WO2014168017A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2014168017A1
WO2014168017A1 PCT/JP2014/058908 JP2014058908W WO2014168017A1 WO 2014168017 A1 WO2014168017 A1 WO 2014168017A1 JP 2014058908 W JP2014058908 W JP 2014058908W WO 2014168017 A1 WO2014168017 A1 WO 2014168017A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
remaining capacity
battery remaining
target
time
Prior art date
Application number
PCT/JP2014/058908
Other languages
French (fr)
Japanese (ja)
Inventor
田原 雅彦
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014168017A1 publication Critical patent/WO2014168017A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0825Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to prevention of engine restart failure, e.g. disabling automatic stop at low battery state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/063Battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to vehicle control, particularly to battery charge control for effectively utilizing automatic engine stop.
  • the automatic stop may be prohibited when the voltage is lower than a predetermined voltage. If automatic stop is prohibited, engine fuel efficiency cannot be improved.
  • the object of the present invention is to provide a technique in which the automatic stop of the engine is hardly prohibited even when the engine is started for the first time after moving to a cold area from the point where the engine was first started.
  • the vehicle control apparatus includes an automatic stop / automatic stop that can automatically stop the engine and restart the engine according to the operating state of the engine after the initial engine start in response to the ignition key ON operation.
  • Restart execution means automatic stop prohibiting means for prohibiting the automatic stop of the engine when the minimum voltage of the battery that is reduced by cranking at the first engine start falls below a predetermined voltage, and a target battery remaining capacity for setting a target battery remaining capacity Capacity setting means, and charge control means for performing charge control of the battery based on the target battery remaining capacity and the actual battery remaining capacity.
  • the target battery remaining capacity setting means is configured to use the target battery remaining capacity for the first engine start when the vehicle moves to a colder region from the point of the first engine start between the ignition key ON operation and the ignition key OFF operation. Make it bigger than time.
  • FIG. 1 is a schematic configuration diagram of a vehicle on which the vehicle control device according to the first embodiment is mounted.
  • FIG. 2 is a control system diagram of the gasoline engine.
  • FIG. 3 is a timing chart of a comparative example showing how each parameter changes when moving to a colder area than the key start point.
  • FIG. 4 is a timing chart of the first embodiment showing how each parameter changes when moving to a colder area than the key start point.
  • FIG. 5 is a flowchart for explaining battery determination at key start.
  • FIG. 6 is a flowchart for explaining setting of the target battery remaining capacity according to the first embodiment.
  • FIG. 7 is a characteristic diagram of the target battery remaining capacity with respect to the amount of change of the outside air temperature per predetermined time according to the first embodiment.
  • FIG. 8 is a flowchart for explaining setting of the target battery remaining capacity according to the second embodiment.
  • FIG. 9 is a characteristic diagram of the target battery remaining capacity with respect to the temperature difference of the outside air temperature for each predetermined time according to the second embodiment.
  • FIG. 10 is a flowchart for explaining setting of the target battery remaining capacity according to the third embodiment.
  • FIG. 11 is a characteristic diagram of the target battery remaining capacity with respect to the outside air temperature according to the third embodiment.
  • FIG. 12 is a flowchart for explaining setting of the target battery remaining capacity according to the fourth embodiment.
  • FIG. 13 is a characteristic diagram of the target battery remaining capacity with respect to the amount of change in atmospheric pressure per predetermined time according to the fourth embodiment.
  • FIG. 14 is a flowchart for explaining setting of the target battery remaining capacity according to the fifth embodiment.
  • FIG. 15 is a characteristic diagram of the target battery remaining capacity with respect to the pressure difference at predetermined time intervals in the atmospheric pressure according to the fifth embodiment.
  • FIG. 16 is a flowchart for explaining setting of the target battery remaining capacity according to the sixth embodiment.
  • FIG. 17 is a characteristic diagram of the target battery remaining capacity with respect to the atmospheric pressure according to the sixth embodiment.
  • FIG. 18 is a flowchart for explaining setting of the target battery remaining capacity according to the seventh embodiment.
  • FIG. 19 is a characteristic diagram of the target battery remaining capacity with respect to the altitude data of the seventh embodiment.
  • FIG. 20 is a flowchart for explaining setting of the target battery remaining capacity according to the eighth embodiment.
  • FIG. 21 is a characteristic diagram of the target battery remaining capacity with respect to the predicted minimum temperature at the destination according to the eighth embodiment.
  • FIG. 1 is a schematic configuration diagram of a vehicle 1 on which a vehicle control device according to the first embodiment is mounted.
  • a vehicle 1 includes an engine 2, an alternator (ALT in the figure) 21, and an air conditioner compressor 31.
  • the output shaft 3 of the engine 2, the rotating shaft 22 of the alternator 21, and the rotating shaft 32 of the air conditioner compressor 31 are arranged in parallel.
  • the crank pulley 4 is attached to one end of the output shaft 3, and the pulleys 23 and 33 are attached to the rotary shafts 22 and 32, respectively.
  • a belt 5 is wound around each of the three pulleys 4, 23, and 33, and power is transmitted (conducted) between the output shaft 3 and the rotary shafts 23 and 33 of the engine 2 by the belt 5.
  • a starter (ST in the figure) 6 is provided to start the engine 2.
  • a torque converter 8 and a belt type automatic transmission 9 are connected to the other end of the output shaft 3 of the engine 2.
  • the torque converter 8 has a pump impeller and a turbine runner (not shown).
  • the belt-type automatic transmission 9 includes a primary pulley and a secondary pulley (not shown) and a steel belt that is wound around these pulleys.
  • the rotational driving force of the engine 2 is finally transmitted to vehicle driving wheels (not shown) via the torque converter 8 and the automatic transmission 9.
  • a 14V battery 41 is provided as a power source of the vehicle 1.
  • the electric power generated by the operation of the alternator 21 is stored in the battery 41.
  • the battery 41 is directly connected to the starter 6, the first electric load 43, and the alternator 21.
  • the first electric load 43 is, for example, an airbag.
  • a second electrical load 45 is connected to the battery 41 via a DC-DC converter 42.
  • the second electrical load 45 is, for example, an audio system that is vulnerable to an instantaneous drop in battery voltage.
  • the second electrical load 45 is connected via the DC-DC converter 42 for the following reason. That is, since the battery voltage temporarily decreases during cranking when the engine is restarted, the operation of the second electric load 45 is affected by the temporary decrease of the battery. Therefore, during the cranking, the DC-DC converter 42 is operated to boost the voltage of the battery 41 that temporarily decreases, thereby suppressing the supply voltage to the second electric load 45 from decreasing instantaneously.
  • the DC-DC converter 42 and the engine control module 51 are connected by a LIN (Local Interconnect Network), and the operation / non-operation of the DC-DC converter 42 is controlled by the engine control module 51.
  • LIN Local Interconnect Network
  • the engine control module 51 controls the engine 2, the starter 6, and the alternator 21.
  • FIG. 2 is a control system diagram of the gasoline engine.
  • Each intake port (not shown) is provided with a fuel injection valve 7.
  • the fuel injection valve 7 intermittently supplies fuel to the engine 2.
  • An electronically controlled throttle valve 12 is provided in the intake passage 11.
  • the opening of the throttle valve 12 (hereinafter referred to as “throttle opening”) is controlled by a throttle motor 13.
  • the actual throttle opening is detected by the throttle sensor 14 and input to the engine control module 51.
  • the engine control module 51 receives an accelerator opening signal (amount of depression of the accelerator pedal 52) from the accelerator sensor 53, a crank angle signal from the crank angle sensor 54, and an intake air amount signal from the air flow meter 55. ing. From the signal of the crank angle sensor 54, the rotational speed of the engine 2 is calculated. The engine control module 51 calculates a target intake air amount and a target fuel injection amount based on these signals, and applies the throttle motor 13 and each fuel injection valve 7 to obtain the target intake air amount and the target fuel injection amount. Issue a command.
  • an accelerator opening signal amount of depression of the accelerator pedal 52
  • crank angle sensor 54 From the signal of the crank angle sensor 54, the rotational speed of the engine 2 is calculated.
  • the engine control module 51 calculates a target intake air amount and a target fuel injection amount based on these signals, and applies the throttle motor 13 and each fuel injection valve 7 to obtain the target intake air amount and the target fuel injection amount. Issue a command.
  • the gasoline engine 2 has a spark plug facing the combustion chamber (cylinder).
  • the engine control module 51 generates a spark in the spark plug by cutting off the primary current of the ignition coil at a predetermined time before the compression top dead center, thereby igniting the air-fuel mixture in the combustion chamber.
  • the engine control module 51 drives the starter 6 to start the engine 2 when it is determined that there is a first start request based on the ON operation of the ignition key 71 by the driver.
  • the vehicle 1 includes an automatic transmission control unit (CVTCU in the figure) 61.
  • the automatic transmission control unit 61 controls the gear ratio of the automatic transmission 9 in a stepless manner according to the vehicle running conditions determined from the vehicle speed and the throttle opening.
  • the torque converter 8 having a pump impeller and a turbine runner is provided with a mechanical lockup clutch for fastening and releasing the pump impeller and the turbine runner.
  • the travel range of the vehicle that engages the lockup clutch is predetermined as a lockup region (vehicle speed and throttle opening are used as parameters).
  • the automatic transmission control unit 61 engages the lockup clutch to directly connect the engine 2 and the transmission 9 when the vehicle driving condition is in the lockup region, so that the vehicle driving condition is in the lockup region. When not, release the lock-up clutch. When the engine 2 and the transmission 9 are in a directly connected state, the torque converter 8 does not absorb the torque, and the fuel efficiency is improved accordingly.
  • the vehicle 1 also includes another control unit 62, an air conditioner auto-amplifier (A / C AMP) 63, an ITS 64, a navigation system (NAVI in the figure) 65, and an IPDM (Intelligent Power Distribution Module) 66.
  • ITS Intelligent Transport System
  • the ITS 64 acquires the weather data 69.
  • the navigation system 65 inputs a signal from GPS (Global Positioning System), a signal from a vehicle speed sensor, a signal from a gyro, and a signal from an acceleration sensor, and calculates the current position of the vehicle at a constant cycle.
  • GPS Global Positioning System
  • the signal from the GPS includes altitude data of the current position of the vehicle.
  • the two control units 61, 62, ITS64, and NAVI65 are electric loads that cannot tolerate a voltage drop. Therefore, they are supplied with power via the DC-DC converter 42.
  • the engine control module 51 and the two control units 61 and 62, the air conditioner auto-amplifier 63, the ITS 64, the NAVI 65, and the IPDM 66 are connected by CAN (Controller-Area-Network).
  • the charge / discharge current of the battery 41 is detected by the current sensor 67 and input to the engine control module 51 via the IPDM 66.
  • the engine control module 51 (target battery remaining capacity setting means) sets the target battery remaining capacity tSOC (State Of Charge) in accordance with the operating conditions of the engine 2 and the charge / discharge current of the battery 41 at regular time intervals. Based on the integrated value, the actual remaining battery capacity rSOC is calculated.
  • the balance of charge / discharge of the battery 41 is managed based on the target remaining battery capacity tSOC and the actual remaining battery capacity rSOC. For example, when the actual battery remaining capacity rSOC is less than the target battery remaining capacity tSOC, the engine control module 51 increases the target power generation voltage of the alternator 21.
  • the control module 24 (see FIG. 2) (charging control means) variably controls the target power generation voltage of the alternator 21 so that this target power generation voltage is obtained.
  • the starter 6 cranks the engine 2 in response to power supply from the battery 41.
  • the battery voltage temporarily decreases.
  • the minimum value of the battery voltage that temporarily decreases that is, the minimum battery voltage
  • the actual remaining battery capacity rSOC the minimum battery voltage
  • the engine control module 51 (automatic stop prohibiting means) detects the minimum battery voltage when the engine is started for the first time, and prohibits idle stop when the detected minimum battery voltage is lower than the predetermined voltage Va.
  • the reason for prohibiting the idle stop is that when cranking from the idle stop, the system voltage may drop below the predetermined voltage Va and the first electric load 43 may be reset. That is, if the battery minimum voltage is less than the predetermined voltage Va, the merchantability is significantly impaired.
  • the initial engine start based on the ON operation of the ignition key 71 is also referred to as “key start” in order to distinguish it from engine restart (engine start) by releasing the idle stop.
  • the first engine start based on the ON operation of the ignition key 71 is also simply referred to as “first engine start”.
  • the outside air temperature is 10 ° C. at home in a lowland and not a cold region.
  • the outside air temperature drops to -5 ° C, the ignition at the timing of t4
  • the engine is stopped by the key OFF operation.
  • the outdoor temperature of the ski resort is as low as -5 ° C.
  • the target battery remaining capacity tSOC is not normally set to 100% corresponding to the fully charged state by the regenerative control by the alternator 21, but 100% Generally, it is set to a lower value, for example, about 85%.
  • the value of 85% is determined as follows. That is, the smaller the target battery remaining capacity is, the better, in order to recover the electric power by the regenerative control by the alternator 21.
  • the larger the target remaining battery capacity of the battery 41 as the power source the better. That is, 85% is selected because it is necessary to leave a margin for charging while responding to a request for the battery 41 as a power source.
  • the target remaining battery capacity tSOC is 85% because the battery 41 still has 15% of the chargeable allowance, and even if there is remaining charge capacity, the skiing starts without using this remaining charge capacity. Therefore, idle stop is prohibited. In other words, even if the target remaining battery capacity of 85% is appropriate as long as the target is around room temperature, if the target remaining battery capacity is 85% until the key start at the ski resort, the remaining charge capacity of the battery 41 The idle stop is prohibited unnecessarily while leaving In other words, there is an opportunity to improve fuel efficiency when the vehicle is running after starting the key at the ski resort.
  • the target battery remaining capacity tSOC is set to the key. Make it larger than at startup. This will be specifically described with reference to FIG.
  • FIG. 4 shows a case where the vehicle is run under the same situation as in FIG. 3, and when the control by the vehicle control device in the first embodiment is performed, the outside air temperature, the atmospheric pressure, the idle stop permission signal, the key It is a figure which shows what happens to each parameter, such as a battery minimum voltage at the time of starting, a target battery remaining capacity, an actual battery remaining capacity, a battery charging voltage.
  • the outside air temperature decreases from the point at the time of key start at home during the period from the timing t2 when the vehicle starts moving on the uphill road to the timing t3, and after the timing of t3, the temperature is -5 ° C. It is a constant value.
  • the target battery remaining capacity tSOC is made larger than the target battery remaining capacity tSOC (85%) at the time of key start at home from the timing of t2.
  • the target battery remaining capacity tSOC is increased to 95% at the timing of t3. After t3, since the outside air temperature does not fall below ⁇ 5 ° C., the target battery remaining capacity is not set higher than 95%.
  • the target power generation voltage (battery charging voltage) of the alternator 21 applied to the control module 24 (charge control means) is increased from 13V to 14V, and the amount of power generated by the alternator 21 is increased. Increase.
  • the charging current to the battery 41 increases.
  • the actual remaining battery capacity rSOC increases following the target remaining battery capacity tSOC, and reaches the same 95% as the remaining remaining battery capacity tSOC at a timing slightly delayed from the timing t3.
  • the actual battery remaining capacity rSOC is indicated by a solid line, and the target battery remaining capacity tSOC is overlapped by a broken line.
  • the control module 24 controls the target generated voltage of the alternator 21.
  • the target battery remaining capacity tSOC, the actual battery remaining capacity rSOC, and the battery charging voltage are read from the memory and used.
  • the target battery remaining capacity tSOC is increased from 95% to 95%.
  • the amount of decrease in the outside air temperature per predetermined time (the outside air temperature decreasing gradient) is calculated every predetermined time ⁇ t, and the target remaining battery capacity SOC1 is calculated according to the amount of decrease dTa / dt per predetermined time. . Then, the calculated target battery remaining capacity SOC1 is set as the target battery remaining capacity tSOC.
  • the key start at home has been considered as a reference, but is not limited to the key start at home.
  • FIG. 5 is a flowchart showing a flow of processing for performing battery determination at the time of key start. 5 is executed only once after the engine 2 is cranked by the starter 6 based on the ON operation of the ignition key 71.
  • step S1 the minimum value of the battery voltage detected by the voltage sensor 72 (see FIG. 2) at the time of key start is read as the battery minimum voltage VbMin at the time of key start.
  • the battery minimum voltage VbMin the battery minimum voltage VbMin at the time of key start.
  • step S2 the battery minimum voltage VbMin at the time of key start is compared with a predetermined voltage Va.
  • the minimum battery voltage VbMin at the time of key start has a strong correlation with the actual remaining battery capacity, and the lower the minimum battery voltage VbMin at the time of key start, the smaller the actual remaining battery capacity.
  • the predetermined voltage Va is a battery minimum voltage corresponding to the upper limit value of the remaining battery capacity at which the starter 6 cannot crank the engine 2 and is determined in advance.
  • FIG. 6 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC.
  • the process of the flowchart of FIG. 6 is executed at regular time intervals.
  • the flow calculation cycle is not a short time interval such as every 10 ms, but a long time interval ⁇ t [min] such as every few minutes. Good.
  • the flow of FIGS. 8 and 10 described later is also the same.
  • the target battery remaining capacity tSOC is variably set according to the operating conditions of various engines (see t1 to t2 in FIG. 4), but in the flowchart of FIG. 6, the engine for setting the target battery remaining capacity is set. Only the outside air temperature is considered as the operating condition.
  • step S11 it is determined whether or not the key start idle stop permission flag is 1 during the current process. If it is determined that the idle stop permission flag is 1, the process proceeds to step S12. If it is determined that the idle stop permission flag is 0, the current process is terminated.
  • step S12 the current outside air temperature Ta [° C.] detected by the outside air temperature sensor 68 is read.
  • the signal of the outside air temperature from the outside air temperature sensor 68 is input to the air conditioner auto amplifier 63, this signal is used in the present embodiment.
  • the intake air temperature may be used instead of the outside air temperature.
  • a temperature sensor for detecting the intake air temperature is provided attached to the air flow meter 55.
  • a change amount dTa / dt [° C./s] per predetermined time of the outside air temperature Ta is calculated by the following equation.
  • dTa / dt (Taz ⁇ Ta) / ⁇ t (1)
  • Taz the previous value of Ta
  • ⁇ t time interval of the calculation routine
  • the outside air temperature changes from 10 ° C. to ⁇ 5 ° C. when moving to the ski resort. For this reason, the amount of change in the actual outside air temperature per predetermined time is a negative value and is difficult to handle. Therefore, by subtracting Ta from Taz, the value of dTa / dt is a positive value as shown in equation (1). deal with.
  • the target battery remaining capacity SOC1 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 7 based on the change amount dTa / dt of the outside air temperature per predetermined time.
  • the target remaining battery capacity SOC1 is a value that increases as the change amount dTa / dt of the outside air temperature per predetermined time increases. This is because the minimum battery voltage VbMin at the time of key start at the vehicle arrival point decreases as the change amount dTa / dt of the outside air temperature per predetermined time increases, that is, as the outside air temperature decreases. This is to make it larger.
  • the target remaining battery capacity SOC1 is set to a constant value. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
  • step S15 as shown in the following equation (2), the target battery remaining capacity SOC1 calculated in step S14 is set to the current target battery remaining capacity tSOC.
  • tSOC SOC1 (2)
  • step S16 the target battery remaining capacity tSOC is compared with the upper limit value MAX of the target battery remaining capacity.
  • the upper limit value MAX is a value that determines the remaining charge capacity of the battery 41 in a cold region (a region colder than the point where the key start is performed), and is made larger than that in a non-cold region.
  • 85% is set as a value for determining the remaining charge capacity of the battery in a non-cold region
  • a value larger than 85%, for example, 95% is set as the upper limit value MAX.
  • 100% is not set as the upper limit value MAX, and 5% is left as the remaining charge capacity.
  • step S17 the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and the process proceeds to step S18.
  • step S19 the outside air temperature Ta is set as Taz which is the previous value of the outside air temperature.
  • FIG. 8 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the second embodiment.
  • the process of the flowchart shown in FIG. 8 is executed at regular time intervals. Note that the flowchart shown in FIG. 8 replaces the flowchart of FIG. 6 of the first embodiment, and steps that perform the same processing as in the flowchart of FIG. 6 are given the same reference numerals.
  • the outside air temperature is considered as the engine operating condition for setting the target battery remaining capacity, and the operating conditions other than the outside air temperature are not considered.
  • whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the change amount dTa / dt of the outside air temperature per predetermined time.
  • whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the temperature difference dTa for each predetermined time of the outside air temperature.
  • step S31 the temperature difference dTa [° C.] for each predetermined time ⁇ t of the outside air temperature is calculated by the following equation (3).
  • dTa Taz ⁇ Ta (3) Where Taz: the previous value of Ta,
  • the outside air temperature changes from 10 ° C. to ⁇ 5 ° C. For this reason, the temperature difference for every predetermined time of the actual outside air temperature becomes a negative value and is difficult to handle. Therefore, the value of dTa is handled as a positive value by subtracting Ta from Taz as shown in equation (3).
  • the target battery remaining capacity SOC2 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 9 based on the temperature difference dTa for each predetermined time of the outside air temperature.
  • the target battery remaining capacity SOC2 is a value that increases as the temperature difference dTa for each predetermined time of the outside air temperature increases. This is because the battery minimum voltage VbMin at the time of key start at the vehicle arrival point decreases as the temperature difference dTa for the predetermined time of the outside air temperature increases, that is, as the outside air temperature decreases, so that the target battery remaining capacity tSOC increases. It is to do.
  • the target battery remaining capacity SOC2 is set to a constant value in a region where the temperature difference dTa for each predetermined time of the outside air temperature is equal to or greater than the predetermined value ThB. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
  • step S33 as shown in the following equation (4), the target battery remaining capacity SOC2 calculated in step S32 is set to the current target battery remaining capacity tSOC.
  • tSOC SOC2 (4)
  • step S16 the target battery remaining capacity tSOC is compared with the upper limit value MAX of the target battery remaining capacity as in the first embodiment.
  • the process proceeds to step S18 without performing the process of step S17, and the target battery remaining capacity tSOC is output.
  • step S17 the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and in step S18, the target battery remaining capacity tSOC is output.
  • FIG. 10 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the third embodiment.
  • the process of the flowchart shown in FIG. 10 is executed at regular time intervals.
  • the flowchart of FIG. 10 replaces the flowchart of FIG. 6 of the first embodiment, and steps that perform the same processing as the flowchart of FIG. 6 are denoted by the same reference numerals.
  • only the outside air temperature is considered as the engine operating condition for setting the target battery remaining capacity, and the operating conditions other than the outside air temperature are not considered.
  • the third embodiment it is predicted based on the outside air temperature whether or not the vehicle moves to an area colder than the key start point.
  • step S41 the target battery remaining capacity tSOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 11 based on the outside air temperature Ta.
  • the target battery remaining capacity tSOC is a value that increases as the outside air temperature Ta decreases. This is because the lower the outside air temperature Ta, that is, the lower the temperature, the lower the battery minimum voltage VbMin at the time of key start, so that the target battery remaining capacity tSOC is increased.
  • the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity.
  • the upper limit value MAX is 95% as in the first embodiment. Referring to FIG. 4, the temperature range where the outside air temperature Ta is less than the predetermined value ThC is a ski resort. The reason why the upper limit MAX is set in the temperature range where the outside air temperature Ta is lower than the predetermined value ThC is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
  • the target battery remaining capacity tSOC is a value obtained by increasing the remaining charge capacity of the battery 41, for example, 85% (a constant value).
  • the temperature range where the outside air temperature Ta exceeds the predetermined value ThD is home.
  • the reason why the target battery remaining capacity tSOC is set to a constant value in the temperature range where the outside air temperature Ta exceeds the predetermined value ThD is as follows.
  • the battery minimum voltage at the time of key start becomes equal to or higher than the predetermined voltage Va, and idling stop is not prohibited, so there is no need to narrow the remaining charge capacity of the battery 41. Because.
  • the operation of the first embodiment shown in FIG. 6, the second embodiment shown in FIG. 8, and the third embodiment shown in FIG. 10 will be described together.
  • the first embodiment if the vehicle does not move to a colder region than the point at the time of key start, the decrease amount dTa / dt of the outside air temperature per predetermined time in the above equation (1) remains zero, so the target battery remaining capacity tSOC Does not change.
  • the second embodiment if the temperature does not move to a region colder than the point at the time of key start, the temperature difference dTa per predetermined time of the outside air temperature of the above equation (3) remains zero, so the target battery remaining capacity tSOC is It does not change.
  • the decrease amount dTa / dt of the outside air temperature per predetermined time in the above equation (1) occurs as a positive value, so the above (2)
  • the target battery remaining capacity tSOC increases according to the equation.
  • the temperature difference dTa for each predetermined time of the outside air temperature in the above equation (3) is a positive value.
  • the target battery remaining capacity tSOC increases.
  • the outside air temperature Ta is in a temperature range exceeding a predetermined value ThD if the vehicle does not move to a cold area from the point at the time of key start, and the target battery remaining capacity tSOC at this time is 85%.
  • ThD a predetermined value
  • the outside air temperature Ta falls below the predetermined value ThD, so the target battery remaining capacity tSOC becomes larger than 85%.
  • the target battery remaining capacity tSOC increases from 85% to 95%.
  • the target power generation voltage of the alternator is increased so as to realize this increasing target battery remaining capacity tSOC, and the power generation amount of the alternator increases.
  • the actual remaining battery capacity rSOC increases following the target remaining battery capacity tSOC. Therefore, the actual remaining battery capacity rSOC ( ⁇ tSOC) when the vehicle arrives at the ski area, stops the engine, and starts the key the next day is the actual remaining battery capacity when the key is started at home the previous day. It is larger than rSOC.
  • the target remaining battery capacity is set larger than that at the key start. To do. This makes it possible to charge using the chargeable charge remaining as the remaining charge capacity of the battery 41 during the movement from the point at the time of key start (at the time of initial engine start) to the cold region. For this reason, at the time of key start in the cold district of the moving destination, the minimum voltage VbMin of the battery 41 becomes equal to or higher than the predetermined voltage Va, and it is possible to suppress the idle stop from being prohibited unnecessarily. By preventing the idle stop from being prohibited unnecessarily, the fuel efficiency of the engine can be improved even in cold regions.
  • the region where the vehicle is colder than the point at the time of key start based on the amount of change in the outside air temperature per predetermined time (gradient of the outside air temperature) from the ON operation to the OFF operation of the ignition key Predict whether or not to move to.
  • the vehicle is colder than the point at the time of key start based on the temperature difference (amount of decrease in the outside air temperature) of the outside air temperature every predetermined time. Predict whether or not to move to the area.
  • whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the outside air temperature (the outside air temperature itself) between the ON operation and the OFF operation of the ignition key. To do. As a result, it can be directly predicted that the vehicle will move to an area colder than the point at the time of key start.
  • FIG. 12 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the fourth embodiment.
  • the process of the flowchart shown in FIG. 12 is executed at regular time intervals.
  • the calculation cycle of the flowchart is not a short time interval such as every 10 ms but a long time interval ⁇ t [min] such as every several minutes. Good.
  • the flowcharts of FIGS. 14 and 16 described later are also the same.
  • the flowchart of FIG. 12 replaces the flowchart of FIG. 6 of the first embodiment, and steps that perform the same processing as in the flowchart of FIG. 6 are denoted by the same reference numerals.
  • the atmospheric pressure is considered as the engine operating condition for setting the target battery remaining capacity, and the operating conditions other than the atmospheric pressure are not considered.
  • whether or not the vehicle moves to a colder region than the point at the time of key start is predicted based on the change amount dTa / dt of the outside air temperature per predetermined time.
  • whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the change amount dPa / dt of atmospheric pressure per predetermined time.
  • Reasons to expect based on atmospheric pressure are as follows. That is, in association with the case of FIG. 4, the home where the key is started is in a lowland of about 0 meters, and the ski resort is in a highland of 1500 meters. This is because when the key is started from the home to the ski resort, the atmospheric pressure decreases, so that it can be expected to move to the ski resort based on the decrease in the atmospheric pressure.
  • step S11 it is determined whether or not the key start idle stop permission flag is 1 during the current process. If it is determined that the idle stop permission flag is zero, the current process is terminated. On the other hand, when the key start idle stop permission flag is 1, the process proceeds from step S11 to step S51.
  • step S51 the current atmospheric pressure Pa [hPa] detected by the atmospheric pressure sensor 73 is read.
  • step S52 a decrease amount dPa / dt [hPa / s] of atmospheric pressure per predetermined time is calculated by the following equation (5).
  • dPa / dt (Paz ⁇ Pa) / ⁇ t (5)
  • Paz the previous value of Pa
  • ⁇ t time interval of the calculation routine
  • step S53 the target battery remaining capacity SOC3 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 13 based on the atmospheric pressure decrease amount dPa / dt per predetermined time.
  • the target battery remaining capacity SOC3 increases as the decrease dPa / dt of the atmospheric pressure per predetermined time increases. This is because the battery minimum voltage VbMin at the time of key start at the vehicle arrival point decreases as the atmospheric pressure decrease amount dPa / dt per predetermined time increases (that is, as the atmospheric pressure decreases), so the target battery remaining capacity tSOC This is to increase the size.
  • the target remaining battery charge SOC3 is set to a constant value in a region where the decrease amount dPa / dt of the atmospheric pressure per predetermined time is equal to or greater than the predetermined value ThE. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
  • step S54 as shown in the following equation (6), the target battery remaining capacity SOC3 calculated in step S53 is set to the current target battery remaining capacity tSOC.
  • tSOC SOC3 (6)
  • step 16 it is determined whether the target battery remaining capacity tSOC is larger than the upper limit value MAX of the target battery remaining capacity.
  • the upper limit value MAX is the same as in the first embodiment. That is, it is a value that determines the remaining charge capacity of the battery 41 in a cold region (a region colder than the point where the key is started), and is larger than that in a non-cold region. When the remaining charge capacity of the battery when not in a cold region is 85%, a value larger than 85%, for example, 95% is set as the upper limit value MAX. Even in cold regions, 100% is not set as the upper limit value MAX, and 5% is left as the remaining charge capacity. If the target battery remaining capacity tSOC is less than or equal to the upper limit value MAX, step S17 is skipped and the process proceeds to step S18 to output the target battery remaining capacity tSOC.
  • step S17 the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and the process proceeds to step S18.
  • step S55 the atmospheric pressure Pa is set as the previous value Paz of the atmospheric pressure for the next processing.
  • FIG. 14 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the fifth embodiment.
  • the process of the flowchart shown in FIG. 14 is executed at regular intervals.
  • the flowchart of FIG. 14 replaces the flowchart of FIG. 12 of the fourth embodiment, and steps for performing the same processing as in the flowchart of FIG. 12 are given the same reference numerals.
  • only atmospheric pressure is considered as the engine operating condition for setting the target battery remaining capacity, and operating conditions other than atmospheric pressure are not considered.
  • whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the amount of change in atmospheric pressure per predetermined time.
  • whether or not the vehicle moves to an area colder than the point at the time of key start is predicted based on the pressure difference for each predetermined time of atmospheric pressure.
  • step S61 a pressure difference dPa [° C.] for each predetermined time ⁇ t of atmospheric pressure is calculated by the following equation (7).
  • dPa Paz ⁇ Pa (7)
  • Paz the previous value of Pa
  • step S62 the target battery remaining capacity SOC4 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 15 based on the pressure difference dPa for each predetermined time of the atmospheric pressure.
  • the target battery remaining capacity SOC4 increases as the pressure difference dPa for each predetermined time of atmospheric pressure increases. This is because the minimum battery voltage VbMin at the time of key start at the vehicle arrival point decreases as the pressure difference dPa at predetermined time intervals of the atmospheric pressure increases (that is, as the atmospheric pressure decreases). This is to make it larger.
  • the target battery remaining capacity SOC4 is set to a constant value in a region where the pressure difference dPa per predetermined time of the atmospheric pressure is equal to or greater than the predetermined value ThF. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
  • step S63 as shown in the following equation (8), the target battery remaining capacity SOC4 calculated in step S62 is set to the current target battery remaining capacity tSOC.
  • tSOC SOC4 (8)
  • step S16 as in the fourth embodiment, the target battery remaining capacity tSOC is compared with the upper limit value MAX of the target battery remaining capacity.
  • step S17 is skipped and the process proceeds to step S18.
  • step S18 the target remaining battery capacity tSOC is output.
  • step S17 the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and the process proceeds to step S18.
  • the flowchart of FIG. 16 is a flowchart illustrating a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the sixth embodiment.
  • the process of the flowchart shown in FIG. 16 is executed at regular time intervals.
  • the flowchart of FIG. 16 replaces the flowchart of FIG. 12 of the fourth embodiment, and steps that perform the same processing as the flowchart of FIG. 12 are denoted by the same reference numerals.
  • only atmospheric pressure is considered as the engine operating condition for setting the target battery remaining capacity, and operating conditions other than atmospheric pressure are not considered.
  • the sixth embodiment it is predicted based on the atmospheric pressure itself whether or not the vehicle will move to a colder area than the key start point.
  • step S51 the current atmospheric pressure Pa [hPa] detected by the atmospheric pressure sensor 73 (see FIG. 2) is read.
  • step S71 the target battery remaining capacity tSOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 17 based on the atmospheric pressure Pa.
  • the target battery remaining capacity tSOC increases as the atmospheric pressure Pa decreases. This is because the lower the atmospheric pressure Pa (that is, the lower the temperature), the lower the battery minimum voltage VbMin at the time of key start, so that the target battery remaining capacity tSOC is increased.
  • the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity in the pressure range where the atmospheric pressure Pa is less than the predetermined value ThG.
  • the upper limit MAX is 95% as in the fourth embodiment. Describing in association with the case of FIG. 4, the pressure region where the atmospheric pressure Pa is less than the predetermined value ThG is a ski resort.
  • the reason why the target battery remaining capacity tSOC is set to the upper limit MAX in the pressure region where the atmospheric pressure Pa is less than the predetermined value ThG is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
  • the target battery remaining capacity tSOC in the pressure range where the atmospheric pressure Pa exceeds the predetermined value ThI is a constant value (for example, 85%) in which the remaining charge capacity of the battery 41 is increased. Describing in association with the case of FIG. 4, the pressure region where the atmospheric pressure Pa exceeds the predetermined value ThI is home.
  • the target battery remaining capacity tSOC is set to a constant value in the pressure range where the atmospheric pressure Pa exceeds the predetermined value ThI.
  • the battery minimum voltage at the time of key start is equal to or higher than the predetermined voltage Va. This is because idling stop is not prohibited and there is no need to reduce the remaining charge capacity of the battery 41.
  • the target battery remaining capacity tSOC because the decrease dPa / dt of the atmospheric pressure per predetermined time in the above equation (5) remains zero if it does not move to a colder area than the key start point. Does not change.
  • the target battery The remaining capacity tSOC does not change.
  • the decrease dPa / dt of the atmospheric pressure per predetermined time in the above equation (5) occurs as a positive value, so the above (6)
  • the target battery remaining capacity tSOC increases according to the equation.
  • the pressure difference dPa of the atmospheric pressure of the above equation (7) every predetermined time is a positive value.
  • the target battery remaining capacity tSOC increases.
  • the atmospheric pressure Pa is in a temperature range that exceeds a predetermined value ThI if it does not move to a colder area than the key start point, and the target battery remaining capacity tSOC at this time is 85%.
  • the atmospheric pressure Pa decreases below the predetermined value ThI, so that the target battery remaining capacity tSOC becomes larger than 85%.
  • the target remaining battery capacity tSOC increases from 85% to 95%.
  • the target power generation voltage of the alternator is increased so that this increasing target battery remaining capacity tSOC is realized, and the power generation amount of the alternator increases, so that the actual battery remaining capacity rSOC increases following the target battery remaining capacity tSOC.
  • the actual remaining battery capacity rSOC ( ⁇ tSOC) when the engine is stopped after arriving at a cold area with a ski resort and the key is started the next day is the actual battery when the key is started at the previous day at home. It is larger than the remaining capacity rSOC.
  • the target battery remaining capacity is set at the key starting time. Make it bigger. This makes it possible to charge using the chargeable charge remaining as the remaining charge capacity of the battery 41 during the movement from the point at the time of key start (at the time of initial engine start) to the ski resort. For this reason, it is possible to prevent the idle voltage stop from being prohibited unnecessarily because the minimum voltage VbMin of the battery 41 becomes equal to or higher than the predetermined voltage Va at the time of key start at the destination ski resort.
  • the key start is performed in the early morning cold hours, the day when the ski arrives at the ski resort, and the engine is stopped immediately after arrival. It is assumed that the temperature of the outside air during the day is high and the outside temperature is below freezing the next morning. In such a case, since the outside air temperature does not change much from the point when the key is started until it reaches the ski resort from the point when the key is started and the ignition key is turned OFF, the ski resort starts from the point when the key is started. It will be difficult to expect to move to.
  • an area where the vehicle is colder than the point at the time of key start based on the amount of decrease in atmospheric pressure per predetermined time (decreasing gradient of atmospheric pressure) between the ON operation and the OFF operation of the ignition key. Predict whether or not to move to.
  • the vehicle is colder than the point at the time of starting the key based on the pressure difference (amount of decrease in the atmospheric pressure) of the atmospheric pressure every predetermined time from the ON operation to the OFF operation of the ignition key. Predict whether or not to move to the area.
  • whether or not the vehicle moves to a colder region than the point at the time of key start is predicted based on the atmospheric pressure (atmospheric pressure itself) between the ON operation and the OFF operation of the ignition key. To do. As a result, even when the outside air temperature during the day when the engine is stopped is high and the outside air temperature suddenly drops at night and moves to the freezing point the next morning, the vehicle will It is possible to directly expect to move to the ski area from the point.
  • the flowchart of FIG. 18 is a flowchart illustrating a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the seventh embodiment.
  • the process of the flowchart shown in FIG. 18 is executed at regular time intervals.
  • the flow calculation cycle is not a short time interval such as every 10 ms, but a long time interval ⁇ t [min] such as every few minutes. Good.
  • the flowchart of FIG. 18 replaces the flowchart of FIG. 16 of the sixth embodiment, and steps for performing the same processing as in the flowchart of FIG. 16 are denoted by the same reference numerals.
  • engine operating conditions for setting the target battery remaining capacity are not considered.
  • the sixth embodiment it is predicted based on the atmospheric pressure Pa whether or not the vehicle will move to a colder area than the key start point.
  • it is predicted based on the altitude data obtained by the navigation system 65 whether or not the vehicle moves to an area colder than the point at the time of key start.
  • step S81 the current elevation data Ht [m] obtained by the navigation system 65 is read.
  • step S82 the target battery remaining capacity tSOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 19 based on the altitude data Ht. As shown in FIG. 19, the target remaining battery capacity tSOC increases as the altitude data Ht increases. This is because the higher the altitude data Ht (that is, the colder it is), the lower the battery minimum voltage VbMin at the time of key start is, so that the target battery remaining capacity tSOC is increased.
  • the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity.
  • the upper limit value MAX is 95% as in the sixth embodiment.
  • the region where the elevation data Ht exceeds the predetermined value ThK is a ski resort.
  • the reason why the target battery remaining capacity tSOC is set to the upper limit MAX in the region where the altitude data Ht exceeds the predetermined value ThK is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
  • the target battery remaining capacity tSOC is a constant value (for example, 85%) in which the remaining charge capacity of the battery 41 is increased.
  • the region where the elevation data Ht is less than the predetermined value ThJ is home.
  • the reason why the target battery remaining capacity tSOC is set to a constant value in the region where the altitude data Ht is less than the predetermined value ThJ is as follows.
  • the minimum battery voltage at the time of key start becomes equal to or higher than the predetermined voltage Va, and idle stop is not prohibited, so there is no need to narrow the remaining charge capacity of the battery 41. is there.
  • the flowchart of FIG. 20 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the eighth embodiment.
  • the process of the flowchart shown in FIG. 20 is executed at regular time intervals.
  • the flowchart of FIG. 20 replaces the flowchart of FIG. 16 of the sixth embodiment, and steps that perform the same processing as the flowchart of FIG. 16 are denoted by the same reference numerals. Even in the flowchart of FIG. 20, it is assumed that the engine operating conditions for setting the target battery remaining capacity are not considered.
  • the meteorological data 69 includes at least the point at the time of key start and the point of meteorological data colder than the point at the time of key start. Further, it is assumed that the destination to which the vehicle heads is in an area colder than the point at the time of key start.
  • step 91 the expected minimum temperature Tatmmin [° C.] at the destination is read.
  • the predicted minimum temperature Tatmmin of the destination can be obtained from the weather data 69 acquired by the ITS 64 and the destination input to the navigation system 65.
  • step S92 the target SOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 21 based on the predicted minimum temperature Tatmmin of the destination. As shown in FIG. 21, the target remaining battery capacity tSOC increases as the predicted minimum temperature Tatmmin at the destination decreases. This is because the lower the expected minimum temperature Tatmmin of the destination (that is, the lower the temperature), the lower the battery minimum voltage VbMin at the time of key start, so that the target SOC is increased.
  • the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity in the temperature range where the predicted minimum temperature Tatmmin of the destination is less than the predetermined value ThL.
  • the upper limit value MAX is 95% as in the sixth embodiment.
  • the temperature range where the expected minimum temperature Tatmmin of the destination is less than the predetermined value ThL is a ski resort.
  • the reason why the upper limit MAX is set in the temperature range where the predicted minimum temperature Tatmmin of the destination is less than the predetermined value ThL is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
  • the target battery remaining capacity tSOC is a constant value (for example, 85%) in which the remaining charge capacity of the battery 41 is increased. Describing in association with the case of FIG. 4, the temperature range where the predicted minimum temperature Tatmmin of the destination exceeds the predetermined value ThM is near the home. The reason why the target remaining battery capacity tSOC is set to a constant value in the temperature range where the predicted minimum temperature Tatmmin of the destination exceeds the predetermined value ThM is as follows.
  • the battery minimum voltage at the time of key start becomes equal to or higher than the predetermined voltage Va, and idle stop is not prohibited, so that the remaining charge capacity of the battery 41 is narrowed. This is because there is no need.
  • the operations of the seventh embodiment shown in FIG. 18 and the eighth embodiment shown in FIG. 20 will be described together.
  • the altitude data Ht is in an area less than the predetermined value ThJ, and the target battery remaining capacity tSOC is 85%.
  • the expected minimum temperature Tatmmin of the destination is in a temperature range exceeding a predetermined value ThM, and the target battery remaining capacity tSOC is 85%.
  • the target battery remaining capacity tSOC becomes larger than 85%.
  • the expected minimum temperature Tatmmin at the destination decreases from the predetermined value ThM, so the target battery remaining capacity tSOC becomes larger than 85%.
  • the target battery remaining capacity tSOC increases from 85% to 95% in the seventh and eighth embodiments when moving to the ski resort.
  • the target power generation voltage of the alternator is increased so that the increasing target battery remaining capacity tSOC is realized, and the power generation amount of the alternator increases, so that the actual battery remaining capacity rSOC increases following the target battery remaining capacity tSOC. .
  • the actual remaining battery capacity rSOC ( ⁇ tSOC) when the engine is stopped after arriving at a cold area with a ski resort and the key is started the next day is the actual battery when the key is started at the previous day at home. It becomes larger than the remaining capacity rSOC.
  • the target battery remaining capacity tSOC is key-started. Make it bigger than time. This makes it possible to charge using the chargeable charge remaining as the remaining charge capacity of the battery 41 while moving from the point at the time of key start (at the time of initial engine start) to the ski resort. For this reason, it is possible to suppress that the minimum voltage VbMin of the battery 41 becomes equal to or higher than the predetermined voltage Va at the time of key start at the destination ski area, and idle stop is prohibited unnecessarily.
  • whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the altitude data Ht between the ON operation and the OFF operation of the ignition key.
  • the outside air temperature sensor 68 and the atmospheric pressure sensor 73 are not provided, it can be predicted that the vehicle moves to an area colder than the point at the time of key start.
  • the vehicle determines whether or not the vehicle moves to a colder area than the point at the time of key start based on the weather data 69 between the ON operation and the OFF operation of the ignition key.
  • the vehicle can be expected to move to an area colder than the point at the time of key start without providing the outside air temperature sensor 68 and the atmospheric pressure sensor 73.
  • the prediction is based on the weather data 69, it is possible to cope with a sudden change in weather.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A vehicle control device equipped with: a function whereby the engine is automatically stopped and restarted in response to the engine operating state after the ignition key has been switched on and the engine has been started initially; a function whereby automatic stopping of the engine is prohibited when the minimum voltage of the battery, which decreases due to cranking when the engine is initially started, falls below a prescribed voltage; and a function whereby charging of the battery is controlled on the basis of a target remaining battery capacity and the actual remaining battery capacity. With this vehicle control device, when the vehicle moves to an area which is colder than the site where the vehicle was initially started during the interval between the switching on of the ignition key and the switching off of the ignition key, the target remaining battery capacity is set so as to be greater than when the engine is initially started.

Description

車両の制御装置および車両の制御方法Vehicle control apparatus and vehicle control method
 本発明は、車両の制御、特にエンジンの自動停止を有効活用するためのバッテリの充電制御に関する。 The present invention relates to vehicle control, particularly to battery charge control for effectively utilizing automatic engine stop.
 運転者のイグニッションキー操作によって初回のエンジン始動を行うときに、クランキングにより低下するバッテリの最低電圧を検出し、検出したバッテリの最低電圧が所定電圧未満である場合に、エンジンの自動停止(アイドルストップ)を禁止する技術が知られている(JP2009-013953A参照)。 When the engine is started for the first time by the driver's ignition key operation, the minimum battery voltage that decreases due to cranking is detected, and when the detected minimum battery voltage is less than the predetermined voltage, the engine is automatically stopped (idle A technique for prohibiting (stop) is known (see JP2009-013953A).
 ところで、JP2009-013953Aの技術では、初回のエンジン始動後に、初回のエンジン始動を行った地点より寒い地域に移動してエンジンを停止し、翌日に初回のエンジン始動をするときに、バッテリ最低電圧が所定電圧を下回って、自動停止が禁止される場合がある。自動停止が禁止されるとエンジンの燃費を向上させることができなくなる。 By the way, in the technology of JP2009-013953A, after the initial engine start, when the engine is stopped by moving to a colder area from the point where the initial engine start is performed, The automatic stop may be prohibited when the voltage is lower than a predetermined voltage. If automatic stop is prohibited, engine fuel efficiency cannot be improved.
 本発明は、初回のエンジン始動を行った地点より寒い地域に移動して初回のエンジン始動を行っても、エンジンの自動停止が禁止されにくい技術を提供することを目的とする。 The object of the present invention is to provide a technique in which the automatic stop of the engine is hardly prohibited even when the engine is started for the first time after moving to a cold area from the point where the engine was first started.
 本発明の一態様における車両の制御装置は、イグニッションキーのON操作を受け初回のエンジン始動を行った後に、エンジンの運転状態に応じてエンジンの自動停止及びエンジンの再始動を行い得る自動停止・再始動実行手段と、初回のエンジン始動時にクランキングにより低下するバッテリの最低電圧が所定電圧を下回るとき、エンジンの自動停止を禁止する自動停止禁止手段と、目標バッテリ残容量を設定する目標バッテリ残容量設定手段と、目標バッテリ残容量と実際のバッテリ残容量とに基づいてバッテリの充電制御を行う充電制御手段とを備える。目標バッテリ残容量設定手段は、イグニッションキーのON操作からイグニッションキーのOFF操作までの間に、車両が初回のエンジン始動時の地点より寒い地域に移動するとき、目標バッテリ残容量を初回のエンジン始動時より大きくする。 The vehicle control apparatus according to one aspect of the present invention includes an automatic stop / automatic stop that can automatically stop the engine and restart the engine according to the operating state of the engine after the initial engine start in response to the ignition key ON operation. Restart execution means, automatic stop prohibiting means for prohibiting the automatic stop of the engine when the minimum voltage of the battery that is reduced by cranking at the first engine start falls below a predetermined voltage, and a target battery remaining capacity for setting a target battery remaining capacity Capacity setting means, and charge control means for performing charge control of the battery based on the target battery remaining capacity and the actual battery remaining capacity. The target battery remaining capacity setting means is configured to use the target battery remaining capacity for the first engine start when the vehicle moves to a colder region from the point of the first engine start between the ignition key ON operation and the ignition key OFF operation. Make it bigger than time.
 本発明の実施形態については、添付された図面とともに以下に詳細に説明される。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、第1実施形態における車両の制御装置が搭載される車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle on which the vehicle control device according to the first embodiment is mounted. 図2は、ガソリンエンジンの制御システム図である。FIG. 2 is a control system diagram of the gasoline engine. 図3は、キー始動時の地点より寒い地域に移動するときに各パラメータがどのように変化するのかを示す比較例のタイミングチャートである。FIG. 3 is a timing chart of a comparative example showing how each parameter changes when moving to a colder area than the key start point. 図4は、キー始動時の地点より寒い地域に移動するときに各パラメータがどのように変化するのかを示す第1実施形態のタイミングチャートである。FIG. 4 is a timing chart of the first embodiment showing how each parameter changes when moving to a colder area than the key start point. 図5は、キー始動時バッテリ判定を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining battery determination at key start. 図6は、第1実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining setting of the target battery remaining capacity according to the first embodiment. 図7は、第1実施形態の外気温度の所定時間あたり変化量に対する目標バッテリ残容量の特性図である。FIG. 7 is a characteristic diagram of the target battery remaining capacity with respect to the amount of change of the outside air temperature per predetermined time according to the first embodiment. 図8は、第2実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 8 is a flowchart for explaining setting of the target battery remaining capacity according to the second embodiment. 図9は、第2実施形態の外気温度の所定時間毎の温度差に対する目標バッテリ残容量の特性図である。FIG. 9 is a characteristic diagram of the target battery remaining capacity with respect to the temperature difference of the outside air temperature for each predetermined time according to the second embodiment. 図10は、第3実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 10 is a flowchart for explaining setting of the target battery remaining capacity according to the third embodiment. 図11は、第3実施形態の外気温度に対する目標バッテリ残容量の特性図である。FIG. 11 is a characteristic diagram of the target battery remaining capacity with respect to the outside air temperature according to the third embodiment. 図12は、第4実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 12 is a flowchart for explaining setting of the target battery remaining capacity according to the fourth embodiment. 図13は、第4実施形態の大気圧力の所定時間当たり変化量に対する目標バッテリ残容量の特性図である。FIG. 13 is a characteristic diagram of the target battery remaining capacity with respect to the amount of change in atmospheric pressure per predetermined time according to the fourth embodiment. 図14は、第5実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 14 is a flowchart for explaining setting of the target battery remaining capacity according to the fifth embodiment. 図15は、第5実施形態の大気圧力の所定時間毎の圧力差に対する目標バッテリ残容量の特性図である。FIG. 15 is a characteristic diagram of the target battery remaining capacity with respect to the pressure difference at predetermined time intervals in the atmospheric pressure according to the fifth embodiment. 図16は、第6実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 16 is a flowchart for explaining setting of the target battery remaining capacity according to the sixth embodiment. 図17は、第6実施形態の大気圧力に対する目標バッテリ残容量の特性図である。FIG. 17 is a characteristic diagram of the target battery remaining capacity with respect to the atmospheric pressure according to the sixth embodiment. 図18は、第7実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 18 is a flowchart for explaining setting of the target battery remaining capacity according to the seventh embodiment. 図19は、第7実施形態の標高データに対する目標バッテリ残容量の特性図である。FIG. 19 is a characteristic diagram of the target battery remaining capacity with respect to the altitude data of the seventh embodiment. 図20は、第8実施形態の目標バッテリ残容量の設定を説明するためのフローチャートである。FIG. 20 is a flowchart for explaining setting of the target battery remaining capacity according to the eighth embodiment. 図21は、第8実施形態の目的地の予想最低気温に対する目標バッテリ残容量の特性図である。FIG. 21 is a characteristic diagram of the target battery remaining capacity with respect to the predicted minimum temperature at the destination according to the eighth embodiment.
 (第1実施形態)
 図1は、第1実施形態における車両の制御装置が搭載される車両1の概略構成図である。図1において、車両1は、エンジン2、オルタネータ(図ではALT)21、エアコン用コンプレッサ31を有している。エンジン2の出力軸3、オルタネータ21の回転軸22、エアコン用コンプレッサ31の回転軸32は、平行に配置されている。出力軸3の一端にクランクプーリ4が取り付けられ、回転軸22、32に各プーリ23、33がそれぞれ取り付けられている。これら3つの各プーリ4、23、33にはベルト5が掛け回され、エンジン2の出力軸3、回転軸23、33の間は、ベルト5によって動力が伝達(伝導)される。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a vehicle 1 on which a vehicle control device according to the first embodiment is mounted. In FIG. 1, a vehicle 1 includes an engine 2, an alternator (ALT in the figure) 21, and an air conditioner compressor 31. The output shaft 3 of the engine 2, the rotating shaft 22 of the alternator 21, and the rotating shaft 32 of the air conditioner compressor 31 are arranged in parallel. The crank pulley 4 is attached to one end of the output shaft 3, and the pulleys 23 and 33 are attached to the rotary shafts 22 and 32, respectively. A belt 5 is wound around each of the three pulleys 4, 23, and 33, and power is transmitted (conducted) between the output shaft 3 and the rotary shafts 23 and 33 of the engine 2 by the belt 5.
 エンジン2を始動するために、スタータ(図ではST)6が設けられている。エンジン2の出力軸3の他端には、トルクコンバータ8、ベルト式の自動変速機9が接続されている。トルクコンバータ8は、図示しないポンプインペラ、タービンランナを有する。ベルト式の自動変速機9は、図示しないプライマリプーリ、セカンダリプーリ、これらプーリに掛け回されるスチールベルトを有する。エンジン2の回転駆動力は、トルクコンバータ8および自動変速機9を介して、最終的に車両駆動輪(図示しない)に伝達される。 A starter (ST in the figure) 6 is provided to start the engine 2. A torque converter 8 and a belt type automatic transmission 9 are connected to the other end of the output shaft 3 of the engine 2. The torque converter 8 has a pump impeller and a turbine runner (not shown). The belt-type automatic transmission 9 includes a primary pulley and a secondary pulley (not shown) and a steel belt that is wound around these pulleys. The rotational driving force of the engine 2 is finally transmitted to vehicle driving wheels (not shown) via the torque converter 8 and the automatic transmission 9.
 車両1の電源として、例えば14Vのバッテリ41が設けられている。オルタネータ21の作動によって発電した電力は、バッテリ41に蓄えられる。バッテリ41には、上記のスタータ6、第1電気負荷43、オルタネータ21が直接接続されている。第1電気負荷43は、例えばエアバッグである。 For example, a 14V battery 41 is provided as a power source of the vehicle 1. The electric power generated by the operation of the alternator 21 is stored in the battery 41. The battery 41 is directly connected to the starter 6, the first electric load 43, and the alternator 21. The first electric load 43 is, for example, an airbag.
 バッテリ41には、DC-DCコンバータ42を介して第2電気負荷45が接続されている。第2電気負荷45は、例えば、バッテリ電圧の瞬間的な低下に弱いオーディオシステムである。第2電気負荷45をDC-DCコンバータ42を介して接続するのは、次の理由からである。すなわち、エンジンの再始動時のクランキング中、バッテリ電圧が一時的に低下するため、このバッテリの一時的低下によって第2電気負荷45の作動が影響される。そこで、クランキング中にはDC-DCコンバータ42を作動させて一時的に低下するバッテリ41の電圧を昇圧させて、第2電気負荷45への供給電圧が瞬間的に低下するのを抑制する。ここでは、DC-DCコンバータ42とエンジンコントロールモジュール51とをLIN(Local Interconnect  Network)で接続し、エンジンコントロールモジュール51によってDC-DCコンバータ42の作動、非作動を制御する。 A second electrical load 45 is connected to the battery 41 via a DC-DC converter 42. The second electrical load 45 is, for example, an audio system that is vulnerable to an instantaneous drop in battery voltage. The second electrical load 45 is connected via the DC-DC converter 42 for the following reason. That is, since the battery voltage temporarily decreases during cranking when the engine is restarted, the operation of the second electric load 45 is affected by the temporary decrease of the battery. Therefore, during the cranking, the DC-DC converter 42 is operated to boost the voltage of the battery 41 that temporarily decreases, thereby suppressing the supply voltage to the second electric load 45 from decreasing instantaneously. Here, the DC-DC converter 42 and the engine control module 51 are connected by a LIN (Local Interconnect Network), and the operation / non-operation of the DC-DC converter 42 is controlled by the engine control module 51.
 エンジンコントロールモジュール51は、エンジン2、スタータ6及びオルタネータ21を制御する。 The engine control module 51 controls the engine 2, the starter 6, and the alternator 21.
 ここで、ガソリンエンジンの構成を図2を参照して概説する。図2は、ガソリンエンジンの制御システム図である。各吸気ポート(図示しない)には、燃料噴射弁7が設けられている。燃料噴射弁7は、燃料をエンジン2に間欠的に供給する。 Here, the configuration of the gasoline engine will be outlined with reference to FIG. FIG. 2 is a control system diagram of the gasoline engine. Each intake port (not shown) is provided with a fuel injection valve 7. The fuel injection valve 7 intermittently supplies fuel to the engine 2.
 吸気通路11には電子制御のスロットル弁12が設けられている。スロットル弁12の開度(以下、「スロットル開度」という。)は、スロットルモータ13によって制御される。実際のスロットル開度はスロットルセンサ14により検出され、エンジンコントロールモジュール51に入力される。 An electronically controlled throttle valve 12 is provided in the intake passage 11. The opening of the throttle valve 12 (hereinafter referred to as “throttle opening”) is controlled by a throttle motor 13. The actual throttle opening is detected by the throttle sensor 14 and input to the engine control module 51.
 エンジンコントロールモジュール51には、アクセルセンサ53からのアクセル開度(アクセルペダル52の踏込量)の信号、クランク角センサ54からのクランク角の信号、エアフローメータ55からの吸入空気量の信号が入力されている。クランク角センサ54の信号からはエンジン2の回転速度が算出される。エンジンコントロールモジュール51は、これらの信号に基づいて目標吸入空気量及び目標燃料噴射量を算出し、目標吸入空気量及び目標燃料噴射量が得られるように、スロットルモータ13及び各燃料噴射弁7に指令を出す。 The engine control module 51 receives an accelerator opening signal (amount of depression of the accelerator pedal 52) from the accelerator sensor 53, a crank angle signal from the crank angle sensor 54, and an intake air amount signal from the air flow meter 55. ing. From the signal of the crank angle sensor 54, the rotational speed of the engine 2 is calculated. The engine control module 51 calculates a target intake air amount and a target fuel injection amount based on these signals, and applies the throttle motor 13 and each fuel injection valve 7 to obtain the target intake air amount and the target fuel injection amount. Issue a command.
 なお、ガソリンエンジン2では、燃焼室(シリンダ)に臨んで点火プラグを備えている。エンジンコントロールモジュール51は、圧縮上死点前の所定の時期に点火コイルの一次側電流を遮断することにより点火プラグに火花を発生させ、これによって燃焼室内の混合気に点火する。 The gasoline engine 2 has a spark plug facing the combustion chamber (cylinder). The engine control module 51 generates a spark in the spark plug by cutting off the primary current of the ignition coil at a predetermined time before the compression top dead center, thereby igniting the air-fuel mixture in the combustion chamber.
 また、エンジンコントロールモジュール51は、運転者によるイグニッションキー71のON操作に基づいて初回の始動要求があると判断したときには、スタータ6を駆動してエンジン2を始動させる。 Further, the engine control module 51 drives the starter 6 to start the engine 2 when it is determined that there is a first start request based on the ON operation of the ignition key 71 by the driver.
 また、エンジンコントロールモジュール51(自動停止・再始動実行手段)は、燃費向上を目的としてエンジン2の自動停止(アイドルストップ)及びエンジン2の再始動を行う。例えば、アクセルペダル52が踏み込まれておらず(アクセル開度=0)、ブレーキペダル57が踏み込まれ(ブレーキスイッチ58がON)、かつ車両1が停止状態にある(車速=0)のときに、アイドルストップ許可条件が成立する。このときには、燃料噴射弁7から吸気ポートへの燃料噴射を遮断してエンジン2を自動停止(アイドルストップ)する。これによって無駄な燃料消費を低減する。その後、アイドルストップ状態でアクセルペダル52が踏み込まれたり、ブレーキペダル57が戻される(ブレーキスイッチ58がOFF)などすると、アイドルストップ許可条件が不成立となる。このときには、スタータ6を用いてエンジン2をクランキングし、燃料噴射弁7からの燃料噴射と点火プラグによる火花点火とを再開してエンジン2を再始動する。 The engine control module 51 (automatic stop / restart execution means) performs automatic stop (idle stop) of the engine 2 and restart of the engine 2 for the purpose of improving fuel efficiency. For example, when the accelerator pedal 52 is not depressed (accelerator opening = 0), the brake pedal 57 is depressed (brake switch 58 is ON), and the vehicle 1 is stopped (vehicle speed = 0). The idle stop permission condition is satisfied. At this time, the fuel injection from the fuel injection valve 7 to the intake port is shut off, and the engine 2 is automatically stopped (idle stop). This reduces wasteful fuel consumption. Thereafter, when the accelerator pedal 52 is depressed in the idle stop state or the brake pedal 57 is returned (the brake switch 58 is OFF), the idle stop permission condition is not satisfied. At this time, the engine 2 is cranked by using the starter 6, the fuel injection from the fuel injection valve 7 and the spark ignition by the spark plug are restarted, and the engine 2 is restarted.
 図1に戻り、説明を続ける。車両1は、自動変速機用コントロールユニット(図ではCVTCU)61を備える。自動変速機用コントロールユニット61は、車速とスロットル開度とから定まる車両の走行条件に応じて、自動変速機9の変速比を無段階に制御する。また、ポンプインペラ、タービンランナを有するトルクコンバータ8には、ポンプインペラとタービンランナとを締結・開放する機械式のロックアップクラッチを備えている。ロックアップクラッチを締結する車両の走行域は、ロックアップ領域(車速とスロットル開度とをパラメータとしている)として予め定められている。自動変速機用コントロールユニット61は、車両の走行条件がロックアップ領域となったとき、ロックアップクラッチを締結してエンジン2と変速機9とを直結状態とし、車両の走行条件がロックアップ領域にないときには、ロックアップクラッチを開放する。エンジン2と変速機9とを直結状態としたときには、トルクコンバータ8でのトルクの吸収がなくなり、その分燃費が良くなる。 Returning to Fig. 1, the explanation will be continued. The vehicle 1 includes an automatic transmission control unit (CVTCU in the figure) 61. The automatic transmission control unit 61 controls the gear ratio of the automatic transmission 9 in a stepless manner according to the vehicle running conditions determined from the vehicle speed and the throttle opening. The torque converter 8 having a pump impeller and a turbine runner is provided with a mechanical lockup clutch for fastening and releasing the pump impeller and the turbine runner. The travel range of the vehicle that engages the lockup clutch is predetermined as a lockup region (vehicle speed and throttle opening are used as parameters). The automatic transmission control unit 61 engages the lockup clutch to directly connect the engine 2 and the transmission 9 when the vehicle driving condition is in the lockup region, so that the vehicle driving condition is in the lockup region. When not, release the lock-up clutch. When the engine 2 and the transmission 9 are in a directly connected state, the torque converter 8 does not absorb the torque, and the fuel efficiency is improved accordingly.
 車両1はまた、他のコントロールユニット62、エアコン用オートアンプ(図ではA/C AMP)63、ITS64、ナビゲーションシステム(図ではNAVI)65、IPDM(Intelligent Power Distribution  Module)66を備える。ITS(Intelligent Transport System:高度道路交通システム)は、人と道路と自動車の間で情報の受発信を行い、道路交通がかかえる事故や渋滞、環境対策など、様々な課題を解決するためのシステムである。ITS64は、気象データ69を取得する。 The vehicle 1 also includes another control unit 62, an air conditioner auto-amplifier (A / C AMP) 63, an ITS 64, a navigation system (NAVI in the figure) 65, and an IPDM (Intelligent Power Distribution Module) 66. ITS (Intelligent Transport System) is a system for sending and receiving information between people, roads, and automobiles, and for solving various problems such as accidents, traffic jams, and environmental measures involving road traffic. is there. The ITS 64 acquires the weather data 69.
 ナビゲーションシステム65は、GPS(Global  Positioning System)からの信号、車速センサからの信号、ジャイロからの信号、加速度センサからの信号を入力し、車両の現在位置を一定周期で計算する。GPSからの信号には、車両の現在位置の標高データが含まれている。 The navigation system 65 inputs a signal from GPS (Global Positioning System), a signal from a vehicle speed sensor, a signal from a gyro, and a signal from an acceleration sensor, and calculates the current position of the vehicle at a constant cycle. The signal from the GPS includes altitude data of the current position of the vehicle.
 上記2つのコントロールユニット61、62、ITS64、NAVI65は、電圧降下を許容できない電気負荷である。従って、これらは、DC-DCコンバータ42を介して電力の供給を受ける。 The two control units 61, 62, ITS64, and NAVI65 are electric loads that cannot tolerate a voltage drop. Therefore, they are supplied with power via the DC-DC converter 42.
 エンジンコントロールモジュール51と2つのコントロールユニット61、62、エアコン用オートアンプ63、ITS64、NAVI65、IPDM66の間は、CAN(Controller  Area  Network)で接続されている。 The engine control module 51 and the two control units 61 and 62, the air conditioner auto-amplifier 63, the ITS 64, the NAVI 65, and the IPDM 66 are connected by CAN (Controller-Area-Network).
 バッテリ41の充放電電流は、電流センサ67により検出し、IPDM66を介してエンジンコントロールモジュール51に入力する。エンジンコントロールモジュール51(目標バッテリ残容量設定手段)は、エンジン2の運転条件に応じて目標バッテリ残容量tSOC(State Of  Charge)を設定すると共に、バッテリ41の充放電電流を一定の時間間隔毎に積算した値に基づいて、実際のバッテリ残容量rSOCを算出する。そして、これら目標バッテリ残容量tSOCと実際のバッテリ残容量rSOCとに基づいてバッテリ41の充放電の収支を管理する。例えば、実際のバッテリ残容量rSOCが目標バッテリ残容量tSOCに満たない場合、エンジンコントロールモジュール51は、オルタネータ21の目標発電電圧を上昇させる。この目標発電電圧が得られるように、コントロールモジュール24(図2参照)(充電制御手段)がオルタネータ21の目標発電電圧を可変に制御する。 The charge / discharge current of the battery 41 is detected by the current sensor 67 and input to the engine control module 51 via the IPDM 66. The engine control module 51 (target battery remaining capacity setting means) sets the target battery remaining capacity tSOC (State Of Charge) in accordance with the operating conditions of the engine 2 and the charge / discharge current of the battery 41 at regular time intervals. Based on the integrated value, the actual remaining battery capacity rSOC is calculated. The balance of charge / discharge of the battery 41 is managed based on the target remaining battery capacity tSOC and the actual remaining battery capacity rSOC. For example, when the actual battery remaining capacity rSOC is less than the target battery remaining capacity tSOC, the engine control module 51 increases the target power generation voltage of the alternator 21. The control module 24 (see FIG. 2) (charging control means) variably controls the target power generation voltage of the alternator 21 so that this target power generation voltage is obtained.
 イグニッションキー71(図2参照)のON操作に基づいて初回のエンジン始動を行う際には、バッテリ41からの電力供給を受けてスタータ6(クランキング手段)がエンジン2をクランキングする。エンジン2のクランキングの際、バッテリ電圧が一時的に低下する。一時的に低下するバッテリ電圧の最低値(つまりバッテリ最低電圧)と、実際のバッテリ残容量rSOCとの間には強い相関があり、実際のバッテリ残容量rSOCが低下するほどバッテリ最低電圧は低下する。 When starting the engine for the first time based on the ON operation of the ignition key 71 (see FIG. 2), the starter 6 (cranking means) cranks the engine 2 in response to power supply from the battery 41. When the engine 2 is cranked, the battery voltage temporarily decreases. There is a strong correlation between the minimum value of the battery voltage that temporarily decreases (that is, the minimum battery voltage) and the actual remaining battery capacity rSOC, and the minimum battery voltage decreases as the actual remaining battery capacity rSOC decreases. .
 そこで、エンジンコントロールモジュール51(自動停止禁止手段)は、初回のエンジン始動時にバッテリ最低電圧を検出し、検出したバッテリ最低電圧が所定電圧Va未満であるとき、アイドルストップを禁止する。アイドルストップを禁止する理由は、アイドルストップからクランキングした際に、所定の電圧Vaよりも系統電圧が下がり、第1電気負荷43がリセットするおそれがあるためである。すなわち、バッテリ最低電圧が所定電圧Va未満であることは、商品性を著しく損ねることになる。 Therefore, the engine control module 51 (automatic stop prohibiting means) detects the minimum battery voltage when the engine is started for the first time, and prohibits idle stop when the detected minimum battery voltage is lower than the predetermined voltage Va. The reason for prohibiting the idle stop is that when cranking from the idle stop, the system voltage may drop below the predetermined voltage Va and the first electric load 43 may be reset. That is, if the battery minimum voltage is less than the predetermined voltage Va, the merchantability is significantly impaired.
 ここで、イグニッションキー71のON操作に基づいて初回のエンジン始動を行った後、イグニッションキー71をOFF操作してエンジン2を停止させるまでの間に、車両1が初回のエンジン始動を行った地点より寒い地域に移動した場合、次の問題が発生する。なお、イグニッションキー71のON操作に基づく初回のエンジン始動を、アイドルストップ解除によるエンジン再始動(エンジン始動)と区別するため、「キー始動」ともいう。また、イグニッションキー71のON操作に基づく初回のエンジン始動を、単に「初回のエンジン始動」ともいう。 Here, after the first engine start based on the ON operation of the ignition key 71, the point where the vehicle 1 performed the first engine start after the ignition key 71 was turned OFF and the engine 2 was stopped. When moving to a colder area, the following problems occur: The initial engine start based on the ON operation of the ignition key 71 is also referred to as “key start” in order to distinguish it from engine restart (engine start) by releasing the idle stop. Further, the first engine start based on the ON operation of the ignition key 71 is also simply referred to as “first engine start”.
 車両がキー始動時の地点より寒い地域に移動する場合として、例えば、低地かつ寒冷地ではない自宅から、キー始動時の地点より寒い地域であり、かつ自宅より標高の高いスキー場に移動した後にエンジンを停止し、翌日にキー始動する場合を考える。この場合に従来の制御を行う例を比較例とする。比較例では、上記の場合に外気温度、大気圧力、アイドルストップ許可信号、キー始動時のバッテリ最低電圧、目標バッテリ残容量、実際のバッテリ残容量、バッテリ充電電圧などの各パラメータの動きがどうなるかを図3にタイミングチャートで示している。なお、図3(後述する図4についても)の縦軸には数値を記載しているが、この数値は参考として示すもので、この数値に限定されるものでない。以下では外気温度で説明するが、吸気温度でもよい。 For example, when a vehicle moves to a colder area than the point at the time of key start, for example, after moving from a home that is not cold and cold to a ski area that is colder than the point at the time of key start and higher than the home. Consider a case where the engine is stopped and the key is started the next day. An example in which conventional control is performed in this case is a comparative example. In the comparative example, what happens to each parameter such as outside temperature, atmospheric pressure, idle stop permission signal, minimum battery voltage at the time of key start, target battery remaining capacity, actual battery remaining capacity, battery charging voltage in the above case Is shown in a timing chart in FIG. In addition, although the numerical value is described on the vertical axis | shaft of FIG. 3 (also about FIG. 4 mentioned later), this numerical value is shown for reference and is not limited to this numerical value. In the following description, the outside air temperature is used, but the intake air temperature may be used.
 図3の比較例に示したように、低地かつ寒冷地ではない自宅では外気温度が10℃であるとする。自宅でt1のタイミングでキー始動し、t2のタイミングよりスキー場に向かう登坂路に入り、t3でスキー場のある高地に到着したとき、外気温度は-5℃まで低下し、t4のタイミングでイグニッションキーのOFF操作によりエンジンを停止させるものとする。翌朝もスキー場の外気温度は-5℃の低温であるとする。翌朝、スキー場において外気温度が-5℃と低く、車両が冷え切った状態のt5のタイミングでキー始動したとき、バッテリ温度が-5℃まで低下していることに加え、キー始動時は前日の充電状態のままである。すなわち、目標バッテリ残容量tSOC[%]が85%程度と低めに設定されていることより、バッテリ41の内部抵抗がさらに大きくなり、スキー場でのキー始動時の瞬間的な電圧降下(瞬低)が大きくなる。これにより、実際のバッテリ残容量rSOC[%]が85%あり、目標バッテリ残容量tSOCを満足していたとしても、スキー場でのキー始動時のバッテリ最低電圧VbMin[V]が所定電圧Va[V]を下回る可能性がある。キー始動時のバッテリ最低電圧が所定電圧を下回れば、t5のタイミングの直後にアイドルストップが禁止されてしまう(アイドルストップ許可信号=0)。 As shown in the comparative example of FIG. 3, it is assumed that the outside air temperature is 10 ° C. at home in a lowland and not a cold region. Key start at the timing of t1 at home, when entering the uphill road toward the ski resort at the timing of t2, and when arriving at the highland where the ski resort is at t3, the outside air temperature drops to -5 ° C, the ignition at the timing of t4 It is assumed that the engine is stopped by the key OFF operation. The next morning, it is assumed that the outdoor temperature of the ski resort is as low as -5 ° C. The next morning, when the key is started at the timing of t5 when the outside temperature at the ski resort is as low as -5 ° C and the vehicle is cold, the battery temperature has dropped to -5 ° C, and the day before the key start The state of charge remains. That is, since the target remaining battery capacity tSOC [%] is set to a low value of about 85%, the internal resistance of the battery 41 is further increased, and an instantaneous voltage drop (instantaneous decrease) at the time of key start at the ski resort. ) Becomes larger. As a result, even if the actual battery remaining capacity rSOC [%] is 85% and the target battery remaining capacity tSOC is satisfied, the battery minimum voltage VbMin [V] at the key start at the ski resort is set to the predetermined voltage Va [ V]. If the battery minimum voltage at the time of key start falls below a predetermined voltage, idle stop is prohibited immediately after the timing t5 (idle stop permission signal = 0).
 ところで、外気温度が10℃程度(常温付近)の場合には、目標バッテリ残容量tSOCは、通常、オルタネータ21による回生制御で満充電状態に相当する100%に設定されることはなく、100%より低い値、例えば85%程度に設定されるのが一般的である。ここで、85%という値は次のようにして定めたものである。すなわち、オルタネータ21による回生制御で電力を回収するには、目標バッテリ残容量は小さいほどよい。その一方で、電源としてのバッテリ41の目標バッテリ残容量は大きいほどよい。つまり、電源としてのバッテリ41に対する要求に応える一方で、充電余裕代を残して置く必要があるため、85%が選択されている。目標バッテリ残容量tSOCが85%というのは、バッテリ41としてはまだ充電可能代が15%も残っており、充電余力があるにも拘わらず、スキー場ではこの充電余力を使わずにキー始動して、アイドルストップが禁止されていることになる。つまり、85%の目標バッテリ残容量は、常温付近を対象としている限りにおいて適切であっても、スキー場でのキー始動においてまで目標バッテリ残容量を85%とするのでは、バッテリ41の充電余力を残したままアイドルストップを不要に禁止してしまう。すなわち、スキー場でのキー始動後の車両走行時に燃費を良くする機会をみすみす逃すことになるのである。 By the way, when the outside air temperature is about 10 ° C. (around normal temperature), the target battery remaining capacity tSOC is not normally set to 100% corresponding to the fully charged state by the regenerative control by the alternator 21, but 100% Generally, it is set to a lower value, for example, about 85%. Here, the value of 85% is determined as follows. That is, the smaller the target battery remaining capacity is, the better, in order to recover the electric power by the regenerative control by the alternator 21. On the other hand, the larger the target remaining battery capacity of the battery 41 as the power source, the better. That is, 85% is selected because it is necessary to leave a margin for charging while responding to a request for the battery 41 as a power source. The target remaining battery capacity tSOC is 85% because the battery 41 still has 15% of the chargeable allowance, and even if there is remaining charge capacity, the skiing starts without using this remaining charge capacity. Therefore, idle stop is prohibited. In other words, even if the target remaining battery capacity of 85% is appropriate as long as the target is around room temperature, if the target remaining battery capacity is 85% until the key start at the ski resort, the remaining charge capacity of the battery 41 The idle stop is prohibited unnecessarily while leaving In other words, there is an opportunity to improve fuel efficiency when the vehicle is running after starting the key at the ski resort.
 そこで本発明の第1実施形態では、イグニッションキー71のON操作からイグニッションキー71のOFF操作までの間に、キー始動した地点よりも寒い地域に車両が移動するとき、目標バッテリ残容量tSOCをキー始動時より大きくする。これについて図4を参照して具体的に説明する。 Therefore, in the first embodiment of the present invention, when the vehicle moves to an area colder than the key start point between the ON operation of the ignition key 71 and the OFF operation of the ignition key 71, the target battery remaining capacity tSOC is set to the key. Make it larger than at startup. This will be specifically described with reference to FIG.
 図4は、図3と同じ状況下で車両を走行させた場合であって、第1実施形態における車両の制御装置による制御を行った場合に、外気温度、大気圧力、アイドルストップ許可信号、キー始動時のバッテリ最低電圧、目標バッテリ残容量、実際のバッテリ残容量、バッテリ充電電圧などの各パラメータの動きがどうなるかを示す図である。図4に示すように、車両が登坂路を移動し始めるt2のタイミングからt3のタイミングまでの期間で外気温度が自宅でのキー始動時の地点より低下し、t3のタイミング以後は、-5℃の一定値となっている。こうした外気温度の変化を受けて、本実施形態では、外気温度が低下するt2からt3までの期間で、車両が自宅でのキー始動時の地点からスキー場に移動していると予想する。このため、t2のタイミングから、目標バッテリ残容量tSOCを自宅でのキー始動時の目標バッテリ残容量tSOC(85%)より大きくしていく。図4に示す例では、t3のタイミングで、目標バッテリ残容量tSOCが95%まで上昇している。t3以後は、外気温度が-5℃より低下しないので、目標バッテリ残容量を95%より大きくはしない。 FIG. 4 shows a case where the vehicle is run under the same situation as in FIG. 3, and when the control by the vehicle control device in the first embodiment is performed, the outside air temperature, the atmospheric pressure, the idle stop permission signal, the key It is a figure which shows what happens to each parameter, such as a battery minimum voltage at the time of starting, a target battery remaining capacity, an actual battery remaining capacity, a battery charging voltage. As shown in FIG. 4, the outside air temperature decreases from the point at the time of key start at home during the period from the timing t2 when the vehicle starts moving on the uphill road to the timing t3, and after the timing of t3, the temperature is -5 ° C. It is a constant value. In response to such a change in the outside air temperature, in the present embodiment, it is predicted that the vehicle is moving from the point at the time of key start at home to the ski resort in the period from t2 to t3 when the outside air temperature decreases. For this reason, the target battery remaining capacity tSOC is made larger than the target battery remaining capacity tSOC (85%) at the time of key start at home from the timing of t2. In the example shown in FIG. 4, the target battery remaining capacity tSOC is increased to 95% at the timing of t3. After t3, since the outside air temperature does not fall below −5 ° C., the target battery remaining capacity is not set higher than 95%.
 95%まで上昇する目標バッテリ残容量tSOCを実現するため、コントロールモジュール24(充電制御手段)に与えるオルタネータ21の目標発電電圧(バッテリ充電電圧)を13Vから14Vへと上昇させ、オルタネータ21による発電量を増加させる。オルタネータ21の発電量の増加によって、バッテリ41への充電電流が増す。これにより、実際のバッテリ残容量rSOCは、目標バッテリ残容量tSOCに追従して増加し、t3のタイミングより少し遅れたタイミングで目標バッテリ残容量tSOCと同じ95%に到達している。なお、目標バッテリ残容量tSOCとの違いがよくわかるように、実際のバッテリ残容量rSOCを実線で記載し、目標バッテリ残容量tSOCを破線で重ねて示している。上記のコントロールモジュール24(図2参照)は、オルタネータ21の目標発電電圧を制御する。 In order to realize the target battery remaining capacity tSOC that increases to 95%, the target power generation voltage (battery charging voltage) of the alternator 21 applied to the control module 24 (charge control means) is increased from 13V to 14V, and the amount of power generated by the alternator 21 is increased. Increase. As the amount of power generated by the alternator 21 increases, the charging current to the battery 41 increases. As a result, the actual remaining battery capacity rSOC increases following the target remaining battery capacity tSOC, and reaches the same 95% as the remaining remaining battery capacity tSOC at a timing slightly delayed from the timing t3. In order to clearly understand the difference from the target battery remaining capacity tSOC, the actual battery remaining capacity rSOC is indicated by a solid line, and the target battery remaining capacity tSOC is overlapped by a broken line. The control module 24 (see FIG. 2) controls the target generated voltage of the alternator 21.
 t4でイグニッションキー71のOFF操作によりエンジン2を停止する際には、その直前の目標バッテリ残容量tSOC、実際のバッテリ残容量rSOC、バッテリ充電電圧の値をメモリに記憶させておく。 When the engine 2 is stopped by turning off the ignition key 71 at t4, the immediately preceding target remaining battery capacity tSOC, actual remaining battery capacity rSOC, and battery charging voltage are stored in the memory.
 翌朝、t5のタイミングでキー始動するときには、目標バッテリ残容量tSOC、実際のバッテリ残容量rSOC、バッテリ充電電圧の値をメモリから読み出して使用する。前日に、外気温度が低下するt2~t3の期間に目標バッテリ残容量tSOCを85%から95%へと大きくすることによって、実際のバッテリ残容量rSOCが95%へと大きくなったことで、翌日のスキー場でのキー始動時のバッテリ最低電圧が上昇する。このため、t5でキー始動したとき、本実施形態では、スキー場でのキー始動時のバッテリ最低電圧が所定電圧Vaを超えるので、アイドルストップが許可される(アイドルストップ許可信号=1)。スキー場でのキー始動時には、自宅でのキー始動時に比べて、バッテリ41の充電余力を15%から5%へと小さくしておくことで、自宅でのキー始動時と同じように、アイドルストップを許可する。これによって、スキー場でのキー始動後に車両を走行させる場合においてもアイドルストップを行わせ、燃費を良くする。 The next morning, when the key is started at the timing of t5, the target battery remaining capacity tSOC, the actual battery remaining capacity rSOC, and the battery charging voltage are read from the memory and used. On the previous day, by increasing the target battery remaining capacity tSOC from 85% to 95% during the period from t2 to t3 when the outside air temperature decreases, the actual battery remaining capacity rSOC is increased from 95% to 95%. The minimum battery voltage at the time of key start in the ski area increases. For this reason, when the key is started at t5, in this embodiment, since the battery minimum voltage at the time of key start at the ski resort exceeds the predetermined voltage Va, the idle stop is permitted (idle stop permission signal = 1). When starting a key at a ski resort, the charge remaining capacity of the battery 41 is reduced from 15% to 5% compared to when starting a key at home. Allow. As a result, even when the vehicle is driven after the key is started at the ski resort, idle stop is performed and fuel efficiency is improved.
 次に、自宅でのキー始動からイグニッションキー71のOFF操作によってエンジン2を停止するまでの間に、車両が自宅でのキー始動時の地点よりスキー場に移動するか否かを予想する方法を説明する。図4に示すように、車両が登坂路を走行するt2からt3までの期間に外気温度が10℃から-5℃へと低下するので、外気温度の低下に応じて目標バッテリ残容量tSOCを85%より95%へと大きくしてやればよいことになる。そこで本実施形態では、所定時間Δt毎に外気温度の所定時間当たり低下量(外気温度の低下勾配)を算出し、この所定時間当たり低下量dTa/dtに応じて目標バッテリ残容量SOC1を算出する。そして、算出した目標バッテリ残容量SOC1を、目標バッテリ残容量tSOCとして設定する。以上、図3、図4では、自宅でのキー始動時を基準に考えてきたが、自宅でのキー始動時に限られるものでない。 Next, a method for predicting whether or not the vehicle will move to the ski resort from the point at the key start at home from when the key is started at home until the engine 2 is stopped by turning off the ignition key 71. explain. As shown in FIG. 4, since the outside air temperature decreases from 10 ° C. to −5 ° C. during the period from t2 to t3 when the vehicle travels on the uphill road, the target remaining battery capacity tSOC is set to 85 according to the decrease in outside air temperature. It would be sufficient to increase it from 95% to 95%. Therefore, in this embodiment, the amount of decrease in the outside air temperature per predetermined time (the outside air temperature decreasing gradient) is calculated every predetermined time Δt, and the target remaining battery capacity SOC1 is calculated according to the amount of decrease dTa / dt per predetermined time. . Then, the calculated target battery remaining capacity SOC1 is set as the target battery remaining capacity tSOC. As described above, in FIGS. 3 and 4, the key start at home has been considered as a reference, but is not limited to the key start at home.
 エンジンコントローラ51で実行される、上述した制御を以下のフローチャートに従って説明する。 The above-described control executed by the engine controller 51 will be described according to the following flowchart.
 図5は、キー始動時のバッテリ判定を行う処理の流れを示すフローチャートである。図5のフローチャートの処理は、イグニッションキー71のON操作に基づいて、エンジン2がスタータ6によりクランキングされた後に一度だけ実行する。 FIG. 5 is a flowchart showing a flow of processing for performing battery determination at the time of key start. 5 is executed only once after the engine 2 is cranked by the starter 6 based on the ON operation of the ignition key 71.
 ステップS1では、キー始動時に電圧センサ72(図2参照)により検出されるバッテリ電圧の最低値を、キー始動時のバッテリ最低電圧VbMinとして読み込む。キー始動のためにスタータ6によりエンジン2をクランキングするときには、大きなバッテリ電流がスタータ6を流れるため、バッテリ電圧が一時的に低下する。この一時的に低下するバッテリ電圧の最低値がキー始動時のバッテリ最低電圧VbMinである。 In step S1, the minimum value of the battery voltage detected by the voltage sensor 72 (see FIG. 2) at the time of key start is read as the battery minimum voltage VbMin at the time of key start. When the engine 2 is cranked by the starter 6 for key start, a large battery current flows through the starter 6, so that the battery voltage temporarily decreases. The lowest value of the battery voltage that temporarily decreases is the lowest battery voltage VbMin at the time of key start.
 ステップS2では、キー始動時のバッテリ最低電圧VbMinと所定電圧Vaを比較する。ここで、キー始動時のバッテリ最低電圧VbMinは、実際のバッテリ残容量と強い相関があり、キー始動時のバッテリ最低電圧VbMinが低いほど実際のバッテリ残容量が小さいことを意味する。所定電圧Vaは、スタータ6がエンジン2をクランキングし得えないバッテリ残容量の上限値に相当するバッテリ最低電圧で、予め定めておく。キー始動時のバッテリ最低電圧VbMinが所定電圧Va以上であるときには、第1電気負荷43がクランキングによりリセットされないと判断する。このときにはステップS3に進む。 In step S2, the battery minimum voltage VbMin at the time of key start is compared with a predetermined voltage Va. Here, the minimum battery voltage VbMin at the time of key start has a strong correlation with the actual remaining battery capacity, and the lower the minimum battery voltage VbMin at the time of key start, the smaller the actual remaining battery capacity. The predetermined voltage Va is a battery minimum voltage corresponding to the upper limit value of the remaining battery capacity at which the starter 6 cannot crank the engine 2 and is determined in advance. When the minimum battery voltage VbMin at the time of key start is equal to or higher than the predetermined voltage Va, it is determined that the first electric load 43 is not reset by cranking. At this time, the process proceeds to step S3.
 ステップS3では、その他のアイドルストップ条件がOKであるか否かを判定する。例えば、エンジン状態(水温等)、トランスミッション状態(電動オイルポンプの作動はOKか)、空調の状態(室内温度等)等に基づいて判断する。その他のアイドルストップ条件がOKであると判定すると、ステップS4に進んで、アイドルストップ許可フラグ(図では「IS許可フラグ」で略記。)=1とする。アイドルストップ許可フラグ=1のときアイドルストップが許可される。 In step S3, it is determined whether or not the other idle stop condition is OK. For example, the determination is made based on the engine state (water temperature or the like), the transmission state (is the operation of the electric oil pump OK), the air conditioning state (room temperature or the like), and the like. If it is determined that the other idle stop condition is OK, the process proceeds to step S4, where the idle stop permission flag (abbreviated as “IS permission flag” in the figure) = 1. When the idle stop permission flag = 1, idle stop is permitted.
 一方、ステップS2でキー始動時のバッテリ最低電圧VbMinが所定電圧Va未満であるときには、第1電気負荷43がクランキングによりリセットされると判断する。そこで、アイドルストップを禁止するため、ステップS5に進んで、アイドルストップ許可フラグ=0とする。また、ステップS3でその他のアイドルストップ条件がOKではないと判定した場合も、ステップS5に進んでアイドルストップ許可フラグ=0とする。アイドルストップ許可フラグ=0のとき、アイドルストップが禁止される。 On the other hand, when the battery minimum voltage VbMin at the time of key start is less than the predetermined voltage Va in step S2, it is determined that the first electric load 43 is reset by cranking. Therefore, in order to prohibit the idling stop, the process proceeds to step S5 and the idling stop permission flag = 0 is set. Also, when it is determined in step S3 that the other idle stop conditions are not OK, the process proceeds to step S5 and the idle stop permission flag = 0 is set. When the idle stop permission flag = 0, idle stop is prohibited.
 図6は、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図6のフローチャートの処理は、一定時間毎に実行する。ここでは、車両がキー始動時の地点より寒い地域に移動するか否かを予想するので、フローの演算周期は10ms毎といった短い時間間隔ではなく、数分毎といった長い時間間隔Δt[min]でよい。後述する図8、図10のフローも同じである。通常、各種のエンジンの運転条件に応じて可変に目標バッテリ残容量tSOCを設定しているが(図4のt1~t2参照)、図6のフローチャートでは、目標バッテリ残容量を設定するためのエンジンの運転条件として、外気温度のみを考えるものとする。 FIG. 6 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC. The process of the flowchart of FIG. 6 is executed at regular time intervals. Here, since it is predicted whether or not the vehicle will move to a colder area than the key start point, the flow calculation cycle is not a short time interval such as every 10 ms, but a long time interval Δt [min] such as every few minutes. Good. The flow of FIGS. 8 and 10 described later is also the same. Normally, the target battery remaining capacity tSOC is variably set according to the operating conditions of various engines (see t1 to t2 in FIG. 4), but in the flowchart of FIG. 6, the engine for setting the target battery remaining capacity is set. Only the outside air temperature is considered as the operating condition.
 ステップS11では、今回の処理時にキー始動時アイドルストップ許可フラグが1であるか否かを判定する。アイドルストップ許可フラグが1であると判定するとステップS12に進み、0であると判定すると、今回の処理を終了する。 In step S11, it is determined whether or not the key start idle stop permission flag is 1 during the current process. If it is determined that the idle stop permission flag is 1, the process proceeds to step S12. If it is determined that the idle stop permission flag is 0, the current process is terminated.
 ステップS12では、外気温度センサ68により検出される現在の外気温度Ta[℃]を読み込む。図1に示すように、外気温度センサ68からの外気温度の信号がエアコン用オートアンプ63に入力されているので、本実施形態では、この信号を用いる。上述のように、外気温度に代えて吸気温度を用いてもよい。吸気温度を検出する温度センサは、図示しないが、エアフローメータ55に付属して設けられている。 In step S12, the current outside air temperature Ta [° C.] detected by the outside air temperature sensor 68 is read. As shown in FIG. 1, since the signal of the outside air temperature from the outside air temperature sensor 68 is input to the air conditioner auto amplifier 63, this signal is used in the present embodiment. As described above, the intake air temperature may be used instead of the outside air temperature. Although not shown, a temperature sensor for detecting the intake air temperature is provided attached to the air flow meter 55.
 ステップS13では、外気温度Taの所定時間当たりの変化量dTa/dt[℃/s]を次式により算出する。
  dTa/dt=(Taz-Ta)/Δt          …(1)
   ただし、Taz:Taの前回値、
       Δt:演算ルーチンの時間間隔、
In step S13, a change amount dTa / dt [° C./s] per predetermined time of the outside air temperature Ta is calculated by the following equation.
dTa / dt = (Taz−Ta) / Δt (1)
Where Taz: the previous value of Ta,
Δt: time interval of the calculation routine,
 図4の場合に対応付けて説明すると、スキー場に移動するときに、外気温度は10℃から-5℃に変化する。このため、実際の外気温度の所定時間当たりの変化量は負の値となり、扱いにくいので、(1)式のように、TazからTaを差し引くことでdTa/dtの値としては正の値で扱う。 Referring to FIG. 4, the outside air temperature changes from 10 ° C. to −5 ° C. when moving to the ski resort. For this reason, the amount of change in the actual outside air temperature per predetermined time is a negative value and is difficult to handle. Therefore, by subtracting Ta from Taz, the value of dTa / dt is a positive value as shown in equation (1). deal with.
 ステップS14では、外気温度の所定時間当たり変化量dTa/dtに基づいて、図7に示す関係を有するテーブルを検索することにより、目標バッテリ残容量SOC1[%]を正の値で算出する。図7に示すように、目標バッテリ残容量SOC1は外気温度の所定時間当たり変化量dTa/dtが大きくなるほど大きくなる値である。これは、外気温度の所定時間当たり変化量dTa/dtが大きいほど、つまり外気温度が低下するほど、車両到着地でのキー始動時のバッテリ最低電圧VbMinが低下するので、目標バッテリ残容量tSOCを大きくするためである。ただし、外気温度の所定時間当たり変化量dTa/dtが所定値ThA以上の領域では、目標バッテリ残容量SOC1を一定値とする。これは、目標バッテリ残容量tSOCを大きくする場合でも、目標バッテリ残容量tSOCに上限値MAXがあるためである。 In step S14, the target battery remaining capacity SOC1 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 7 based on the change amount dTa / dt of the outside air temperature per predetermined time. As shown in FIG. 7, the target remaining battery capacity SOC1 is a value that increases as the change amount dTa / dt of the outside air temperature per predetermined time increases. This is because the minimum battery voltage VbMin at the time of key start at the vehicle arrival point decreases as the change amount dTa / dt of the outside air temperature per predetermined time increases, that is, as the outside air temperature decreases. This is to make it larger. However, in a region where the change amount dTa / dt of the outside air temperature per predetermined time is equal to or greater than the predetermined value ThA, the target remaining battery capacity SOC1 is set to a constant value. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
 ステップS15では、次式(2)に示すように、ステップS14で算出した目標バッテリ残容量SOC1を、今回の目標バッテリ残容量tSOCに設定する。
  tSOC=SOC1             …(2)
In step S15, as shown in the following equation (2), the target battery remaining capacity SOC1 calculated in step S14 is set to the current target battery remaining capacity tSOC.
tSOC = SOC1 (2)
 ステップS16では、目標バッテリ残容量tSOCと目標バッテリ残容量の上限値MAXを比較する。上限値MAXは、寒冷地(キー始動を行った地点より寒い地域)でのバッテリ41の充電余力を定める値で、寒冷地でない場合より大きくする。寒冷地でない場合に85%をバッテリの充電余力を定める値としているときには、85%より大きな値、例えば95%を上限値MAXとする。寒冷地でも100%を上限値MAXとせず、5%は充電余力として残す。目標バッテリ残容量tSOCが上限値MAX以下であるときには、ステップS17の処理を行わずにステップS18に進み、目標バッテリ残容量tSOCを出力する。 In step S16, the target battery remaining capacity tSOC is compared with the upper limit value MAX of the target battery remaining capacity. The upper limit value MAX is a value that determines the remaining charge capacity of the battery 41 in a cold region (a region colder than the point where the key start is performed), and is made larger than that in a non-cold region. When 85% is set as a value for determining the remaining charge capacity of the battery in a non-cold region, a value larger than 85%, for example, 95% is set as the upper limit value MAX. Even in cold regions, 100% is not set as the upper limit value MAX, and 5% is left as the remaining charge capacity. When the target battery remaining capacity tSOC is less than or equal to the upper limit value MAX, the process proceeds to step S18 without performing the process of step S17, and the target battery remaining capacity tSOC is output.
 一方、目標バッテリ残容量tSOCが上限値MAXを超えているときには、ステップS17に進む。ステップS17では、上限値MAXを目標バッテリ残容量tSOCとして設定することによって、目標バッテリ残容量を制限し、ステップS18に進む。 On the other hand, when the target remaining battery capacity tSOC exceeds the upper limit MAX, the process proceeds to step S17. In step S17, the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and the process proceeds to step S18.
 ステップS19では、外気温度Taを外気温度の前回値であるTazとして設定する。 In step S19, the outside air temperature Ta is set as Taz which is the previous value of the outside air temperature.
 (第2実施形態)
 図8は、第2実施形態の車両の制御装置において、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図8に示すフローチャートの処理は、一定時間毎に実行する。なお、図8に示すフローチャートは、第1実施形態の図6のフローチャートと置き換わるもので、図6のフローチャートと同一の処理を行うステップについては、同一の符号を付している。図8のフローチャートでも、目標バッテリ残容量を設定するためのエンジンの運転条件として外気温度のみを考え、外気温度以外の運転条件は考えないものとする。
(Second Embodiment)
FIG. 8 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the second embodiment. The process of the flowchart shown in FIG. 8 is executed at regular time intervals. Note that the flowchart shown in FIG. 8 replaces the flowchart of FIG. 6 of the first embodiment, and steps that perform the same processing as in the flowchart of FIG. 6 are given the same reference numerals. In the flowchart of FIG. 8 as well, only the outside air temperature is considered as the engine operating condition for setting the target battery remaining capacity, and the operating conditions other than the outside air temperature are not considered.
 第1実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、外気温度の所定時間当たり変化量dTa/dtに基づいて予想した。第2実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、外気温度の所定時間毎の温度差dTaに基づいて予想する。 In the first embodiment, whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the change amount dTa / dt of the outside air temperature per predetermined time. In the second embodiment, whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the temperature difference dTa for each predetermined time of the outside air temperature.
 第1実施形態と相違する部分を主に説明すると、第1実施形態と相違するのはステップS31~S33のみである。 The description will be given mainly of the differences from the first embodiment. Only the steps S31 to S33 are different from the first embodiment.
 ステップS12で現在の外気温度Ta[℃]を読み込むと、ステップS31に進む。ステップS31では、外気温度の所定時間Δt毎の温度差dTa[℃]を次式(3)により算出する。
  dTa=Taz-Ta                  …(3)
   ただし、Taz:Taの前回値、
When the current outside air temperature Ta [° C.] is read in step S12, the process proceeds to step S31. In step S31, the temperature difference dTa [° C.] for each predetermined time Δt of the outside air temperature is calculated by the following equation (3).
dTa = Taz−Ta (3)
Where Taz: the previous value of Ta,
 図4に対応付けて説明すると、スキー場に移動するときには外気温度が10℃から-5℃に変化する。このため、実際の外気温度の所定時間毎の温度差は負の値となり、扱いにくいので、(3)式のように、TazからTaを差し引くことでdTaの値としては正の値で扱う。 Referring to FIG. 4, when moving to the ski area, the outside air temperature changes from 10 ° C. to −5 ° C. For this reason, the temperature difference for every predetermined time of the actual outside air temperature becomes a negative value and is difficult to handle. Therefore, the value of dTa is handled as a positive value by subtracting Ta from Taz as shown in equation (3).
 ステップS32では、外気温度の所定時間毎の温度差dTaに基づいて、図9に示す関係を有するテーブルを検索することにより、目標バッテリ残容量SOC2[%]を正の値で算出する。図9に示すように、目標バッテリ残容量SOC2は、外気温度の所定時間毎の温度差dTaが大きくなるほど大きくなる値である。これは、外気温度の所定時間毎の温度差dTaが大きいほど、つまり外気温度が低下するほど、車両到着地でのキー始動時のバッテリ最低電圧VbMinが低下するので、目標バッテリ残容量tSOCを大きくするためである。ただし、外気温度の所定時間毎の温度差dTaが所定値ThB以上の領域では、目標バッテリ残容量SOC2を一定値とする。これは、目標バッテリ残容量tSOCを大きくする場合でも、目標バッテリ残容量tSOCに上限値MAXがあるためである。 In step S32, the target battery remaining capacity SOC2 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 9 based on the temperature difference dTa for each predetermined time of the outside air temperature. As shown in FIG. 9, the target battery remaining capacity SOC2 is a value that increases as the temperature difference dTa for each predetermined time of the outside air temperature increases. This is because the battery minimum voltage VbMin at the time of key start at the vehicle arrival point decreases as the temperature difference dTa for the predetermined time of the outside air temperature increases, that is, as the outside air temperature decreases, so that the target battery remaining capacity tSOC increases. It is to do. However, the target battery remaining capacity SOC2 is set to a constant value in a region where the temperature difference dTa for each predetermined time of the outside air temperature is equal to or greater than the predetermined value ThB. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
 ステップS33では、次式(4)に示すように、ステップS32で算出した目標バッテリ残容量SOC2を、今回の目標バッテリ残容量tSOCに設定する。
  tSOC=SOC2             …(4)
In step S33, as shown in the following equation (4), the target battery remaining capacity SOC2 calculated in step S32 is set to the current target battery remaining capacity tSOC.
tSOC = SOC2 (4)
 ステップS33に続くステップS16では、第1実施形態と同じように、目標バッテリ残容量tSOCと目標バッテリ残容量の上限値MAXを比較する。目標バッテリ残容量tSOCが上限値MAX以下であるときは、ステップS17の処理を行わずにステップS18に進み、目標バッテリ残容量tSOCを出力する。 In step S16 following step S33, the target battery remaining capacity tSOC is compared with the upper limit value MAX of the target battery remaining capacity as in the first embodiment. When the target battery remaining capacity tSOC is equal to or lower than the upper limit value MAX, the process proceeds to step S18 without performing the process of step S17, and the target battery remaining capacity tSOC is output.
 一方、目標バッテリ残容量tSOCが上限値MAXを超えているときには、ステップS17に進む。ステップS17では、上限値MAXを目標バッテリ残容量tSOCとして設定することによって目標バッテリ残容量を制限し、続くステップS18で目標バッテリ残容量tSOCを出力する。 On the other hand, when the target remaining battery capacity tSOC exceeds the upper limit MAX, the process proceeds to step S17. In step S17, the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and in step S18, the target battery remaining capacity tSOC is output.
 (第3実施形態)
 図10は、第3実施形態の車両の制御装置において、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図10に示すフローチャートの処理は、一定時間毎に実行する。図10のフローチャートは、第1実施形態の図6のフローチャートと置き換わるもので、図6のフローチャートと同一の処理を行うステップについては、同一の符号を付している。図10のフローチャートでも、目標バッテリ残容量を設定するためのエンジンの運転条件として外気温度のみを考え、外気温度以外の運転条件は考えないものとする。
(Third embodiment)
FIG. 10 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the third embodiment. The process of the flowchart shown in FIG. 10 is executed at regular time intervals. The flowchart of FIG. 10 replaces the flowchart of FIG. 6 of the first embodiment, and steps that perform the same processing as the flowchart of FIG. 6 are denoted by the same reference numerals. Also in the flowchart of FIG. 10, only the outside air temperature is considered as the engine operating condition for setting the target battery remaining capacity, and the operating conditions other than the outside air temperature are not considered.
 第3実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、外気温度そのものに基づいて予想する。 In the third embodiment, it is predicted based on the outside air temperature whether or not the vehicle moves to an area colder than the key start point.
 第1実施形態と相違する部分を主に説明する。ステップS11でアイドルストップ許可フラグ=1であると判定すると、ステップS12に進む。ステップS12では、外気温度センサ68(図1参照)により検出される現在の外気温度Ta[℃]を読み込む。 The difference from the first embodiment will be mainly described. If it is determined in step S11 that the idle stop permission flag = 1, the process proceeds to step S12. In step S12, the current outside air temperature Ta [° C.] detected by the outside air temperature sensor 68 (see FIG. 1) is read.
 ステップS41では、外気温度Taに基づいて、図11に示す関係を有するテーブルを検索することにより、目標バッテリ残容量tSOC[%]を正の値で算出する。図11に示すように、目標バッテリ残容量tSOCは、外気温度Taが低くなるほど大きくなる値である。これは、外気温度Taが低いほど、つまり寒くなるほど、キー始動時のバッテリ最低電圧VbMinが低下するので、目標バッテリ残容量tSOCを大きくするためである。 In step S41, the target battery remaining capacity tSOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 11 based on the outside air temperature Ta. As shown in FIG. 11, the target battery remaining capacity tSOC is a value that increases as the outside air temperature Ta decreases. This is because the lower the outside air temperature Ta, that is, the lower the temperature, the lower the battery minimum voltage VbMin at the time of key start, so that the target battery remaining capacity tSOC is increased.
 ただし、外気温度Taが所定値ThC未満の温度域では、目標バッテリ残容量tSOCは目標バッテリ残容量の上限値MAX(一定値)である。上限値MAXは、第1実施形態と同様に95%である。図4に対応付けて説明すると、外気温度Taが所定値ThC未満の温度域は、スキー場である。外気温度Taが所定値ThC未満の温度域で上限値MAXとするのは、目標バッテリ残容量tSOCを大きくする場合でも、上限値MAXが限度であるためである。 However, in the temperature range where the outside air temperature Ta is lower than the predetermined value ThC, the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity. The upper limit value MAX is 95% as in the first embodiment. Referring to FIG. 4, the temperature range where the outside air temperature Ta is less than the predetermined value ThC is a ski resort. The reason why the upper limit MAX is set in the temperature range where the outside air temperature Ta is lower than the predetermined value ThC is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
 一方、外気温度Taが所定値ThDを超える温度域では、目標バッテリ残容量tSOCは、バッテリ41の充電余力を大きくした値、例えば85%(一定値)である。図4に対応付けて説明すると、外気温度Taが所定値ThDを超える温度域は、自宅である。外気温度Taが所定値ThDを超える温度域で目標バッテリ残容量tSOCを一定値とするのは、以下の理由による。すなわち、外気温度Taが所定値ThDを超える温度域では、キー始動時のバッテリ最低電圧が所定電圧Va以上となり、アイドルストップが禁止されることがないので、バッテリ41の充電余力を狭める必要がないためである。 On the other hand, in the temperature range where the outside air temperature Ta exceeds the predetermined value ThD, the target battery remaining capacity tSOC is a value obtained by increasing the remaining charge capacity of the battery 41, for example, 85% (a constant value). Referring to FIG. 4, the temperature range where the outside air temperature Ta exceeds the predetermined value ThD is home. The reason why the target battery remaining capacity tSOC is set to a constant value in the temperature range where the outside air temperature Ta exceeds the predetermined value ThD is as follows. That is, in the temperature range where the outside air temperature Ta exceeds the predetermined value ThD, the battery minimum voltage at the time of key start becomes equal to or higher than the predetermined voltage Va, and idling stop is not prohibited, so there is no need to narrow the remaining charge capacity of the battery 41. Because.
 ここで、図6に示す第1実施形態、図8に示す第2実施形態、図10に示す第3実施形態の作用をまとめて説明する。第1実施形態では、キー始動時の地点より寒い地域に移動しなれば、上記(1)式の外気温度の所定時間当たり低下量dTa/dtはゼロのままであるため、目標バッテリ残容量tSOCは変化しない。第2実施形態では、キー始動時の地点より寒い地域に移動しなれば、上記(3)式の外気温度の所定時間毎の温度差dTaはゼロのままであるため、目標バッテリ残容量tSOCは変化しない。 Here, the operation of the first embodiment shown in FIG. 6, the second embodiment shown in FIG. 8, and the third embodiment shown in FIG. 10 will be described together. In the first embodiment, if the vehicle does not move to a colder region than the point at the time of key start, the decrease amount dTa / dt of the outside air temperature per predetermined time in the above equation (1) remains zero, so the target battery remaining capacity tSOC Does not change. In the second embodiment, if the temperature does not move to a region colder than the point at the time of key start, the temperature difference dTa per predetermined time of the outside air temperature of the above equation (3) remains zero, so the target battery remaining capacity tSOC is It does not change.
 一方、第1実施形態では、キー始動時の地点より寒い地域に移動するときには、上記(1)式の外気温度の所定時間当たり低下量dTa/dtが正の値で生じるため、上記(2)式により、目標バッテリ残容量tSOCが大きくなっていく。第2実施形態では、キー始動時の地点より寒い地域に移動するときには、上記(3)式の外気温度の所定時間毎の温度差dTaが正の値で生じることから、上記(4)式により、目標バッテリ残容量tSOCが大きくなっていく。 On the other hand, in the first embodiment, when moving to a colder area than the point at the time of key start, the decrease amount dTa / dt of the outside air temperature per predetermined time in the above equation (1) occurs as a positive value, so the above (2) The target battery remaining capacity tSOC increases according to the equation. In the second embodiment, when moving to a colder area than the point at the time of key start, the temperature difference dTa for each predetermined time of the outside air temperature in the above equation (3) is a positive value. The target battery remaining capacity tSOC increases.
 第3実施形態では、キー始動時の地点よりある寒い地域に移動しなれば、外気温度Taは所定値ThDを超える温度域にあり、このときの目標バッテリ残容量tSOCは85%である。一方、キー始動時の地点より寒い地域に移動するときには、外気温度Taが所定値ThDより低下するため、目標バッテリ残容量tSOCが85%より大きくなる。 In the third embodiment, the outside air temperature Ta is in a temperature range exceeding a predetermined value ThD if the vehicle does not move to a cold area from the point at the time of key start, and the target battery remaining capacity tSOC at this time is 85%. On the other hand, when moving to a colder region than the point at the time of key start, the outside air temperature Ta falls below the predetermined value ThD, so the target battery remaining capacity tSOC becomes larger than 85%.
 図4に対応付けて説明すると、スキー場に移動するとき、第1~第3の各実施形態では、目標バッテリ残容量tSOCが85%から95%へと大きくなる。この増大する目標バッテリ残容量tSOCが実現されるようにオルタネータの目標発電電圧が高められ、オルタネータの発電量が増加する。これにより、実際のバッテリ残容量rSOCは、目標バッテリ残容量tSOCに追従して大きくなる。このため、車両がスキー場に到着してエンジンを停止し、その翌日にキー始動するときの実際のバッテリ残容量rSOC(≒tSOC)は、前日に自宅でキー始動したときの実際のバッテリ残容量rSOCよりも大きくなっている。この場合、実際のバッテリ残容量rSOCとキー始動時のバッテリ最低電圧VbMinとの間には強い相関があり、実際のバッテリ残容量rSOCが大きいほどキー始動時のバッテリ最低電圧VbMinが高くなる。このため、到着したスキー場でキー始動するときに図5のフローチャートの処理が実行されると、ステップS2でキー始動時のバッテリ最低電圧VbMinが所定電圧Va以上となり、ステップS3に進み、その他のアイドルストップ条件がOKであると判定すると、ステップS4に進んで、アイドルストップ許可フラグ=1となる。スキー場への移動中に目標バッテリ残容量tSOCを予め大きくしておくことにより、バッテリの充電状態をよくしておき、これによって、到着したスキー場でのキー始動時にアイドルストップが禁止されることがないようにする。 Referring to FIG. 4, when moving to a ski resort, in each of the first to third embodiments, the target battery remaining capacity tSOC increases from 85% to 95%. The target power generation voltage of the alternator is increased so as to realize this increasing target battery remaining capacity tSOC, and the power generation amount of the alternator increases. Thus, the actual remaining battery capacity rSOC increases following the target remaining battery capacity tSOC. Therefore, the actual remaining battery capacity rSOC (≈tSOC) when the vehicle arrives at the ski area, stops the engine, and starts the key the next day is the actual remaining battery capacity when the key is started at home the previous day. It is larger than rSOC. In this case, there is a strong correlation between the actual remaining battery capacity rSOC and the minimum battery voltage VbMin at the time of key start. The larger the actual remaining battery capacity rSOC, the higher the minimum battery voltage VbMin at the time of key start. For this reason, when the process of the flowchart of FIG. 5 is executed when starting the key at the arrived ski resort, the battery minimum voltage VbMin at the time of starting the key becomes equal to or higher than the predetermined voltage Va in step S2, and the process proceeds to step S3. If it is determined that the idle stop condition is OK, the process proceeds to step S4, and the idle stop permission flag = 1 is set. By increasing the target remaining battery capacity tSOC in advance while moving to the ski area, the state of charge of the battery is improved, so that idling stop is prohibited when starting the key at the arrived ski area. So that there is no.
 このように第1~第3の実施形態では、イグニッションキーのON操作からOFF操作までの間に車両がキー始動時の地点より寒い地域に移動するとき、目標バッテリ残容量をキー始動時より大きくする。これによって、キー始動時(初回のエンジン始動時)の地点から寒冷地への移動中に、バッテリ41の充電余力として残されている充電可能代を使って充電することが可能となる。このため、移動先の寒冷地でのキー始動時に、バッテリ41の最低電圧VbMinが所定電圧Va以上となり、アイドルストップが不要に禁止されてしまうことを抑制できる。アイドルストップが不要に禁止されるのを防ぐことで、寒冷地においてもエンジンの燃費を向上させることができる。 As described above, in the first to third embodiments, when the vehicle moves to a colder region than the key start point between the ignition key ON operation and the OFF operation, the target remaining battery capacity is set larger than that at the key start. To do. This makes it possible to charge using the chargeable charge remaining as the remaining charge capacity of the battery 41 during the movement from the point at the time of key start (at the time of initial engine start) to the cold region. For this reason, at the time of key start in the cold district of the moving destination, the minimum voltage VbMin of the battery 41 becomes equal to or higher than the predetermined voltage Va, and it is possible to suppress the idle stop from being prohibited unnecessarily. By preventing the idle stop from being prohibited unnecessarily, the fuel efficiency of the engine can be improved even in cold regions.
 車両がキー始動時の地点より寒い地域に移動するときには、外気温度の所定時間当たり低下量dTa/dt、外気温度の所定時間毎の温度差dTaが生じ、外気温度Taが低下していく。第1実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、外気温度の所定時間当たり変化量(外気温度の低下勾配)に基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。第2実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、外気温度の所定時間毎の温度差(外気温度の低下量)に基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。第3実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、外気温度(外気温度そのもの)に基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。これによって、車両がキー始動時の地点より寒い地域に移動することを直接的に予想できる。 When the vehicle moves to a colder region than the point at the time of key start, a decrease amount dTa / dt of the outside air temperature per predetermined time and a temperature difference dTa of the outside air temperature every predetermined time are generated, and the outside air temperature Ta is lowered. According to the first embodiment, the region where the vehicle is colder than the point at the time of key start based on the amount of change in the outside air temperature per predetermined time (gradient of the outside air temperature) from the ON operation to the OFF operation of the ignition key Predict whether or not to move to. According to the second embodiment, between the ignition key ON operation and the OFF operation, the vehicle is colder than the point at the time of key start based on the temperature difference (amount of decrease in the outside air temperature) of the outside air temperature every predetermined time. Predict whether or not to move to the area. According to the third embodiment, whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the outside air temperature (the outside air temperature itself) between the ON operation and the OFF operation of the ignition key. To do. As a result, it can be directly predicted that the vehicle will move to an area colder than the point at the time of key start.
 (第4実施形態)
 図12は、第4実施形態の車両の制御装置において、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図12に示すフローチャートの処理は、一定時間毎に実行する。ここでは、車両がキー始動時の地点より寒い地域に移動するか否かを予想するので、フローチャートの演算周期は10ms毎といった短い時間間隔ではなく、数分毎といった長い時間間隔Δt[min]でよい。後述する図14、図16のフローチャートも同じである。図12のフローチャートは、第1実施形態の図6のフローチャートと置き換わるもので、図6のフローチャートと同一の処理を行うステップについては、同一の符号を付している。図12のフローチャートでは、目標バッテリ残容量を設定するためのエンジンの運転条件として大気圧力のみを考え、大気圧力以外の運転条件は考えないものとする。
(Fourth embodiment)
FIG. 12 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the fourth embodiment. The process of the flowchart shown in FIG. 12 is executed at regular time intervals. Here, since it is predicted whether or not the vehicle will move to a colder area than the point at the time of key start, the calculation cycle of the flowchart is not a short time interval such as every 10 ms but a long time interval Δt [min] such as every several minutes. Good. The flowcharts of FIGS. 14 and 16 described later are also the same. The flowchart of FIG. 12 replaces the flowchart of FIG. 6 of the first embodiment, and steps that perform the same processing as in the flowchart of FIG. 6 are denoted by the same reference numerals. In the flowchart of FIG. 12, it is assumed that only the atmospheric pressure is considered as the engine operating condition for setting the target battery remaining capacity, and the operating conditions other than the atmospheric pressure are not considered.
 第1実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを外気温度の所定時間当たり変化量dTa/dtに基づいて予想した。一方、第4実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを大気圧力の所定時間当たり変化量dPa/dtに基づいて予想する。大気圧力に基づいて予想する理由は次の通りである。すなわち、図4の場合に対応付けて説明すると、キー始動した自宅はほぼ0メートルの低地にあり、スキー場は1500メートルの高地にある。キー始動した自宅からスキー場に向かうと、大気圧力が低下するので、この大気圧圧力の低下に基づいてスキー場に移動することを予想できるためである。 In the first embodiment, whether or not the vehicle moves to a colder region than the point at the time of key start is predicted based on the change amount dTa / dt of the outside air temperature per predetermined time. On the other hand, in the fourth embodiment, whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the change amount dPa / dt of atmospheric pressure per predetermined time. Reasons to expect based on atmospheric pressure are as follows. That is, in association with the case of FIG. 4, the home where the key is started is in a lowland of about 0 meters, and the ski resort is in a highland of 1500 meters. This is because when the key is started from the home to the ski resort, the atmospheric pressure decreases, so that it can be expected to move to the ski resort based on the decrease in the atmospheric pressure.
 図12において、ステップS11では、今回の処理時に、キー始動時アイドルストップ許可フラグが1であるか否かを判定する。アイドルストップ許可フラグがゼロであると判定すると、そのまま今回の処理を終了する。一方、キー始動時アイドルストップ許可フラグが1の場合は、ステップS11から、ステップS51に進む。 In FIG. 12, in step S11, it is determined whether or not the key start idle stop permission flag is 1 during the current process. If it is determined that the idle stop permission flag is zero, the current process is terminated. On the other hand, when the key start idle stop permission flag is 1, the process proceeds from step S11 to step S51.
 ステップS51では、大気圧力センサ73により検出される現在の大気圧力Pa[hPa]を読み込む。ステップS52では、大気圧力の所定時間当たり低下量dPa/dt[hPa/s]を次式(5)により算出する。
  dPa/dt=(Paz-Pa)/Δt          …(5)
   ただし、Paz:Paの前回値、
       Δt:演算ルーチンの時間間隔、
In step S51, the current atmospheric pressure Pa [hPa] detected by the atmospheric pressure sensor 73 is read. In step S52, a decrease amount dPa / dt [hPa / s] of atmospheric pressure per predetermined time is calculated by the following equation (5).
dPa / dt = (Paz−Pa) / Δt (5)
Where Paz: the previous value of Pa,
Δt: time interval of the calculation routine,
 図4に対応付けて説明すると、自宅からスキー場に移動するときには、大気圧力は900hPaを少し超えている高い側から600hPaの低い側に変化する。このため、実際の大気圧力の所定時間当たり低下量は負の値となり、扱いにくいので、(5)式のようにPa/dtの値としては正の値で扱う。 Referring to FIG. 4, when moving from home to a ski resort, the atmospheric pressure changes from a high side slightly over 900 hPa to a low side of 600 hPa. For this reason, the actual amount of decrease in atmospheric pressure per predetermined time is a negative value, which is difficult to handle. Therefore, the value of Pa / dt is handled as a positive value as in equation (5).
 ステップS53では、大気圧力の所定時間当たり低下量dPa/dtに基づいて、図13に示す関係を有するテーブルを検索することにより、目標バッテリ残容量SOC3[%]を正の値で算出する。図13に示すように、目標バッテリ残容量SOC3は、大気圧力の所定時間当たり低下量dPa/dtが大きくなるほど大きくなる。これは、大気圧力の所定時間当たり低下量dPa/dtが大きいほど(つまり大気圧力が低下するほど)、車両到着地でのキー始動時のバッテリ最低電圧VbMinが低下するので、目標バッテリ残容量tSOCを大きくするためである。ただし、大気圧力の所定時間当たり低下量dPa/dtが所定値ThE以上の領域では、目標バッテリ残容量SOC3を一定値とする。これは、目標バッテリ残容量tSOCを大きくする場合でも、目標バッテリ残容量tSOCに上限値MAXがあるためである。 In step S53, the target battery remaining capacity SOC3 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 13 based on the atmospheric pressure decrease amount dPa / dt per predetermined time. As shown in FIG. 13, the target battery remaining capacity SOC3 increases as the decrease dPa / dt of the atmospheric pressure per predetermined time increases. This is because the battery minimum voltage VbMin at the time of key start at the vehicle arrival point decreases as the atmospheric pressure decrease amount dPa / dt per predetermined time increases (that is, as the atmospheric pressure decreases), so the target battery remaining capacity tSOC This is to increase the size. However, the target remaining battery charge SOC3 is set to a constant value in a region where the decrease amount dPa / dt of the atmospheric pressure per predetermined time is equal to or greater than the predetermined value ThE. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
 ステップS54では、次式(6)に示すように、ステップS53で算出した目標バッテリ残容量SOC3を、今回の目標バッテリ残容量tSOCに設定する。
  tSOC=SOC3             …(6)
In step S54, as shown in the following equation (6), the target battery remaining capacity SOC3 calculated in step S53 is set to the current target battery remaining capacity tSOC.
tSOC = SOC3 (6)
 ステップ16では、目標バッテリ残容量tSOCが目標バッテリ残容量の上限値MAXより大きいか否かを判定する。上限値MAXは、第1実施形態と同じである。すなわち、寒冷地(キー始動を行った地点より寒い地域)でのバッテリ41の充電余力を定める値で、寒冷地でない場合より大きくする。寒冷地でない場合のバッテリの充電余力を85%としている場合には、85%より大きな値、例えば95%を上限値MAXとする。寒冷地でも100%を上限値MAXとせず、5%は充電余力として残す。目標バッテリ残容量tSOCが上限値MAX以下であるときにはステップS17を飛ばしてステップS18に進み、目標バッテリ残容量tSOCを出力する。 In step 16, it is determined whether the target battery remaining capacity tSOC is larger than the upper limit value MAX of the target battery remaining capacity. The upper limit value MAX is the same as in the first embodiment. That is, it is a value that determines the remaining charge capacity of the battery 41 in a cold region (a region colder than the point where the key is started), and is larger than that in a non-cold region. When the remaining charge capacity of the battery when not in a cold region is 85%, a value larger than 85%, for example, 95% is set as the upper limit value MAX. Even in cold regions, 100% is not set as the upper limit value MAX, and 5% is left as the remaining charge capacity. If the target battery remaining capacity tSOC is less than or equal to the upper limit value MAX, step S17 is skipped and the process proceeds to step S18 to output the target battery remaining capacity tSOC.
 一方、目標バッテリ残容量tSOCが上限値MAXを超えているときには、ステップS17に進む。ステップS17では、上限値MAXを目標バッテリ残容量tSOCとして設定することによって目標バッテリ残容量を制限し、ステップS18に進む。 On the other hand, when the target remaining battery capacity tSOC exceeds the upper limit MAX, the process proceeds to step S17. In step S17, the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and the process proceeds to step S18.
 ステップS55では、次回の処理のため、大気圧力Paを大気圧力の前回値Pazとして設定する。 In step S55, the atmospheric pressure Pa is set as the previous value Paz of the atmospheric pressure for the next processing.
 (第5実施形態)
 図14は、第5実施形態の車両の制御装置において、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図14に示すフローチャートの処理は、一定時間毎に実行する。図14のフローチャートは、第4実施形態の図12のフローチャートと置き換わるもので、図12のフローチャートと同一の処理を行うステップについては、同一の符号を付している。図14のフローチャートでも、目標バッテリ残容量を設定するためのエンジンの運転条件として大気圧力のみを考え、大気圧力以外の運転条件は考えないものとする。
(Fifth embodiment)
FIG. 14 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the fifth embodiment. The process of the flowchart shown in FIG. 14 is executed at regular intervals. The flowchart of FIG. 14 replaces the flowchart of FIG. 12 of the fourth embodiment, and steps for performing the same processing as in the flowchart of FIG. 12 are given the same reference numerals. In the flowchart of FIG. 14 as well, only atmospheric pressure is considered as the engine operating condition for setting the target battery remaining capacity, and operating conditions other than atmospheric pressure are not considered.
 第4実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、大気圧力の所定時間当たり変化量に基づいて予想した。一方、第5実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、大気圧力の所定時間毎の圧力差に基づいて予想するものである。 In the fourth embodiment, whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the amount of change in atmospheric pressure per predetermined time. On the other hand, in the fifth embodiment, whether or not the vehicle moves to an area colder than the point at the time of key start is predicted based on the pressure difference for each predetermined time of atmospheric pressure.
 第4実施形態と相違する部分を主に説明すると、第4実施形態と相違するのは、ステップS61~S63のみである。 The difference from the fourth embodiment will be mainly described. Only the steps S61 to S63 are different from the fourth embodiment.
 ステップS51で現在の大気圧力Pa[℃]を読み込むと、ステップS61に進む。ステップS61では、大気圧力の所定時間Δt毎の圧力差dPa[℃]を次式(7)により算出する。
  dPa=Paz-Pa                  …(7)
   ただし、Paz:Paの前回値、
When the current atmospheric pressure Pa [° C.] is read in step S51, the process proceeds to step S61. In step S61, a pressure difference dPa [° C.] for each predetermined time Δt of atmospheric pressure is calculated by the following equation (7).
dPa = Paz−Pa (7)
Where Paz: the previous value of Pa,
 図4の場合に対応付けて説明すると、スキー場に移動するときには、大気圧力が900hPaを少し超えている高い側から600hPaの低い側に変化する。このため、実際の大気圧力の所定時間毎の圧力差は負の値となり、扱いにくいので、(7)式のように、PazからPaを差し引くことで、dPaの値としては正の値で扱う。 Referring to the case of FIG. 4, when moving to a ski resort, the atmospheric pressure changes from a high side slightly exceeding 900 hPa to a low side of 600 hPa. For this reason, the pressure difference of the actual atmospheric pressure every predetermined time becomes a negative value and is difficult to handle. Therefore, by subtracting Pa from Paz as shown in equation (7), the dPa value is handled as a positive value. .
 ステップS62では、大気圧力の所定時間毎の圧力差dPaに基づいて、図15に示す関係を有するテーブルを検索することにより、目標バッテリ残容量SOC4[%]を正の値で算出する。図15に示すように、目標バッテリ残容量SOC4は、大気圧力の所定時間毎の圧力差dPaが大きくなるほど大きくなる。これは、大気圧力の所定時間毎の圧力差dPaが大きいほど(つまり大気圧力が低下するほど)、車両到着地でのキー始動時のバッテリ最低電圧VbMinが低下するので、目標バッテリ残容量tSOCを大きくするためである。ただし、大気圧力の所定時間毎の圧力差dPaが所定値ThF以上の領域では、目標バッテリ残容量SOC4を一定値とする。これは、目標バッテリ残容量tSOCを大きくする場合でも、目標バッテリ残容量tSOCに上限値MAXがあるためである。 In step S62, the target battery remaining capacity SOC4 [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 15 based on the pressure difference dPa for each predetermined time of the atmospheric pressure. As shown in FIG. 15, the target battery remaining capacity SOC4 increases as the pressure difference dPa for each predetermined time of atmospheric pressure increases. This is because the minimum battery voltage VbMin at the time of key start at the vehicle arrival point decreases as the pressure difference dPa at predetermined time intervals of the atmospheric pressure increases (that is, as the atmospheric pressure decreases). This is to make it larger. However, the target battery remaining capacity SOC4 is set to a constant value in a region where the pressure difference dPa per predetermined time of the atmospheric pressure is equal to or greater than the predetermined value ThF. This is because the target battery remaining capacity tSOC has the upper limit MAX even when the target battery remaining capacity tSOC is increased.
 ステップS63では、次式(8)に示すように、ステップS62で算出した目標バッテリ残容量SOC4を、今回の目標バッテリ残容量tSOCに設定する。
  tSOC=SOC4             …(8)
In step S63, as shown in the following equation (8), the target battery remaining capacity SOC4 calculated in step S62 is set to the current target battery remaining capacity tSOC.
tSOC = SOC4 (8)
 ステップS16では、第4実施形態と同様に、目標バッテリ残容量tSOCと目標バッテリ残容量の上限値MAXを比較する。目標バッテリ残容量tSOCが上限値MAX以下であるときには、ステップS17を飛ばしてステップS18に進む。ステップS18では、目標バッテリ残容量tSOCを出力する。 In step S16, as in the fourth embodiment, the target battery remaining capacity tSOC is compared with the upper limit value MAX of the target battery remaining capacity. When the target battery remaining capacity tSOC is less than or equal to the upper limit value MAX, step S17 is skipped and the process proceeds to step S18. In step S18, the target remaining battery capacity tSOC is output.
 一方、目標バッテリ残容量tSOCが上限値MAXを超えているときには、ステップS17に進む。ステップS17では、上限値MAXを目標バッテリ残容量tSOCとして設定することによって目標バッテリ残容量を制限し、ステップS18に進む。 On the other hand, when the target remaining battery capacity tSOC exceeds the upper limit MAX, the process proceeds to step S17. In step S17, the target battery remaining capacity is limited by setting the upper limit value MAX as the target battery remaining capacity tSOC, and the process proceeds to step S18.
 (第6実施形態)
 図16のフローチャートは、第6実施形態の車両の制御装置において、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図16に示すフローチャートの処理は、一定時間毎に実行する。図16のフローチャートは、第4実施形態の図12のフローチャートと置き換わるもので、図12のフローチャートと同一の処理を行うステップについては、同一の符号を付している。図16のフローチャートでも、目標バッテリ残容量を設定するためのエンジンの運転条件として大気圧力のみを考え、大気圧力以外の運転条件は考えないものとする。
(Sixth embodiment)
The flowchart of FIG. 16 is a flowchart illustrating a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the sixth embodiment. The process of the flowchart shown in FIG. 16 is executed at regular time intervals. The flowchart of FIG. 16 replaces the flowchart of FIG. 12 of the fourth embodiment, and steps that perform the same processing as the flowchart of FIG. 12 are denoted by the same reference numerals. In the flowchart of FIG. 16 as well, only atmospheric pressure is considered as the engine operating condition for setting the target battery remaining capacity, and operating conditions other than atmospheric pressure are not considered.
 第6実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、大気圧力そのものに基づいて予想する。 In the sixth embodiment, it is predicted based on the atmospheric pressure itself whether or not the vehicle will move to a colder area than the key start point.
 第4実施形態と相違する部分を主に説明すると、ステップS11でアイドルストップ許可フラグ=1であると判定すると、ステップS51に進む。ステップS51では、大気圧力センサ73(図2参照)により検出される現在の大気圧力Pa[hPa]を読み込む。 The difference from the fourth embodiment will be mainly described. If it is determined in step S11 that the idle stop permission flag = 1, the process proceeds to step S51. In step S51, the current atmospheric pressure Pa [hPa] detected by the atmospheric pressure sensor 73 (see FIG. 2) is read.
 ステップS71では、大気圧力Paに基づいて、図17に示す関係を有するテーブルを検索することにより、目標バッテリ残容量tSOC[%]を正の値で算出する。図17に示すように、目標バッテリ残容量tSOCは、大気圧力Paが低くなるほど大きくなる。これは、大気圧力Paが低いほど(つまり寒くなるほど)、キー始動時のバッテリ最低電圧VbMinが低下するので、目標バッテリ残容量tSOCを大きくするためである。 In step S71, the target battery remaining capacity tSOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 17 based on the atmospheric pressure Pa. As shown in FIG. 17, the target battery remaining capacity tSOC increases as the atmospheric pressure Pa decreases. This is because the lower the atmospheric pressure Pa (that is, the lower the temperature), the lower the battery minimum voltage VbMin at the time of key start, so that the target battery remaining capacity tSOC is increased.
 ただし、大気圧力Paが所定値ThG未満の圧力域で目標バッテリ残容量tSOCは目標バッテリ残容量の上限値MAX(一定値)である。上限値MAXは、第4実施形態と同様に95%である。図4の場合に対応付けて説明すると、大気圧力Paが所定値ThG未満の圧力域とは、スキー場である。大気圧力Paが所定値ThG未満の圧力域で目標バッテリ残容量tSOCを上限値MAXとするのは、目標バッテリ残容量tSOCを大きくする場合でも、上限値MAXが限度であるためである。 However, the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity in the pressure range where the atmospheric pressure Pa is less than the predetermined value ThG. The upper limit MAX is 95% as in the fourth embodiment. Describing in association with the case of FIG. 4, the pressure region where the atmospheric pressure Pa is less than the predetermined value ThG is a ski resort. The reason why the target battery remaining capacity tSOC is set to the upper limit MAX in the pressure region where the atmospheric pressure Pa is less than the predetermined value ThG is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
 一方、大気圧力Paが所定値ThIを超える圧力域における目標バッテリ残容量tSOCは、バッテリ41の充電余力を大きくした一定値(例えば85%)である。図4の場合に対応付けて説明すると、大気圧力Paが所定値ThIを超える圧力域は自宅である。大気圧力Paが所定値ThIを超える圧力域で目標バッテリ残容量tSOCを一定値とするのは、大気圧力Paが所定値ThIを超える圧力域では、キー始動時のバッテリ最低電圧が所定電圧Va以上となりアイドルストップが禁止されることがないので、バッテリ41の充電余力を狭める必要がないためである。 On the other hand, the target battery remaining capacity tSOC in the pressure range where the atmospheric pressure Pa exceeds the predetermined value ThI is a constant value (for example, 85%) in which the remaining charge capacity of the battery 41 is increased. Describing in association with the case of FIG. 4, the pressure region where the atmospheric pressure Pa exceeds the predetermined value ThI is home. The target battery remaining capacity tSOC is set to a constant value in the pressure range where the atmospheric pressure Pa exceeds the predetermined value ThI. In the pressure range where the atmospheric pressure Pa exceeds the predetermined value ThI, the battery minimum voltage at the time of key start is equal to or higher than the predetermined voltage Va. This is because idling stop is not prohibited and there is no need to reduce the remaining charge capacity of the battery 41.
 ここで、図12に示す第4実施形態、図14に示す第5実施形態、図16に示す第6実施形態の作用をまとめて説明する。第4実施形態では、キー始動時の地点より寒い地域に移動しなれば、上記(5)式の大気圧力の所定時間当たり低下量dPa/dtはゼロのままであるため、目標バッテリ残容量tSOCは変化しない。第5実施形態では、キー始動時の地点よりスキー場のある寒い地域に移動しなれば、上記(7)式の大気圧力の所定時間毎の圧力差dPaはゼロのままであるため、目標バッテリ残容量tSOCは変化しない。 Here, the operation of the fourth embodiment shown in FIG. 12, the fifth embodiment shown in FIG. 14, and the sixth embodiment shown in FIG. 16 will be described together. In the fourth embodiment, the target battery remaining capacity tSOC because the decrease dPa / dt of the atmospheric pressure per predetermined time in the above equation (5) remains zero if it does not move to a colder area than the key start point. Does not change. In the fifth embodiment, since the pressure difference dPa per predetermined time of the atmospheric pressure in the above equation (7) remains zero if the vehicle does not move from the point at the time of key start to the cold area where the ski resort is located, the target battery The remaining capacity tSOC does not change.
 一方、第4実施形態において、キー始動時の地点より寒い地域に移動するときには、上記(5)式の大気圧力の所定時間当たり低下量dPa/dtが正の値で生じるので、上記(6)式により、目標バッテリ残容量tSOCが大きくなっていく。第5実施形態では、キー始動時の地点より寒い地域に移動するときには、上記(7)式の大気圧力の所定時間毎の圧力差dPaが正の値で生じるので、上記(8)式により、目標バッテリ残容量tSOCが大きくなっていく。 On the other hand, in the fourth embodiment, when moving to a colder area than the point at the time of starting the key, the decrease dPa / dt of the atmospheric pressure per predetermined time in the above equation (5) occurs as a positive value, so the above (6) The target battery remaining capacity tSOC increases according to the equation. In the fifth embodiment, when moving to a colder area than the point at the time of key start, the pressure difference dPa of the atmospheric pressure of the above equation (7) every predetermined time is a positive value. The target battery remaining capacity tSOC increases.
 第6実施形態では、キー始動時の地点より寒い地域に移動しなれば、大気圧力Paは所定値ThIを超える温度域にあり、このときの目標バッテリ残容量tSOCは85%である。一方、キー始動時の地点より寒い地域に移動するときには、大気圧力Paが所定値ThIより低下していくので、目標バッテリ残容量tSOCは、85%より大きくなっていく。 In the sixth embodiment, the atmospheric pressure Pa is in a temperature range that exceeds a predetermined value ThI if it does not move to a colder area than the key start point, and the target battery remaining capacity tSOC at this time is 85%. On the other hand, when moving to a colder area than the point at the time of key start, the atmospheric pressure Pa decreases below the predetermined value ThI, so that the target battery remaining capacity tSOC becomes larger than 85%.
 図4の場合に対応付けて説明すると、自宅からスキー場に移動するとき、第4~第6の各実施形態では、目標バッテリ残容量tSOCが85%より95%へと大きくなる。この増大する目標バッテリ残容量tSOCが実現されるようにオルタネータの目標発電電圧が高められ、オルタネータの発電量が増加するため、実際のバッテリ残容量rSOCは、目標バッテリ残容量tSOCに追従して大きくなる。このため、スキー場のある寒い地域に到着してエンジンを停止し、その翌日にキー始動するときの実際のバッテリ残容量rSOC(≒tSOC)は、前日に自宅でキー始動したときの実際のバッテリ残容量rSOCよりも大きくなっている。この場合、実際のバッテリ残容量rSOCと、キー始動時のバッテリ最低電圧VbMinとの間には強い相関があり、実際のバッテリ残容量rSOCが大きいほど、キー始動時のバッテリ最低電圧VbMinは高くなる。このため、到着したスキー場でキー始動するときに図5のフローチャートの処理が実行されると、ステップS2でキー始動時のバッテリ最低電圧VbMinが所定値Va以上となってステップS3に進み、その他のアイドルストップ条件がOKであれば、ステップS4に進んでアイドルストップ許可フラグ=1となる。スキー場への移動中に目標バッテリ残容量tSOCを予め大きくしておくことにより、バッテリの充電状態をよくしておき、これによって、到着したスキー場でのキー始動時にアイドルストップが禁止されることがないようにする。 Referring to the case of FIG. 4, when moving from home to a ski resort, in each of the fourth to sixth embodiments, the target remaining battery capacity tSOC increases from 85% to 95%. The target power generation voltage of the alternator is increased so that this increasing target battery remaining capacity tSOC is realized, and the power generation amount of the alternator increases, so that the actual battery remaining capacity rSOC increases following the target battery remaining capacity tSOC. Become. For this reason, the actual remaining battery capacity rSOC (≈tSOC) when the engine is stopped after arriving at a cold area with a ski resort and the key is started the next day is the actual battery when the key is started at the previous day at home. It is larger than the remaining capacity rSOC. In this case, there is a strong correlation between the actual remaining battery capacity rSOC and the minimum battery voltage VbMin at the time of key start. The larger the actual remaining battery capacity rSOC, the higher the minimum battery voltage VbMin at the time of key start. . For this reason, when the process of the flowchart of FIG. 5 is executed when the key is started at the arrived ski resort, the battery minimum voltage VbMin at the time of key start becomes equal to or higher than the predetermined value Va in step S2, and the process proceeds to step S3. If the idle stop condition is OK, the process proceeds to step S4 where the idle stop permission flag = 1. By increasing the target remaining battery capacity tSOC in advance while moving to the ski area, the state of charge of the battery is improved, so that idling stop is prohibited when starting the key at the arrived ski area. So that there is no.
 このように、第4~第6の実施形態によっても、イグニッションキーのON操作からOFF操作までの間に車両がキー始動時の地点より寒い地域に移動するとき、目標バッテリ残容量をキー始動時より大きくする。これによって、キー始動時(初回のエンジン始動時)の地点よりスキー場への移動中にバッテリ41の充電余力として残されている充電可能代を使って充電することが可能となる。このため、移動先のスキー場でのキー始動時に、バッテリ41の最低電圧VbMinが所定電圧Va以上となり、アイドルストップが不要に禁止されてしまうことを抑制できる。 As described above, also in the fourth to sixth embodiments, when the vehicle moves to a colder region than the key starting point between the ignition key ON operation and the OFF operation, the target battery remaining capacity is set at the key starting time. Make it bigger. This makes it possible to charge using the chargeable charge remaining as the remaining charge capacity of the battery 41 during the movement from the point at the time of key start (at the time of initial engine start) to the ski resort. For this reason, it is possible to prevent the idle voltage stop from being prohibited unnecessarily because the minimum voltage VbMin of the battery 41 becomes equal to or higher than the predetermined voltage Va at the time of key start at the destination ski resort.
 上記図4とは別に、早朝の寒い時間帯にキー始動を行い、スキー場に到着したのが日中で、到着後直ぐにエンジンを停止させた場合を考える。到着したスキー場では、日中の外気温度が高く、翌朝は外気温度が氷点下になった場合を想定する。このような場合、キー始動時の地点からスキー場に到着してイグニッションキーをOFF操作するまでの間に、キー始動時の地点より外気温度があまり変化しないため、キー始動時の地点からスキー場に移動すると予想することが困難となってしまう。 Suppose that, apart from FIG. 4 above, the key start is performed in the early morning cold hours, the day when the ski arrives at the ski resort, and the engine is stopped immediately after arrival. It is assumed that the temperature of the outside air during the day is high and the outside temperature is below freezing the next morning. In such a case, since the outside air temperature does not change much from the point when the key is started until it reaches the ski resort from the point when the key is started and the ignition key is turned OFF, the ski resort starts from the point when the key is started. It will be difficult to expect to move to.
 このように、スキー場での日中の外気温度が高く、キー始動時の地点より外気温度があまり低下しない場合でも、大気圧力の所定時間当たり低下量dPa/dt、大気圧力の所定時間毎の圧力差dPaが生じ、大気圧力Paが低下してゆく。第4実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、大気圧力の所定時間当たり低下量(大気圧力の低下勾配)に基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。第5実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、大気圧力の所定時間毎の圧力差(大気圧力の低下量)に基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。第6実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、大気圧力(大気圧力そのもの)に基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。これによって、エンジンを停止した日中の外気温度が高い一方で、夜間に外気温度が一気に低下して翌朝に氷点下になるようなスキー場に移動する場合であっても、車両がキー始動時の地点より当該スキー場に移動することを直接的に予想できる。 As described above, even when the outdoor air temperature during the day at the ski resort is high and the outdoor air temperature does not decrease much from the point at the time of starting the key, the atmospheric pressure decrease amount dPa / dt per predetermined time and the atmospheric pressure every predetermined time A pressure difference dPa occurs, and the atmospheric pressure Pa decreases. According to the fourth embodiment, an area where the vehicle is colder than the point at the time of key start based on the amount of decrease in atmospheric pressure per predetermined time (decreasing gradient of atmospheric pressure) between the ON operation and the OFF operation of the ignition key. Predict whether or not to move to. According to the fifth embodiment, the vehicle is colder than the point at the time of starting the key based on the pressure difference (amount of decrease in the atmospheric pressure) of the atmospheric pressure every predetermined time from the ON operation to the OFF operation of the ignition key. Predict whether or not to move to the area. According to the sixth embodiment, whether or not the vehicle moves to a colder region than the point at the time of key start is predicted based on the atmospheric pressure (atmospheric pressure itself) between the ON operation and the OFF operation of the ignition key. To do. As a result, even when the outside air temperature during the day when the engine is stopped is high and the outside air temperature suddenly drops at night and moves to the freezing point the next morning, the vehicle will It is possible to directly expect to move to the ski area from the point.
 (第7実施形態)
 図18のフローチャートは、第7実施形態の車両の制御装置において、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図18に示すフローチャートの処理は、一定時間毎に実行する。ここでは、車両がキー始動時の地点より寒い地域に移動するか否かを予想するので、フローの演算周期は10ms毎といった短い時間間隔ではなく、数分毎といった長い時間間隔Δt[min]でよい。後述する図20のフローチャートも同じである。図18のフローチャートは、第6実施形態の図16のフローチャートと置き換わるもので、図16のフローチャートと同一の処理を行うステップについては、同一の符号を付している。図18のフローチャートでは、目標バッテリ残容量を設定するためのエンジンの運転条件は考えないものとする。
(Seventh embodiment)
The flowchart of FIG. 18 is a flowchart illustrating a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the seventh embodiment. The process of the flowchart shown in FIG. 18 is executed at regular time intervals. Here, since it is predicted whether or not the vehicle will move to a colder area than the key start point, the flow calculation cycle is not a short time interval such as every 10 ms, but a long time interval Δt [min] such as every few minutes. Good. The same applies to the flowchart of FIG. The flowchart of FIG. 18 replaces the flowchart of FIG. 16 of the sixth embodiment, and steps for performing the same processing as in the flowchart of FIG. 16 are denoted by the same reference numerals. In the flowchart of FIG. 18, it is assumed that engine operating conditions for setting the target battery remaining capacity are not considered.
 第6実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを大気圧力Paに基づいて予想した。第7実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、ナビゲーションシステム65で得られる標高データに基づいて予想する。 In the sixth embodiment, it is predicted based on the atmospheric pressure Pa whether or not the vehicle will move to a colder area than the key start point. In the seventh embodiment, it is predicted based on the altitude data obtained by the navigation system 65 whether or not the vehicle moves to an area colder than the point at the time of key start.
 第6実施形態と相違する部分を主に説明する。ステップS11でアイドルストップ許可フラグ=1であるとき判定すると、ステップS81に進む。ステップS81では、ナビゲーションシステム65で得られる現在の標高データHt[m]を読み込む。ステップS82では、標高データHtに基づいて、図19に示す関係を有するテーブルを検索することにより、目標バッテリ残容量tSOC[%]を正の値で算出する。図19に示すように、目標バッテリ残容量tSOCは、標高データHtが高くなるほど大きくなる。これは、標高データHtが高いほど(つまり寒くなるほど)、キー始動時のバッテリ最低電圧VbMinが低下するので、目標バッテリ残容量tSOCを大きくするためである。 The differences from the sixth embodiment will be mainly described. If it is determined in step S11 that the idle stop permission flag = 1, the process proceeds to step S81. In step S81, the current elevation data Ht [m] obtained by the navigation system 65 is read. In step S82, the target battery remaining capacity tSOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 19 based on the altitude data Ht. As shown in FIG. 19, the target remaining battery capacity tSOC increases as the altitude data Ht increases. This is because the higher the altitude data Ht (that is, the colder it is), the lower the battery minimum voltage VbMin at the time of key start is, so that the target battery remaining capacity tSOC is increased.
 ただし、標高データHtが所定値ThKを超える領域では、目標バッテリ残容量tSOCは目標バッテリ残容量の上限値MAX(一定値)である。上限値MAXは、第6実施形態と同様に95%である。図4の場合に対応付けて説明すると、標高データHtが所定値ThKを超える領域はスキー場である。標高データHtが所定値ThKを超える領域で目標バッテリ残容量tSOCを上限値MAXとするのは、目標バッテリ残容量tSOCを大きくする場合でも、上限値MAXが限度であるためである。 However, in a region where the altitude data Ht exceeds the predetermined value ThK, the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity. The upper limit value MAX is 95% as in the sixth embodiment. In association with the case of FIG. 4, the region where the elevation data Ht exceeds the predetermined value ThK is a ski resort. The reason why the target battery remaining capacity tSOC is set to the upper limit MAX in the region where the altitude data Ht exceeds the predetermined value ThK is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
 一方、標高データHtが所定値ThJ未満の領域では、目標バッテリ残容量tSOCは、バッテリ41の充電余力を大きくした一定値(例えば85%)である。図4の場合に対応付けて説明すると、標高データHtが所定値ThJ未満の領域は自宅である。標高データHtが所定値ThJ未満の領域で目標バッテリ残容量tSOCを一定値とするのは、次の理由による。すなわち、標高データHtが所定値ThJ未満の領域では、キー始動時のバッテリ最低電圧が所定電圧Va以上となりアイドルストップが禁止されることがないので、バッテリ41の充電余力を狭める必要がないためである。 On the other hand, in the region where the altitude data Ht is less than the predetermined value ThJ, the target battery remaining capacity tSOC is a constant value (for example, 85%) in which the remaining charge capacity of the battery 41 is increased. When described in association with the case of FIG. 4, the region where the elevation data Ht is less than the predetermined value ThJ is home. The reason why the target battery remaining capacity tSOC is set to a constant value in the region where the altitude data Ht is less than the predetermined value ThJ is as follows. In other words, in the region where the altitude data Ht is less than the predetermined value ThJ, the minimum battery voltage at the time of key start becomes equal to or higher than the predetermined voltage Va, and idle stop is not prohibited, so there is no need to narrow the remaining charge capacity of the battery 41. is there.
 (第8実施形態)
 図20のフローチャートは、第8実施形態の車両の制御装置において、目標バッテリ残容量tSOCを設定する処理の流れを示すフローチャートである。図20に示すフローチャートの処理は、一定時間毎に実行する。図20のフローチャートは、第6実施形態の図16のフローチャートと置き換わるもので、図16のフローチャートと同一の処理を行うステップについては、同一の符号を付している。図20のフローチャートでも、目標バッテリ残容量を設定するためのエンジンの運転条件は考えないものとする。
(Eighth embodiment)
The flowchart of FIG. 20 is a flowchart showing a flow of processing for setting the target battery remaining capacity tSOC in the vehicle control apparatus of the eighth embodiment. The process of the flowchart shown in FIG. 20 is executed at regular time intervals. The flowchart of FIG. 20 replaces the flowchart of FIG. 16 of the sixth embodiment, and steps that perform the same processing as the flowchart of FIG. 16 are denoted by the same reference numerals. Even in the flowchart of FIG. 20, it is assumed that the engine operating conditions for setting the target battery remaining capacity are not considered.
 第8実施形態では、車両がキー始動時の地点より寒い地域に移動するか否かを、車両が向かう目的地の予想最低気温Tatmminに基づいて予想する。ここで、気象データ69には、少なくともキー始動時の地点及びキー始動時の地点より寒い地域の気象データが含まれる。また、車両が向かう目的地は、キー始動時の地点より寒い地域にあるものとする。 In the eighth embodiment, whether or not the vehicle moves to an area colder than the point at the time of key start is predicted based on the predicted minimum temperature Tatmmin of the destination to which the vehicle heads. Here, the meteorological data 69 includes at least the point at the time of key start and the point of meteorological data colder than the point at the time of key start. Further, it is assumed that the destination to which the vehicle heads is in an area colder than the point at the time of key start.
 第6実施形態と相違する部分を主に説明する。ステップS11でアイドルストップ許可フラグ=1であると判定すると、ステップS91に進む。ステップ91では、目的地の予想最低気温Tatmmin[℃]を読み込む。ここで、目的地の予想最低気温Tatmminは、ITS64により取得される気象データ69と、ナビゲーションシステム65に入力される目的地とから求めることができる。ステップS92では、目的地の予想最低気温Tatmminに基づいて、図21に示す関係を有するテーブルを検索することにより、目標SOC[%]を正の値で算出する。図21に示すように、目標バッテリ残容量tSOCは、目的地の予想最低気温Tatmminが低くなるほど大きくなる。これは、目的地の予想最低気温Tatmminが低いほど(つまり寒くなるほど)、キー始動時のバッテリ最低電圧VbMinが低下するので、目標SOCを大きくするためである。 The differences from the sixth embodiment will be mainly described. If it is determined in step S11 that the idle stop permission flag = 1, the process proceeds to step S91. In step 91, the expected minimum temperature Tatmmin [° C.] at the destination is read. Here, the predicted minimum temperature Tatmmin of the destination can be obtained from the weather data 69 acquired by the ITS 64 and the destination input to the navigation system 65. In step S92, the target SOC [%] is calculated as a positive value by searching a table having the relationship shown in FIG. 21 based on the predicted minimum temperature Tatmmin of the destination. As shown in FIG. 21, the target remaining battery capacity tSOC increases as the predicted minimum temperature Tatmmin at the destination decreases. This is because the lower the expected minimum temperature Tatmmin of the destination (that is, the lower the temperature), the lower the battery minimum voltage VbMin at the time of key start, so that the target SOC is increased.
 ただし、目的地の予想最低気温Tatmminが所定値ThL未満の温度域では、目標バッテリ残容量tSOCは、目標バッテリ残容量の上限値MAX(一定値)である。上限値MAXは、第6実施形態と同様に95%である。図4の場合に対応付けて説明すると、目的地の予想最低気温Tatmminが所定値ThL未満の温度域はスキー場である。目的地の予想最低気温Tatmminが所定値ThL未満の温度域で上限値MAXとするのは、目標バッテリ残容量tSOCを大きくする場合でも、上限値MAXが限度であるためである。 However, the target battery remaining capacity tSOC is the upper limit value MAX (a constant value) of the target battery remaining capacity in the temperature range where the predicted minimum temperature Tatmmin of the destination is less than the predetermined value ThL. The upper limit value MAX is 95% as in the sixth embodiment. When explaining in association with the case of FIG. 4, the temperature range where the expected minimum temperature Tatmmin of the destination is less than the predetermined value ThL is a ski resort. The reason why the upper limit MAX is set in the temperature range where the predicted minimum temperature Tatmmin of the destination is less than the predetermined value ThL is that the upper limit MAX is the limit even when the target battery remaining capacity tSOC is increased.
 一方、目的地の予想最低気温Tatmminが所定値ThMを超える温度域では、目標バッテリ残容量tSOCは、バッテリ41の充電余力を大きくした一定値(例えば85%)である。図4の場合に対応付けて説明すると、目的地の予想最低気温Tatmminが所定値ThMを超える温度域は自宅付近である。目的地の予想最低気温Tatmminが所定値ThMを超える温度域で目標バッテリ残容量tSOCを一定値とするのは、次の理由による。すなわち、目的地の予想最低気温Tatmminが所定値ThMを超える温度域では、キー始動時のバッテリ最低電圧が所定電圧Va以上となりアイドルストップが禁止されることがないので、バッテリ41の充電余力を狭める必要がないためである。 On the other hand, in the temperature range where the predicted minimum temperature Tatmmin of the destination exceeds the predetermined value ThM, the target battery remaining capacity tSOC is a constant value (for example, 85%) in which the remaining charge capacity of the battery 41 is increased. Describing in association with the case of FIG. 4, the temperature range where the predicted minimum temperature Tatmmin of the destination exceeds the predetermined value ThM is near the home. The reason why the target remaining battery capacity tSOC is set to a constant value in the temperature range where the predicted minimum temperature Tatmmin of the destination exceeds the predetermined value ThM is as follows. That is, in the temperature range where the predicted minimum temperature Tatmmin of the destination exceeds the predetermined value ThM, the battery minimum voltage at the time of key start becomes equal to or higher than the predetermined voltage Va, and idle stop is not prohibited, so that the remaining charge capacity of the battery 41 is narrowed. This is because there is no need.
 ここで、図18に示す第7実施形態、図20に示す第8実施形態の作用をまとめて説明する。第7実施形態では、キー始動時の地点よりある寒い地域に移動しなれば、標高データHtは所定値ThJ未満の領域にあり、目標バッテリ残容量tSOCは85%である。第8実施形態では、キー始動時の地点より寒い地域に移動しなれば、目的地の予想最低気温Tatmminは所定値ThMを超える温度域にあり、目標バッテリ残容量tSOCは85%である。 Here, the operations of the seventh embodiment shown in FIG. 18 and the eighth embodiment shown in FIG. 20 will be described together. In the seventh embodiment, if the vehicle does not move to a certain cold area from the point at the time of key start, the altitude data Ht is in an area less than the predetermined value ThJ, and the target battery remaining capacity tSOC is 85%. In the eighth embodiment, if the vehicle does not move to an area colder than the point at the time of key start, the expected minimum temperature Tatmmin of the destination is in a temperature range exceeding a predetermined value ThM, and the target battery remaining capacity tSOC is 85%.
 一方、キー始動時の地点より寒い地域に移動する場合、第7実施形態では、標高データHtが所定値ThJより増加していくので、目標バッテリ残容量tSOCが85%より大きくなっていく。第8実施形態では、キー始動時の地点より寒い地域に移動する場合、目的地の予想最低気温Tatmminが所定値ThMより減少していくので、目標バッテリ残容量tSOCが85%より大きくなっていく。 On the other hand, when moving to a colder area than the key start point, in the seventh embodiment, since the altitude data Ht increases from the predetermined value ThJ, the target battery remaining capacity tSOC becomes larger than 85%. In the eighth embodiment, when moving to a colder area than the point at the time of key start, the expected minimum temperature Tatmmin at the destination decreases from the predetermined value ThM, so the target battery remaining capacity tSOC becomes larger than 85%. .
 図4の場合に対応付けて説明すると、スキー場に移動するとき、第7、第8の各実施形態では、目標バッテリ残容量tSOCが85%から95%へと大きくなる。この増大する目標バッテリ残容量tSOCが実現されるようにオルタネータの目標発電電圧が高められ、オルタネータの発電量が増加するため、実際のバッテリ残容量rSOCが目標バッテリ残容量tSOCに追従して大きくなる。このため、スキー場のある寒い地域に到着してエンジンを停止し、その翌日にキー始動するときの実際のバッテリ残容量rSOC(≒tSOC)は、前日に自宅でキー始動したときの実際のバッテリ残容量rSOCよりも大きくなる。この場合、実際のバッテリ残容量rSOCと、キー始動時のバッテリ最低電圧VbMinとの間には強い相関があり、実際のバッテリ残容量rSOCが大きいほどキー始動時のバッテリ最低電圧VbMinが高くなる。このため、到着したスキー場でキー始動するときに図5のフローチャートの処理が実行されると、ステップS2でキー始動時のバッテリ最低電圧VbMinが所定値Va以上となってステップS3に進み、その他のアイドルストップ条件がOKであれば、ステップS4に進んでアイドルストップ許可フラグ=1となる。スキー場への移動中に目標バッテリ残容量tSOCを予め大きくしておくことにより、バッテリの充電状態をよくしておき、これによって到着したスキー場でのキー始動時に、アイドルストップが禁止されることがないようにする。 Referring to FIG. 4, the target battery remaining capacity tSOC increases from 85% to 95% in the seventh and eighth embodiments when moving to the ski resort. The target power generation voltage of the alternator is increased so that the increasing target battery remaining capacity tSOC is realized, and the power generation amount of the alternator increases, so that the actual battery remaining capacity rSOC increases following the target battery remaining capacity tSOC. . For this reason, the actual remaining battery capacity rSOC (≈tSOC) when the engine is stopped after arriving at a cold area with a ski resort and the key is started the next day is the actual battery when the key is started at the previous day at home. It becomes larger than the remaining capacity rSOC. In this case, there is a strong correlation between the actual remaining battery capacity rSOC and the minimum battery voltage VbMin at the time of key start. The larger the actual remaining battery capacity rSOC, the higher the minimum battery voltage VbMin at the time of key start. For this reason, when the process of the flowchart of FIG. 5 is executed when the key is started at the arrived ski resort, the battery minimum voltage VbMin at the time of key start becomes equal to or higher than the predetermined value Va in step S2, and the process proceeds to step S3. If the idle stop condition is OK, the process proceeds to step S4 where the idle stop permission flag = 1. By increasing the target remaining battery capacity tSOC in advance while moving to the ski area, the state of charge of the battery is improved, so that idling stop is prohibited at the time of key start at the arrived ski area. So that there is no.
 このように、第7、第8の実施形態によっても、イグニッションキーのON操作からOFF操作までの間に車両がキー始動時の地点からスキー場に移動するとき、目標バッテリ残容量tSOCをキー始動時より大きくする。これによって、キー始動時(初回のエンジン始動時)の地点からスキー場への移動中にバッテリ41の充電余力として残されている充電可能代を使って充電することが可能となる。このため、移動先のスキー場でのキー始動時にバッテリ41の最低電圧VbMinが所定電圧Va以上となり、アイドルストップが不要に禁止されてしまうことを抑制できる。 As described above, according to the seventh and eighth embodiments, when the vehicle moves from the key start point to the ski resort between the ignition key ON operation and the OFF operation, the target battery remaining capacity tSOC is key-started. Make it bigger than time. This makes it possible to charge using the chargeable charge remaining as the remaining charge capacity of the battery 41 while moving from the point at the time of key start (at the time of initial engine start) to the ski resort. For this reason, it is possible to suppress that the minimum voltage VbMin of the battery 41 becomes equal to or higher than the predetermined voltage Va at the time of key start at the destination ski area, and idle stop is prohibited unnecessarily.
 第7実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、標高データHtに基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。これによって、外気温度センサ68や大気圧力センサ73を備えなくても、車両がキー始動時の地点より寒い地域に移動することを予想できる。 According to the seventh embodiment, whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the altitude data Ht between the ON operation and the OFF operation of the ignition key. Thus, even if the outside air temperature sensor 68 and the atmospheric pressure sensor 73 are not provided, it can be predicted that the vehicle moves to an area colder than the point at the time of key start.
 第8実施形態によれば、イグニッションキーのON操作からOFF操作までの間に、気象データ69に基づいて、車両がキー始動時の地点より寒い地域に移動するか否かを予想する。これによって、第7実施形態と同様に、外気温度センサ68や大気圧力センサ73を備えなくても、車両がキー始動時の地点より寒い地域に移動することを予想できる。また、気象データ69に基づいて予想するので、急な気象変化にも対応可能である。 According to the eighth embodiment, whether or not the vehicle moves to a colder area than the point at the time of key start is predicted based on the weather data 69 between the ON operation and the OFF operation of the ignition key. As a result, similarly to the seventh embodiment, the vehicle can be expected to move to an area colder than the point at the time of key start without providing the outside air temperature sensor 68 and the atmospheric pressure sensor 73. Further, since the prediction is based on the weather data 69, it is possible to cope with a sudden change in weather.
 本発明は、上述した実施形態に限定されることはなく、様々な変形や応用が可能である。 The present invention is not limited to the above-described embodiment, and various modifications and applications are possible.
 本願は、2013年4月11日に日本国特許庁に出願された特願2013-083194に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-083194 filed with the Japan Patent Office on April 11, 2013, the entire contents of which are incorporated herein by reference.

Claims (6)

  1.  イグニッションキーのON操作を受け初回のエンジン始動を行った後に、エンジンの運転状態に応じてエンジンの自動停止及びエンジンの再始動を行い得る自動停止・再始動実行手段と、
     前記初回のエンジン始動時にクランキングにより低下するバッテリの最低電圧が所定電圧を下回るとき、エンジンの自動停止を禁止する自動停止禁止手段と、
     目標バッテリ残容量を設定する目標バッテリ残容量設定手段と、
     前記目標バッテリ残容量と実バッテリ残容量とに基づいて前記バッテリの充電制御を行う充電制御手段と
    を備え、
     前記目標バッテリ残容量設定手段は、前記イグニッションキーのON操作から前記イグニッションキーのOFF操作までの間に、前記エンジンを搭載している車両が前記初回のエンジン始動時の地点より寒い地域に移動するとき、前記目標バッテリ残容量を前記初回のエンジン始動時より大きくする、
    車両の制御装置。
    Automatic stop / restart execution means capable of automatically stopping the engine and restarting the engine according to the operating state of the engine after the engine is started for the first time in response to the ignition key ON operation;
    Automatic stop prohibiting means for prohibiting the automatic stop of the engine when the minimum voltage of the battery that is lowered by cranking at the time of the first engine start falls below a predetermined voltage;
    Target battery remaining capacity setting means for setting the target battery remaining capacity;
    Charge control means for performing charge control of the battery based on the target battery remaining capacity and the actual battery remaining capacity;
    The target battery remaining capacity setting means moves between the ignition key ON operation and the ignition key OFF operation so that the vehicle equipped with the engine moves to a colder area than the point at the time of the first engine start. When the target battery remaining capacity is larger than the initial engine start,
    Vehicle control device.
  2.  請求項1に記載の車両の制御装置において、
     外気温度または吸気温度を検出する温度検出手段をさらに備え、
     前記目標バッテリ残容量設定手段は、前記イグニッションキーのON操作から前記イグニッションキーのOFF操作までの間に、前記外気温度または前記吸気温度の低下勾配、前記外気温度または前記吸気温度の低下量、前記外気温度そのものまたは前記吸気温度そのものの少なくとも一つに基づいて、車両が前記初回のエンジン始動時の地点より寒い地域に移動するか否かを予想する、
    車両の制御装置。
    The vehicle control device according to claim 1,
    A temperature detecting means for detecting the outside air temperature or the intake air temperature;
    The target battery remaining capacity setting means includes a decrease gradient of the outside air temperature or the intake air temperature, a decrease amount of the outside air temperature or the intake air temperature, from the ON operation of the ignition key to the OFF operation of the ignition key, Predicting whether the vehicle will move to a colder area than the point at the time of the first engine start, based on at least one of the outside air temperature itself or the intake air temperature itself;
    Vehicle control device.
  3.  請求項1に記載の車両の制御装置において、
     大気圧力を検出する大気圧力検出手段をさらに備え、
     前記目標バッテリ残容量設定手段は、前記イグニッションキーのON操作から前記イグニッションキーのOFF操作までの間に、前記大気圧力の低下勾配、前記大気圧力の低下量、前記大気圧力そのものの少なくとも一つに基づいて、車両が前記初回のエンジン始動時の地点より寒い地域に移動するか否かを予想する、
    車両の制御装置。
    The vehicle control device according to claim 1,
    It further comprises atmospheric pressure detection means for detecting atmospheric pressure,
    The target remaining battery capacity setting means sets at least one of the atmospheric pressure decrease gradient, the atmospheric pressure decrease amount, and the atmospheric pressure itself during the period from the ignition key ON operation to the ignition key OFF operation. On the basis of whether or not the vehicle will move to a colder area than the initial engine start point,
    Vehicle control device.
  4.  請求項1に記載の車両の制御装置において、
     GPSからの信号を受信するナビゲーションシステムをさらに備え、
     前記目標バッテリ残容量設定手段は、前記イグニッションキーのON操作から前記イグニッションキーのOFF操作までの間に、前記GPSからの信号に含まれる標高データに基づいて、車両が前記初回のエンジン始動時の地点より寒い地域に移動するか否かを予想する、
    車両の制御装置。
    The vehicle control device according to claim 1,
    A navigation system for receiving signals from GPS;
    The target battery remaining capacity setting means is configured such that when the vehicle starts the first engine start based on altitude data included in a signal from the GPS between an ON operation of the ignition key and an OFF operation of the ignition key. Predict whether or not to move to an area colder than the point,
    Vehicle control device.
  5.  請求項1に記載の車両の制御装置において、
     気象データを受信する道路交通システムをさらに備え、
     前記目標バッテリ残容量設定手段は、前記イグニッションキーのON操作から前記イグニッションキーのOFF操作までの間に、前記気象データに基づいて、車両が前記初回のエンジン始動時の地点より寒い地域に移動するか否かを予想する、
    車両の制御装置。
    The vehicle control device according to claim 1,
    A road traffic system for receiving weather data;
    The target battery remaining capacity setting means moves the vehicle to a colder region than the point at the time of the first engine start based on the weather data between the ignition key ON operation and the ignition key OFF operation. Predict whether or not
    Vehicle control device.
  6.  イグニッションキーのON操作を受け初回のエンジン始動を行った後に、エンジンの運転状態に応じてエンジンの自動停止及びエンジンの再始動を行い得る自動停止・再始動機能と、
     前記初回のエンジン始動時にクランキングにより低下するバッテリの最低電圧が所定電圧を下回るとき、エンジンの自動停止を禁止する機能と、
    を備えた車両の制御方法であって、
     前記イグニッションキーのON操作から前記イグニッションキーのOFF操作までの間に、前記エンジンを搭載している車両が前記初回のエンジン始動時の地点より寒い地域に移動するとき、目標バッテリ残容量が前記初回のエンジン始動時より大きくなるように設定し、
     設定された目標バッテリ残容量と実バッテリ残容量とに基づいて前記バッテリの充電制御を行う、
    車両の制御方法。
    An automatic stop / restart function that can automatically stop the engine and restart the engine according to the operating state of the engine after the engine is started for the first time in response to the ignition key ON operation;
    A function of prohibiting the automatic stop of the engine when the minimum voltage of the battery that is lowered by cranking at the time of the first engine start falls below a predetermined voltage;
    A vehicle control method comprising:
    When the vehicle equipped with the engine moves to a colder region than the point at the time of the first engine start between the ignition key ON operation and the ignition key OFF operation, the target battery remaining capacity is Set to be larger than when the engine starts,
    Performing charging control of the battery based on the set target battery remaining capacity and the actual battery remaining capacity,
    Vehicle control method.
PCT/JP2014/058908 2013-04-11 2014-03-27 Vehicle control device and vehicle control method WO2014168017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013083194 2013-04-11
JP2013-083194 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014168017A1 true WO2014168017A1 (en) 2014-10-16

Family

ID=51689429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058908 WO2014168017A1 (en) 2013-04-11 2014-03-27 Vehicle control device and vehicle control method

Country Status (1)

Country Link
WO (1) WO2014168017A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268719A (en) * 2000-03-23 2001-09-28 Toyota Motor Corp Battery charging controller for hybrid vehicle
JP2004245190A (en) * 2003-02-17 2004-09-02 Nissan Motor Co Ltd Hybrid vehicle
JP2008016229A (en) * 2006-07-03 2008-01-24 Mazda Motor Corp Control device of battery for vehicle
JP2009191722A (en) * 2008-02-14 2009-08-27 Nissan Motor Co Ltd Start control device and start control method for idling stop vehicle
JP2009227074A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Hybrid vehicle and control method thereof
JP2013167219A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Vehicle control device, vehicle, vehicle control method, driving environment prediction device, and driving environment prediction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268719A (en) * 2000-03-23 2001-09-28 Toyota Motor Corp Battery charging controller for hybrid vehicle
JP2004245190A (en) * 2003-02-17 2004-09-02 Nissan Motor Co Ltd Hybrid vehicle
JP2008016229A (en) * 2006-07-03 2008-01-24 Mazda Motor Corp Control device of battery for vehicle
JP2009191722A (en) * 2008-02-14 2009-08-27 Nissan Motor Co Ltd Start control device and start control method for idling stop vehicle
JP2009227074A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Hybrid vehicle and control method thereof
JP2013167219A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Vehicle control device, vehicle, vehicle control method, driving environment prediction device, and driving environment prediction method

Similar Documents

Publication Publication Date Title
US10532727B2 (en) Method and device for controlling full load mode of hybrid vehicle
US10493977B2 (en) Apparatus and method for controlling start of engine for mild hybrid electric vehicle
JP5889750B2 (en) Vehicle power supply system
US9415773B2 (en) Predictive engine pull up and pull down in hybrid vehicle
WO2016098327A1 (en) Hybrid vehicle control device
JP5472527B2 (en) Vehicle control device
US20040174018A1 (en) Power generation controller for AC generator
WO2002103179A1 (en) Device and method for automatic stop control of internal combustion engine for vehicle
JP2010209864A (en) Vehicle control device
JP2013252765A (en) Drive device of vehicle
JP4798071B2 (en) Automatic engine stop device
KR20210003350A (en) Method for Engine Restart Control of Vehicle
WO2019026668A1 (en) Engine startup control device
CN114592975A (en) Engine control method and device
WO2014168017A1 (en) Vehicle control device and vehicle control method
JP6060535B2 (en) Vehicle drive device
KR101966534B1 (en) Heating control method using navigation
JP4720795B2 (en) Battery charger
CN108340905B (en) Method for controlling driving of hybrid vehicle
KR101765538B1 (en) Apparatus and method for controlling engin of hybrid vehicle
JP2004324588A (en) Engine control system
JP2017095098A (en) Vehicular drive apparatus
CN108590912B (en) Engine control method, selective control method and selective control system
JP6155558B2 (en) Vehicle drive device
JP6738921B2 (en) In-vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP