WO2014165175A1 - Optical waveguide module, system and method - Google Patents
Optical waveguide module, system and method Download PDFInfo
- Publication number
- WO2014165175A1 WO2014165175A1 PCT/US2014/024657 US2014024657W WO2014165175A1 WO 2014165175 A1 WO2014165175 A1 WO 2014165175A1 US 2014024657 W US2014024657 W US 2014024657W WO 2014165175 A1 WO2014165175 A1 WO 2014165175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- edge
- waveguide module
- optical waveguide
- light guide
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 393
- 238000000034 method Methods 0.000 title abstract description 20
- 230000037361 pathway Effects 0.000 claims abstract description 78
- 239000000758 substrate Substances 0.000 abstract description 14
- 239000013307 optical fiber Substances 0.000 abstract description 4
- 239000000835 fiber Substances 0.000 description 26
- 238000005253 cladding Methods 0.000 description 22
- 239000011162 core material Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000002318 adhesion promoter Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001053 micromoulding Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3873—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
- G02B6/3874—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
- G02B6/3878—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules comprising a plurality of ferrules, branching and break-out means
- G02B6/3879—Linking of individual connector plugs to an overconnector, e.g. using clamps, clips, common housings comprising several individual connector plugs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/381—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
- G02B6/3825—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/389—Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
- G02B6/3893—Push-pull type, e.g. snap-in, push-on
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3897—Connectors fixed to housings, casing, frames or circuit boards
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3873—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
- G02B6/3885—Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/4471—Terminating devices ; Cable clamps
- G02B6/4472—Manifolds
Definitions
- the present invention relates to systems and methods for optically connecting circuit elements in optical fiber systems.
- fiber optic cables are connected to one another through splices, or through connection systems including two connectors held in alignment by an adapter.
- Various connector and adapter formats are known including SC, LC, and MPO.
- SC and LC are single fiber formats.
- MPO connection systems are multiple fiber formats. There is a continuing need for connection systems for connecting fiber optic equipment.
- an optical waveguide module includes an optical light guide having opposite first and second planar surfaces extending between a first side edge and a second side edge.
- the optical light guide can be configured to include one or more optical pathways extending between the first and second side edges.
- the waveguide module can further include one or more first edge connectors, each of which has a first adapter port and a first alignment slot opposite the first adapter port. The first alignment slot extends over the optical light guide first and second planar surfaces at the first side edge to align the first adapter port with the one or more optical pathways in a first direction.
- the waveguide module can also include one or more second edge connectors, each of which has a second adapter port and a second alignment slot opposite the second adapter port wherein the second alignment slot extends over the optical light guide first and second planar surfaces at the second side edge to align the second adapter port with the one or more optical pathways in the first direction.
- the edge connectors include a first sleeve received within a cavity of a first body wherein the first body has a first adapter port.
- the first sleeve has a first alignment slot opposite the first adapter port, and the first alignment slot extends over the optical light guide first and second planar surfaces at the first side edge to align the first adapter port with the one or more optical pathways in the first direction.
- the second edge connectors each have a second sleeve received within a cavity of a second body wherein the second body has a second adapter port.
- the second sleeve has a second alignment slot opposite the second adapter port.
- the first alignment slot extends over the optical light guide first and second planar surfaces at the second side edge to align the second adapter port with the one or more optical pathways in the first direction.
- the optical waveguide module includes a first and second optical light guide.
- the first optical light guide can include first and second opposite surfaces extending between first and second opposite side edges wherein the optical light guide includes one or more first optical pathways extending between the first and second side edges.
- the second optical light guide can include first and second opposite surfaces extending between first and second opposite side edges wherein the second optical light guide supports one or more second optical pathways extending between the first and second side edges.
- a first edge coupler aligns the one or more first optical pathways of the first optical light guide with the one or more second optical pathways of the second optical light guide.
- the first edge coupler has a first alignment slot and a second alignment slot opposite the first alignment slot.
- the first alignment slot extends over the first optical light guide first and second planar surfaces at the first side edge to align the first edge coupler with the one or more first optical pathways in a first direction.
- the second alignment slot extends over the second optical light guide first and second planar surfaces at the first side edge to align the first edge coupler with the one or more second optical pathways in the first direction.
- Optical light guide edge protection features are provided in some examples.
- One example is in the form of an index matching film.
- Another example of a waveguide edge protection feature is in the form of a spaced end face.
- each of the described embodiments herein for the side edge connectors includes passive alignment features (e.g. alignment slots, tabs, notches, and protrusions), meaning that optical alignment between components is obtained by the passive alignment features without requiring measuring and adjusting the positions of the components after an initial alignment process.
- passive alignment features e.g. alignment slots, tabs, notches, and protrusions
- the fiber optic connectors e.g. MPO, LC, etc.
- the disclosed side edge connectors can be easily and repeatedly connected and disconnected from each other without a loss in alignment and without requiring additional alignment steps.
- Figure 1 shows a perspective view of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 2 shows a cross-sectional side view of the optical waveguide module shown in Figure 1.
- Figure 3 shows a perspective view of the assembled optical waveguide module of Figure 1 that is disconnected from the shown connectors.
- Figure 4 shows a cross-sectional side view of the optical waveguide module shown in Figure 3.
- Figure 5 is an exploded perspective view of the optical waveguide module shown in Figure 1.
- Figure 6 is a cross-sectional side view of the optical waveguide module shown in Figure 5.
- Figure 7 shows a cross-sectional side view of an edge connector usable with the optical waveguide module shown in Figure 1.
- Figure 8 shows a cross-sectional schematic view of a planar optical light guide usable with the optical waveguide module shown in Figure 1.
- Figure 9 shows a perspective view of a second embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 10 shows a cross-sectional side view of the optical waveguide module shown in Figure 9.
- Figure 11 shows a side view of an edge connector usable with the optical waveguide module shown in Figure 9.
- Figure 12 shows a partial exploded top view of the optical waveguide module shown in Figure 9.
- Figure 13 shows a perspective view of a third embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 14 shows an exploded top view of a center portion of the waveguide module shown in Figure 13.
- Figure 15 shows a top view of the center portion of the waveguide module shown in Figure 13.
- Figure 16 shows a cross-sectional side view of the center portion of the waveguide module shown in Figure 13.
- Figure 17 shows a cross-sectional side view of a side edge connector of the waveguide module shown in Figure 13.
- Figure 18 shows a fourth embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 19 is an exploded perspective view of the optical waveguide module shown in Figure 18.
- Figure 20 shows a pair of the optical waveguide modules shown in Figure 18 connected to each other.
- Figure 21 shows a perspective view of a fifth embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 22 shows an exploded perspective view of the optical waveguide module of Figure 21.
- Figure 23 shows an exploded cross-sectional side view of one end of the optical waveguide module of Figure 21.
- Figure 24 shows an exploded perspective view of a portion of one end of the optical waveguide modules of Figure 21, Figure 32, and Figure 43.
- Figure 25 shows a perspective view of a portion of one end of the optical waveguide modules of Figure 21, Figure 32, and Figure 43 in an assembled state.
- Figure 26 shows a cross-sectional side view of one end of the optical waveguide modules of Figure 21, Figure 32, and Figure 43 in an assembled state.
- Figure 27 shows an enlarged cross-sectional side view of a portion of the optical waveguide module of Figure 26.
- Figure 28 shows a first perspective view of a sleeve that is part of the optical waveguide modules shown in Figure 21, Figure 32, and Figure 43.
- Figure 29 is a second perspective view of the sleeve shown in Figure 28.
- Figure 30 is a cross-sectional side view of the sleeve shown in Figure 28.
- Figure 31 is a cross-sectional top view of the sleeve shown in Figure 28.
- Figure 32 shows a perspective view of a sixth embodiment of an assembled optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 33 shows an exploded perspective view of the optical waveguide module of Figure 32.
- Figure 34 shows a top view of an optical light guide and connector sleeves of the optical waveguide module of Figure 32.
- Figure 35 shows a top view of an optical light guide of the optical waveguide module of Figure 32.
- Figure 36 shows a perspective exploded bottom view of one of the connectors associated with the optical waveguide module of Figure 32.
- Figure 37 shows a side view of a portion of the optical waveguide of Figure 32.
- Figure 38 shows an exploded side view of a portion of the optical waveguide of Figure 32.
- Figure 39 shows a first perspective view of a sleeve that is part of the optical waveguide module shown in Figure 32.
- Figure 40 is a second perspective view of the sleeve shown in Figure 39.
- Figure 41 is a cross-sectional side view of the sleeve shown in Figure 39.
- Figure 42 is a cross-sectional top view of the sleeve shown in Figure 39.
- Figure 43 shows a perspective view of a seventh embodiment of an assembled optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 44 shows a perspective view of the sixth embodiment of the assembled optical waveguide module of Figure 32 inside of an unassembled housing wherein the connectors are additionally provided with slots for receiving edges of the housing.
- Figure 45 shows a perspective view of the optical waveguide module of Figure 32 inside of the assembled housing of Figure 44.
- Figure 46 shows a perspective view of an eighth embodiment of an assembled optical waveguide module within a housing having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 47 shows a perspective view of the assembled optical waveguide module of Figure 46 with a top portion of a housing removed.
- Figure 48 shows a perspective view of the assembled optical waveguide module of Figure 46 removed from the housing.
- Figure 49 shows a perspective view of an optical light guide and connector sleeves of the optical waveguide module of Figure 46.
- Figure 50 shows a perspective view of the optical light guide shown in Figure 49.
- Figure 51 shows a top view of the optical light guide shown in Figure 49.
- Figure 52 shows a first end view of the optical light guide shown in Figure 49.
- Figure 53 shows a second end view of the optical light guide shown in Figure 49.
- Figure 54 shows a front perspective view of an LC-type connector sleeve of the optical waveguide module shown in Figure 49.
- Figure 55 shows a rear perspective view of the connector shown in Figure 54.
- Figure 56 shows a bottom view of the connector shown in Figure 54.
- Figure 57 shows a top view of the connector shown in Figure 54.
- Figure 58 shows a side view of the connector shown in Figure 54.
- Figure 59 shows a first end view of the connector shown in Figure 54.
- Figure 60 shows a second end view of the connector shown in Figure 54.
- Figure 61 shows a front perspective view of an MPO-type connector sleeve of the optical waveguide module shown in Figure 49.
- Figure 62 shows a rear perspective view of the connector shown in Figure 61.
- Figure 63 shows a bottom view of the connector shown in Figure 61.
- Figure 64 shows a top view of the connector shown in Figure 61.
- Figure 65 shows a side view of the connector shown in Figure 61.
- Figure 66 shows a first end view of the connector shown in Figure 61.
- Figure 67 shows a second end view of the connector shown in Figure 61.
- Figure 68 shows a perspective view of a ninth embodiment of an assembled optical waveguide module within a housing having features that are examples of aspects in accordance with the principles of the present disclosure.
- Figure 69 shows a perspective view of the assembled optical waveguide module of Figure 68 with a top portion of a housing removed.
- Figure 70 shows a perspective view of the assembled optical waveguide module of Figure 68 removed from the housing.
- Figure 71 shows a perspective view of an optical light guide and connector sleeves of the optical waveguide module of Figure 68.
- Figure 72 shows a perspective view of the optical light guide shown in Figure 71.
- Figure 73 shows a schematic top view of a sleeve and optical light guide having a first alternative shape for the respective protrusions and notches described for the disclosed embodiments disclosed herein.
- Figure 74 shows a schematic top view of a sleeve and optical light guide having a second alternative shape for the respective protrusions and notches described for the embodiments disclosed herein. Detailed Description
- optical waveguide module 10 operates as a passive interface with passive alignment features that allow fiber optic connectors, for example connectors 12, 16, to be placed in optical communication with each other.
- edge connectors 50 each include one or more adapters to interface with an optical plug, such as LC-duplex, LC-simplex, MPO/MTP, or MT-RJ. Opposite the adapters, the connectors 50 will install along the edge of the planar optical light guide 20 and align to optical pathways 36 present on or within the light guide 20.
- the optical pathways 36 may be provided with different cross -sectional shapes, for example round and rectangular cross-sectional shapes.
- An optical signal is transmitted from a first edge connector 50 through an optical pathway 36 to a second edge connector 50. In one embodiment, the optical signal will remain passive within the modular unit 10.
- housing 91 is shown schematically at Figure 2, while exemplary housing embodiments 591, 791, and 79 are shown at Figures 44-45, 46-57, and 68-69, respectively.
- housing 91 has an upper half 92 and a lower half 94
- housing 591 likewise has an upper half 592 and a lower half 594.
- upper half 592 and lower half 594 are identically shaped, although this is not necessary.
- the upper housing half 592 can be provided with notched openings 59 la, 593a and the lower housing half can be likewise be provided with similar notched openings 591b, 593b.
- the connectors 550b are provided with continuous slots 596a, 596b that are configured for accepting and securing the edges of the upper and lower housing halves 592, 594, respectively.
- Connector 550a is also shown as having partially extending slots 598a, 598b.
- the connectors such as connectors 550a, 550b may be provided with upper and lower slots 596, 598 for accepting and securing the edges of the housing halves 592, 594.
- the housing material may be silicone-sealed plastic, thermoplastic resin, die-cast, or sheet metal, so that the planar optical light guide is protected.
- housings 791 and 791 ' and the related connector features are generally similar to that for housing 591, the above description is equally applicable and incorporated by reference for housing 791 and 19 V .
- housings and connector configurations described for housings 91 and 591 are applicable for each and every embodiment disclosed herein, although the opening and slot configurations may differ based on the particular connector type and locations utilized.
- the module 10 includes a planar optical light guide 20 which has a first surface 24 and an opposite second surface 26.
- the first and second surfaces 24, 26 extend between four side edges 28, 30, 32, 34.
- the optical light guide 20 base substrate is manufactured from a silicon material.
- the planar optical light guide 20 includes a base substrate layer 22 that is a carrier for one or more optical pathways 36 which extend between the first side edge 28 and the second side edge 30.
- the optical pathways 36 are optical cores, surrounded by an optical cladding layer 40 and 42.
- a plurality of optical cores 36 are shown, on top of a lower optical cladding layer 40, and covered by an upper optical cladding layer 42.
- the optical cores 36 and cladding layers 40, 42 extend across the base substrate layer 22 and terminate at one or more of the edges (e.g. side edges 28, 30) of the planar optical light guide 20.
- the base substrate 22 material can be a glass-reinforced epoxy laminate sheet such as an FR-4 PCB (printed circuit board), silicon wafer (Si substrate with Si02 layer), or another suitable material. Where a PCB is used, the substrate can include copper laminated on one or both sides of an FR-4 PCB or layered onto another type of PCB composite.
- Various processes known in the art such as vapor deposition and spin-coating in conjunction with a photo-thermal process, may be utilized to form the optical cores 36 and cladding layers 40, 42.
- the optical pathways 36 are optical fiber cores 36 that are separately formed and subsequently fixed onto the base substrate 22 between the lower cladding layer 40 and upper cladding layer 42.
- the optical cladding layer 42 has a thickness of about 100 micrometers ( ⁇ ) and the optical cladding layer 40 has a thickness of about 50 ⁇ .
- the optical pathways or cores have a square cross- sectional shape with a height and width of about 50 ⁇ and are spaced (pitched) about 250 ⁇ (center-to-center) apart from each other.
- the substrate 22 utilized below the waveguide layers can be a standard FR-4 PCB having a thickness between about 0.8 ⁇ and about 1.5 ⁇ with top and bottom copper laminate layers having a thickness of 35.6 ⁇ (1 ounce). Other configurations and thicknesses are possible without departing from the concepts presented herein.
- the side edges 28, 30 of the planar optical light guide 20 can be polished or otherwise processed to permit optical signal transmission to other planar optical light guides 20 or other fiber optic components, such as fiber optic connectors.
- the side edges 28, 30 are laser cut, for example by a UV laser cutting machine, such that polishing is not required or minimum polishing will be required.
- the planar optical light guide 20 is shown in a generally planar state. It is to be appreciated that it need not be perfectly planar. It is to be appreciated that it need not be inflexible. Some flexibility is possible, if desired.
- the planar optical wave guide 20 may be fabricated in a three-stage process comprising creating the bottom cladding layer 40, patterning material to make the optical cores or pathways 36, and encapsulating the cores 36 with a final cladding layer 42.
- the materials used can be negative-tone photoresists that can be spun and patterned using photolithography techniques, and in particular soft photolithography using a mold fabricated with polydimethylsiloxane (PDMS).
- PDMS polydimethylsiloxane
- the wave guide 20 can be characterized as having an inorganic- organic hybrid polymer construction wherein cladding layers 40, 42 are formed to have an index of refraction of 1.5306 and the optical cores are formed to have an index of refraction of 1.55475 with a loss of about 0.06 dB per centimeter.
- the planar optical wave guide 20 has a numerical aperture (NA) of 0.273, an acceptance angle (a 0 ) of 15.8 degrees, and a critical angle (9c) of 80 degrees.
- the starting substrates are conditioned with an oxygen ash followed by a thirty-minute bake on a hot plate at 200°C.
- the surface is then preferably spun with an adhesion promoter and baked for five minutes at
- the bottom cladding layer 40 can then be spun on to the substrate 22 with a spin-coating process targeting for 50 ⁇ .
- the resulting film can then be given a three-minute soft-bake at 80°C.
- the film can be hardened, for example with a blanket UV exposure, which can then be followed by another three-minute bake at 80°C.
- the UV exposure is performed by a Karl Suss MA6 mask aligner which is a top and bottom side contact printer used for fine lithography down to 1 micron or better.
- a thin layer of uncured liquid polymer may remain on the wafers which can be removed with a ninety-second dip in developer.
- a final hardbake can be performed with a three-hour bake at 150°C in a nitrogen-purged oven.
- the process of patterning the core material 36 would immediately follow the hard-bake of the bottom cladding layer 40; otherwise, a hotplate bake can be necessary to drive off moisture.
- a hotplate bake can be necessary to drive off moisture.
- the adhesion of patterned waveguide pathways 36 is more reliable if the top surface of cladding layer 40 is pre-treated with an oxygen plasma. This treatment can be performed done with a barrel asher. However, it is noted that while such a treatment can greatly improve the adhesion, over-etching the surface is possible, which can cause cracks and craze lines to form in the surface after the developing process.
- the core material 36 is applied with a spin-coating process targeting 50 ⁇ thickness and given a three-minute soft-bake at 80°C.
- a mask aligner and a dark-field mask can be used to expose the core material 36.
- the photo-patterning of the waveguide structures 36 can be a difficult part of the process as the unexposed material is still wet after the soft-bake. Accordingly, with such an approach, steps should be taken to prevent the mask from contacting the polymer surface and the exposure should be done with a proximity mode. Exposures can be performed for ninety seconds at 12 mW/cm2 (milliwatts per centimeter squared), although lower exposures are possible. Subsequently, a post-exposure bake of a three-minute soft- bake at 80°C can be applied.
- the patterns can then be developed, for example, by agitating the wafer in the developer and rinsing with isopropyl alcohol.
- a final hard-bake can be performed with a three-hour bake at 150°C in a nitrogen- purged oven.
- top cladding layer 42 must sufficiently encapsulate the core 36 with enough thickness to prevent loss from the waveguide. Although such a structure can be produced that accomplishes this in one step, doing so requires a low spin-speed which reduces the thickness control. The slower spin-speed also increases the difficulty in keeping bubbles in the resist from getting hung up on the topology of the waveguides. Accordingly, the process can be easier to control when the top cladding is produced in two steps; each step consisting of the same cycle of spin-coat, soft-bake, exposure, post-expose bake and hard-bake described above. In one embodiment, the final cladding layer 40 would be targeted for a 50 ⁇ thickness over the patterned core for a total thickness of ⁇ .
- module 10 includes a plurality of edge connectors 50, in the form of fiber optic adapters. Each connector 50 connects to one or more of the optical pathways 36. As shown, the optical waveguide module 10 also includes a connection arrangement for connecting LC connectors 50 to LC connectors 50. As will be described below, various alternative arrangements can be provided for the waveguide modules 10 for connecting other connector formats, or connecting one or more modules together. Module 10 shows interconnections between duplex LC connectors 50 to duplex LC connectors 50. Alternatively, the LC connectors 50 can be manufactured as a single block of any desired number of ports. [0098] As most easily seen at Figure 7, each edge connector 50 includes an adapter port 52 for receiving a fiber optic connector 12, 16.
- Each adapter port 52 includes an internal passageway 54 configured to receive a ferrule 13, 17 of the optical connector 12, 16 to allow the ferrule 13, 17 to be placed in optical communication with the optical passageways 36 of the planar waveguide 20.
- the edge connector 50 can also be provided with a catch 56 for engaging and retaining a latching mechanism 14, 18 of the optical connector 12, 16.
- each edge connector 50 is further shown as being provided with an alignment slot 60 opposite the adapter port 52.
- the alignment slot 60 is for providing alignment in a direction Z between the optical waveguide 20 and the connector 50 such that the ferrule 13, 17 will be sufficiently aligned with an optical pathway 36 in the direction Z.
- the direction Z is generally orthogonal to the plane defined by the first and second surfaces 24, 26 of the optical light guide 20.
- the alignment slot 60 is formed by a first sidewall 62, a second sidewall 64, and a base portion 66 extending between the first and second sidewalls 62, 64.
- the first sidewall 62 is adjacent to and extends over the first planar surface 24 while the second sidewall 64 is adjacent to and extends over the second planar surface 26.
- the spacing between the sidewalls 62, 64 is generally equal to the total thickness of the optical waveguide 20 which ensures proper alignment in direction Z of the adapter port 52, and thereby ferrules 13, 17 relative to the ends of the optical passageways 36.
- the planar optical light guide 20 is shown as having a plurality of alignment notches 38 at the first and second side edges 28, 30.
- Each of the alignment notches 38 are for providing alignment in a direction X with a corresponding protrusion 68 provided on the connector 50.
- Direction X is generally parallel to the length of the side edges 28, 30.
- each connector 60 is provided with two protrusions 68, each of which engages a corresponding notch 38 on either side of an optical pathway 36.
- a notch 38 is provided on each side of the optical pathway 36.
- each connector 50 may be provided with only one notch 68 or more than two notches 68, as desired.
- the depth of the notches 38 and the length of the protrusions 68 can be configured to provide a stop position for insertion of the connector 50 onto the optical waveguide 20 such that the edge connector has minimum end separation in a direction Y.
- Many typical fiber optic connectors, such as connectors 12, 16, have ferrules 13, 17 that are spring loaded to ensure that the ends of the ferrules 13, 17 are in physical contact with another optical transmission device such that no loss in efficiency or optical power loss results through unduly large air gaps or the like.
- edges 28, 30 of the optical light guide 20 are generally rigid, it is desirable to minimize optical end separation of the edge connector 50 on the optical waveguide 20 in the Y direction such that a spring loaded ferrule 13, 17 can operate within its own range of motion to engage with the optical pathway 36 at the edges 28, 30 of the optical light guide 20.
- the Y direction is generally parallel to the length of the side edges 32, 34.
- the location of the alignment slot base 66 can also be selected to properly position the connector 50 relative to the edges 28, 30 in the Y direction.
- optical waveguide end face protection is provided in the form of an index matching film 70.
- the index matching film 70 protects the optical pathway 36 ends at the edges 28, 30 from the insertion and impact forces from receiving optical connector 12, 16. This helps to prevent damage to the optical pathway ends to ensure data integrity and to minimize the occurrence of errors, link failures, and optical power degradation.
- the index matching film 70 is applied at least to the side edges 28, 30.
- the index matching film 70 may also be formed along waveguide first surface 24 and the second surface 26 adjacent to the side edges 28, 30 to provide better attachment and durability of the film 70.
- the connector slot sidewalls 62, 64 extend over the index matching film 70 to help hold film 70 in position for assembly purposes.
- Another way to prevent optical waveguide end face damage from the insertion and impact forces from receiving an optical plug is to provide a physical contact distance between waveguide side edges 28, 30 and ferrule 13, 17 within the optical coupling limits.
- One embodiment will have a physical contact feature which engages the optical connector 12, 16 and prevents physical contact between the ferrule 13, 17 end face and the waveguide side edges 28, 30.
- the optical waveguide side edges 28, 30 are recessed back from the physical contact interface area between the optical plug ferrule 13, 17 and optical waveguide side edges 28, 30.
- the resulting gap or distance between the optical waveguide end face and the optical plug end face can be an air gap or filled with an index matching gel.
- an adhesive may be applied at the interface of the alignment slot 60 and the first and second planar surfaces 24, 26 of the optical light guide 20.
- the adhesive is an epoxy adhesive.
- FIG. 9-12 a second embodiment of an optical waveguide module 110 is presented.
- the description for the first embodiment is hereby incorporated by reference for the second embodiment.
- the same reference numbers will be used where possible (e.g. reference number 150 instead of reference number 50 for the edge connector).
- the following description for the second embodiment will be limited primarily to the differences between the first and second embodiments.
- MPO type edge connectors 150 are shown instead of LC duplex type connectors 50.
- a typical MPO type connector 1 12, 116 has twelve fiber optic connections. Accordingly, the planar optical light guide 120 has significantly more optical pathways 136 (e.g. 36 optical pathways with three MPO connectors on each side) than that shown for the first embodiment 10.
- the connectors 150 have an adapter port 152 and a catch mechanism 156 for receiving and retaining an MPO type connector. Referring to Figures 10 and 11, each connector 150 has an alignment slot 160 having a first sidewall 162, a second sidewall 164, and a base portion 166 extending between the first and second sidewalls 162, 164.
- the first and second sidewalls 162, 164 engage with the first and second planar surfaces 124, 126 of the optical light guide 120, respectively.
- Each connector 150 is also shown as having a pair of protrusions 168 that interface with corresponding notches 138 in the planar optical light guide 120. Accordingly, the connector 150 and planar optical light guide 120 have features that align the adapter port 152 in the X, Y, and Z directions in generally the same manner as for the first embodiment.
- FIG. 13-17 a third embodiment of an optical waveguide module 210 is shown. As many of the concepts and features are similar to the first and second embodiments shown in Figures 1-12, the description for the first and second embodiments are hereby incorporated by reference for the third embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 250 instead of reference number 50 for the edge connector). The following description for the third embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
- edge connector 250 allows two planar optical light guides 220a, 220b to be connected together.
- edge connector 250 enables a degree of platform modularity in that preassembled planar optical light guides having any number of different connector types and arrangements can be connected together to create an even larger number and variety of waveguide module 210 configurations.
- the edge connector 250 joins the side edges 228 of two optical light guides 220a, 220b such that one or more first fiber optic connectors 212 can be placed in optical communication with one or more second fiber optic connectors 216.
- first side edges 228 are adjacent to each other when the optical light guides 220a, 220b are joined by connectors 250.
- An index matching film or gel may be applied to the first side edges 228 for protection and prevention of signal power loss.
- the edge connector 250 is shown as having a first alignment slot 260a and a second alignment slot 260b opposite the first alignment slot 260a.
- the first alignment slot 260a has a first sidewall 262a and a second sidewall 264a that engage with the first and second planar surfaces 224, 226 of the optical light guides 220, respectively.
- the second alignment slot 260b has a first sidewall 262b and a second sidewall 264b that engage with the first and second planar surfaces 224, 226 of the optical light guide 220, respectively.
- the alignment slots 260a, 260b ensure proper alignment between the optical pathways 236 of the light guides 220a, 220b in the Z direction.
- the edge connector 250 is also provided with a central protrusion 268a and a pair of side protrusions 268b.
- the central protrusion engages with notches 239 in the light guide 220a, 220b while the side protrusions 268b engage with notches 238 in the light guide 220a, 220b.
- notches 239 are larger than the notches 238, although variations are possible.
- the notches and protrusions cooperate to provide alignment of the optical pathways 236 of each light guide 220a, 220b in the X direction.
- the length of the notches and protrusions can be selected to ensure a desired relative position along direction Y between the side edges 228 of the light guides 220a, 220b.
- FIG. 18-19 a fourth embodiment of an optical waveguide module 310 is presented.
- the description for the first and second embodiments are hereby incorporated by reference for the fourth embodiment.
- the same reference numbers will be used where possible (e.g. reference number 350 instead of reference number 50 for the edge connector).
- the following description for the fourth embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
- optical waveguide module 310 is provided as a distribution or furcation module in which a single side edge connector 350a distributes fiber optic pathways to a plurality of side edge connectors 350b, rather than there being a one-to-one relationship of oppositely positioned side edge connectors 50 or 150. More specifically, the fourth
- embodiment 310 shows a single side edge connector 350a having an adapter port for an MPO type fiber optic connector 312 from which optical pathways 336 are distributed across the optical light guide 320 to four side edge connectors having duplex adapter ports for LC type connectors 316.
- a typical MPO connector generally carries twelve optical fiber connections, and therefore the embodiment shown does not use four of the connections provided by the MPO connector.
- optical waveguide module 310 could be configured with a sufficient number of LC type, or other types of side edge connectors 350b to utilize all or fewer of the available connections provided by the MPO type side edge connector 350a, as shown in later discussed embodiments.
- the side edge connector 350a and its engagement with the planar optical waveguide module 320 is the same as that for connector 150, and therefore will not be discussed further.
- the side edge connectors 350b and their engagement with planar optical light guide 320 are the same as that for connector 50, and also do not need to be further discussed.
- the planar optical light guide 320 differs in that the optical pathways 336 are not provided in a straight line, as is the case for waveguides 20, 120, and 220. Instead, the optical pathways extend from a central location at the first side edge 328 and bend radially outwards to be further spaced apart at the second side edge 330.
- optical pathways 336 can be precisely manufactured, the distance between the first and second side edges 328 and 330 can be significantly reduced, as compared to other types of optical furcation means.
- a configuration is shown in which two optical waveguide modules 310 are connected to each other via a cable 313 having MPO type connectors 312 at each end.
- FIG. 21-31 a fifth embodiment of an optical waveguide module 410 is presented.
- the description for the previous embodiments are hereby incorporated by reference for the fifth embodiment.
- the same reference numbers will be used where possible (e.g. reference number 450 instead of reference number 50 for the edge connector).
- the following description for the fourth embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
- the optical waveguide module 410 includes a planar optical light guide 420 having features similar to that shown for the first embodiment 20 wherein the light guide 420 extends between a first side edge 428 and a second side edge 430 with a plurality of notches 438 being provided at each edge.
- the edge connectors 450 are shown as having LC duplex adapter ports 452, although other connector types may be used. However, the edge connectors 450 are different from previous embodiments in that the edge connectors 450 are provided with a two-piece design wherein a sleeve 472 is inserted into a cavity 474 of a body 484 of the edge connector 450.
- each sleeve 472 is provided with an internal passageway 473 extending into an alignment slot 460 and a pair of alignment protrusions 468 within the slot 460.
- the slot 460 sidewalls 462, 464 and the protrusions 468 engage with the first and second planar surfaces 424, 426 and the notches 438 of the optical light guide 420 to align the sleeve 472 in the X, Y, and Z directions.
- the protrusions 468 have rounded ends to enable easier initial insertion of the protrusions 468 into the notches 438.
- the sleeve 472 has a first portion 476 having a slot 460 with first and second sidewalls 462, 464. As most easily seen at Figure 30, the sidewalls 462, 464 are provided with a chamfer type cut at their ends to enable easier initial insertion of the optical light guide 420 into the slot 460.
- the sleeve 472 also has a second portion 478 that has a smaller outside dimension than the first portion 476 such that a shoulder 480 is formed. As can be seen at Figure 27, the shoulder 480 can provide a position stop for the sleeve 472 against a corresponding stop surface 486 on the connector body 484.
- the sleeve first portion 476 fits tightly with the connector body cavity 474 such that adequate alignment between the internal passageway 473 and the adapter port 452 is maintained.
- an enlarged slot 488 is provided that does not come into contact with the optical light guide 420.
- slot 488 may be provided to tightly fit against the optical light guide first and second surfaces 424, 426 to further aid in alignment.
- the sleeve 472 is provided with an aperture 482 through which an adhesive, such as an epoxy, can be applied to secure the sleeve 472 to the optical light guide 420 and/or the edge connector body 484.
- an optional index matching film 470 may be provided.
- a sixth embodiment of an optical waveguide module 510 is presented. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-31, the description for the previous embodiments are hereby incorporated by reference for the sixth embodiment.
- the sixth embodiment 510 is similar to the fifth embodiment, in that a plurality of two-piece type connectors is used for the optical light guide.
- the sixth embodiment 510 is also similar to the fourth embodiment, in that an optical waveguide module 510 is provided as a distribution or furcation module in which a single side edge connector 550a distributes fiber optic pathways to a plurality of side edge connectors 550b.
- the sixth embodiment shows a single side edge connector 550a having an adapter port for an MPO type fiber optic connector 512 from which optical pathways 536 are distributed across the optical light guide 520, and in this case, to six side edge connectors 550b having duplex adapter ports for LC type connectors 516.
- the sixth embodiment is different in that a two-piece connector 550a with an MPO type adapter port is utilized, and in that the side edge connectors 550b are provided on three side edges 530, 532, 534 of the optical light guide 520.
- the connectors 550b have already been discussed in detail for the fifth embodiment, they will not be discussed further.
- each sleeve 572a is provided with an internal passageway 573 extending into an alignment slot 560 and a pair of alignment walls 568 within the slot 560. It is noted that optical light guide
- 520 includes a protrusion 538 that engages with the walls 568 to align the sleeve
- the slot 560 sidewalls 562, 564 engage with the first and second planar surfaces 524, 526 of the optical light guide 520 to align the sleeve 572a in the Z direction.
- the alignment walls 568 have rounded ends to enable easier initial insertion of the sleeve 572a onto the protrusion 538. It is noted, that although the protrusion 538 and alignment wall 568 configuration is described for an MPO type connector, this configuration could also be used for other types of connectors, such as LC type connectors.
- the sleeve 572a has a first portion 576 having a slot 560 with first and second sidewalls 562, 564. As most easily seen at Figure 41, the sidewalls 562, 564 are provided with a chamfer type cut at their ends to enable easier initial insertion of the optical light guide 520 into the slot 560.
- the sleeve 572a also has a second portion 578 that has a smaller outside dimension than the first portion 576 such that a shoulder 580 is formed.
- the shoulder 580 can provide a position stop for the sleeve 572a against a corresponding stop surface on the connector body 584.
- sleeve first portion 576 When assembled, the sleeve first portion 576 fits tightly with the connector body cavity 574 such that adequate alignment between the internal passageway 573 and the adapter port 552 is maintained.
- a slot 588 is provided that can be configured to not come into contact with the optical light guide 520 or configured to contact the first and second surfaces 524, 526 to additionally aid in alignment.
- the sleeve 572a is provided with apertures 582 through which an adhesive, such as an epoxy, can be applied to secure the sleeve 572a to the optical light guide 520 and/or the edge connector body 584.
- the sleeve 572a is also shown as being provided with receptacles 590 that are configured for receiving corresponding alignment pins on the connector 512.
- An optional index matching film 570 may be also provided on the side edges 528, 530, 532, and 534.
- FIG. 43 a seventh embodiment of an optical waveguide module 610 is presented. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-42, the description for the previous embodiments are hereby incorporated by reference for the sixth embodiment.
- the seventh embodiment 610 is similar to the sixth embodiment 510, in that a plurality of two-piece type connectors is used for the optical light guide in a furcation application.
- the seventh embodiment 610 is also similar to the fourth embodiment in that all of the side edge connectors 650a, 650b are on opposite sides of the optical light guide 620.
- the seventh embodiment shows a single side edge connector 650a having an adapter port for an MPO type fiber optic connector 612 from which optical pathways 636 are distributed across the optical light guide 620, and in this case, to six oppositely positioned side edge connectors 650b having duplex adapter ports for LC type connectors 616.
- the connectors 650a, 650b have already been discussed in detail for the fifth and sixth embodiments, they will not be discussed further.
- an eighth embodiment of an optical waveguide module 710 is presented. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-45, the description for the previous embodiments are hereby incorporated by reference for the eighth embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 750 instead of reference number 50 for the edge connector). The following description for the eighth embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
- the eighth embodiment 710 is similar to the fifth through seventh embodiments, in that a plurality of two-piece type connectors is used in conjunction with an optical light guide 720.
- the eighth embodiment 710 is also similar to the sixth embodiment in that an optical waveguide module 710 is provided as a distribution or furcation module in which a single side edge connector 750a distributes fiber optic pathways to a plurality of side edge connectors 750b.
- the eighth embodiment shows a single side edge connector 750a having an adapter port for an MPO type fiber optic connector (e.g.
- the eighth embodiment is different in that the two- piece MPO type adapter port connector 750a utilizes a sleeve 772a that engages with only one side 724 and an edge 728 of the optical light guide 720 instead of a slot that engages both sides (e.g. 24, 26) and the edge (e.g. 28) of the light guide 720.
- the eighth embodiment is also different in that the LP type adapter port connector 750b utilizes a sleeve 772b that engages with only one side 724 and one edge 730, 732 or 734 of the optical light guide 720 instead of a slot that engages both sides (e.g. 24, 26) and an edge (e.g. 28) of the light guide 720. Accordingly, each edge connector 750a and 750b continues to have a slot 788 that extends across the sides 724 and 726 of the optical light guide 720, but in which the cavity 774 is only provided adjacent the side 724 of the light guide 720 at which the optical pathways 736 are provided.
- each sleeve 772b is provided with an internal passageway 773 extending into an alignment channel 760 with a pair of alignment protrusions 768 adjacent the channel 760.
- the channel is bounded by sidewalls 762 and planar surface 769 extending in a perpendicular direction from the sidewalls 762.
- the sleeve 772b has a first portion 776 including the channel 760 with the sidewalls 762.
- the sleeve 772b also has a second portion 778 through which passageway 773 extends and which forms a shoulder 780.
- the shoulder 780 can provide a position stop for the sleeve 772b against a corresponding stop surface on the connector body 750b, as shown for other embodiments.
- the sleeve first portion 776 fits tightly with the connector body cavity 774 such that adequate alignment between the internal passageway 473 and the adapter port is maintained.
- an enlarged slot 788 is provided that does not come into contact with the optical light guide 720.
- slot 788 may be provided to tightly fit against the optical light guide first and second surfaces 724, 726 to further aid in alignment.
- the sleeve 772b may be provided with an aperture through which an adhesive, such as an epoxy, can be applied to secure the sleeve 772b to the optical light guide 720 and/or the edge connector body 750b.
- An optional index matching film may also be provided.
- sleeve 772a is shown in greater detail. As presented, each sleeve 772a is provided with a channel 773 configured to receive a tab portion 739 adjacent recess portions 741 of the optical light guide 720.
- the sleeve 772a is also shown as being provided with receptacles 790 that are configured for receiving corresponding alignment pins on the connector (e.g. connector 512).
- the sleeve 772a is also provided with alignment channels 760 with a pair of alignment protrusions 768 adjacent the channels 760. As shown, the channels 760 are bounded by sidewalls 762 and planar surfaces 769 extending in a perpendicular direction from the sidewalls 762. As shown, the sleeve 772a has a first portion 776 including the channels 760 with the sidewalls 762. The sleeve 772a also has a second portion 778 through which channel 773 extends and which forms a shoulder 780. The shoulder 780 can provide a position stop for the sleeve 772a against a corresponding stop surface on the connector body 750a, as shown for other embodiments.
- the sleeve first portion 776 When assembled, the sleeve first portion 776 fits tightly with the connector body cavity 774 such that adequate alignment between the channel 773 and the adapter port is maintained.
- an enlarged slot 788 is provided that does not come into contact with the optical light guide 720.
- slot 788 may be provided to tightly fit against the optical light guide first and second surfaces 724, 726 to further aid in alignment.
- the sleeve 772a may be provided with an aperture through which an adhesive, such as an epoxy, can be applied to secure the sleeve 772a to the optical light guide 720 and/or the edge connector body 750a.
- An optional index matching film may also be provided.
- the planar surface 769 of each of the sleeves 772a, 772b engages with the side edge 728, 730, 732, or 734 of the optical light guide 720 to align the position of the sleeve 772a, 772b in the Y direction while the sidewalls 762 engage with the first planar surface 724 of the optical light guide 720 to align the sleeve in the Z direction.
- the protrusions 768 engage with notches 738 of the optical light guide 720 to align the sleeve 772a, 772b in the X direction. As shown, the protrusions 768 have rounded ends to enable easier initial insertion of the protrusions 768 into the notches 738. Because the sleeve
- the sleeve 772 can be installed onto the first surface 724 of the optical light guide 720 in a downward direction instead of sliding the sleeve onto the optical light guide 720 from one of the side edges 728, 730, 732, 734.
- the use of sidewalls 762 instead of a slot allow the sleeve 772a, 772b to be positioned onto the optical light guide 720 without reliance on the exact thickness of the optical light guide 720 for proper positioning of the sleeve 772a, 772b in the Z direction.
- the optical light guide 720 can be provided with notches 738 that extend only partially through the thickness of the optical light guide 720 at a first depth d from the first surface 724.
- the notches 738 have a depth d that is the same as the thickness of the cladding layer 742, while in another embodiment, the notches 738 have a depth d that is equal to the thickness of the cladding layers 740 and 742.
- the notches 738 extend through the cladding layers 740, 742 and into the base substrate layer 722.
- the notches 738 may also extend all of the way through the cladding layers 740, 742 and the base substrate layer 722 as with the other shown embodiments.
- the other shown embodiments may be provided with notches that do not extend completely through the optical light guide as well.
- the protrusions 768 can be provided with a corresponding height h that is equal to or less than the depth d of the notch 738 such that the sidewalls 762 can engage with the first surface 724 of the optical light guide 720.
- the sleeves 772a and/or 772b are provided with open sidewalls 762 and mounted in a downward direction onto the optical light guide 720, it is also possible to provide the notches 738 with shapes other than the longitudinal opening that would be normally associated with a slotted sleeve.
- the sleeves 772a and/or 772b can be fixed in both the X and the Y directions by the notch 738 engaging with the protrusion 768.
- Non-limiting examples of shapes that extend in the X and Y directions are intersecting orthogonal slots, as shown at Figure 73, polygonal shapes (e.g. a circle, square, rectangle, etc.), and combinations of shapes having dimensions that extend in the X and Y direction, as shown at Figure 74.
- each sleeve 772a and/or 772b is aligned and mounted to the optical light guide 720 in a temporary fixture. In the temporary fixture, the sleeves 772a and/or 772b can be permanently attached to the optical light guide 720, for example with epoxy.
- a ninth embodiment of an optical waveguide module 710' is presented that is generally similar to the eighth embodiment 710.
- the ninth embodiment 710' is similar to the eighth embodiment 710, in that a plurality of two-piece type connectors with non-slotted sleeves is used for the optical light guide.
- the ninth embodiment 710' is also similar to the fifth embodiment in that all of the side edge connectors are on opposite sides of the optical light guide 720'.
- a plurality of LC-simplex type side edge connectors 750b' are provided at a first side edge 728' of the optical light guide 720' while a combination of LC-simplex type side edge connectors 750b' and LC-duplex type side edge connectors 750b are provide at a second opposite side edge 730' of the optical light guide 720'.
- the optical light guide 720' for this embodiment is provided with three linear optical pathways 736 extending between the first and second side edges 728', 730' and between oppositely positioned connectors 750b'.
- the optical light guide 720' is also provided with two split pathways 736' that extend from the first side edge 728' and from a connector 750b' which split into a first pathway 736a and a second pathway 736b before reaching the second side edge 730' and a connector 750b.
- the above described connectors and sleeves are formed from a thermoplastic resin material, for example polyetherimide (PEI) thermoplastic resin.
- the thermoplastic resin material is formed into the connectors and sleeves through the use of a micro molding process which allows for very high tolerances to be achieved.
- the various embodiments described above describe a platform that will have minimum components and assembly processes with short lead-time and low cost for final module product.
- the embodiments can also be used for optical modules such as signal splitters (OLS/GPON), monitor testing (TAP), wavelength division multiplexing (WDM), transceivers for optical to electrical converters, backplane interconnects, physical layer management, and MEMS integration for optical cross-connects.
- optical modules such as signal splitters (OLS/GPON), monitor testing (TAP), wavelength division multiplexing (WDM), transceivers for optical to electrical converters, backplane interconnects, physical layer management, and MEMS integration for optical cross-connects.
- the side edge connectors are configured with adapter ports that receive standard fiber optic connectors, the fiber optic connectors and side edge connectors are easily connected and disconnected from each other in a repeatable fashion without the need for time consuming optical alignment procedures.
- the above described connectors and alignment features provide for fiber optic connectivity between the connectors and
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
The present disclosure relates to systems and methods for optically connecting circuit elements and optical fiber systems. In one embodiment, an optical waveguide module includes an optical light guide having opposite first and second planar surfaces extending between a first side edge and a second side edge. The optical light guide can be configured with a substrate supporting one or more optical pathways extending between the first and second side edges. The waveguide module can further include one or more first and second edge connectors, each of which has an adapter port and a first alignment slot opposite the adapter port. The alignment slots extend over the first and second planar surfaces at the first and second side edges to align the adapter ports with the one or more optical pathways in a first direction.
Description
OPTICAL WAVEGUIDE MODULE. SYSTEM AND METHOD
Related Applications
[0001] This application is being filed on 12 March 2014, as a PCT International Patent application and claims priority to U.S. Patent Application Serial Number 61/777,654, filed on 12 March 2013, and U.S. Patent Application Serial Number 61/878,388, filed on 16 September 2013. Each of US 61/777,654 and US
61/878,388 is incorporated herein by reference in its entirety.
Background
[0002] The present invention relates to systems and methods for optically connecting circuit elements in optical fiber systems. In some fiber optic systems, fiber optic cables are connected to one another through splices, or through connection systems including two connectors held in alignment by an adapter. Various connector and adapter formats are known including SC, LC, and MPO. SC and LC are single fiber formats. MPO connection systems are multiple fiber formats. There is a continuing need for connection systems for connecting fiber optic equipment.
Summary
[0003] Optical waveguide modules are disclosed. In one embodiment, an optical waveguide module includes an optical light guide having opposite first and second planar surfaces extending between a first side edge and a second side edge. The optical light guide can be configured to include one or more optical pathways extending between the first and second side edges. The waveguide module can further include one or more first edge connectors, each of which has a first adapter port and a first alignment slot opposite the first adapter port. The first alignment slot extends over the optical light guide first and second planar surfaces at the first side edge to align the first adapter port with the one or more optical pathways in a first direction. The waveguide module can also include one or more second edge connectors, each of which has a second adapter port and a second alignment slot opposite the second adapter port wherein the second alignment slot extends over the
optical light guide first and second planar surfaces at the second side edge to align the second adapter port with the one or more optical pathways in the first direction.
[0004] In one embodiment, the edge connectors include a first sleeve received within a cavity of a first body wherein the first body has a first adapter port. As presented, the first sleeve has a first alignment slot opposite the first adapter port, and the first alignment slot extends over the optical light guide first and second planar surfaces at the first side edge to align the first adapter port with the one or more optical pathways in the first direction. Likewise, the second edge connectors each have a second sleeve received within a cavity of a second body wherein the second body has a second adapter port. The second sleeve has a second alignment slot opposite the second adapter port. Also, the first alignment slot extends over the optical light guide first and second planar surfaces at the second side edge to align the second adapter port with the one or more optical pathways in the first direction.
[0005] In one embodiment, the optical waveguide module includes a first and second optical light guide. The first optical light guide can include first and second opposite surfaces extending between first and second opposite side edges wherein the optical light guide includes one or more first optical pathways extending between the first and second side edges. The second optical light guide can include first and second opposite surfaces extending between first and second opposite side edges wherein the second optical light guide supports one or more second optical pathways extending between the first and second side edges. A first edge coupler aligns the one or more first optical pathways of the first optical light guide with the one or more second optical pathways of the second optical light guide. In one embodiment, the first edge coupler has a first alignment slot and a second alignment slot opposite the first alignment slot. The first alignment slot extends over the first optical light guide first and second planar surfaces at the first side edge to align the first edge coupler with the one or more first optical pathways in a first direction. The second alignment slot extends over the second optical light guide first and second planar surfaces at the first side edge to align the first edge coupler with the one or more second optical pathways in the first direction.
[0006] Optical light guide edge protection features are provided in some examples. One example is in the form of an index matching film. Another example of a waveguide edge protection feature is in the form of a spaced end face.
[0007] Each of the described embodiments herein for the side edge connectors includes passive alignment features (e.g. alignment slots, tabs, notches, and protrusions), meaning that optical alignment between components is obtained by the passive alignment features without requiring measuring and adjusting the positions of the components after an initial alignment process. Furthermore, the fiber optic connectors (e.g. MPO, LC, etc.) and the disclosed side edge connectors can be easily and repeatedly connected and disconnected from each other without a loss in alignment and without requiring additional alignment steps.
Brief Description of the Drawings
[0008] Figure 1 shows a perspective view of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
[0009] Figure 2 shows a cross-sectional side view of the optical waveguide module shown in Figure 1.
[0010] Figure 3 shows a perspective view of the assembled optical waveguide module of Figure 1 that is disconnected from the shown connectors. [0011] Figure 4 shows a cross-sectional side view of the optical waveguide module shown in Figure 3.
[0012] Figure 5 is an exploded perspective view of the optical waveguide module shown in Figure 1.
[0013] Figure 6 is a cross-sectional side view of the optical waveguide module shown in Figure 5.
[0014] Figure 7 shows a cross-sectional side view of an edge connector usable with the optical waveguide module shown in Figure 1.
[0015] Figure 8 shows a cross-sectional schematic view of a planar optical light guide usable with the optical waveguide module shown in Figure 1.
[0016] Figure 9 shows a perspective view of a second embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
[0017] Figure 10 shows a cross-sectional side view of the optical waveguide module shown in Figure 9.
[0018] Figure 11 shows a side view of an edge connector usable with the optical waveguide module shown in Figure 9.
[0019] Figure 12 shows a partial exploded top view of the optical waveguide module shown in Figure 9.
[0020] Figure 13 shows a perspective view of a third embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
[0021] Figure 14 shows an exploded top view of a center portion of the waveguide module shown in Figure 13.
[0022] Figure 15 shows a top view of the center portion of the waveguide module shown in Figure 13.
[0023] Figure 16 shows a cross-sectional side view of the center portion of the waveguide module shown in Figure 13.
[0024] Figure 17 shows a cross-sectional side view of a side edge connector of the waveguide module shown in Figure 13.
[0025] Figure 18 shows a fourth embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
[0026] Figure 19 is an exploded perspective view of the optical waveguide module shown in Figure 18.
[0027] Figure 20 shows a pair of the optical waveguide modules shown in Figure 18 connected to each other.
[0028] Figure 21 shows a perspective view of a fifth embodiment of an assembled and connected optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
[0029] Figure 22 shows an exploded perspective view of the optical waveguide module of Figure 21.
[0030] Figure 23 shows an exploded cross-sectional side view of one end of the optical waveguide module of Figure 21.
[0031] Figure 24 shows an exploded perspective view of a portion of one end of the optical waveguide modules of Figure 21, Figure 32, and Figure 43.
[0032] Figure 25 shows a perspective view of a portion of one end of the optical waveguide modules of Figure 21, Figure 32, and Figure 43 in an assembled state.
[0033] Figure 26 shows a cross-sectional side view of one end of the optical waveguide modules of Figure 21, Figure 32, and Figure 43 in an assembled state.
[0034] Figure 27 shows an enlarged cross-sectional side view of a portion of the optical waveguide module of Figure 26.
[0035] Figure 28 shows a first perspective view of a sleeve that is part of the optical waveguide modules shown in Figure 21, Figure 32, and Figure 43.
[0036] Figure 29 is a second perspective view of the sleeve shown in Figure 28.
[0037] Figure 30 is a cross-sectional side view of the sleeve shown in Figure 28.
[0038] Figure 31 is a cross-sectional top view of the sleeve shown in Figure 28.
[0039] Figure 32 shows a perspective view of a sixth embodiment of an assembled optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
[0040] Figure 33 shows an exploded perspective view of the optical waveguide module of Figure 32.
[0041] Figure 34 shows a top view of an optical light guide and connector sleeves of the optical waveguide module of Figure 32.
[0042] Figure 35 shows a top view of an optical light guide of the optical waveguide module of Figure 32.
[0043] Figure 36 shows a perspective exploded bottom view of one of the connectors associated with the optical waveguide module of Figure 32.
[0044] Figure 37 shows a side view of a portion of the optical waveguide of Figure 32.
[0045] Figure 38 shows an exploded side view of a portion of the optical waveguide of Figure 32.
[0046] Figure 39 shows a first perspective view of a sleeve that is part of the optical waveguide module shown in Figure 32.
[0047] Figure 40 is a second perspective view of the sleeve shown in Figure 39.
[0048] Figure 41 is a cross-sectional side view of the sleeve shown in Figure 39.
[0049] Figure 42 is a cross-sectional top view of the sleeve shown in Figure 39.
[0050] Figure 43 shows a perspective view of a seventh embodiment of an assembled optical waveguide module having features that are examples of aspects in accordance with the principles of the present disclosure.
[0051] Figure 44 shows a perspective view of the sixth embodiment of the assembled optical waveguide module of Figure 32 inside of an unassembled housing wherein the connectors are additionally provided with slots for receiving edges of the housing.
[0052] Figure 45 shows a perspective view of the optical waveguide module of Figure 32 inside of the assembled housing of Figure 44.
[0053] Figure 46 shows a perspective view of an eighth embodiment of an assembled optical waveguide module within a housing having features that are examples of aspects in accordance with the principles of the present disclosure.
[0054] Figure 47 shows a perspective view of the assembled optical waveguide module of Figure 46 with a top portion of a housing removed.
[0055] Figure 48 shows a perspective view of the assembled optical waveguide module of Figure 46 removed from the housing.
[0056] Figure 49 shows a perspective view of an optical light guide and connector sleeves of the optical waveguide module of Figure 46. [0057] Figure 50 shows a perspective view of the optical light guide shown in Figure 49.
[0058] Figure 51 shows a top view of the optical light guide shown in Figure 49.
[0059] Figure 52 shows a first end view of the optical light guide shown in Figure 49. [0060] Figure 53 shows a second end view of the optical light guide shown in Figure 49.
[0061] Figure 54 shows a front perspective view of an LC-type connector sleeve of the optical waveguide module shown in Figure 49.
[0062] Figure 55 shows a rear perspective view of the connector shown in Figure 54.
[0063] Figure 56 shows a bottom view of the connector shown in Figure 54. [0064] Figure 57 shows a top view of the connector shown in Figure 54. [0065] Figure 58 shows a side view of the connector shown in Figure 54. [0066] Figure 59 shows a first end view of the connector shown in Figure 54. [0067] Figure 60 shows a second end view of the connector shown in Figure 54.
[0068] Figure 61 shows a front perspective view of an MPO-type connector sleeve of the optical waveguide module shown in Figure 49.
[0069] Figure 62 shows a rear perspective view of the connector shown in Figure 61. [0070] Figure 63 shows a bottom view of the connector shown in Figure 61.
[0071] Figure 64 shows a top view of the connector shown in Figure 61.
[0072] Figure 65 shows a side view of the connector shown in Figure 61.
[0073] Figure 66 shows a first end view of the connector shown in Figure 61.
[0074] Figure 67 shows a second end view of the connector shown in Figure 61. [0075] Figure 68 shows a perspective view of a ninth embodiment of an assembled optical waveguide module within a housing having features that are examples of aspects in accordance with the principles of the present disclosure.
[0076] Figure 69 shows a perspective view of the assembled optical waveguide module of Figure 68 with a top portion of a housing removed. [0077] Figure 70 shows a perspective view of the assembled optical waveguide module of Figure 68 removed from the housing.
[0078] Figure 71 shows a perspective view of an optical light guide and connector sleeves of the optical waveguide module of Figure 68.
[0079] Figure 72 shows a perspective view of the optical light guide shown in Figure 71.
[0080] Figure 73 shows a schematic top view of a sleeve and optical light guide having a first alternative shape for the respective protrusions and notches described for the disclosed embodiments disclosed herein.
[0081] Figure 74 shows a schematic top view of a sleeve and optical light guide having a second alternative shape for the respective protrusions and notches described for the embodiments disclosed herein.
Detailed Description
[0082] Non-limiting and non-exhaustive embodiments are described with reference to the following figures, which are not necessarily drawn to scale, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
[0083] Referring now to Figures 1-7, a first example of an optical waveguide module 10 in accordance with the disclosure is presented. The optical waveguide module 10 operates as a passive interface with passive alignment features that allow fiber optic connectors, for example connectors 12, 16, to be placed in optical communication with each other.
[0084] As is discussed in greater detail below, this function is achieved through the use of a planar optical light guide 20 to which edge connectors 50 are attached. The edge connectors 50 each include one or more adapters to interface with an optical plug, such as LC-duplex, LC-simplex, MPO/MTP, or MT-RJ. Opposite the adapters, the connectors 50 will install along the edge of the planar optical light guide 20 and align to optical pathways 36 present on or within the light guide 20. The optical pathways 36 may be provided with different cross -sectional shapes, for example round and rectangular cross-sectional shapes. An optical signal is transmitted from a first edge connector 50 through an optical pathway 36 to a second edge connector 50. In one embodiment, the optical signal will remain passive within the modular unit 10.
[0085] As can be seen at Figures 2, 44-47, and 68-69 the various disclosed modules may be provided with a sealed clamshell housing. A housing 91 is shown schematically at Figure 2, while exemplary housing embodiments 591, 791, and 79 are shown at Figures 44-45, 46-57, and 68-69, respectively. As shown, housing 91 has an upper half 92 and a lower half 94, while housing 591 likewise has an upper half 592 and a lower half 594. As shown, upper half 592 and lower half 594 are identically shaped, although this is not necessary. To enable the connectors to extend through the housing 591, the upper housing half 592 can be provided with notched openings 59 la, 593a and the lower housing half can be likewise be provided with similar notched openings 591b, 593b.
[0086] With reference to Figure 44, it can be seen that the connectors 550b are provided with continuous slots 596a, 596b that are configured for accepting and securing the edges of the upper and lower housing halves 592, 594, respectively. Connector 550a is also shown as having partially extending slots 598a, 598b. These features also help to deflect forces on the substrate caused by the insertion or movement of the corresponding fiber optic plug. It is also noted that the connectors, such as connectors 550a, 550b may be provided with upper and lower slots 596, 598 for accepting and securing the edges of the housing halves 592, 594. The housing material may be silicone-sealed plastic, thermoplastic resin, die-cast, or sheet metal, so that the planar optical light guide is protected. As the housings 791 and 791 ' and the related connector features are generally similar to that for housing 591, the above description is equally applicable and incorporated by reference for housing 791 and 19 V . Also, it is noted that housings and connector configurations described for housings 91 and 591 are applicable for each and every embodiment disclosed herein, although the opening and slot configurations may differ based on the particular connector type and locations utilized.
Planar Optical Light Guide
[0087] As shown, the module 10 includes a planar optical light guide 20 which has a first surface 24 and an opposite second surface 26. The first and second surfaces 24, 26 extend between four side edges 28, 30, 32, 34. In one embodiment, the optical light guide 20 base substrate is manufactured from a silicon material.
[0088] The planar optical light guide 20 includes a base substrate layer 22 that is a carrier for one or more optical pathways 36 which extend between the first side edge 28 and the second side edge 30. In one embodiment, the optical pathways 36 are optical cores, surrounded by an optical cladding layer 40 and 42. As shown schematically in Figure 8, a plurality of optical cores 36 are shown, on top of a lower optical cladding layer 40, and covered by an upper optical cladding layer 42. The optical cores 36 and cladding layers 40, 42 extend across the base substrate layer 22 and terminate at one or more of the edges (e.g. side edges 28, 30) of the planar optical light guide 20.
[0089] The base substrate 22 material can be a glass-reinforced epoxy laminate sheet such as an FR-4 PCB (printed circuit board), silicon wafer (Si substrate with
Si02 layer), or another suitable material. Where a PCB is used, the substrate can include copper laminated on one or both sides of an FR-4 PCB or layered onto another type of PCB composite. Various processes known in the art, such as vapor deposition and spin-coating in conjunction with a photo-thermal process, may be utilized to form the optical cores 36 and cladding layers 40, 42. In one embodiment, the optical pathways 36 are optical fiber cores 36 that are separately formed and subsequently fixed onto the base substrate 22 between the lower cladding layer 40 and upper cladding layer 42.
[0090] In an exemplary embodiment, the optical cladding layer 42 has a thickness of about 100 micrometers (μιη) and the optical cladding layer 40 has a thickness of about 50 μιη. The optical pathways or cores have a square cross- sectional shape with a height and width of about 50 μιη and are spaced (pitched) about 250 μιη (center-to-center) apart from each other. The substrate 22 utilized below the waveguide layers can be a standard FR-4 PCB having a thickness between about 0.8 μιη and about 1.5 μιη with top and bottom copper laminate layers having a thickness of 35.6 μιη (1 ounce). Other configurations and thicknesses are possible without departing from the concepts presented herein.
[0091] Referring to Figure 5, the side edges 28, 30 of the planar optical light guide 20 can be polished or otherwise processed to permit optical signal transmission to other planar optical light guides 20 or other fiber optic components, such as fiber optic connectors. In one embodiment, the side edges 28, 30 are laser cut, for example by a UV laser cutting machine, such that polishing is not required or minimum polishing will be required. The planar optical light guide 20 is shown in a generally planar state. It is to be appreciated that it need not be perfectly planar. It is to be appreciated that it need not be inflexible. Some flexibility is possible, if desired.
[0092] In one embodiment, the planar optical wave guide 20 may be fabricated in a three-stage process comprising creating the bottom cladding layer 40, patterning material to make the optical cores or pathways 36, and encapsulating the cores 36 with a final cladding layer 42. The materials used can be negative-tone photoresists that can be spun and patterned using photolithography techniques, and in particular soft photolithography using a mold fabricated with polydimethylsiloxane (PDMS).
In one aspect, the wave guide 20 can be characterized as having an inorganic- organic hybrid polymer construction wherein cladding layers 40, 42 are formed to have an index of refraction of 1.5306 and the optical cores are formed to have an index of refraction of 1.55475 with a loss of about 0.06 dB per centimeter. As configured, the planar optical wave guide 20 has a numerical aperture (NA) of 0.273, an acceptance angle (a0) of 15.8 degrees, and a critical angle (9c) of 80 degrees.
[0093] In one step of the process, the starting substrates are conditioned with an oxygen ash followed by a thirty-minute bake on a hot plate at 200°C. The surface is then preferably spun with an adhesion promoter and baked for five minutes at
150°C. It is noted that it is possible to proceed without the adhesion promoter for some constructions. The bottom cladding layer 40 can then be spun on to the substrate 22 with a spin-coating process targeting for 50μιη. The resulting film can then be given a three-minute soft-bake at 80°C. Subsequently, the film can be hardened, for example with a blanket UV exposure, which can then be followed by another three-minute bake at 80°C. In one embodiment, the UV exposure is performed by a Karl Suss MA6 mask aligner which is a top and bottom side contact printer used for fine lithography down to 1 micron or better. Where the exposure is done in atmosphere, a thin layer of uncured liquid polymer may remain on the wafers which can be removed with a ninety-second dip in developer. A final hardbake can be performed with a three-hour bake at 150°C in a nitrogen-purged oven.
[0094] Preferably, the process of patterning the core material 36 would immediately follow the hard-bake of the bottom cladding layer 40; otherwise, a hotplate bake can be necessary to drive off moisture. Furthermore, it has been found that the adhesion of patterned waveguide pathways 36 is more reliable if the top surface of cladding layer 40 is pre-treated with an oxygen plasma. This treatment can be performed done with a barrel asher. However, it is noted that while such a treatment can greatly improve the adhesion, over-etching the surface is possible, which can cause cracks and craze lines to form in the surface after the developing process. In one approach, the core material 36 is applied with a spin-coating process targeting 50 μιη thickness and given a three-minute soft-bake at 80°C. Subsequently a mask aligner and a dark-field mask can be used to expose the core material 36.
[0095] Using the above described process, the photo-patterning of the waveguide structures 36 can be a difficult part of the process as the unexposed material is still wet after the soft-bake. Accordingly, with such an approach, steps should be taken to prevent the mask from contacting the polymer surface and the exposure should be done with a proximity mode. Exposures can be performed for ninety seconds at 12 mW/cm2 (milliwatts per centimeter squared), although lower exposures are possible. Subsequently, a post-exposure bake of a three-minute soft- bake at 80°C can be applied. The patterns can then be developed, for example, by agitating the wafer in the developer and rinsing with isopropyl alcohol. Once again, a final hard-bake can be performed with a three-hour bake at 150°C in a nitrogen- purged oven.
[0096] It is noted that top cladding layer 42 must sufficiently encapsulate the core 36 with enough thickness to prevent loss from the waveguide. Although such a structure can be produced that accomplishes this in one step, doing so requires a low spin-speed which reduces the thickness control. The slower spin-speed also increases the difficulty in keeping bubbles in the resist from getting hung up on the topology of the waveguides. Accordingly, the process can be easier to control when the top cladding is produced in two steps; each step consisting of the same cycle of spin-coat, soft-bake, exposure, post-expose bake and hard-bake described above. In one embodiment, the final cladding layer 40 would be targeted for a 50μιη thickness over the patterned core for a total thickness of ΙΟΟμιη.
Edge Connectors and Assembly
[0097] As shown, module 10 includes a plurality of edge connectors 50, in the form of fiber optic adapters. Each connector 50 connects to one or more of the optical pathways 36. As shown, the optical waveguide module 10 also includes a connection arrangement for connecting LC connectors 50 to LC connectors 50. As will be described below, various alternative arrangements can be provided for the waveguide modules 10 for connecting other connector formats, or connecting one or more modules together. Module 10 shows interconnections between duplex LC connectors 50 to duplex LC connectors 50. Alternatively, the LC connectors 50 can be manufactured as a single block of any desired number of ports.
[0098] As most easily seen at Figure 7, each edge connector 50 includes an adapter port 52 for receiving a fiber optic connector 12, 16. Each adapter port 52 includes an internal passageway 54 configured to receive a ferrule 13, 17 of the optical connector 12, 16 to allow the ferrule 13, 17 to be placed in optical communication with the optical passageways 36 of the planar waveguide 20. The edge connector 50 can also be provided with a catch 56 for engaging and retaining a latching mechanism 14, 18 of the optical connector 12, 16.
[0099] Still referring to Figure 7, each edge connector 50 is further shown as being provided with an alignment slot 60 opposite the adapter port 52. The alignment slot 60 is for providing alignment in a direction Z between the optical waveguide 20 and the connector 50 such that the ferrule 13, 17 will be sufficiently aligned with an optical pathway 36 in the direction Z. The direction Z is generally orthogonal to the plane defined by the first and second surfaces 24, 26 of the optical light guide 20. As configured, the alignment slot 60 is formed by a first sidewall 62, a second sidewall 64, and a base portion 66 extending between the first and second sidewalls 62, 64. When the connector 50 is installed on a side edge (e.g. side edge 28 or 30), the first sidewall 62 is adjacent to and extends over the first planar surface 24 while the second sidewall 64 is adjacent to and extends over the second planar surface 26. The spacing between the sidewalls 62, 64 is generally equal to the total thickness of the optical waveguide 20 which ensures proper alignment in direction Z of the adapter port 52, and thereby ferrules 13, 17 relative to the ends of the optical passageways 36.
[00100] Referring to Figure 5, the planar optical light guide 20 is shown as having a plurality of alignment notches 38 at the first and second side edges 28, 30. Each of the alignment notches 38 are for providing alignment in a direction X with a corresponding protrusion 68 provided on the connector 50. Direction X is generally parallel to the length of the side edges 28, 30. As shown, each connector 60 is provided with two protrusions 68, each of which engages a corresponding notch 38 on either side of an optical pathway 36. As shown, a notch 38 is provided on each side of the optical pathway 36. Accordingly, the notches 38 and protrusions 68 index the connector 50 to the optical waveguide 20 in a direction X to ensure that the adapter port 52, and thus ferrules 13, 17, is properly aligned with the ends of the
optical passageways 36. It is noted that each connector 50 may be provided with only one notch 68 or more than two notches 68, as desired.
[00101] It is also noted that the depth of the notches 38 and the length of the protrusions 68 can be configured to provide a stop position for insertion of the connector 50 onto the optical waveguide 20 such that the edge connector has minimum end separation in a direction Y. Many typical fiber optic connectors, such as connectors 12, 16, have ferrules 13, 17 that are spring loaded to ensure that the ends of the ferrules 13, 17 are in physical contact with another optical transmission device such that no loss in efficiency or optical power loss results through unduly large air gaps or the like. As the edges 28, 30 of the optical light guide 20 are generally rigid, it is desirable to minimize optical end separation of the edge connector 50 on the optical waveguide 20 in the Y direction such that a spring loaded ferrule 13, 17 can operate within its own range of motion to engage with the optical pathway 36 at the edges 28, 30 of the optical light guide 20. The Y direction is generally parallel to the length of the side edges 32, 34. The location of the alignment slot base 66 can also be selected to properly position the connector 50 relative to the edges 28, 30 in the Y direction.
[00102] Referring to Figure 6, optical waveguide end face protection is provided in the form of an index matching film 70. The index matching film 70 protects the optical pathway 36 ends at the edges 28, 30 from the insertion and impact forces from receiving optical connector 12, 16. This helps to prevent damage to the optical pathway ends to ensure data integrity and to minimize the occurrence of errors, link failures, and optical power degradation. As shown, the index matching film 70 is applied at least to the side edges 28, 30. The index matching film 70 may also be formed along waveguide first surface 24 and the second surface 26 adjacent to the side edges 28, 30 to provide better attachment and durability of the film 70. In such an application, the connector slot sidewalls 62, 64 extend over the index matching film 70 to help hold film 70 in position for assembly purposes.
[00103] Another way to prevent optical waveguide end face damage from the insertion and impact forces from receiving an optical plug is to provide a physical contact distance between waveguide side edges 28, 30 and ferrule 13, 17 within the optical coupling limits. One embodiment will have a physical contact feature which
engages the optical connector 12, 16 and prevents physical contact between the ferrule 13, 17 end face and the waveguide side edges 28, 30. In one embodiment, the optical waveguide side edges 28, 30 are recessed back from the physical contact interface area between the optical plug ferrule 13, 17 and optical waveguide side edges 28, 30. The resulting gap or distance between the optical waveguide end face and the optical plug end face can be an air gap or filled with an index matching gel.
[00104] In order to secure the connectors 50 to the optical light guide 20, an adhesive may be applied at the interface of the alignment slot 60 and the first and second planar surfaces 24, 26 of the optical light guide 20. In one embodiment, the adhesive is an epoxy adhesive.
[00105] Referring to Figures 9-12, a second embodiment of an optical waveguide module 110 is presented. As many of the concepts and features are similar to the first embodiment shown in Figures 1-8, the description for the first embodiment is hereby incorporated by reference for the second embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 150 instead of reference number 50 for the edge connector). The following description for the second embodiment will be limited primarily to the differences between the first and second embodiments.
[00106] The primary difference of the second embodiment is that MPO type edge connectors 150 are shown instead of LC duplex type connectors 50. A typical MPO type connector 1 12, 116 has twelve fiber optic connections. Accordingly, the planar optical light guide 120 has significantly more optical pathways 136 (e.g. 36 optical pathways with three MPO connectors on each side) than that shown for the first embodiment 10. [00107] As shown, the connectors 150 have an adapter port 152 and a catch mechanism 156 for receiving and retaining an MPO type connector. Referring to Figures 10 and 11, each connector 150 has an alignment slot 160 having a first sidewall 162, a second sidewall 164, and a base portion 166 extending between the first and second sidewalls 162, 164. The first and second sidewalls 162, 164 engage with the first and second planar surfaces 124, 126 of the optical light guide 120, respectively. Each connector 150 is also shown as having a pair of protrusions 168
that interface with corresponding notches 138 in the planar optical light guide 120. Accordingly, the connector 150 and planar optical light guide 120 have features that align the adapter port 152 in the X, Y, and Z directions in generally the same manner as for the first embodiment. [00108] Referring to Figures 13-17, a third embodiment of an optical waveguide module 210 is shown. As many of the concepts and features are similar to the first and second embodiments shown in Figures 1-12, the description for the first and second embodiments are hereby incorporated by reference for the third embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 250 instead of reference number 50 for the edge connector). The following description for the third embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
[00109] The primary difference for the third embodiment is that an edge connector 250 is provided that allows two planar optical light guides 220a, 220b to be connected together. As such, edge connector 250 enables a degree of platform modularity in that preassembled planar optical light guides having any number of different connector types and arrangements can be connected together to create an even larger number and variety of waveguide module 210 configurations. [00110] As shown, the edge connector 250 joins the side edges 228 of two optical light guides 220a, 220b such that one or more first fiber optic connectors 212 can be placed in optical communication with one or more second fiber optic connectors 216. Referring to Figure 15, it can be observed that the first side edges 228 are adjacent to each other when the optical light guides 220a, 220b are joined by connectors 250. An index matching film or gel may be applied to the first side edges 228 for protection and prevention of signal power loss.
[00111] Referring to Figures 16 and 17, the edge connector 250 is shown as having a first alignment slot 260a and a second alignment slot 260b opposite the first alignment slot 260a. The first alignment slot 260a has a first sidewall 262a and a second sidewall 264a that engage with the first and second planar surfaces 224, 226 of the optical light guides 220, respectively. The second alignment slot 260b has a
first sidewall 262b and a second sidewall 264b that engage with the first and second planar surfaces 224, 226 of the optical light guide 220, respectively. As with other described embodiments, the alignment slots 260a, 260b ensure proper alignment between the optical pathways 236 of the light guides 220a, 220b in the Z direction. [00112] The edge connector 250 is also provided with a central protrusion 268a and a pair of side protrusions 268b. The central protrusion engages with notches 239 in the light guide 220a, 220b while the side protrusions 268b engage with notches 238 in the light guide 220a, 220b. In the embodiment shown, notches 239 are larger than the notches 238, although variations are possible. The notches and protrusions cooperate to provide alignment of the optical pathways 236 of each light guide 220a, 220b in the X direction. Likewise, the length of the notches and protrusions can be selected to ensure a desired relative position along direction Y between the side edges 228 of the light guides 220a, 220b.
[00113] Referring to Figures 18-19, a fourth embodiment of an optical waveguide module 310 is presented. As many of the concepts and features are similar to the first and second embodiments shown in Figures 1-12, the description for the first and second embodiments are hereby incorporated by reference for the fourth embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 350 instead of reference number 50 for the edge connector). The following description for the fourth embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
[00114] The primary difference for the fourth embodiment is that the optical waveguide module 310 is provided as a distribution or furcation module in which a single side edge connector 350a distributes fiber optic pathways to a plurality of side edge connectors 350b, rather than there being a one-to-one relationship of oppositely positioned side edge connectors 50 or 150. More specifically, the fourth
embodiment 310 shows a single side edge connector 350a having an adapter port for an MPO type fiber optic connector 312 from which optical pathways 336 are distributed across the optical light guide 320 to four side edge connectors having duplex adapter ports for LC type connectors 316.
[00115] It is noted that a typical MPO connector generally carries twelve optical fiber connections, and therefore the embodiment shown does not use four of the connections provided by the MPO connector. However, it is to be understood that optical waveguide module 310 could be configured with a sufficient number of LC type, or other types of side edge connectors 350b to utilize all or fewer of the available connections provided by the MPO type side edge connector 350a, as shown in later discussed embodiments.
[00116] As shown, the side edge connector 350a and its engagement with the planar optical waveguide module 320 is the same as that for connector 150, and therefore will not be discussed further. Likewise, the side edge connectors 350b and their engagement with planar optical light guide 320 are the same as that for connector 50, and also do not need to be further discussed. However, the planar optical light guide 320 differs in that the optical pathways 336 are not provided in a straight line, as is the case for waveguides 20, 120, and 220. Instead, the optical pathways extend from a central location at the first side edge 328 and bend radially outwards to be further spaced apart at the second side edge 330. It is noted, because the dimensions and configuration of the optical pathways 336 can be precisely manufactured, the distance between the first and second side edges 328 and 330 can be significantly reduced, as compared to other types of optical furcation means. Referring to Figure 20, a configuration is shown in which two optical waveguide modules 310 are connected to each other via a cable 313 having MPO type connectors 312 at each end.
[00117] Referring to Figures 21-31, a fifth embodiment of an optical waveguide module 410 is presented. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-20, the description for the previous embodiments are hereby incorporated by reference for the fifth embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 450 instead of reference number 50 for the edge connector). The following description for the fourth embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
[00118] As shown, the optical waveguide module 410 includes a planar optical light guide 420 having features similar to that shown for the first embodiment 20 wherein the light guide 420 extends between a first side edge 428 and a second side edge 430 with a plurality of notches 438 being provided at each edge. The edge connectors 450 are shown as having LC duplex adapter ports 452, although other connector types may be used. However, the edge connectors 450 are different from previous embodiments in that the edge connectors 450 are provided with a two-piece design wherein a sleeve 472 is inserted into a cavity 474 of a body 484 of the edge connector 450. [00119] As can be most easily seen at Figures 28-31, each sleeve 472 is provided with an internal passageway 473 extending into an alignment slot 460 and a pair of alignment protrusions 468 within the slot 460. As with previously discussed embodiments, the slot 460 sidewalls 462, 464 and the protrusions 468 engage with the first and second planar surfaces 424, 426 and the notches 438 of the optical light guide 420 to align the sleeve 472 in the X, Y, and Z directions. As shown, the protrusions 468 have rounded ends to enable easier initial insertion of the protrusions 468 into the notches 438.
[00120] As shown, the sleeve 472 has a first portion 476 having a slot 460 with first and second sidewalls 462, 464. As most easily seen at Figure 30, the sidewalls 462, 464 are provided with a chamfer type cut at their ends to enable easier initial insertion of the optical light guide 420 into the slot 460. The sleeve 472 also has a second portion 478 that has a smaller outside dimension than the first portion 476 such that a shoulder 480 is formed. As can be seen at Figure 27, the shoulder 480 can provide a position stop for the sleeve 472 against a corresponding stop surface 486 on the connector body 484. When assembled, the sleeve first portion 476 fits tightly with the connector body cavity 474 such that adequate alignment between the internal passageway 473 and the adapter port 452 is maintained. To allow the connector body 484 to pass over the optical light guide surfaces 424, 426, an enlarged slot 488 is provided that does not come into contact with the optical light guide 420. However, slot 488 may be provided to tightly fit against the optical light guide first and second surfaces 424, 426 to further aid in alignment.
[00121] In one embodiment, the sleeve 472 is provided with an aperture 482 through which an adhesive, such as an epoxy, can be applied to secure the sleeve 472 to the optical light guide 420 and/or the edge connector body 484. As shown at Figures 26 and 27, an optional index matching film 470 may be provided. [00122] Referring to Figures 32-42, a sixth embodiment of an optical waveguide module 510 is presented. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-31, the description for the previous embodiments are hereby incorporated by reference for the sixth embodiment.
Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 550 instead of reference number 50 for the edge connector). The following description for the sixth embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
[00123] The sixth embodiment 510 is similar to the fifth embodiment, in that a plurality of two-piece type connectors is used for the optical light guide. The sixth embodiment 510 is also similar to the fourth embodiment, in that an optical waveguide module 510 is provided as a distribution or furcation module in which a single side edge connector 550a distributes fiber optic pathways to a plurality of side edge connectors 550b. As with the fourth embodiment, the sixth embodiment shows a single side edge connector 550a having an adapter port for an MPO type fiber optic connector 512 from which optical pathways 536 are distributed across the optical light guide 520, and in this case, to six side edge connectors 550b having duplex adapter ports for LC type connectors 516. However, the sixth embodiment is different in that a two-piece connector 550a with an MPO type adapter port is utilized, and in that the side edge connectors 550b are provided on three side edges 530, 532, 534 of the optical light guide 520. As the connectors 550b have already been discussed in detail for the fifth embodiment, they will not be discussed further.
[00124] As can be most easily seen at Figures 32-42, each sleeve 572a is provided with an internal passageway 573 extending into an alignment slot 560 and a pair of alignment walls 568 within the slot 560. It is noted that optical light guide
520 includes a protrusion 538 that engages with the walls 568 to align the sleeve
572a in the X direction and in the Y direction. As with previously discussed
embodiments, the slot 560 sidewalls 562, 564 engage with the first and second planar surfaces 524, 526 of the optical light guide 520 to align the sleeve 572a in the Z direction. As shown, the alignment walls 568 have rounded ends to enable easier initial insertion of the sleeve 572a onto the protrusion 538. It is noted, that although the protrusion 538 and alignment wall 568 configuration is described for an MPO type connector, this configuration could also be used for other types of connectors, such as LC type connectors.
[00125] As shown, the sleeve 572a has a first portion 576 having a slot 560 with first and second sidewalls 562, 564. As most easily seen at Figure 41, the sidewalls 562, 564 are provided with a chamfer type cut at their ends to enable easier initial insertion of the optical light guide 520 into the slot 560. The sleeve 572a also has a second portion 578 that has a smaller outside dimension than the first portion 576 such that a shoulder 580 is formed. In one embodiment, the shoulder 580 can provide a position stop for the sleeve 572a against a corresponding stop surface on the connector body 584. When assembled, the sleeve first portion 576 fits tightly with the connector body cavity 574 such that adequate alignment between the internal passageway 573 and the adapter port 552 is maintained. To allow the connector body 584 to pass over the optical light guide surfaces 524, 526, a slot 588 is provided that can be configured to not come into contact with the optical light guide 520 or configured to contact the first and second surfaces 524, 526 to additionally aid in alignment.
[00126] In one embodiment, the sleeve 572a is provided with apertures 582 through which an adhesive, such as an epoxy, can be applied to secure the sleeve 572a to the optical light guide 520 and/or the edge connector body 584. The sleeve 572a is also shown as being provided with receptacles 590 that are configured for receiving corresponding alignment pins on the connector 512. An optional index matching film 570 may be also provided on the side edges 528, 530, 532, and 534.
[00127] Referring to Figure 43, a seventh embodiment of an optical waveguide module 610 is presented. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-42, the description for the previous embodiments are hereby incorporated by reference for the sixth embodiment.
Where like or similar features or elements are shown, the same reference numbers
will be used where possible (e.g. reference number 650 instead of reference number 50 for the edge connector).
[00128] The seventh embodiment 610 is similar to the sixth embodiment 510, in that a plurality of two-piece type connectors is used for the optical light guide in a furcation application. The seventh embodiment 610 is also similar to the fourth embodiment in that all of the side edge connectors 650a, 650b are on opposite sides of the optical light guide 620. As with the sixth embodiment, the seventh embodiment shows a single side edge connector 650a having an adapter port for an MPO type fiber optic connector 612 from which optical pathways 636 are distributed across the optical light guide 620, and in this case, to six oppositely positioned side edge connectors 650b having duplex adapter ports for LC type connectors 616. As the connectors 650a, 650b have already been discussed in detail for the fifth and sixth embodiments, they will not be discussed further.
[00129] Referring to Figures 46-67, an eighth embodiment of an optical waveguide module 710 is presented. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-45, the description for the previous embodiments are hereby incorporated by reference for the eighth embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 750 instead of reference number 50 for the edge connector). The following description for the eighth embodiment will be limited primarily to the differences between this embodiment and previously described embodiments.
[00130] The eighth embodiment 710 is similar to the fifth through seventh embodiments, in that a plurality of two-piece type connectors is used in conjunction with an optical light guide 720. The eighth embodiment 710 is also similar to the sixth embodiment in that an optical waveguide module 710 is provided as a distribution or furcation module in which a single side edge connector 750a distributes fiber optic pathways to a plurality of side edge connectors 750b. As with the sixth embodiment, the eighth embodiment shows a single side edge connector 750a having an adapter port for an MPO type fiber optic connector (e.g. 512) from which optical pathways 736 are distributed across the optical light guide 720, and in this case, to six side edge connectors 750b having duplex adapter ports for LC type
connectors (e.g. 516). However, the eighth embodiment is different in that the two- piece MPO type adapter port connector 750a utilizes a sleeve 772a that engages with only one side 724 and an edge 728 of the optical light guide 720 instead of a slot that engages both sides (e.g. 24, 26) and the edge (e.g. 28) of the light guide 720.
Similarly, the eighth embodiment is also different in that the LP type adapter port connector 750b utilizes a sleeve 772b that engages with only one side 724 and one edge 730, 732 or 734 of the optical light guide 720 instead of a slot that engages both sides (e.g. 24, 26) and an edge (e.g. 28) of the light guide 720. Accordingly, each edge connector 750a and 750b continues to have a slot 788 that extends across the sides 724 and 726 of the optical light guide 720, but in which the cavity 774 is only provided adjacent the side 724 of the light guide 720 at which the optical pathways 736 are provided.
[00131] As can be most easily seen at Figures 54-60, each sleeve 772b is provided with an internal passageway 773 extending into an alignment channel 760 with a pair of alignment protrusions 768 adjacent the channel 760. As shown, the channel is bounded by sidewalls 762 and planar surface 769 extending in a perpendicular direction from the sidewalls 762. As shown, the sleeve 772b has a first portion 776 including the channel 760 with the sidewalls 762. The sleeve 772b also has a second portion 778 through which passageway 773 extends and which forms a shoulder 780. The shoulder 780 can provide a position stop for the sleeve 772b against a corresponding stop surface on the connector body 750b, as shown for other embodiments. When assembled, the sleeve first portion 776 fits tightly with the connector body cavity 774 such that adequate alignment between the internal passageway 473 and the adapter port is maintained. To allow the connector 750b to pass over the optical light guide surfaces 724, 726, an enlarged slot 788 is provided that does not come into contact with the optical light guide 720. However, slot 788 may be provided to tightly fit against the optical light guide first and second surfaces 724, 726 to further aid in alignment. As shown for other embodiments, the sleeve 772b may be provided with an aperture through which an adhesive, such as an epoxy, can be applied to secure the sleeve 772b to the optical light guide 720 and/or the edge connector body 750b. An optional index matching film may also be provided.
[00132] Referring to Figures 61-67, sleeve 772a is shown in greater detail. As presented, each sleeve 772a is provided with a channel 773 configured to receive a tab portion 739 adjacent recess portions 741 of the optical light guide 720. The sleeve 772a is also shown as being provided with receptacles 790 that are configured for receiving corresponding alignment pins on the connector (e.g. connector 512). The sleeve 772a is also provided with alignment channels 760 with a pair of alignment protrusions 768 adjacent the channels 760. As shown, the channels 760 are bounded by sidewalls 762 and planar surfaces 769 extending in a perpendicular direction from the sidewalls 762. As shown, the sleeve 772a has a first portion 776 including the channels 760 with the sidewalls 762. The sleeve 772a also has a second portion 778 through which channel 773 extends and which forms a shoulder 780. The shoulder 780 can provide a position stop for the sleeve 772a against a corresponding stop surface on the connector body 750a, as shown for other embodiments. When assembled, the sleeve first portion 776 fits tightly with the connector body cavity 774 such that adequate alignment between the channel 773 and the adapter port is maintained. To allow the connector 750a to pass over the optical light guide surfaces 724, 726, an enlarged slot 788 is provided that does not come into contact with the optical light guide 720. However, slot 788 may be provided to tightly fit against the optical light guide first and second surfaces 724, 726 to further aid in alignment. As shown for other embodiments, the sleeve 772a may be provided with an aperture through which an adhesive, such as an epoxy, can be applied to secure the sleeve 772a to the optical light guide 720 and/or the edge connector body 750a. An optional index matching film may also be provided.
[00133] In one aspect, the planar surface 769 of each of the sleeves 772a, 772b engages with the side edge 728, 730, 732, or 734 of the optical light guide 720 to align the position of the sleeve 772a, 772b in the Y direction while the sidewalls 762 engage with the first planar surface 724 of the optical light guide 720 to align the sleeve in the Z direction. As with other embodiments, the protrusions 768 engage with notches 738 of the optical light guide 720 to align the sleeve 772a, 772b in the X direction. As shown, the protrusions 768 have rounded ends to enable easier initial insertion of the protrusions 768 into the notches 738. Because the sleeve
772a, 722b is provided with sidewalls 762 instead of a slot, the sleeve 772 can be installed onto the first surface 724 of the optical light guide 720 in a downward
direction instead of sliding the sleeve onto the optical light guide 720 from one of the side edges 728, 730, 732, 734. Furthermore, the use of sidewalls 762 instead of a slot allow the sleeve 772a, 772b to be positioned onto the optical light guide 720 without reliance on the exact thickness of the optical light guide 720 for proper positioning of the sleeve 772a, 772b in the Z direction.
[00134] In contrast to other embodiments, and as most easily seen at Figures 52 and 53, the optical light guide 720 can be provided with notches 738 that extend only partially through the thickness of the optical light guide 720 at a first depth d from the first surface 724. In one embodiment, the notches 738 have a depth d that is the same as the thickness of the cladding layer 742, while in another embodiment, the notches 738 have a depth d that is equal to the thickness of the cladding layers 740 and 742. In another embodiment, the notches 738 extend through the cladding layers 740, 742 and into the base substrate layer 722. Of course, the notches 738 may also extend all of the way through the cladding layers 740, 742 and the base substrate layer 722 as with the other shown embodiments. Likewise, the other shown embodiments may be provided with notches that do not extend completely through the optical light guide as well. Where a partial depth notch 738 is provided, the protrusions 768 can be provided with a corresponding height h that is equal to or less than the depth d of the notch 738 such that the sidewalls 762 can engage with the first surface 724 of the optical light guide 720.
[00135] Because the sleeves 772a and/or 772b are provided with open sidewalls 762 and mounted in a downward direction onto the optical light guide 720, it is also possible to provide the notches 738 with shapes other than the longitudinal opening that would be normally associated with a slotted sleeve. By using a shape or shapes for the notch 738 that also extend in the X direction on the optical light guide 720 in conjunction with similarly shaped protrusions 768, the sleeves 772a and/or 772b can be fixed in both the X and the Y directions by the notch 738 engaging with the protrusion 768. Non-limiting examples of shapes that extend in the X and Y directions are intersecting orthogonal slots, as shown at Figure 73, polygonal shapes (e.g. a circle, square, rectangle, etc.), and combinations of shapes having dimensions that extend in the X and Y direction, as shown at Figure 74.
[00136] In one configuration, each sleeve 772a and/or 772b is aligned and mounted to the optical light guide 720 in a temporary fixture. In the temporary fixture, the sleeves 772a and/or 772b can be permanently attached to the optical light guide 720, for example with epoxy. [00137] Referring to Figures 68-72, a ninth embodiment of an optical waveguide module 710' is presented that is generally similar to the eighth embodiment 710. As many of the concepts and features are similar to the previous embodiments shown in Figures 1-67, the description for the previous embodiments are hereby incorporated by reference for the ninth embodiment. Where like or similar features or elements are shown, the same reference numbers will be used where possible (e.g. reference number 750 instead of reference number 50 for the edge connector).
[00138] The ninth embodiment 710' is similar to the eighth embodiment 710, in that a plurality of two-piece type connectors with non-slotted sleeves is used for the optical light guide. The ninth embodiment 710' is also similar to the fifth embodiment in that all of the side edge connectors are on opposite sides of the optical light guide 720'. For the ninth embodiment, a plurality of LC-simplex type side edge connectors 750b' are provided at a first side edge 728' of the optical light guide 720' while a combination of LC-simplex type side edge connectors 750b' and LC-duplex type side edge connectors 750b are provide at a second opposite side edge 730' of the optical light guide 720'. As shown, five LC-simplex type edge connectors 750b' are provided on the first side edge for a total of five optical pathway connections. The second side edge includes three LC-simplex type edge connectors 750b' and two LC-duplex type side edge connectors 750b for a total of seven optical pathway connections. As most easily seen at Figure 72, the optical light guide 720' for this embodiment is provided with three linear optical pathways 736 extending between the first and second side edges 728', 730' and between oppositely positioned connectors 750b'. The optical light guide 720' is also provided with two split pathways 736' that extend from the first side edge 728' and from a connector 750b' which split into a first pathway 736a and a second pathway 736b before reaching the second side edge 730' and a connector 750b. As the connectors 750a, 750b have already been discussed in detail they will not be discussed further for this embodiment.
[00139] In one embodiment, the above described connectors and sleeves are formed from a thermoplastic resin material, for example polyetherimide (PEI) thermoplastic resin. In one embodiment, the thermoplastic resin material is formed into the connectors and sleeves through the use of a micro molding process which allows for very high tolerances to be achieved.
[00140] The various embodiments described above describe a platform that will have minimum components and assembly processes with short lead-time and low cost for final module product. The embodiments can also be used for optical modules such as signal splitters (OLS/GPON), monitor testing (TAP), wavelength division multiplexing (WDM), transceivers for optical to electrical converters, backplane interconnects, physical layer management, and MEMS integration for optical cross-connects. Furthermore, as the side edge connectors are configured with adapter ports that receive standard fiber optic connectors, the fiber optic connectors and side edge connectors are easily connected and disconnected from each other in a repeatable fashion without the need for time consuming optical alignment procedures. Furthermore, the above described connectors and alignment features provide for fiber optic connectivity between the connectors and
cores/pathways that satisfies international standard IEC-61754-20 (for LC connectors) and standard IEC-61754-7 (for MPO connectors). [00141] The various embodiments described above are provided by way of illustration only and should not be construed to limit the claims attached hereto. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the disclosure. It is particularly noted that the disclosure is not limited to the discrete embodiments disclosed, as many combinations of features among and between the disclosed embodiments can be combined in a number of ways.
Claims
claimed:
An optical waveguide module comprising:
a. an optical light guide having opposite first and second planar surfaces extending between a first side edge and a second side edge, the optical light guide including one or more optical pathways extending between the first and second side edges;
b. one or more first edge connectors, each first edge connector having a first adapter port and a first alignment feature opposite the first adapter port, the first alignment feature aligning the first adapter port with the one or more optical pathways in a first direction parallel to the first side edge; and
c. one or more second edge connectors, each second edge connector having a second adapter port and a second alignment feature opposite the second adapter port, the second alignment feature aligning the second adapter port with the one or more optical pathways in a second direction parallel to the second side edge.
The optical waveguide module of claim 1, wherein the first alignment feature includes at least one alignment protrusion that engages with a corresponding first notch in the first side edge of optical light guide.
The optical waveguide module of claim 2, wherein the second alignment feature includes at least one alignment protrusion that engages with a corresponding second notch in the second side edge of optical light guide.
The optical waveguide module of claim 1 , wherein the first alignment feature includes at least one alignment wall that engages with a corresponding protrusion of the optical light guide.
The optical waveguide module of claim 2, wherein the second alignment feature includes at least one alignment wall that engages with a corresponding protrusion of the optical light guide.
6. The optical waveguide module of claim 1, wherein the first and/or second alignment features are located on a main body of the first and second side edge connectors, respectively.
7. The optical waveguide module of claim 1, wherein the first and/or second
alignment features are located on a sleeve received in a main body of the first and second side edge connectors, respectively.
8. The optical waveguide module of claim 1, wherein the one or more first side edge connector includes a third alignment feature aligning the first adapter port with the one or more optical pathways in a third direction orthogonal to a plane defined by the first surface, and the one or more second side edge connector includes a fourth alignment feature aligning the second adapter port with the one or more optical pathways in the third direction.
9. The optical waveguide module of claim 8, wherein the third alignment feature is an alignment slot and/or the fourth alignment feature is an alignment slot.
10. The optical waveguide module of claim 9, wherein the third and/or fourth
alignment features are located on a main body of the third and fourth side edge connectors, respectively.
1 1. The optical waveguide module of claim 9, wherein the third and/or fourth
alignment features are located on a sleeve received in a main body of the first and second side edge connectors, respectively.
12. The optical waveguide module of claim 2, wherein the first notch has a first depth that is less than a first distance between the first and second planar surfaces of the optical light guide.
13. The optical waveguide module of claim 12, wherein the first notch defines a first opening in the first planar surface of the optical light guide.
14. The optical waveguide module of claim 13, wherein the third and/or fourth alignment features are located on a sleeve received in a main body of the third and fourth side edge connectors, respectively.
15. The optical waveguide module of claim 14, wherein the sleeve engages the first planar surface and the first side edge of the optical light guide without contacting the second planar surface of the optical light guide.
16. The optical waveguide module of claim 15, wherein the third alignment feature is an open sidewall of the sleeve.
17. An optical waveguide module comprising:
a. an optical light guide having opposite first and second planar surfaces extending between a first side edge and a second side edge, the optical light guide including one or more optical pathways extending between the first and second side edges;
b. one or more first edge connectors, each first edge connector having a first adapter port and a first alignment slot opposite the first adapter port, the first alignment slot extending over the optical light guide first and second planar surfaces at the first side edge to align the first adapter port with the one or more optical pathways in a first direction; and
c. one or more second edge connectors, each second edge connector having a second adapter port and a second alignment slot opposite the second adapter port, the second alignment slot extending over the optical light guide first and second planar surfaces at the second side edge to align the second adapter port with the one or more optical pathways in the first direction.
18. The optical waveguide module of claim 17, wherein the optical light guide
includes a plurality of notches at the first and second side edges, and the one or more first and second edge connectors each include an alignment protrusion engaging with one of the plurality of notches to align the first and second adapter
ports with the one or more optical pathways in a second direction that is orthogonal to the first direction.
19. The optical waveguide module of claim 17, wherein the one or more first edge connectors includes a plurality of first edge connectors.
20. The optical waveguide module of claim 17, wherein the first adapter port of the one or more first edge connectors is an LC adapter port. 21. The optical waveguide module of claim 20, wherein the first adapter port of the one or more first edge connectors is a duplex LC adapter port.
22. The optical waveguide module of claim 17, wherein the first adapter port of the one or more first edge connectors is an MPO adapter port.
23. The optical waveguide module of claim 17, wherein the optical waveguide
module includes a plurality of first edge connectors and a plurality of second edge connectors. 24. The optical waveguide module of claim 23, wherein the first adapter ports of the first edge connectors are LC duplex adapter ports and the second adapter ports of the second edge connectors are LC duplex adapter ports.
25. The optical waveguide module of claim 23, wherein the first adapter ports of the first edge connectors are MPO adapter ports and the second adapter ports of the second edge connectors are MPO adapter ports.
26. The optical waveguide module of claim 17, wherein the optical waveguide
module includes a single first edge connector and a plurality of second edge connectors, the adapter port of the first edge connector being an MPO adapter port, the adapter ports of the second edge connector being LC duplex adapter ports.
27. The optical waveguide module of claim 26, wherein the optical light guide first side edge and the second side edge are opposite each other.
28. The optical waveguide module of claim 17, further comprising:
a. one or more third edge connectors, each third edge connector having a third adapter port and a third alignment slot opposite the third adapter port, the third alignment slot extending over the optical light guide first and second planar surfaces at a third side edge to align the first adapter port with the one or more optical pathways in the first direction; and b. one or more fourth edge connectors, each fourth edge connector having a fourth adapter port and a fourth alignment slot opposite the fourth adapter port, the fourth alignment slot extending over the optical light guide first and second planar surfaces at a fourth side edge to align the fourth adapter port with the one or more optical pathways in the first direction.
29. The optical waveguide module of claim 28, wherein the optical waveguide
module includes a single first edge connector and a plurality of second, third, and fourth edge connectors, the adapter port of the first edge connector being an MPO adapter port, the adapter ports of the plurality of second, third, and fourth edge connectors being LC duplex adapter ports.
30. An optical waveguide module comprising:
a. a first optical light guide having first and second opposite surfaces
extending between first and second opposite side edges, the first optical light guide including one or more first optical pathways extending between the first and second side edges;
b. a second optical light guide having first and second opposite surfaces extending between first and second opposite side edges, the second optical light guide including one or more second optical pathways extending between the first and second side edges; and
c. a first edge coupler aligning the one or more first optical pathways of the first optical light guide with the one or more second optical pathways of the second optical light guide:
i. the first edge coupler having a first alignment slot and a second alignment slot opposite the first alignment slot; ii. the first alignment slot extending over the first optical light guide first and second planar surfaces at the first side edge to align the first edge coupler with the one or more first optical pathways in a first direction;
iii. the second alignment slot extending over the second optical light guide first and second planar surfaces at the first side edge to align the first edge coupler with the one or more second optical pathways in the first direction.
31. The optical waveguide module of claim 30, wherein the one or more first edge connectors each align two first optical pathways to two second optical pathways. 32. The optical waveguide module of claim 31, wherein the one or more first edge connectors includes four edge connectors.
33. The optical waveguide module of claim 30, further comprising:
a. one or more first edge connectors, each first edge connector having a first adapter port and a first alignment slot opposite the first adapter port, the first alignment slot extending over the first optical light guide first and second planar surfaces at the second side edge to align the first adapter port with the one or more first optical pathways in the first direction; and b. one or more second edge connectors, each second edge connector having a second adapter port and a second alignment slot opposite the second adapter port, the second alignment slot extending over the second optical light guide first and second planar surfaces at the second side edge to align the second adapter port with the one or more second optical pathways in the first direction.
34. The optical waveguide module of claim 33, wherein the first and second adapter ports are LC duplex type adapter ports.
35. An optical waveguide module comprising:
a. an optical light guide having opposite first and second planar surfaces extending between a first side edge and a second side edge, the optical light guide including one or more optical pathways extending between the first and second side edges;
b. one or more first edge connectors, each first edge connector having a first sleeve received within a cavity of a first body, the first body having a first adapter port, the first sleeve having a first alignment slot opposite the first adapter port, the first alignment slot extending over the optical light guide first and second planar surfaces at the first side edge to align the first adapter port with the one or more optical pathways in a first direction; and
c. one or more second edge connectors, each second edge connector having a second sleeve received within a cavity of a second body, the second body having a second adapter port, the second sleeve having a second alignment slot opposite the second adapter port, the first alignment slot extending over the optical light guide first and second planar surfaces at the second side edge to align the second adapter port with the one or more optical pathways in the first direction.
36. The optical waveguide module of claim 35, wherein the optical light guide
includes a plurality of notches at the first and second side edges and the one or more first and second sleeves each include an alignment protrusion engaging with one of the plurality of notches to align the first and second adapter ports with the one or more optical pathways in a second direction that is orthogonal to the first direction.
37. The optical waveguide module of claim 35, wherein the one or more first edge connectors includes a plurality of first edge connectors.
38. The optical waveguide module of claim 35, wherein the first adapter port of the one or more first edge connectors is an LC adapter port.
39. The optical waveguide module of claim 38, wherein the first adapter port of the one or more first edge connectors is a duplex LC adapter port.
40. The optical waveguide module of claim 35, wherein the first adapter port of the one or more first edge connectors is an MPO adapter port.
41. The optical waveguide module of claim 35, wherein the optical waveguide
module includes a plurality of first edge connectors and a plurality of second edge connectors.
42. The optical waveguide module of claim 41, wherein the first adapter ports of the first edge connectors are LC duplex adapter ports and the second adapter ports of the second edge connectors are LC duplex adapter ports. 43. The optical waveguide module of claim 41, wherein the first adapter ports of the first edge connectors are MPO adapter ports and the second adapter ports of the second edge connectors are MPO adapter ports.
44. The optical waveguide module of claim 35, wherein the optical waveguide
module includes a single first edge connector and a plurality of second edge connectors, the adapter port of the first edge connector being an MPO adapter port, the adapter ports of the second edge connector being LC duplex adapter ports. 45. The optical waveguide module of claim 44, wherein the first side edge and the second side edge are opposite each other.
46. The optical waveguide module of claim 35, further comprising:
a. one or more third edge connectors, each third edge connector having a third sleeve received within a cavity of a third body, the third body having a third adapter port, the third sleeve having a third alignment slot opposite the third adapter port, the third alignment slot extending over the optical light guide first and second planar surfaces at a third side edge
to align the third adapter port with the one or more optical pathways in the first direction; and
b. one or more fourth edge connectors, each fourth edge connector having a fourth sleeve received within a cavity of a fourth body, the fourth body having a fourth adapter port, the fourth sleeve having a fourth alignment slot opposite the fourth adapter port, the fourth alignment slot extending over the optical light guide first and second planar surfaces at a fourth side edge to align the fourth adapter port with the one or more optical pathways in the first direction.
47. The optical waveguide module of claim 46, wherein the optical waveguide module includes a single first edge connector and a plurality of second, third, and fourth edge connectors, the adapter port of the first edge connector being an MPO adapter port, the adapter ports of the plurality of second, third, and fourth edge connectors being LC duplex adapter ports.
48. The optical waveguide module of claim 35, wherein the first body and the
second body each include an alignment slot that engage the first and second planar surfaces of the optical light guide.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/775,035 US9846283B2 (en) | 2013-03-12 | 2014-03-12 | Optical waveguide module system and method |
ES14779887T ES2768452T3 (en) | 2013-03-12 | 2014-03-12 | Waveguide optical module, system and method |
EP19210058.4A EP3633428A1 (en) | 2013-03-12 | 2014-03-12 | Optical waveguide module, system and method |
EP14779887.0A EP2972537B1 (en) | 2013-03-12 | 2014-03-12 | Optical waveguide module, system and method |
US15/808,626 US10310193B2 (en) | 2013-03-12 | 2017-11-09 | Optical waveguide module system and method |
US16/429,520 US10877225B2 (en) | 2013-03-12 | 2019-06-03 | Optical waveguide module system and method |
US17/104,740 US11650377B2 (en) | 2013-03-12 | 2020-11-25 | Optical waveguide module, system and method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361777654P | 2013-03-12 | 2013-03-12 | |
US61/777,654 | 2013-03-12 | ||
US201361878388P | 2013-09-16 | 2013-09-16 | |
US61/878,388 | 2013-09-16 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/775,035 A-371-Of-International US9846283B2 (en) | 2013-03-12 | 2014-03-12 | Optical waveguide module system and method |
US15/808,626 Division US10310193B2 (en) | 2013-03-12 | 2017-11-09 | Optical waveguide module system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014165175A1 true WO2014165175A1 (en) | 2014-10-09 |
Family
ID=51659087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/024657 WO2014165175A1 (en) | 2013-03-12 | 2014-03-12 | Optical waveguide module, system and method |
Country Status (4)
Country | Link |
---|---|
US (4) | US9846283B2 (en) |
EP (2) | EP2972537B1 (en) |
ES (1) | ES2768452T3 (en) |
WO (1) | WO2014165175A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019195220A1 (en) * | 2018-04-03 | 2019-10-10 | Corning Research & Development Corporation | Waveguide substrates and waveguide substrate assemblies having waveguide routing schemes and methods for fabricating the same |
WO2019195219A1 (en) * | 2018-04-03 | 2019-10-10 | Corning Research & Development Corporation | Waveguide substrates and waveguide substrate connector assemblies having waveguides and alignment features and methods of fabricating the same |
CN110945396A (en) * | 2017-06-28 | 2020-03-31 | 康宁研究与开发公司 | Multi-port and other devices having optical connection ports and securing features and methods of making the same |
US11609395B2 (en) | 2021-01-11 | 2023-03-21 | Corning Research & Development Corporation | Waveguide substrates and assemblies including the same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2972537B1 (en) | 2013-03-12 | 2019-12-18 | CommScope Technologies LLC | Optical waveguide module, system and method |
US11337323B2 (en) | 2015-03-09 | 2022-05-17 | ZPE Systems, Inc. | Modular infrastructure management device |
US10418762B2 (en) | 2015-03-09 | 2019-09-17 | ZPE Systems, Inc. | High serial port count infrastructure management device |
US12093199B2 (en) | 2016-03-08 | 2024-09-17 | ZPE Systems, Inc. | Infrastructure management device |
US10185100B2 (en) * | 2017-01-30 | 2019-01-22 | Senko Advanced Components, Inc | Modular connector and adapter assembly using a removable anchor device |
DE102017112132A1 (en) * | 2017-06-01 | 2018-12-06 | Reichle & De-Massari Ag | Optical circuit board with connector |
US11409054B2 (en) * | 2018-05-11 | 2022-08-09 | Us Conec Ltd. | Method and apparatus for assembling uniboot fiber optic connectors |
JP7322405B2 (en) * | 2019-01-10 | 2023-08-08 | 住友ベークライト株式会社 | Optical wiring component, method for manufacturing optical wiring component, and electronic device |
WO2021011223A1 (en) * | 2019-07-18 | 2021-01-21 | Corning Research & Development Corporation | Waveguide module assemblies having a clamshell housing |
US11385418B2 (en) * | 2020-09-03 | 2022-07-12 | Hewlett Packard Enterprise Development Lp | Reconfigurable fix-shuffled waveguides with modular simplex ferrules |
TWM612714U (en) * | 2021-01-22 | 2021-06-01 | 建毅科技股份有限公司 | Optic fiber adapter |
WO2022197952A1 (en) * | 2021-03-19 | 2022-09-22 | Commscope Technologies Llc | Nonintrusive tap monitoring in integrated optical waveguide structure |
US20220342166A1 (en) * | 2021-04-23 | 2022-10-27 | US Conec, Ltd | External Laser Source Physical Contact Verification Of A Fiber Optic Ferrule |
US12019286B2 (en) * | 2021-12-23 | 2024-06-25 | Nokia Solutions And Networks Oy | Optical edge coupler having a heterogeneous cladding structure |
US20240168221A1 (en) * | 2022-11-17 | 2024-05-23 | Panduit Corp. | Photonic fabric chip device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6095409A (en) * | 1983-10-28 | 1985-05-28 | Matsushita Electric Works Ltd | Optical waveguide plate with connector |
US5414786A (en) * | 1992-10-09 | 1995-05-09 | The Furukawa Electric Co., Ltd. | Optical waveguide component with a molded resin portion having accurately aligned guide pin holes therein |
US5712937A (en) * | 1994-12-01 | 1998-01-27 | Asawa; Charles K. | Optical waveguide including singlemode waveguide channels coupled to a multimode fiber |
JP2005004014A (en) * | 2003-06-12 | 2005-01-06 | Nippon Telegr & Teleph Corp <Ntt> | Planar optical wave circuit |
JP2007025382A (en) * | 2005-07-19 | 2007-02-01 | Sony Corp | Optical waveguide, method of manufacturing optical waveguide and optical waveguide module |
Family Cites Families (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186997A (en) | 1977-02-14 | 1980-02-05 | Amp Incorporated | Overlap type waveguide connector assembly and method |
JP2843338B2 (en) * | 1988-11-04 | 1999-01-06 | 日本電信電話株式会社 | Optical waveguide / optical fiber connector |
US5528711A (en) * | 1989-11-24 | 1996-06-18 | Nippon Telegraph And Telephone Corp. | Optical connector for connecting a plurality of optical plugs to a connector housing |
US5673346A (en) * | 1989-11-24 | 1997-09-30 | Nippon Telegraph And Telephone Corporation | Optical jack for plug-jack optical connector |
US5121454A (en) * | 1989-11-24 | 1992-06-09 | Nippon Telegraph And Telephone Corporation | Optical connector |
US5299276A (en) | 1991-10-11 | 1994-03-29 | Fujitsu Limited | Waveguide type optical device and method for manufacturing the same |
JPH0675141A (en) * | 1992-08-27 | 1994-03-18 | Mitsubishi Gas Chem Co Inc | Optical waveguide type component with optical receptacle |
US5561727A (en) * | 1994-02-15 | 1996-10-01 | Sumitomo Electric Industries, Ltd. | Card-shaped optical data link device |
JPH08110439A (en) | 1994-08-18 | 1996-04-30 | Furukawa Electric Co Ltd:The | Pin insertion member |
US5694506A (en) * | 1995-03-09 | 1997-12-02 | Nippon Telegraph And Telephone Corporation | Optical connector |
JPH0961663A (en) | 1995-08-28 | 1997-03-07 | Mitsubishi Cable Ind Ltd | Connection device and connection plate for optical fiber |
JP3549659B2 (en) | 1996-02-19 | 2004-08-04 | 富士通株式会社 | Method for manufacturing optical waveguide device |
JPH10123373A (en) | 1996-10-21 | 1998-05-15 | Kyocera Corp | Waveguide type optical module |
US6062740A (en) | 1997-08-25 | 2000-05-16 | Sumitomo Electric Industries, Ltd. | Optical connector and method of making the same |
JP2000147269A (en) * | 1998-09-01 | 2000-05-26 | Fujitsu Ltd | Electronic device |
JP2001119177A (en) * | 1999-10-15 | 2001-04-27 | Fujitsu Ltd | Different-function integrating communication device |
US6477290B1 (en) | 2000-02-15 | 2002-11-05 | Optic Net, Inc. | Fiber optic switch using MEMS |
US6501869B1 (en) | 2000-03-20 | 2002-12-31 | George Mason University | Optical switching system |
JP3885602B2 (en) * | 2001-04-23 | 2007-02-21 | オムロン株式会社 | Optical element and optical transceiver and other optical apparatus using the optical element |
GB2379748B (en) * | 2001-06-22 | 2003-09-10 | Bookham Technology Plc | An optical chip with an optically conductive element |
US6826347B2 (en) | 2001-07-12 | 2004-11-30 | Ngk Insulators, Ltd. | Two-dimensional optical element array and two-dimensional waveguide apparatus |
US7300216B2 (en) * | 2001-11-20 | 2007-11-27 | Harris Corporation | Optical connector adapter for interfacing a beam splitter/combiner to optical waveguides and method of forming the same |
US6905256B2 (en) * | 2001-11-20 | 2005-06-14 | Harris Corporation | Optical connector adapter for interfacing single or multichannel waveguide devices to fiber and method of forming same |
US7234874B2 (en) * | 2001-11-20 | 2007-06-26 | Harris Corporation | Optical connector adapter for connecting optical pump sources to optical waveguides and method of forming same |
GB0201969D0 (en) | 2002-01-29 | 2002-03-13 | Qinetiq Ltd | Integrated optics devices |
AU2003209561A1 (en) * | 2002-03-13 | 2003-09-22 | Kilolambda Ip Limited | Optical energy switching device and method |
KR100464335B1 (en) | 2002-05-25 | 2005-01-03 | 삼성전자주식회사 | Variable alignment type optical fiber block and arrayed waveguides grating module using the same |
US7144163B2 (en) * | 2003-01-27 | 2006-12-05 | Fujikura Ltd. | Optical connector with shutter, shutter unit, and inner piece |
US20060215954A1 (en) | 2004-03-22 | 2006-09-28 | Jenkins Richard M | Optical routing device comprising hollow waveguides and mems reflective elements |
JP4265293B2 (en) | 2003-06-11 | 2009-05-20 | 富士ゼロックス株式会社 | Method of manufacturing polymer optical waveguide integrated with mold and connector |
EP1686402B1 (en) * | 2003-11-19 | 2013-07-24 | Tomoegawa Paper Co., Ltd. | Optical connection structure and optical connection method |
KR100583646B1 (en) * | 2003-12-24 | 2006-05-26 | 한국전자통신연구원 | Connection apparatus for parallel optical interconnect module and parallel optical interconnect module Using the same |
DE602005013441D1 (en) | 2004-04-09 | 2009-05-07 | Tomoegawa Paper Co Ltd | Method for connecting optical fibers and optical components using fiber bends |
US7190865B2 (en) | 2004-04-19 | 2007-03-13 | Infinera Corporation | Hermaphroditic u-guide alignment structures and method thereof |
CA2579217C (en) * | 2004-04-30 | 2014-04-29 | Oy Modilis Ltd. | Ultrathin lighting element |
US7356210B2 (en) | 2004-06-25 | 2008-04-08 | Intel Corporation | Variable optical attenuator multiplexer with a thermal isolating optical joint |
US7209621B2 (en) * | 2004-07-09 | 2007-04-24 | Fujitsu Ltd. | Optical apparatuses providing optical interconnections among a plurality of electronic components |
JP4678155B2 (en) * | 2004-07-28 | 2011-04-27 | 富士ゼロックス株式会社 | Optical waveguide, ferrule for optical waveguide, and optical connector |
US8447157B2 (en) | 2005-06-24 | 2013-05-21 | 3M Innovative Properties Company | Optical device with cantilevered fiber array and method |
JP4675705B2 (en) | 2005-07-19 | 2011-04-27 | 株式会社リコー | Powder conveying apparatus and image forming apparatus |
US7665901B2 (en) * | 2006-02-17 | 2010-02-23 | Telescent Inc. | Protective fiber optic union adapters |
US20070196053A1 (en) * | 2006-02-17 | 2007-08-23 | Anthony Kewitsch | Isolated Fiber Optic Union Adapters |
EP1939658A3 (en) | 2006-12-27 | 2012-01-18 | Furukawa Electric North America Inc. (a Delaware Corporation) | Overpackaging and routing apparatus for optical fiber power splitter devices |
US7490993B2 (en) * | 2007-02-16 | 2009-02-17 | Xyratex Technology Limited | Adapter for an optical printed circuit board, an optical printed circuit board and a method of connecting an adapter to an optical printed circuit board |
US7499622B2 (en) * | 2007-02-28 | 2009-03-03 | Corning Cable Systems Llc | Fiber optic drop terminals for multiple dwelling units |
JP5290534B2 (en) | 2007-03-30 | 2013-09-18 | 古河電気工業株式会社 | Optical integrated circuit and optical integrated circuit module |
JP5156502B2 (en) | 2007-06-26 | 2013-03-06 | パナソニック株式会社 | Optical module |
US8798427B2 (en) * | 2007-09-05 | 2014-08-05 | Corning Cable Systems Llc | Fiber optic terminal assembly |
US20100266235A1 (en) | 2007-09-06 | 2010-10-21 | Ying-Tso Lin | Planar lightwave apparatus |
US8463091B2 (en) * | 2007-10-15 | 2013-06-11 | Telescent Inc. | Methods to reconfigure all-fiber optical cross-connects |
US8213791B2 (en) * | 2008-05-15 | 2012-07-03 | Hitachi Cable, Ltd. | Communication light detecting device |
US8699838B2 (en) | 2009-05-14 | 2014-04-15 | Ccs Technology, Inc. | Fiber optic furcation module |
EP2251724A1 (en) | 2009-05-14 | 2010-11-17 | CCS Technology Inc. | Fiber optic furcation module |
EP2534515B1 (en) * | 2010-02-12 | 2018-04-25 | ADC Telecommunications, Inc. | Managed fiber connectivity systems |
CA2789159A1 (en) * | 2010-02-12 | 2011-08-18 | Adc Telecommunications, Inc. | Communications bladed panel systems |
US20110222823A1 (en) | 2010-03-12 | 2011-09-15 | Xyratex Technology Limited | Optical connector and a method of connecting a user circuit to an optical printed circuit board |
CN102346279B (en) * | 2010-07-30 | 2015-03-11 | 株式会社藤仓 | Optical connector and connector connection system |
JP2013029624A (en) * | 2011-07-28 | 2013-02-07 | Kyocera Corp | Optical connector and optical transmission module |
WO2013052854A2 (en) * | 2011-10-07 | 2013-04-11 | Adc Telecommunications, Inc. | Slidable fiber optic connection module with cable slack management |
US9429724B2 (en) * | 2012-01-27 | 2016-08-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Stackable interface modules for customized network functions |
GB2515430B (en) * | 2012-05-16 | 2017-02-22 | Flexiguide Ltd | Waveguide assembly |
CN104685395B (en) * | 2012-07-11 | 2016-08-24 | 泰科电子英国有限公司 | The RFID being used in conjunction with patch panel enables optics adapter |
US9474682B2 (en) * | 2012-09-05 | 2016-10-25 | Star Generation Limited Taiwan Branch | Light guide type pain reliever |
US9091835B2 (en) * | 2012-12-06 | 2015-07-28 | Corning Cable Systems Llc | Fiber optic assembly with loopback |
US9423570B2 (en) * | 2013-02-05 | 2016-08-23 | Commscope Technologies Llc | Optical assemblies with managed connectivity |
EP2972537B1 (en) | 2013-03-12 | 2019-12-18 | CommScope Technologies LLC | Optical waveguide module, system and method |
-
2014
- 2014-03-12 EP EP14779887.0A patent/EP2972537B1/en active Active
- 2014-03-12 US US14/775,035 patent/US9846283B2/en active Active
- 2014-03-12 ES ES14779887T patent/ES2768452T3/en active Active
- 2014-03-12 EP EP19210058.4A patent/EP3633428A1/en active Pending
- 2014-03-12 WO PCT/US2014/024657 patent/WO2014165175A1/en active Application Filing
-
2017
- 2017-11-09 US US15/808,626 patent/US10310193B2/en active Active
-
2019
- 2019-06-03 US US16/429,520 patent/US10877225B2/en active Active
-
2020
- 2020-11-25 US US17/104,740 patent/US11650377B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6095409A (en) * | 1983-10-28 | 1985-05-28 | Matsushita Electric Works Ltd | Optical waveguide plate with connector |
US5414786A (en) * | 1992-10-09 | 1995-05-09 | The Furukawa Electric Co., Ltd. | Optical waveguide component with a molded resin portion having accurately aligned guide pin holes therein |
US5712937A (en) * | 1994-12-01 | 1998-01-27 | Asawa; Charles K. | Optical waveguide including singlemode waveguide channels coupled to a multimode fiber |
JP2005004014A (en) * | 2003-06-12 | 2005-01-06 | Nippon Telegr & Teleph Corp <Ntt> | Planar optical wave circuit |
JP2007025382A (en) * | 2005-07-19 | 2007-02-01 | Sony Corp | Optical waveguide, method of manufacturing optical waveguide and optical waveguide module |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110945396A (en) * | 2017-06-28 | 2020-03-31 | 康宁研究与开发公司 | Multi-port and other devices having optical connection ports and securing features and methods of making the same |
WO2019195220A1 (en) * | 2018-04-03 | 2019-10-10 | Corning Research & Development Corporation | Waveguide substrates and waveguide substrate assemblies having waveguide routing schemes and methods for fabricating the same |
WO2019195219A1 (en) * | 2018-04-03 | 2019-10-10 | Corning Research & Development Corporation | Waveguide substrates and waveguide substrate connector assemblies having waveguides and alignment features and methods of fabricating the same |
US11256042B2 (en) | 2018-04-03 | 2022-02-22 | Corning Research & Development Corporation | Waveguide substrates and waveguide substrate assemblies having waveguide routing schemes and methods for fabricating the same |
US11372169B2 (en) | 2018-04-03 | 2022-06-28 | Corning Research & Development Corporation | Waveguide substrates and waveguide substrate connector assemblies having waveguides and alignment features and methods of fabricating the same |
EP4089455A1 (en) * | 2018-04-03 | 2022-11-16 | Corning Research & Development Corporation | Waveguide substrates and waveguide substrate assemblies having waveguide routing schemes and methods for fabricating the same |
US11609395B2 (en) | 2021-01-11 | 2023-03-21 | Corning Research & Development Corporation | Waveguide substrates and assemblies including the same |
Also Published As
Publication number | Publication date |
---|---|
US10877225B2 (en) | 2020-12-29 |
EP2972537A1 (en) | 2016-01-20 |
ES2768452T3 (en) | 2020-06-22 |
US20160025942A1 (en) | 2016-01-28 |
US10310193B2 (en) | 2019-06-04 |
US9846283B2 (en) | 2017-12-19 |
US20180128994A1 (en) | 2018-05-10 |
EP2972537B1 (en) | 2019-12-18 |
EP2972537A4 (en) | 2016-10-19 |
EP3633428A1 (en) | 2020-04-08 |
US11650377B2 (en) | 2023-05-16 |
US20210157063A1 (en) | 2021-05-27 |
US20190353853A1 (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10877225B2 (en) | Optical waveguide module system and method | |
US10809472B2 (en) | Optical fiber ferrules incorporating a glass faceplate and methods of fabricating the same | |
US8942520B2 (en) | Optical waveguide board having guided structure and method of manufacturing the same, and method of manufacturing optical-electrical hybrid board | |
US11852870B2 (en) | Optical fiber photonic integrated chip connector interfaces, photonic integrated chip assemblies, and methods of fabricating the same | |
US6986608B2 (en) | Passive alignment connection for fiber optics | |
EP2839328B1 (en) | Fiber optic modules | |
EP1548472B1 (en) | Method and structure for coupling optical fibers with printed wiring board embedded waveguides | |
WO2018022319A1 (en) | Waveguide connector elements and optical assemblies incorporating the same | |
US20190384019A1 (en) | Receptacle bodies for optical chips and optical connections incorporating the same | |
US20150139589A1 (en) | Optical fiber connector, method for manufacturing optical fiber connector, method for connecting optical fiber connector and optical fiber, and assembled body of optical fiber connector and optical fiber | |
WO2007010184A1 (en) | Optical printed circuit board and manufacturing method | |
EP2624034A1 (en) | Dismountable optical coupling device | |
Papakonstantinou et al. | Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs | |
US6978058B2 (en) | Multi-layer PCB and method for coupling block type multichannel optical signals | |
EP2083301B1 (en) | Manufacturing method of optical waveguide device | |
EP3999886A1 (en) | Waveguide module assemblies having a clamshell housing | |
Rosenberg et al. | Low cost, injection molded 120 Gbps optical backplane | |
JP2020181024A (en) | Optical transmission module | |
KR20150084822A (en) | Optical waveguide, optical waveguide manufacturing method, and optical module | |
WO2012017318A2 (en) | Optical coupling system | |
GB2623474A (en) | Dense photonic integrated circuit optical edge coupling | |
WO2013150089A1 (en) | Mechanical alignment device for positioning optical fibers | |
Liu et al. | High-density optical interconnect using polymer waveguides interfaced to a VCSEL array in molded plastic packaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14779887 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014779887 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14775035 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |