WO2014165528A1 - Occupancy detection for furniture - Google Patents
Occupancy detection for furniture Download PDFInfo
- Publication number
- WO2014165528A1 WO2014165528A1 PCT/US2014/032555 US2014032555W WO2014165528A1 WO 2014165528 A1 WO2014165528 A1 WO 2014165528A1 US 2014032555 W US2014032555 W US 2014032555W WO 2014165528 A1 WO2014165528 A1 WO 2014165528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bed
- detection
- capacitive
- change
- coupled
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1113—Local tracking of patients, e.g. in a hospital or private home
- A61B5/1115—Monitoring leaving of a patient support, e.g. a bed or a wheelchair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
- A61B5/6892—Mats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/05—Parts, details or accessories of beds
- A61G7/0527—Weighing devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/06—Arrangements of multiple sensors of different types
- A61B2562/066—Arrangements of multiple sensors of different types in a matrix array
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G2203/00—General characteristics of devices
- A61G2203/30—General characteristics of devices characterised by sensor means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/002—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/002—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
- A61G7/018—Control or drive mechanisms
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/22—Status alarms responsive to presence or absence of persons
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/955—Proximity switches using a capacitive detector
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/94—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
- H03K2217/96—Touch switches
- H03K2217/9607—Capacitive touch switches
- H03K2217/960755—Constructional details of capacitive touch and proximity switches
- H03K2217/96078—Sensor being a wire or a strip, e.g. used in automobile door handles or bumpers
Definitions
- the present invention generally relates to occupancy-detecting technology incorporated into furniture. More particularly, the invention relates to coordinating capacitive technology and controller features for automated furniture items, such as a bed, for detecting the presence of an occupant and synchronizing related features and/or accessories.
- the present invention generally relates to a system and method for occupancy detection that incorporates a capacitive component into furniture items, including automated bedding systems. It should be understood that the invention contemplates incorporating an automatic occupancy-detection component and/or system into a variety of furniture items, both bedding and otherwise, and that the invention is not limited to the specific item for which occupancy detection is provided. Additionally, the present invention is described as detecting/sensing occupancy (e.g., the presence of a person or other being in or on the automated furniture item) using exemplary components such as a detection pad, a detection grid, a series of detection pads, a control cable, and/or a processor.
- exemplary components such as a detection pad, a detection grid, a series of detection pads, a control cable, and/or a processor.
- a final determination of presence may be conducted using a processor and/or software associated with the claimed system/apparatus
- reference to occupancy sensing and/or detection "by" the system/apparatus, or a determination thereof by the processor is not meant to be limiting.
- a conductive signal detected by a detection pad may be processed by software associated with a processor in a control enclosure, and such processing may result in a final determination of occupancy.
- a detection pad could be described as having "detected" occupancy, even though the detection determination was ultimately made in software associated with a processor.
- one or more capacitive detection pads are secured to a portion of a top and/or bottom surface of a platform of an adjustable bed.
- a wire grid is coupled to a top and/or bottom surface of an adjustable bed platform.
- a series of interconnected, capacitive tape strips may also be coupled to a top and/or bottom surface of an adjustable bed platform.
- a detection pad may be incorporated into a topper material of a mattress.
- single occupant position may be detected using an array of multiple detection pads.
- Exemplary embodiments of the invention include a control enclosure coupled to a capacitive component (such as a detection pad or other detection material) that is associated with a processor that receives presence-detecting data via the capacitive component.
- Software associated with the control enclosure and the detection pad may then make a determination of occupancy of the bedding system. Based on a determination of occupancy, or lack thereof, a corresponding feature of the automated bedding system may be activated.
- an adjustable bed comprises: a mattress support that comprises a plurality of support panels, at least one of said support panels movable relative to the other ones of said support panels to thereby adjust the bed; a mattress resting on top of the mattress support, said mattress having a covering material disposed over at least a top surface of the mattress; at least one capacitive component coupled to the bed, wherein the at least one capacitive component is adapted to have a voltage based on proximity of an object to the at least one capacitive component, and further wherein the at least one capacitive component comprises at least one detection pad coupled to at least one of the plurality of support panels; and a processor coupled to the at least one capacitive component, the processor adapted to receive information provided by the at least one capacitive component and to determine that a change in voltage satisfies a threshold.
- the present invention includes a method for detecting occupancy with respect to an item of furniture, the method comprising: receiving information provided by at least one detection pad coupled to the item of furniture, wherein the at least one detection pad comprises one or more of an aluminized Mylar®, an aluminum sheet, a metal screen, a wire grid, one or more strips of aluminum tape, and a metalized material or fabric associated with the item of furniture, wherein receiving information comprises receiving an indication that a sensor associated with the at least one detection pad was triggered, and further wherein the at least one detection pad is adapted to have a voltage based on proximity of an object to the at least one detection pad; and determining that a change in voltage satisfies a threshold, wherein determining that a change in voltage satisfies a threshold comprises: (1) monitoring a change in voltage detected by the at least one detection pad over a particular period of time; and (2) comparing the change in voltage over the period of time with the threshold.
- the present invention includes a method for detecting presence with respect to an adjustable bed, the method comprising: receiving information provided by at least one detection pad coupled to an adjustable bed, wherein the at least one detection pad is adapted to have a voltage based on proximity of an object to the at least one detection pad, and further wherein the at least one detection pad comprises a conductive material; determining that a change in voltage satisfies a threshold amount; and based on determining that the threshold amount is satisfied, initiating a corresponding response.
- FIG. 1 is a top view of a capacitive wire coupled to the panels of an automated bed platform, in accordance with embodiments of the invention
- FIG. 2 is a bottom view of the automated bed platform of FIG. 1, with a capacitive wire and a control enclosure coupled to the panels, in accordance with embodiments of the invention;
- FIG. 3 is a side view of the automated bed platform of FIG. 1, with a capacitive wire coupled to the top and bottom of the platform, and the control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
- FIG. 4 is a perspective view of an automated bed with a portion of the mattress cut away to reveal the capacitive wire coupled to the top of the platform, in accordance with embodiments of the invention
- FIG. 5 is a perspective view of the automated bed of FIG. 4, with the mattress cut away to reveal the capacitive wire coupled to the top of the platform, and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
- FIG. 6 is an enlarged, perspective view of the automated bed of FIG. 5, with a capacitive wire coupled to the top of the platform and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
- FIG. 7 is a perspective view of an automated bed with a capacitive wire incorporated into the tape edge of the mattress cover, in accordance with embodiments of the invention.
- FIG. 8 is a side view of a capacitive wire coupled to a control enclosure and an inner spring of a mattress, in accordance with embodiments of the invention.
- FIG. 9 is a flow diagram of an exemplary method of detecting presence with respect to a bed, in accordance with embodiments of the invention.
- FIG. 10 is a flow diagram of an exemplary method of detecting presence with respect to a bed, in accordance with embodiments of the invention.
- FIG. 11 is a side view of foil tape and capacitive wire for application to a substrate, in accordance with embodiments of the invention.
- FIG. 12 is a side view of foil tape having an embedded capacitive wire for application to a substrate; in accordance with embodiments of the invention.
- FIG. 13 is a perspective view of a foil tape having an embedded capacitive wire, applied to an edge of a substrate, in accordance with embodiments of the invention
- FIG. 14 is a perspective view of a foil tape applied to an edge of a substrate, in accordance with embodiments of the invention
- FIG. 15 is a perspective view of a foil tape applied to multiple edges of a substrate, in accordance with embodiments of the invention.
- FIG. 16 is a rear perspective view of an adjustable bed, in accordance with embodiments of the invention.
- FIG. 17A is a conductive bushing, in accordance with embodiments of the invention.
- FIG. 17B is a conductive encapsulating torque tube, in accordance with embodiments of the invention.
- FIG. 17C is a conductive bushing, in accordance with embodiments of the invention.
- FIG. 18 is a perspective view of an automated bed with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and a portion of the mattress cut away to reveal capacitive wire coupled to the top of the platform, in accordance with embodiments of the invention
- FIG. 19 is a perspective view of the automated bed of FIG. 18, with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and with the mattress cut away to reveal a capacitive wire coupled to the top of the platform and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
- FIG. 20 is an enlarged, perspective view of the automated bed of FIG. 19, with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and with a capacitive wire coupled to the top of the platform and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
- FIG. 21 is a perspective view of an automated bed with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and a tape edge surrounding a perimeter of the mattress cover, in accordance with embodiments of the invention
- FIG. 22 is an exemplary graphical display of the measure of head wire sense detection and foot wire sense detection associated with an adjustable bed, using capacitance monitoring, in accordance with embodiments of the invention
- FIG. 23 is an exemplary graphical display of the measure of contact detection with a metal, adjustable bed frame using capacitance monitoring, in accordance with embodiments of the invention
- FIG. 24 is an exemplary graphical display of the measure of the rate of change of monitored capacitance during lowering of the head portion and foot portion of a metal, adjustable bed frame, in accordance with embodiments of the invention.
- FIG. 25 is a top view of detection pads coupled to the panels of an automated bed platform, in accordance with embodiments of the invention.
- FIG. 26 is a top view of a detection grid coupled to the panels of an automated bed platform, in accordance with embodiments of the invention.
- FIG. 27 is a top view of detection strips coupled to the panels of an automated bed platform, in accordance with embodiments of the invention.
- FIG. 28 is top view of detection pads coupled to a mattress topper material, in accordance with embodiments of the invention.
- FIG. 29 is a top view of an array of detection pads coupled a mattress topper material, in accordance with embodiments of the invention.
- FIG. 30 is a flow diagram of an exemplary method of detecting occupancy with respect to a bed, in accordance with embodiments of the invention.
- FIG. 31 is a flow diagram of an exemplary method of detecting occupancy with respect to a bed, in accordance with embodiments of the invention.
- FIG. 32 is a flow diagram of an exemplary method of detecting occupancy with respect to a bed, in accordance with embodiments of the invention.
- FIGS. 1-6 An embodiment of an automated bedding system 10 with capacitive wire sensing is seen in FIGS. 1-6.
- a top view of the platform of the automated bedding system 10 includes a plurality of panels 12 having a first end 14 and a second end 16, a control enclosure 18 (mounted below the panels 12), a first segment 20 of a capacitive wire, and a second segment 22 of a capacitive wire.
- the first end 14 may be referred to as the "head" of the bed, while the second end 16 may be referred to as the "foot” of the bed.
- capacitive wiring is generally arranged near the first end 14 of the automated bedding system 10.
- a capacitive component such as a capacitive wire
- the capacitive wire segments are standard conductive copper wires.
- the capacitance measured across such wires may be monitored by a processor that uses software to generate a determination of presence detection.
- the Microchip® brand capacitive sensor may be used to determine when presence is detected. As such, while presence detection relies on the juxtaposition of a person or body with respect to the capacitive wiring, a determination of the level of detection or the measurement of presence is conducted digitally, in software associated with the processor.
- first and second segments 20 and 22 are coupled to the control enclosure 18, which is mounted below the panels 12 of the bedding system 10.
- first and second segments 20 and 22 are made from a single capacitive wire, while in other embodiments, two separate capacitive wire segments 20 and 22 are coupled to the control enclosure 18.
- additional capacitive components such as capacitive wire segments, may be coupled to the control enclosure 18, and arranged on the top of the plurality of panels 12.
- additional capacitive wires arranged perpendicular to each other may be coupled to the control enclosure 18.
- first and second segments 20 and 22 are made from a capacitive material other than wire.
- Capacitive wire segments 20 and 22 may be used to detect presence or absence of a person or other being on top of the automated bedding system 10. For example, as arranged near first end 14 of the automated bedding system 10, the torso of a person positioned on the top of the automated bedding system 10 may be detected by capacitive wire segments 20 and 22. In embodiments, capacitive wire segments 20 and 22 create a defined sensing area on the top half of the head of the bedding system 10, and are less susceptible to noise interference from articulation of the rest of the automated bedding system 10.
- a bottom view of the platform of the automated bedding system 10 includes the plurality of panels 12 having a first end 14 and a second end 16, a control enclosure 18, and a third segment 24 of capacitive wire. As shown in FIG. 2, the capacitive wiring third segment 24 is coupled to the control enclosure 18, which is mounted below the panels 12. In further embodiments, the control enclosure may be mounted in a different location on the bedding system 10, or may be external to the bedding system 10.
- third segment 24 is made from a single capacitive wire, while in other embodiments, multiple capacitive wire segments are coupled to the control enclosure 18. As will be understood, additional capacitive components, such as capacitive wire segments, may be coupled to the control enclosure 18, and arranged on the bottom of the plurality of panels 12. For example, additional capacitive wires arranged perpendicular to each other may be coupled to the control enclosure 18. In further embodiments, third segment 24 is made from a capacitive material other than wire.
- Capacitive wire segment 24 may be used to detect presence or absence of a person or other being below the automated bedding system 10. For example, as arranged around the perimeter of the bed at both the first and second ends 14 and 16, a person or other body underneath the automated bedding system 10 may be detected by capacitive wire segment 24. In embodiments, based on detecting presence underneath the bedding system 10, bed articulation may be stopped. As viewed from the side in FIG. 3, the first and second segments 20 and 22 (hidden from view) create a defined sensing area on the top of the platform, near the first end 14, while the third segment 24 creates a defined sensing area on the bottom of the platform of the bedding system 10.
- an adjustable bed 26 incorporates the automated bedding system 10 described with respect to FIGS. 1-3.
- the adjustable bed 26 includes a mattress 28 and a frame 30. A top portion of the mattress is cut away to reveal the first end 14 of the automated bedding system 10 platform, with the head of the bed partially raised.
- capacitive wire segments 20 and 22 provide a defined sensing area near the first end 14, which detects a change in capacitance above the bed, such as the capacitance detected from a person resting on the bed.
- FIG. 5 depicts the adjustable bed 26 from FIG. 4, with a majority of the mattress 28 removed.
- first and second segments 20 and 22 of capacitive wire detect presence above the platform (e.g. on top of the mattress), while the third segment 24 detects presence below the platform (e.g. under the bed).
- An enlarged view of FIG. 5 is shown in FIG. 6, with hidden lines depicting capacitive wires 20 and 24 coupled to the control enclosure 18, which is mounted beneath the panels 12.
- conductive wire is attached around the perimeter of the mattress itself.
- conductive wire may be incorporated into the tape edge surrounding the mattress 28.
- the attached conductive wire may work as a sensor to detect presence of a person or other body near the perimeter of the mattress 28.
- a conductive wire may be incorporated into the top tape edge 34 around the top surface of the mattress 28.
- a conductive wire may be incorporated into the bottom tape edge 36 around the bottom surface of the mattress 28.
- a conductive wire may be inserted into the tape edge automatically, as the tape edge is applied to a mattress covering.
- the sensitivity of the conductive wire may be adjusted in software associated with a processor used to determine presence detection.
- the capacitive wire may be routed through some or all of the tape edge around the perimeter of a mattress 28. Additionally, a tape edge may be applied to both the top and bottom edges of the mattress 28, and both the top and bottom tape edges 34 and 36 may include a capacitive wire. Accordingly, the sensitivity of the capacitive wire in the top tape edge 34 may be adjusted independently from the tape edge 36 surrounding the perimeter of the bottom of the mattress. For example, a small change in voltage detected by the capacitive wires in the top tape edge 34 of the mattress may indicate that a user has moved on the surface of the mattress, but is still on the bed.
- a small change in voltage detected by the capacitive wires in the bottom tape edge 36 of the mattress may indicate that a person, or other being, is below the bed.
- different features associated with the automated bedding system 10 may be activated based on whether presence is detected above the bed (via capacitive wires in the top tape edge 34) or below the bed (via capacitive wires in the bottom tape edge 36).
- a capacitive component may be incorporated into the mattress covering 38 of a mattress 28, as shown in FIG. 7.
- a capacitive thread may be sewn into the ticking on top of the mattress covering 38, as part of a sewn pattern.
- a particular needle threaded with capacitive thread may be activated automatically and independently to incorporate the capacitive wire into a particular configuration on the surface of the mattress covering 38.
- the capacitive thread may be sewn around a perimeter of the top surface of the mattress 28.
- the capacitive wire may be sewn in a pattern that creates perpendicular runs for capacitive detection.
- capacitive thread sewn into the surface of a mattress covering 38 may terminate at a particular point and attach to a control enclosure 18.
- an attachment may be used to crimp the mattress covering 38 material during sewing, to provide an attachment point for connecting the capacitive thread to a processor.
- a capacitive component may be incorporated into a platform-style bed.
- a lower portion of a bed that does not articulate, such as a box spring or a mattress frame 30, may include a capacitive component that detects presence from above.
- a capacitive wire is attached in a loop around the perimeter of the top of the frame 30, in FIG. 7. When a person or body is detected on top of the platform and/or frame 30, the articulating mattress 28 may discontinue lowering into contact with the frame 30.
- a capacitive wire may be incorporated into the upholstery of a decorative surround (immovable frame).
- a decorative surround may include a conductive, metalized tape, such as an aluminum tape, that serves as a capacitive component for detecting presence with respect to the decorative surround.
- a conductive metalized tape may be adhered to a perimeter of the decorative surround of an adjustable bed to determine presence near and/or on the bed, based on a change in capacitance detected by the metalized tape.
- Presence may also be detected using a loop of capacitive wire incorporated inside a mattress.
- a fourth segment 40 of capacitive wire may be incorporated inside an inner spring 42, and coupled to the control enclosure 18. While only one inner spring 42 is shown, it should be understood that capacitive wire could be incorporated into one or more of the many innersprings that make up a traditional mattress.
- the loop of capacitive wire can detect a person or object in proximity to the loop, such as a person on the mattress, above the loop of capacitive wire.
- a defined sensing area is created by routing of a capacitive wire around a perimeter of a furniture item, in a variety of configurations such as those described above.
- a capacitive wire routed around the perimeter of a mattress such as in the tape edge around a perimeter of the top surface of a mattress, creates a defined sensing area on the area of the mattress surrounded by the sensing perimeter.
- a person's presence within the sensing area may be detected by the capacitive wire, which a processor may use to determine when a person exits or enters a bed.
- a processor coupled to the capacitive component may be housed in a control enclosure, such as control enclosure 18.
- the control enclosure 18 is mounted below the platform of an automated bedding system 10.
- the control enclosure 18 is mounted generally beneath the mattress 28.
- capacitive wire incorporated into the perimeter of a mattress is used to monitor a change in capacitance over a specified amount of time.
- the capacitive component (capacitive wire) is adapted to have a voltage based on proximity of an object to the capacitive component.
- Such voltage information is collected via the capacitive component and received by the processor, which determines when a change in voltage satisfies a threshold. Once a particular change in capacitance satisfies a threshold, a corresponding function associated with the automated bed may be initiated.
- a threshold for initiating a corresponding function includes a particular amount of change in voltage within a particular amount of time.
- a particular amount of change in voltage may be required during a particular amount of time before satisfying the threshold indicating that a person has exited the bed (and before the lights may be turned on).
- a particular threshold value of voltage change may be required by the processor, over a particular amount of time, before making a determination that a person has re-entered the bed (and before the lights can be turned off again).
- a processor continuously receives capacitance monitoring information, and monitors how quickly a change in capacitance occurs (how quickly the delta changes) to determine if a big enough change has occurred in a certain amount of time to satisfy a threshold, and trigger the corresponding function.
- an alarm clock may only be triggered if a person's presence is detected in the bed (i.e. if a threshold amount of change in voltage is detected during capacitance monitoring over a particular amount of time).
- additional bedding features may be activated based on presence detection by capacitive wires. Such additional integrated bedding features include having a massage motor activated to wake up a user. If a user is not present in the bed, and therefore not detected using the capacitive wires, the lack of presence detection will prevent the massage motor from running at a particular scheduled time.
- a variety of other functions of the automated bedding system 10 may be controlled based on detection with a capacitive wire.
- a processor coupled to the capacitive wire may initiate a variety of functions based on received data indicating presence or lack of presence, as determined using capacitance information.
- Different functions may be controlled, such as stopping a bed from articulating when presence is detected beneath the bed, turning on/off lights based on a person exiting/entering a bed, and controlling other accessories or electrical/household appliances through internal circuitry associated with the processor.
- lights may be turned on. Additionally, when the person returns to the bed, the lights may turn off.
- a variety of communication protocols may be used to control the variety of functions described above.
- a two-way controller using ZigBee® wireless communication protocol may be used.
- a two-way communication protocol intended for use in automation (similar to Bluetooth®) may be utilized.
- One embodiment of the invention may be controlled by an external sensor only, with all of the components necessary for the sensor that plug into an existing motor.
- two separate microcontrollers may be used: one dedicated primarily for sensing purposes that, when it detects something, sends a signal to a secondary device/microcontroller that is programmed to initiate the corresponding response.
- an exemplary flow diagram 44 depicts monitoring capacitance and making a determination of presence with respect to a furniture item.
- an average change in capacitance is monitored using a capacitive wire. As discussed above, the change in capacitance indicates a change in voltage over a particular amount of time.
- a determination is made regarding whether the capacitance has changed by a threshold amount. If a determination is made that the capacitance has changed by a threshold amount (i.e. a particular amount of change in voltage has occurred within a particular window of time), then an indication is made that presence has been detected at block 50, and the corresponding response is initiated at block 52.
- a threshold amount i.e. a particular amount of change in voltage has occurred within a particular window of time
- blocks 50 and 52 may, in some embodiments, be combined into a single step of initiation of the corresponding response based on a determination of presence detection.
- capacitance monitoring continues.
- an exemplary flow diagram 56 depicts monitoring capacitance and making a determination that presence is no longer detected with respect to a furniture item.
- an average change in capacitance is monitored using a capacitive wire.
- a determination is made whether capacitance has changed by a threshold amount.
- an indication that presence is no longer detected is made at block 62, and a corresponding response is initiated at block 64.
- capacitance monitoring continues.
- an exemplary capacitive sensing system 68 includes a thin-gauge foil tape 70, a thin-gauge capacitive wire 72, and a substrate 74.
- foil tape 70 attaches capacitive wire 72 to a substrate 74, such as a perimeter of an item of motion furniture or an adjustable bed.
- FIG. 12 depicts another exemplary capacitive sensing system 76, with a thin-gauge foil tape 78 having a thin-gauge, capacitive embedded wire 80, for attaching to a substrate 82.
- a thin-gauge foil tape 78 embedded with a capacitive embedded wire 80 may be held to a substrate 82, such as an adjustable bed.
- capacitive wire 72 and/or capacitive embedded wire 80 may be coupled to substrates 74 and 82 using an adhesive portion of foil tape 70 and 78.
- foil tapes 70 and 78 may be pressure sensitive adhesive (PSA) foil tapes, for attaching to substrates 74 and 82.
- PSA pressure sensitive adhesive
- thin-gauge foil tape 70 and 78 are used to attach capacitive wire 72 and/or capacitive embedded wire 80, to a substrate.
- capacitive wiring systems may be coupled to a substrate using staples, glue, adhesive, or otherwise fastened to a number of surfaces to create a capacitive circuit on the adjustable bed or motion furniture item.
- a capacitive sensing system 84 includes a thin- gauge foil tape 86 with an embedded wire 88 coupled to a substrate 90.
- the foil tape 86 is applied to an inner edge 92 of substrate 90, such as an inner edge of an adjustable bed frame.
- foil tape 86 is a PSA tape that is adapted to adhere to a surface of substrate 90, while permitting the foil tape 86 (and the embedded wire 88) to maintain a charge during monitoring of capacitance.
- foil tape 86 may be coupled to a controller and monitored using a software application that analyzes changes in capacitance, as detected via the foil tape 86 and the embedded wire 88.
- foil tape 86 may be coupled to a controller (such as a microcontroller) associated with a software application, and used to capacitively detect mammalian touch in components such as doors, windows, furniture, or other items of moveable furniture, such as an adjustable bed.
- foil tape 86 is capacitive, and is coupled to the embedded wire 88 that is electrically coupled to the microcontroller.
- a capacitive sensing system 94 includes a capacitive cap 96 coupled to a substrate 98 along an inner edge 100.
- substrate 98 may be a frame and/or base of an adjustable bed, with an inner edge 100, on which capacitive cap 96 is applied and used for capacitive detection.
- capacitive cap 96 is a sensing material, such as a metalized tape, that is able to detect changes in capacitance, and can be placed under or on top of fabrics.
- capacitive sensing system 102 depicts a capacitive cap 104 coupled to the top of substrate 106.
- capacitive cap 104 is applied along inner edge 108 and outer edge 110.
- capacitive cap 104 is a foil and/or metalized tape that can detect a change in capacitance.
- substrate 106 may be a frame and/or base of an adjustable bed, with the inner edge 108 and outer edge 110, on which capacitive cap 104 may be used to detect presence based on a change in capacitance detected by the capacitive cap 104.
- capacitive cap 96 and/or capacitive cap 104 may be a metallic coated plastic trim that can be used as a sensing material, in addition to or in alternative to a conductive wire and/or foil tape.
- capacitive caps 96 and 104 may be made from other ferrous or metallic shapes, such as angles, zees, tees, caps, etc. As such, in embodiments using foil tape for capacitive detection, additional metallic materials could be used to provide capacitive detection of presence with respect to an adjustable bed.
- a thin-gauge perimeter wire may be installed around a perimeter of an adjustable bed and/or frame of an adjustable bed.
- the thin- gauge perimeter wire may be coupled to the base of an adjustable bed using tape; adhesives; fasteners; staples; or may be embedded or extruded through foam; covered in a thin foil tape; or attached via one or more additional/alternative hardware mechanisms.
- the perimeter wire may be embedded in foil tape prior to application to the bedding device, as in the example of FIGS. 12-13.
- the perimeter wire may be connected to a coaxial cable using sockets, such as using an RCA jack and socket, or a mechanism such as a Molex® or an Amp connector.
- the foil tape and the perimeter wire are capacitively coupled and sensitive to touch. That is, similar to the capacitive wire segments used to detect presence or absence of a person or other being on top of an automated bedding system, foil tape and a perimeter wire coupled to a frame or base of an adjustable bed may also be capacitively coupled and able to detect presence or absence based on a detected change in capacitance. Further, such capacitance detection may be adjusted to a required amount of sensitivity for presence detection, such as "fine tuning" the microcontroller and/or software for detection using thicker upholstery.
- ports, grommets, and/or sockets are added to an automated bedding mattress construction to allow connection of a capacitive wire to spring an assembly, thereby creating a capacitive array internal to the mattress.
- capacitive wire may be incorporated into one or more inner springs of a mattress.
- a perimeter wire coupled to an automated bed frame may also be coupled to the inner spring of a mattress assembly to create a capacitive array that detects presence with relation to both the mattress and the frame.
- a wire mesh such as netting and/or a screen, may be capacitively connected to a capacitive sensing system for detection associated with the same perimeter wire.
- body capacitance can be used to operate different types of switches as a capacitive touch sensor will respond to close-proximity detection of a change in capacitance. Accordingly, the tip of a finger may be detected by a capacitive sensor, with a minimal amount of pressure (i.e., triggered without forceful touching), and the capacitive sensing system of an automated furniture item may detect minimal amounts of bodily contact.
- a rear-perspective view of an adjustable bed 112 includes a metal, adjustable bed frame 114 coupled at a contact point 116 to a coaxial cable (coax) 118 and a controller 120.
- a metal, adjustable bed frame 114 is used as a sensor, with the metal being a conductive material adapted to carry a charge.
- multiple metal components 126 are coupled together to form the adjustable bed frame 114.
- joints 124 that are also adapted to carry a charge, which enables the controller 120 to detect presence with respect to contact with any conductive portion of the adjustable bed frame 114.
- embodiments discussed with reference to FIG. 16 may also be implemented in additional moveable furniture items, such as chairs.
- controller 120 when a person contacts the adjustable bed frame 114, the frame's normal capacitance is increased. In response to the increase in capacitance by contact with the bed frame 114, the controller 120 measures the change in capacitance of the bed frame 114 against a known capacitance of the frame.
- controller 120 may be mounted to the bed frame 114 directly, with a separate microcontroller for a sensor, and a separate microcontroller for controlling the bed motion. Accordingly, a sensing microcontroller may use separate channels for wire detection of presence (discussed above) and frame detection of presence.
- the use of a coax 118 to directly connect the bed frame 114 to the controller 120 reduces the amount of interference caused during monitoring and/or detection, as the coax exits the controller 120 and will not detect any signals until it reaches the bed frame 114.
- controller 120 measures capacitance by pulsing the bed frame 114 with a voltage, such as a low voltage having a minimal amount of current. In between pulses from the controller 120, the signal fed into the controller' s analog to digital converter (ADC) is used to measure how much the voltage changes over time.
- ADC analog to digital converter
- one microcontroller of the controller 120 may send out a charge, with the resulting charge being read by another microcontroller having a processor that monitors how quickly the detected charge decays.
- the controller 120 monitors how quickly the change in capacitance rises, and how far the change in capacitance rises.
- the actuator of the adjustable bed frame 114 may be disabled during a motion operation if it is determined that human contact is detected.
- the controller 120 may monitor the overall levels of capacitance of the bed frame 114 to determine what changes in capacitance do and do not satisfy a threshold for determining that contact has been made. For example, the rate of change and the amount of change may be monitored to determine whether a threshold for contact has been met, and whether the travel of the bed frame 114 should be altered.
- the actuators of an adjustable bed 112 may be programmed to stop all motion (such as downward motion) when contact is detected by the conductive, metal bed frame 114.
- the detection by bed frame 114 may indicate to the controller 120 to discontinue travel of the bed frame 114.
- the actuators in response to detection of a human underneath a moving, adjustable bed 114, the actuators may reverse and/or retract motion by a particular distance, such as backing up an inch if the bed frame 114 was lowering to a downward position when presence was detected.
- a user may indicate to the adjustable bed 112 that 1) the condition that triggered the indication of presence has gone away, and/or 2) that the user has again selected motion of the adjustable bed frame 114 by providing an indication to the controller 120 (such as pushing a button on a controller of the adjustable bed 112).
- controller 120 may track the usage of an adjustable bed 112, and the subsequent commands received after detecting presence near a moving bed frame 114. Such tracking may be used to designate specific actions required by the bed in response to presence detection, such as moving of a bed into a fully-upright position, or discontinuing motion of the bed prior to initiating a subsequent lowering once presence is no longer detected.
- an exemplary metallic bushing 128, such as conductive bushing 130 may be used to provide an acceptable transfer of energy within a metal assembly, such as the metal, adjustable bed frame 114 of FIG. 16.
- a metal assembly such as the metal, adjustable bed frame 114 of FIG. 16.
- one or more parts of an adjustable bed frame 114 may be coupled together at joints 124 that use conductive bushing 130 to carry a charge, thereby enabling a controller 120 to detect presence with respect to contact with any conductive portion of the adjustable bed frame 114.
- Additional embodiments of metallic bushings 132 and 136 are depicted in FIGS. 17B and 17C.
- FIG. 17B depicts an exemplary, conductive encapsulating torque tube 134, while FIG.
- conductive bushings are made using conductive materials to create "conductive" plastics, such as using stainless steel, carbon fibers, carbon black, carbon powder, graphite, and the like.
- conductive bushings are made using chemical additives or coatings added to plastic bushings to increase the conductivity.
- a metal coating on the outside of a bushing, or a metal coating encapsulated inside a plastic bushing may be used to generate conductive bushings.
- a number of metallic, conductive, and/or chemical additives, treatments or materials may be used to create conductive bushings for use in a metallic assembly that carries a charge and is used to detect capacitance, such as a metallic, adjustable bed frame 114.
- parasitic capacitive coupling may be used to capacitively couple components of the adjustable bed or motion furniture metallic assemblies.
- jumper wires are used to connect components of an adjustable bed that are electrically isolated due to non-conductive bushings.
- electrically-isolated parts of a metal, adjustable bed frame may be coupled to other conductive portions of the bed frame using jumper wires.
- bushings and other washer materials being carbon-fiber filled acetal with moderate surface conductivity may be used. Such bushings and washers may assist in the transfer of energy throughout a metal, adjustable bed frame 114, its components, and related assemblies.
- a metallic bed frame may be capacitively coupled to other assemblies in the adjustable base. Accordingly, the term "metallic assembly" may be used to refer to any of the frame, components of the frame, and assemblies of an adjustable furniture item, such as a bed.
- acetal carbon-fiber filled bushings are less than or equal to the surface resistivity of 1.0E+3 ohm and have a volume resistivity of 1.0E+3 ohm centimeter (using test methods per IEC 60093).
- the human body capacitance is the input to the metallic assembly, and the carbon-fiber filled bushings act as "jumper wires" to transmit energy between the metallic assemblies in adjustable beds and motion furniture.
- electroceramics may be tailored for use as a highly-conductive bushing material, such as the electronically conductive ceramic consisting of Indium Tin Oxide (ITO), Lamthanum-doped strontium titanate (SLT), and yttrium-doped strontium titanate (SYT).
- ITO Indium Tin Oxide
- SLT Lamthanum-doped strontium titanate
- SYT yttrium-doped strontium titanate
- an automated bedding system 140 includes an adjustable bed 26 having a plurality of panels 12 with a first end 14 and a second end 16, a control enclosure 18 (mounted below the plurality of panels 12), a first segment 20 of a capacitive wire, and a second segment 22 of a capacitive wire.
- the first end 14 may be referred to as the "head" of the bed, while the second end 16 may be referred to as the "foot" of the bed.
- adjustable bed 26 is depicted in a raised position with the first end 14 raised and the second end 16 raised, to reveal a portion of the metal, adjustable bed frame 114 of the adjustable bed 26.
- the bed frame 114 is a conductive material used to carry a charge and monitor a change in capacitance, as discussed above. Accordingly, in an example where the first end 14 of the adjustable bed 26 is being lowered, detection of human contact with the bed frame 114 may trigger the bed to discontinue downward motion. In some embodiments, detection of contact with bed frame 114 may also trigger a retracting and/or raising of the first end 14. Similarly, in another embodiment, the lowering of second end 16 may be stopped based on detection of human presence by bed frame 114.
- FIG. 19 depicts the adjustable bed of FIG. 18, with a majority of the mattress 28 removed.
- first and second segments 20 and 22 of capacitive wire detect presence above the platform (e.g. on top of the mattress), while the third segment 24 detects presence below the platform (e.g. under the bed).
- An enlarged view of FIG. 19 is shown in FIG. 20, with hidden lines depicting capacitive wires 20 and 24 coupled to the control enclosure 18, which is mounted beneath the panels 12.
- the metal frame 114 is shown below the mattress 28, and can be used to detect presence, in addition or in alternative to the capacitive wire segments on the platform 12.
- a conductive wire may be incorporated into the top tape edge 34 around the top surface of the mattress 28.
- a conductive wire may be incorporated into the bottom tape edge 36 around the bottom surface of the mattress 28.
- a conductive wire may be inserted into the tape edge automatically, as the tape edge is applied to a mattress covering.
- the sensitivity of the conductive wire may be adjusted in software associated with a processor used to determine presence detection. Accordingly, in some embodiments, presence may be detected with respect to an adjustable bed using both wiring incorporated into the perimeter of the mattress, the metal, adjustable bed frame 114 itself being used as a capacitive sensor.
- capacitive detection is monitored over time, noting changes in capacitance due to presence detection, noise interference, and movement of the automated bed.
- capacitance detection 148 is shown on a display 150 that includes both head wire monitoring 152 and foot wire monitoring 154.
- head wire sense detection area 156 indicates a peak 158 of change in capacitance.
- foot wire sense detection area 160 indicates three peaks 162, 164, and 166, that indicate changes in capacitance.
- a capacitive wire near a first end 14 (head) of an adjustable bed may detect a change capacitance (such as peak 158) that triggers one or more features of the adjustable bed.
- a capacitive wire near a second end 16 (foot) of an adjustable bed may detect a change in capacitance (such as one or more of the peaks 162, 164 and 166) and be used to trigger one or more features of an adjustable bed.
- triggering a feature of an adjustable bed requires satisfying a threshold for detection.
- the monitoring system may detect changes in capacitance in relation to the head or foot portions of the bed, but the change in capacitance may not be great enough to satisfy a threshold for detection that triggers a feature.
- minimal movement of a person on a mattress may indicate some level of change in capacitance to the monitoring system, without triggering any change in movement of the bed or activity of associated features.
- complete removal of user from a bed, which alters the detected capacitance above a particular threshold may indeed trigger the threshold for an associated activity, such as lowering the foot of the bed and/or triggering lights to come on.
- capacitance detection 168 is shown on a display 170 that includes monitoring of capacitance 172 of a metal, adjustable bed frame.
- Detection area 174 designates the indication of no presence being detected, and also provides an indication of the inherent level of noise that is detected by the system.
- detection area 176 indicates peaks 178 and 180 of changes in capacitance, which exhibit that human contact with the bed frame has been detected.
- a threshold for detection may be determined, such that a minimal amount of contact, for a short period of time, may not trigger an indication of presence with respect to the bed frame.
- contact with the bed frame for a longer period of time may be associated with a determination of presence under and/or near the bed frame.
- detection of human contact with the frame may trigger a number of features associated with the adjustable bed, such as stopping of a lowering feature, alerting of an alarm feature, retracting of motion in an upward direction for a specified distance, or any combination of features programmed to activate in response to the appropriate trigger.
- capacitance detection 182 is shown on display 184 to demonstrate the amount of change in capacitance over time with respect to the frame of an adjustable bed, such as the adjustable bed frame monitored in FIG. 23.
- Display 184 includes the monitoring of a head portion 186 and a foot portion 188 of an adjustable bed.
- the rate of change area 190 is monitored as the capacitance changes from a first level of capacitance 192 to a second level of capacitance 194.
- rate of change area 196 is monitored as the capacitance changes from a first level of capacitance 198 to a second level of capacitance 200.
- the rate of change in capacitance impacts whether the change itself triggers any feature of the automated bed.
- the rate of change area 190 and the rate of change area 196 indicate to a processor and/or controller that the rate of change in capacitance is occurring over too long of a time (i.e., is too slow) to trigger any of the features of the adjustable bed associated with lowering of the bed.
- a processor and/or controller that the rate of change in capacitance is occurring over too long of a time (i.e., is too slow) to trigger any of the features of the adjustable bed associated with lowering of the bed.
- an algorithm that requires a minimum amount of change in capacitance before stopping lowering a bed i.e. an algorithm that requires detection of the presence of human contact
- a variety of filtering techniques may be used to adjust the determinations made (regarding whether presence is or is not detected) using software associated with the processor.
- a variety of filters or transforms may be applied to the monitored capacitance signal to adjust/adapt the software for a particular application or user.
- an automated bedding system could be adapted to adjust lighting or other functions based on particular amounts of change in capacitance over particular amounts of time, or trigger particular functions during particular times of day/night.
- a processor may be trained to alter the sensitivity of a threshold based on previous use by a particular user of a corresponding feature.
- a reaction time may be changed and a threshold may be adjusted for different users and different features of the automated bed.
- FIGS. 25-27 An embodiment of an automated bedding system 210 with capacitive wire sensing is seen in FIGS. 25-27.
- a top view of the platform of the automated bedding system 210 includes a plurality of panels 212 having a first end 214 and a second end 216, detection pads 218 and 220 coupled to a surface of the plurality of panels 212, and cables 222 and 224 coupled to detection pads 218 and 220.
- the first end 214 may be referred to as the "head" of the bed, while the second end 216 may be referred to as the "foot" of the bed.
- detection pads 218 and 220 are generally arranged near the first end 214 of the automated bedding system 210.
- detection pads 218 and 220 are coupled to a stationary panel of the plurality of panels 212, which may be referred to as a "seatboard.” As such, while the single panel supporting the head of the bed and the double panels supporting the foot of the bed may articulate up and down, the non-articulating seatboard may remain stationary.
- detection pads 218 and 220 are coupled to a static portion of an automated bedding system 210, an occupancy determination may be made with respect to one or more of the plurality of panels 212.
- detection pads 218 and 220 are a capacitive material, adapted to have a voltage based on proximity of an object to the detection pads 218 and 220.
- the detection pads 218 and 220 are an aluminized polymer material with conductive properties.
- the aluminized polymer material of detection pads 218 and 220 may be conductive on one side only.
- detection pads 218 and 220 are Mylar® pads. The capacitance measured across such conductive, aluminized polymer pads may be monitored by a processor that uses software to generate a determination of occupancy detection.
- detection pads 218 and 220 may be aluminized Mylar®, aluminum sheets, metal screening, aluminum tape, a wire grid for a seat board, a metalized material or fabric, or any aluminized polymer material with conductive properties.
- detection of occupancy the system activates one or more features and/or accessories via a control box and signal acting as a switch, using technologies such as Bluetooth, Wi-Fi, and Zigbee.
- detection pads 218 and 220 have a single side that is conductive, and may be coupled to a bottom surface of an automated bedding system 210 platform, such as being sandwiched between stationary parts of an automated bedding system 210 during assembly.
- a Microchip® brand capacitive sensor may be used to determine when occupancy is detected.
- occupancy detection relies on the juxtaposition of a person or body with respect to one or both of the detection pads 218 and 220, a determination of the level of detection or the measurement of occupancy is conducted digitally, in software associated with the processor.
- software associated with the occupancy detection system includes a software protocol that provides for seamless control of remote accessories associated with an automated bedding system.
- the capacitive detection pads 218 and 220 may be coupled to a control enclosure 218 coupled to the plurality of panels 212 of the automated bedding system 210.
- cables 222 and 224 are coupled to the detection pads 218 and 220, and to a controlling device, such as a control enclosure/box.
- cables 222 and 224 are coaxial cables.
- additional capacitive components such as additional detection pads, may be coupled to the plurality of panels 212.
- detection pads 218 and 220 may be coupled to a top surface of the plurality of panels 212
- additional detection pads may be coupled to the bottom surface of the plurality of panels 212.
- detection pads 218 and 220 are coupled to any surface of the automated bedding system 210.
- detection pads 218 and 220 may be coupled to a bottom surface of the plurality of panels 212 during assembly of an automated bedding system 210.
- Detection pads 218 and 220 may be used to detect occupancy with respect to an automated bedding system 210. For example, as arranged near first end 214 of the automated bedding system 210, the torso of a person positioned on the top of the automated bedding system 210 may be detected by detection pads 218 and 220. In embodiments, detection pads 218 and 220 create a defined sensing area on the top half of the head of the bedding system 210, and are less susceptible to noise interference from articulation of the rest of the automated bedding system 210.
- a top view of the platform of the automated bedding system 210 includes the plurality of panels 212 having a first end 214 and a second end 216, and a wire grid 226.
- Wire grid 226 may be coupled to a control enclosure/box for controlling the automated bedding system 210.
- the wire grid 226 may be coupled to a controller that is external to the bedding system 210.
- wire grid 226 provides similar occupancy detection functionalities as the detection pads 218 and 220. Additionally, although depicted in FIG. 26 as being coupled to a particular portion of a top surface of the plurality of panels 212, in some embodiments, wire grid 226 may be coupled to any portion of the automated bedding system 210 for related detection purposes. In the embodiment of FIG. 26, wire grid 226 is made from a metallic detection material, such as an aluminized material or fabric, aluminized wire, or other metallic screen material. In one embodiment, the metallic screen material of wire grid 226 is interwoven to form a detection pad, such as detection pad 218 and 220 of FIG. 25.
- a top view of the platform of the automated bedding system 210 includes a plurality of panels 212 having a first end 214 and a second end 216, a series of detection strips 228 and 230 coupled to the plurality of panels 212.
- the series of detection strips 228 and 230 are interconnected using connecting strips 232 and 234.
- one or both of the series of detection strips 228 and 230 may be coupled to a control enclosure/box for controlling the automated bedding system 210, such as coupling detection strips 230 to a control enclosure using a cable 236.
- cable 236 may be a coaxial cable coupling the series of detection strips 230 to a controller of the automated bedding system 210.
- a detection material associated with the automated bedding system 210 may be coupled to a top side of a plurality of panels 212 and/or a bottom side of the plurality of panels 212, and may be coupled directly to the deck of the automated bedding system 210 (i.e. to at least a portion of the plurality of panels 212).
- the detection materials depicted in FIGS. 25-27 as being coupled to the plurality of panels 212 may be arranged in any configuration for detection of occupancy.
- non- conductive components of the automated bedding system 210 are in contact one or more of the sensors (i.e., detection strips 228 and 230, detection pads 218 and 220, and/or wire grid 226).
- a non-conductive control box may be coupled to one or more capacitive sensors.
- an occupancy detection system include incorporating a detection material, such as one or more detection pads, into a mattress topper material of an automated mattress.
- an automated bedding system 238 includes a mattress topper 240 having detection pads 242 and 244 incorporated into the material of the mattress topper 240.
- the detection pads 242 and 244 are aluminized sections applied to the topper material of mattress topper 240.
- mattress topper 240 is fused with a metallic material, and detection pads 242 and 244 are pre-applied, metalized areas on the surface of mattress topper 240.
- a detection pad 252 may be an aluminized polymer-material pad positioned on the mattress topper 248 with a conductive side facing upward, and arranged in a variety of positions.
- detection pads 252 may be overlapped, arranged on left and/or right sides of a mattress topper 248, or otherwise configured to provide an area of detection with respect to the automated bedding system 246.
- a plurality of detection pads 252 are arranged in an array 250 configuration such that a position of a single occupant of a bed can be located.
- detection pads 252 in FIG. 29 may be aluminized, polymer- material panels placed in an array 250 to determine an occupant's position, by overlapping with detection pads 254 and 256.
- a detection pad 258 is coupled to and/or overlaps with both detection pads 254 and 256, and is positioned in the middle of the array 250 to detect occupancy with respect to both sides of a mattress (e.g., a first occupant lying on a left side of a bed, and a second occupant lying on a right side of a bed, with the heads of each occupant hear the first end 214).
- a non-conductive material may be used to arrange the array 250, and can be coupled directly or indirectly to the aluminized polymer material of detection pads 252, 254, 256, and 258.
- an aluminized, polymer detection material may be tied directly to a helical spring of an automated bedding system for detection.
- a detection material may be coupled to an innerspring unit of an automated bedding system, to create a single sensor from the combined detection of each spring in the innerspring unit.
- individual pocket coils of a mattress could become individual occupancy detectors as the coils are insulated from one another. As such, the pocket coils could serve as an array of individual sensors.
- capacitive detectors such as aluminized polymer pads may be used with an automated bedding system mattress that includes pocket coils, memory foam, and/or air.
- two or more aluminized polymer material sensors may be coupled to a platform of an automated bedding system to generate at least two distinct zones of detection with respect to be bed.
- aluminized polymer material sensors and/or pocket coils could be used to identify multiple, individual areas and/or zones on a bed for detection of occupancy.
- FIGS. 25-29 Various embodiments of the invention utilize the occupancy detection systems of FIGS. 25-29 for determining occupancy of an automated bedding system, and for triggering and/or activating one or more controls and/or features associated with the automated bedding system.
- one or more Mylar® detection pads may be used to determine when an occupant exits a bed, which may trigger one or more commands associated with the bed, such as turning on a light on that occupant's side of the bed.
- the underbed lighting on a first user's side of a bed may be illuminated based on detection of that first user exiting the bed.
- the features triggered by changes in occupancy detection may be dependent on the time of day during of the occupancy determination. For example, upon determining a change in occupancy at a particular time of night (i.e. a determination that a user has exited a bed in the middle of the night) may trigger the turning on of lights associated with a bathroom, such as a light in the bathroom and/or a series of lights along a path to the bathroom.
- a change in occupancy detection may trigger one or more features associated with a remote controller of an automated bed. For example, an occupancy change may trigger an alarm to chime, which could turn on one or more lights in response to triggering the remote.
- features that are activated/triggered by a change in occupancy detection could be deactivated and/or timed out after a particular amount of time.
- a snooze feature may be incorporated into the detection system such that an occupancy detection that triggers a particular feature of the automated bedding system may be postponed and/or delayed.
- the occupancy detection system may be provided for use with a non-adjustable bed, such as a child's bed.
- a detection pad, detection grid, and/or detection strip feature discussed in FIGS. 25-29 may be incorporated into a non-adjustable bed.
- the occupancy detection system may be provided as a kit for incorporating into an existing, non-adjustable bed. The system may be used to detect occupancy with respect to the non-adjustable bed, such as alarming if a child gets out of bed, by chiming a bed remote and/or causing a light to come on in a room.
- one or more features of the bed system may be triggered, such as turning on lights to a child's bathroom, etc.
- occupancy detection triggers both activation and deactivation of features associated with a bed.
- an occupancy detection system may determine that a person has entered a bed, which may trigger the system to turn off the lights in the room.
- a first change in occupancy determination (a user exiting a bed) may trigger lights to be turned on in a room
- a second change in occupancy determination (a user returning to bed) may trigger the lights to turn back off.
- lights may be dimmed upon sensing a user getting into bed, timed to turn off after a particular amount of time passes after occupancy is detected, and/or dimmed to dark upon occupancy detection. For example, lights may be dimmed to dark upon detection of an occupant returning to bed.
- FIG. 1 is a diagrammatic representation of a home alarm system.
- the occupancy detection system may be used in a home care situation for an elderly or disabled individual. Accordingly, the system may be programmed to trigger certain alarms when the elderly or disabled person gets out of bed, such as by chiming a remote and/or alarm feature of the occupancy detection system.
- various features of a user's home may be coordinated to operate in response to determinations by the occupancy detection system. For example, if the occupancy detection system determines that a user is in bed, the home environment system (i.e. the Heating, Ventilation and Air Conditioning (HVAC) system) may be adjusted to a user- specified night setting. Similarly, if the occupancy detection system determines that a user has exited a bed, such as determining that a detection pad no longer senses the presence of the occupant, then the HVAC system may be triggered to change to daytime settings.
- HVAC Heating, Ventilation and Air Conditioning
- the occupancy detection system may be incorporated into a variety of other household devices, other than a bed or bedding system.
- an occupancy detection system may be incorporated into a door mat, an area rug, and/or a stairway of a home for indication of occupancy presence.
- the occupancy detection system may be incorporated into a runner on a basement stairway. Based on a determination of occupancy, the system may trigger an audible alarm to alert that presence is detected, such as alerting a warning signal when a child's presence is detected near basement stairs.
- FIG. 30 is flow diagram 260 of an exemplary dual-sensor method of detecting dual occupancy with respect to an adjustable bed.
- a determination is made whether a first sensor and a second sensor have been triggered.
- software executed by the system may determine whether both occupants of a bed are present, having a sensor associated with a potential position of each occupant. If both of the sensors have not been triggered, at block 264, an LED may remain on. For example, if both occupants have not gotten into bed yet, LED under-bed lighting may remain lit.
- an LED may be turned off.
- a determination may be made to turn off the lights in a room, such as an under-bed lighting feature of a bed.
- the occupancy detection system continues to check whether the first and second sensors have been triggered. If the sensors have not been triggered, at block 270, a timer may be initiated to turn off the light at block 266 after a specified interval of time has passed. In other words, the system will not wait all night for both occupants to get into bed before turning off the lights. Alternatively, if a timer is not initiated, the method returns to block 268 where the system continues to check for a triggering of the first and second sensors before turning off the LED.
- a user may indicate bed system that only one occupant is present, which may permit the system to only require detection from a single sensor before turning off the lights.
- a flow diagram 272 of an exemplary single-sensor method of detecting occupancy with respect to a bed is provided.
- a determination is made whether a sensor has been triggered.
- the LED remains on. For example, if a sensor of an automated bed has not determined that an occupant has entered the bed, then underbed, LED lighting may remain on to illuminate a path to the bed. However, if the sensor is triggered at block 274, then the LED is turned off at block 278 (e.g., the occupant gets into bed and triggers the sensor). Having left the LED on at block 276, a determination is made at block 280 as to whether the sensor is subsequently triggered.
- the LED is turned off at block 278. If the sensor has been triggered, at block 282, a timer may be initiated to determine when a threshold amount of time has passed. After an amount of time has passed, the timer may trigger the LED to turn off at block 278. Alternatively, upon not satisfying the threshold of time by the timer at block 282, the method may return to block 280 to make a determination of whether the sensor has been triggered.
- a flow diagram 284 of an exemplary dual- sensor method of detecting single occupancy with respect to a bed is provided.
- a determination is made whether a first sensor or a second sensor has been triggered.
- a bed may have two (or more) sensors that define at least two distinct areas of the bed for detection. If neither of the sensors has been triggered, at block 288, an LED may remain on.
- an LED may be turned off. For example, if one of two sensors is triggered, underbed LED lights may be turned off.
- detection pad 218 or detection pad 220 is triggered to indicate presence of a body in the automated bedding system 210, then a determination may be made to turn off the lights in a room.
- the occupancy detection system continues to check whether the first or second sensor has been triggered. If neither sensor has been triggered, at block 294, a timer may be initiated to turn off the light at block 290 after a specified interval of time has passed. Alternatively, if a timer is not initiated, the method returns to block 292 where the system continues to check for a triggering of the first and second sensors before turning off the LED.
- FIGS. 30-32 refer to triggering of sensors corresponding to turning an LED light on and off
- various embodiments of the invention may trigger additional and/or alternative features associated with an automated bedding system.
- triggering lighting in particular, under-bed mounted LED lighting
- other features such as a bathroom light, a bedroom fan, house lights, etc.
- the software associated with embodiments of the system may be customized to a particular system in that both single-occupant and dual-occupant features may be adjusted to respond differently to various triggering events.
- undermount LED lighting on an adjustable bed may remain on if the user/occupant is not present, and may be turned off once the occupant is detected.
- the software associated with the sensors may be programmed such that the presence of both users is required before a feature is activated/altered (e.g., both occupants must be present in the bed before the lights will turn off).
- the system may require that at least one user is present before the lights can be turned off.
- the system may automatically trigger a timer for turning off the lights without requiring the second occupant to be present in the bed (i.e. a first occupant need not sleep with the lights on all night).
- the triggering of the second sensor may initiate turning off the lights (without requiring the system to fulfill the entire timer waiting period).
- a single-occupant system may utilize two sensors for detecting occupancy in an automated bed.
- the first sensor may make a determination of presence of an occupant in the bed, thereby triggering the turning off of bed lighting (or other associated bed features) without requiring the second sensor to be triggered.
- the occupant may shift away from an area of capacitance associated with the first sensor, no longer triggering the first sensor. For example, the occupant may roll from one side of the bed to another.
- the software of the system may be programmed to allow an amount of delay (i.e. to wait a threshold amount of time) after the first sensor no longer senses an occupant, before triggering an associated feature (e.g.
- the bed may continue to function as if an occupant's presence has been maintained. In other words, if the first sensor no longer senses the occupant, but the second sensor detects the occupant within a specified amount of time, the lights need not be turned on because the occupant has just moved from one side of the bed to the other.
- a dual-occupant system may be programmed to permit certain features to be triggered that would otherwise inactive with a single-sensory system. For example, in an automated bed system with two sensors, a first occupant may trigger a first sensor and a second occupant may trigger a second sensor. With both sensors triggered, the system may be programmed to turn off the lights associated with the bed (e.g. the underbed LED lighting). If the first occupant exits the bed, underbed lighting may be activated. For example, one occupant may exit the bed to use the restroom in the middle of the night, and lighting may be illuminated even though the second occupant is still present in the bed. In some embodiments, features such as underbed lighting may be occupant-specific, such as underbed lighting only illuminating on the side of the bed associated with the first occupant and/or first sensor.
- underbed lighting features associated with an automated bedding system may include photocell light technology. Accordingly, the underbed lighting may not illuminate until night. As such, in some embodiments, the lights will remain on as long as the room is dark (i.e., it is night) and no occupant is present in the bed (i.e., occupant detection is not sensed according to embodiments of the invention).
- the detection material of the detection pads, wire grid, and/or detection strips and the metalized areas of the mattress topper material are adapted to have a voltage based on proximity of an object to the detection material or metalized area.
- Such voltage information is collected via the detection material and received by a processor, which determines when a change in voltage satisfies a threshold. Once a particular change in capacitance satisfies a threshold, a corresponding function associated with the automated bed may be initiated.
- a threshold for initiating a corresponding function includes a particular amount of change in voltage within a particular amount of time.
- a particular amount of change in voltage may be required during a particular amount of time before satisfying the threshold indicating that a person has exited the bed (and before the lights may be turned on).
- a particular threshold value of voltage change may be required by the processor, over a particular amount of time, before making a determination that a person has re-entered the bed (and before the lights can be turned off again).
- a processor continuously receives capacitance monitoring information, and monitors how quickly a change in capacitance occurs (how quickly the delta changes) to determine if a big enough change has occurred in a certain amount of time to satisfy a threshold, and trigger the corresponding function. Accordingly, based on satisfying a particular threshold, various features associated with the automated bedding system 210 may be activated and/or enabled.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Nursing (AREA)
- Invalid Beds And Related Equipment (AREA)
- Bedding Items (AREA)
- Mattresses And Other Support Structures For Chairs And Beds (AREA)
Abstract
A system and method for incorporating occupancy-detecting technology into furniture is provided. More particularly, the invention relates to detecting occupancy using a detection pad coupled a portion of a bed. The detection pad may include an aluminized polymer material, a metalized and/or conductive fabric, an aluminum sheet, a metal screen, an aluminum tape, a wire grid, or other metalized material or fabric. A controller determines the corresponding response based on single-occupancy or dual-occupancy detection by one or more detection pads. A processor receives information regarding changes in capacitance and determines when a change in voltage satisfies a threshold. Based on a determination of occupancy, or lack thereof, a variety of corresponding features of the adjustable bed may be activated.
Description
OCCUPANCY DETECTION FOR FURNITURE
FIELD OF THE INVENTION
The present invention generally relates to occupancy-detecting technology incorporated into furniture. More particularly, the invention relates to coordinating capacitive technology and controller features for automated furniture items, such as a bed, for detecting the presence of an occupant and synchronizing related features and/or accessories.
BACKGROUND OF THE INVENTION
Traditional occupancy-detection technology does not automatically pair to automated bedding system controllers and accessories. As such, incorporating occupancy detection technology into existing automated bedding systems may be challenging. Further, without an integrated occupancy-detection system, a consumer may not have access to control particular features and/or accessories with the automated bedding system, particularly those features/accessories that are primarily controlled through manual manipulation or programming.
Accordingly, a need exists for a reliable occupancy-detection technology for use with furniture, such as an automated bedding system, which addresses the foregoing and other problems.
SUMMARY OF THE INVENTION
The present invention generally relates to a system and method for occupancy detection that incorporates a capacitive component into furniture items, including automated bedding systems. It should be understood that the invention contemplates incorporating an automatic occupancy-detection component and/or system into a variety of furniture items, both bedding and otherwise, and that the invention is not limited to the specific item for which occupancy detection is provided. Additionally, the present invention is described as detecting/sensing occupancy (e.g., the presence of a person or other being in or on the automated furniture item) using exemplary components such as a detection pad, a detection grid, a series of detection pads, a control cable, and/or a processor. Although a final determination of presence may be conducted using a processor and/or software associated
with the claimed system/apparatus, reference to occupancy sensing and/or detection "by" the system/apparatus, or a determination thereof by the processor, is not meant to be limiting. For example, a conductive signal detected by a detection pad may be processed by software associated with a processor in a control enclosure, and such processing may result in a final determination of occupancy. In other words, a detection pad could be described as having "detected" occupancy, even though the detection determination was ultimately made in software associated with a processor.
In one embodiment, one or more capacitive detection pads are secured to a portion of a top and/or bottom surface of a platform of an adjustable bed. In another embodiment, a wire grid is coupled to a top and/or bottom surface of an adjustable bed platform. A series of interconnected, capacitive tape strips may also be coupled to a top and/or bottom surface of an adjustable bed platform. In further embodiments, a detection pad may be incorporated into a topper material of a mattress. In some embodiments, single occupant position may be detected using an array of multiple detection pads.
Exemplary embodiments of the invention include a control enclosure coupled to a capacitive component (such as a detection pad or other detection material) that is associated with a processor that receives presence-detecting data via the capacitive component. Software associated with the control enclosure and the detection pad may then make a determination of occupancy of the bedding system. Based on a determination of occupancy, or lack thereof, a corresponding feature of the automated bedding system may be activated.
One illustrative embodiment of an adjustable bed comprises: a mattress support that comprises a plurality of support panels, at least one of said support panels movable relative to the other ones of said support panels to thereby adjust the bed; a mattress resting on top of the mattress support, said mattress having a covering material disposed over at least a top surface of the mattress; at least one capacitive component coupled to the bed, wherein the at least one capacitive component is adapted to have a voltage based on proximity of an object to the at least one capacitive component, and further wherein the at least one capacitive component comprises at least one detection pad coupled to at least one of the plurality of support panels; and a processor coupled to the at least one capacitive component, the processor adapted to receive information provided by the at least one capacitive component and to determine that a change in voltage satisfies a threshold.
In another illustrative aspect, the present invention includes a method for detecting occupancy with respect to an item of furniture, the method comprising: receiving information provided by at least one detection pad coupled to the item of furniture, wherein the at least one detection pad comprises one or more of an aluminized Mylar®, an aluminum sheet, a metal screen, a wire grid, one or more strips of aluminum tape, and a metalized material or fabric associated with the item of furniture, wherein receiving information comprises receiving an indication that a sensor associated with the at least one detection pad was triggered, and further wherein the at least one detection pad is adapted to have a voltage based on proximity of an object to the at least one detection pad; and determining that a change in voltage satisfies a threshold, wherein determining that a change in voltage satisfies a threshold comprises: (1) monitoring a change in voltage detected by the at least one detection pad over a particular period of time; and (2) comparing the change in voltage over the period of time with the threshold.
According to a third illustrative aspect, the present invention includes a method for detecting presence with respect to an adjustable bed, the method comprising: receiving information provided by at least one detection pad coupled to an adjustable bed, wherein the at least one detection pad is adapted to have a voltage based on proximity of an object to the at least one detection pad, and further wherein the at least one detection pad comprises a conductive material; determining that a change in voltage satisfies a threshold amount; and based on determining that the threshold amount is satisfied, initiating a corresponding response.
Additional objects, advantages, and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
BRIEF DESCRIPTION OF THE DRAWING
The present invention is described in detail below with reference to the attached drawing figures, wherein:
FIG. 1 is a top view of a capacitive wire coupled to the panels of an automated bed platform, in accordance with embodiments of the invention;
FIG. 2 is a bottom view of the automated bed platform of FIG. 1, with a capacitive wire and a control enclosure coupled to the panels, in accordance with embodiments of the invention;
FIG. 3 is a side view of the automated bed platform of FIG. 1, with a capacitive wire coupled to the top and bottom of the platform, and the control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
FIG. 4 is a perspective view of an automated bed with a portion of the mattress cut away to reveal the capacitive wire coupled to the top of the platform, in accordance with embodiments of the invention;
FIG. 5 is a perspective view of the automated bed of FIG. 4, with the mattress cut away to reveal the capacitive wire coupled to the top of the platform, and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
FIG. 6 is an enlarged, perspective view of the automated bed of FIG. 5, with a capacitive wire coupled to the top of the platform and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
FIG. 7 is a perspective view of an automated bed with a capacitive wire incorporated into the tape edge of the mattress cover, in accordance with embodiments of the invention;
FIG. 8 is a side view of a capacitive wire coupled to a control enclosure and an inner spring of a mattress, in accordance with embodiments of the invention;
FIG. 9 is a flow diagram of an exemplary method of detecting presence with respect to a bed, in accordance with embodiments of the invention;
FIG. 10 is a flow diagram of an exemplary method of detecting presence with respect to a bed, in accordance with embodiments of the invention;
FIG. 11 is a side view of foil tape and capacitive wire for application to a substrate, in accordance with embodiments of the invention;
FIG. 12 is a side view of foil tape having an embedded capacitive wire for application to a substrate; in accordance with embodiments of the invention;
FIG. 13 is a perspective view of a foil tape having an embedded capacitive wire, applied to an edge of a substrate, in accordance with embodiments of the invention;
FIG. 14 is a perspective view of a foil tape applied to an edge of a substrate, in accordance with embodiments of the invention;
FIG. 15 is a perspective view of a foil tape applied to multiple edges of a substrate, in accordance with embodiments of the invention;
FIG. 16 is a rear perspective view of an adjustable bed, in accordance with embodiments of the invention;
FIG. 17A is a conductive bushing, in accordance with embodiments of the invention;
FIG. 17B is a conductive encapsulating torque tube, in accordance with embodiments of the invention;
FIG. 17C is a conductive bushing, in accordance with embodiments of the invention;
FIG. 18 is a perspective view of an automated bed with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and a portion of the mattress cut away to reveal capacitive wire coupled to the top of the platform, in accordance with embodiments of the invention;
FIG. 19 is a perspective view of the automated bed of FIG. 18, with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and with the mattress cut away to reveal a capacitive wire coupled to the top of the platform and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
FIG. 20 is an enlarged, perspective view of the automated bed of FIG. 19, with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and with a capacitive wire coupled to the top of the platform and hidden lines indicating the capacitive wire and control enclosure coupled to the bottom of the platform, in accordance with embodiments of the invention;
FIG. 21 is a perspective view of an automated bed with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame, and a tape edge surrounding a perimeter of the mattress cover, in accordance with embodiments of the invention;
FIG. 22 is an exemplary graphical display of the measure of head wire sense detection and foot wire sense detection associated with an adjustable bed, using capacitance monitoring, in accordance with embodiments of the invention;
FIG. 23 is an exemplary graphical display of the measure of contact detection with a metal, adjustable bed frame using capacitance monitoring, in accordance with embodiments of the invention;
FIG. 24 is an exemplary graphical display of the measure of the rate of change of monitored capacitance during lowering of the head portion and foot portion of a metal, adjustable bed frame, in accordance with embodiments of the invention;
FIG. 25 is a top view of detection pads coupled to the panels of an automated bed platform, in accordance with embodiments of the invention;
FIG. 26 is a top view of a detection grid coupled to the panels of an automated bed platform, in accordance with embodiments of the invention;
FIG. 27 is a top view of detection strips coupled to the panels of an automated bed platform, in accordance with embodiments of the invention;
FIG. 28 is top view of detection pads coupled to a mattress topper material, in accordance with embodiments of the invention;
FIG. 29 is a top view of an array of detection pads coupled a mattress topper material, in accordance with embodiments of the invention;
FIG. 30 is a flow diagram of an exemplary method of detecting occupancy with respect to a bed, in accordance with embodiments of the invention;
FIG. 31 is a flow diagram of an exemplary method of detecting occupancy with respect to a bed, in accordance with embodiments of the invention; and
FIG. 32 is a flow diagram of an exemplary method of detecting occupancy with respect to a bed, in accordance with embodiments of the invention.
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an automated bedding system 10 with capacitive wire sensing is seen in FIGS. 1-6. Referring first to FIG. 1, a top view of the platform of the automated bedding system 10 includes a plurality of panels 12 having a first end 14 and a second end 16, a control enclosure 18 (mounted below the panels 12), a first segment 20 of a capacitive wire, and a second segment 22 of a capacitive wire. In some embodiments, the first end 14 may be referred to as the "head" of the bed, while the second end 16 may be referred to as the "foot" of the bed.
When viewed from the top in FIG. 1, capacitive wiring is generally arranged near the first end 14 of the automated bedding system 10. A capacitive component, such as a capacitive wire, is adapted to have a voltage based on proximity of an object to the capacitive component. In some embodiments, the capacitive wire segments are standard conductive copper wires. The capacitance measured across such wires may be monitored by a processor that uses software to generate a determination of presence detection. In one embodiment, the Microchip® brand capacitive sensor may be used to determine when presence is detected. As such, while presence detection relies on the juxtaposition of a person or body with respect to the capacitive wiring, a determination of the level of detection or the measurement of presence is conducted digitally, in software associated with the processor.
As shown in FIG. 1, the capacitive wiring first and second segments 20 and 22 are coupled to the control enclosure 18, which is mounted below the panels 12 of the bedding system 10. In some embodiments, first and second segments 20 and 22 are made from a single capacitive wire, while in other embodiments, two separate capacitive wire segments 20 and 22 are coupled to the control enclosure 18. As will be understood, additional capacitive components, such as capacitive wire segments, may be coupled to the control enclosure 18, and arranged on the top of the plurality of panels 12. For example, additional capacitive wires arranged perpendicular to each other may be coupled to the control enclosure 18. In further embodiments, first and second segments 20 and 22 are made from a capacitive material other than wire.
Capacitive wire segments 20 and 22 may be used to detect presence or absence of a person or other being on top of the automated bedding system 10. For example, as arranged near first end 14 of the automated bedding system 10, the torso of a person positioned on the top of the automated bedding system 10 may be detected by capacitive wire segments 20 and 22. In embodiments, capacitive wire segments 20 and 22 create a defined sensing area on the top half of the head of the bedding system 10, and are less susceptible to noise interference from articulation of the rest of the automated bedding system 10.
Referring next to FIG. 2, a bottom view of the platform of the automated bedding system 10 includes the plurality of panels 12 having a first end 14 and a second end 16, a control enclosure 18, and a third segment 24 of capacitive wire. As shown in FIG. 2, the capacitive wiring third segment 24 is coupled to the control enclosure 18, which is mounted below the panels 12. In further embodiments, the control enclosure may be
mounted in a different location on the bedding system 10, or may be external to the bedding system 10.
In some embodiments, third segment 24 is made from a single capacitive wire, while in other embodiments, multiple capacitive wire segments are coupled to the control enclosure 18. As will be understood, additional capacitive components, such as capacitive wire segments, may be coupled to the control enclosure 18, and arranged on the bottom of the plurality of panels 12. For example, additional capacitive wires arranged perpendicular to each other may be coupled to the control enclosure 18. In further embodiments, third segment 24 is made from a capacitive material other than wire.
Capacitive wire segment 24 may be used to detect presence or absence of a person or other being below the automated bedding system 10. For example, as arranged around the perimeter of the bed at both the first and second ends 14 and 16, a person or other body underneath the automated bedding system 10 may be detected by capacitive wire segment 24. In embodiments, based on detecting presence underneath the bedding system 10, bed articulation may be stopped. As viewed from the side in FIG. 3, the first and second segments 20 and 22 (hidden from view) create a defined sensing area on the top of the platform, near the first end 14, while the third segment 24 creates a defined sensing area on the bottom of the platform of the bedding system 10.
Referring next to FIG. 4, an adjustable bed 26 incorporates the automated bedding system 10 described with respect to FIGS. 1-3. The adjustable bed 26 includes a mattress 28 and a frame 30. A top portion of the mattress is cut away to reveal the first end 14 of the automated bedding system 10 platform, with the head of the bed partially raised. As described with reference to FIG. 1 , capacitive wire segments 20 and 22 provide a defined sensing area near the first end 14, which detects a change in capacitance above the bed, such as the capacitance detected from a person resting on the bed.
FIG. 5 depicts the adjustable bed 26 from FIG. 4, with a majority of the mattress 28 removed. As can be seen on the plurality of panels 12, first and second segments 20 and 22 of capacitive wire detect presence above the platform (e.g. on top of the mattress), while the third segment 24 detects presence below the platform (e.g. under the bed). An enlarged view of FIG. 5 is shown in FIG. 6, with hidden lines depicting capacitive wires 20 and 24 coupled to the control enclosure 18, which is mounted beneath the panels 12.
In some embodiments, in alternative or in addition to positioning of capacitive wiring around the perimeter of the panels 12 that support an adjustable mattress, conductive
wire is attached around the perimeter of the mattress itself. As shown in the adjustable bed 32 of FIG. 7, conductive wire may be incorporated into the tape edge surrounding the mattress 28. As such, the attached conductive wire may work as a sensor to detect presence of a person or other body near the perimeter of the mattress 28. For example, a conductive wire may be incorporated into the top tape edge 34 around the top surface of the mattress 28. In another example, a conductive wire may be incorporated into the bottom tape edge 36 around the bottom surface of the mattress 28. During manufacturing, a conductive wire may be inserted into the tape edge automatically, as the tape edge is applied to a mattress covering. In some embodiments, when routed through the tape edge perimeter, the sensitivity of the conductive wire may be adjusted in software associated with a processor used to determine presence detection.
The capacitive wire may be routed through some or all of the tape edge around the perimeter of a mattress 28. Additionally, a tape edge may be applied to both the top and bottom edges of the mattress 28, and both the top and bottom tape edges 34 and 36 may include a capacitive wire. Accordingly, the sensitivity of the capacitive wire in the top tape edge 34 may be adjusted independently from the tape edge 36 surrounding the perimeter of the bottom of the mattress. For example, a small change in voltage detected by the capacitive wires in the top tape edge 34 of the mattress may indicate that a user has moved on the surface of the mattress, but is still on the bed. By contrast, a small change in voltage detected by the capacitive wires in the bottom tape edge 36 of the mattress may indicate that a person, or other being, is below the bed. In either case, different features associated with the automated bedding system 10 may be activated based on whether presence is detected above the bed (via capacitive wires in the top tape edge 34) or below the bed (via capacitive wires in the bottom tape edge 36).
In further embodiments, a capacitive component may be incorporated into the mattress covering 38 of a mattress 28, as shown in FIG. 7. In particular, a capacitive thread may be sewn into the ticking on top of the mattress covering 38, as part of a sewn pattern. During manufacturing, a particular needle threaded with capacitive thread may be activated automatically and independently to incorporate the capacitive wire into a particular configuration on the surface of the mattress covering 38. For example, the capacitive thread may be sewn around a perimeter of the top surface of the mattress 28. In another example, the capacitive wire may be sewn in a pattern that creates perpendicular runs for capacitive detection. In one embodiment, capacitive thread sewn into the surface of a mattress covering
38 may terminate at a particular point and attach to a control enclosure 18. For example, an attachment may be used to crimp the mattress covering 38 material during sewing, to provide an attachment point for connecting the capacitive thread to a processor.
In some embodiments, a capacitive component may be incorporated into a platform-style bed. For example, a lower portion of a bed that does not articulate, such as a box spring or a mattress frame 30, may include a capacitive component that detects presence from above. In one embodiment, a capacitive wire is attached in a loop around the perimeter of the top of the frame 30, in FIG. 7. When a person or body is detected on top of the platform and/or frame 30, the articulating mattress 28 may discontinue lowering into contact with the frame 30. In one embodiment, a capacitive wire may be incorporated into the upholstery of a decorative surround (immovable frame). The sensitivity of the capacitive wire may be decreased so that direct contact is required with the edge of the surround before presence may be detected, in order to prevent false readings from a body approaching the frame and/or surround. In one embodiment, a decorative surround may include a conductive, metalized tape, such as an aluminum tape, that serves as a capacitive component for detecting presence with respect to the decorative surround. For example, a conductive metalized tape may be adhered to a perimeter of the decorative surround of an adjustable bed to determine presence near and/or on the bed, based on a change in capacitance detected by the metalized tape.
Presence may also be detected using a loop of capacitive wire incorporated inside a mattress. For example, as shown in FIG. 8, a fourth segment 40 of capacitive wire may be incorporated inside an inner spring 42, and coupled to the control enclosure 18. While only one inner spring 42 is shown, it should be understood that capacitive wire could be incorporated into one or more of the many innersprings that make up a traditional mattress. As such, the loop of capacitive wire can detect a person or object in proximity to the loop, such as a person on the mattress, above the loop of capacitive wire.
A defined sensing area is created by routing of a capacitive wire around a perimeter of a furniture item, in a variety of configurations such as those described above. For example, a capacitive wire routed around the perimeter of a mattress, such as in the tape edge around a perimeter of the top surface of a mattress, creates a defined sensing area on the area of the mattress surrounded by the sensing perimeter. As such, a person's presence within the sensing area may be detected by the capacitive wire, which a processor may use to determine when a person exits or enters a bed. A processor coupled to the capacitive
component may be housed in a control enclosure, such as control enclosure 18. In one embodiment, the control enclosure 18 is mounted below the platform of an automated bedding system 10. In further embodiments, the control enclosure 18 is mounted generally beneath the mattress 28.
In embodiments, capacitive wire incorporated into the perimeter of a mattress is used to monitor a change in capacitance over a specified amount of time. The capacitive component (capacitive wire) is adapted to have a voltage based on proximity of an object to the capacitive component. Such voltage information is collected via the capacitive component and received by the processor, which determines when a change in voltage satisfies a threshold. Once a particular change in capacitance satisfies a threshold, a corresponding function associated with the automated bed may be initiated. In embodiments, a threshold for initiating a corresponding function includes a particular amount of change in voltage within a particular amount of time. For example, when using capacitance information to turn lights on/off, a particular amount of change in voltage may be required during a particular amount of time before satisfying the threshold indicating that a person has exited the bed (and before the lights may be turned on). Similarly, a particular threshold value of voltage change may be required by the processor, over a particular amount of time, before making a determination that a person has re-entered the bed (and before the lights can be turned off again). In embodiments, a processor continuously receives capacitance monitoring information, and monitors how quickly a change in capacitance occurs (how quickly the delta changes) to determine if a big enough change has occurred in a certain amount of time to satisfy a threshold, and trigger the corresponding function.
Based on satisfying a particular threshold, various features associated with the automated bedding system 10 may be activated and/or enabled. For example, an alarm clock may only be triggered if a person's presence is detected in the bed (i.e. if a threshold amount of change in voltage is detected during capacitance monitoring over a particular amount of time). In another example, additional bedding features may be activated based on presence detection by capacitive wires. Such additional integrated bedding features include having a massage motor activated to wake up a user. If a user is not present in the bed, and therefore not detected using the capacitive wires, the lack of presence detection will prevent the massage motor from running at a particular scheduled time.
A variety of other functions of the automated bedding system 10 may be controlled based on detection with a capacitive wire. In other words, a processor coupled to
the capacitive wire may initiate a variety of functions based on received data indicating presence or lack of presence, as determined using capacitance information. Different functions may be controlled, such as stopping a bed from articulating when presence is detected beneath the bed, turning on/off lights based on a person exiting/entering a bed, and controlling other accessories or electrical/household appliances through internal circuitry associated with the processor. In one example, after presence is no longer detected in the bed (thereby indicating that a person has exited the bed) lights may be turned on. Additionally, when the person returns to the bed, the lights may turn off.
A variety of communication protocols may be used to control the variety of functions described above. For example, a two-way controller using ZigBee® wireless communication protocol may be used. In some embodiments, a two-way communication protocol intended for use in automation (similar to Bluetooth®) may be utilized. One embodiment of the invention may be controlled by an external sensor only, with all of the components necessary for the sensor that plug into an existing motor. In another embodiment, two separate microcontrollers may be used: one dedicated primarily for sensing purposes that, when it detects something, sends a signal to a secondary device/microcontroller that is programmed to initiate the corresponding response.
Turning now to FIG. 9, an exemplary flow diagram 44 depicts monitoring capacitance and making a determination of presence with respect to a furniture item. At block 46, an average change in capacitance is monitored using a capacitive wire. As discussed above, the change in capacitance indicates a change in voltage over a particular amount of time. At block 48, a determination is made regarding whether the capacitance has changed by a threshold amount. If a determination is made that the capacitance has changed by a threshold amount (i.e. a particular amount of change in voltage has occurred within a particular window of time), then an indication is made that presence has been detected at block 50, and the corresponding response is initiated at block 52. As will be understood, blocks 50 and 52 may, in some embodiments, be combined into a single step of initiation of the corresponding response based on a determination of presence detection. At block 54, if capacitance has not changed by a threshold amount, capacitance monitoring continues.
With reference next to FIG. 10, an exemplary flow diagram 56 depicts monitoring capacitance and making a determination that presence is no longer detected with respect to a furniture item. At block 58, an average change in capacitance is monitored using a capacitive wire. At block 60, a determination is made whether capacitance has changed by
a threshold amount. At block 62, if capacitance has changed by a threshold amount, an indication that presence is no longer detected is made at block 62, and a corresponding response is initiated at block 64. At block 66, if it is determined that the threshold amount has not been satisfied, capacitance monitoring continues.
Referring now to FIG. 11 , an exemplary capacitive sensing system 68 includes a thin-gauge foil tape 70, a thin-gauge capacitive wire 72, and a substrate 74. In embodiments, foil tape 70 attaches capacitive wire 72 to a substrate 74, such as a perimeter of an item of motion furniture or an adjustable bed. FIG. 12 depicts another exemplary capacitive sensing system 76, with a thin-gauge foil tape 78 having a thin-gauge, capacitive embedded wire 80, for attaching to a substrate 82. For example, a thin-gauge foil tape 78 embedded with a capacitive embedded wire 80 may be held to a substrate 82, such as an adjustable bed. In embodiments, capacitive wire 72 and/or capacitive embedded wire 80 may be coupled to substrates 74 and 82 using an adhesive portion of foil tape 70 and 78. Additionally, foil tapes 70 and 78 may be pressure sensitive adhesive (PSA) foil tapes, for attaching to substrates 74 and 82. In further embodiments, thin-gauge foil tape 70 and 78 are used to attach capacitive wire 72 and/or capacitive embedded wire 80, to a substrate. In addition or in alternative to attaching capacitive wire 72 or capacitive embedded wire 80 using foil tape, such capacitive wiring systems may be coupled to a substrate using staples, glue, adhesive, or otherwise fastened to a number of surfaces to create a capacitive circuit on the adjustable bed or motion furniture item.
In the example of FIG. 13, a capacitive sensing system 84 includes a thin- gauge foil tape 86 with an embedded wire 88 coupled to a substrate 90. In particular, the foil tape 86 is applied to an inner edge 92 of substrate 90, such as an inner edge of an adjustable bed frame. In embodiments, foil tape 86 is a PSA tape that is adapted to adhere to a surface of substrate 90, while permitting the foil tape 86 (and the embedded wire 88) to maintain a charge during monitoring of capacitance. For example, foil tape 86 may be coupled to a controller and monitored using a software application that analyzes changes in capacitance, as detected via the foil tape 86 and the embedded wire 88. For example, foil tape 86 may be coupled to a controller (such as a microcontroller) associated with a software application, and used to capacitively detect mammalian touch in components such as doors, windows, furniture, or other items of moveable furniture, such as an adjustable bed. In embodiments, foil tape 86 is capacitive, and is coupled to the embedded wire 88 that is electrically coupled to the microcontroller.
In FIG. 14, a capacitive sensing system 94 includes a capacitive cap 96 coupled to a substrate 98 along an inner edge 100. In embodiments, substrate 98 may be a frame and/or base of an adjustable bed, with an inner edge 100, on which capacitive cap 96 is applied and used for capacitive detection. In one embodiment, capacitive cap 96 is a sensing material, such as a metalized tape, that is able to detect changes in capacitance, and can be placed under or on top of fabrics. Similarly, with reference to FIG. 15, capacitive sensing system 102 depicts a capacitive cap 104 coupled to the top of substrate 106. In particular, capacitive cap 104 is applied along inner edge 108 and outer edge 110. In one embodiment, capacitive cap 104 is a foil and/or metalized tape that can detect a change in capacitance. In further embodiments, substrate 106 may be a frame and/or base of an adjustable bed, with the inner edge 108 and outer edge 110, on which capacitive cap 104 may be used to detect presence based on a change in capacitance detected by the capacitive cap 104. In some embodiments, capacitive cap 96 and/or capacitive cap 104 may be a metallic coated plastic trim that can be used as a sensing material, in addition to or in alternative to a conductive wire and/or foil tape. In further embodiments, capacitive caps 96 and 104 may be made from other ferrous or metallic shapes, such as angles, zees, tees, caps, etc. As such, in embodiments using foil tape for capacitive detection, additional metallic materials could be used to provide capacitive detection of presence with respect to an adjustable bed.
In embodiments, a thin-gauge perimeter wire may be installed around a perimeter of an adjustable bed and/or frame of an adjustable bed. In embodiments, the thin- gauge perimeter wire may be coupled to the base of an adjustable bed using tape; adhesives; fasteners; staples; or may be embedded or extruded through foam; covered in a thin foil tape; or attached via one or more additional/alternative hardware mechanisms. In one embodiment, the perimeter wire may be embedded in foil tape prior to application to the bedding device, as in the example of FIGS. 12-13. In a further embodiment, the perimeter wire may be connected to a coaxial cable using sockets, such as using an RCA jack and socket, or a mechanism such as a Molex® or an Amp connector.
In embodiments, the foil tape and the perimeter wire are capacitively coupled and sensitive to touch. That is, similar to the capacitive wire segments used to detect presence or absence of a person or other being on top of an automated bedding system, foil tape and a perimeter wire coupled to a frame or base of an adjustable bed may also be capacitively coupled and able to detect presence or absence based on a detected change in capacitance. Further, such capacitance detection may be adjusted to a required amount of
sensitivity for presence detection, such as "fine tuning" the microcontroller and/or software for detection using thicker upholstery.
In a further embodiment of the invention, ports, grommets, and/or sockets are added to an automated bedding mattress construction to allow connection of a capacitive wire to spring an assembly, thereby creating a capacitive array internal to the mattress. As discussed with reference to FIG. 8, capacitive wire may be incorporated into one or more inner springs of a mattress. Further, in one example, a perimeter wire coupled to an automated bed frame may also be coupled to the inner spring of a mattress assembly to create a capacitive array that detects presence with relation to both the mattress and the frame. In some embodiments, a wire mesh, such as netting and/or a screen, may be capacitively connected to a capacitive sensing system for detection associated with the same perimeter wire.
In some embodiments, body capacitance can be used to operate different types of switches as a capacitive touch sensor will respond to close-proximity detection of a change in capacitance. Accordingly, the tip of a finger may be detected by a capacitive sensor, with a minimal amount of pressure (i.e., triggered without forceful touching), and the capacitive sensing system of an automated furniture item may detect minimal amounts of bodily contact.
Turning next to FIG. 16, a rear-perspective view of an adjustable bed 112 includes a metal, adjustable bed frame 114 coupled at a contact point 116 to a coaxial cable (coax) 118 and a controller 120. As a portion of the adjustable bed 122 is in motion, presence near the frame 114 of the adjustable bed 122 may be detected by the controller 120, based on the capacitance monitored via bed frame 114. Accordingly, the metal, adjustable bed frame 114 is used as a sensor, with the metal being a conductive material adapted to carry a charge. In embodiments, multiple metal components 126 are coupled together to form the adjustable bed frame 114. Many of these parts are coupled together at joints 124 that are also adapted to carry a charge, which enables the controller 120 to detect presence with respect to contact with any conductive portion of the adjustable bed frame 114. As will be understood, embodiments discussed with reference to FIG. 16 may also be implemented in additional moveable furniture items, such as chairs.
In one embodiment, when a person contacts the adjustable bed frame 114, the frame's normal capacitance is increased. In response to the increase in capacitance by contact with the bed frame 114, the controller 120 measures the change in capacitance of the bed frame 114 against a known capacitance of the frame. In embodiments, controller 120
may be mounted to the bed frame 114 directly, with a separate microcontroller for a sensor, and a separate microcontroller for controlling the bed motion. Accordingly, a sensing microcontroller may use separate channels for wire detection of presence (discussed above) and frame detection of presence. In embodiments, the use of a coax 118 to directly connect the bed frame 114 to the controller 120 reduces the amount of interference caused during monitoring and/or detection, as the coax exits the controller 120 and will not detect any signals until it reaches the bed frame 114.
In one example, as connected to the bed frame 114 via coax 118, controller 120 measures capacitance by pulsing the bed frame 114 with a voltage, such as a low voltage having a minimal amount of current. In between pulses from the controller 120, the signal fed into the controller' s analog to digital converter (ADC) is used to measure how much the voltage changes over time. In one embodiment, one microcontroller of the controller 120 may send out a charge, with the resulting charge being read by another microcontroller having a processor that monitors how quickly the detected charge decays. In one embodiment, when a body is in contact with the frame, the controller 120 monitors how quickly the change in capacitance rises, and how far the change in capacitance rises.
Based on detection of a change in capacitance by the controller 120, the actuator of the adjustable bed frame 114 may be disabled during a motion operation if it is determined that human contact is detected. In embodiments, the controller 120 may monitor the overall levels of capacitance of the bed frame 114 to determine what changes in capacitance do and do not satisfy a threshold for determining that contact has been made. For example, the rate of change and the amount of change may be monitored to determine whether a threshold for contact has been met, and whether the travel of the bed frame 114 should be altered. In embodiments, when triggered by a controller 120, the actuators of an adjustable bed 112 may be programmed to stop all motion (such as downward motion) when contact is detected by the conductive, metal bed frame 114. In such an example, when presence of a human is detected underneath a moving, adjustable bed 112, the detection by bed frame 114 may indicate to the controller 120 to discontinue travel of the bed frame 114. In another embodiment, in response to detection of a human underneath a moving, adjustable bed 114, the actuators may reverse and/or retract motion by a particular distance, such as backing up an inch if the bed frame 114 was lowering to a downward position when presence was detected.
Accordingly, to re-start travel once a condition has been met for stopping travel by the controller 120, a user may indicate to the adjustable bed 112 that 1) the condition that triggered the indication of presence has gone away, and/or 2) that the user has again selected motion of the adjustable bed frame 114 by providing an indication to the controller 120 (such as pushing a button on a controller of the adjustable bed 112). In further embodiments, controller 120 may track the usage of an adjustable bed 112, and the subsequent commands received after detecting presence near a moving bed frame 114. Such tracking may be used to designate specific actions required by the bed in response to presence detection, such as moving of a bed into a fully-upright position, or discontinuing motion of the bed prior to initiating a subsequent lowering once presence is no longer detected.
With reference to FIG. 17A, an exemplary metallic bushing 128, such as conductive bushing 130, may be used to provide an acceptable transfer of energy within a metal assembly, such as the metal, adjustable bed frame 114 of FIG. 16. For example, one or more parts of an adjustable bed frame 114 may be coupled together at joints 124 that use conductive bushing 130 to carry a charge, thereby enabling a controller 120 to detect presence with respect to contact with any conductive portion of the adjustable bed frame 114. Additional embodiments of metallic bushings 132 and 136 are depicted in FIGS. 17B and 17C. FIG. 17B depicts an exemplary, conductive encapsulating torque tube 134, while FIG. 17C depicts an exemplary, conductive bushing 138 for use with capacitive detection associated with a metallic assembly. Accordingly, in some embodiments, conductive bushings are made using conductive materials to create "conductive" plastics, such as using stainless steel, carbon fibers, carbon black, carbon powder, graphite, and the like. In another embodiment, conductive bushings are made using chemical additives or coatings added to plastic bushings to increase the conductivity. In further embodiments, a metal coating on the outside of a bushing, or a metal coating encapsulated inside a plastic bushing, may be used to generate conductive bushings. As will be understood, a number of metallic, conductive, and/or chemical additives, treatments or materials may be used to create conductive bushings for use in a metallic assembly that carries a charge and is used to detect capacitance, such as a metallic, adjustable bed frame 114.
As will be understood, "traditional" bushings used in adjustable beds or motion furniture are often made with electrically-insulating acetals, which prevent the transfer of a charge during detection of capacitance. Accordingly, in some embodiments, parasitic capacitive coupling may be used to capacitively couple components of the
adjustable bed or motion furniture metallic assemblies. In a further embodiment, jumper wires are used to connect components of an adjustable bed that are electrically isolated due to non-conductive bushings. For example, electrically-isolated parts of a metal, adjustable bed frame may be coupled to other conductive portions of the bed frame using jumper wires.
In embodiments, bushings and other washer materials being carbon-fiber filled acetal with moderate surface conductivity may be used. Such bushings and washers may assist in the transfer of energy throughout a metal, adjustable bed frame 114, its components, and related assemblies. In some embodiments, a metallic bed frame may be capacitively coupled to other assemblies in the adjustable base. Accordingly, the term "metallic assembly" may be used to refer to any of the frame, components of the frame, and assemblies of an adjustable furniture item, such as a bed.
In one embodiment, acetal carbon-fiber filled bushings are less than or equal to the surface resistivity of 1.0E+3 ohm and have a volume resistivity of 1.0E+3 ohm centimeter (using test methods per IEC 60093). The human body capacitance is the input to the metallic assembly, and the carbon-fiber filled bushings act as "jumper wires" to transmit energy between the metallic assemblies in adjustable beds and motion furniture. In one embodiment, electroceramics (ceramic materials specifically formulated for electrical properties) may be tailored for use as a highly-conductive bushing material, such as the electronically conductive ceramic consisting of Indium Tin Oxide (ITO), Lamthanum-doped strontium titanate (SLT), and yttrium-doped strontium titanate (SYT).
Turning next to FIG. 18, an automated bedding system 140 includes an adjustable bed 26 having a plurality of panels 12 with a first end 14 and a second end 16, a control enclosure 18 (mounted below the plurality of panels 12), a first segment 20 of a capacitive wire, and a second segment 22 of a capacitive wire. In some embodiments, the first end 14 may be referred to as the "head" of the bed, while the second end 16 may be referred to as the "foot" of the bed. In FIG. 18, adjustable bed 26 is depicted in a raised position with the first end 14 raised and the second end 16 raised, to reveal a portion of the metal, adjustable bed frame 114 of the adjustable bed 26. In embodiments, the bed frame 114 is a conductive material used to carry a charge and monitor a change in capacitance, as discussed above. Accordingly, in an example where the first end 14 of the adjustable bed 26 is being lowered, detection of human contact with the bed frame 114 may trigger the bed to discontinue downward motion. In some embodiments, detection of contact with bed frame 114 may also trigger a retracting and/or raising of the first end 14. Similarly, in another
embodiment, the lowering of second end 16 may be stopped based on detection of human presence by bed frame 114.
As can be seen in FIG. 18, capacitive wiring around a perimeter of a platform may be used in addition or alternative to the capacitive detection using bed frame 114. Accordingly, FIG. 19 depicts the adjustable bed of FIG. 18, with a majority of the mattress 28 removed. As can be seen on the plurality of panels 12, first and second segments 20 and 22 of capacitive wire detect presence above the platform (e.g. on top of the mattress), while the third segment 24 detects presence below the platform (e.g. under the bed). An enlarged view of FIG. 19 is shown in FIG. 20, with hidden lines depicting capacitive wires 20 and 24 coupled to the control enclosure 18, which is mounted beneath the panels 12. Further, the metal frame 114 is shown below the mattress 28, and can be used to detect presence, in addition or in alternative to the capacitive wire segments on the platform 12.
With reference to FIG. 21, an enlarged, perspective view of the automated bed of FIG. 19, with head and feet portions of the bed raised to partially reveal a metal, adjustable bed frame 114 is shown. Additionally, in some embodiments, a conductive wire may be incorporated into the top tape edge 34 around the top surface of the mattress 28. In another example, a conductive wire may be incorporated into the bottom tape edge 36 around the bottom surface of the mattress 28. During manufacturing, a conductive wire may be inserted into the tape edge automatically, as the tape edge is applied to a mattress covering. In some embodiments, when routed through the tape edge perimeter, the sensitivity of the conductive wire may be adjusted in software associated with a processor used to determine presence detection. Accordingly, in some embodiments, presence may be detected with respect to an adjustable bed using both wiring incorporated into the perimeter of the mattress, the metal, adjustable bed frame 114 itself being used as a capacitive sensor.
With reference to FIGS. 22-24, capacitive detection is monitored over time, noting changes in capacitance due to presence detection, noise interference, and movement of the automated bed. For example, in FIG. 22, capacitance detection 148 is shown on a display 150 that includes both head wire monitoring 152 and foot wire monitoring 154. As shown along the path of the head wire monitoring 152, head wire sense detection area 156 indicates a peak 158 of change in capacitance. Similarly, along the path of the foot wire sense monitoring 154, foot wire sense detection area 160 indicates three peaks 162, 164, and 166, that indicate changes in capacitance. Accordingly, in one embodiment, a capacitive wire near a first end 14 (head) of an adjustable bed may detect a change capacitance (such as peak 158)
that triggers one or more features of the adjustable bed. In another embodiment, a capacitive wire near a second end 16 (foot) of an adjustable bed may detect a change in capacitance (such as one or more of the peaks 162, 164 and 166) and be used to trigger one or more features of an adjustable bed. In some embodiments, triggering a feature of an adjustable bed requires satisfying a threshold for detection. In other words, the monitoring system may detect changes in capacitance in relation to the head or foot portions of the bed, but the change in capacitance may not be great enough to satisfy a threshold for detection that triggers a feature. For example, minimal movement of a person on a mattress may indicate some level of change in capacitance to the monitoring system, without triggering any change in movement of the bed or activity of associated features. Meanwhile, complete removal of user from a bed, which alters the detected capacitance above a particular threshold may indeed trigger the threshold for an associated activity, such as lowering the foot of the bed and/or triggering lights to come on.
Turning next to FIG. 23, capacitance detection 168 is shown on a display 170 that includes monitoring of capacitance 172 of a metal, adjustable bed frame. Detection area 174 designates the indication of no presence being detected, and also provides an indication of the inherent level of noise that is detected by the system. Further, detection area 176 indicates peaks 178 and 180 of changes in capacitance, which exhibit that human contact with the bed frame has been detected. As discussed above, a threshold for detection may be determined, such that a minimal amount of contact, for a short period of time, may not trigger an indication of presence with respect to the bed frame. At the same time, contact with the bed frame for a longer period of time, as indicated by a large change in capacitance for a longer duration, may be associated with a determination of presence under and/or near the bed frame. In embodiments, detection of human contact with the frame, as indicated by peaks 178 and 180, may trigger a number of features associated with the adjustable bed, such as stopping of a lowering feature, alerting of an alarm feature, retracting of motion in an upward direction for a specified distance, or any combination of features programmed to activate in response to the appropriate trigger.
With reference to FIG. 24, capacitance detection 182 is shown on display 184 to demonstrate the amount of change in capacitance over time with respect to the frame of an adjustable bed, such as the adjustable bed frame monitored in FIG. 23. Display 184 includes the monitoring of a head portion 186 and a foot portion 188 of an adjustable bed. In embodiments, the rate of change area 190 is monitored as the capacitance changes from a
first level of capacitance 192 to a second level of capacitance 194. Similarly, rate of change area 196 is monitored as the capacitance changes from a first level of capacitance 198 to a second level of capacitance 200. In embodiments, the rate of change in capacitance impacts whether the change itself triggers any feature of the automated bed. Accordingly, as indicated on the display 184, the rate of change area 190 and the rate of change area 196 indicate to a processor and/or controller that the rate of change in capacitance is occurring over too long of a time (i.e., is too slow) to trigger any of the features of the adjustable bed associated with lowering of the bed. For example, an algorithm that requires a minimum amount of change in capacitance before stopping lowering a bed (i.e. an algorithm that requires detection of the presence of human contact) may not be triggered by the change in capacitance caused by the movement of the bed itself, such as in FIG. 24.
As will be understood, a variety of filtering techniques may be used to adjust the determinations made (regarding whether presence is or is not detected) using software associated with the processor. For example, a variety of filters or transforms may be applied to the monitored capacitance signal to adjust/adapt the software for a particular application or user. For example, an automated bedding system could be adapted to adjust lighting or other functions based on particular amounts of change in capacitance over particular amounts of time, or trigger particular functions during particular times of day/night. As such, a processor may be trained to alter the sensitivity of a threshold based on previous use by a particular user of a corresponding feature. Additionally, a reaction time may be changed and a threshold may be adjusted for different users and different features of the automated bed.
An embodiment of an automated bedding system 210 with capacitive wire sensing is seen in FIGS. 25-27. Referring first to FIG. 25, a top view of the platform of the automated bedding system 210 includes a plurality of panels 212 having a first end 214 and a second end 216, detection pads 218 and 220 coupled to a surface of the plurality of panels 212, and cables 222 and 224 coupled to detection pads 218 and 220. In some embodiments, the first end 214 may be referred to as the "head" of the bed, while the second end 216 may be referred to as the "foot" of the bed.
When viewed from the top in FIG. 25, detection pads 218 and 220 are generally arranged near the first end 214 of the automated bedding system 210. In one embodiment, detection pads 218 and 220 are coupled to a stationary panel of the plurality of panels 212, which may be referred to as a "seatboard." As such, while the single panel supporting the head of the bed and the double panels supporting the foot of the bed may
articulate up and down, the non-articulating seatboard may remain stationary. In one embodiment, while detection pads 218 and 220 are coupled to a static portion of an automated bedding system 210, an occupancy determination may be made with respect to one or more of the plurality of panels 212.
In some embodiments, detection pads 218 and 220 are a capacitive material, adapted to have a voltage based on proximity of an object to the detection pads 218 and 220. In further embodiments, the detection pads 218 and 220 are an aluminized polymer material with conductive properties. The aluminized polymer material of detection pads 218 and 220 may be conductive on one side only. In one embodiment, detection pads 218 and 220 are Mylar® pads. The capacitance measured across such conductive, aluminized polymer pads may be monitored by a processor that uses software to generate a determination of occupancy detection. In further embodiments, detection pads 218 and 220 may be aluminized Mylar®, aluminum sheets, metal screening, aluminum tape, a wire grid for a seat board, a metalized material or fabric, or any aluminized polymer material with conductive properties. In some embodiments, detection of occupancy the system activates one or more features and/or accessories via a control box and signal acting as a switch, using technologies such as Bluetooth, Wi-Fi, and Zigbee. In some embodiments, detection pads 218 and 220 have a single side that is conductive, and may be coupled to a bottom surface of an automated bedding system 210 platform, such as being sandwiched between stationary parts of an automated bedding system 210 during assembly.
In one embodiment, a Microchip® brand capacitive sensor may be used to determine when occupancy is detected. As such, while occupancy detection relies on the juxtaposition of a person or body with respect to one or both of the detection pads 218 and 220, a determination of the level of detection or the measurement of occupancy is conducted digitally, in software associated with the processor. In some embodiments, software associated with the occupancy detection system includes a software protocol that provides for seamless control of remote accessories associated with an automated bedding system.
As shown in FIG. 25, the capacitive detection pads 218 and 220 may be coupled to a control enclosure 218 coupled to the plurality of panels 212 of the automated bedding system 210. In some embodiments, cables 222 and 224 are coupled to the detection pads 218 and 220, and to a controlling device, such as a control enclosure/box. In embodiments, cables 222 and 224 are coaxial cables. As will be understood, additional capacitive components, such as additional detection pads, may be coupled to the plurality of
panels 212. For example, while detection pads 218 and 220 may be coupled to a top surface of the plurality of panels 212, additional detection pads may be coupled to the bottom surface of the plurality of panels 212. Further, although depicted on a top surface of the plurality of panels 212, in some embodiments, detection pads 218 and 220 are coupled to any surface of the automated bedding system 210. For example, detection pads 218 and 220 may be coupled to a bottom surface of the plurality of panels 212 during assembly of an automated bedding system 210.
Detection pads 218 and 220 may be used to detect occupancy with respect to an automated bedding system 210. For example, as arranged near first end 214 of the automated bedding system 210, the torso of a person positioned on the top of the automated bedding system 210 may be detected by detection pads 218 and 220. In embodiments, detection pads 218 and 220 create a defined sensing area on the top half of the head of the bedding system 210, and are less susceptible to noise interference from articulation of the rest of the automated bedding system 210.
Referring next to FIG. 26, a top view of the platform of the automated bedding system 210 includes the plurality of panels 212 having a first end 214 and a second end 216, and a wire grid 226. Wire grid 226 may be coupled to a control enclosure/box for controlling the automated bedding system 210. In further embodiments, the wire grid 226 may be coupled to a controller that is external to the bedding system 210.
In some embodiments, wire grid 226 provides similar occupancy detection functionalities as the detection pads 218 and 220. Additionally, although depicted in FIG. 26 as being coupled to a particular portion of a top surface of the plurality of panels 212, in some embodiments, wire grid 226 may be coupled to any portion of the automated bedding system 210 for related detection purposes. In the embodiment of FIG. 26, wire grid 226 is made from a metallic detection material, such as an aluminized material or fabric, aluminized wire, or other metallic screen material. In one embodiment, the metallic screen material of wire grid 226 is interwoven to form a detection pad, such as detection pad 218 and 220 of FIG. 25.
Turning now to FIG. 27, a top view of the platform of the automated bedding system 210 includes a plurality of panels 212 having a first end 214 and a second end 216, a series of detection strips 228 and 230 coupled to the plurality of panels 212. The series of detection strips 228 and 230 are interconnected using connecting strips 232 and 234. In further embodiments, one or both of the series of detection strips 228 and 230 may be coupled to a control enclosure/box for controlling the automated bedding system 210, such as
coupling detection strips 230 to a control enclosure using a cable 236. For example, cable 236 may be a coaxial cable coupling the series of detection strips 230 to a controller of the automated bedding system 210.
In some embodiments, a detection material associated with the automated bedding system 210 may be coupled to a top side of a plurality of panels 212 and/or a bottom side of the plurality of panels 212, and may be coupled directly to the deck of the automated bedding system 210 (i.e. to at least a portion of the plurality of panels 212). The detection materials depicted in FIGS. 25-27 as being coupled to the plurality of panels 212 may be arranged in any configuration for detection of occupancy. In some embodiments, non- conductive components of the automated bedding system 210 are in contact one or more of the sensors (i.e., detection strips 228 and 230, detection pads 218 and 220, and/or wire grid 226). In one example, a non-conductive control box may be coupled to one or more capacitive sensors.
With reference now to FIGS. 28 and 29, embodiments of an occupancy detection system include incorporating a detection material, such as one or more detection pads, into a mattress topper material of an automated mattress. In the example of FIG. 28, an automated bedding system 238 includes a mattress topper 240 having detection pads 242 and 244 incorporated into the material of the mattress topper 240. In one embodiment, the detection pads 242 and 244 are aluminized sections applied to the topper material of mattress topper 240. In further embodiments, mattress topper 240 is fused with a metallic material, and detection pads 242 and 244 are pre-applied, metalized areas on the surface of mattress topper 240.
As shown in the automated bedding system 246 of FIG. 29, and array 250 of multiple detection pads 252 may be coupled to a surface of a mattress topper 248. In embodiments, a detection pad 252 may be an aluminized polymer-material pad positioned on the mattress topper 248 with a conductive side facing upward, and arranged in a variety of positions. In further embodiments, detection pads 252 may be overlapped, arranged on left and/or right sides of a mattress topper 248, or otherwise configured to provide an area of detection with respect to the automated bedding system 246. In one embodiment, a plurality of detection pads 252 are arranged in an array 250 configuration such that a position of a single occupant of a bed can be located.
For example, detection pads 252 in FIG. 29 may be aluminized, polymer- material panels placed in an array 250 to determine an occupant's position, by overlapping
with detection pads 254 and 256. In one example, a detection pad 258 is coupled to and/or overlaps with both detection pads 254 and 256, and is positioned in the middle of the array 250 to detect occupancy with respect to both sides of a mattress (e.g., a first occupant lying on a left side of a bed, and a second occupant lying on a right side of a bed, with the heads of each occupant hear the first end 214). In some embodiments, a non-conductive material may be used to arrange the array 250, and can be coupled directly or indirectly to the aluminized polymer material of detection pads 252, 254, 256, and 258.
In one embodiment of the invention, an aluminized, polymer detection material may be tied directly to a helical spring of an automated bedding system for detection. For example, a detection material may be coupled to an innerspring unit of an automated bedding system, to create a single sensor from the combined detection of each spring in the innerspring unit. In another embodiment, individual pocket coils of a mattress could become individual occupancy detectors as the coils are insulated from one another. As such, the pocket coils could serve as an array of individual sensors. In some embodiments of the invention, capacitive detectors such as aluminized polymer pads may be used with an automated bedding system mattress that includes pocket coils, memory foam, and/or air. For example, two or more aluminized polymer material sensors may be coupled to a platform of an automated bedding system to generate at least two distinct zones of detection with respect to be bed. In some embodiments, aluminized polymer material sensors and/or pocket coils could be used to identify multiple, individual areas and/or zones on a bed for detection of occupancy.
Various embodiments of the invention utilize the occupancy detection systems of FIGS. 25-29 for determining occupancy of an automated bedding system, and for triggering and/or activating one or more controls and/or features associated with the automated bedding system. For example, one or more Mylar® detection pads may be used to determine when an occupant exits a bed, which may trigger one or more commands associated with the bed, such as turning on a light on that occupant's side of the bed. As such, the underbed lighting on a first user's side of a bed may be illuminated based on detection of that first user exiting the bed.
The features triggered by changes in occupancy detection may be dependent on the time of day during of the occupancy determination. For example, upon determining a change in occupancy at a particular time of night (i.e. a determination that a user has exited a bed in the middle of the night) may trigger the turning on of lights associated with a
bathroom, such as a light in the bathroom and/or a series of lights along a path to the bathroom. In further embodiments, a change in occupancy detection may trigger one or more features associated with a remote controller of an automated bed. For example, an occupancy change may trigger an alarm to chime, which could turn on one or more lights in response to triggering the remote. In further embodiments, features that are activated/triggered by a change in occupancy detection (such as a detection panel sensing the absence of a person) could be deactivated and/or timed out after a particular amount of time. In another embodiment, a snooze feature may be incorporated into the detection system such that an occupancy detection that triggers a particular feature of the automated bedding system may be postponed and/or delayed.
In one embodiment of the invention, the occupancy detection system may be provided for use with a non-adjustable bed, such as a child's bed. As such, a detection pad, detection grid, and/or detection strip feature discussed in FIGS. 25-29 may be incorporated into a non-adjustable bed. In one embodiment, the occupancy detection system may be provided as a kit for incorporating into an existing, non-adjustable bed. The system may be used to detect occupancy with respect to the non-adjustable bed, such as alarming if a child gets out of bed, by chiming a bed remote and/or causing a light to come on in a room. In one embodiment of the invention, depending on a time of night when the change in occupancy detection is sensed, one or more features of the bed system may be triggered, such as turning on lights to a child's bathroom, etc.
In embodiments of the invention, occupancy detection triggers both activation and deactivation of features associated with a bed. For example, an occupancy detection system may determine that a person has entered a bed, which may trigger the system to turn off the lights in the room. Accordingly, in one embodiment, a first change in occupancy determination (a user exiting a bed) may trigger lights to be turned on in a room, while a second change in occupancy determination (a user returning to bed) may trigger the lights to turn back off. In some embodiments, lights may be dimmed upon sensing a user getting into bed, timed to turn off after a particular amount of time passes after occupancy is detected, and/or dimmed to dark upon occupancy detection. For example, lights may be dimmed to dark upon detection of an occupant returning to bed.
Further embodiments of the invention include coordinating of additional features associated with the occupancy detection system, such as a home alarm system that may be set and/or turned on based on detecting that a person has gotten into bed. In further
embodiments, the home alarm system may be deactivated upon the person exiting the bed. In yet another example, exterior lights of a house may be turned on based on detecting a user exiting the bed, such as a front porch light turning on when a user exits the bed in the middle of the night.
In one embodiment, the occupancy detection system may be used in a home care situation for an elderly or disabled individual. Accordingly, the system may be programmed to trigger certain alarms when the elderly or disabled person gets out of bed, such as by chiming a remote and/or alarm feature of the occupancy detection system. In another embodiment, various features of a user's home may be coordinated to operate in response to determinations by the occupancy detection system. For example, if the occupancy detection system determines that a user is in bed, the home environment system (i.e. the Heating, Ventilation and Air Conditioning (HVAC) system) may be adjusted to a user- specified night setting. Similarly, if the occupancy detection system determines that a user has exited a bed, such as determining that a detection pad no longer senses the presence of the occupant, then the HVAC system may be triggered to change to daytime settings.
In some embodiments of the invention, the occupancy detection system may be incorporated into a variety of other household devices, other than a bed or bedding system. For example, an occupancy detection system may be incorporated into a door mat, an area rug, and/or a stairway of a home for indication of occupancy presence. For example, in one embodiment, the occupancy detection system may be incorporated into a runner on a basement stairway. Based on a determination of occupancy, the system may trigger an audible alarm to alert that presence is detected, such as alerting a warning signal when a child's presence is detected near basement stairs.
Having described various embodiments of detection using the occupancy detection system, exemplary methods for implementing the occupancy detection system are discussed with reference to FIGS. 30-32. In particular, FIG. 30 is flow diagram 260 of an exemplary dual-sensor method of detecting dual occupancy with respect to an adjustable bed. At block 262, a determination is made whether a first sensor and a second sensor have been triggered. For example, software executed by the system may determine whether both occupants of a bed are present, having a sensor associated with a potential position of each occupant. If both of the sensors have not been triggered, at block 264, an LED may remain on. For example, if both occupants have not gotten into bed yet, LED under-bed lighting may remain lit. Alternatively, if sensor 1 and sensor 2 have been triggered, at block 266, an
LED may be turned off. For example, in FIG. 25, if detection pads 218 and 220 are both- triggered to indicate presence of two individuals in the automated bedding system 210, then a determination may be made to turn off the lights in a room, such as an under-bed lighting feature of a bed.
At block 268, the occupancy detection system continues to check whether the first and second sensors have been triggered. If the sensors have not been triggered, at block 270, a timer may be initiated to turn off the light at block 266 after a specified interval of time has passed. In other words, the system will not wait all night for both occupants to get into bed before turning off the lights. Alternatively, if a timer is not initiated, the method returns to block 268 where the system continues to check for a triggering of the first and second sensors before turning off the LED. In one embodiment, a user may indicate bed system that only one occupant is present, which may permit the system to only require detection from a single sensor before turning off the lights.
Turning now to FIG. 31, a flow diagram 272 of an exemplary single-sensor method of detecting occupancy with respect to a bed is provided. At block 274, a determination is made whether a sensor has been triggered. At block, 276, if the sensor has not been triggered, the LED remains on. For example, if a sensor of an automated bed has not determined that an occupant has entered the bed, then underbed, LED lighting may remain on to illuminate a path to the bed. However, if the sensor is triggered at block 274, then the LED is turned off at block 278 (e.g., the occupant gets into bed and triggers the sensor). Having left the LED on at block 276, a determination is made at block 280 as to whether the sensor is subsequently triggered. If the sensor has been triggered, the LED is turned off at block 278. If the sensor has not been triggered, at block 282, a timer may be initiated to determine when a threshold amount of time has passed. After an amount of time has passed, the timer may trigger the LED to turn off at block 278. Alternatively, upon not satisfying the threshold of time by the timer at block 282, the method may return to block 280 to make a determination of whether the sensor has been triggered.
With reference finally to FIG. 32, a flow diagram 284 of an exemplary dual- sensor method of detecting single occupancy with respect to a bed is provided. At block 286, a determination is made whether a first sensor or a second sensor has been triggered. For example, a bed may have two (or more) sensors that define at least two distinct areas of the bed for detection. If neither of the sensors has been triggered, at block 288, an LED may remain on. Alternatively, if sensor 1 or sensor 2 has been triggered, at block 290, an LED
may be turned off. For example, if one of two sensors is triggered, underbed LED lights may be turned off. In another example, as depicted in FIG. 25, if detection pad 218 or detection pad 220 is triggered to indicate presence of a body in the automated bedding system 210, then a determination may be made to turn off the lights in a room.
At block 292, the occupancy detection system continues to check whether the first or second sensor has been triggered. If neither sensor has been triggered, at block 294, a timer may be initiated to turn off the light at block 290 after a specified interval of time has passed. Alternatively, if a timer is not initiated, the method returns to block 292 where the system continues to check for a triggering of the first and second sensors before turning off the LED.
As will be understood, although the examples of FIGS. 30-32 refer to triggering of sensors corresponding to turning an LED light on and off, various embodiments of the invention may trigger additional and/or alternative features associated with an automated bedding system. In other words, although examples of triggering lighting are discussed (in particular, under-bed mounted LED lighting), other features such as a bathroom light, a bedroom fan, house lights, etc., may be triggered by an occupancy determination with respect to a bed. Additionally, the software associated with embodiments of the system may be customized to a particular system in that both single-occupant and dual-occupant features may be adjusted to respond differently to various triggering events.
Accordingly, in a single-occupant embodiment, undermount LED lighting on an adjustable bed may remain on if the user/occupant is not present, and may be turned off once the occupant is detected. In one embodiment of a dual-occupant detection system, the software associated with the sensors may be programmed such that the presence of both users is required before a feature is activated/altered (e.g., both occupants must be present in the bed before the lights will turn off). In another embodiment of a dual-occupant detection system, the system may require that at least one user is present before the lights can be turned off. Further, once the first occupant is present, the system may automatically trigger a timer for turning off the lights without requiring the second occupant to be present in the bed (i.e. a first occupant need not sleep with the lights on all night). However, if the second occupant enters the bed before the timer is complete, the triggering of the second sensor may initiate turning off the lights (without requiring the system to fulfill the entire timer waiting period).
In one embodiment of the invention, a single-occupant system may utilize two sensors for detecting occupancy in an automated bed. The first sensor may make a
determination of presence of an occupant in the bed, thereby triggering the turning off of bed lighting (or other associated bed features) without requiring the second sensor to be triggered. As the occupant sleeps, the occupant may shift away from an area of capacitance associated with the first sensor, no longer triggering the first sensor. For example, the occupant may roll from one side of the bed to another. In embodiments, the software of the system may be programmed to allow an amount of delay (i.e. to wait a threshold amount of time) after the first sensor no longer senses an occupant, before triggering an associated feature (e.g. before turning on lights because an occupant has left one side of the bed). If the second sensor detects the occupant within the delay period of time (i.e. before the threshold amount of time expires), then the bed may continue to function as if an occupant's presence has been maintained. In other words, if the first sensor no longer senses the occupant, but the second sensor detects the occupant within a specified amount of time, the lights need not be turned on because the occupant has just moved from one side of the bed to the other.
In one embodiment, a dual-occupant system may be programmed to permit certain features to be triggered that would otherwise inactive with a single-sensory system. For example, in an automated bed system with two sensors, a first occupant may trigger a first sensor and a second occupant may trigger a second sensor. With both sensors triggered, the system may be programmed to turn off the lights associated with the bed (e.g. the underbed LED lighting). If the first occupant exits the bed, underbed lighting may be activated. For example, one occupant may exit the bed to use the restroom in the middle of the night, and lighting may be illuminated even though the second occupant is still present in the bed. In some embodiments, features such as underbed lighting may be occupant-specific, such as underbed lighting only illuminating on the side of the bed associated with the first occupant and/or first sensor.
In some embodiments, underbed lighting features associated with an automated bedding system may include photocell light technology. Accordingly, the underbed lighting may not illuminate until night. As such, in some embodiments, the lights will remain on as long as the room is dark (i.e., it is night) and no occupant is present in the bed (i.e., occupant detection is not sensed according to embodiments of the invention).
In embodiments of the invention, the detection material of the detection pads, wire grid, and/or detection strips and the metalized areas of the mattress topper material are adapted to have a voltage based on proximity of an object to the detection material or metalized area. Such voltage information is collected via the detection material and received
by a processor, which determines when a change in voltage satisfies a threshold. Once a particular change in capacitance satisfies a threshold, a corresponding function associated with the automated bed may be initiated. In embodiments, a threshold for initiating a corresponding function includes a particular amount of change in voltage within a particular amount of time. For example, when using capacitance information to turn lights on/off, a particular amount of change in voltage may be required during a particular amount of time before satisfying the threshold indicating that a person has exited the bed (and before the lights may be turned on). Similarly, a particular threshold value of voltage change may be required by the processor, over a particular amount of time, before making a determination that a person has re-entered the bed (and before the lights can be turned off again). In embodiments, a processor continuously receives capacitance monitoring information, and monitors how quickly a change in capacitance occurs (how quickly the delta changes) to determine if a big enough change has occurred in a certain amount of time to satisfy a threshold, and trigger the corresponding function. Accordingly, based on satisfying a particular threshold, various features associated with the automated bedding system 210 may be activated and/or enabled.
From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages, which are obvious and which are inherent to the structure.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
Claims
1. An adjustable bed, comprising: a mattress support that comprises a plurality of support panels, at least one of said support panels movable relative to the other ones of said support panels to thereby adjust the bed; a mattress resting on top of the mattress support, said mattress having a covering material disposed over at least a top surface of the mattress; at least one capacitive component coupled to the bed, wherein the at least one capacitive component is adapted to have a voltage based on proximity of an object to the at least one capacitive component, and further wherein the at least one capacitive component comprises at least one detection pad coupled to at least one of the plurality of support panels; and a processor coupled to the at least one capacitive component, the processor adapted to receive information provided by the at least one capacitive component and to determine that a change in voltage satisfies a threshold.
2. The bed of claim 1, wherein the at least one detection pad is coupled to the processor with at least one coaxial cable.
3. The bed of claim 2, wherein the processor receives information directly from the at least one detection pad.
4. The bed of claim 1, wherein the at least one detection pad comprises an aluminized conductive material.
5. The bed of claim 4, wherein the aluminized conductive material is
Mylar®.
6. The bed of claim 1, wherein determining that a change in voltage satisfies a threshold comprises: monitoring a change in voltage detected by the at least one detection pad over a particular period of time; and comparing the change in voltage over the period of time with the threshold.
7. The bed of claim 6, wherein, based on determining that a change in voltage satisfies a threshold, the processor is adapted to activate one or more features associated with the adjustable bed.
8. The bed of claim 6, wherein, based on determining that a change in voltage satisfies a threshold, the processor is adapted to deactivate one or more features associated with the adjustable bed.
9. A method for detecting occupancy with respect to an item of furniture, the method comprising: receiving information provided by at least one detection pad coupled to the item of furniture, wherein the at least one detection pad comprises one or more of an aluminized polymer material, an aluminum sheet, a metal screen, a wire grid, one or more strips of aluminum tape, and a metalized material or fabric associated with the item of furniture, wherein receiving information comprises receiving an indication that a sensor associated with the at least one detection pad was triggered, and further wherein the at least one detection pad is adapted to have a voltage based on proximity of an object to the at least one detection pad; and determining that a change in voltage satisfies a threshold, wherein determining that a change in voltage satisfies a threshold comprises: (1) monitoring a change in voltage detected by the at least one detection pad over a particular period of time; and (2) comparing the change in voltage over the period of time with the threshold.
10. The method of claim 9, further comprising, based on determining that the change in voltage satisfies a threshold, turning on one or more features associated with the item of furniture.
11. The method of claim 9, wherein the metalized material or fabric associated with the item of furniture is incorporated into a topper material of a bed mattress.
12. The method of claim 9, wherein the at least one detection pad is arranged in an array on a surface of the furniture item.
13. The method of claim 12, wherein the array of detection pads are configured to detect a location of a single occupant position.
14. A method for detecting presence with respect to an adjustable bed, the method comprising: receiving information provided by at least one detection pad coupled to an adjustable bed, wherein the at least one detection pad is adapted to have a voltage based on proximity of an object to the at least one detection pad, and further wherein the at least one detection pad comprises a conductive material; determining that a change in voltage satisfies a threshold amount; and based on determining that the threshold amount is satisfied, initiating a corresponding response.
15. The method of claim 14, wherein the conductive material comprises an aluminized Mylar® pad, an aluminum sheet, a metal screen, an aluminum tape, a wire grid, and a metalized material or fabric.
16. The method of claim 15, wherein the conductive material is coupled to at least one surface of the adjustable bed.
17. The method of claim 14, wherein the adjustable bed comprises a mattress support that comprises a plurality of support panels, at least one of said support panels movable relative to the other ones of said support panels to thereby adjust the adjustable bed, wherein the at least one detection pad is directly coupled to a top surface of the plurality of support panels.
18. The method of claim 14, wherein the adjustable bed comprises a mattress having a topper material on at least one surface of the mattress, wherein the at least one detection pad is coupled to the topper material.
19. The method of claim 14, wherein initiating a corresponding response comprises determining a time of day at which the threshold amount of voltage change was satisfied.
20. The method of claim 14, wherein initiating a corresponding response comprises activating one or more features associated with the adjustable bed, wherein the one or more features comprises one or more lighting devices and one or more household appliances.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14779641.1A EP2981211A4 (en) | 2013-04-01 | 2014-04-01 | Occupancy detection for furniture |
CN201480019546.XA CN105263410B (en) | 2013-04-01 | 2014-04-01 | Occupancy for furniture detects |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/854,720 | 2013-04-01 | ||
US13/854,720 US9089223B2 (en) | 2012-01-09 | 2013-04-01 | Occupancy detection for furniture |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014165528A1 true WO2014165528A1 (en) | 2014-10-09 |
WO2014165528A4 WO2014165528A4 (en) | 2014-12-18 |
Family
ID=51659177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/032555 WO2014165528A1 (en) | 2013-04-01 | 2014-04-01 | Occupancy detection for furniture |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2981211A4 (en) |
CN (1) | CN105263410B (en) |
WO (1) | WO2014165528A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9875633B2 (en) | 2014-09-11 | 2018-01-23 | Hill-Rom Sas | Patient support apparatus |
EP4014862A1 (en) * | 2020-12-18 | 2022-06-22 | nevisQ GmbH | Method, monitoring device and monitoring system for detecting an entry of a person into a bed and / or a person getting out of the bed |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3315049A1 (en) * | 2016-10-31 | 2018-05-02 | L&P Property Management Company | Drop-in occupancy detection component for furniture |
JP7497221B2 (en) * | 2020-06-09 | 2024-06-10 | パラマウントベッド株式会社 | Mattress, sensor system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971371A (en) * | 1975-05-27 | 1976-07-27 | Stanley Bloom | Urine-sensing pad |
US6067019A (en) * | 1996-11-25 | 2000-05-23 | Hill-Rom, Inc. | Bed exit detection apparatus |
US6768420B2 (en) * | 2000-11-16 | 2004-07-27 | Donnelly Corporation | Vehicle compartment occupancy detection system |
US20100096899A1 (en) * | 2008-10-16 | 2010-04-22 | Toyota Boshoku Kabushiki Kaisha | Seat cushion covering structure |
US20120025991A1 (en) * | 2010-07-30 | 2012-02-02 | O'keefe Christopher R | Apparatus for controlling room lighting in response to bed exit |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5235319A (en) * | 1992-05-11 | 1993-08-10 | Joseph C. Hill | Patient monitoring system |
US6025782A (en) * | 1996-09-04 | 2000-02-15 | Newham; Paul | Device for monitoring the presence of a person using proximity induced dielectric shift sensing |
SE519289C2 (en) * | 2002-01-29 | 2003-02-11 | Artektron Ab | Safety device for preventing fingers being trapped in furniture with motor driven components, comprises twin conductor generating capacitive electric field |
CN101248329A (en) * | 2005-04-27 | 2008-08-20 | 罗霍股份有限公司 | Proximity sensor |
DE102007018694B4 (en) * | 2007-04-18 | 2009-04-09 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Bed and a method for controlling or safety device for a bed |
JP2012005727A (en) * | 2010-06-28 | 2012-01-12 | Hiroshi Okamura | Vital dynamic behavior detecting device |
US8959681B2 (en) * | 2010-12-20 | 2015-02-24 | Hill-Rom Services, Inc. | Ground sensor control of foot section retraction |
-
2014
- 2014-04-01 EP EP14779641.1A patent/EP2981211A4/en not_active Withdrawn
- 2014-04-01 WO PCT/US2014/032555 patent/WO2014165528A1/en active Application Filing
- 2014-04-01 CN CN201480019546.XA patent/CN105263410B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971371A (en) * | 1975-05-27 | 1976-07-27 | Stanley Bloom | Urine-sensing pad |
US6067019A (en) * | 1996-11-25 | 2000-05-23 | Hill-Rom, Inc. | Bed exit detection apparatus |
US6768420B2 (en) * | 2000-11-16 | 2004-07-27 | Donnelly Corporation | Vehicle compartment occupancy detection system |
US20100096899A1 (en) * | 2008-10-16 | 2010-04-22 | Toyota Boshoku Kabushiki Kaisha | Seat cushion covering structure |
US20120025991A1 (en) * | 2010-07-30 | 2012-02-02 | O'keefe Christopher R | Apparatus for controlling room lighting in response to bed exit |
Non-Patent Citations (1)
Title |
---|
See also references of EP2981211A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9875633B2 (en) | 2014-09-11 | 2018-01-23 | Hill-Rom Sas | Patient support apparatus |
EP4014862A1 (en) * | 2020-12-18 | 2022-06-22 | nevisQ GmbH | Method, monitoring device and monitoring system for detecting an entry of a person into a bed and / or a person getting out of the bed |
WO2022129574A1 (en) * | 2020-12-18 | 2022-06-23 | Nevisq Gmbh | Method, monitoring device and monitoring system for detecting a person getting into and/or out of a bed |
Also Published As
Publication number | Publication date |
---|---|
CN105263410B (en) | 2019-10-08 |
WO2014165528A4 (en) | 2014-12-18 |
EP2981211A4 (en) | 2016-11-16 |
CN105263410A (en) | 2016-01-20 |
EP2981211A1 (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9089223B2 (en) | Occupancy detection for furniture | |
US10334960B2 (en) | Drop-in occupancy detection component for furniture | |
US10197259B2 (en) | Standalone capacitance sensor for furniture | |
US10048662B2 (en) | Characterization and calibration for automated furniture | |
US9482707B2 (en) | Occupancy detection for automated recliner furniture | |
US9528812B2 (en) | Capacitive wire sensing for furniture | |
US10197609B2 (en) | Capacitive sensing for automated furniture | |
EP3250083B1 (en) | Occupancy detection and capacitive sensing for automated recliner furniture | |
US10555615B2 (en) | Calibration of detection features for automated furniture | |
US10393691B2 (en) | Capacitive sensing for furniture | |
WO2014165528A1 (en) | Occupancy detection for furniture | |
TW201002888A (en) | Intelligent electronic blanket | |
EP3414065B1 (en) | Capacitive sensing for automated furniture | |
EP3315049A1 (en) | Drop-in occupancy detection component for furniture | |
WO2017019373A1 (en) | Characterization and calibration for automated furniture | |
EP2948783B1 (en) | Capacitive wire sensing for furniture | |
JP3923928B2 (en) | Alarm Clock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480019546.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14779641 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014779641 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |