WO2014166130A1 - 用于柔性直流输电系统交流侧过电压保护装置及保护方法 - Google Patents

用于柔性直流输电系统交流侧过电压保护装置及保护方法 Download PDF

Info

Publication number
WO2014166130A1
WO2014166130A1 PCT/CN2013/074826 CN2013074826W WO2014166130A1 WO 2014166130 A1 WO2014166130 A1 WO 2014166130A1 CN 2013074826 W CN2013074826 W CN 2013074826W WO 2014166130 A1 WO2014166130 A1 WO 2014166130A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
protection device
converter
voltage
overvoltage
Prior art date
Application number
PCT/CN2013/074826
Other languages
English (en)
French (fr)
Inventor
荆平
邱宇峰
周飞
陆振纲
Original Assignee
国家电网公司
国网智能电网研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网智能电网研究院 filed Critical 国家电网公司
Publication of WO2014166130A1 publication Critical patent/WO2014166130A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1252Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to overvoltage in input or output, e.g. by load dump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Definitions

  • the invention relates to the field of flexible direct current transmission systems, in particular to an AC side overvoltage protection device and a protection method for a flexible direct current transmission system. Background technique
  • Flexible DC transmission is a new type of high-voltage direct current transmission technology. It uses a voltage source type converter to convert traditional alternating current into direct current at a power source such as a hydropower plant or a thermal power plant, and sends the power through a transmission line such as an overhead line or a cable. To the far side of the load. Compared with the traditional high-voltage direct current transmission, it has the advantages of strong controllability, easy reversal of the current flow, and no need for reactive compensation.
  • the flexible DC transmission system consists of three parts, including two converter stations at the power supply and load, and a DC cable or overhead line connecting the two stations.
  • the core equipment is a flexible DC converter valve, and its safety needs to pass through the protection system. Get a reliable guarantee.
  • the converter station has a converter valve 5 switchable between the AC line I and the DC line 8, comprising a power semiconductor valve 9 extending between the AC line I and the DC line 8, through which the power parameters are Conversion between AC and DC.
  • a converter transformer 3 between the AC line I and the AC line II, which is star-connected on the I-valve side of the AC line, and the neutral point is grounded through the resistor 6.
  • the fault of the flexible DC converter station is generally divided into three types: AC side fault, DC side fault and converter valve fault.
  • the AC and DC side fault protection is protected by the station control system (by voltage transformer, current transformer, AC/DC side filter). , transformer protection and other components are composed).
  • the DC protection system in the flexible DC converter station mainly judges the DC system fault condition through DC undervoltage and overvoltage protection.
  • the AC line I single phase or DC line 8 in the converter station has a single pole ground short circuit fault
  • the AC line I The non-faulty phase voltage may increase to 1.5 to 2 times the normal operating voltage, and the power semiconductor valve 9 may be damaged by excessively high fault voltage.
  • the conventional power semiconductor valve 9 protection measures are mainly parallel with no gap MOV.
  • the protection method generally connects the gapless MOV in parallel with the power semiconductor valve 9, and utilizes the nonlinear characteristic of the voltage and current of the MOV to consume the energy that may generate the overvoltage through the MOV, thereby protecting the protected device from the overvoltage.
  • this method has defects such as difficulty in setting the operating parameters, excessive energy stress, and uncontrollable conduction.
  • Other traditional line protection devices such as the side The thyristor switch has the disadvantages of complex structure, slow operation time and low overcurrent capability.
  • the parallel increase of the protection device of the present invention on the grounding resistance of the converter transformer can effectively reduce the overvoltage of the AC line and avoid damage to the inside of the valve body of the converter valve.
  • the object of the present invention is to provide an AC side overvoltage protection device and a protection method suitable for a flexible DC transmission system, and the protection device uses an overvoltage or forced breakdown component to improve overvoltage protection performance, which is good.
  • the problem of over-voltage of the AC line in the station caused by the fault of the flexible DC transmission system is solved.
  • the AC line I non-fault phase voltage will rise.
  • the grounding breakdown gap is adjusted.
  • the protection device is not turned on, the power transmission system can normally transmit power, and once the overvoltage reaches the set value, the protection device is broken down. An electric spark is generated, and a short-circuit current is introduced into the ground through the gap, and the over-voltage of the AC line I is suppressed, and the converter valve body 9 and the AC line I are prevented from being damaged by the overvoltage.
  • An AC side overvoltage protection device for a flexible DC transmission system comprising a flexible DC converter valve 5 switching between an AC line I and a DC line 8, the AC A converter transformer 3 is disposed between the line I and the AC line II, and the converter transformer 3 is star-connected on the side of the AC line I, wherein the neutral point is grounded through the grounding resistor 6; the converter transformer 3 is in the AC line
  • the II network side is a triangular or star connection;
  • the improvement is that the protection device 7 is connected in parallel to the grounding resistor 6 of the converter transformer 3, and is used for the failure of the AC line 8 or the DC line 8 to cause the AC line 8 to overvoltage or when the valve base controller detects When a short-circuit fault occurs in the AC line I, the operation causes the fault current to be turned on, the AC line I overvoltage level is suppressed, and the converter valve body 9 is protected.
  • the protection device 7 uses a conduction element of a spark gap; the spark gap is grounded.
  • the converter valve 5 is a three-phase six-bridge arm structure; each bridge arm is composed of a converter valve body 9; the converter valve body 9 is realized by a semiconductor switching element, including a switchable Semiconductor devices (such as IGBT, IGET,
  • the present invention is based on another object, and provides an AC side overvoltage protection method for a flexible direct current transmission system, which is improved in that the protection device 7 for the method is connected in parallel with the grounding resistor 6 of the converter transformer 3;
  • the method includes the following steps:
  • A. Detect whether the AC line is faulty, and the fault includes an AC line I single phase, a two phase ground fault, a DC line 8 single pole ground fault, and a bipolar short fault;
  • B. When a single-phase ground fault of the AC line I or a single-pole ground fault of the DC line occurs, the voltage across the spark gap rises to the breakdown voltage, and the spark gap is broken down;
  • control device detects an AC line short circuit fault, the control device sends a trigger command to the freewheeling gap to force the freewheeling gap to break the spark gap;
  • the return status information is sent to the control device, and a blocking signal is sent to the converter valve 5 to protect the valve body 9 of the converter valve.
  • the protection configuration method for detecting the voltage overvoltage of the AC line I is that the voltage of the AC line I exceeds a preset value, and the duration also reaches a preset value, the device is immediately turned on, and the valve base controller is immediately blocked.
  • the trigger pulse of the inverter is that the voltage of the AC line I exceeds a preset value, and the duration also reaches a preset value, the device is immediately turned on, and the valve base controller is immediately blocked.
  • the preset self-breakdown voltage is not broken down when the voltage of the AC line I is not overvoltage, and is broken down when the voltage of the AC line I is overvoltage, and the self-breakdown voltage (self-breakdown voltage magnitude) It is 1.3-1.8 times the line rated voltage) determined by theoretical calculation, computer simulation or experiment.
  • the magnitude of the discharge current at the time of breakdown (the discharge current at the time of breakdown is 1.5-20 line rated current) is determined by theoretical calculation, computer simulation or experiment.
  • the amount of energy absorbed during breakdown (the amount of energy absorbed during breakdown is the integral of the product of the voltage and current described above) is determined by theoretical calculations, computer simulations or experiments. Compared with the prior art, the beneficial effects achieved by the present invention are:
  • the protection device proposed by the invention has rapid action, strong flow energy, large absorption energy, and can quickly protect the valve body.
  • control protection device proposed by the invention does not require complicated structure and function.
  • the protection device proposed by the invention has the advantages of simple structure, low cost and easy realization.
  • FIG. 1 is a schematic diagram of an AC side overvoltage protection device for a flexible DC transmission system
  • 1-flexible DC converter station 2-AC line II; 3-conversion transformer; 4-AC line I; 5-commutation valve; 6-resistor; 7-protection device; 8-DC line; Converter valve body.
  • the present invention provides an AC line I and a converter valve overvoltage protection device for a flexible DC transmission system.
  • the protection device includes a converter valve 5 that switches between an AC line I and a DC line 8, the AC line.
  • a converter transformer 3 is disposed between the I and the AC line II, and the converter transformer 3 is star-connected on the side of the AC line I, wherein the neutral point is grounded through the grounding resistor 6; the converter transformer 3 is in the AC line II
  • the mesh side is a triangular or star connection.
  • the converter valve 5 is a three-phase six-bridge arm structure; each of the bridge arms is composed of a converter valve body 9; the converter valve body 9 is realized by a semiconductor switching element, including an IGBT and a diode connected in anti-parallel thereto. Its structural form includes, but is not limited to, modular multi-level, H-bridge chain, IGBT series.
  • the protection device 7 is connected in parallel with the neutral point grounding resistor 6 of the converter transformer for performing an action on the AC line I, the DC line fault causing an overvoltage or when the valve base controller detects the AC line I fault short circuit The fault current is turned on, the AC line I overvoltage level is suppressed, and the converter valve body 9 is protected.
  • the protection device 7 uses a spark gap conduction element; the spark gap is grounded.
  • the working principle of the spark gap adopted by the present invention is as follows:
  • the seal gap is automatically triggered when the spark gap is single-phase grounded by AC line I or the single-pole ground fault of the DC line causes its voltage to exceed the self-trigger voltage.
  • the preset breakdown voltage is required to ensure that the device will not be broken down when the AC line voltage is not over-voltage, and will be broken down when the AC line voltage is over-voltage.
  • the size is configured by theoretical calculation, computer simulation or Test confirmed.
  • the configuration of the discharge current at the time of breakdown is determined by theoretical calculation, computer simulation or experiment.
  • the configuration of the amount of energy absorbed during breakdown is determined by theoretical calculations, computer simulations or experiments.
  • the converter transformer side AC bus 2 is equivalent to a voltage source t / s and the internal impedance Z s in series, according to the converter transformer 3 ratio, and consider the transformer valve side leakage reactance X, will The voltage source t/ s and internal impedance are converted to the transformer valve side.
  • the transformer valve side voltage ⁇ / ⁇ 2 As an initial condition, according to the DC line at the fault ground (or AC line II single-phase) voltage is 0, establish a mathematical expression reflecting the voltage of the non-fault phase of the AC bus in the ground fault process, and calculate the fault voltage expression of the AC bus in the station according to the initial conditions and expressions;
  • the discharge current and absorbed energy of the spark gap under the fault voltage can be calculated.
  • the process of computer simulation is as follows: In the computer simulation software, a simulation model including the equivalent system, the transformer, the DC line in the station, the converter valve and the ground fault is established. The single-phase and two-phase ground fault simulations at different times are used to obtain the fault. The amplitude of the non-fault phase voltage of the AC bus in the station. The breakdown voltage of the spark gap is determined according to the voltage to ensure that the breakdown voltage is higher than the AC bus voltage in the station during normal operation (preferably 1.2 times), which is lower than the maximum value of the AC voltage at the time of failure. A model of the spark gap is established in the simulation software to determine the maximum current allowed by the spark gap based on the maximum current flowing through the spark gap at the fault. The energy required to be absorbed by the spark gap is determined based on the highest breakdown voltage and the maximum allowable current.
  • the invention also relates to a converter valve protection method for an AC line fault, wherein the protection device 7 for the method is connected in parallel to the valve side neutral point grounding resistor 6 of the converter transformer; the method comprises the following steps:
  • the fault includes an AC line I single phase ground 10, a DC line single pole ground fault 10, and a bipolar short circuit fault;
  • B When a single-phase grounding of the AC line I or a single-pole grounding fault of the DC line occurs, the voltage across the spark gap rises to a breakdown voltage, which breaks the spark gap;
  • step B when the AC line single pole ground fault occurs, that is, the voltage of the spark gap exceeds its self-trigger voltage, the spark gap is automatically triggered.
  • the protection device sends a trigger command to the spark gap to force trigger the freewheeling gap to break the spark gap;
  • the return status information is sent to the control device, and a blocking signal is sent to the converter valve 5 to protect the valve body 9 of the converter valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种用于柔性直流输电系统交流侧过电压保护装置及保护方法。保护装置并联在换流变压器阀侧接地电阻两端,用于在交流线路I(4)或直流线路(8)发生故障导致交流线路(8)过电压或当阀基控制器检测到交流线路I(4)发生短路故障时,进行动作引开故障电流,抑制交流线路I(4)过电压水平,保护换流阀阀体(9)。本发明提出的保护装置动作迅速,通流能量强,吸收能量大,能快速保护阀体。无需结构和功能复杂的控制保护装置。结构简单,成本低,易于实现;降低交流线路和换流阀绝缘成本;保障交流线路和换流阀设备安全;提高换流站抗故障能力;保障柔性直流输电系统安全稳定运行。

Description

用于柔性直流输电系统交流侧过电压保护装置及保护方法 技术领域
本发明涉及柔性直流输电系统领域,具体涉及一种用于柔性直流输电系统交流侧过 电压保护装置及保护方法。 背景技术
柔性直流输电是一种新型的高压直流输电技术, 其通过电压源型变流器, 在水电厂 或火电厂等电源处, 将传统交流电变为直流电, 通过架空线或电缆等传输线, 将电力送 至远方负荷处。 与传统高压直流输电相比, 具有可控性强, 潮流反转容易, 无需无功补 偿等优点。
柔性直流输电系统由三部分组成, 包括位于电源和负荷处的两个换流站, 及连接两 站的直流电缆或架空线, 其中核心设备是柔性直流换流阀, 其安全性需要通过保护系统 获得可靠的保证。
换流站中有一个可在交流线路 I及直流线路 8间切换的换流阀 5, 包括贯穿于交流 线路 I及直流线路 8间的功率半导体阀 9, 通过这样的功率半导体阀将电力参数在交流 和直流之间转换。 此外, 交流线路 I与交流线路 II之间有一个换流变压器 3, 它在交流 线路 I阀侧为星型接法, 其中性点通过电阻 6接地。
柔性直流换流站故障一般分为交流侧故障、 直流侧故障及换流阀故障三种, 交、 直 流侧故障保护由站控系统(由电压互感器、 电流互感器、 交直流侧滤波器保护、 变压器 保护等组件组成) 实现。
目前柔性直流换流站内直流保护系统主要通过直流欠压、过压保护来判断直流系统 故障情况, 在换流站内部交流线路 I单相或直流线路 8发生单极接地短路故障时, 交流 线路 I的非故障相电压可能会提高到正常运行电压的 1.5〜2倍,功率半导体阀 9可能会 承受过高的故障电压而损坏。
传统功率半导体阀 9 保护措施主要并联无间隙 MOV。 该保护方法通常将无间隙 MOV并联在功率半导体阀 9的两端, 利用 MOV的电压电流非线性特性, 将可能产生 过电压的能量通过 MOV消耗掉, 从而使被保护设备免受过压的冲击, 但该方法存在动 作参数难以整定、 能量应力过大、 导通无法控制等缺陷。 而其它传统线路保护装置如旁 路晶闸管开关存在结构复杂, 动作时间慢、 承受过电流能力低等缺点。 针对上述问题, 在换流变压器接地电阻上并联增加本发明的保护装置可以有效降低交流线路过电压,避 免对换流阀阀体内部造成损害。
发明内容
针对现有技术的不足,本发明的目的是提供一种适用于柔性直流输电系统的交流侧 过电压保护装置及保护方法, 保护装置采用过压或强制击穿元件提高过电压保护性能, 很好地解决了柔性直流输电系统故障引起的站内交流线路过电压问题。
通常交流线路 I发生单相接地故障或直流线路发生单极接地短路故障时, 交流线路 I非故障相电压会升高。 根据预先定义的电压, 调整接地击穿间隙, 当电压小于设定击 穿电压时, 保护装置不导通, 输电系统可正常传送功率, 而一旦过电压达到设定值, 保 护装置被击穿, 产生电火花, 短路电流通过该间隙被导入大地, 抑制交流线路 I过电压, 避免换流阀阀体 9和交流线路 I因过电压而损坏。
本发明的目的是采用下述技术方案实现的:
一种用于柔性直流输电系统交流侧过电压保护装置,所述保护装置包含在柔性直流 换流站 1, 包括在交流线路 I与直流线路 8间切换的柔性直流换流阀 5, 所述交流线路 I 与交流线路 II之间设有换流变压器 3,所述换流变压器 3在交流线路 I阀侧为星型连接, 其中性点通过接地电阻 6接地;所述换流变压器 3在交流线路 II网侧为三角型或星型连 接;
其改进之处在于, 所述保护装置 7, 并联于换流变压器 3的接地电阻 6两端, 用于 在交流线路 I或直流线路 8发生故障导致交流线路 8过电压或当阀基控制器检测到交流 线路 I发生短路故障时, 进行动作引开故障电流, 抑制交流线路 I过电压水平, 保护换 流阀阀体 9。
优选的, 所述保护装置 7采用火花间隙的导通元件; 所述火花间隙接地。
优选的, 所述换流阀 5为三相六桥臂结构; 每个桥臂均由换流阀阀体 9组成; 所述 换流阀阀体 9采用半导体开关元件实现, 包括可关断的半导体器件 (如 IGBT、 IGET、
IGCT或 GTO) 以及与其反并联的二极管。
本发明基于另一目的提供的一种用于柔性直流输电系统交流侧过电压保护方法,其 改进之处在于, 所述方法用的保护装置 7并联于换流变压器 3的接地电阻 6两端; 所述 方法包括下述步骤:
A、 检测交流线路是否发生故障, 所述故障包括交流线路 I单相、 两相接地故障、 直流线路 8单极接地故障和双极短路故障; B、 当发生交流线路 I单相接地故障或直流线路单极接地故障时, 火花间隙两端电 压升高至击穿电压, 将火花间隙击穿;
或当控制装置检测到交流线路短路故障时, 所述控制装置向续流间隙发送触发命 令, 强制触发续流间隙, 将火花间隙击穿;
火花间隙击穿后将故障电流引至大地;
C、火花间隙击穿后, 向控制装置发送返回状态信息, 并向换流阀 5下发闭锁信号, 实现保护换流阀阀体 9。
优选的, 检测到交流线路 I电压过压的保护配置方法为交流线路 I电压超过预先设 定值, 且持续时间也达到预先设定值, 则保装置立即导通, 同时阀基控制器立即闭锁换 流器的触发脉冲。
优选的, 预设的自击穿电压大小在交流线路 I电压未过压时未被击穿, 在交流线路 I电压过压时被击穿,其该自击穿电压大小(自击穿电压大小为 1.3-1.8倍线路额定电压) 通过理论计算、 计算机仿真或试验确定。
优选的, 击穿时放电电流大小(击穿时放电电流大小为 1.5-20线路额定电流)通过 理论计算、 计算机仿真或试验确定。
优选的, 击穿时吸收能量大小(击穿时吸收能量大小为上述电压与电流的乘积在时 间上的积分) 通过理论计算、 计算机仿真或试验确定。 与现有技术比, 本发明达到的有益效果是:
1、 本发明提出的保护装置动作迅速, 通流能量强, 吸收能量大, 能快速保护阀体。
2、 本发明提出的无需结构和功能复杂的控制保护装置。
3、 本发明提出的保护装置结构简单, 成本低, 易于实现。
4、 降低交流线路和换流阀绝缘成本;
5、 保障交流线路和换流阀设备安全;
6、 提高换流站抗故障能力;
7、 保障柔性直流输电系统安全稳定运行。
附图说明
图 1是用于柔性直流输电系统交流侧过电压保护装置示意图;
其中: 1-柔性直流换流站; 2-交流线路 II; 3-换流变压器; 4-交流线路 I; 5-换流阀; 6-电阻; 7-保护装置; 8-直流线路; 9-换流阀阀体。 具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细举例说明。
本发明提供的用于柔性直流输电系统交流线路 I和换流阀过电压保护装置如图 1所 示, 保护装置包括在交流线路 I与直流线路 8间切换的换流阀 5, 所述交流线路 I与交 流线路 II之间设有换流变压器 3, 所述换流变压器 3在交流线路 I阀侧为星型连接, 其 中性点通过接地电阻 6接地;所述换流变压器 3在交流线路 II网侧为三角型或星型连接。
换流阀 5为三相六桥臂结构; 每个桥臂均由换流阀阀体 9组成; 所述换流阀阀体 9 采用半导体开关元件实现, 包括 IGBT以及与其反并联的二极管。 其结构形式包括但不 限于模块化多电平、 H桥链式、 IGBT串联。
所述保护装置 7并联换流变压器的中性点接地电阻 6两端上, 用于在交流线路 I、 直流线路故障导致过电压或当阀基控制器检测到交流线路 I故障短路时, 进行动作引开 故障电流, 抑制交流线路 I过电压水平, 保护换流阀阀体 9。
保护装置 7采用火花间隙导通元件; 火花间隙接地。
本发明提供的采用的火花间隙的工作原理如下:
当火花间隙因交流线路 I单相接地或直流线路单极接地故障使其电压超过自触发电 压时, 密封间隙自动触发。
或当换流阀控制保护装置检测到换流交流线路 1(4)短路故障时, 通过光纤或电缆发 出强制触发命令使其间隙强制导通, 使短路电流快速流过密封间隙。
预设的击穿电压大小需保证装置在交流线路电压未过压时不会被击穿,而在交流线 路电压过压时会被击穿, 其大小的配置方法为通过理论计算、 计算机仿真或试验确定。 击穿时放电电流大小的配置方法为通过理论计算、 计算机仿真或试验确定。 击穿时吸收 能量大小的配置方法为通过理论计算、 计算机仿真或试验确定。
(一)根据柔性直流短路故障理论计算、 计算机仿真、 试验确定火花间隙的击穿电 压、 短路电流、 吸收能量具体内容如下:
理论计算的过程为:将换流变压器网侧交流母线 2等效为一个电压源 t/s和内阻抗 Zs 的串联,根据换流变压器 3变比 、并考虑变压器阀侧漏抗 X ,将电压源 t/s和内阻抗 折算至变压器阀侧。
等效到变压器阀侧的电源电动势为: Us2 = kUs ',
内阻为: Zs2 = k2Zs + XL ',
以正常运行时的变压器阀侧电压 ί/ϊ2。作为初始条件, 根据故障接地处直流线路 (或 交流线路 II单相)电压为 0的特点, 建立反映交流母线非故障相的电压在接地故障过程 的数学表达式, 根据初始条件和表达式计算得站内交流母线的故障电压表达式;
故障后交流母线非故障相电压 (0为换流变压器阀侧初始电压 t/s2。、线路阻抗 zs2 和接地阻抗 2„的函数: αοι(0 = ^Ρ([/χ2。,Ζχ2,Ζ„,0 ; 表示时间。 根据各相电压确定火花间隙的击穿电压,确保该击穿电压高于正常运行时站内交流 线路电压峰值(优选的为 1.2倍), 低于故障时交流母线电压的最大值。 结合火花间隙的 数学模型, 可计算得在故障电压作用下火花间隙的放电电流、 吸收能量。
计算机仿真的过程为: 在计算机仿真软件中建立包含等值系统、 变压器、 站内直流 线路、 换流阀和接地故障的仿真模型, 通过不同时刻的单相、 两相接地故障仿真, 得到 故障时站内交流母线非故障相电压的幅值。 根据该电压确定火花间隙的击穿电压, 确保 该击穿电压高于正常运行时站内交流母线电压(优选的为 1.2倍),低于故障时交流电压 的最大值。 在仿真软件中建立火花间隙的模型, 根据故障时火花间隙流过的最大电流, 确定火花间隙允许的最大电流。根据最高击穿电压和允许最大电流确定火花间隙需要吸 收的能量。
(二)根据击穿电压确定火花间隙的间隔距离;击穿电压 U是气体压力 Ρ以及两电 极间距离 d和绝对温度 T的函数: U=f (pd/T)。
(三)将火花间隙并联一端安装于换流变压器阀侧中性点接地电阻 6上, 另一端接 地;
(四) 如附图 1当发生交流线路 I单相、 两相接地或直流线路单极接地故障时, 火 花间隙两端电压升高至击穿电压,从而将火花间隙击穿;或当交流线路发生短路故障时, 电压测量装置或保护装置监测火花间隙两端电压, 触发火花间隙, 通过触发间隙强制触 发续流间隙, 将火花间隙击穿。
(五)短路故障电流从火花间隙中流过, 抑制了站内交流线路过电压水平, 避免了 换流阀阀体的过压;
(六)火花间隙击穿后, 向控制保护装置返回状态信息, 控制保护装置检测到火花 间隙击穿的同时, 向换流阀下发闭锁信号。
本发明还涉及一种用于交流线路故障的换流阀保护方法, 所述方法用的保护装置 7 并联于换流变压器阀侧中性点接地电阻 6两端; 所述方法包括下述步骤:
A、 检测保护装置是否发生故障, 所述故障包括交流线路 I单相接地 10、 直流线路 单极接地故障 10和双极短路故障; B、 当发生交流线路 I单相接地或直流线路单极接地故障时, 火花间隙两端电压升 高至击穿电压, 击穿火花间隙;
所述步骤 B中, 当发生交流线路单极接地故障时, 即火花间隙的电压超过其自触发 电压, 火花间隙自动触发。
或当发生交流线路短路故障时, 所述保护装置向火花间隙发送触发命令, 强制触发 续流间隙, 将火花间隙击穿;
C、火花间隙击穿后, 向控制装置发送返回状态信息, 并向换流阀 5下发闭锁信号, 实现保护换流阀阀体 9。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管参照 上述实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解: 依然可以 对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修 改或者等同替换, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求
1、 一种用于柔性直流输电系统交流侧过电压保护装置, 所述保护装置包含在柔性 直流换流站(1 ), 包括在交流线路 I (4)与直流线路(8)间切换的柔性直流换流阀(5), 所述交流线路 I (4)与交流线路 II (2)之间设有换流变压器(3), 所述换流变压器(3) 在交流线路 I (4) 阀侧为星型连接, 其中性点通过接地电阻 (6) 接地; 所述换流变压 器 (3) 在交流线路 II (2) 网侧为三角型或星型连接;
其特征在于, 所述保护装置 (7), 并联于换流变压器 (3) 的接地电阻 (6) 两端, 用于在交流线路 I (4) 或直流线路(8)发生故障导致交流线路(8)过电压或当阀基控 制器检测到交流线路 I (4) 发生短路故障时, 进行动作引开故障电流, 抑制交流线路 I (4) 过电压水平, 保护换流阀阀体 (9)。
2、 如权利要求 1所述的交流侧过电压保护装置, 其特征在于所述保护装置 (7)采 用如火花间隙的导通元件; 所述火花间隙接地。
3、 如权利要求 1所述的交流侧过电压保护装置, 其特征在于, 所述换流阀 (5) 为 三相六桥臂结构; 每个桥臂均由换流阀阀体 (9) 组成; 所述换流阀阀体 (9)采用半导 体开关元件实现, 包括可关断的半导体器件以及与其反并联的二极管。
4、 一种用于柔性直流输电系统交流侧过电压保护方法, 其特征在于, 所述方法用 的保护装置 (7 ) 并联于换流变压器 (3) 的接地电阻 (6) 两端; 所述方法包括下述步 骤:
A、 检测交流线路是否发生故障, 所述故障包括交流线路 I (4) 单相、 两相接地故 障、 直流线路 (8) 单极接地故障和双极短路故障;
B、 当发生交流线路 I (4) 单相接地故障或直流线路单极接地故障时, 火花间隙两 端电压升高至击穿电压, 将火花间隙击穿;
或当控制装置检测到交流线路短路故障时, 所述控制装置向续流间隙发送触发命 令, 强制触发续流间隙, 将火花间隙击穿;
火花间隙击穿后将故障电流引至大地;
C、 火花间隙击穿后, 向控制装置发送返回状态信息, 并向换流阀 (5)下发闭锁信 号, 实现保护换流阀阀体 (9)。
5、 根据权利要求 1所述的交流侧过电压保护方法, 其特征在于, 检测到交流线路 1(4)电压过压的保护配置方法为交流线路 I (4) 电压超过预先设定值, 且持续时间也达 到预先设定值, 则保装置立即导通, 同时阀基控制器立即闭锁换流器的触发脉冲。
6、 根据权利要求 1所述的交流侧过电压保护方法, 其特征在于, 预设的自击穿电 压大小在交流线路 I (4)电压未过压时未被击穿, 在交流线路 1 (4)电压过压时被击穿, 其该自击穿电压大小通过理论计算、 计算机仿真或试验确定。
7、 根据权利要求 1所述的交流侧过电压保护方法, 其特征在于, 击穿时放电电流 大小通过理论计算、 计算机仿真或试验确定。
8、 根据权利要求 1所述的交流侧过电压保护方法, 其特征在于, 击穿时吸收能量 大小通过理论计算、 计算机仿真或试验确定。
PCT/CN2013/074826 2013-04-09 2013-04-26 用于柔性直流输电系统交流侧过电压保护装置及保护方法 WO2014166130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310121167.9A CN103296671B (zh) 2013-04-09 2013-04-09 用于柔性直流输电系统交流侧过电压保护装置及保护方法
CN201310121167.9 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014166130A1 true WO2014166130A1 (zh) 2014-10-16

Family

ID=49097162

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/074826 WO2014166130A1 (zh) 2013-04-09 2013-04-26 用于柔性直流输电系统交流侧过电压保护装置及保护方法
PCT/CN2013/087804 WO2014166262A1 (zh) 2013-04-09 2013-11-26 用于柔性直流输电系统交流侧过电压保护装置及保护方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087804 WO2014166262A1 (zh) 2013-04-09 2013-11-26 用于柔性直流输电系统交流侧过电压保护装置及保护方法

Country Status (2)

Country Link
CN (1) CN103296671B (zh)
WO (2) WO2014166130A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296671B (zh) * 2013-04-09 2016-08-10 国家电网公司 用于柔性直流输电系统交流侧过电压保护装置及保护方法
CN104300518B (zh) * 2014-10-13 2017-02-15 天津大学 基于电压源型换流器的直流系统快速保护方案
CN104467393A (zh) * 2015-01-04 2015-03-25 南京南瑞继保电气有限公司 一种防止子模块电容过电压的装置
CN104734134B (zh) * 2015-04-09 2019-06-28 国家电网公司 一种换流器接地系统
CN104767194B (zh) * 2015-04-16 2018-10-09 国网河南省电力公司平顶山供电公司 一种高压输电换流站过压保护装置
CN104820157B (zh) * 2015-04-30 2018-08-07 国家电网公司 一种柔性直流输电系统直流单极接地故障判断方法
CN105119251B (zh) * 2015-07-23 2018-04-13 华南理工大学 一种适用柔性直流配电系统接地电阻方案的确定方法
CN105576688B (zh) * 2015-12-28 2020-07-07 国网辽宁省电力有限公司电力科学研究院 一种柔性直流输电系统的控制保护方法
CN105449650B (zh) * 2016-01-25 2018-09-11 云南电网有限责任公司电力科学研究院 一种柔性直流智能输配电网的保护系统和方法
CN106571620B (zh) * 2016-10-12 2019-01-18 南方电网科学研究院有限责任公司 一种双端柔性直流输电系统直流线路接地短路的故障判定方法
CN109061420A (zh) * 2018-08-28 2018-12-21 南京南瑞继保电气有限公司 一种火花间隙测试系统
CN111654049A (zh) * 2019-03-04 2020-09-11 国家电网有限公司 一种应用于柔性直流输电的能量耗散系统及其控制方法
CN112968462B (zh) * 2021-02-20 2022-11-22 国网冀北电力有限公司检修分公司 换流站过电压控制方法、极控制系统及过电压控制系统
CN113013860B (zh) * 2021-03-29 2024-02-06 西安西电电力系统有限公司 换流阀过电压抑制方法及装置
CN113346453A (zh) * 2021-07-20 2021-09-03 江苏致能杰能源科技有限公司 一种具备过电压保护的直流导通保护电路
CN113794220B (zh) * 2021-09-02 2024-04-02 中国南方电网有限责任公司超高压输电公司检修试验中心 过压保护方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2907023Y (zh) * 2006-05-19 2007-05-30 南方电网技术研究中心 一种抑制交流变压器直流偏磁电流的装置
CN102130441A (zh) * 2011-03-16 2011-07-20 中国电力科学研究院 模块化多电平换流器的柔性直流输电系统的保护配置方法
CN102354969A (zh) * 2011-09-26 2012-02-15 中国电力科学研究院 一种模块化多电平换流器柔性直流输电系统的控制装置
WO2012116738A1 (en) * 2011-03-01 2012-09-07 Abb Research Ltd Fault current limitation in dc power transmission systems
CN202503433U (zh) * 2012-03-25 2012-10-24 上海市电力公司 一种电阻器保护装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146061A (ja) * 1991-11-18 1993-06-11 Toshiba Corp 直流送電設備
CN100521434C (zh) * 2006-05-19 2009-07-29 南方电网技术研究中心 一种抑制交流变压器直流偏磁电流的装置
WO2011150962A1 (en) * 2010-06-01 2011-12-08 Abb Technology Ag Interface arrangement between ac and dc systems including filter at transformer neutral point
US20120030958A1 (en) * 2010-08-03 2012-02-09 Michelle Mihalcik Pediatrician's examination table cover
CN201774230U (zh) * 2010-08-13 2011-03-23 上海上友电气科技有限公司 一种变压器中性点过电压保护装置
CN102185285B (zh) * 2011-04-18 2014-08-27 中国电力科学研究院 一种柔性直流输电系统换流阀保护配置方法
CN202134890U (zh) * 2011-05-03 2012-02-01 中国电力工程顾问集团中南电力设计院 一种特高压直流输电换流站保护装置
CN103296671B (zh) * 2013-04-09 2016-08-10 国家电网公司 用于柔性直流输电系统交流侧过电压保护装置及保护方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2907023Y (zh) * 2006-05-19 2007-05-30 南方电网技术研究中心 一种抑制交流变压器直流偏磁电流的装置
WO2012116738A1 (en) * 2011-03-01 2012-09-07 Abb Research Ltd Fault current limitation in dc power transmission systems
CN102130441A (zh) * 2011-03-16 2011-07-20 中国电力科学研究院 模块化多电平换流器的柔性直流输电系统的保护配置方法
CN102354969A (zh) * 2011-09-26 2012-02-15 中国电力科学研究院 一种模块化多电平换流器柔性直流输电系统的控制装置
CN202503433U (zh) * 2012-03-25 2012-10-24 上海市电力公司 一种电阻器保护装置

Also Published As

Publication number Publication date
WO2014166262A1 (zh) 2014-10-16
CN103296671A (zh) 2013-09-11
CN103296671B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2014166130A1 (zh) 用于柔性直流输电系统交流侧过电压保护装置及保护方法
WO2014166129A1 (zh) 用于柔性直流输电系统直流侧过电压保护装置及保护方法
CN104242265B (zh) 一种直流配电网全固态直流断路器
EP3355431B1 (en) Cascaded full-bridge high-voltage dc circuit breaker
WO2016107509A1 (zh) 一种高压直流断路器分断试验装置及其试验方法
BR112018013070B1 (pt) Dispositivo de desligamento de corrente contínua e método de controle do mesmo
TWI441402B (zh) 發電系統及其開關裝置
CN102403886A (zh) 模块化多电平换流器的直流线路瞬时短路故障的保护方法
CN204668938U (zh) 混合直流故障处理装置、混合直流输电系统
WO2020233180A1 (zh) 限流型可控避雷器、换流器、输电系统以及控制方法
CN106532757A (zh) 双极柔性直流输电系统及其换流站、换流站的控制方法
CN203166505U (zh) 一种用于柔性直流输电系统交流侧过电压保护装置
CN204732845U (zh) 一种全固态直流断路器
CN106628096A (zh) 一种岸电系统及其并网控制方法
CN204205577U (zh) 一种直流配电网全固态直流断路器
CN103545787B (zh) 统一电能质量控制器的保护系统及其保护控制方法
CN206211547U (zh) 双极柔性直流输电系统及其换流站
CN203289088U (zh) 一种用于柔性直流输电系统直流侧过电压保护装置
CN113162000B (zh) 一种改进的自适应限流直流固态断路器及其控制方法
CN104377679A (zh) 用于电磁式电压互感器的二次直流消谐装置
CN203674688U (zh) 统一电能质量控制器的保护系统
CN210744758U (zh) 一种基于超导限流器的多端直流输电系统
CN110535105B (zh) 一种基于交流断路器切除的直流微网故障隔离方法
Dongju et al. Research on overvoltage suppression by blocking diode and DC circuit breaker in LCC-VSC hybrid HVDC system
CN106451523A (zh) 双极柔性直流输电系统及其换流站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881925

Country of ref document: EP

Kind code of ref document: A1