Co(LL)ma(X)mb・CI      式(CC) Co (LL) ma (X) mb · CI Formula (CC)
 式(CC)において、LLは2座または3座の配位子を表す。Xは単座の配位子を表す。maは0~3の整数を表す。mbは0~6の整数を表す。CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。 In the formula (CC), LL represents a bidentate or tridentate ligand. X represents a monodentate ligand. ma represents an integer of 0 to 3. mb represents an integer of 0-6. CI represents a counter ion when a counter ion is required to neutralize the charge.
 CIは前記式(I)におけるYが挙げられる。
 LLは下記式(LC)で表される配位子が好ましい。
CI includes Y in the formula (I).
LL is preferably a ligand represented by the following formula (LC).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 式(LC)において、ZLC1、ZLC2およびZLC3は各々独立に、5または6員環を形成するのに必要な非金属原子群を表す。ZLC1、ZLC2およびZLC3は置換基を有していてもよく、置換基を介して隣接する環と閉環していてもよい。XLC1およびXLC3は炭素原子または窒素原子を表す。qは0または1を表す。該置換基としては、前述の置換基Tが挙げられる。 In the formula (LC), Z LC1 , Z LC2 and Z LC3 each independently represent a nonmetallic atom group necessary for forming a 5- or 6-membered ring. Z LC1 , Z LC2 and Z LC3 may have a substituent and may be closed with an adjacent ring via the substituent. X LC1 and X LC3 represent a carbon atom or a nitrogen atom. q represents 0 or 1; Examples of the substituent include the above-described substituent T.
 式(CC)中、Xはハロゲンイオンであることが好ましい。 In the formula (CC), X is preferably a halogen ion.
 上記式(LC)で表される配位子は、下記式(LC-1)~(LC-3)で表される配位子がより好ましい。 The ligand represented by the above formula (LC) is more preferably a ligand represented by the following formulas (LC-1) to (LC-3).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 RLC1~RLC9は置換基を表す。q1、q2、q6およびq7は各々独立に、0~4の整数を表す。q3およびq5は各々独立に、0~3の整数を表す。q4は0~2の整数を表す。 R LC1 to R LC9 each represents a substituent. q1, q2, q6 and q7 each independently represents an integer of 0 to 4. q3 and q5 each independently represents an integer of 0 to 3. q4 represents an integer of 0-2.
 式(LC-1)~(LC-3)において、RLC1~RLC9の置換基としては例えば、脂肪族基、芳香族基、複素環基等が挙げられる。置換基の具体的な例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ヘテロ環等を挙げることができる。好ましい例としては、アルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、アリール基(例えばフェニル、トリル、ナフチル等)、アルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、ブトキシ等)、アルキルチオ基(例えば、メチルチオ、n-ブチルチオ、n-ヘキシルチオ、2-エチルヘキシルチオ等)、アリールオキシ基(例えば、フェノキシ、ナフトキシ等)、アリールチオ基(例えば、フェニルチオ、ナフチルチオ等)、ヘテロ環基(例えば、2-チエニル、2-フリル等)を挙げることができる。 In the formulas (LC-1) to (LC-3), examples of the substituent for R LC1 to R LC9 include an aliphatic group, an aromatic group, and a heterocyclic group. Specific examples of the substituent include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, and heterocyclic rings. Preferred examples include alkyl groups (eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.), aryl groups (eg phenyl, tolyl, naphthyl). Etc.), alkoxy groups (eg methoxy, ethoxy, isopropoxy, butoxy etc.), alkylthio groups (eg methylthio, n-butylthio, n-hexylthio, 2-ethylhexylthio etc.), aryloxy groups (eg phenoxy, naphthoxy etc.) Etc.), arylthio groups (eg, phenylthio, naphthylthio, etc.), and heterocyclic groups (eg, 2-thienyl, 2-furyl, etc.).
 式(LC)で表されるコバルト錯体の具体例としては、例えば以下の錯体が挙げられる。 Specific examples of the cobalt complex represented by the formula (LC) include the following complexes.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 電解質として、ヨウ素とヨウ化物との組み合わせを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。 When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
 酸化還元対を、これらを溶かす有機溶媒としては、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。ゲル電解質のマトリクスに使用されるポリマー(ポリマーマトリクス)としては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。溶融塩としては、例えばヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温における流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり変換効率が向上する。 As an organic solvent for dissolving the redox couple, these are aprotic polar solvents (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc. ) Is preferred. Examples of the polymer (polymer matrix) used in the gel electrolyte matrix include polyacrylonitrile and polyvinylidene fluoride. Examples of the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlorate). . In this case, the amount of the polymer added is 1 to 50% by mass. In addition, γ-butyrolactone may be included in the electrolyte, which increases the diffusion efficiency of iodide ions and improves the conversion efficiency.
 電解質への添加物として、前述の4-tert-ブチルピリジンのほか、アミノピリジン系化合物、ベンズイミダゾール系化合物、アミノトリアゾール系化合物およびアミノチアゾール系化合物、イミダゾール系化合物、アミノトリアジン系化合物、尿素誘導体、アミド化合物、ピリミジン系化合物および窒素を含まない複素環を加えることができる。 As an additive to the electrolyte, in addition to the aforementioned 4-tert-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine compounds and nitrogen-free heterocycles can be added.
 また、効率を向上するために、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。ヨウ素の毒性軽減のために、ヨウ素とシクロデキストリンの包摂化合物の使用をしてもよく、逆に水分を常時補給する方法を用いてもよい。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。 Also, in order to improve efficiency, a method of controlling the water content of the electrolytic solution may be taken. Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist. In order to reduce the toxicity of iodine, an inclusion compound of iodine and cyclodextrin may be used, and conversely, a method of constantly supplying water may be used. Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
 電解質として溶融塩を用いてもよく、好ましい溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム系、ピリジニウム系、グアニジウム系およびこれらの組み合わせが挙げられる。これらカチオン系に対して特定のアニオンと組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。液晶性の置換基を持っていてもよい。また、四級アンモニウム塩系の溶融塩を用いてもよい。 A molten salt may be used as the electrolyte, and preferred molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. These cationic systems may be combined with specific anions. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温における流動性を付与したもの等が挙げられる。 As molten salts other than these, for example, lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.) are mixed with polyethylene oxide to give fluidity at room temperature. Etc.
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい(擬固体化された電解質を、以下、「擬固体電解質」ともいう。)。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からできる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。 The electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter). Examples of the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
 また、マトリックス高分子、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いても良い。
 マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造をもつ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン系、メタクリレート・アクリレート系、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリールとデキストリンなどの包摂化合物、含酸素または含硫黄高分子を添加した系、天然高分子などが挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を有する高分子などを添加しても良い。
Alternatively, a method of confining the matrix polymer, the crosslinkable polymer compound or monomer, the crosslinking agent, the electrolyte, and the solvent in the polymer may be used.
As a matrix polymer, a polymer having a nitrogen-containing heterocyclic ring in the main chain or side chain repeating unit, a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or having a ureido structure Polymers, liquid crystalline compounds, ether-bonded polymers, polyvinylidene fluoride, methacrylate / acrylate, thermosetting resins, cross-linked polysiloxane, polyvinyl alcohol (PVA), polyalkylene glycol and dextrin, etc. Examples include inclusion compounds, systems to which oxygen-containing or sulfur-containing polymers are added, and natural polymers. An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex between a cation moiety and iodine in one polymer may be added to these.
 ポリマーマトリックスとして2官能以上のイソシアネートと、ヒドロキシル基、アミノ基、カルボキシル基などの官能基とを反応させた架橋ポリマーを含む系を用いても良い。また、ヒドロシリル基と二重結合性化合物による架橋高分子、ポリスルホン酸またはポリカルボン酸などを2価以上の金属イオン化合物と反応させる架橋方法などを用いても良い。 As the polymer matrix, a system containing a cross-linked polymer obtained by reacting a bifunctional or higher functional isocyanate with a functional group such as a hydroxyl group, an amino group, or a carboxyl group may be used. In addition, a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
 上記擬固体電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒などが挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させても良く、その方法として好ましくは、導電性高分子膜、繊維状固体、フィルタなどの布状固体が挙げられる。 Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, and a solvent having a specific dielectric constant. The liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth solids such as filters.
 以上の液体電解質および擬固体電解質の代わりにp型半導体あるいはホール輸送材料などの固体電荷輸送層、例えば、CuI、CuNCSなどを用いることができる。また、Nature,vol.486,p.487,2012等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いても良い。有機ホール輸送材料として好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシランなどの導電性高分子および2個の環がC、Siなど四面体構造をとる中心原子を共有するスピロ化合物、トリアリールアミンなどの芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。 Instead of the above liquid electrolyte and quasi-solid electrolyte, a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487, 2012, or the like may be used. An organic hole transport material may be used as the solid charge transport layer. The organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole or polysilane, and a spiro compound in which two rings share a tetrahedral structure such as C or Si, or an aromatic such as triarylamine. Group amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
 酸化還元対は、電子のキャリアになる。好ましい濃度としては合計で0.01モル/1以上であり、より好ましくは0.1モル/1であり、特に好ましくは0.3モル/1以上である。この場合の上限には特に制限はないが、通常5モル/1程度である。 The redox couple becomes an electron carrier. The total concentration is preferably 0.01 mol / 1 or more, more preferably 0.1 mol / 1, and particularly preferably 0.3 mol / 1 or more. The upper limit in this case is not particularly limited, but is usually about 5 mol / 1.
- 共吸着剤 -
 本発明の光電変換素子においては、本発明の金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシル基もしくはその塩の基)を1つ以上有する共吸着剤が好ましく、
脂肪酸やステロイド骨格を有する化合物が挙げられる。脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えばブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
-Coadsorbent-
In the photoelectric conversion element of this invention, it is preferable to use a coadsorbent with the metal complex dye of this invention or the pigment | dye used together if necessary. As such a coadsorbent, a coadsorbent having at least one acidic group (preferably a carboxyl group or a salt group thereof) is preferable,
Examples include compounds having a fatty acid or a steroid skeleton. The fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
 好ましい共吸着剤は、下記式(CA)で表される化合物である。 A preferred co-adsorbent is a compound represented by the following formula (CA).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。

 本発明において酸性基とは、解離性のプロトンを有する置換基である。
 酸性基の例としては、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基など、あるいはこれらのいずれかを有する基が挙げられる。好ましくはカルボキシ基、ホスホニル基あるいはこれを有する基である。また酸性基はプロトンを放出して解離した形を採っていてもよく、塩であってもよい。塩となるとき、対イオンとしては特に限定されないが、例えば、上記対イオンYにおける正のイオンの例が挙げられる。。また、酸性基は、連結基を介して結合した基でもよく、例えば、カルボキシビニレン基、ジカルボキシビニレン基、シアノカルボキシビニレン基、カルボキシフェニル基などを好ましい酸性基として挙げることができる。
 nAは2~4であることが好ましい。
In the formula, R A1 represents a substituent having an acidic group. R A2 represents a substituent. nA represents an integer of 0 or more.

In the present invention, an acidic group is a substituent having a dissociable proton.
Examples of the acidic group include a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, a boric acid group, and the like, or a group having any one of these. A carboxy group, a phosphonyl group or a group having this is preferred. Further, the acidic group may take a form of releasing a proton and dissociating, or may be a salt. When it becomes a salt, the counter ion is not particularly limited, and examples thereof include positive ions in the counter ion Y. . The acidic group may be a group bonded through a linking group, and examples thereof include carboxyvinylene group, dicarboxyvinylene group, cyanocarboxyvinylene group, carboxyphenyl group and the like as preferable acidic groups.
nA is preferably 2 to 4.
 これらの具体的化合物は、上述のステロイド骨格を有する化合物として例示した化合物が挙げられる。 These specific compounds include the compounds exemplified as the compounds having the steroid skeleton described above.
 本発明で用いられる共吸着剤は、半導体微粒子に吸着させることにより、色素の非効率な会合を抑制する効果および半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は特に限定されないが、上記色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルであることが上記の作用を効果的に発現させられる観点から好ましい。 The co-adsorbent used in the present invention has an effect of suppressing inefficient association of dyes by adsorbing to semiconductor fine particles and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte. The amount of coadsorbent used is not particularly limited, but it is preferably 1 to 200 mol, more preferably 10 to 150 mol, and particularly preferably 20 to 50 mol with respect to 1 mol of the dye. It is preferable from the viewpoint of being effectively expressed.
 対向電極(対極ともいう)は、色素増感太陽電池(光電気化学電池)の正極として働くものであることが好ましい。対向電極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。対極の構造としては、集電効果が高い構造が好ましい。感光層に光が到達するためには、前述の導電性支持体と対向電極との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体が透明であって太陽光を支持体側から入射させるのが好ましい。この場合、対向電極は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対向電極としては、金属もしくは導電性の酸化物を蒸着したガラス、またはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。このようにして得られる本発明の色素増感太陽電池の特性は、好ましくはAM1.5Gで100mW/cmのとき、開放電圧0.01~1.5V、短絡電流密度0.001~20mA/cm、形状因子0.1~0.9、変換効率0.001~25%である。 The counter electrode (also referred to as a counter electrode) preferably serves as a positive electrode for a dye-sensitized solar cell (photoelectrochemical cell). The counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. As the structure of the counter electrode, a structure having a high current collecting effect is preferable. In order for light to reach the photosensitive layer, at least one of the conductive support and the counter electrode must be substantially transparent. In the dye-sensitized solar cell of the present invention, the conductive support is preferably transparent, and sunlight is preferably incident from the support side. In this case, it is more preferable that the counter electrode has a property of reflecting light. As the counter electrode of the dye-sensitized solar cell, glass or plastic on which metal or conductive oxide is vapor-deposited is preferable, and glass on which platinum is vapor-deposited is particularly preferable. In the dye-sensitized solar cell, it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating. The characteristics of the dye-sensitized solar cell of the present invention thus obtained are preferably an open circuit voltage of 0.01 to 1.5 V and a short-circuit current density of 0.001 to 20 mA / cm when AM 1.5G is 100 mW / cm 2. cm 2 , form factor 0.1 to 0.9, conversion efficiency 0.001 to 25%.
 本発明は、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-15
2613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報等に記載の光電変換素子、色素増感太陽電池に適用することができる。
The present invention relates to Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, and Japanese Patent Application Laid-Open No. 2004-15.
It can be applied to the photoelectric conversion elements and dye-sensitized solar cells described in Japanese Patent No. 2613 and Japanese Patent Laid-Open No. 9-27352. Further, JP 2004-152613 A, JP 2000-90989 A, JP 2003-217688 A, JP 2002-367686 A, JP 2003-323818 A, JP 2001-43907 A, JP 2000-340269, JP 2005-85500, JP 2004-273272, JP 2000-323190, JP 2000-228234, JP 2001-266963, JP 2001-185244, JP-T-2001-525108, JP-A-2001-203377, JP-A-2000-1000048, JP-A-2001-210390, JP-A-2002-280857, JP-A-2001-2001. No. 273937, JP 2000-2859 A 7 No. photoelectric conversion device described in JP 2001-320068 Patent Publication can be applied to a dye-sensitized solar cell.
<<色素溶液、それを用いた半導体電極および色素増感太陽電池の製造方法>>
 本発明においては、本発明の金属錯体色素を含有する色素溶液を使用して半導体電極(色素吸着電極ともいう)を製造することが好ましい。
 このような色素溶液には、本発明の金属錯体色素が溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが特に限定されない。本発明においては有機溶媒が好ましく、さらにアルコール類、アミド類、ニトリル類、炭化水素類、および、これらの2種以上の混合溶媒が好ましい。混用溶媒としては、アルコール類と、アミド類、ニトリル類または炭化水素類から選択される溶媒との混合溶媒が好ましい。さらに好ましくはアルコール類とアミド類、アルコール類と炭化水素類の混合溶媒、特に好ましくはアルコール類とアミド類の混合溶媒である。具体的にはメタノール、エタノール、プロパノール、ブタノール、ジメチルホルムアミド、ジメチルアセトアミドが好ましい。
<< Dye solution, semiconductor electrode using the same, and method for producing dye-sensitized solar cell >>
In the present invention, it is preferable to produce a semiconductor electrode (also referred to as a dye adsorption electrode) by using a dye solution containing the metal complex dye of the present invention.
In such a dye solution, the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
Examples of the solvent to be used include, but are not particularly limited to, the solvents described in JP-A No. 2001-291534. In the present invention, an organic solvent is preferable, and alcohols, amides, nitriles, hydrocarbons, and a mixed solvent of two or more of these are preferable. The mixed solvent is preferably a mixed solvent of an alcohol and a solvent selected from amides, nitriles or hydrocarbons. Further preferred are alcohols and amides, mixed solvents of alcohols and hydrocarbons, and particularly preferred are mixed solvents of alcohols and amides. Specifically, methanol, ethanol, propanol, butanol, dimethylformamide, and dimethylacetamide are preferable.
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、前述の共吸着剤が好ましく、なかでも前記式(CA)で表される化合物が好ましい。
 ここで、本発明の色素溶液は、光電変換素子や色素増感太陽電池を作成する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤の濃度が調整されているものが好ましい。本発明においては、本発明の金属錯体色素を0.001~0.1質量%含有することが好ましい。
The dye solution preferably contains a co-adsorbent. As the co-adsorbent, the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the formula (CA) is preferable.
Here, the dye solution of the present invention is one in which the concentration of the metal complex dye or coadsorbent is adjusted so that the solution can be used as it is when a photoelectric conversion element or a dye-sensitized solar cell is produced. preferable. In the present invention, the metal complex dye of the present invention is preferably contained in an amount of 0.001 to 0.1% by mass.
 色素溶液は、水分含有量を調整することが特に好ましく、従って、本発明においては水の含有量(含有率)を0~0.1質量%に調整することが好ましい。
 同様に、光電変換素子や色素増感太陽電池における電解液の水分含有量の調整も、本発明の効果を効果的に奏するために好ましく、このため、この電解液の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。この電解液の調整は、色素溶液で行うのが特に好ましい。
 本発明においては、上記色素溶液を用いて、半導体電極が備える半導体微粒子表面に金属錯体色素が担持された色素増感太陽電池用半導体電極が好ましい。
 また、上記色素溶液を用いて、半導体電極が備える半導体微粒子表面に金属錯体色素が担持された色素増感太陽電池を製造することが好ましい。
The water content of the dye solution is particularly preferably adjusted. Therefore, in the present invention, the content (content) of water is preferably adjusted to 0 to 0.1% by mass.
Similarly, adjustment of the water content of the electrolytic solution in the photoelectric conversion element or the dye-sensitized solar cell is also preferable for effectively achieving the effects of the present invention. For this reason, the water content (content rate) of the electrolytic solution is preferable. Is preferably adjusted to 0 to 0.1% by mass. The electrolytic solution is particularly preferably adjusted with a dye solution.
In the present invention, a dye-sensitized solar cell semiconductor electrode in which a metal complex dye is supported on the surface of a semiconductor fine particle provided in the semiconductor electrode using the dye solution is preferable.
Moreover, it is preferable to manufacture the dye-sensitized solar cell by which the metal complex pigment | dye was carry | supported on the semiconductor fine particle surface with which a semiconductor electrode is equipped using the said pigment | dye solution.
 以下に実施例に基づき、本発明について更に詳細に説明するが、本発明がこれに限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
実施例1[金属錯体色素の合成]
 下記のようにして、下記金属錯体色素Dye-1-5、12、24、26、29、31、34、36および41、Dye-2-2、ならびに、Dye-3-2、3および6を合成した。
Example 1 [Synthesis of Metal Complex Dye]
The following metal complex dyes Dye-1-5, 12, 24, 26, 29, 31, 34, 36 and 41, Dye-2-2, and Dye-3-2, 3 and 6 were obtained as follows. Synthesized.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
1.金属錯体色素Dye-1-5の合成
 まず、金属錯体色素Dye-1-5の2座配位子LD-1-9を下記スキームに従って合成した。
1. Synthesis of Metal Complex Dye Dye-1-5 First, bidentate ligand LD-1-9 of metal complex dye Dye-1-5 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 国際公開第2012/126672号パンフレットに記載の方法で合成した化合物LD-1-9a(2-アセチル-5-ブロモピリミジン)25gを、窒素雰囲気下、THF(テトラヒドロフラン)1000mLに溶解し、水200mL、5-ヘキシルチオフェン-2-ボロン酸ピナコールエステル63g、炭酸カリウム86g、およびテトラキス(トリフェニルホスフィン)パラジウム7gを添加し、7時間加熱還流した。還流後の溶液を室温に戻した後、1規定の希塩酸1000mLと、酢酸エチル1000mLを加え分液し、有機相を濃縮した。得られた粗生成物をアセトニトリルで再結晶することにより、化合物LD-1-9bを25g得た。 Compound LD-1-9a (2-acetyl-5-bromopyrimidine) (25 g) synthesized by the method described in International Publication No. 2012/126672 is dissolved in 1000 mL of THF (tetrahydrofuran) under a nitrogen atmosphere, and 200 mL of water, 63 g of 5-hexylthiophene-2-boronic acid pinacol ester, 86 g of potassium carbonate, and 7 g of tetrakis (triphenylphosphine) palladium were added, and the mixture was heated to reflux for 7 hours. After the refluxed solution was returned to room temperature, 1N diluted hydrochloric acid (1000 mL) and ethyl acetate (1000 mL) were added for liquid separation, and the organic phase was concentrated. The obtained crude product was recrystallized from acetonitrile to obtain 25 g of compound LD-1-9b.
 窒素雰囲気下、25gのLD-1-9bをTHF(テトラヒドロフラン)500mLに溶解し、0℃で攪拌しながら、ナトリウムエトキシド12gを添加し15分間攪拌した。その後、そこへトリフルオロ酢酸エチル37gを滴下し、70℃で20時間攪拌した。攪拌後の溶液を室温に戻した後、塩化アンモニウム水溶液を滴下して、分液した。有機相を濃縮し、粗生成物LD-1-9cを34g得た。得られた粗生成物を窒素雰囲気下、エタノール600mLに溶解した後、室温で攪拌しながら、ヒドラジン1水和物9gを添加し、外温90℃で12時間加熱した。その後、そこへ濃塩酸20mLを添加し、1時間攪拌した。攪拌後の溶液を濃縮した後、重曹水150mLと酢酸エチル150mLを加えて、反応生成物を酢酸エチル中に抽出し、分液後、有機相を濃縮した。アセトニトリルで再結晶後、配位子LD-1-9を24g得た。 Under a nitrogen atmosphere, 25 g of LD-1-9b was dissolved in 500 mL of THF (tetrahydrofuran), and while stirring at 0 ° C., 12 g of sodium ethoxide was added and stirred for 15 minutes. Thereafter, 37 g of ethyl trifluoroacetate was added dropwise thereto and stirred at 70 ° C. for 20 hours. The solution after stirring was returned to room temperature, and then an aqueous ammonium chloride solution was dropped to separate the solution. The organic phase was concentrated to obtain 34 g of a crude product LD-1-9c. The obtained crude product was dissolved in 600 mL of ethanol under a nitrogen atmosphere, 9 g of hydrazine monohydrate was added with stirring at room temperature, and the mixture was heated at an external temperature of 90 ° C. for 12 hours. Thereafter, 20 mL of concentrated hydrochloric acid was added thereto and stirred for 1 hour. The solution after stirring was concentrated, 150 mL of sodium bicarbonate water and 150 mL of ethyl acetate were added, the reaction product was extracted into ethyl acetate, and after separation, the organic phase was concentrated. After recrystallization from acetonitrile, 24 g of ligand LD-1-9 was obtained.
 続いて、得られた配位子LD-1-9を用いて、金属錯体色素Dye-1-5を下記スキームに従って合成した。 Subsequently, a metal complex dye Dye-1-5 was synthesized according to the following scheme using the obtained ligand LD-1-9.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 窒素雰囲気下、50mLフラスコに、配位子LA-1-1のトリメチルエステル(LA-1-1a)が配位したトリクロロルテニウム錯体[RuCl(LA-1-1a)]を6.1g、配位子LD-1-9を3.8g添加し、溶媒としてエタノール/水の混合溶媒(体積比=5:1)を200mL加えた後、N-メチルモルホリンを3.1g加え、2時間加熱還流した。還流後の溶液を室温に冷却し、チオシアン酸アンモニウム7.6gを加え、再び5時間加熱還流した。反応溶液を室温に冷却し、析出した黒色固体を濾過することにより回収した。得られた黒色固体をシリカゲルカラムクロマトフラフィーで精製することで、Dye-1-5bが4.6g得られた。
 1.5gのDye-1-5bを、窒素雰囲気下、テトラヒドロフラン/メタノールの混合溶媒(体積比=1:1)30mLに溶解させ、室温で攪拌しながら、3規定の水酸化ナトリウム水溶液を10mL滴下した。そのまま室温で1時間攪拌し、そこに1規定のトリフルオロメタンスルホン酸のメタノール溶液を、pHが3.0になるまでゆっくり滴下した。徐々に析出する結晶を濾過することにより回収し、得られた結晶をメタノールで洗浄し、乾燥させることで目的の金属錯体色素Dye-1-5を1.3g得た。
Under a nitrogen atmosphere, 6.1 g of a trichlororuthenium complex [RuCl 3 (LA-1-1a)] coordinated with a trimethyl ester of the ligand LA-1-1 (LA-1-1a) was placed in a 50 mL flask. 3.8 g of ligand LD-1-9 was added, 200 mL of ethanol / water mixed solvent (volume ratio = 5: 1) was added as a solvent, 3.1 g of N-methylmorpholine was added, and the mixture was heated under reflux for 2 hours. did. The refluxed solution was cooled to room temperature, 7.6 g of ammonium thiocyanate was added, and the mixture was heated to reflux again for 5 hours. The reaction solution was cooled to room temperature, and the precipitated black solid was collected by filtration. The obtained black solid was purified by silica gel column chromatography to obtain 4.6 g of Dye-1-5b.
1.5 g of Dye-1-5b was dissolved in 30 mL of a tetrahydrofuran / methanol mixed solvent (volume ratio = 1: 1) under a nitrogen atmosphere, and 10 mL of a 3N aqueous sodium hydroxide solution was added dropwise with stirring at room temperature. did. The mixture was stirred as it was at room temperature for 1 hour, and a 1N solution of trifluoromethanesulfonic acid in methanol was slowly added dropwise thereto until the pH reached 3.0. The gradually precipitated crystals were collected by filtration, and the obtained crystals were washed with methanol and dried to obtain 1.3 g of the target metal complex dye Dye-1-5.
2.金属錯体色素Dye-1-12の合成
 まず、金属錯体色素Dye-1-12の2座配位子LD-1-25は下記スキームに従って合成した。
2. Synthesis of Metal Complex Dye Dye-1-12 First, bidentate ligand LD-1-25 of metal complex dye Dye-1-12 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 配位子LD-1-9の合成において、LD-1-9bに代えてLD-1-25aを用いた以外は配位子LD-1-9の合成と同様にして、LD-1-25cを合成した。このLD-1-25aはActa Chem. Scand., 43,62(1989)に記載の方法で合成した。
 続いて、窒素雰囲気下、ジイソプロピルアミン22.2gとテトラヒドロフラン104mLを-40℃で攪拌しながら、1.6Mのn-ブチルリチウムヘキサン溶液を125mL滴下し、その後30分間攪拌した。次いで、そこに、ジイソプロピルアミン324mLを滴下し、21.6gのLD-1-25cをゆっくり添加した。混合溶液を0℃で30分間攪拌した後、そこへ5-ヘキシルチオフェン-2-カルボキシアルデヒド20.5gを溶解したテトラヒドロフラン78mLを滴下し、室温で30分間攪拌した。反応溶液に塩化アンモニウム溶液を添加し、反応生成物を酢酸エチルで抽出し、分液後、得られた有機相を濃縮し、LD-1-25dの粗生成物を得た。この粗生成物に対し、窒素雰囲気下、トルエンを100mL加え、室温で攪拌しながら、PPTS(ピリジニウムパラトルエンスルホン酸)14.9gを加えて6.5時間加熱還流を行った。還流後の溶液を濃縮後、そこへ飽和重曹水および酢酸エチルを加えて分液し、有機相を濃縮した。得られた結晶はメタノールおよびイソプロピルアルコールで再結晶を行うことにより精製し、配位子LD-1-25が19.5g得られた。
In the synthesis of the ligand LD-1-9, LD-1-25c was synthesized in the same manner as the synthesis of the ligand LD-1-9 except that LD-1-25a was used instead of LD-1-9b. Was synthesized. This LD-1-25a is disclosed in Acta Chem. Scand. , 43, 62 (1989).
Subsequently, 125 mL of 1.6M n-butyllithium hexane solution was added dropwise with stirring 22.2 g of diisopropylamine and 104 mL of tetrahydrofuran at −40 ° C. in a nitrogen atmosphere, and then stirred for 30 minutes. Next, 324 mL of diisopropylamine was added dropwise thereto, and 21.6 g of LD-1-25c was slowly added thereto. After stirring the mixed solution at 0 ° C. for 30 minutes, 78 mL of tetrahydrofuran in which 20.5 g of 5-hexylthiophene-2-carboxaldehyde was dissolved was added dropwise thereto and stirred at room temperature for 30 minutes. An ammonium chloride solution was added to the reaction solution, and the reaction product was extracted with ethyl acetate. After liquid separation, the obtained organic phase was concentrated to obtain a crude product of LD-1-25d. Under a nitrogen atmosphere, 100 mL of toluene was added to the crude product, and 14.9 g of PPTS (pyridinium paratoluenesulfonic acid) was added while stirring at room temperature, and the mixture was heated to reflux for 6.5 hours. After the refluxed solution was concentrated, saturated aqueous sodium hydrogen carbonate and ethyl acetate were added thereto for liquid separation, and the organic phase was concentrated. The obtained crystals were purified by recrystallization from methanol and isopropyl alcohol to obtain 19.5 g of a ligand LD-1-25.
 続いて、得られた配位子LD-1-25を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-12を合成した。 Subsequently, using the obtained ligand LD-1-25, a metal complex dye Dye-1-12 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
3.金属錯体色素Dye-1-24の合成
 まず、金属錯体色素Dye-1-24の2座配位子LD-2-16を下記スキームに従って合成した。
3. Synthesis of Metal Complex Dye Dye-1-24 First, bidentate ligand LD-2-16 of metal complex dye Dye-1-24 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 前述のLD-1-9aからLD-1-9bを合成する工程において、LD-1-9aおよび5-ヘキシルチオフェン-2-ボロン酸ピナコールエステルに代えて、LD-2-16aとN-(tert-ブトキシカルボニル)インドール-2-ボロン酸とを用いた以外はLD-1-9bの合成と同様にして、カップリング生成物を得た。得られたカップリング生成物を、適量のジクロロメタンに溶解させ、過剰量のトリフルオロ酢酸を加えてBoc脱保護することによりLD-2-16bを得た。このLD-2-16bを用いて、前述のLD-1-25cから配位子LD-1-25を合成する反応と同様の方法で、配位子LD-2-16を合成した。
 続いて、得られた配位子LD-2-16を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-24を合成した。
In the step of synthesizing LD-1-9b from LD-1-9a described above, instead of LD-1-9a and 5-hexylthiophene-2-boronic acid pinacol ester, LD-2-16a and N- (tert A coupling product was obtained in the same manner as the synthesis of LD-1-9b except that -butoxycarbonyl) indole-2-boronic acid was used. The obtained coupling product was dissolved in an appropriate amount of dichloromethane, and an excess amount of trifluoroacetic acid was added to perform Boc deprotection to obtain LD-2-16b. Using this LD-2-16b, a ligand LD-2-16 was synthesized by the same method as the above-described reaction for synthesizing the ligand LD-1-25 from LD-1-25c.
Subsequently, using the obtained ligand LD-2-16, a metal complex dye Dye-1-24 was synthesized in the same manner as in the synthesis of the metal complex dye Dye-1-5.
4.金属錯体色素Dye-1-26の合成
 まず、金属錯体色素Dye-1-26の2座配位子LD-3-1を下記スキームに従って合成した。
4). Synthesis of Metal Complex Dye Dye-1-26 First, bidentate ligand LD-3-1 of metal complex dye Dye-1-26 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 配位子LD-1-9の合成において、LD-1-9bに代えてLD-3-1aを用いた以外は配位子LD-1-9の合成と同様にして、配位子LD-3-1を合成した。
 続いて、得られた配位子LD-3-1を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-26を合成した。
In the synthesis of the ligand LD-1-9, the ligand LD- 9 was synthesized in the same manner as the synthesis of the ligand LD-1-9 except that LD-3-1a was used instead of LD-1-9b. 3-1 was synthesized.
Subsequently, using the obtained ligand LD-3-1, a metal complex dye Dye-1-26 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
5.金属錯体色素Dye-1-29の合成
 金属錯体色素Dye-1-29の2座配位子LD-6-1を、Bioorg. Med. Chem. Lett, 12, 471(2002)に記載の方法に従って合成した。得られた配位子LD-6-1を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-29を合成した。
5. Synthesis of Metal Complex Dye Dye-1-29 The bidentate ligand LD-6-1 of metal complex dye Dye-1-29 was obtained from Bioorg. Med. Chem. It was synthesized according to the method described in Lett, 12, 471 (2002). Using the obtained ligand LD-6-1, a metal complex dye Dye-1-29 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
6.金属錯体色素Dye-1-31の合成
 まず、金属錯体色素Dye-1-31の2座配位子LD-6-13を下記スキームに従って合成した。
6). Synthesis of Metal Complex Dye Dye-1-31 First, bidentate ligand LD-6-13 of metal complex dye Dye-1-31 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 配位子LD-2-16の合成において、N-(tert-ブトキシカルボニル)-2-メチルインドールに代えて2-(メチルチオ)フェニルボロン酸を用いた以外は配位子LD-2-16の合成と同様にして、LD-2-16aからLD-6-13cを合成した。得られた20gのLD-6-13cを、窒素雰囲気下、ヘキサメチルリン酸トリアミド(HMPA)200mLに溶解させ、ナトリウムメタンチオラートを3.5g添加し、140℃で12時間攪拌した。攪拌後の溶液を室温に冷却し、1規定の希塩酸200mLと、酢酸エチル200mLを加え、分液した。有機相を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製することで、配位子LD-6-13を16g得た。
 続いて、得られた配位子LD-6-13を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-31を合成した。
In the synthesis of the ligand LD-2-16, except that 2- (methylthio) phenylboronic acid was used instead of N- (tert-butoxycarbonyl) -2-methylindole, the ligand LD-2-16 Similarly to the synthesis, LD-6-13c was synthesized from LD-2-16a. 20 g of the obtained LD-6-13c was dissolved in 200 mL of hexamethylphosphoric triamide (HMPA) under a nitrogen atmosphere, 3.5 g of sodium methanethiolate was added, and the mixture was stirred at 140 ° C. for 12 hours. The stirred solution was cooled to room temperature, 1N diluted hydrochloric acid (200 mL) and ethyl acetate (200 mL) were added, and the mixture was separated. The crude product obtained by concentrating the organic phase was purified by silica gel column chromatography to obtain 16 g of ligand LD-6-13.
Subsequently, using the obtained ligand LD-6-13, a metal complex dye Dye-1-31 was synthesized by a method similar to the synthesis of the metal complex dye Dye-1-5.
7.金属錯体色素Dye-1-34の合成
 金属錯体色素Dye-1-34の2座配位子LD-8-1を、Bioorg. Med. Chem. Lett, 12,471(2002)に記載の方法に従って合成した。得られた配位子LD-8-1を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-34を合成した。
7). Synthesis of Metal Complex Dye Dye-1-34 The bidentate ligand LD-8-1 of metal complex dye Dye-1-34 was obtained from Bioorg. Med. Chem. Synthesized according to the method described in Lett, 12, 471 (2002). Using the obtained ligand LD-8-1, a metal complex dye Dye-1-34 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
8.Dye-1-36の合成
 金属錯体色素Dye-1-36の2座配位子LD-9-1を、Dalton Trans., 40, 5476(2011)に記載の方法に従って合成した。得られた配位子LD-9-1を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-36を合成した。
8). Synthesis of Dye-1-36 The bidentate ligand LD-9-1 of the metal complex dye Dye-1-36 was obtained from Dalton Trans. , 40, 5476 (2011). Using the obtained ligand LD-9-1, a metal complex dye Dye-1-36 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
9.Dye-1-41の合成
 まず、金属錯体色素Dye-1-41の2座配位子LD-9-16を下記スキームに従って合成した。
9. Synthesis of Dye-1-41 First, the bidentate ligand LD-9-16 of the metal complex dye Dye-1-41 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 LD-9-16aを、特許第4338192号公報に記載の方法に従って合成し、これを、前述のLD-1-25cからLD-1-25を合成する反応と同様の反応により、LD-9-16bへと変換した。
 窒素雰囲気下、15.4gのLD-9-16bをDMSO(ジメチルスルホキシド)300mLに溶解させ、シアン化ナトリウム2.5gを加え、120℃で2時間攪拌した。攪拌後の溶液を室温に冷却した後、水を1500mL加えることにより析出した固体を濾過し、ろ物を水で洗浄することにより、LD-9-16cの粗生成物を得た。LD-9-16cの粗生成物をエタノール300mLに溶解させ、1規定の水酸化カリウム水溶液を15mL加え、13時間加熱還流した。還流後の溶液を室温に冷却した後、水500mLと酢酸エチル500mLを加え、分液した。有機相を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製することで、配位子LD-9-16を7.6g得た。
 続いて、得られた配位子LD-9-16を用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-1-41を合成した。
LD-9-16a was synthesized according to the method described in Japanese Patent No. 4338192, and this was synthesized by the same reaction as that for synthesizing LD-1-25 from the above-mentioned LD-1-25c. Converted to 16b.
Under a nitrogen atmosphere, 15.4 g of LD-9-16b was dissolved in 300 mL of DMSO (dimethyl sulfoxide), 2.5 g of sodium cyanide was added, and the mixture was stirred at 120 ° C. for 2 hours. The solution after stirring was cooled to room temperature, 1500 mL of water was added, the precipitated solid was filtered, and the filtrate was washed with water to obtain a crude product of LD-9-16c. The crude product of LD-9-16c was dissolved in 300 mL of ethanol, 15 mL of 1N aqueous potassium hydroxide solution was added, and the mixture was heated to reflux for 13 hours. After the refluxed solution was cooled to room temperature, 500 mL of water and 500 mL of ethyl acetate were added for liquid separation. The crude product obtained by concentrating the organic phase was purified by silica gel column chromatography to obtain 7.6 g of a ligand LD-9-16.
Subsequently, using the obtained ligand LD-9-16, a metal complex dye Dye-1-41 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
10.金属錯体色素Dye-2-2の合成
 まず、金属錯体色素Dye-2-2の前駆体としてDye-2-2aを下記スキームに従って合成した。
10. Synthesis of Metal Complex Dye Dye-2-2 First, Dye-2-2a was synthesized according to the following scheme as a precursor of metal complex dye Dye-2-2.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 原料として、LA-2-6aを、J.Am.Chem.Soc., 130, 11013 (2008)に記載の方法に従って合成した。また、LA-2-6bをJ.Am.Chem.Soc., 134, 7488 (2012)に記載の方法に従って合成した。
 窒素雰囲気下、3.4gのLA-2-6aをメタキシレン40mLに溶解させ、4.4gのLA-2-6b、およびテトラキス(トリフェニルホスフィン)パラジウム1.2gを添加し、120℃で20時間攪拌した。攪拌後の溶液を室温に冷却した後、そこへ2規定の水酸化ナトリウム水溶液50mLと、トルエン40mLを加え、分液した。有機相を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製することで、LA-2-6cが2.6g得られた。
 続いて、窒素雰囲気下、2.6gのLA-2-6cをTHF(テトラヒドロフラン)100mLに溶解し、そこへ、水20mL、2,4,6-トリメチルベンゼンボロン酸1.6g、炭酸カリウム8.6g、およびテトラキス(トリフェニルホスフィン)パラジウム0.7gを添加し、10時間加熱還流した。還流後の溶液を室温に戻した後、そこへ、1規定の希塩酸100mLと、酢酸エチル100mLを加え、分液した。有機相を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製することで、LA-2-6dを2.5g得た。
 さらに、窒素雰囲気下、2.5gのLA-2-6dに、エタノール1Lと、塩化ルテニウム(III)水和物1.3gを添加し、10時間加熱還流した。還流後の溶液を室温に冷却した後、生成した結晶を濾過し、エタノールで洗浄することにより、前駆体Dye-2-2aが3.5g得られた。
 このようにして合成した前駆体Dye-2-2aを用いて、金属錯体色素Dye-1-5の合成と同様の方法で金属錯体色素Dye-2-2を合成した。
As a raw material, LA-2-6a Am. Chem. Soc. , 130, 11013 (2008). In addition, LA-2-6b is described in J. Am. Chem. Soc. , 134, 7488 (2012).
Under a nitrogen atmosphere, 3.4 g of LA-2-6a was dissolved in 40 mL of metaxylene, 4.4 g of LA-2-6b and 1.2 g of tetrakis (triphenylphosphine) palladium were added, and the mixture was stirred at 120 ° C. for 20 minutes. Stir for hours. After the stirred solution was cooled to room temperature, 2N aqueous sodium hydroxide solution (50 mL) and toluene (40 mL) were added thereto for liquid separation. The crude product obtained by concentrating the organic phase was purified by silica gel column chromatography to obtain 2.6 g of LA-2-6c.
Subsequently, 2.6 g of LA-2-6c was dissolved in 100 mL of THF (tetrahydrofuran) under a nitrogen atmosphere, and 20 mL of water, 1.6 g of 2,4,6-trimethylbenzeneboronic acid, and potassium carbonate 8. 6 g and 0.7 g of tetrakis (triphenylphosphine) palladium were added and heated to reflux for 10 hours. After the refluxed solution was returned to room temperature, 100 mL of 1N dilute hydrochloric acid and 100 mL of ethyl acetate were added thereto for liquid separation. The crude product obtained by concentrating the organic phase was purified by silica gel column chromatography to obtain 2.5 g of LA-2-6d.
Further, under a nitrogen atmosphere, 1 L of ethanol and 1.3 g of ruthenium (III) chloride hydrate were added to 2.5 g of LA-2-6d, and the mixture was heated to reflux for 10 hours. After the refluxed solution was cooled to room temperature, the produced crystals were filtered and washed with ethanol to obtain 3.5 g of a precursor Dye-2-2a.
Using the precursor Dye-2-2a synthesized as described above, a metal complex dye Dye-2-2 was synthesized in the same manner as the synthesis of the metal complex dye Dye-1-5.
11.金属錯体色素Dye-3-2の合成
 金属錯体色素Dye-3-2は下記スキームに従って合成した。
11. Synthesis of Metal Complex Dye Dye-3-2 Metal Complex Dye Dye-3-2 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 窒素雰囲気下、50mLフラスコに、配位子LA-1-1のトリメチルエステル(LA-1-1a)が配位したトリクロロルテニウム錯体[RuCl(LA-1-1a)]を6.1g、配位子LD-1-25を4.1g添加し、溶媒としてエタノール/水の混合溶媒(体積比=5:1)を200mL加えた後、N-メチルモルホリンを3.1g加え、2時間加熱還流した。還流後の溶液を室温に冷却し、析出した黒色固体を濾過することにより回収した。得られた黒色固体をアルミナカラムクロマトフラフィーで精製することで、Dye-3-2aが3.7g得られた。
 1.7gのDye-3-2aを、窒素雰囲気下、テトラヒドロフラン/メタノールの混合溶媒(体積比=1:1)30mLに溶解させ、室温で攪拌しながら、3規定の水酸化ナトリウム水溶液を10mL滴下した。そのまま室温で1時間攪拌し、ここに1規定のトリフルオロメタンスルホン酸のメタノール溶液を、pHが3.0になるまでゆっくり滴下した。徐々に析出する結晶を濾過することにより回収し、得られた結晶をメタノールで洗浄し、乾燥させることで目的の金属錯体色素Dye-3-2を1.6g得た。
Under a nitrogen atmosphere, 6.1 g of a trichlororuthenium complex [RuCl 3 (LA-1-1a)] coordinated with a trimethyl ester of the ligand LA-1-1 (LA-1-1a) was placed in a 50 mL flask. After adding 4.1 g of ligand LD-1-25 and adding 200 mL of ethanol / water mixed solvent (volume ratio = 5: 1) as a solvent, 3.1 g of N-methylmorpholine was added and refluxed for 2 hours. did. The refluxed solution was cooled to room temperature, and the precipitated black solid was collected by filtration. The obtained black solid was purified by alumina column chromatography to obtain 3.7 g of Dye-3-2a.
1.7 g of Dye-3-2a was dissolved in 30 mL of a tetrahydrofuran / methanol mixed solvent (volume ratio = 1: 1) under a nitrogen atmosphere, and 10 mL of 3N aqueous sodium hydroxide solution was added dropwise with stirring at room temperature. did. The mixture was stirred as it was at room temperature for 1 hour, and a methanol solution of 1N trifluoromethanesulfonic acid was slowly added dropwise thereto until the pH reached 3.0. The gradually precipitated crystals were collected by filtration, and the obtained crystals were washed with methanol and dried to obtain 1.6 g of the desired metal complex dye Dye-3-2.
12.金属錯体色素Dye-3-3の合成
 金属錯体色素Dye-3-3は下記スキームに従って合成した。
12 Synthesis of Metal Complex Dye Dye-3-3 Metal Complex Dye Dye-3-3 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 窒素雰囲気下、ジグリム15mLに対し、金属錯体色素Dye-3-2の中間体でもあるDye-3-2aを380mg、およびヨウ化カリウム3.2gを加え、110℃で2時間攪拌した。攪拌後の溶液を室温に冷却し、水15mLと、酢酸エチル30mLとを加えて、反応生成物を酢酸エチル中に抽出した。分液後、有機相を濃縮し、得られた黒色固体をシリカゲルカラムクロマトフラフィーで精製することで、Dye-3-3aを214mg得た。これを金属錯体色素Dye-3-2の合成と同様の方法でエステル部位を加水分解して、目的の金属錯体色素Dye-3-3を得た。 In a nitrogen atmosphere, 380 mg of Dye-3-2a, which is an intermediate of the metal complex dye Dye-3-2, and 3.2 g of potassium iodide were added to 15 mL of diglyme, and the mixture was stirred at 110 ° C. for 2 hours. The stirred solution was cooled to room temperature, water (15 mL) and ethyl acetate (30 mL) were added, and the reaction product was extracted into ethyl acetate. After liquid separation, the organic phase was concentrated, and the obtained black solid was purified by silica gel column chromatography to obtain 214 mg of Dye-3-3a. This was hydrolyzed with an ester site in the same manner as in the synthesis of the metal complex dye Dye-3-2, to obtain the target metal complex dye Dye-3-3.
13.Dye-3-6の合成
 金属錯体色素Dye-3-6は下記スキームに従って合成した。
13. Synthesis of Dye-3-6 The metal complex dye Dye-3-6 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 窒素雰囲気下、ジクロロメタン10mLに、Dye-3-2aを320mg、およびトリフルオロメタンスルホン酸銀86mgを加え、3時間加熱還流した。還流後の溶液を室温に冷却し、生成した塩化銀の沈殿をセライト濾過することにより除去した。濾液に対し、窒素雰囲気下、p-tert-ブチルベンゼンチオール554mg、およびトリエチルアミン337mgを添加し、5時間加熱還流した。還流後の溶液を室温に冷却し、そこへ水30mLと、ジクロロメタン20mLとを加えて、反応生成物を抽出した。有機相を濃縮し、得られた黒色固体をシリカゲルカラムクロマトフラフィーで精製することで、Dye-3-6aが132mg得られた。これを金属錯体色素Dye-3-2の合成と同様の方法でエステル部位を加水分解して、目的の金属錯体色素Dye-3-6を得た。 In a nitrogen atmosphere, 320 mg of Dye-3-2a and 86 mg of silver trifluoromethanesulfonate were added to 10 mL of dichloromethane, and the mixture was heated to reflux for 3 hours. The refluxed solution was cooled to room temperature, and the resulting silver chloride precipitate was removed by celite filtration. Under a nitrogen atmosphere, 554 mg of p-tert-butylbenzenethiol and 337 mg of triethylamine were added to the filtrate, and the mixture was heated to reflux for 5 hours. The solution after reflux was cooled to room temperature, and 30 mL of water and 20 mL of dichloromethane were added thereto to extract the reaction product. The organic phase was concentrated, and the resulting black solid was purified by silica gel column chromatography to obtain 132 mg of Dye-3-6a. This was hydrolyzed with an ester moiety in the same manner as in the synthesis of the metal complex dye Dye-3-2, to obtain the target metal complex dye Dye-3-6.
 上記のようにして合成した各金属錯体色素をESI-MSにより確認した。そのMS測定結果を表1に示す。 Each metal complex dye synthesized as described above was confirmed by ESI-MS. The MS measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
実施例2〔色素増感太陽電池〕
 以下の手順により、色素増感太陽電池を作製した。
 特開2002-289274号公報に記載の図5に示されている光電極12と同様の構成を有する光電極を作製し、更に、同公報の図3に示されている光電極に代えてこの光電極を用いた以外は図3の色素増感型太陽電池20と同様の構成を有する10mm×10mmのスケールの色素増感型太陽電池を作製した。具体的な構成は図2に示した。図2において、41が透明電極、42が半導体電極、43が透明導電膜、44が基板、45が半導体層、46が光散乱層、40が光電極、20が色素増感太陽電池、CEが対極、Eが電解質、Sがスペーサーである。
Example 2 [Dye-sensitized solar cell]
A dye-sensitized solar cell was produced by the following procedure.
A photoelectrode having the same configuration as that of the photoelectrode 12 shown in FIG. 5 described in Japanese Patent Laid-Open No. 2002-289274 is manufactured, and this photoelectrode is replaced with the photoelectrode shown in FIG. A dye-sensitized solar cell of 10 mm × 10 mm scale having the same configuration as the dye-sensitized solar cell 20 of FIG. 3 except that the photoelectrode was used was produced. The specific configuration is shown in FIG. In FIG. 2, 41 is a transparent electrode, 42 is a semiconductor electrode, 43 is a transparent conductive film, 44 is a substrate, 45 is a semiconductor layer, 46 is a light scattering layer, 40 is a photoelectrode, 20 is a dye-sensitized solar cell, and CE is The counter electrode, E is an electrolyte, and S is a spacer.
(ペーストの調製)
(ペーストA)球形のTiO粒子(アナターゼ、平均粒径;25nm、以下、球形TiO粒子Aという)を硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストAを調製した。
(ペースト1)球形TiO粒子Aと、球形のTiO粒子(アナターゼ、平均粒径;200nm、以下、球形TiO粒子Bという)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト1(TiO粒子Aの質量:TiO粒子Bの質量=30:70)を調製した。
(ペースト2)ペーストAに、棒状TiO粒子(アナターゼ、直径;100nm、アスペクト比;5、以下、棒状TiO粒子Cという)を混合し、棒状TiO粒子Cの質量:ペーストAの質量=30:70のペースト2を調製した。
(Preparation of paste)
(Paste A) A titania slurry was prepared by placing spherical TiO 2 particles (anatase, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles A) in a nitric acid solution and stirring. Next, a cellulosic binder was added to the titania slurry as a thickener and kneaded to prepare paste A.
(Paste 1) A titania slurry was prepared by stirring spherical TiO 2 particles A and spherical TiO 2 particles (anatase, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles B) in a nitric acid solution. . Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare paste 1 (mass of TiO 2 particles A: mass of TiO 2 particles B = 30: 70).
(Paste 2) The paste A is mixed with rod-like TiO 2 particles (anatase, diameter: 100 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles C), and the mass of the rod-like TiO 2 particles C: the mass of the paste A = 30:70 paste 2 was prepared.
(光電極の作製)
 ガラス基板(基板44)上にフッ素ドープされたSnO導電膜(透明導電膜43、膜厚;500nm)を形成した透明電極41(導電性支持体)を準備した。そして、このSnO導電膜上に、上記ペースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト2を用いてスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に、図2に示す半導体電極42と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;16μm、半導体層の層厚;12μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子Cの含有率;30質量%)(感光体層)を形成し、色素を含有していない光電極を作製した。
(Production of photoelectrode)
A transparent electrode 41 (conductive support) in which a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44) was prepared. Then, the paste 1 was screen-printed on the SnO 2 conductive film and then dried. Then, it baked on the conditions of 450 degreeC in the air. Furthermore, by repeating screen printing and baking using the paste 2, a semiconductor electrode having the same configuration as the semiconductor electrode 42 shown in FIG. 2 (light receiving surface area; 10 mm × 10 mm, layer thickness) is formed on the SnO 2 conductive film. 16 μm, the thickness of the semiconductor layer; 12 μm, the thickness of the light scattering layer; 4 μm, the content of rod-like TiO 2 particles C contained in the light scattering layer; 30% by mass) (photoreceptor layer) to form a dye A photoelectrode containing no was produced.
(色素吸着)
 次に、色素を含有していない光電極(半導体電極)に色素を以下のようにして吸着させた。先ず、マグネシウムエトキシドで脱水した無水エタノールを溶媒として、これに下記表2に記載の金属錯体色素を、その濃度が3×10-4mol/Lとなるように溶解し、さらに共吸着剤として、ケノデオキシコール酸とコール酸の等モル混合物を金属錯体色素1モルに対して20モル加え、各色素溶液を調製した。この色素溶液の水分量をカール・フィッシャー滴定により測定したところ、0.01質量%未満であった。次に、この溶液に半導体電極を浸漬し、引き上げ後50℃で乾燥させることにより、半導体電極に色素が約1.5×10-7mol/cm吸着した光電極を完成させた。
(Dye adsorption)
Next, the dye was adsorbed to the photoelectrode (semiconductor electrode) containing no dye as follows. First, anhydrous ethanol dehydrated with magnesium ethoxide was used as a solvent, and the metal complex dyes listed in Table 2 below were dissolved therein so as to have a concentration of 3 × 10 −4 mol / L. Each dye solution was prepared by adding 20 mol of an equimolar mixture of chenodeoxycholic acid and cholic acid to 1 mol of the metal complex dye. The water content of this dye solution was measured by Karl Fischer titration and found to be less than 0.01% by mass. Next, the semiconductor electrode was dipped in this solution, pulled up and dried at 50 ° C. to complete a photoelectrode in which the dye was adsorbed by about 1.5 × 10 −7 mol / cm 2 on the semiconductor electrode.
(太陽電池の組み立て)
 次に、対極CEとして上記の光電極と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解質Eとして、ヨウ素およびヨウ化リチウムを含むヨウ素系レドックス溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備し、特開2002-289274号公報に記載の図3に示されているように、光電極と対極CEとスペーサーSを介して対向させ、内部に上記の電解質を充填することにより(電荷移動体層を形成することにより)、光電極を使用した色素増感太陽電池(試料No.1~13およびc1~c3)を完成させた。
 このようにして作製した各色素増感太陽電池の性能を評価した。
(Assembling solar cells)
Next, a platinum electrode (thickness of Pt thin film; 100 nm) having the same shape and size as the above-mentioned photoelectrode as the counter electrode CE, and an iodine redox solution containing iodine and lithium iodide as the electrolyte E were prepared. Further, a DuPont spacer S (trade name: “Surlin”) having a shape corresponding to the size of the semiconductor electrode is prepared, as shown in FIG. 3 described in Japanese Patent Application Laid-Open No. 2002-289274. The dye-sensitized solar cell (sample No.) using the photoelectrode is formed by making the photoelectrode, the counter electrode CE and the spacer S face each other and filling the above electrolyte (by forming a charge transfer layer). 1-13 and c1-c3) were completed.
The performance of each dye-sensitized solar cell thus prepared was evaluated.
<波長800nmおよび850nmにおける分光感度特性>
 波長300~1000nmにおけるIPCE(量子収率)をペクセル社製のIPCE測定装置にて測定した。このうち、800nmおよび850nmにおけるIPCEを下記基準で評価した。
<Spectral sensitivity characteristics at wavelengths of 800 nm and 850 nm>
IPCE (quantum yield) at a wavelength of 300 to 1000 nm was measured with an IPCE measuring device manufactured by Pexel. Among these, IPCE at 800 nm and 850 nm was evaluated according to the following criteria.
800nmにおける評価基準
 AA:IPCEが比較化合物(1)のIPCEに対して1.1倍以上
 A:IPCEが比較化合物(1)のIPCEに対して1.05倍以上1.1倍未満
 B:IPCEが比較化合物(1)のIPCEに対して1.03倍以上1.05倍未満
 C:IPCEが比較化合物(1)のIPCEに対して1倍以上1.03倍未満
 D:IPCEが比較化合物(1)のIPCEに対して1倍未満
850nmにおける評価基準
 AA:IPCEが比較化合物(1)のIPCEに対して1.3倍以上
 A:IPCEが比較化合物(1)のIPCEに対して1.2倍以上1.3倍未満
 B:IPCEが比較化合物(1)のIPCEに対して1.1倍以上1.2倍未満
 C:IPCEが比較化合物(1)のIPCEに対して1倍以上1.1倍未満
 D:IPCEが比較化合物(1)のIPCEに対して1倍未満
Evaluation Criteria at 800 nm AA: IPCE is 1.1 times or more than IPCE of Comparative Compound (1) A: IPCE is 1.05 times or more and less than 1.1 times IPCE of Comparative Compound (1) B: IPCE Is 1.03 times or more and less than 1.05 times the IPCE of the comparative compound (1) C: IPCE is 1 time or more and less than 1.03 times the IPCE of the comparative compound (1) D: IPCE is the comparative compound ( Evaluation criteria at less than 1 times IPCE of 1) at 850 nm AA: 1.3 times or more of IPCE of IPCE of comparative compound (1) A: 1.2 of IPCE of IPCE of comparative compound (1) B: IPCE is 1.1 times or more and less than 1.2 times with respect to IPCE of Comparative Compound (1) C: IPCE is 1 time or more with respect to IPCE of Comparative Compound (1) 1x Mitsuru D: IPCE comparison compound less than 1 times the IPCE of (1)
<熱劣化の評価>
 各色素増感太陽電池を、40℃の恒温槽に入れて耐熱試験を行った。耐熱試験前の色素増感太陽電池および耐熱試験12時間後の色素増感太陽電池について、電流値を測定して、色素増感太陽電池の熱劣化を評価した。耐熱試験後の電流値の減少分を耐熱試験前の電流値で割った値を熱劣化率として求め、求められた熱劣化率を、下記の比較化合物(1)の熱劣化率に対する値に換算して、以下の基準で評価した。
 なお、従来の色素増感太陽電池において、上述のようにして求められる熱劣化率を2%向上させると、色素増感太陽電池の耐久性が大幅に向上することに鑑みて、下記基準、特に基準値近傍を2%毎に分級した。
<Evaluation of thermal degradation>
Each dye-sensitized solar cell was put in a constant temperature bath at 40 ° C. and subjected to a heat resistance test. About the dye-sensitized solar cell before a heat test, and the dye-sensitized solar cell 12 hours after a heat test, the electric current value was measured and the thermal deterioration of the dye-sensitized solar cell was evaluated. The value obtained by dividing the decrease in the current value after the heat test by the current value before the heat test is obtained as the thermal degradation rate, and the obtained thermal degradation rate is converted into a value for the thermal degradation rate of the following comparative compound (1). Then, the following criteria were evaluated.
In addition, in the conventional dye-sensitized solar cell, in view of the fact that the durability of the dye-sensitized solar cell is greatly improved when the thermal deterioration rate obtained as described above is improved by 2%, the following standards, particularly The vicinity of the reference value was classified every 2%.
評価基準
 AAA:熱劣化率が比較化合物(1)の熱劣化率に対して1.1倍以上
 AA:熱劣化率が比較化合物(1)の熱劣化率に対して1.06倍以上1.1倍未満
 A:熱劣化率が比較化合物(1)の熱劣化率に対して1.04倍以上1.06倍未満
 B:熱劣化率が比較化合物(1)の熱劣化率に対して1.02以上1.04倍未満
 C:熱劣化率が比較化合物(1)の熱劣化率に対して1.00倍以上1.02倍未満
 D:熱劣化率が比較化合物(1)の熱劣化率に対して1.00倍未満
 なお、表2には耐久性として示す。
Evaluation Criteria AAA: Thermal degradation rate is 1.1 times or more with respect to thermal degradation rate of comparative compound (1) AA: Thermal degradation rate is 1.06 times or more with respect to thermal degradation rate of comparative compound (1) Less than 1 time A: Thermal degradation rate is 1.04 times or more and less than 1.06 times the thermal degradation rate of the comparative compound (1) B: Thermal degradation rate is 1 relative to the thermal degradation rate of the comparative compound (1) 0.02 or more and less than 1.04 times C: Thermal degradation rate of 1.00 times or more and less than 1.02 times the thermal degradation rate of Comparative Compound (1) D: Thermal degradation rate of Comparative Compound (1) Less than 1.00 times the rate Table 2 shows the durability.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 上記比較化合物(1)~(3)は、以下に記載の金属錯体色素である。
比較化合物(1):特許文献2
比較化合物(2):非特許文献1
比較化合物(3):特許文献1
The comparative compounds (1) to (3) are metal complex dyes described below.
Comparative compound (1): Patent Document 2
Comparative compound (2): Non-patent document 1
Comparative compound (3): Patent Document 1
 上記表2から明らかなように、3座配位子LAと共に用いる配位子LDとして、金属イオンMに対して孤立電子対を介して配位する窒素原子であって、電子求引性の強い原子をさらに含む含窒素芳香族環を構成する窒素原子と、金属イオンMに対してアニオンが配位する特定の配位原子とを組み合わせることにより形成される、特定の2座配位子を用いた試料No.1~13の色素増感太陽電池は、いずれも、比較化合物を用いた各色素増感太陽電池に対して、長波長領域における感度特性および耐久性に優れることがわかった。
 具体的には、800nmおよび850nmにおける分光感度特性のいずれも、試料No.1~13の各色素増感太陽電池は、比較化合物を用いた各色素増感太陽電池に対して、良好な光電変換効率を示した。さらに、上述の耐熱試験により評価された色素増感太陽電池の熱劣化の評価(耐久性)が比較化合物を用いた各色素増感太陽電池に対して良好であり、長波長領域における感度特性と耐久性を両立することに成功した。
As is apparent from Table 2 above, the ligand LD used with the tridentate ligand LA is a nitrogen atom coordinated to the metal ion M via a lone pair and has a strong electron withdrawing property. Use of a specific bidentate ligand formed by combining a nitrogen atom constituting a nitrogen-containing aromatic ring further containing an atom and a specific coordination atom in which an anion coordinates with the metal ion M Sample No. It was found that all of the dye-sensitized solar cells 1 to 13 were excellent in sensitivity characteristics and durability in a long wavelength region with respect to each dye-sensitized solar cell using the comparative compound.
Specifically, both of the spectral sensitivity characteristics at 800 nm and 850 nm were measured with sample No. Each of the dye-sensitized solar cells 1 to 13 showed good photoelectric conversion efficiency with respect to each of the dye-sensitized solar cells using the comparative compounds. Furthermore, the evaluation (durability) of the thermal deterioration of the dye-sensitized solar cell evaluated by the above heat resistance test is good for each dye-sensitized solar cell using the comparative compound, and the sensitivity characteristics in the long wavelength region Succeeded in achieving both durability.
 その理由は、まだ定かではないが次のように推定される。すなわち、配位子LAおよびLXと共に、金属イオンMに配位する配位子LDとして、より電子不足な含窒素芳香族環と特定のアニオンとを有する2座配位子を採用することによって、金属錯体色素の最低空軌道(LUMO)が深くなり、長波長領域における光電変換効率が向上すると考えられる。加えて、このような配位子LDが配位すると、含窒素芳香族環が金属イオンMからのπ受容性が高まって金属イオンMと含窒素芳香族環との結合が強固になると共に、特定のアニオンが配位することで配位子LXの熱的な解離を効果的に抑制できる。このような金属イオンMと含窒素芳香族環との結合力の強化と、配位子LXの熱的な解離の抑制とをバランスよく発揮させることで、金属錯体色素、および光電変換素子の耐久性を改善できると考えられる。 The reason is not yet clear, but is estimated as follows. That is, by adopting a bidentate ligand having a more electron-deficient nitrogen-containing aromatic ring and a specific anion as the ligand LD that coordinates to the metal ion M together with the ligands LA and LX, It is considered that the lowest empty orbit (LUMO) of the metal complex dye becomes deep and the photoelectric conversion efficiency in the long wavelength region is improved. In addition, when such a ligand LD is coordinated, the nitrogen-containing aromatic ring is increased in π-acceptability from the metal ion M, and the bond between the metal ion M and the nitrogen-containing aromatic ring is strengthened. Coordination of a specific anion can effectively suppress thermal dissociation of the ligand LX. The durability of the metal complex dye and the photoelectric conversion element is achieved by exerting a balance between strengthening the binding force between the metal ion M and the nitrogen-containing aromatic ring and suppressing the thermal dissociation of the ligand LX. It is thought that the sex can be improved.
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 光電気化学電池を利用したシステム
M 電動モーター
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Photoconductor layer 21 Dye 22 Semiconductor fine particle 3 Charge transfer body layer 4 Counter electrode 5 Photosensitive electrode 6 Circuit 10 Photoelectric conversion element 100 System M using photoelectrochemical cell Electric motor
20 色素増感太陽電池
40 光電極
41 透明電極
42 半導体電極
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
CE 対極
E 電解質
S スペーサー
20 Dye-sensitized solar cell 40 Photoelectrode 41 Transparent electrode 42 Semiconductor electrode 43 Transparent conductive film 44 Substrate 45 Semiconductor layer 46 Light scattering layer CE Counter electrode E Electrolyte S Spacer

Claims (15)

  1.  導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、
     該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
       M(LD)(LA)(LX)・(Y)n     式(I)
     式中、Mは金属イオンを表す。
     LDは下記式(2L-1)~(2L-3)のいずれかで表される2座配位子を表す。
     LAは下記式(AL-1)または(AL-2)で表される3座配位子を表す。
     LXは単座配位子を表す。
     Yは電荷を中和するのに必要な対イオンを表す。nは0~4の整数を表す。
    Figure JPOXMLDOC01-appb-C000001
     式中、*は前記金属イオンMへの結合位置を表す。
    環Dは含窒素芳香族環を表し、環Dは芳香族炭化水素環またはヘテロ芳香族環を表す。A12およびA13は、各々独立に、N、OまたはSを表す。A~Aは、各々独立に、CRLDまたはNを表し、A~Aのうち少なくとも1つはNを表す。LLDは、-C(=O)-、-C(=S)-、-C(=NR)-、-C(R-および-C(=C(R)-からなる群より選ばれる2価の連結基を表す。RおよびRLDは、各々独立に、水素原子、または、下記Anc、AncおよびAncを有しない置換基を表す。
    Figure JPOXMLDOC01-appb-C000002
     式中、Anc~Ancは、各々独立に、-COH、-SOH、-POまたはこれらいずれかのプロトンが解離した基を表す。RALはAnc~Anc以外の置換基を表し、b1は0~4の整数を表す。
    A photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode,
    The photoelectric conversion element in which this photoreceptor layer has the semiconductor fine particle by which the metal complex dye represented by following formula (I) was carry | supported.
    M (LD) (LA) (LX) · (Y) n Formula (I)
    In the formula, M represents a metal ion.
    LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
    LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
    LX represents a monodentate ligand.
    Y represents a counter ion necessary for neutralizing the electric charge. n represents an integer of 0 to 4.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, * represents a bonding position to the metal ion M.
    Ring D 1 represents a nitrogen-containing aromatic ring, ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring. A 12 and A 13 are each independently, N - R L, O - or S - represents a. A 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N. L LD is -C (= O)-, -C (= S)-, -C (= NR L )-, -C (R L ) 2 -and -C (= C (R L ) 2 )- Represents a divalent linking group selected from the group consisting of R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
    Figure JPOXMLDOC01-appb-C000002
    In the formula, Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated. R AL represents a substituent other than Anc 1 to Anc 3 , and b1 represents an integer of 0 to 4.
  2.  前記Mが、Fe2+、Ru2+またはOs2+である請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the M is Fe 2+ , Ru 2+ or Os 2+ .
  3.  前記式(2L-1)~(2L-3)において、前記A~Aのうち1~3個がNである請求項1または2に記載の光電変換素子。 3. The photoelectric conversion element according to claim 1, wherein in the formulas (2L-1) to (2L-3), 1 to 3 of the A 1 to A 4 are N.
  4.  前記式(2L-1)~(2L-3)において、前記金属イオンMに結合する前記窒素原子と前記A~Aとを含んで形成される下記式(2L)で表される環構造が、下記式(2L-1)~(2L-4)のいずれかで表される環構造である請求項1~3のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
     式中、RLDaは前記Anc、AncおよびAncを有しない置換基を表し、nL1~nL3は各々独立に0~3の整数を表し、nL4は0~2の整数を表す。
    In the formulas (2L-1) to (2L-3), a ring represented by the following formula (2L R ) formed by including the nitrogen atom bonded to the metal ion M and the A 1 to A 4 4. The photoelectric conversion element according to claim 1, wherein the structure is a ring structure represented by any of the following formulas (2L R -1) to (2L R -4).
    Figure JPOXMLDOC01-appb-C000003
    In the formula, R LDa represents a substituent not having the above Anc 1 , Anc 2 and Anc 3 , nL1 to nL3 each independently represents an integer of 0 to 3, and nL4 represents an integer of 0 to 2.
  5.  前記半導体微粒子に、さらに、酸性基を1つ以上有する共吸着剤が担持されている請求項1~4のいずれか1項に記載の光電変換素子。 The photoelectric conversion device according to any one of claims 1 to 4, wherein a co-adsorbent having one or more acidic groups is further supported on the semiconductor fine particles.
  6.  前記吸着剤が、下記式(CA)で表される請求項5に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
     式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
    The photoelectric conversion element according to claim 5, wherein the adsorbent is represented by the following formula (CA).
    Figure JPOXMLDOC01-appb-C000004
    In the formula, R A1 represents a substituent having an acidic group. R A2 represents a substituent. nA represents an integer of 0 or more.
  7.  請求項1~6のいずれか1項に記載の光電変換素子を有する色素増感太陽電池。 A dye-sensitized solar cell comprising the photoelectric conversion element according to any one of claims 1 to 6.
  8.  下記式(I)で表される金属錯体色素。
       M(LD)(LA)(LX)・(Y)n     式(I)
     式中、Mは金属イオンを表す。
     LDは下記式(2L-1)~(2L-3)のいずれかで表される2座配位子を表す。
     LAは下記式(AL-1)または(AL-2)で表される3座配位子を表す。
     LXは単座配位子を表す。
     Yは電荷を中和するのに必要な対イオンを表す。nは0~4の整数を表す。
    Figure JPOXMLDOC01-appb-C000005
     式中、*は前記金属イオンMへの結合位置を表す。
    環Dは含窒素芳香族環を表し、環Dは芳香族炭化水素環またはヘテロ芳香族環を表す。A12およびA13は、各々独立に、N、OまたはSを表す。A~Aは、各々独立に、CRLDまたはNを表し、A~Aのうち少なくとも1つはNを表す。LLDは、-C(=O)-、-C(=S)-、-C(=NR)-、-C(R-および-C(=C(R)-からなる群より選ばれる2価の連結基を表す。RおよびRLDは、各々独立に、水素原子、または、下記Anc、AncおよびAncを有しない置換基を表す。
    Figure JPOXMLDOC01-appb-C000006
     式中、Anc~Ancは、各々独立に、-COH、-SOH、-POまたはこれらいずれかのプロトンが解離した基を表す。RALはAnc~Anc以外の置換基を表し、b1は0~4の整数を表す。
    A metal complex dye represented by the following formula (I).
    M (LD) (LA) (LX) · (Y) n Formula (I)
    In the formula, M represents a metal ion.
    LD represents a bidentate ligand represented by any of the following formulas (2L-1) to (2L-3).
    LA represents a tridentate ligand represented by the following formula (AL-1) or (AL-2).
    LX represents a monodentate ligand.
    Y represents a counter ion necessary for neutralizing the electric charge. n represents an integer of 0 to 4.
    Figure JPOXMLDOC01-appb-C000005
    In the formula, * represents a bonding position to the metal ion M.
    Ring D 1 represents a nitrogen-containing aromatic ring, ring D 2 represents an aromatic hydrocarbon ring or heteroaromatic ring. A 12 and A 13 are each independently, N - R L, O - or S - represents a. A 1 to A 4 each independently represent CR LD or N, and at least one of A 1 to A 4 represents N. L LD is -C (= O)-, -C (= S)-, -C (= NR L )-, -C (R L ) 2 -and -C (= C (R L ) 2 )- Represents a divalent linking group selected from the group consisting of R L and R LD each independently represent a hydrogen atom or a substituent that does not have the following Anc 1 , Anc 2, and Anc 3 .
    Figure JPOXMLDOC01-appb-C000006
    In the formula, Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2, or a group in which any one of these protons is dissociated. R AL represents a substituent other than Anc 1 to Anc 3 , and b1 represents an integer of 0 to 4.
  9.  前記式(2L-1)~(2L-3)において、前記金属イオンMに結合する、前記窒素原子と前記A~Aとを含んで形成される下記環構造(2L)が、下記式(2L-1)~(2L-4)のいずれかで表される環構造である請求項8に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000007
     式中、RLDaは前記Anc、AncおよびAncを有しない置換基を表し、nL1~nL3は各々独立に0~3の整数を表し、nL4は0~2の整数を表す。
    In the formulas (2L-1) to (2L-3), the following ring structure (2L R ) formed by including the nitrogen atom and the A 1 to A 4 bonded to the metal ion M is The metal complex dye according to claim 8, which has a ring structure represented by any one of formulas (2L R -1) to (2L R -4).
    Figure JPOXMLDOC01-appb-C000007
    In the formula, R LDa represents a substituent not having the above Anc 1 , Anc 2 and Anc 3 , nL1 to nL3 each independently represents an integer of 0 to 3, and nL4 represents an integer of 0 to 2.
  10.  請求項8または9に記載の金属錯体色素を溶解してなる色素溶液。 A dye solution obtained by dissolving the metal complex dye according to claim 8 or 9.
  11.  有機溶媒中に、前記金属錯体色素を0.001~0.1質量%含有させ、水を0.1質量%以下に抑えてなる請求項10に記載の色素溶液。 The dye solution according to claim 10, wherein 0.001 to 0.1% by mass of the metal complex dye is contained in an organic solvent, and water is suppressed to 0.1% by mass or less.
  12.  前記色素溶液が、さらに、酸性基を1つ以上有する共吸着剤を含有する請求項10または11に記載の色素溶液。 The dye solution according to claim 10 or 11, wherein the dye solution further contains a co-adsorbent having one or more acidic groups.
  13.  前記共吸着剤が、下記式(CA)で表される請求項12に記載の色素溶液。
    Figure JPOXMLDOC01-appb-C000008
     式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
    The dye solution according to claim 12, wherein the co-adsorbent is represented by the following formula (CA).
    Figure JPOXMLDOC01-appb-C000008
    In the formula, R A1 represents a substituent having an acidic group. R A2 represents a substituent. nA represents an integer of 0 or more.
  14.  半導体電極が備える半導体微粒子表面に、請求項8または9に記載の金属錯体色素が担持された色素増感太陽電池用の色素吸着電極。 A dye-adsorbing electrode for a dye-sensitized solar cell, wherein the metal complex dye according to claim 8 or 9 is supported on the surface of a semiconductor fine particle provided in the semiconductor electrode.
  15.  請求項14に記載の色素吸着電極、電解質および対極を用いて組み立てる色素増感太陽電池の製造方法。 A method for producing a dye-sensitized solar cell assembled using the dye-adsorbing electrode, the electrolyte and the counter electrode according to claim 14.
PCT/JP2014/060250 2013-04-12 2014-04-09 Photoelectric conversion element, dye-sensitized solar cell, metal-complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell WO2014168163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-084415 2013-04-12
JP2013084415A JP6154177B2 (en) 2013-04-12 2013-04-12 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery

Publications (1)

Publication Number Publication Date
WO2014168163A1 true WO2014168163A1 (en) 2014-10-16

Family

ID=51689569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060250 WO2014168163A1 (en) 2013-04-12 2014-04-09 Photoelectric conversion element, dye-sensitized solar cell, metal-complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell

Country Status (2)

Country Link
JP (1) JP6154177B2 (en)
WO (1) WO2014168163A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148098A1 (en) * 2015-03-17 2016-09-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, metal complex dye mixture and dye solution
WO2016148099A1 (en) * 2015-03-17 2016-09-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye, and dye solution
CN112358625A (en) * 2020-11-27 2021-02-12 齐鲁工业大学 Amorphous metal organic framework compound with spherical topological structure, application of amorphous metal organic framework compound as echo wall type resonant cavity and laser device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047238A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and dye used in photoelectric conversion element and photoelectrochemical cell
WO2013047384A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used in same
WO2013047615A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used in same
WO2013047614A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex dye used in photoelectric conversion element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649368B2 (en) * 2010-08-03 2015-01-07 富士フイルム株式会社 Photoelectric conversion element and photoelectrochemical cell
TWI419878B (en) * 2010-09-28 2013-12-21 Nat Univ Tsing Hua Heteroleptic, bis-terdentate ru (ii) complexes as sensitizers for dye-sensitized solar cells
JP5881578B2 (en) * 2011-12-15 2016-03-09 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution
JP5925541B2 (en) * 2012-03-16 2016-05-25 富士フイルム株式会社 Metal complex dye for photoelectric conversion element, photoelectric conversion element, dye-sensitized solar cell, dye-adsorbing composition liquid for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
JP5913222B2 (en) * 2012-09-28 2016-04-27 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047614A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex dye used in photoelectric conversion element
WO2013047238A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and dye used in photoelectric conversion element and photoelectrochemical cell
WO2013047384A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used in same
WO2013047615A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used in same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148098A1 (en) * 2015-03-17 2016-09-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, metal complex dye mixture and dye solution
WO2016148099A1 (en) * 2015-03-17 2016-09-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye, and dye solution
JPWO2016148099A1 (en) * 2015-03-17 2017-09-14 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
CN112358625A (en) * 2020-11-27 2021-02-12 齐鲁工业大学 Amorphous metal organic framework compound with spherical topological structure, application of amorphous metal organic framework compound as echo wall type resonant cavity and laser device
CN112358625B (en) * 2020-11-27 2022-03-25 齐鲁工业大学 Amorphous metal organic framework compound with spherical topological structure, application of amorphous metal organic framework compound as echo wall type resonant cavity and laser device

Also Published As

Publication number Publication date
JP6154177B2 (en) 2017-06-28
JP2014207156A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP6047513B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal complex dye
JP6017491B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP5972849B2 (en) Metal complex, metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar cell
JP6005678B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal complex dye
WO2014050527A1 (en) Photoelectric conversion element and dye-sensitized solar cell
JP6154177B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP2014209606A (en) Photoelectric conversion element, dye-sensitized solar cell, dye adsorption solution containing metal complex pigment, and process of manufacturing photoelectric conversion element
JP6033143B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex, metal complex dye, dye solution, method for producing dye-adsorbing electrode, and method for producing dye-sensitized solar cell
JP6026236B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar cell
JP5944372B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP5913223B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution and dye-adsorbing electrode
JP6009484B2 (en) Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
WO2014050528A1 (en) Photoelectric conversion element and dye-sensitized solar cell
WO2015002081A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, ligand, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
JP6144619B2 (en) Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
JP6033144B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex, metal complex dye, dye solution, method for producing dye-adsorbing electrode, and method for producing dye-sensitized solar cell
JP6005682B2 (en) Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
WO2016047344A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
WO2014168119A1 (en) Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
TWI611621B (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex, metal complex dye, dye solution, dye-adsorbed electrode and production method of dye-sensitized solar cell
JP2015220262A (en) Photoelectric conversion device and dye-sensitized solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782802

Country of ref document: EP

Kind code of ref document: A1