WO2014163183A1 - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
WO2014163183A1
WO2014163183A1 PCT/JP2014/059959 JP2014059959W WO2014163183A1 WO 2014163183 A1 WO2014163183 A1 WO 2014163183A1 JP 2014059959 W JP2014059959 W JP 2014059959W WO 2014163183 A1 WO2014163183 A1 WO 2014163183A1
Authority
WO
WIPO (PCT)
Prior art keywords
word line
voltage
bit line
sense amplifier
data
Prior art date
Application number
PCT/JP2014/059959
Other languages
French (fr)
Japanese (ja)
Inventor
修一 塚田
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Publication of WO2014163183A1 publication Critical patent/WO2014163183A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/402Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration individual to each memory cell, i.e. internal refresh
    • G11C11/4026Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration individual to each memory cell, i.e. internal refresh using bipolar transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor

Definitions

  • the present invention is based on the priority claim of Japanese Patent Application: Japanese Patent Application No. 2013-079775 (filed on April 5, 2013), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a semiconductor memory device.
  • the present invention relates to a thyristor memory or an FBC (Floating Body Cell) memory that accumulates charges in a floating body.
  • FBC Floating Body Cell
  • DRAM is the most common and widely used in computer systems and the like.
  • DRAM is said to reach the limit of miniaturization in the next few years. Therefore, research and development of various large-capacity semiconductor memory devices have been conducted for the purpose of replacing DRAM.
  • the following prior art is disclosed for a floating body memory that accumulates electric charges in a floating body of a thyristor or a bipolar transistor.
  • these floating body memories are also classified as volatile memories that require a refresh operation at regular intervals.
  • Patent Document 1 discloses a thyristor memory having a structure that does not require a MOS transistor.
  • a thyristor memory since information is stored by accumulating charges in the gate capacitance between the gate of the MOS transistor and the body node FB, there is a problem that the cell leak current increases due to the GIDL current of the MOS transistor.
  • the thyristor memory described in Patent Document 1 since it is not necessary to use a MOS transistor, cell leakage current is small and miniaturization is possible.
  • Patent Document 1 discloses a semiconductor memory device in which a memory cell array is constituted by the thyristor memory.
  • the FB (floating body) of each thyristor memory is connected to a word line WL via a capacitor, and the anode of each thyristor memory is connected to a bit line BL.
  • Patent Document 1 discloses a method of controlling the word line WL and the bit line BL in each operation of cell writing of the cell High, cell writing of the cell Low, and cell reading (cell writing is illustrated in FIG. For cell readout, see FIG. 8 of Patent Document 1).
  • Patent Document 2 discloses a semiconductor memory device in which a memory cell array is configured by an FBC memory.
  • the semiconductor memory device includes a burst length counter that counts the number of accesses to the column in the burst mode, and the sense amplifier SA corresponding to the bit line BL when the burst length counter becomes equal to a preset burst length.
  • the sense node is controlled to be electrically connected. As a result, current consumption during writing in the burst mode is reduced.
  • Patent Document 1 is incorporated herein by reference.
  • a thyristor memory or FBC memory has a property that a voltage supplied to a bit line at the time of writing and a voltage detected by the bit line at the time of reading are inverted. Therefore, the sense amplifier of Patent Document 1 includes a first node (inverted sense amplifier bit line BLSAB in FIG. 15) in the sense amplifier and a read switch (transistors N22 and N22A in FIG. 15) that connects the bit line, and a second node. There are provided two types of switches: a non-inverted sense amplifier bit line BLSAT in FIG. 15 and a write switch (transistors N3 and N3A in FIG. 15) connecting the bit lines.
  • the voltage of the bit line is detected at the first node via the read switch at the time of reading, and writing is performed by supplying the voltage from the second node to the bit line via the write switch at the time of writing. This corresponds to the problem that the voltage of 1 is reversed between reading and writing.
  • a semiconductor memory device using a memory cell in which the voltage detected at the time of reading and the voltage supplied at the time of writing are inverted such as a thyristor memory or an FBC memory
  • the layout size of the sense amplifier is reduced and the current consumption of the bit line is reduced. Reduction is desired.
  • the semiconductor memory device includes the following components. That is, the semiconductor memory device is connected between a bit line and a power supply node, and a memory cell in which stored data is inverted when data is written back without inverting the voltage detected at the time of reading, and the memory cell And a word line connected to the control terminal. Further, the semiconductor memory device includes a sense amplifier having a holding circuit that temporarily stores read data from the memory cell, and a read / write switch connected between the first node of the holding circuit and the bit line. Including. The semiconductor memory device includes a counter provided corresponding to the word line, counting the number of times the word line is activated, and outputting a data inversion control signal indicating whether the number is even or odd. . Further, the semiconductor memory device includes an external input / output circuit that performs inversion / non-inversion of data based on the data inversion control signal when data of the holding circuit of the sense amplifier is input / output externally.
  • the layout size of the sense amplifier is reduced and the current consumption of the bit line is reduced. It is possible to provide a semiconductor memory device that can contribute.
  • FIG. 1 is a block diagram showing a configuration of a semiconductor memory device according to one embodiment.
  • 1 is a block diagram showing a configuration of a semiconductor memory device according to a first embodiment.
  • FIG. 3 is a circuit diagram showing a SWL counter circuit of the semiconductor memory device according to the first embodiment.
  • 1 is a circuit diagram showing a memory cell of a semiconductor memory device according to a first embodiment.
  • 1 is a circuit diagram of a sense amplifier of a semiconductor memory device according to a first embodiment.
  • FIG. 6 is a waveform diagram showing an operation of the semiconductor memory device according to the first embodiment.
  • FIG. 6 is a circuit diagram showing a memory cell of a semiconductor memory device according to Modification 1 of the first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a semiconductor memory device according to one embodiment.
  • 1 is a block diagram showing a configuration of a semiconductor memory device according to a first embodiment.
  • FIG. 3 is a circuit diagram showing a SWL counter circuit of the semiconductor
  • FIG. 6 is a circuit diagram showing a memory cell of a semiconductor memory device according to a second modification of the first embodiment.
  • FIG. 10 is a circuit diagram showing a memory cell of a semiconductor memory device according to Modification 3 of the first embodiment. It is a block diagram which shows the structure of the semiconductor memory device which concerns on 2nd Embodiment.
  • FIG. 5 is a diagram illustrating a configuration of a counter cell and a counter amplifier for a counter cell of a semiconductor memory device according to a second embodiment.
  • FIG. 6 is a circuit diagram of a buffer circuit of a semiconductor memory device according to a second embodiment.
  • FIG. 6 is a waveform diagram showing an operation of the semiconductor memory device according to the second embodiment.
  • the semiconductor memory device 100 in one embodiment includes the following components. That is, the semiconductor memory device 100 is connected between the bit line (BL) 120 and the power supply node 102, and the memory cell in which the stored data is inverted when the voltage detected at the time of reading is written back without being inverted. 101 and a word line (WL) 122 connected to the control terminal 103 of the memory cell.
  • the semiconductor memory device 100 includes a holding circuit 106 that temporarily stores read data from the memory cell 101, and a read / write switch connected between the first node 107 of the holding circuit 106 and the bit line (BL) 120. 105, and a sense amplifier 109.
  • the semiconductor memory device 100 is provided corresponding to the word line (WL) 122, counts the number of times the word line (WL) 122 is activated, and indicates a data inversion control signal indicating whether the number is even or odd. 14 is included.
  • the semiconductor memory device 100 further includes an external input / output circuit 108 that inverts / non-inverts data based on the data inversion control signal 14 when the data of the sense amplifier holding circuit 106 is externally input / output. .
  • the node in the sense amplifier connected to the bit line (BL) 120 is not changed during reading and writing back (in either case, the node is connected to the first node). Therefore, the memory cell 101 on the activated word line (WL) 122 inverts the cell High / cell Low every time the word line (WL) 122 is activated.
  • the data inversion control signal 14 the logic of the data when externally output is inverted / non-inverted, so that the logic of the data output externally can be in a correct state.
  • data corresponding to the data inversion control signal 14 can be written into the holding circuit 106 by inverting / non-inverting the logic of the data in accordance with the data inversion control signal 14.
  • the logic of external data can be handled without changing the node in the sense amplifier connected to the bit line (BL) 120 during reading and writing back. Therefore, the switch connecting the bit line (BL) 120 and the node in the sense amplifier can be configured by one read / write switch 105, and the layout size of the sense amplifier can be reduced.
  • the read / write switch 105 is turned on to read data in the memory cell 101 to the first node 107 of the sense amplifier 109 via the bit line (BL) 120.
  • the data is temporarily stored in the holding circuit 106, and at the time of writing back, the read / write switch 105 is turned on, and the voltage of the first node 107 of the sense amplifier 109 is supplied to the bit line (BL) 120 without being inverted. You may make it write back to.
  • the counter 104 may be constituted by a counter circuit (23 in FIG. 3) that counts up upon activation of the word line WL.
  • the counter 104 may be composed of a counter cell 16 a that is substantially the same as the memory cell 26.
  • the counter cell 16a corresponding to the word line (sub word line 7 in FIGS. 10 and 11) reads / writes simultaneously with the memory cell 26 connected to the word line (sub word line 7 in FIGS. 10 and 11).
  • a write operation may be performed, and the data inversion control signal 14 may be generated based on the read data of the counter cell 16a.
  • the counter amplifier for the counter cell (49: CSA in FIG. 11) corresponds to the counter cell 16a and is substantially the same as the sense amplifier (19: SA in FIG. 5). ) May be further provided.
  • the first node (corresponding to BLSAB in the CSA) of the holding circuit of the counter cell sense amplifier CSA and the second node complementary to the first node (in the CSA) A buffer circuit 15 for generating a data inversion control signal 14 based on a signal of a counter IO line pair (corresponding to the CIOB line and the CIOT line in FIG. 11) electrically connected to the BLSAT). May be.
  • the memory cell 26 is a memory that stores data by accumulating charges in the floating body FB, as shown in FIGS.
  • the floating body FB may be connected to the control terminal 103 of the memory cell via capacitors C1, C2, etc., including elements (thyristor 36 in FIG. 4, bipolar transistor 37 in FIG. 7, etc.).
  • the memory cell 26 may be the memory cell 26 of the thyristor memory shown in FIG.
  • the memory element is the thyristor 36
  • the anode 221 of the thyristor is connected to the bit line BL
  • the cathode 222 of the thyristor is connected to the power supply node 102
  • the gate 223 of the thyristor constitutes the floating body FB. May be.
  • the memory cell may be the memory cell 27 of the FBC memory shown in FIG.
  • the memory element is the bipolar transistor 37
  • the collector of the bipolar transistor 37 is connected to the bit line BL
  • the emitter of the bipolar transistor 37 is connected to the power supply node 102
  • the base of the bipolar transistor 37 is connected to the floating body FB. You may make it comprise.
  • the semiconductor memory device (21 in FIG. 2, 22 in FIG. 10 and the like) further includes a word line driver (sub word line driver 3 in FIG. 2) for controlling the voltage of the word line WL, and as shown in FIG.
  • a word line driver (sub word line driver 3 in FIG. 2) for controlling the voltage of the word line WL, and as shown in FIG.
  • the word line driver 3 holds the voltage of the word line WL at the word line standby voltage VWSL, and the sense amplifier (19 in FIG. 5) sets the bit line BL to the first voltage.
  • the word line driver 3 sets the word line WL to the word line read voltage VWLR, and then the sense amplifier A second control (T2 to T4 in FIG. 6) for canceling the precharge of the bit line BL and reading out the data of the memory cell (26 in FIG. 5) from the bit line BL to the sense amplifier 19; It may be performed.
  • the data read to the sense amplifier (19 in FIG. 5) is written into the memory cells (26 in FIG. 5).
  • the third control (T5 in FIG. 6) for setting the data voltage read by the sense amplifier 19 to the bit line BL without inversion and after the third control, the word line driver ( The sub-word line driver 3) in FIG. 2 sets the word line WL to the word line write voltage VWLW that is higher than the word line read voltage VWLR (T6 in FIG. 6), and after the fourth control, A fifth control (T7 in FIG.
  • the word line driver 3 sets the word line WL to the word line precharge voltage VWLP which is an intermediate voltage between the word line read voltage VWLR and the word line standby voltage VWLS;
  • the sixth control in which the sense amplifier 19 sets the bit line BL to the first power supply voltage VSS supplied to the power supply node (102 in FIG. 4)
  • the word line driver 3 may perform a seventh control (T9 in FIG. 6) for returning the voltage of the word line WL to the word line standby voltage VWLS.
  • a plurality of word lines WL wired in the first direction intersect with the first direction.
  • a plurality of sense amplifiers sense amplifier 19 included in the sense amplifier region 2) respectively provided corresponding to the plurality of bit lines BL, and a plurality provided respectively corresponding to the plurality of word lines WL.
  • Counter the SWL counter circuit 23 included in the SWL counter area 13 of FIG. 2 or the counter cell 16a of FIG. 11).
  • the plurality of word lines WL have a hierarchical structure composed of main word lines and sub word lines SWL, and a plurality of counters (SWL counter area in FIG. 2).
  • SWL counter circuit 23 and counter cell 16a in FIG. 11) may be provided corresponding to a plurality of sub word lines SWL.
  • FIG. 2 is a block diagram showing the configuration of the semiconductor memory device 21 according to the first embodiment, and mainly shows the configuration of the memory cell array and its peripheral portion.
  • the memory cell array of the semiconductor memory device 21 is divided into a plurality of cell regions 1 and arranged.
  • the word lines are configured by a hierarchical structure of main word lines (not shown) and sub word lines 7, and a plurality of memory cells 26 in each cell region 1 are arranged at intersections of the plurality of sub word lines 7 and the plurality of bit lines 8. Is done.
  • the plurality of sub word lines 7 in each cell region 1 are connected to two sub word line drivers 3 adjacent to both sides of each cell region 1 so as to be distributed evenly and oddly.
  • the plurality of bit lines 8 in each cell region 1 are distributed and connected to the sense amplifiers 19 (FIG. 5) in two sense amplifier regions 2 adjacent to both sides of each cell region 1, evenly and oddly. .
  • the sense amplifier 19 (FIG. 5) detects the voltage of the bit line 8 at the time of reading, and supplies a voltage corresponding to the write data to the bit line 8 at the time of writing.
  • the address input to an address input circuit is decomposed into a column address and a row address and supplied to the Y decoder 5 and the X decoder 4 respectively. Then, the sub word line 7 selected by the X decoder 4 is activated. Further, the sense amplifier 19 (FIG. 5) corresponding to the column selection signal (YS) 9 selected by the Y decoder 5 is selected.
  • each sense amplifier 19 in the sense amplifier region 2 is connected to the data amplifier 6 via an inverted IO line IOB and non-inverted IO lines IOT (10a, 10b).
  • the data amplifier 6 uses the inverted IO line IOB and the non-inverted IO line IOT (10a, 10b) for the data of the flip-flop (FF in FIG. 5) holding the signal detected by each sense amplifier 19. ) And amplifies the read data.
  • the data amplifier 6 outputs the amplified data to the data input / output circuit 11.
  • the data input / output circuit 11 further amplifies the signal and outputs it from the data input / output terminal 12 as external data.
  • the data amplifier 6 and the data input / output circuit 11 in FIG. 2 correspond to the external input / output circuit 108 in FIG. 1 referred to in the outline description of the embodiment.
  • the data inversion control signal generation unit 32 includes a SWL counter area 13 provided corresponding to each sub word line 7 in the same direction as the X decoder 4, and a sub word line driver 3 that supplies the sub word line 7 to each SWL counter area 13. , Including.
  • Each SWL counter area 13 includes a SWL counter circuit 23 (FIG. 3) connected to each sub word line 7. Details of the SWL counter circuit 23 will be described later.
  • the data inversion control signal generation unit 32 inverts / non-inverts data when external input / external output is performed on data of the memory cell 26 connected to the sub word line 7 selected and activated by the X decoder 4.
  • the function of generating the data inversion control signal 14 for controlling the above is fulfilled.
  • the data inversion control signal generation unit 32 corresponds to the data inversion control signal generation unit 112 in FIG. 1 referred to in the outline description of the embodiment.
  • FIG. 3 is a circuit diagram showing the SWL counter circuit 23 of the semiconductor memory device 21.
  • a SWL counter circuit 23 is provided for each sub word line 7.
  • FIG. 3 shows the SWL counter circuit 23 connected to the sub word lines SWL_i ⁇ 1, SWLi, and SWL_i + 1. Of these, details of the SWL counter circuit 23 connected to the sub word line SWLi are shown.
  • the SWL counter circuit 23 includes a latch circuit composed of inverter circuits INV2 and INV3, a latch circuit composed of inverter circuits INV4 and INV5, N-type transistors M1 and M2, and an inverter INV1. Constitutes one flip-flop circuit.
  • the voltage of the sub word line SWLi and the voltage complementary to SWLi are supplied to the gates of the N-type transistors M1 and M2, respectively, and the on / off of the NMOS transistors M1 and M2 is controlled exclusively.
  • the output of the flip-flop circuit (node NC3) is fed back to the input of the flip-flop circuit (one of the source and drain of the N-type transistor M1) via the inverter INV6 to constitute a 1-bit counter circuit. Yes.
  • the 1-bit counter circuit counts up at each falling edge timing of SWLi and operates to switch between 0 and 1 of the node NC1 of the output of the 1-bit counter circuit.
  • the 1-bit counter circuit sets the node NC1 to 0 when the number of times that the falling edge of the sub word line SWLi is detected is an even number, and sets the number of times that the number of times that the falling edge of the sub word line SWLi is detected to be an odd number.
  • Node NC1 is set to 1.
  • the N-type transistor M3 functions as a switch for selecting the SWL counter circuit 23 corresponding to the activated sub word line 7. For example, when SWLi is activated and is at a high level, the N-type transistor M3 of the SWL counter circuit 23 connected to SWLi is turned on, and the voltage of the node NC1 is output as the data inversion control signal 14. On the other hand, when none of the sub word lines 7 is activated, the data inversion control signal 14 is in a floating state.
  • FIG. 4A corresponds to FIG.
  • FIG. 4B shows a circuit diagram symbol of the thyristor 36.
  • the sub word line connection terminal 103a, the bit line connection terminal 110a, and the power supply node 102 are connected to the sub word line 7, the bit line 8, and the ground VSS, respectively.
  • a capacitor C1 is provided between the floating body FB (thyristor gate 223) and the sub word line connection terminal 103a.
  • the anode 221 of the thyristor and the cathode 222 of the thyristor are connected to the bit line connection terminal 110a and the power supply node 102, respectively.
  • the thyristor 36 has an emitter connected to the cathode 222, a base connected to the floating body FB, an NPN transistor Q1 connected to the node FN, an emitter connected to the anode 221, a base connected to the node FN, and a collector connected to the floating body FB.
  • a connected PNP transistor Q2 is provided.
  • the memory cell 26 is a memory cell of a thyristor memory having a structure not including a MOS transistor.
  • the NPN transistor Q1 If the voltage of the FB node is increased through the capacitance of the capacitor C1 when the bit line BL (anode) is sufficiently high, the NPN transistor Q1 is weakly turned on when the voltage VBI is reached and the node FN is turned on. It goes down to a low level, which turns on the PNP transistor Q2 to raise the FB node to a higher voltage. As a result, the NPN transistor Q1 is turned on more strongly, and the anode (BL) and the cathode VSS of the thyristor 36 become conductive.
  • the thyristor 36 is in a conductive state, as long as a sufficiently high voltage is applied to the bit line BL (anode), the conductive state is maintained even if a coupling voltage is applied to the FB node via the capacitance of the capacitor C1.
  • the non-conduction of the thyristor 36 is performed by setting the potential difference between the anode (BL) and the cathode (VSS) to a small potential difference equal to or lower than the voltage VBI.
  • the bit line BL is set to the voltage VBI or lower
  • the FB node is lowered to the voltage VBI or lower due to the leakage current of the PN junction.
  • the NPN transistor Q1 is turned off, so that the anode (BL) and the cathode (VSS) of the thyristor 36 are turned off.
  • FIG. 5 is a circuit diagram of the sense amplifier 19 of the semiconductor memory device 21 according to the first embodiment.
  • a bit line (BL) 8 is connected to the sense amplifier 19 from the cell region, and a bit line (BLA) 8 is connected to another adjacent cell region A.
  • the drain of the N-type transistor N1 is connected to the bit line (BL) 8
  • the gate of the N-type transistor N1 is connected to the control signal BLDIS
  • the source is connected to the power supply VSS.
  • the N-type transistor N1A is connected to the bit line (BLA) 8.
  • the N-type transistors N1 and N1A fix the potential of the bit line (BL, BLA) 8 to the level of the power supply VSS when the bit line (BL, BLA) 8 is not selected (standby), respectively.
  • One of the source and drain of the N-type transistor N2 is connected to the bit line (BL) 8, the inverted sense amplifier bit line BLSAB (first node) is connected to the other of the source and drain, and the gate is connected.
  • a control signal TG is connected.
  • the control signal TG is a signal that is activated and becomes a high level when the voltage of the bit line 8 is detected at the time of reading and when the voltage corresponding to the write data is supplied to the bit line 8 at the time of writing.
  • the control signal TG is at a high level
  • the bit line (BL) 8 and the inverted sense amplifier bit line BLSAB are electrically connected.
  • an N-type transistor N2A read / write switch
  • TGA is connected to the gate of the N-type transistor N2A.
  • F. Is provided to amplify the potential difference between the inverted sense amplifier bit line BLSAB and the non-inverted sense amplifier bit line BLSAT.
  • Flip-flop F.F. F. Includes P-type transistors P5 and P6 and N-type transistors N4 and N5.
  • flip-flop F.F. F. Is connected to SAP as the power source of the P-type transistor and SAN as the power source of the N-type transistor.
  • the power supplies SAP and SAN are flip-flops F. F. It is activated only when the operation is required.
  • the power supply SAP When activated, the power supply SAP has the same potential as the power supply VARY, and the power supply SAN has the same potential as the power supply VSS.
  • the maximum amplitude of the bit line 8 is determined by the voltages of the power supplies SAP and SAN and the voltage of the power supply VARY.
  • the power supply SAP When inactive, the power supply SAP has the same potential as the power supply VSS, and the power supply SAN has the same potential as the power supply VARY.
  • the flip-flop F.F. F Functions as a holding circuit for temporarily storing data read from the memory cell 26, and corresponds to the holding circuit 106 of FIG. 1 referred to in the outline description of the embodiment.
  • the N-type transistor N6 is a switch that connects the inverted sense amplifier bit line BLSAB and the inverted IO line IOB
  • the N-type transistor N7 is a switch that connects the non-inverted sense amplifier bit line BLSAT and the non-inverted IO line IOT. is there. Both N-type transistors N6 and N7 are controlled to be conductive / non-conductive by a column selection signal YSi.
  • the inverted sense amplifier bit line BLSAB and the inverted IO line IOB, and the non-inverted sense amplifier bit line BLSAT and the non-inverted IO line IOT are connected via the N-type transistors N6 and N7. , Input and output data.
  • the P-type transistor P1 is connected between the inverted sense amplifier bit line BLSAB and the bit line activation power supply VARY.
  • the P-type transistor P2 is connected between the non-inverting sense amplifier bit line BLSAT and the bit line determination reference power supply VBLREF.
  • Control signals ACTB1 and ACTB2 are connected to the gates of the P-type transistors P1 and P2, respectively. The control signals ACTB1 and ACTB2 are activated and become low level during the read operation.
  • the P-type transistors P3 and P4 are connected in series between the inverted sense amplifier bit line BLSAB and the power supply VARY, and a control signal ACT2B and a constant current reference voltage VIREF are supplied to the gates of the P-type transistors P3 and P4, respectively.
  • VIREF VARY ⁇ VTP
  • FIG. 6 shows operation waveforms when the semiconductor memory device 21 is operated in compliance with DRAM (Dynamic Random Access Memory) specifications.
  • DRAM Dynamic Random Access Memory
  • an ACT command is given from the outside, and in response to a designated row address and ACT command, a word line (main word line and sub word line 7) is selected and connected to the activated sub word line 7.
  • Data is read from the memory cell 26 to the corresponding sense amplifier 19.
  • the data read to the sense amplifier 19 is output to the outside via the IO lines (IOB and IOT) based on the designated column address.
  • the external data is supplied to the flip-flop F.F of the sense amplifier 19 corresponding to the designated column address. F. Write until.
  • the flip-flop F.F. F. The write data stored in is actually written into the memory cell.
  • the sense amplifier 19 other than the sense amplifier corresponding to the column address specified by the WRITE command, the data of the memory cell 26 read by the ACT command is stored, and the stored data is stored in the memory cell 26. Written back.
  • a refresh command is given from the outside, an ACT command and a refresh word line address are issued inside the semiconductor memory device 21, and then a PRE command is issued to perform refresh. That is, the data of the memory cell 26 read by the ACT command is written back to the memory cell 26.
  • both the access operation and the refresh operation are performed in the order of the ACT command to the PRE command.
  • the ACT command and the PRE command all the memory cells 26 connected to the selected and activated sub word line 7 simultaneously perform the ACT operation and the PRE operation, respectively.
  • FIG. 6 shows a refresh operation only for the ACT operation and the PRE operation.
  • a READ command or a WRITE command (not shown) is executed between the ACT command and the PRE command.
  • the waveforms of the sub-word line 7 and the bit line 8 in FIG. 6 are as follows: the memory cell 26 connected to the sub-word line (7: SWLi) and the bit line (8: BL) in the cell region of FIG. ) And the memory cell 26n connected to the adjacent bit line (8n: adjacent BL).
  • BLDIS, TG, ACT1B, and ACT2B are control signals supplied to the sense amplifier 19.
  • SAP and SAN are the flip-flops F.
  • F. Power supply voltage supplied to the P-type transistors P5 and P6 and the N-type transistors N4 and N5.
  • SWLi indicates the voltage of the activated sub word line 7 (voltage driven by the sub word line driver 3).
  • BL and adjacent BL indicate the voltages of the bit line 8 and the adjacent bit line 8n.
  • NC1 is the voltage of the node NC1 of the SWL counter circuit 23 connected to the activated sub word line SWLi. Further, the voltage of the data inversion control signal 14 is shown.
  • the operation at each timing of T1 to T9 in FIG. 6 will be described. First, it is in a standby state until timing T1. That is, at this time, the sub word line 7 is in a non-selected state. Further, the control signal BLDIS is at the high level and the control signal TG is at the low level, and the bit line 8 is disconnected from the inverted sense amplifier bit line BLSAB of the sense amplifier 19 and fixed at the low level (VSS). Further, the flip-flop F.F. F. The power supply SAP supplied to the power supply is low level and the power supply SAN is high level. F. Is inactive, and the non-inverted sense amplifier bit line BLSAT and the inverted sense amplifier bit line BLSAB are in a floating state.
  • control signals ACTB1 and ACTB2 are also inactive high level.
  • the memory cell 26 stores the state of the cell Low and the FB node is the voltage VL.
  • any subword line SWL is inactive, the N-type transistor M3 of any SWL counter circuit 23 is in an off state, and the data inversion control signal 14 is in a floating state.
  • the control signal BLDIS is set to the low level, and the bit line 8 is released from the state fixed at the low level (VSS), and ACTB1, ACTB2
  • the signal becomes low level and activated, and the inverted sense amplifier bit line BLSAB is set to the voltage VARY, and the non-inverted sense amplifier bit line BLSAT is set to the voltage VBLREF.
  • the control signal TG is activated and the inverted sense amplifier bit line BLSAB and the bit line 8 are connected. Then, the bit line 8 is driven by the voltage VARY of the inverting sense amplifier bit line BLSAB, and the voltage of the bit line 8 also rises to the voltage VARY.
  • the sub word line driver 3 increases the voltage of the sub word line SWLi to the word line read voltage VWLR.
  • the voltage of the FB node is also raised through the capacitor C1 of the memory cell 26.
  • the memory cell 26 is in the cell low state and the FB node rises from the voltage VL, it does not rise to the voltage VBI at which the memory element (thyristor 36) becomes conductive. Therefore, the memory element (thyristor 36) is non-conductive.
  • the control signal ACTB1 is raised to a high level to be inactivated, the inverted sense amplifier bit line BLSAB is released from the state where it is strongly fixed to the voltage VARY, and the control signal ACTB2 is at the low level. Therefore, the voltage VARY is weakly supplied by the constant current source of the P-type transistor P4.
  • the inverted sense amplifier bit line BLSAB is connected to the bit line 8 via an N-type transistor N2 (read / write switch).
  • N2 read / write switch
  • the non-inverting sense amplifier bit line BLSAT maintains the voltage VBLREF according to the low level of the control signal ACTB2.
  • the N-type transistor M3 (FIG. 3) of the SWL counter circuit 23 connected to the activated sub word line SWLi is turned on, and the data inversion control signal 14 outputs a low level.
  • the voltage of the inverted sense amplifier bit line BLSAB holds VARY, and the voltage of the inverted sense amplifier bit line BLSAB> non-inverted sense amplifier bit line.
  • the relationship is the BLSAT voltage (VBLREF).
  • the control signal TG is set to the low level, and the connection between the bit line 8 and the inverted sense amplifier bit line BLSAB is disconnected. Further, by deactivating the control signal ACT2B to High level, the weak supply of the voltage VARY to the inverting sense amplifier bit line BLSAB is stopped, and the non-inverting sense amplifier bit line BLSAT is fixed to the voltage VBLREF. Open. Further, the power supply SAP is set to the high level (VARY), the power supply SAN is set to the low level (VSS), and the flip-flops F.F. F. And flip-flop F. F.
  • a READ command and / or a WRITE command are executed.
  • the data “0” stored in the data is output from the data input / output terminal 12 via the data amplifier 6 and the data input / output circuit 11.
  • the data amplifier 6 receives the data inversion control signal 14 and inverts / non-inverts data.
  • the data inversion control signal 14 is at the low level. This indicates that the data read by the ACT command is data that has been inverted an even number of times (including the case where the inversion is 0 times). If the read data is inverted even number of times, it means that the data is normal logic data, so the data amplifier 6 does not invert the data. As a result, correct logical data “0” can be output to the outside.
  • the data amplifier 6 receives the data inversion control signal 14 and performs inversion / non-inversion of data by the READ command and the WRITE command.
  • the inversion / non-inversion of the data is performed by the flip-flop F. It can be executed at any point in the path between F and the data input / output terminal 12.
  • the data input / output circuit 11 may receive the data inversion control signal 14 and invert / non-invert data.
  • the control signal TG is activated to a high level at the timing T5 in response thereto.
  • the bit line 8 and the inverted sense amplifier bit line BLSAB of the sense amplifier 19 are connected as in the ACT operation (see Patent Document 1 and Patent Document 2).
  • the bit line 8 and the non-inverted sense amplifier bit line BLSAT of the sense amplifier 19 are connected, which will be described later in a comparative example). Accordingly, when the PRE operation is performed at the timing T5, the voltage supplied to the bit line 8 is not inverted from the voltage of the bit line 8 detected by the ACT operation. Specifically, the bit line 8 detects the High level during the ACT operation, and supplies the High level to the bit line 8 during the PRE operation.
  • the sub word line driver 3 increases the voltage of the sub word line SWLi to the word line write voltage VWLW. Accordingly, the voltage at the FB node of the memory cell 26 rises to the voltage VBI or higher via the capacitor C1.
  • the bit line 8 is driven to the high level (VARY)
  • the thyristor 36 becomes conductive.
  • the FB node is at the level of the voltage VON determined by the ratio of the ON resistance of the PNP transistor Q2 and the internal resistance of the PN junction diode between the FB node and VSS (cathode).
  • the sub word line driver 3 reduces the voltage of the bit line 8 to the word line precharge voltage VWLP between the word line write voltage VWLW and the word line standby voltage VWLS. Since the bit line 8 is driven to a high level (VARY) and the thyristor 36 is in a conductive state, the voltage at the FB node maintains the level of the voltage VON even when the voltage of the sub word line SWLi falls to the word line precharge voltage VWLP. And it doesn't change.
  • the control signal TG falls, the bit line 8 is disconnected from the inverted sense amplifier bit line BLSAB, and the control signal BLDIS rises, and the voltage of the bit line 8 is fixed to the low level (VSS). Further, the flip-flop F.F. F.
  • the power supply SAP is set to the low level, the power supply SAN is set to the high level, and the flip-flop F. F. Is deactivated.
  • the voltage of the sub word line SWLi is lowered from the word line precharge voltage VWLP to the word line standby voltage VWLS. Since the thyristor 36 is in a non-conductive state, the FB node is lowered to the voltage VH via the capacitor C1.
  • the SWL counter circuit 23 connected to the sub word line SWLi counts up, and the SWL counter circuit 23 NC1 transitions from the Low level to the High level.
  • the N-type transistor M3 of the SWL counter circuit 23 is turned off, so that the data inversion control signal 14 is in a floating state.
  • the threshold voltage of the N-type transistor M1 of the SWL counter circuit 23 and the logic threshold voltage of the inverter INV1 are set to be between the word line precharge voltage VWLP and the word line standby voltage VWLS. Thereby, the count-up can be performed at the timing (T9) when the sub word line SWLi falls from the word line precharge voltage VWLP to the word line standby voltage VWLS.
  • the SWL counter circuit 23 of FIG. 3 the falling of the sub word line SWLi at the timing T9 is detected.
  • the present invention is not limited to this, and the change of the sub word line SWLi during the PRE operation period may be detected.
  • the SWL counter circuit 23 may be configured to detect the rise of the sub word line SWLi at the timing T6 or the fall of the sub word line SWLi at the timing T7.
  • the storage state of the memory cell 26 is inverted to the state of the cell High.
  • the SWL counter circuit 23 every time the sub word line SWLi is activated, the SWL counter circuit 23 connected to the sub word line SWLi is counted up, and the count value is held in the node NC1.
  • the node NC1 transitions to High as at the timing T9, the number of times that the sub word line SWLi is activated is an odd number and the data in the memory cell 26 connected to the sub word line SWLi is in an inverted state. Holding.
  • FIG. 6 shows the case where the sub word line SWLi is activated.
  • the memory cells connected to the sub word lines 7 other than the sub word line SWLi (that is, inactive sub word lines) 7 The ACT operation and PRE operation are not performed.
  • the SWL counter circuit 23 connected to the inactive sub word line does not perform the count-up operation.
  • timings T1 'to T9' in FIG. 6 will be described.
  • the same sub word line SWLi as in timings T1 to T9 is activated, and the ACT command ⁇ PRE command is executed again.
  • various control signals and the voltage of the sub-word line driver 3 are the same as those at the timings T1 to T9, and thus the description thereof is omitted.
  • the storage state of the memory cell 26 is inverted to the cell high state, and the FB node is at the voltage VH. Further, the node NC1 of the SWL counter circuit 23 connected to the sub word line SWLi is at a high level.
  • the inverted sense amplifier bit line BLSAB is set to the voltage VARY and the non-inverted sense amplifier bit line BLSAT is set to the voltage VBLREF at the timing T1 '. Further, the inverted sense amplifier bit line BLSAB and the bit line 8 are connected. The bit line 8 is also driven by the voltage VARY of the inversion sense amplifier bit line BLSAB, and the voltage of the bit line 8 also rises to the voltage VARY.
  • the sub word line driver 3 raises the voltage of the sub word line 7 to the word line read voltage VWLR.
  • the voltage of the FB node is also raised through the capacitor C1 of the memory cell 26.
  • the memory cell 26 is in the cell high state, the FB node rises from the voltage VH to the voltage VBI at which the memory element (thyristor 36) becomes conductive, and the memory element (thyristor 36) becomes conductive.
  • the inverted sense amplifier bit line BLSAB is released from the state where it is strongly fixed to the voltage VARY, and the voltage VARY is supplied weakly by the constant current source of the P-type transistor P4.
  • the memory element (thyristor 36) of the memory cell 26 is conductive, a current flows from the bit line 8 through the thyristor 36.
  • the current value of the constant current source of the P-type transistor P4 is set sufficiently smaller than the current value of the thyristor 36.
  • the non-inverting sense amplifier bit line BLSAT maintains the voltage VBLREF.
  • the N-type transistor M3 (FIG. 3) of the SWL counter circuit 23 connected to the activated sub word line SWLi is turned on, and the data inversion control signal 14 outputs a high level.
  • the voltage of the inverted sense amplifier bit line BLSAB gradually decreases, so that the voltage of the inverted sense amplifier bit line BLSAB ⁇ the non-inverted sense amplifier.
  • the bit line BLSAT voltage (VBLREF) is established.
  • amplification of the potential difference between the non-inverted sense amplifier bit line BLSAT and the inverted sense amplifier bit line BLSAB is started.
  • the flip-flops F.F. F. As a result, the non-inverted sense amplifier bit line BLSAT is amplified to High level, and the inverted sense amplifier bit line BLSAB is amplified to Low level.
  • This flip-flop F.F. F. This state corresponds to data “1”.
  • the control signal TG is activated to the high level at the timing T5' in response thereto.
  • the bit line 8 and the inverted sense amplifier bit line BLSAB of the sense amplifier 19 are connected as in the ACT operation.
  • the voltage VSS is supplied to the bit line 8
  • the voltage of the bit line 8 drops to VSS. That is, when shifting to the PRE operation at timing T5 ', the voltage supplied to the bit line 8 is not inverted from the voltage of the bit line 8 detected by the ACT operation.
  • bit line 8 is lowered to the low level during the ACT operation, and the low level is supplied to the bit line 8 during the PRE operation. Further, after the timing T5 ', since the bit line 8 is at the low level (VSS), the thyristor 36 is non-conductive.
  • the sub word line driver 3 increases the voltage of the sub word line SWLi to the word line write voltage VWLW.
  • the FB node of the memory cell 26 temporarily rises to the voltage VBI or higher through the capacitor C1, but it reaches the voltage VBI level by the PN junction between the FB node (P-type region) and the cathode VSS (N-type region). Decrease at high speed.
  • the sub word line driver 3 reduces the voltage of the bit line 8 to the word line precharge voltage VWLP. Since the thyristor 36 is in a non-conductive state, the voltage at the FB node decreases to a low voltage via the capacitor C1 as the voltage of the sub word line SWL decreases.
  • the bit line 8 is disconnected from the inversion sense amplifier bit line BLSAB, and the voltage of the bit line 8 is fixed to the low level (VSS). Further, the flip-flop F.F. F.
  • the power supply SAP is set to the low level, the power supply SAN is set to the high level, and the flip-flop F. F. Is deactivated.
  • the voltage of the sub word line SWLi is lowered from the word line precharge voltage VWLP to the word line standby voltage VWLS. Since the thyristor 36 is in a non-conductive state, the FB node is lowered to the voltage VL via the capacitor C1.
  • the SWL counter circuit 23 connected to the sub word line SWLi counts up in response to the sub word line SWLi falling from the word line precharge voltage VWLP to the word line standby voltage VWLS.
  • NC1 of the circuit 23 transitions from the High level to the Low level.
  • the N-type transistor M3 of the SWL counter circuit 23 is turned off, so that the data inversion control signal 14 is in a floating state.
  • the memory state of the memory cell 26 is inverted again to the cell low state, It returns to the normal logic data “0” at the timing T1.
  • the node NC1 transitions to low as at the timing T9 ′, the node NC1 has an even number of times that the sub word line SWLi has been activated, and the data in the memory cell 26 connected to the sub word line SWLi has been normally rotated. It holds information that it is stored in logic.
  • the voltage of the adjacent bit line 8n connected to the memory cell 26n is indicated by a broken line.
  • the memory cell 26n is different from the memory cell 26 and is in the state of the cell High. Therefore, the waveform of the adjacent bit line 8n at the timings T1 to T9 is the same as the waveform of the bit line 8 at the timings T1 'to T9'.
  • the waveform of the adjacent bit line 8n at the timings T1 'to T9' is the same as the waveform of the bit line 8 at the timings T1 to T9 '.
  • the voltages of the bit line 8 and the adjacent bit line 8n rise from VSS to VARY at timings T1 and T1 ′. Since the same voltage is used for 8n, the current consumption due to charging / discharging of the coupling capacitor (31 in FIG. 5) at this time is small. Further, as described above, since the voltages of the bit line 8 and the adjacent bit line 8n are not inverted at the timings T5 and T5 ′ for shifting to the PRE operation, charging / discharging of the coupling capacitor (31 in FIG. 5) is performed. Current consumption can be greatly reduced. Details of this effect will be described later in comparison with a comparative example.
  • the node NC1 of the SWL counter circuit 23 (FIG. 3) is at the low level at the timing T1, but the present disclosure is not particularly limited to the low level.
  • the present disclosure is applied to a volatile memory.
  • the volatile memory semiconductor memory device 21 stores information of external data input in the WRITE command in the access operation performed after power-on, and the data stored in the subsequent READ command. Is output externally. Therefore, data is inverted / non-inverted according to the logic of the node NC1 of the SWL counter circuit 23 (FIG. 3) when it is input by the WRITE command, and the data of the node NC1 when the data is output externally also by the subsequent READ command.
  • the data is inverted / non-inverted by logic, the number of times the sub word line is activated (even times or odd times) after the WRITE command and before the READ command is automatically set.
  • the input logic (inverted / non-inverted) of the external data matches the logic (inverted / non-inverted) of the external output data. Therefore, there is no need to initialize the node NC1 of the SWL counter circuit 23 (FIG. 3) to a low level immediately after the power is turned on, and the initial logic of the node NC1 is composed of the inverter circuits INV2 and INV3 when the power is turned on.
  • the logic may be determined by chance by the latch circuit.
  • FIG. 14 is a block diagram showing a configuration of a semiconductor memory device 121 of a comparative example.
  • the semiconductor memory device 121 of the comparative example is different from the semiconductor memory device 21 of the first embodiment in the following two points.
  • the semiconductor memory device 121 of the comparative example is configured not to include the data inversion control signal generation unit 32 of the semiconductor memory device 21 of the first embodiment.
  • the sense amplifier 59 of the semiconductor memory device 121 of the comparative example has a read switch (N-type transistors N22, N22A) and a write switch (N-type transistor N3) as switches that connect the bit line 8 and the node of the sense amplifier 59. , N3A).
  • the read switch N22 or N22A is turned on to connect the bit line 8 and the inverted sense amplifier bit line BLSAB (first node).
  • the write switch N3 or N3A is turned on to connect the bit line 8 and the non-inverted sense amplifier bit line BLSAT (second node).
  • Control signals TGR and TGRA are control signals for controlling on / off of the reed switches N22 and N22A.
  • Control signals TGW and TGWA are control signals for controlling on / off of the light switches N3 and N3A.
  • the comparative example corresponds to a memory cell in which the memory state is inverted when the voltage detected on the bit line 8 at the time of reading is written back without being inverted like a thyristor memory.
  • the nodes of the sense amplifier 59 connected to the line 8 are switched to mutually complementary nodes.
  • both the case where the memory cell 26 is the cell high and the case where the memory cell 26 is the cell low are displayed in the initial state.
  • a waveform with “H” indicates a voltage waveform related to the memory cell of the cell High in the initial state
  • a waveform with “L” relates to the memory cell of the cell Low in the initial state.
  • the voltage waveform is shown.
  • the respective memory cells are referred to as “H” cells and “L” cells.
  • FIG. 16 shows a refresh operation only for the ACT operation and the PRE operation. In the access operation, a READ command or a WRITE command is executed between the ACT command and the PRE command.
  • T1 to T4 of the “H” cell are the same as those of T1 ′ to T4 ′ of FIG.
  • the operations of T1 to T4 of the “L” cell are the same as those of T1 to T4 in FIG.
  • a READ command and / or a WRITE command are executed after timing T4.
  • the control signal TGW is activated at timing T 5, and the bit line 8 is connected to the non-inverted sense amplifier bit line BLSAT of the sense amplifier 59.
  • the voltage of the bit line 8 changes greatly. Specifically, in the case of the “H” cell, the voltage (BL “H”) of the bit line 8 is gradually decreased due to the thyristor 36 being in a conductive state during the ACT operation and flowing, but is not inverted at the timing T5.
  • the voltage VARY (BLSAT “H”) is supplied from the sense amplifier bit line BLSAT, and rises to the voltage VARY.
  • the voltage (BL “L”) of the bit line 8 is the voltage VARY because the thyristor 36 is in a non-conductive state during ACT operation and no current flows through the thyristor 36. Is maintained.
  • the voltage VSS (BLSAT “L”) is supplied from the non-inverting sense amplifier bit line BLSAT at the timing T5, the voltage VSS falls.
  • the voltage of the bit line 8 is inverted at the timing T5 immediately after the PRE command is started, as indicated by the broken line frame region R.
  • the voltages are reversed at timing T5, so that the current consumption due to charging / discharging of the coupling capacitance (31 in FIG. 15) between the bit line 8 and the adjacent bit line 8n is very high. There is a problem that gets bigger.
  • the operation waveforms at timings T6 to T9 in FIG. 16 are the same as the timings T6 to T9 in FIG. 6 (first embodiment) in the case of the “H” cell, except for the waveform of the FB node.
  • the operation is the same as that at the timings T6 ′ to T9 ′ in FIG. 6 (first embodiment). Therefore, the voltage at the FB node will be described below.
  • the thyristor 36 is conductive after the voltage of the bit line 8 rises to VARY at the timing T5.
  • the FB node is at the level of the voltage VON determined by the ratio between the ON resistance of the PNP transistor Q2 and the internal resistance of the PN junction diode between the FB node and VSS (cathode). Also at the timing T6, the FB node maintains the level of the voltage VON.
  • the thyristor 36 becomes non-conductive after the voltage of the bit line BL falls to VSS at the timing T5.
  • the voltage at the FB node once rises to VBI or higher through the capacitor C1 at timing T6, but the voltage is increased to the voltage VBI level by the PN junction between the voltage at the FB node and the cathode VSS. To drop.
  • the FB node maintains the voltage VON.
  • the voltage at the FB node decreases as the voltage of the sub word line SWLi decreases to the word line precharge voltage VWLP via the capacitor C1.
  • the sense amplifier 19 of the semiconductor memory device 21 according to the first embodiment is composed of only the read / write switches N2 and N2A that are shared during reading and writing. Thereby, in the first embodiment, the layout size of the sense amplifier 19 can be reduced.
  • the voltage of the bit line 8 is inverted when shifting to the PRE operation after the ACT operation, so that the current consumption due to charging / discharging of the bit line 8 increases (FIG. 16 dashed frame regions R).
  • current consumption due to charging / discharging of the coupling capacitor (31 in FIG. 15) becomes very large.
  • the voltage of the bit line 8 is not inverted when the PRE operation is performed after the ACT operation.
  • current consumption due to charging / discharging of the coupling capacitance (31 in FIG. 15) between the bit line 8 and the adjacent bit line 8n can be reduced.
  • the memory state of the memory cell 26 is inverted every time the PRE operation is performed.
  • the data amplifier 6 inverts / non-inverts the data in accordance with the data inversion control signal 14, thereby external output. It is possible to make the data to be forward rotated logic.
  • the data amplifier 6 inverts / non-inverts the data in accordance with the data inversion control signal 14, so that the flip-flop F. F.
  • the data to be written to can be set to a value corresponding to the data inversion control signal 14.
  • FIG. 7 is a circuit diagram of the memory cell 27 of the FBC memory according to the first modification of the first embodiment.
  • the memory element is the thyristor 36 in the first embodiment
  • the memory element of the first modification of the first embodiment is the bipolar transistor 37.
  • the basic write and read operation waveforms and circuit configuration need not be changed from the first embodiment except that the structure and operation principle of the memory element are slightly different. Only differences from the first embodiment will be described below.
  • the bit line (BL) 8 is connected to the anode of the thyristor, whereas the modification of the first embodiment. 1 is connected to the collector of the bipolar transistor 37.
  • the emitter is connected to the power supply node 102, and the base is connected to the counter electrode of the sub word line SWL of the capacitor C2.
  • the description of the first embodiment described above if the location described as the memory cell 26 is read as the memory cell 27 and the location indicated as the thyristor 36 for the memory element is read as the bipolar transistor 37, The description of the first embodiment can be used as it is for the first modification of the first embodiment.
  • FIG. 8 is a circuit diagram of a memory cell 28 of a general thyristor memory.
  • NMOS transistor NC whose substrate is an FB node.
  • the PNP transistor Q4 and the parasitic NPN transistor Q3 constitute a thyristor 38.
  • the emitter of the PNP transistor Q4 whose base is the N-type region of the node FN is connected to the bit line BL (anode)
  • the gate of the NMOS transistor NC is connected to the sub word line SWL
  • the source of the NMOS transistor NC is connected to the power supply node 102. Is done.
  • the FB node is floating, and a memory operation is performed by storing electric charge in the gate capacitance between the gate of the NMOS transistor NC and the FB node.
  • the description of the first embodiment described above if the location described as the memory cell 26 of the thyristor memory is replaced with the memory cell 28 of the thyristor memory, and the location described as the thyristor 36 is replaced with the thyristor 38, The description of the first embodiment can be used as it is for the modification 2 of the first embodiment.
  • FIG. 9 is a circuit diagram of a memory cell 29 of a general FBC memory.
  • NMOS transistor NC having a node FB as a substrate, and a bipolar transistor 39 is formed.
  • the drain of the NMOS transistor NC is connected to the bit line BL (drain)
  • the gate of the NMOS transistor NC is connected to the sub word line SWL
  • the source of the NMOS transistor NC is connected to the power supply node 102.
  • the FB node is floating, and a memory operation is performed by storing electric charge in the gate capacitance between the gate of the NMOS transistor NC and the FB node.
  • the description of the first embodiment can be used as it is for the modification 3 of the first embodiment.
  • the configuration of the second embodiment will be described with reference to FIGS.
  • the SWL counter circuit 23 of the first embodiment is replaced with a counter cell (16a in FIG. 11) substantially the same as the memory cell 26, and SWLi is reduced by the counter cell (16a in FIG. 11).
  • the number of activations is counted. That is, the counter 104 in FIG. 1 referred to in the outline description of the embodiment is configured by a counter cell (16a in FIG. 11) in the second embodiment.
  • FIG. 10 is a block diagram showing a configuration of the semiconductor memory device 22 according to the second embodiment.
  • the semiconductor memory device 22 of FIG. 10 replaces the data inversion control signal generator 32 of FIG. 2 with the data inversion control signal generator 42 (in FIG. 10). It is a configuration that is replaced with (within the alternate long and short dash line).
  • the other parts are the same as those in FIG. 2, and are given the same reference numerals and redundant description is omitted.
  • the data inversion control signal generation unit 42 includes the counter cell 16a (FIG. 11), and simultaneously with the read / write operation of the memory cell 26 connected to the sub word line SWLi, the counter cell 16a connected to the sub word line SWLi.
  • the data inversion control signal 14 is generated based on the data read from the counter cell 16a.
  • the counter cell 16a (FIG. 11) is connected to a counter bit line (CBL) 8a which is a bit line closest to the X decoder 4 side.
  • CBL counter bit line
  • a cell region including the counter bit line 8a among the plurality of cell regions 1 is referred to as a cell region 1a with a counter cell.
  • the counter bit line 8a is connected to a counter cell sense amplifier (49: CSA in FIG. 11) having the same configuration as that of the sense amplifier 19.
  • a region including the counter cell sense amplifier (CSA) 49 is referred to as a counter cell sense amplifier-equipped sense amplifier region (SA region with CSA) 2a.
  • the data inversion control signal generation unit 42 in FIG. 10 includes a buffer circuit 15 and a CYS generation circuit 5a. Details of these will be described later.
  • FIG. 11 shows two cell areas 1a with counter cells and an SA area 2a with CSA arranged between them.
  • a plurality of counter cells 16a are connected to a counter bit line (CBL) 8a corresponding to the plurality of sub-word lines 7.
  • CBL counter bit line
  • the configuration of the counter cell sense amplifier (CSA) 49 connected to the counter bit line (CBL) 8a is the same as the configuration of the sense amplifier 19 (SA0, SA1, etc. in FIG. 11) connected to the bit line 8. is there.
  • the counter cell 16a connected to the sub word line SWLi performs a read operation at the time of an ACT command and a PRE command, respectively, similarly to the memory cell 26 connected to the sub word line SWLi. And write operation.
  • each counter cell 16a counts up during the PRE command operation when the corresponding sub word line SWLi is activated, and holds the number of activations in the counter cell 16a.
  • the cell Low and the cell High are inverted and written when the number of times of activation is even and odd, and the data is retained. Note that the correspondence between the cell low and the cell high when the number of times of activation is even or odd may be either.
  • the flip-flop F.F of the counter cell sense amplifier (CSA) is activated. F.
  • the logic High and Low of the non-inverted sense amplifier bit line BLSAT and the inverted sense amplifier bit line BLSAB are influenced by chance, and are determined.
  • the even number and the odd number of times of activation with the determined logic may be associated with the cell low and cell high, and this correspondence is inherited as long as the power is turned on.
  • F. Inverted sense amplifier bit line BLSAB and non-inverted sense amplifier bit line BLSAT are connected to an inverted counter IO line (CIOB line) and a non-inverted counter IO line (CIOT line) through N-type transistors N6 and N7, respectively.
  • the N-type transistors N6 and N7 in the counter cell sense amplifier (CSA) 49 are ON / OFF controlled by a counter column selection signal (CYS) 9a output from the CYS generation circuit 5a.
  • CYS counter column selection signal
  • the inverted sense amplifier bit line BLSAB and the non-inverted sense amplifier bit line BLSAT of the counter cell sense amplifier (CSA) 49 are the CIOB line and the CIOT line, respectively. Connected.
  • the buffer circuit 15 includes a flip-flop F.F. of the counter cell sense amplifier (CSA) 49 read via the CIOB line and the CIOT line.
  • F. Is a circuit that outputs the data inversion control signal 14.
  • the buffer circuit 15 includes a P-type transistor P91 and an N-type transistor N91 that constitute a driver.
  • the output terminals of the NAND circuit 91 and the NOR circuit 91 are connected to the gates of the P-type transistor P91 and the N-type transistor N91, respectively.
  • the CIOBT line is connected to one end of the NAND circuit 91 and the NOR circuit 91.
  • the CIOB line is connected to the other ends of the NAND circuit 91 and the NOR circuit 91 through an inverter circuit INV91.
  • a P-type transistor P92 is connected between the power supply VARY and the CIOB line.
  • a P-type transistor P93 is connected between the power supply VARY and the CIOT line.
  • the gates of the P-type transistors P92 and P93 are both connected to the power supply SAP.
  • the P-type transistors P92 and P93 are turned on, the drains of the P-type transistors P92 and P93 are at the voltage VARY, and both the P-type transistor P91 and the N-type transistor N91 are turned off.
  • the data inversion control signal 14 is in a floating state.
  • the buffer circuit 15 sets the level of the non-inverted sense amplifier bit line BLSAT of the counter cell sense amplifier (CSA) 49 to the data inversion control signal 14 when the power supply SAP is at a high level and the counter column selection signal (CYS) is active. Output.
  • the operation of the second embodiment will be described with reference to FIG.
  • the part that is different from the operation of the semiconductor memory device 21 of the first embodiment is the operation of the data inversion control signal generation unit 42.
  • the other parts are the same as those in FIG. 6 showing the operation of the semiconductor memory device 21 of the first embodiment, and thus the description thereof is omitted.
  • the counter column selection signal CYS is generated by the CYS generation circuit 5a.
  • the period during which the data inversion control signal 14 is required is when the READ command and the WRITE command are executed. Therefore, as shown in FIG. 13, the CYS generation circuit 5a activates the counter column selection signal CYS (High level) at the timing T4 when the ACT operation ends.
  • the buffer circuit 15 as described above, the counter cell 16a connected to the activated sub word line SWLi.
  • the data inversion control signal 14 is generated from the data read out via the CIOB line and the CIOT line.
  • the data inversion control signal 14 is supplied to the data amplifier 6 when the READ command and the WRITE command are executed.
  • the data amplifier 6 by performing the inversion / non-inversion of the data in accordance with the data inversion control signal 14, it is possible to output the normally inverted logic data when the data is output to the outside.
  • the flip-flop F.F. F. The data to be written to can be made to correspond to the data inversion control signal 14.
  • the semiconductor memory device 22 according to the second embodiment As described above, according to the semiconductor memory device 22 according to the second embodiment, as in the first embodiment, after the ACT operation, when the transition to the PRE operation is performed, the charge / discharge of the bit line 8 and the bit Current consumption due to charging / discharging of the coupling capacitance (31 in FIG. 5) between the line 8 and the adjacent bit line 8n is reduced. As a result, the effect of reducing the current consumption can be obtained as in the first embodiment. Furthermore, in the semiconductor device according to the second embodiment, the layout area can be made smaller than that of the first embodiment by replacing the SWL counter circuit 23 of the first embodiment with the counter cell 16a. It is done.
  • the present disclosure is effective when applied to a semiconductor memory device using a memory element in which the potential of the storage state of a memory cell is inverted when shifting from a read operation to a write back operation, such as a thyristor memory or an FBC memory. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

The purpose of the present invention is to decrease the layout size of a sense amplifier and reduce the current consumption of bit lines in a semiconductor memory device that uses a memory cell that inverts the voltage supplied during writing and the voltage detected during reading. A semiconductor memory device comprises the memory cell that is connected between the bit lines and a power source node, and a word line that is connected to a control terminal of the memory cell. Moreover, the device comprises a sense amplifier having a retaining circuit that temporarily stores data read from the memory cell, and a read-write switch that is connected between the bit lines and a first node of the retaining circuit. Furthermore, the device comprises a counter that is provided to correspond to a word line, counts the number of times the word line is activated, and outputs a data inversion control signal indicating whether the count is odd or even, and an external output circuit that performs inversion/non-inversion of data on the basis of the data inversion control signal when data in the sense amplifier retaining circuit is externally input or output.

Description

半導体記憶装置Semiconductor memory device
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2013-079775号(2013年4月5日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、半導体記憶装置に関する。特に、本発明は、フローティングボディに電荷を蓄積するサイリスタメモリやFBC(Floating Body Cell)メモリに関する。
(Description of related applications)
The present invention is based on the priority claim of Japanese Patent Application: Japanese Patent Application No. 2013-079775 (filed on April 5, 2013), the entire contents of which are incorporated herein by reference. Shall.
The present invention relates to a semiconductor memory device. In particular, the present invention relates to a thyristor memory or an FBC (Floating Body Cell) memory that accumulates charges in a floating body.
 現在の大容量の半導体記憶装置としては、DRAMが最も一般的でありコンピュータシステム等に広く用いられている。しかし、DRAMは、後数年で微細化限界に達するとも言われている。従って、DRAMを置き換えることを目的として様々な大容量の半導体記憶装置の研究開発が行われている。その中でも、サイリスタやバイポーラトランジスタのフローティングボディに電荷を蓄積するフローティングボディメモリについて、以下の先行技術が公開されている。これらフローティングボディメモリもDRAMと同様に、一定時間ごとのリフレッシュ動作が必要な揮発性メモリに分類される。 As the current large-capacity semiconductor memory device, DRAM is the most common and widely used in computer systems and the like. However, DRAM is said to reach the limit of miniaturization in the next few years. Therefore, research and development of various large-capacity semiconductor memory devices have been conducted for the purpose of replacing DRAM. Among them, the following prior art is disclosed for a floating body memory that accumulates electric charges in a floating body of a thyristor or a bipolar transistor. Like the DRAM, these floating body memories are also classified as volatile memories that require a refresh operation at regular intervals.
 特許文献1は、MOSトランジスタを必要としない構造のサイリスタメモリを開示している。一般に、サイリスタメモリではMOSトランジスタのゲートとボディー節点FB間のゲート容量に電荷を蓄積することで情報を記憶させるため、MOSトランジスタのGIDL電流によりセルリーク電流が増えてしまうという問題があった。特許文献1に記載のサイリスタメモリによれば、MOSトランジスタを用いる必要がないため、セルリーク電流が少なく、且つ、微細化が可能である。 Patent Document 1 discloses a thyristor memory having a structure that does not require a MOS transistor. Generally, in the thyristor memory, since information is stored by accumulating charges in the gate capacitance between the gate of the MOS transistor and the body node FB, there is a problem that the cell leak current increases due to the GIDL current of the MOS transistor. According to the thyristor memory described in Patent Document 1, since it is not necessary to use a MOS transistor, cell leakage current is small and miniaturization is possible.
 さらに、特許文献1は、上記のサイリスタメモリによりメモリセルアレイを構成した半導体記憶装置を開示している。該半導体記憶装置において、各サイリスタメモリのFB(フローティングボディ)はキャパシタを介してワード線WLと接続され、各サイリスタメモリのアノードはビット線BLと接続される。特許文献1は、セルHighのセル書き込み、セルLowのセル書き込み、セル読み出しの各動作における、ワード線WLとビット線BLの制御方法を開示している(セル書き込みは特許文献1の図7、セル読み出しは特許文献1の図8を参照)。 Further, Patent Document 1 discloses a semiconductor memory device in which a memory cell array is constituted by the thyristor memory. In the semiconductor memory device, the FB (floating body) of each thyristor memory is connected to a word line WL via a capacitor, and the anode of each thyristor memory is connected to a bit line BL. Patent Document 1 discloses a method of controlling the word line WL and the bit line BL in each operation of cell writing of the cell High, cell writing of the cell Low, and cell reading (cell writing is illustrated in FIG. For cell readout, see FIG. 8 of Patent Document 1).
 特許文献2は、FBCメモリによりメモリセルアレイを構成した半導体記憶装置を開示している。該半導体記憶装置は、バーストモード時にカラムへのアクセス回数をカウントするバースト長カウンタを備え、該バースト長カウンタが予め設定されたバースト長に等しくなった場合に、ビット線BLと対応するセンスアンプSAのセンスノードとを電気的に接続するように制御している。これにより、バーストモードの書き込み時における消費電流の低減を図っている。 Patent Document 2 discloses a semiconductor memory device in which a memory cell array is configured by an FBC memory. The semiconductor memory device includes a burst length counter that counts the number of accesses to the column in the burst mode, and the sense amplifier SA corresponding to the bit line BL when the burst length counter becomes equal to a preset burst length. The sense node is controlled to be electrically connected. As a result, current consumption during writing in the burst mode is reduced.
特開2012-234940号公報JP 2012-234940 A 特開2008-52876号公報JP 2008-52876 A 特開2011-70727号公報JP 2011-70727 A
 以下の分析は、本発明の観点から与えられる。 The following analysis is given from the viewpoint of the present invention.
 尚、上記の特許文献1の開示事項は本書に引用をもって繰り込み記載されているものとする。 It should be noted that the disclosure of Patent Document 1 above is incorporated herein by reference.
 サイリスタメモリやFBCメモリでは、書き込み時にビット線に供給する電圧と、読み出し時にビット線で検出される電圧が反転するという性質がある。そこで、特許文献1のセンスアンプは、センスアンプ内の第1ノード(図15の反転センスアンプビット線BLSAB)とビット線を接続するリードスイッチ(図15のトランジスタN22、N22A)と、第2ノード(図15の非反転センスアンプビット線BLSAT)とビット線を接続するライトスイッチ(図15のトランジスタN3、N3A)の2種類のスイッチを設けている。そして、読み出し時にはリードスイッチを介して第1ノードでビット線の電圧を検出し、書き込み時にはライトスイッチを介して第2ノードからビット線に対して電圧を供給して書き込みを行うことで、ビット線の電圧が読み出し時と書き込み時で反転する問題に対応している。 A thyristor memory or FBC memory has a property that a voltage supplied to a bit line at the time of writing and a voltage detected by the bit line at the time of reading are inverted. Therefore, the sense amplifier of Patent Document 1 includes a first node (inverted sense amplifier bit line BLSAB in FIG. 15) in the sense amplifier and a read switch (transistors N22 and N22A in FIG. 15) that connects the bit line, and a second node. There are provided two types of switches: a non-inverted sense amplifier bit line BLSAT in FIG. 15 and a write switch (transistors N3 and N3A in FIG. 15) connecting the bit lines. Then, the voltage of the bit line is detected at the first node via the read switch at the time of reading, and writing is performed by supplying the voltage from the second node to the bit line via the write switch at the time of writing. This corresponds to the problem that the voltage of 1 is reversed between reading and writing.
 しかしながら、上記の構成では、各センスアンプにリードスイッチとライトスイッチを設ける必要があるため、レイアウトサイズが大きくなってしまう問題がある。 However, in the above configuration, there is a problem that the layout size increases because it is necessary to provide a read switch and a write switch for each sense amplifier.
 また、サイリスタメモリやFBCメモリからデータを読み出して書き戻しを行う場合、読み出し動作から書き戻し動作に移行する際に、ビット線の電圧の反転に伴ってビット線を充放電させる必要が生じる。このときに、消費電流が大きくなる。特に、ビット線には隣接ビット線との間にカップリング容量が存在し、ビット線と隣接ビット線とで異なるデータを扱っている場合には、該カップリング容量の充放電による消費電流が非常に大きくなってしまうという問題がある。 Also, when data is read from the thyristor memory or FBC memory and written back, it is necessary to charge and discharge the bit line as the voltage of the bit line is reversed when shifting from the read operation to the write back operation. At this time, current consumption increases. In particular, when a bit line has a coupling capacitance between adjacent bit lines and different data is handled between the bit line and the adjacent bit line, current consumption due to charging / discharging of the coupling capacity is extremely high. There is a problem of becoming larger.
 そこで、サイリスタメモリやFBCメモリのように読み出し時に検出される電圧と書き込み時に供給する電圧が反転するメモリセルを使用する半導体記憶装置において、センスアンプのレイアウトサイズを小さくし、ビット線の消費電流を削減することが望まれている。 Therefore, in a semiconductor memory device using a memory cell in which the voltage detected at the time of reading and the voltage supplied at the time of writing are inverted, such as a thyristor memory or an FBC memory, the layout size of the sense amplifier is reduced and the current consumption of the bit line is reduced. Reduction is desired.
 本発明の第1の視点による半導体記憶装置は、以下の構成要素を含む。即ち、該半導体記憶装置は、ビット線と電源ノードの間に接続され、読み出し時に検出された電圧を反転せずに書き戻しを行った場合に記憶データが反転するメモリセルと、前記メモリセルの制御端子と接続されるワード線と、を含む。また、該半導体記憶装置は、前記メモリセルからの読み出しデータを一時保存する保持回路と、該保持回路の第1ノードと前記ビット線の間に接続されたリードライトスイッチと、を有するセンスアンプを含む。また、該半導体記憶装置は、前記ワード線に対応して設けられ、前記ワード線が活性化された回数をカウントし、前記回数が偶数か奇数かを示すデータ反転制御信号を出力するカウンタを含む。さらに、該半導体記憶装置は、前記センスアンプの前記保持回路のデータを外部入力/外部出力する際に、前記データ反転制御信号に基づいてデータの反転/非反転を行う外部入出力回路を含む。 The semiconductor memory device according to the first aspect of the present invention includes the following components. That is, the semiconductor memory device is connected between a bit line and a power supply node, and a memory cell in which stored data is inverted when data is written back without inverting the voltage detected at the time of reading, and the memory cell And a word line connected to the control terminal. Further, the semiconductor memory device includes a sense amplifier having a holding circuit that temporarily stores read data from the memory cell, and a read / write switch connected between the first node of the holding circuit and the bit line. Including. The semiconductor memory device includes a counter provided corresponding to the word line, counting the number of times the word line is activated, and outputting a data inversion control signal indicating whether the number is even or odd. . Further, the semiconductor memory device includes an external input / output circuit that performs inversion / non-inversion of data based on the data inversion control signal when data of the holding circuit of the sense amplifier is input / output externally.
 本発明によれば、読み出し時に検出される電圧と書き込み時に供給する電圧が反転するメモリセルを使用する半導体記憶装置において、センスアンプのレイアウトサイズを小さくし、ビット線の消費電流を削減することに貢献しうる半導体記憶装置を提供することが可能になる。 According to the present invention, in the semiconductor memory device using the memory cell in which the voltage detected at the time of reading and the voltage supplied at the time of writing are inverted, the layout size of the sense amplifier is reduced and the current consumption of the bit line is reduced. It is possible to provide a semiconductor memory device that can contribute.
一実施形態に係る半導体記憶装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a semiconductor memory device according to one embodiment. 第1の実施形態に係る半導体記憶装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a semiconductor memory device according to a first embodiment. 第1の実施形態に係る半導体記憶装置のSWLカウンタ回路を示す回路図である。FIG. 3 is a circuit diagram showing a SWL counter circuit of the semiconductor memory device according to the first embodiment. 第1の実施形態に係る半導体記憶装置のメモリセルを示す回路図である。1 is a circuit diagram showing a memory cell of a semiconductor memory device according to a first embodiment. 第1の実施形態に係る半導体記憶装置のセンスアンプの回路図である。1 is a circuit diagram of a sense amplifier of a semiconductor memory device according to a first embodiment. 第1の実施形態に係る半導体記憶装置の動作を示す波形図である。FIG. 6 is a waveform diagram showing an operation of the semiconductor memory device according to the first embodiment. 第1の実施形態の変形例1に係る半導体記憶装置のメモリセルを示す回路図である。FIG. 6 is a circuit diagram showing a memory cell of a semiconductor memory device according to Modification 1 of the first embodiment. 第1の実施形態の変形例2に係る半導体記憶装置のメモリセルを示す回路図である。FIG. 6 is a circuit diagram showing a memory cell of a semiconductor memory device according to a second modification of the first embodiment. 第1の実施形態の変形例3に係る半導体記憶装置のメモリセルを示す回路図である。FIG. 10 is a circuit diagram showing a memory cell of a semiconductor memory device according to Modification 3 of the first embodiment. 第2の実施形態に係る半導体記憶装置の構成を示すブロック図である。It is a block diagram which shows the structure of the semiconductor memory device which concerns on 2nd Embodiment. 第2の実施形態に係る半導体記憶装置のカウンタセル及びカウンタセル用センスアンプの構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a counter cell and a counter amplifier for a counter cell of a semiconductor memory device according to a second embodiment. 第2の実施形態に係る半導体記憶装置のバッファ回路の回路図である。FIG. 6 is a circuit diagram of a buffer circuit of a semiconductor memory device according to a second embodiment. 第2の実施形態に係る半導体記憶装置の動作を示す波形図である。FIG. 6 is a waveform diagram showing an operation of the semiconductor memory device according to the second embodiment. 比較例の半導体記憶装置の構成を示すブロック図である。It is a block diagram which shows the structure of the semiconductor memory device of a comparative example. 比較例の半導体記憶装置のセンスアンプの回路図である。It is a circuit diagram of the sense amplifier of the semiconductor memory device of a comparative example. 比較例の半導体記憶装置の動作を示す波形図である。It is a wave form diagram which shows operation | movement of the semiconductor memory device of a comparative example.
 まず、本発明の実施形態の概要について説明する。なお、実施形態の概要の説明において付記した図面参照符号は専ら理解を助けるための例示であり、図示の態様に限定することを意図するものではない。 First, an outline of an embodiment of the present invention will be described. Note that the reference numerals of the drawings added in the description of the outline of the embodiment are merely examples for helping understanding, and are not intended to be limited to the illustrated modes.
 一実施形態における半導体記憶装置100は、図1に示すように、以下の構成要素を含む。即ち、該半導体記憶装置100は、ビット線(BL)120と電源ノード102の間に接続され、読み出し時に検出された電圧を反転せずに書き戻しを行った場合に記憶データが反転するメモリセル101と、メモリセルの制御端子103と接続されるワード線(WL)122と、を含む。また、該半導体記憶装置100は、メモリセル101からの読み出しデータを一時保存する保持回路106と、該保持回路106の第1ノード107とビット線(BL)120の間に接続されたリードライトスイッチ105と、を有するセンスアンプ109を含む。また、該半導体記憶装置100は、ワード線(WL)122に対応して設けられ、ワード線(WL)122が活性化された回数をカウントし、回数が偶数か奇数かを示すデータ反転制御信号14を出力するカウンタ104を含む。さらに、該半導体記憶装置100は、センスアンプの保持回路106のデータを外部入力/外部出力する際に、データ反転制御信号14に基づいてデータの反転/非反転を行う外部入出力回路108を含む。 As shown in FIG. 1, the semiconductor memory device 100 in one embodiment includes the following components. That is, the semiconductor memory device 100 is connected between the bit line (BL) 120 and the power supply node 102, and the memory cell in which the stored data is inverted when the voltage detected at the time of reading is written back without being inverted. 101 and a word line (WL) 122 connected to the control terminal 103 of the memory cell. The semiconductor memory device 100 includes a holding circuit 106 that temporarily stores read data from the memory cell 101, and a read / write switch connected between the first node 107 of the holding circuit 106 and the bit line (BL) 120. 105, and a sense amplifier 109. The semiconductor memory device 100 is provided corresponding to the word line (WL) 122, counts the number of times the word line (WL) 122 is activated, and indicates a data inversion control signal indicating whether the number is even or odd. 14 is included. The semiconductor memory device 100 further includes an external input / output circuit 108 that inverts / non-inverts data based on the data inversion control signal 14 when the data of the sense amplifier holding circuit 106 is externally input / output. .
 上記の構成では、読み出し時と書き戻し時で、ビット線(BL)120と接続するセンスアンプ内のノードを変更しない(どちらの場合も第1ノードと接続している)。そのため、活性化したワード線(WL)122上のメモリセル101はワード線(WL)122が活性化する度にセルHigh/セルLowが反転する。しかしながら、データ反転制御信号14に応じて、外部出力する時のデータの論理を反転/非反転させるようにすることで、外部出力するデータの論理を正しい状態とすることができる。また、データを外部入力する場合も、データ反転制御信号14に応じてデータの論理を反転/非反転させることで、データ反転制御信号14に対応したデータを保持回路106に書き込むことができる。 In the above configuration, the node in the sense amplifier connected to the bit line (BL) 120 is not changed during reading and writing back (in either case, the node is connected to the first node). Therefore, the memory cell 101 on the activated word line (WL) 122 inverts the cell High / cell Low every time the word line (WL) 122 is activated. However, in accordance with the data inversion control signal 14, the logic of the data when externally output is inverted / non-inverted, so that the logic of the data output externally can be in a correct state. In addition, when data is externally input, data corresponding to the data inversion control signal 14 can be written into the holding circuit 106 by inverting / non-inverting the logic of the data in accordance with the data inversion control signal 14.
 このように、読み出し時と書き戻し時で、ビット線(BL)120と接続するセンスアンプ内のノードを変更しなくても、外部データの論理の対応を取ることができる。従って、ビット線(BL)120とセンスアンプ内のノードを接続するスイッチを1つのリードライトスイッチ105で構成することが可能になり、センスアンプのレイアウトサイズを小さくすることができる。 As described above, the logic of external data can be handled without changing the node in the sense amplifier connected to the bit line (BL) 120 during reading and writing back. Therefore, the switch connecting the bit line (BL) 120 and the node in the sense amplifier can be configured by one read / write switch 105, and the layout size of the sense amplifier can be reduced.
 また、読み出し時と書き戻し時でビット線(BL)120の電圧を反転させる必要がなくなるので、読み出し動作から書き戻し動作に移行する際に、ビット線(BL)120の充放電、及びビット線(BL)120と隣接ビット線(隣接BL)131間のカップリング容量(図1の111)の充放電が削減される。特に、ビット線120と隣接ビット線131とで異なるデータを扱っている場合に、カップリング容量(図1の111)の充放電の削減効果が大きい。これにより消費電流が削減される。 In addition, since it is not necessary to invert the voltage of the bit line (BL) 120 at the time of reading and writing back, the charge / discharge of the bit line (BL) 120 and the bit line are changed when shifting from the reading operation to the writing back operation. Charging / discharging of the coupling capacitance (111 in FIG. 1) between (BL) 120 and adjacent bit line (adjacent BL) 131 is reduced. In particular, when different data is handled in the bit line 120 and the adjacent bit line 131, the effect of reducing the charge / discharge of the coupling capacitance (111 in FIG. 1) is great. This reduces current consumption.
 上記半導体記憶装置100において、読み出し時に、リードライトスイッチ105を導通して、ビット線(BL)120を介してセンスアンプ109の第1ノード107にメモリセル101のデータを読み出して、センスアンプ109の保持回路106に一時保存し、書き戻し時に、リードライトスイッチ105を導通して、センスアンプ109の第1ノード107の電圧を反転せずにビット線(BL)120に供給して、メモリセル101に書き戻しを行うようにしてもよい。 In the semiconductor memory device 100, at the time of reading, the read / write switch 105 is turned on to read data in the memory cell 101 to the first node 107 of the sense amplifier 109 via the bit line (BL) 120. The data is temporarily stored in the holding circuit 106, and at the time of writing back, the read / write switch 105 is turned on, and the voltage of the first node 107 of the sense amplifier 109 is supplied to the bit line (BL) 120 without being inverted. You may make it write back to.
 図2に示す半導体記憶装置21のように、上記のカウンタ104を、ワード線WLの活性化を受けてカウントアップするカウンタ回路(図3の23)で構成してもよい。 As in the semiconductor memory device 21 shown in FIG. 2, the counter 104 may be constituted by a counter circuit (23 in FIG. 3) that counts up upon activation of the word line WL.
 一方、図10、図11に示す半導体記憶装置22のように、上記のカウンタ104を、メモリセル26と実質的に同じであるカウンタセル16aで構成してもよい。ここで、ワード線(図10、図11では、サブワード線7)に対応するカウンタセル16aは、ワード線(図10、図11では、サブワード線7)に接続されたメモリセル26と同時に読み出し/書き込み動作が行われ、カウンタセル16aの読み出しデータに基づいてデータ反転制御信号14を生成するようにしてもよい。 On the other hand, like the semiconductor memory device 22 shown in FIGS. 10 and 11, the counter 104 may be composed of a counter cell 16 a that is substantially the same as the memory cell 26. Here, the counter cell 16a corresponding to the word line (sub word line 7 in FIGS. 10 and 11) reads / writes simultaneously with the memory cell 26 connected to the word line (sub word line 7 in FIGS. 10 and 11). A write operation may be performed, and the data inversion control signal 14 may be generated based on the read data of the counter cell 16a.
 上記半導体記憶装置22において、図11に示すように、カウンタセル16aに対応し、センスアンプ(図5の19:SA)と実質的に同じであるカウンタセル用センスアンプ(図11の49:CSA)をさらに備えるようにしてもよい。 In the semiconductor memory device 22, as shown in FIG. 11, the counter amplifier for the counter cell (49: CSA in FIG. 11) corresponds to the counter cell 16a and is substantially the same as the sense amplifier (19: SA in FIG. 5). ) May be further provided.
 上記半導体記憶装置22において、図11に示すように、カウンタセル用センスアンプCSAの保持回路の第1ノード(CSA内のBLSABに相当する)及び第1ノードと相補の第2ノード(CSA内のBLSATに相当する)と電気的に接続されるカウンタIO線対(図11のCIOB線、CIOT線に相当)の信号に基づいて、データ反転制御信号14を生成するバッファ回路15をさらに備えるようにしてもよい。 In the semiconductor memory device 22, as shown in FIG. 11, the first node (corresponding to BLSAB in the CSA) of the holding circuit of the counter cell sense amplifier CSA and the second node complementary to the first node (in the CSA) A buffer circuit 15 for generating a data inversion control signal 14 based on a signal of a counter IO line pair (corresponding to the CIOB line and the CIOT line in FIG. 11) electrically connected to the BLSAT). May be.
 上記した半導体記憶装置(図2の21、図10の22等)において、メモリセル26は、図4、図7等に示すように、フローティングボディFBに電荷を蓄積することによりデータを記憶するメモリ素子(図4のサイリスタ36、図7のバイポーラトランジスタ37等)を含み、フローティングボディFBはキャパシタC1、C2等を介してメモリセルの制御端子103と接続されるようにしてもよい。 In the semiconductor memory device (21 in FIG. 2, 22 in FIG. 10, etc.), the memory cell 26 is a memory that stores data by accumulating charges in the floating body FB, as shown in FIGS. The floating body FB may be connected to the control terminal 103 of the memory cell via capacitors C1, C2, etc., including elements (thyristor 36 in FIG. 4, bipolar transistor 37 in FIG. 7, etc.).
 上記半導体記憶装置(図2の21、図10の22等)において、上記のメモリセル26は図4に示すサイリスタメモリのメモリセル26であってもよい。その場合、上記のメモリ素子はサイリスタ36であり、サイリスタのアノード221がビット線BLと接続され、サイリスタのカソード222が電源ノード102と接続され、サイリスタのゲート223がフローティングボディFBを構成するようにしてもよい。 In the semiconductor memory device (21 in FIG. 2, 22 in FIG. 10, etc.), the memory cell 26 may be the memory cell 26 of the thyristor memory shown in FIG. In this case, the memory element is the thyristor 36, the anode 221 of the thyristor is connected to the bit line BL, the cathode 222 of the thyristor is connected to the power supply node 102, and the gate 223 of the thyristor constitutes the floating body FB. May be.
 上記半導体記憶装置(図2の21、図10の22等)において、上記のメモリセルは図7に示すFBCメモリのメモリセル27であってもよい。その場合、上記のメモリ素子はバイポーラトランジスタ37であり、バイポーラトランジスタ37のコレクタがビット線BLと接続され、バイポーラトランジスタ37のエミッタが電源ノード102と接続され、バイポーラトランジスタ37のベースがフローティングボディFBを構成するようにしてもよい。 In the semiconductor memory device (21 in FIG. 2, 22 in FIG. 10, etc.), the memory cell may be the memory cell 27 of the FBC memory shown in FIG. In that case, the memory element is the bipolar transistor 37, the collector of the bipolar transistor 37 is connected to the bit line BL, the emitter of the bipolar transistor 37 is connected to the power supply node 102, and the base of the bipolar transistor 37 is connected to the floating body FB. You may make it comprise.
 上記半導体記憶装置(図2の21、図10の22等)は、ワード線WLの電圧を制御するワード線ドライバ(図2のサブワード線ドライバ3)をさらに備え、図6に示すように、ワード線WLを活性化し読み出し動作を行う場合に、ワード線ドライバ3がワード線WLの電圧をワード線スタンバイ電圧VWSLに保持し、センスアンプ(図5の19等)がビット線BLを第1の電圧(図6のVARY)にプリチャージする第1の制御(図6のT1)と、第1の制御の後、ワード線ドライバ3がワード線WLをワード線リード電圧VWLRに設定し、その後センスアンプ19がビット線BLのプリチャージを解除し、ビット線BLからセンスアンプ19にメモリセル(図5の26等)のデータを読み出す第2の制御(図6のT2~T4)と、を行うようにしてもよい。 The semiconductor memory device (21 in FIG. 2, 22 in FIG. 10 and the like) further includes a word line driver (sub word line driver 3 in FIG. 2) for controlling the voltage of the word line WL, and as shown in FIG. When the read operation is performed by activating the line WL, the word line driver 3 holds the voltage of the word line WL at the word line standby voltage VWSL, and the sense amplifier (19 in FIG. 5) sets the bit line BL to the first voltage. After the first control (T1 in FIG. 6) to precharge (VARY in FIG. 6) and the first control, the word line driver 3 sets the word line WL to the word line read voltage VWLR, and then the sense amplifier A second control (T2 to T4 in FIG. 6) for canceling the precharge of the bit line BL and reading out the data of the memory cell (26 in FIG. 5) from the bit line BL to the sense amplifier 19; It may be performed.
 上記半導体記憶装置(図2の21、図10の22等)において、図6に示すように、センスアンプ(図5の19等)に読み出したデータをメモリセル(図5の26等)に書き戻す動作を行う場合に、センスアンプ19が読み出したデータの電圧を反転せずにビット線BLに設定する第3の制御(図6のT5)と、第3の制御の後、ワード線ドライバ(図2のサブワード線ドライバ3)がワード線WLをワード線リード電圧VWLRより高い電圧であるワード線ライト電圧VWLWに設定する第4の制御(図6のT6)と、第4の制御の後、ワード線ドライバ3がワード線WLをワード線リード電圧VWLRとワード線スタンバイ電圧VWLSとの中間電圧であるワード線プリチャージ電圧VWLPに設定する第5の制御(図6のT7)と、第5の制御の後、センスアンプ19がビット線BLを電源ノード(図4の102)に供給される第1の電源電圧VSSに設定する第6の制御(図6のT8)と、第6の制御の後、ワード線ドライバ3がワード線WLの電圧をワード線スタンバイ電圧VWLSに戻す第7の制御(図6のT9)と、を行うようにしてもよい。 In the semiconductor memory device (21 in FIG. 2, 22 in FIG. 10, etc.), as shown in FIG. 6, the data read to the sense amplifier (19 in FIG. 5) is written into the memory cells (26 in FIG. 5). In the case of performing the returning operation, the third control (T5 in FIG. 6) for setting the data voltage read by the sense amplifier 19 to the bit line BL without inversion, and after the third control, the word line driver ( The sub-word line driver 3) in FIG. 2 sets the word line WL to the word line write voltage VWLW that is higher than the word line read voltage VWLR (T6 in FIG. 6), and after the fourth control, A fifth control (T7 in FIG. 6) in which the word line driver 3 sets the word line WL to the word line precharge voltage VWLP which is an intermediate voltage between the word line read voltage VWLR and the word line standby voltage VWLS; After the control 5, the sixth control (T 8 in FIG. 6) in which the sense amplifier 19 sets the bit line BL to the first power supply voltage VSS supplied to the power supply node (102 in FIG. 4), After the control, the word line driver 3 may perform a seventh control (T9 in FIG. 6) for returning the voltage of the word line WL to the word line standby voltage VWLS.
 上記半導体記憶装置(図2の21、図10の22等)において、図2または図7に示すように、第1の方向に配線された複数のワード線WLと、第1の方向と交差する第2の方向に配線された複数のビット線BLと、複数のワード線WLと複数のビット線BLの交点にそれぞれ対応して設けられた複数のメモリセル(セル領域1に含まれるメモリセル26)と、複数のビット線BLに対応して、それぞれ設けられた複数のセンスアンプ(センスアンプ領域2に含まれるセンスアンプ19)と、複数のワード線WLに対応して、それぞれ設けられた複数のカウンタ(図2のSWLカウンタ領域13に含まれるSWLカウンタ回路23、又は図11のカウンタセル16a等)と、を備えるようにしてもよい。 In the semiconductor memory device (21 in FIG. 2, 22 in FIG. 10, etc.), as shown in FIG. 2 or FIG. 7, a plurality of word lines WL wired in the first direction intersect with the first direction. A plurality of bit lines BL wired in the second direction and a plurality of memory cells provided corresponding to the intersections of the plurality of word lines WL and the plurality of bit lines BL (memory cells 26 included in the cell region 1) ), A plurality of sense amplifiers (sense amplifier 19 included in the sense amplifier region 2) respectively provided corresponding to the plurality of bit lines BL, and a plurality provided respectively corresponding to the plurality of word lines WL. Counter (the SWL counter circuit 23 included in the SWL counter area 13 of FIG. 2 or the counter cell 16a of FIG. 11).
 上記半導体記憶装置(図2の21、図10の22等)において、複数のワード線WLは、メインワード線とサブワード線SWLからなる階層構造を有し、複数のカウンタ(図2のSWLカウンタ領域に含まれるSWLカウンタ回路23、図11のカウンタセル16a等)は、複数のサブワード線SWLに対応してそれぞれ設けるようにしてもよい。 In the semiconductor memory device (21 in FIG. 2, 22 in FIG. 10, etc.), the plurality of word lines WL have a hierarchical structure composed of main word lines and sub word lines SWL, and a plurality of counters (SWL counter area in FIG. 2). SWL counter circuit 23 and counter cell 16a in FIG. 11) may be provided corresponding to a plurality of sub word lines SWL.
 以下、本願開示の各実施形態について、図面を参照して詳しく説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
[第1の実施形態]
(第1の実施形態の構成)
 第1の実施形態の構成について、図2~図5を参照しながら詳細に説明する。図2は第1の実施形態に係る半導体記憶装置21の構成を示すブロック図であり、メモリセルアレイとその周辺部の構成を中心に示したものである。図2に示すように、半導体記憶装置21のメモリセルアレイは複数のセル領域1に分割されて配置される。ワード線は、メインワード線(不図示)とサブワード線7の階層構造により構成され、各セル領域1における複数のメモリセル26は、複数のサブワード線7と複数のビット線8の交点位置に配置される。
[First Embodiment]
(Configuration of the first embodiment)
The configuration of the first embodiment will be described in detail with reference to FIGS. FIG. 2 is a block diagram showing the configuration of the semiconductor memory device 21 according to the first embodiment, and mainly shows the configuration of the memory cell array and its peripheral portion. As shown in FIG. 2, the memory cell array of the semiconductor memory device 21 is divided into a plurality of cell regions 1 and arranged. The word lines are configured by a hierarchical structure of main word lines (not shown) and sub word lines 7, and a plurality of memory cells 26 in each cell region 1 are arranged at intersections of the plurality of sub word lines 7 and the plurality of bit lines 8. Is done.
 図2に示すように、各セル領域1の複数のサブワード線7は、各セル領域1の両側に隣接した2つサブワード線ドライバ3に、偶数番目と奇数番目に振り分けられて接続される。 As shown in FIG. 2, the plurality of sub word lines 7 in each cell region 1 are connected to two sub word line drivers 3 adjacent to both sides of each cell region 1 so as to be distributed evenly and oddly.
 また、各セル領域1の複数のビット線8は、各セル領域1の両側に隣接した2つのセンスアンプ領域2のセンスアンプ19(図5)に偶数番目と奇数番目に振り分けられて接続される。センスアンプ19(図5)は、読み出し時にはビット線8の電圧を検出し、書き込み時にはビット線8に対して書き込みデータに応じた電圧を供給する。 In addition, the plurality of bit lines 8 in each cell region 1 are distributed and connected to the sense amplifiers 19 (FIG. 5) in two sense amplifier regions 2 adjacent to both sides of each cell region 1, evenly and oddly. . The sense amplifier 19 (FIG. 5) detects the voltage of the bit line 8 at the time of reading, and supplies a voltage corresponding to the write data to the bit line 8 at the time of writing.
 また、アドレス入力回路(不図示)に入力されたアドレスは、カラムアドレスとロウアドレスに分解され、それぞれYデコーダ5とXデコーダ4に供給される。そして、Xデコーダ4により選択されたサブワード線7が活性化される。また、Yデコーダ5により選択されたカラム選択信号(YS)9に対応するセンスアンプ19(図5)が選択される。 The address input to an address input circuit (not shown) is decomposed into a column address and a row address and supplied to the Y decoder 5 and the X decoder 4 respectively. Then, the sub word line 7 selected by the X decoder 4 is activated. Further, the sense amplifier 19 (FIG. 5) corresponding to the column selection signal (YS) 9 selected by the Y decoder 5 is selected.
 また、図2中の上段のセル領域1には、センスアンプ領域2とデータアンプ6との接続を示している(その他のセンスアンプ領域2についても図示していないが同様である)。図2に示すように、センスアンプ領域2内の各センスアンプ19は、反転IO線IOB、及び非反転IO線IOT(10a、10b)を介してデータアンプ6と接続される。例えば、読み出し時には、データアンプ6は、各センスアンプ19で検出した信号を保持したフリップフロップ(図5のF.F.)のデータを反転IO線IOB、及び非反転IO線IOT(10a、10b)を介して読み出し、読み出したデータを増幅する。データアンプ6は、増幅したデータをデータ入出力回路11に出力する。データ入出力回路11は信号をさらに増幅し、データ入出力端子12から外部データとして出力する。尚、図2のデータアンプ6及びデータ入出力回路11は、実施形態の概要説明で参照した図1の外部入出力回路108に相当する。 Further, in the upper cell region 1 in FIG. 2, the connection between the sense amplifier region 2 and the data amplifier 6 is shown (the other sense amplifier regions 2 are not shown), but the same. As shown in FIG. 2, each sense amplifier 19 in the sense amplifier region 2 is connected to the data amplifier 6 via an inverted IO line IOB and non-inverted IO lines IOT (10a, 10b). For example, at the time of reading, the data amplifier 6 uses the inverted IO line IOB and the non-inverted IO line IOT (10a, 10b) for the data of the flip-flop (FF in FIG. 5) holding the signal detected by each sense amplifier 19. ) And amplifies the read data. The data amplifier 6 outputs the amplified data to the data input / output circuit 11. The data input / output circuit 11 further amplifies the signal and outputs it from the data input / output terminal 12 as external data. The data amplifier 6 and the data input / output circuit 11 in FIG. 2 correspond to the external input / output circuit 108 in FIG. 1 referred to in the outline description of the embodiment.
 書き込み時には、データ入出力端子12から外部データが入力されると、データ入出力回路11及びデータアンプ6を介して、書き込みアドレスに対応するセンスアンプ19のフリップフロップ(図5のF.F.)にデータが書き込まれる。 At the time of writing, when external data is input from the data input / output terminal 12, the flip-flop (FF in FIG. 5) of the sense amplifier 19 corresponding to the write address is passed through the data input / output circuit 11 and the data amplifier 6. Data is written to
 次に、図2のデータ反転制御信号生成部32(図2の一点鎖線枠内)について説明する。データ反転制御信号生成部32は、Xデコーダ4と同方向に各サブワード線7に対応して設けられたSWLカウンタ領域13と、各SWLカウンタ領域13にサブワード線7を供給するサブワード線ドライバ3と、を含んで構成される。 Next, the data inversion control signal generation unit 32 (inside the one-dot chain line in FIG. 2) of FIG. 2 will be described. The data inversion control signal generation unit 32 includes a SWL counter area 13 provided corresponding to each sub word line 7 in the same direction as the X decoder 4, and a sub word line driver 3 that supplies the sub word line 7 to each SWL counter area 13. , Including.
 各SWLカウンタ領域13は、それぞれのサブワード線7と接続されるSWLカウンタ回路23(図3)を含んでいる。SWLカウンタ回路23の詳細は後述する。 Each SWL counter area 13 includes a SWL counter circuit 23 (FIG. 3) connected to each sub word line 7. Details of the SWL counter circuit 23 will be described later.
 データ反転制御信号生成部32は、Xデコーダ4で選択され活性化したサブワード線7に接続されているメモリセル26のデータに対して外部入力/外部出力を行う際に、データの反転/非反転を制御するデータ反転制御信号14を生成する機能を果たしている。尚、データ反転制御信号生成部32は、実施形態の概要説明で参照した図1のデータ反転制御信号生成部112に相当する。 The data inversion control signal generation unit 32 inverts / non-inverts data when external input / external output is performed on data of the memory cell 26 connected to the sub word line 7 selected and activated by the X decoder 4. The function of generating the data inversion control signal 14 for controlling the above is fulfilled. The data inversion control signal generation unit 32 corresponds to the data inversion control signal generation unit 112 in FIG. 1 referred to in the outline description of the embodiment.
 次に、図3を参照しながら、SWLカウンタ領域13内に配置されるSWLカウンタ回路23について説明する。図3は、半導体記憶装置21のSWLカウンタ回路23を示す回路図である。SWLカウンタ領域13内において、各々のサブワード線7に対して、SWLカウンタ回路23が設けられる。図3では、サブワード線SWL_i-1、SWLi、SWL_i+1と接続されたSWLカウンタ回路23が示され、そのうち、サブワード線SWLiに接続されたSWLカウンタ23回路の詳細が示されている。 Next, the SWL counter circuit 23 arranged in the SWL counter area 13 will be described with reference to FIG. FIG. 3 is a circuit diagram showing the SWL counter circuit 23 of the semiconductor memory device 21. In the SWL counter area 13, a SWL counter circuit 23 is provided for each sub word line 7. FIG. 3 shows the SWL counter circuit 23 connected to the sub word lines SWL_i−1, SWLi, and SWL_i + 1. Of these, details of the SWL counter circuit 23 connected to the sub word line SWLi are shown.
 図3に示すように、SWLカウンタ回路23は、インバータ回路INV2、INV3で構成されるラッチ回路と、インバータ回路INV4、INV5で構成されるラッチ回路と、N型トランジスタM1、M2と、インバータINV1とが、1つのフリップフロップ回路を構成している。該フリップフロップ回路において、N型トランジスタM1、M2のゲートには、それぞれサブワード線SWLiの電圧、SWLiと相補の電圧が供給され、NMOSトランジスタM1、M2のオン/オフを排他に制御する。そして、該フリップフロップ回路の出力(ノードNC3)を、インバータINV6を介して該フリップフロップ回路の入力(N型トランジスタM1のソースドレインの一方)にフィードバックすることにより、1ビットカウンタ回路を構成している。 As shown in FIG. 3, the SWL counter circuit 23 includes a latch circuit composed of inverter circuits INV2 and INV3, a latch circuit composed of inverter circuits INV4 and INV5, N-type transistors M1 and M2, and an inverter INV1. Constitutes one flip-flop circuit. In the flip-flop circuit, the voltage of the sub word line SWLi and the voltage complementary to SWLi are supplied to the gates of the N-type transistors M1 and M2, respectively, and the on / off of the NMOS transistors M1 and M2 is controlled exclusively. Then, the output of the flip-flop circuit (node NC3) is fed back to the input of the flip-flop circuit (one of the source and drain of the N-type transistor M1) via the inverter INV6 to constitute a 1-bit counter circuit. Yes.
 該1ビットカウンタ回路は、SWLiの立ち下がりエッジのタイミング毎に、カウントアップし、該1ビットカウンタ回路の出力のノードNC1の0と1を切り替えるように動作する。言い換えると、該1ビットカウンタ回路は、サブワード線SWLiの立ち下がりエッジが検出された回数が偶数の場合にはノードNC1を0にし、サブワード線SWLiの立ち下がりエッジが検出された回数が奇数の場合にはノードNC1を1にする。 The 1-bit counter circuit counts up at each falling edge timing of SWLi and operates to switch between 0 and 1 of the node NC1 of the output of the 1-bit counter circuit. In other words, the 1-bit counter circuit sets the node NC1 to 0 when the number of times that the falling edge of the sub word line SWLi is detected is an even number, and sets the number of times that the number of times that the falling edge of the sub word line SWLi is detected to be an odd number. Node NC1 is set to 1.
 また、N型トランジスタM3は、活性化したサブワード線7に対応するSWLカウンタ回路23を選択するスイッチとして機能する。例えば、SWLiが活性化されHighレベルの場合には、SWLiに接続されたSWLカウンタ回路23のN型トランジスタM3がオンし、ノードNC1の電圧がデータ反転制御信号14として出力される。一方、どのサブワード線7も活性化されていない場合には、データ反転制御信号14はフローティング状態となる。 The N-type transistor M3 functions as a switch for selecting the SWL counter circuit 23 corresponding to the activated sub word line 7. For example, when SWLi is activated and is at a high level, the N-type transistor M3 of the SWL counter circuit 23 connected to SWLi is turned on, and the voltage of the node NC1 is output as the data inversion control signal 14. On the other hand, when none of the sub word lines 7 is activated, the data inversion control signal 14 is in a floating state.
 次に、図4を参照しながら、半導体記憶装置21で使用するメモリセルについて説明する。半導体記憶装置21では、メモリセル26として、特許文献1に記載されたサイリスタメモリのメモリセル26を使用する。図4(A)は、特許文献1の図4に相当している。また、図4(B)は、サイリスタ36の回路図記号を示している。 Next, a memory cell used in the semiconductor memory device 21 will be described with reference to FIG. In the semiconductor memory device 21, the memory cell 26 of the thyristor memory described in Patent Document 1 is used as the memory cell 26. FIG. 4A corresponds to FIG. FIG. 4B shows a circuit diagram symbol of the thyristor 36.
 図4(A)のサイリスタメモリのメモリセル26において、サブワード線接続端子103a、ビット線接続端子110a、電源ノード102が、それぞれサブワード線7、ビット線8、グラウンドVSSと接続される。また、フローティングボディFB(サイリスタのゲート223)とサブワード線接続端子103aの間にはキャパシタC1が設けられている。また、サイリスタのアノード221、サイリスタのカソード222は、それぞれビット線接続端子110a、電源ノード102と接続される。 In the memory cell 26 of the thyristor memory of FIG. 4A, the sub word line connection terminal 103a, the bit line connection terminal 110a, and the power supply node 102 are connected to the sub word line 7, the bit line 8, and the ground VSS, respectively. A capacitor C1 is provided between the floating body FB (thyristor gate 223) and the sub word line connection terminal 103a. The anode 221 of the thyristor and the cathode 222 of the thyristor are connected to the bit line connection terminal 110a and the power supply node 102, respectively.
 また、サイリスタ36は、エミッタがカソード222に、ベースがフローティングボディFBに、コレクタがノードFNに接続されたNPNトランジスタQ1と、エミッタがアノード221に、ベースがノードFNに、コレクタがフローティングボディFBに接続されたPNPトランジスタQ2を備えている。図4(A)に示すように、メモリセル26は、MOSトランジスタを含まない構造のサイリスタメモリのメモリセルである。 The thyristor 36 has an emitter connected to the cathode 222, a base connected to the floating body FB, an NPN transistor Q1 connected to the node FN, an emitter connected to the anode 221, a base connected to the node FN, and a collector connected to the floating body FB. A connected PNP transistor Q2 is provided. As shown in FIG. 4A, the memory cell 26 is a memory cell of a thyristor memory having a structure not including a MOS transistor.
(サイリスタメモリのメモリセルの動作原理)
 次に、図4(A)の回路図を参照しながら、サイリスタメモリのメモリセル26の動作原理を説明する。FB節点の電圧をキャパシタC1を介して低い電圧から上昇させていった場合に、FB節点とカソード(VSS)の間の電圧が、そのPN接合のビルトインポテンシャルVBIの電圧付近まで達すると、FB節点からカソード(VSS)へダイオードの順方向電流が流れ始める。この電流はNPNトランジスタQ1のベース・エミッタ間電流と等価である。
(Operation principle of memory cell of thyristor memory)
Next, the operation principle of the memory cell 26 of the thyristor memory will be described with reference to the circuit diagram of FIG. When the voltage of the FB node is increased from a low voltage through the capacitor C1, when the voltage between the FB node and the cathode (VSS) reaches near the voltage of the built-in potential VBI of the PN junction, the FB node Diode forward current begins to flow from to the cathode (VSS). This current is equivalent to the base-emitter current of the NPN transistor Q1.
 ビット線BL(アノード)が十分高い電圧のときにFB節点の電圧をキャパシタC1の容量を介して上昇させていくと、電圧VBI付近まで達した時に、NPNトランジスタQ1が弱くオンして節点FNが低いレベルに低下していき、それによりPNPトランジスタQ2がオンしてFB節点を更に高い電圧まで持ち上げる。その結果、NPNトランジスタQ1がより強くオンして、サイリスタ36のアノード(BL)とカソードVSSが導通状態になる。 If the voltage of the FB node is increased through the capacitance of the capacitor C1 when the bit line BL (anode) is sufficiently high, the NPN transistor Q1 is weakly turned on when the voltage VBI is reached and the node FN is turned on. It goes down to a low level, which turns on the PNP transistor Q2 to raise the FB node to a higher voltage. As a result, the NPN transistor Q1 is turned on more strongly, and the anode (BL) and the cathode VSS of the thyristor 36 become conductive.
 サイリスタ36が一度導通状態になると、ビット線BL(アノード)に十分高い電圧が印加されている限り、キャパシタC1の容量を介してFB節点にカップリング電圧を与えても導通状態を保持する。 Once the thyristor 36 is in a conductive state, as long as a sufficiently high voltage is applied to the bit line BL (anode), the conductive state is maintained even if a coupling voltage is applied to the FB node via the capacitance of the capacitor C1.
 サイリスタ36の非導通化は、アノード(BL)とカソード(VSS)の電位差を電圧VBI以下の小さな電位差にすることによって行われる。ビット線BLを電圧VBI以下にすると、FB節点はPN接合のリーク電流により電圧VBI以下まで下がって行く。その結果NPNトランジスタQ1がオフするため、サイリスタ36のアノード(BL)とカソード(VSS)が非導通状態になる。 The non-conduction of the thyristor 36 is performed by setting the potential difference between the anode (BL) and the cathode (VSS) to a small potential difference equal to or lower than the voltage VBI. When the bit line BL is set to the voltage VBI or lower, the FB node is lowered to the voltage VBI or lower due to the leakage current of the PN junction. As a result, the NPN transistor Q1 is turned off, so that the anode (BL) and the cathode (VSS) of the thyristor 36 are turned off.
 次に、図5を参照しながらセンスアンプ19について詳細に説明する。図5は、第1の実施形態に係る半導体記憶装置21のセンスアンプ19の回路図である。センスアンプ19には、セル領域からビット線(BL)8が接続され、隣接する別のセル領域Aからはビット線(BLA)8が接続されている。また、図5において、N型トランジスタN1のドレインはビット線(BL)8に接続され、N型トランジスタN1のゲートは制御信号BLDIS、ソースは電源VSSに接続されている。N型トランジスタN1と同様にビット線(BLA)8にはN型トランジスタN1Aが接続されている。N型トランジスタN1、N1Aは、それぞれビット線(BL、BLA)8の非選択(スタンバイ)時にビット線(BL、BLA)8の電位を電源VSSのレベルに固定する。 Next, the sense amplifier 19 will be described in detail with reference to FIG. FIG. 5 is a circuit diagram of the sense amplifier 19 of the semiconductor memory device 21 according to the first embodiment. A bit line (BL) 8 is connected to the sense amplifier 19 from the cell region, and a bit line (BLA) 8 is connected to another adjacent cell region A. In FIG. 5, the drain of the N-type transistor N1 is connected to the bit line (BL) 8, the gate of the N-type transistor N1 is connected to the control signal BLDIS, and the source is connected to the power supply VSS. Similar to the N-type transistor N1, the N-type transistor N1A is connected to the bit line (BLA) 8. The N-type transistors N1 and N1A fix the potential of the bit line (BL, BLA) 8 to the level of the power supply VSS when the bit line (BL, BLA) 8 is not selected (standby), respectively.
 ビット線(BL)8にはN型トランジスタN2(リードライトスイッチ)のソースドレインの一方が接続され、ソースドレインの他方には反転センスアンプビット線BLSAB(第1ノード)が接続され、ゲートには制御信号TGが接続されている。制御信号TGは、読み出し時にビット線8の電圧を検出する場合、及び書き込み時にビット線8に書き込みデータに対応する電圧を供給する場合に活性化されHighレベルとなる信号である。制御信号TGがHighレベルのときには、ビット線(BL)8と反転センスアンプビット線BLSAB(第1ノード)が電気的に接続される。同様に、ビット線(BLA)8と反転センスアンプビット線BLSAB間には、N型トランジスタN2A(リードライトスイッチ)が設けられ、N型トランジスタN2Aのゲートには制御信号TGAが接続されている。 One of the source and drain of the N-type transistor N2 (read / write switch) is connected to the bit line (BL) 8, the inverted sense amplifier bit line BLSAB (first node) is connected to the other of the source and drain, and the gate is connected. A control signal TG is connected. The control signal TG is a signal that is activated and becomes a high level when the voltage of the bit line 8 is detected at the time of reading and when the voltage corresponding to the write data is supplied to the bit line 8 at the time of writing. When the control signal TG is at a high level, the bit line (BL) 8 and the inverted sense amplifier bit line BLSAB (first node) are electrically connected. Similarly, an N-type transistor N2A (read / write switch) is provided between the bit line (BLA) 8 and the inverted sense amplifier bit line BLSAB, and a control signal TGA is connected to the gate of the N-type transistor N2A.
 反転センスアンプビット線BLSAB(第1ノード)と非反転センスアンプビット線BLSAT(第2ノード)の間にはフリップフロップF.F.が設けられ、反転センスアンプビット線BLSABと非反転センスアンプビット線BLSATとの電位差を増幅する。フリップフロップF.F.は、P型トランジスタP5、P6及びN型トランジスタN4、N5を備えている。また、フリップフロップF.F.にはP型トランジスタの電源としてSAPが、N型トランジスタの電源としてSANが接続されている。電源SAPとSANはフリップフロップF.F.の動作が必要なときだけ活性化する。活性化するときの電源SAPは電源VARYと同電位であり、電源SANは電源VSSと同電位である。この電源SAPとSANの電圧、及び電源VARYの電圧によりビット線8の最大振幅が決まる。非活性のときの電源SAPは電源VSSと同電位であり、電源SANは電源VARYと同電位である。尚、フリップフロップF.F.は、メモリセル26からの読み出しデータを一時保存する保持回路として機能し、実施形態の概要説明で参照した図1の保持回路106に相当する。 A flip-flop F. between the inverting sense amplifier bit line BLSAB (first node) and the non-inverting sense amplifier bit line BLSAT (second node). F. Is provided to amplify the potential difference between the inverted sense amplifier bit line BLSAB and the non-inverted sense amplifier bit line BLSAT. Flip-flop F.F. F. Includes P-type transistors P5 and P6 and N-type transistors N4 and N5. Also, flip-flop F.F. F. Is connected to SAP as the power source of the P-type transistor and SAN as the power source of the N-type transistor. The power supplies SAP and SAN are flip-flops F. F. It is activated only when the operation is required. When activated, the power supply SAP has the same potential as the power supply VARY, and the power supply SAN has the same potential as the power supply VSS. The maximum amplitude of the bit line 8 is determined by the voltages of the power supplies SAP and SAN and the voltage of the power supply VARY. When inactive, the power supply SAP has the same potential as the power supply VSS, and the power supply SAN has the same potential as the power supply VARY. Note that the flip-flop F.F. F. Functions as a holding circuit for temporarily storing data read from the memory cell 26, and corresponds to the holding circuit 106 of FIG. 1 referred to in the outline description of the embodiment.
 N型トランジスタN6は、反転センスアンプビット線BLSABと反転IO線IOBとを接続するスイッチであり、N型トランジスタN7は、非反転センスアンプビット線BLSATと非反転IO線IOTとを接続するスイッチである。N型トランジスタN6とN7は共にカラム選択信号YSiにより導通/非導通が制御される。フリップフロップF.F.に外部からデータを書き込むときや、フリップフロップF.F.に保持されたデータを外部に読み出すときは、N型トランジスタN6、N7を介して反転センスアンプビット線BLSABと反転IO線IOB、及び非反転センスアンプビット線BLSATと非反転IO線IOTが接続され、データの入出力を行う。 The N-type transistor N6 is a switch that connects the inverted sense amplifier bit line BLSAB and the inverted IO line IOB, and the N-type transistor N7 is a switch that connects the non-inverted sense amplifier bit line BLSAT and the non-inverted IO line IOT. is there. Both N-type transistors N6 and N7 are controlled to be conductive / non-conductive by a column selection signal YSi. Flip-flop F.F. F. When externally writing data to the flip-flop F. F. When the data held in the memory is read out, the inverted sense amplifier bit line BLSAB and the inverted IO line IOB, and the non-inverted sense amplifier bit line BLSAT and the non-inverted IO line IOT are connected via the N-type transistors N6 and N7. , Input and output data.
 P型トランジスタP1は反転センスアンプビット線BLSABとビット線活性化電源VARYの間に接続される。また、P型トランジスタP2は非反転センスアンプビット線BLSATとビット線判定基準電源VBLREFの間に接続される。P型トランジスタP1、P2のゲートには、それぞれ制御信号ACTB1、ACTB2が接続されている。制御信号ACTB1、ACTB2は読み出し動作時に活性化してLowレベルになる。 The P-type transistor P1 is connected between the inverted sense amplifier bit line BLSAB and the bit line activation power supply VARY. The P-type transistor P2 is connected between the non-inverting sense amplifier bit line BLSAT and the bit line determination reference power supply VBLREF. Control signals ACTB1 and ACTB2 are connected to the gates of the P-type transistors P1 and P2, respectively. The control signals ACTB1 and ACTB2 are activated and become low level during the read operation.
 P型トランジスタP3、P4は、反転センスアンプビット線BLSABと電源VARY間に直列に接続され、P型トランジスタP3、P4のゲートにはそれぞれ制御信号ACT2B、定電流リファレンス電圧VIREFが供給される。P型トランジスタP4は、定電流源として機能し、定電流リファレンス電圧VIREF=約VARY-VTP程度に設定する(ここで、VTPはP型トランジスタP4のしきい値電圧である)。P型トランジスタP3は、読み出し期間(図6のT1~T3)にオンにする。 The P-type transistors P3 and P4 are connected in series between the inverted sense amplifier bit line BLSAB and the power supply VARY, and a control signal ACT2B and a constant current reference voltage VIREF are supplied to the gates of the P-type transistors P3 and P4, respectively. The P-type transistor P4 functions as a constant current source and is set to a constant current reference voltage VIREF = about VARY−VTP (where VTP is a threshold voltage of the P-type transistor P4). The P-type transistor P3 is turned on during the read period (T1 to T3 in FIG. 6).
(第1の実施形態の動作)
 次に、第1の実施形態の動作について、図6を参照しながら説明する。図6は、DRAM(Dynamic Random Access Memory)仕様互換で、半導体記憶装置21を動作させた場合の動作波形である。DRAMの基本的動作仕様として、メモリセルのデータを外部に読出しまたは外部から書込みを行うためのアクセス動作と、一定時間ごとにセルデータをリフレッシュするリフレッシュ動作がある。
(Operation of the first embodiment)
Next, the operation of the first embodiment will be described with reference to FIG. FIG. 6 shows operation waveforms when the semiconductor memory device 21 is operated in compliance with DRAM (Dynamic Random Access Memory) specifications. As basic operation specifications of a DRAM, there are an access operation for reading or writing data in a memory cell to the outside, and a refresh operation for refreshing cell data at regular intervals.
 アクセス動作は、外部からACTコマンドが与えられ、指定されたロウアドレスとACTコマンドに応答してワード線(メインワード線及びサブワード線7)を選択すると共に、活性化したサブワード線7に接続されたメモリセル26から対応するセンスアンプ19まで、データを読み出す処理を行う。次にREADコマンドが与えられた場合には、指定されたカラムアドレスに基づいて、センスアンプ19まで読み出したデータを、IO線(IOB及びIOT)を介して外部出力する。また、外部からWRITEコマンドが与えられた場合には、外部データを、指定されたカラムアドレスに対応したセンスアンプ19のフリップフロップF.F.まで書き込みを行う。 In the access operation, an ACT command is given from the outside, and in response to a designated row address and ACT command, a word line (main word line and sub word line 7) is selected and connected to the activated sub word line 7. Data is read from the memory cell 26 to the corresponding sense amplifier 19. Next, when a READ command is given, the data read to the sense amplifier 19 is output to the outside via the IO lines (IOB and IOT) based on the designated column address. When a WRITE command is given from the outside, the external data is supplied to the flip-flop F.F of the sense amplifier 19 corresponding to the designated column address. F. Write until.
 次にPRE(プリチャージ)コマンドが与えられた時に、センスアンプ19のフリップフロップF.F.に格納した書き込みデータを実際にメモリセルに書き込む。この時WRITEコマンドで指定されたカラムアドレスに対応したセンスアンプ以外のセンスアンプ19においては、ACTコマンドで読み出したメモリセル26のデータが格納されており、その格納されているデータがメモリセル26に書き戻される。 Next, when the PRE (precharge) command is given, the flip-flop F.F. F. The write data stored in is actually written into the memory cell. At this time, in the sense amplifier 19 other than the sense amplifier corresponding to the column address specified by the WRITE command, the data of the memory cell 26 read by the ACT command is stored, and the stored data is stored in the memory cell 26. Written back.
 リフレッシュ動作は、外部からリフレッシュコマンドが与えられ、半導体記憶装置21の内部でACTコマンド及びリフレッシュワード線アドレスを発行し、それに続きPREコマンドを発行することで、リフレッシュを行う。すなわちACTコマンドで読み出したメモリセル26のデータがメモリセル26に書き戻される。 In the refresh operation, a refresh command is given from the outside, an ACT command and a refresh word line address are issued inside the semiconductor memory device 21, and then a PRE command is issued to perform refresh. That is, the data of the memory cell 26 read by the ACT command is written back to the memory cell 26.
 以上のように、アクセス動作、リフレッシュ動作ともに、ACTコマンド→PREコマンドの順に、動作が行われる。ここで、ACTコマンド及びPREコマンドでは、選択されて活性化したサブワード線7に接続されている全てのメモリセル26が同時に、それぞれACT動作、PRE動作を行う。尚、図6では、ACT動作、及びPRE動作のみのリフレッシュ動作を示している。アクセス動作では、ACTコマンドとPREコマンドとの間に、図示しないREADコマンド及び、またはWRITEコマンドが実行される。 As described above, both the access operation and the refresh operation are performed in the order of the ACT command to the PRE command. Here, in the ACT command and the PRE command, all the memory cells 26 connected to the selected and activated sub word line 7 simultaneously perform the ACT operation and the PRE operation, respectively. FIG. 6 shows a refresh operation only for the ACT operation and the PRE operation. In the access operation, a READ command or a WRITE command (not shown) is executed between the ACT command and the PRE command.
 図6のサブワード線7とビット線8の波形は、図5のセル領域のサブワード線(7:SWLi)とビット線(8:BL)に接続されたメモリセル26と、サブワード線(7:SWLi)と隣接ビット線(8n:隣接BL)に接続されたメモリセル26nに関連した波形である。 The waveforms of the sub-word line 7 and the bit line 8 in FIG. 6 are as follows: the memory cell 26 connected to the sub-word line (7: SWLi) and the bit line (8: BL) in the cell region of FIG. ) And the memory cell 26n connected to the adjacent bit line (8n: adjacent BL).
 次に、図6に表示している各波形の内容ついて順に説明する。BLDIS、TG、ACT1B、ACT2Bは、センスアンプ19に供給する制御信号である。SAP、SANは、それぞれ、センスアンプ19のフリップフロップF.F.のP型トランジスタP5、P6、N型トランジスタN4、N5に供給する電源電圧である。SWLiは、活性化されたサブワード線7の電圧(サブワード線ドライバ3により駆動される電圧)を示している。BL及び隣接BLは、ビット線8と隣接ビット線8nの電圧を示している。また、反転センスアンプビット線BLSAB、非反転センスアンプビット線BLSATの電圧、メモリセル26のFBの電圧を重ねて表示している。NC1は活性化したサブワード線SWLiに接続されているSWLカウンタ回路23のノードNC1の電圧である。また、データ反転制御信号14の電圧を示している。 Next, the contents of each waveform displayed in FIG. 6 will be described in order. BLDIS, TG, ACT1B, and ACT2B are control signals supplied to the sense amplifier 19. SAP and SAN are the flip-flops F. F. Power supply voltage supplied to the P-type transistors P5 and P6 and the N-type transistors N4 and N5. SWLi indicates the voltage of the activated sub word line 7 (voltage driven by the sub word line driver 3). BL and adjacent BL indicate the voltages of the bit line 8 and the adjacent bit line 8n. Further, the voltages of the inverted sense amplifier bit line BLSAB, the non-inverted sense amplifier bit line BLSAT, and the voltage of the FB of the memory cell 26 are displayed in an overlapping manner. NC1 is the voltage of the node NC1 of the SWL counter circuit 23 connected to the activated sub word line SWLi. Further, the voltage of the data inversion control signal 14 is shown.
 次に、図6のT1~T9の各タイミングにおける動作を説明する。まず、タイミングT1まではスタンバイ状態である。即ち、この時点では、サブワード線7は非選択の状態である。また、制御信号BLDISがHighレベル、制御信号TGがLowレベルであり、ビット線8は、センスアンプ19の反転センスアンプビット線BLSABから切り離されてLowレベル(VSS)に固定される。また、センスアンプ19のフリップフロップF.F.に供給する電源SAPはLowレベル、電源SANはHighレベルで、フリップフロップF.F.は非活性の状態であり、非反転センスアンプビット線BLSAT、反転センスアンプビット線BLSABはフローティングの状態である。 Next, the operation at each timing of T1 to T9 in FIG. 6 will be described. First, it is in a standby state until timing T1. That is, at this time, the sub word line 7 is in a non-selected state. Further, the control signal BLDIS is at the high level and the control signal TG is at the low level, and the bit line 8 is disconnected from the inverted sense amplifier bit line BLSAB of the sense amplifier 19 and fixed at the low level (VSS). Further, the flip-flop F.F. F. The power supply SAP supplied to the power supply is low level and the power supply SAN is high level. F. Is inactive, and the non-inverted sense amplifier bit line BLSAT and the inverted sense amplifier bit line BLSAB are in a floating state.
 また、制御信号ACTB1、ACTB2も非活性レベルのHighレベルである。また、図6では、メモリセル26がセルLowの状態を記憶しており、FB節点は電圧VLであるとする。 Further, the control signals ACTB1 and ACTB2 are also inactive high level. In FIG. 6, it is assumed that the memory cell 26 stores the state of the cell Low and the FB node is the voltage VL.
 また、SWLカウンタ回路23(図3)のノードNC1は、Lowレベルにあるとする。また、どのサブワード線SWLも非活性状態であり、どのSWLカウンタ回路23のN型トランジスタM3もオフ状態であり、データ反転制御信号14はフローティング状態である。 Suppose that the node NC1 of the SWL counter circuit 23 (FIG. 3) is at a low level. In addition, any subword line SWL is inactive, the N-type transistor M3 of any SWL counter circuit 23 is in an off state, and the data inversion control signal 14 is in a floating state.
 そして、外部からACTコマンドが与えられると、それを受けてタイミングT1において、制御信号BLDISがLowレベルとなりビット線8がLowレベル(VSS)に固定されていた状態から開放されるとともに、ACTB1、ACTB2信号がLowレベルとなって活性化し、反転センスアンプビット線BLSABが電圧VARYに、非反転センスアンプビット線BLSATが電圧VBLREFに設定される。また、制御信号TGが活性化して反転センスアンプビット線BLSABとビット線8が接続する。そして、反転センスアンプビット線BLSABの電圧VARYによってビット線8が駆動され、ビット線8の電圧も電圧VARYまで上昇する。 When an ACT command is given from the outside, at the timing T1, the control signal BLDIS is set to the low level, and the bit line 8 is released from the state fixed at the low level (VSS), and ACTB1, ACTB2 The signal becomes low level and activated, and the inverted sense amplifier bit line BLSAB is set to the voltage VARY, and the non-inverted sense amplifier bit line BLSAT is set to the voltage VBLREF. Further, the control signal TG is activated and the inverted sense amplifier bit line BLSAB and the bit line 8 are connected. Then, the bit line 8 is driven by the voltage VARY of the inverting sense amplifier bit line BLSAB, and the voltage of the bit line 8 also rises to the voltage VARY.
 タイミングT2では、サブワード線ドライバ3がサブワード線SWLiの電圧をワード線リード電圧VWLRまで上昇させる。タイミングT2でサブワード線SWLiの電圧がワード線リード電圧VWLRまで立ち上がることによってメモリセル26のキャパシタC1を介してFB節点の電圧も引き上げられる。メモリセル26がセルLowの状態であり、FB節点は電圧VLから上昇するものの、メモリ素子(サイリスタ36)が導通状態になる電圧VBIまでは上昇しない。従ってメモリ素子(サイリスタ36)は非導通状態である。 At timing T2, the sub word line driver 3 increases the voltage of the sub word line SWLi to the word line read voltage VWLR. When the voltage of the sub word line SWLi rises to the word line read voltage VWLR at timing T2, the voltage of the FB node is also raised through the capacitor C1 of the memory cell 26. Although the memory cell 26 is in the cell low state and the FB node rises from the voltage VL, it does not rise to the voltage VBI at which the memory element (thyristor 36) becomes conductive. Therefore, the memory element (thyristor 36) is non-conductive.
 また、タイミングT2では、制御信号ACTB1を非活性化状態となるHighレベルに立ち上げ、反転センスアンプビット線BLSABが電圧VARYに強く固定していた状態から開放され、制御信号ACTB2がLowレベルであるためP型トランジスタP4の定電流源で電圧VARYが弱く供給される。反転センスアンプビット線BLSABは、N型トランジスタN2(リードライトスイッチ)を介してビット線8に接続されている。ここで、メモリセル26のメモリ素子(サイリスタ36)は導通していないので、電流がVSSに流れるルートがなく、ビット線8及び反転センスアンプビット線BLSABの電圧は、電圧VARYを保持する。なお後述する隣接BLのカップリング容量によりビット線BLレベルが低下してもP型トランジスタP4により電圧VARYが弱く供給されているので電圧VARYに戻される。また、制御信号ACTB2のLowレベルにより、非反転センスアンプビット線BLSATは、電圧VBLREFを維持している。 Further, at timing T2, the control signal ACTB1 is raised to a high level to be inactivated, the inverted sense amplifier bit line BLSAB is released from the state where it is strongly fixed to the voltage VARY, and the control signal ACTB2 is at the low level. Therefore, the voltage VARY is weakly supplied by the constant current source of the P-type transistor P4. The inverted sense amplifier bit line BLSAB is connected to the bit line 8 via an N-type transistor N2 (read / write switch). Here, since the memory element (thyristor 36) of the memory cell 26 is not conductive, there is no route for current to flow to VSS, and the voltages of the bit line 8 and the inverted sense amplifier bit line BLSAB hold the voltage VARY. Even if the bit line BL level is lowered due to the coupling capacitance of the adjacent BL described later, the voltage VARY is weakly supplied by the P-type transistor P4, so that it is returned to the voltage VARY. Further, the non-inverting sense amplifier bit line BLSAT maintains the voltage VBLREF according to the low level of the control signal ACTB2.
 また、タイミングT2において、活性化されたサブワード線SWLiに接続されたSWLカウンタ回路23のN型トランジスタM3(図3)がオンし、データ反転制御信号14はLowレベルを出力する。 At timing T2, the N-type transistor M3 (FIG. 3) of the SWL counter circuit 23 connected to the activated sub word line SWLi is turned on, and the data inversion control signal 14 outputs a low level.
 タイミングT3では、メモリセル26のメモリ素子(サイリスタ36)が導通しないので、反転センスアンプビット線BLSABの電圧はVARYを保持しており、反転センスアンプビット線BLSABの電圧>非反転センスアンプビット線BLSATの電圧(VBLREF)の関係となっている。 At the timing T3, since the memory element (thyristor 36) of the memory cell 26 is not conductive, the voltage of the inverted sense amplifier bit line BLSAB holds VARY, and the voltage of the inverted sense amplifier bit line BLSAB> non-inverted sense amplifier bit line. The relationship is the BLSAT voltage (VBLREF).
 また、タイミングT3では、制御信号TGをLowレベルにし、ビット線8と反転センスアンプビット線BLSABとの接続を切り離す。また、制御信号ACT2BをHighレベルに非活性化することで、反転センスアンプビット線BLSABへの電圧VARYの弱い供給を止めると共に、非反転センスアンプビット線BLSATが電圧VBLREFに固定していた状態から開放する。また、電源SAPをHighレベル(VARY)に、電源SANをLowレベル(VSS)にし、フリップフロップF.F.を活性化して、フリップフロップF.F.により非反転センスアンプビット線BLSATと反転センスアンプビット線BLSABとの電位差の増幅を開始する。そして、期間T3~T4において、フリップフロップF.F.により非反転センスアンプビット線BLSATがLowレベル、反転センスアンプビット線BLSABがHighレベルに増幅される。尚、このフリップフロップF.F.の状態が、データ「0」に相当する。 Further, at the timing T3, the control signal TG is set to the low level, and the connection between the bit line 8 and the inverted sense amplifier bit line BLSAB is disconnected. Further, by deactivating the control signal ACT2B to High level, the weak supply of the voltage VARY to the inverting sense amplifier bit line BLSAB is stopped, and the non-inverting sense amplifier bit line BLSAT is fixed to the voltage VBLREF. Open. Further, the power supply SAP is set to the high level (VARY), the power supply SAN is set to the low level (VSS), and the flip-flops F.F. F. And flip-flop F. F. Thus, amplification of the potential difference between the non-inverted sense amplifier bit line BLSAT and the inverted sense amplifier bit line BLSAB is started. In the periods T3 to T4, the flip-flops F.F. F. As a result, the non-inverted sense amplifier bit line BLSAT is amplified to the low level, and the inverted sense amplifier bit line BLSAB is amplified to the high level. This flip-flop F.F. F. This state corresponds to data “0”.
 アクセス動作ではタイミングT4の後に、図6には図示していないが、READコマンド及び、またはWRITEコマンドが実行される。READコマンドでは、センスアンプ19のフリップフロップF.F.に保存されたデータ「0」が、データアンプ6及びデータ入出力回路11を介してデータ入出力端子12から出力される。上記の動作において、データアンプ6では、データ反転制御信号14を受けて、データの反転/非反転を行う。期間T4~T5においてデータ反転制御信号14はLowレベルである。これはACTコマンドで読み出したデータが、偶数回の反転をしたデータである(反転が0回の場合も含む)ことを示している。読み出したデータが偶数回の反転をしている場合は、正転論理のデータであることを意味するので、データアンプ6では、データの反転を行わない。これにより正しい論理のデータ「0」を外部出力することができる。 In the access operation, after timing T4, although not shown in FIG. 6, a READ command and / or a WRITE command are executed. In the READ command, the flip-flop F.F. F. The data “0” stored in the data is output from the data input / output terminal 12 via the data amplifier 6 and the data input / output circuit 11. In the above operation, the data amplifier 6 receives the data inversion control signal 14 and inverts / non-inverts data. In the periods T4 to T5, the data inversion control signal 14 is at the low level. This indicates that the data read by the ACT command is data that has been inverted an even number of times (including the case where the inversion is 0 times). If the read data is inverted even number of times, it means that the data is normal logic data, so the data amplifier 6 does not invert the data. As a result, correct logical data “0” can be output to the outside.
 WRITEコマンドでは、データ入出力端子12から入力した外部データがデータ入出力回路11及びデータアンプ6を介してセンスアンプ19のフリップフロップF.F.に書き込まれる。上記の動作においても、データアンプ6では、データ反転制御信号14を受けて、データの反転/非反転を行う。データ反転制御信号14は、Lowレベルであるため、データアンプ6では、データの反転を行わない。これにより、外部データ「0」を書き込む場合は反転IO線IOB及び非反転IO線IOTをとおして、センスアンプ19のフリップフロップF.F.の反転センスアンプビット線BLSABにHigh、非反転センスアンプビット線BLSATにLowを書き込む(図6のタイミングT5の状態)。外部データ「1」を書き込む場合は、反転センスアンプビット線BLSABにLow、非反転センスアンプビット線BLSATにHighを書き込む。 In the WRITE command, external data input from the data input / output terminal 12 is sent to the flip-flop F.F of the sense amplifier 19 via the data input / output circuit 11 and the data amplifier 6. F. Is written to. Also in the above operation, the data amplifier 6 receives the data inversion control signal 14 and inverts / non-inverts data. Since the data inversion control signal 14 is at the low level, the data amplifier 6 does not invert the data. As a result, when external data “0” is written, the flip-flop F.F of the sense amplifier 19 is passed through the inverted IO line IOB and the non-inverted IO line IOT. F. High is written to the inverted sense amplifier bit line BLSAB, and Low is written to the non-inverted sense amplifier bit line BLSAT (state of timing T5 in FIG. 6). When the external data “1” is written, Low is written to the inverted sense amplifier bit line BLSAB, and High is written to the non-inverted sense amplifier bit line BLSAT.
 尚、図2に示す半導体記憶装置21では、データアンプ6がデータ反転制御信号14を受けて、READコマンド及びWRITEコマンドでのデータの反転/非反転を行っているが、それに限定されない。データの反転/非反転は、センスアンプ19のフリップフロップF.Fとデータ入出力端子12間の経路の任意の箇所で実行することができる。例えば、データアンプ6に代わって、データ入出力回路11がデータ反転制御信号14を受けて、データの反転/非反転を行うように構成してもよい。 In the semiconductor memory device 21 shown in FIG. 2, the data amplifier 6 receives the data inversion control signal 14 and performs inversion / non-inversion of data by the READ command and the WRITE command. However, the present invention is not limited to this. The inversion / non-inversion of the data is performed by the flip-flop F. It can be executed at any point in the path between F and the data input / output terminal 12. For example, instead of the data amplifier 6, the data input / output circuit 11 may receive the data inversion control signal 14 and invert / non-invert data.
 タイミングT4の後に、外部からPREコマンドが与えられると、それを受けて、タイミングT5において、制御信号TGがHighレベルに活性化される。第1の実施形態の半導体記憶装置21では、PRE動作においても、ACT動作と同様に、ビット線8とセンスアンプ19の反転センスアンプビット線BLSABとを接続する(特許文献1及び特許文献2の半導体記憶装置では、PRE動作では、ビット線8とセンスアンプ19の非反転センスアンプビット線BLSATを接続している。これについては、比較例で後述する)。これにより、タイミングT5でPRE動作に移行したときに、ビット線8に供給する電圧をACT動作で検出されたビット線8の電圧から反転させていない。具体的にはACT動作時にビット線8はHighレベルを検出し、PRE動作ではビット線8にHighレベルを供給している。 When a PRE command is given from the outside after the timing T4, the control signal TG is activated to a high level at the timing T5 in response thereto. In the semiconductor memory device 21 of the first embodiment, also in the PRE operation, the bit line 8 and the inverted sense amplifier bit line BLSAB of the sense amplifier 19 are connected as in the ACT operation (see Patent Document 1 and Patent Document 2). In the semiconductor memory device, in the PRE operation, the bit line 8 and the non-inverted sense amplifier bit line BLSAT of the sense amplifier 19 are connected, which will be described later in a comparative example). Accordingly, when the PRE operation is performed at the timing T5, the voltage supplied to the bit line 8 is not inverted from the voltage of the bit line 8 detected by the ACT operation. Specifically, the bit line 8 detects the High level during the ACT operation, and supplies the High level to the bit line 8 during the PRE operation.
 タイミングT6になると、サブワード線ドライバ3はサブワード線SWLiの電圧をワード線ライト電圧VWLWまで上昇させる。これに伴いキャパシタC1を介してメモリセル26のFB節点の電圧は電圧VBI以上まで上昇する。このとき、ビット線8がHighレベル(VARY)に駆動されているので、サイリスタ36が導通状態になる。サイリスタ36が導通状態になると、FB節点は、PNPトランジスタQ2のオン抵抗と、FB節点とVSS(カソード)との間のPN接合ダイオードの内部抵抗との比で決まる電圧VONのレベルになる。 At timing T6, the sub word line driver 3 increases the voltage of the sub word line SWLi to the word line write voltage VWLW. Accordingly, the voltage at the FB node of the memory cell 26 rises to the voltage VBI or higher via the capacitor C1. At this time, since the bit line 8 is driven to the high level (VARY), the thyristor 36 becomes conductive. When the thyristor 36 becomes conductive, the FB node is at the level of the voltage VON determined by the ratio of the ON resistance of the PNP transistor Q2 and the internal resistance of the PN junction diode between the FB node and VSS (cathode).
 タイミングT7になると、サブワード線ドライバ3はビット線8の電圧をワード線ライト電圧VWLWとワード線スタンバイ電圧VWLSとの間のワード線プリチャージ電圧VWLPまで引き下げる。ビット線8がHighレベル(VARY)に駆動されておりサイリスタ36が導通状態であるので、サブワード線SWLiの電圧がワード線プリチャージ電圧VWLPまで下がってもFB節点の電圧は電圧VONのレベルを維持し変化しない。 At timing T7, the sub word line driver 3 reduces the voltage of the bit line 8 to the word line precharge voltage VWLP between the word line write voltage VWLW and the word line standby voltage VWLS. Since the bit line 8 is driven to a high level (VARY) and the thyristor 36 is in a conductive state, the voltage at the FB node maintains the level of the voltage VON even when the voltage of the sub word line SWLi falls to the word line precharge voltage VWLP. And it doesn't change.
 タイミングT8では、制御信号TGが立ち下がり、ビット線8が反転センスアンプビット線BLSABから切り離されると共に、制御信号BLDISが立ち上がりビット線8の電圧はLowレベル(VSS)に固定される。また、センスアンプ19のフリップフロップF.F.の電源SAPをLowレベルに、電源SANをHighレベルにして、フリップフロップF.F.を非活性化する。 At timing T8, the control signal TG falls, the bit line 8 is disconnected from the inverted sense amplifier bit line BLSAB, and the control signal BLDIS rises, and the voltage of the bit line 8 is fixed to the low level (VSS). Further, the flip-flop F.F. F. The power supply SAP is set to the low level, the power supply SAN is set to the high level, and the flip-flop F. F. Is deactivated.
 タイミングT8で、ビット線8の電圧がVSSへ低下することに伴って、サイリスタ36の導通状態は終了し、FB節点の電圧もビルトインポテンシャルVBIまで低下する。 At timing T8, as the voltage of the bit line 8 decreases to VSS, the conduction state of the thyristor 36 ends, and the voltage at the FB node also decreases to the built-in potential VBI.
 タイミングT9では、サブワード線SWLiの電圧をワード線プリチャージ電圧VWLPからワード線スタンバイ電圧VWLSまで引き下げる。サイリスタ36は非導通状態なので、キャパシタC1を介してFB節点は電圧VHまで低下する。 At timing T9, the voltage of the sub word line SWLi is lowered from the word line precharge voltage VWLP to the word line standby voltage VWLS. Since the thyristor 36 is in a non-conductive state, the FB node is lowered to the voltage VH via the capacitor C1.
 また、タイミングT9では、サブワード線SWLiがワード線プリチャージ電圧VWLPからワード線スタンバイ電圧VWLSまで立ち下がったことを受けて、サブワード線SWLiに接続されたSWLカウンタ回路23がカウントアップし、SWLカウンタ回路23のNC1がLowレベルからHighレベルに遷移する。また、タイミングT9において、SWLカウンタ回路23のN型トランジスタM3はオフするので、データ反転制御信号14はフローティング状態となる。 At timing T9, in response to the fall of the sub word line SWLi from the word line precharge voltage VWLP to the word line standby voltage VWLS, the SWL counter circuit 23 connected to the sub word line SWLi counts up, and the SWL counter circuit 23 NC1 transitions from the Low level to the High level. At timing T9, the N-type transistor M3 of the SWL counter circuit 23 is turned off, so that the data inversion control signal 14 is in a floating state.
 ここで、SWLカウンタ回路23のN型トランジスタM1のしきい値電圧及びインバータINV1の論理しきい値電圧は、ワード線プリチャージ電圧VWLPとワード線スタンバイ電圧VWLSの間になるようにしておく。それにより、サブワード線SWLiがワード線プリチャージ電圧VWLPからワード線スタンバイ電圧VWLSまで立ち下がるタイミング(T9)でカウントアップが行われるようにすることができる。 Here, the threshold voltage of the N-type transistor M1 of the SWL counter circuit 23 and the logic threshold voltage of the inverter INV1 are set to be between the word line precharge voltage VWLP and the word line standby voltage VWLS. Thereby, the count-up can be performed at the timing (T9) when the sub word line SWLi falls from the word line precharge voltage VWLP to the word line standby voltage VWLS.
 尚、図3のSWLカウンタ回路23では、タイミングT9におけるサブワード線SWLiの立ち下がりを検出しているが、それに限定されず、PRE動作期間中のサブワード線SWLiの変化を検出すればよい。例えば、タイミングT6のサブワード線SWLiの立ち上がり、またはタイミングT7のサブワード線SWLiの立ち下がりを検出するようにSWLカウンタ回路23を構成してもよい。 In the SWL counter circuit 23 of FIG. 3, the falling of the sub word line SWLi at the timing T9 is detected. However, the present invention is not limited to this, and the change of the sub word line SWLi during the PRE operation period may be detected. For example, the SWL counter circuit 23 may be configured to detect the rise of the sub word line SWLi at the timing T6 or the fall of the sub word line SWLi at the timing T7.
 期間T5~T9によるPRE動作では、メモリセル26に対し、ビット線8にHighレベルの電圧を供給して書き込んでいるため、メモリセル26の記憶状態はセルHighの状態に反転している。SWLカウンタ回路23では、サブワード線SWLiが活性化する度に、サブワード線SWLiに接続されたSWLカウンタ回路23をカウントアップし、そのカウント値をノードNC1に保持する。タイミングT9のように、ノードNC1がHighに遷移した場合は、サブワード線SWLiが活性化した回数が奇数であり、サブワード線SWLiに接続されたメモリセル26のデータが反転された状態であるという情報を保持している。 In the PRE operation during the periods T5 to T9, since the high level voltage is supplied to the bit line 8 and written to the memory cell 26, the storage state of the memory cell 26 is inverted to the state of the cell High. In the SWL counter circuit 23, every time the sub word line SWLi is activated, the SWL counter circuit 23 connected to the sub word line SWLi is counted up, and the count value is held in the node NC1. When the node NC1 transitions to High as at the timing T9, the number of times that the sub word line SWLi is activated is an odd number and the data in the memory cell 26 connected to the sub word line SWLi is in an inverted state. Holding.
 尚、図6において、サブワード線SWLiが活性化された場合を示しているが、この場合、サブワード線SWLi以外のサブワード線(即ち、非活性状態のサブワード線)7に接続されたメモリセルにはACT動作及びPRE動作は行われない。また、非活性状態のサブワード線に接続されたSWLカウンタ回路23もカウントアップ動作を行わない。 FIG. 6 shows the case where the sub word line SWLi is activated. In this case, the memory cells connected to the sub word lines 7 other than the sub word line SWLi (that is, inactive sub word lines) 7 The ACT operation and PRE operation are not performed. Also, the SWL counter circuit 23 connected to the inactive sub word line does not perform the count-up operation.
 次に、図6のタイミングT1’~T9’の動作について説明する。タイミングT1’~T9’では、タイミングT1~T9と同じサブワード線SWLiを活性化し、再度、ACTコマンド→PREコマンドを実行した場合を示している。尚、タイミングT1’~T9’の動作において、各種の制御信号、及びサブワード線ドライバ3の電圧はタイミングT1~T9の場合と同じなので、それらの説明は省略する。 Next, the operation at timings T1 'to T9' in FIG. 6 will be described. In timings T1 'to T9', the same sub word line SWLi as in timings T1 to T9 is activated, and the ACT command → PRE command is executed again. In the operation at timings T1 'to T9', various control signals and the voltage of the sub-word line driver 3 are the same as those at the timings T1 to T9, and thus the description thereof is omitted.
 まず、T1’に入る直前で、メモリセル26の記憶状態はセルHigh状態に反転されており、FB節点は電圧VHである。また、サブワード線SWLiと接続されたSWLカウンタ回路23のノードNC1はHighレベルとなっている。 First, immediately before entering T1 ', the storage state of the memory cell 26 is inverted to the cell high state, and the FB node is at the voltage VH. Further, the node NC1 of the SWL counter circuit 23 connected to the sub word line SWLi is at a high level.
 そして、外部からACTコマンドが与えられると、それを受けてタイミングT1’において、反転センスアンプビット線BLSABが電圧VARYに、非反転センスアンプビット線BLSATが電圧VBLREFに設定される。また、反転センスアンプビット線BLSABとビット線8が接続する。そして、反転センスアンプビット線BLSABの電圧VARYによってビット線8も駆動され、ビット線8の電圧も電圧VARYまで上昇する。 Then, when an ACT command is given from the outside, the inverted sense amplifier bit line BLSAB is set to the voltage VARY and the non-inverted sense amplifier bit line BLSAT is set to the voltage VBLREF at the timing T1 '. Further, the inverted sense amplifier bit line BLSAB and the bit line 8 are connected. The bit line 8 is also driven by the voltage VARY of the inversion sense amplifier bit line BLSAB, and the voltage of the bit line 8 also rises to the voltage VARY.
 タイミングT2’では、サブワード線ドライバ3がサブワード線7の電圧をワード線リード電圧VWLRまで上昇させる。タイミングT2’でサブワード線SWLiの電圧がワード線リード電圧VWLRまで立ち上がることによってメモリセル26のキャパシタC1を介してFB節点の電圧も引き上げられる。メモリセル26がセルHighの状態であり、FB節点は電圧VHからメモリ素子(サイリスタ36)が導通状態になる電圧VBIまで上昇し、メモリ素子(サイリスタ36)は導通状態になる。 At timing T2 ', the sub word line driver 3 raises the voltage of the sub word line 7 to the word line read voltage VWLR. When the voltage of the sub word line SWLi rises to the word line read voltage VWLR at timing T2 ', the voltage of the FB node is also raised through the capacitor C1 of the memory cell 26. The memory cell 26 is in the cell high state, the FB node rises from the voltage VH to the voltage VBI at which the memory element (thyristor 36) becomes conductive, and the memory element (thyristor 36) becomes conductive.
 また、タイミングT2’では、反転センスアンプビット線BLSABが電圧VARYに強く固定していた状態から開放されP型トランジスタP4の定電流源で電圧VARYが弱く供給される。ここで、メモリセル26のメモリ素子(サイリスタ36)は導通しているので、ビット線8からサイリスタ36を介して電流が流れる。P型トランジスタP4の定電流源の電流値は、サイリスタ36の電流値よりも十分小さく設定してある。その結果、ビット線8及び反転センスアンプビット線BLSABの電圧は徐々に低下していく。一方、非反転センスアンプビット線BLSATは、電圧VBLREFを維持している。 At timing T2 ', the inverted sense amplifier bit line BLSAB is released from the state where it is strongly fixed to the voltage VARY, and the voltage VARY is supplied weakly by the constant current source of the P-type transistor P4. Here, since the memory element (thyristor 36) of the memory cell 26 is conductive, a current flows from the bit line 8 through the thyristor 36. The current value of the constant current source of the P-type transistor P4 is set sufficiently smaller than the current value of the thyristor 36. As a result, the voltages of the bit line 8 and the inverted sense amplifier bit line BLSAB gradually decrease. On the other hand, the non-inverting sense amplifier bit line BLSAT maintains the voltage VBLREF.
 また、タイミングT2’において、活性化されたサブワード線SWLiに接続されたSWLカウンタ回路23のN型トランジスタM3(図3)がオンし、データ反転制御信号14はHighレベルを出力する。 At timing T2 ', the N-type transistor M3 (FIG. 3) of the SWL counter circuit 23 connected to the activated sub word line SWLi is turned on, and the data inversion control signal 14 outputs a high level.
 タイミングT3’では、メモリセル26のメモリ素子(サイリスタ36)が導通しているので、反転センスアンプビット線BLSABの電圧が徐々に低下した結果、反転センスアンプビット線BLSABの電圧<非反転センスアンプビット線BLSATの電圧(VBLREF)の関係となっている。 At the timing T3 ′, since the memory element (thyristor 36) of the memory cell 26 is conductive, the voltage of the inverted sense amplifier bit line BLSAB gradually decreases, so that the voltage of the inverted sense amplifier bit line BLSAB <the non-inverted sense amplifier. The bit line BLSAT voltage (VBLREF) is established.
 ここで、タイミングT3’において、フリップフロップF.F.を活性化して、フリップフロップF.F.により非反転センスアンプビット線BLSATと反転センスアンプビット線BLSABとの電位差の増幅を開始する。そして、期間T3’~T4’において、フリップフロップF.F.により非反転センスアンプビット線BLSATがHighレベル、反転センスアンプビット線BLSABがLowレベルに増幅される。尚、このフリップフロップF.F.の状態は、データ「1」に相当する。 Here, at the timing T3 ', the flip-flop F.F. F. And flip-flop F. F. Thus, amplification of the potential difference between the non-inverted sense amplifier bit line BLSAT and the inverted sense amplifier bit line BLSAB is started. In the periods T3 'to T4', the flip-flops F.F. F. As a result, the non-inverted sense amplifier bit line BLSAT is amplified to High level, and the inverted sense amplifier bit line BLSAB is amplified to Low level. This flip-flop F.F. F. This state corresponds to data “1”.
 アクセス動作ではタイミングT4’の後に、図6には図示していないが、READコマンド及び、またはWRITEコマンドが実行される。期間T4’~T5’においてデータ反転制御信号14はHighレベルである。これはACTコマンドで読み出したデータ「1」が、奇数回の反転をしたデータであることを示している。読み出したデータが奇数回の反転をしている場合は、論理が反転したデータであることを意味するので、データアンプ6では、データ反転制御信号14のHighレベルを受けてデータの反転を行う。これにより正しい論理のデータ「0」にした上で、外部出力することができる。 In the access operation, after timing T4 ', a READ command and / or a WRITE command are executed, although not shown in FIG. In the periods T4 'to T5', the data inversion control signal 14 is at a high level. This indicates that the data “1” read by the ACT command is data that has been inverted an odd number of times. When the read data is inverted an odd number of times, it means that the logic is inverted. Therefore, the data amplifier 6 receives the high level of the data inversion control signal 14 and inverts the data. As a result, the data can be externally output after the correct logical data “0” is obtained.
 WRITEコマンドでは、外部データ「0」をフリップフロップF.F.に書き込む場合は、データ反転制御信号14のHighレベルを受けてデータの反転を行う。これにより、反転センスアンプビット線BLSABにLow、非反転センスアンプビット線BLSATにHighを書き込む(図6のタイミングT5’の状態)。外部データ「1」を書き込む場合は、反転センスアンプビット線BLSABにHigh、非反転センスアンプビット線BLSATにLowを書き込む。 In the WRITE command, external data “0” is set to flip-flop F. F. In the case of writing to, data is inverted upon receiving the high level of the data inversion control signal 14. As a result, Low is written to the inverted sense amplifier bit line BLSAB and High is written to the non-inverted sense amplifier bit line BLSAT (state of timing T5 'in FIG. 6). When external data “1” is written, High is written to the inverted sense amplifier bit line BLSAB and Low is written to the non-inverted sense amplifier bit line BLSAT.
 続いて、タイミングT4’の後に、外部からPREコマンドが与えられると、それを受けて、タイミングT5’において、制御信号TGがHighレベルに活性化される。第1の実施形態の半導体記憶装置21では、PRE動作においても、ACT動作と同様に、ビット線8とセンスアンプ19の反転センスアンプビット線BLSABとを接続する。これにより、ビット線8には電圧VSSが供給され、ビット線8の電圧はVSSまで低下する。即ち、タイミングT5’でPRE動作に移行するときに、ビット線8に供給する電圧をACT動作で検出されたビット線8の電圧から反転させていない。具体的にはACT動作時にビット線8はLowレベルに低下し、PRE動作ではビット線8にLowレベルを供給している。また、タイミングT5’以降では、ビット線8はLowレベル(VSS)なので、サイリスタ36は非導通状態である。 Subsequently, when a PRE command is given from the outside after the timing T4 ', the control signal TG is activated to the high level at the timing T5' in response thereto. In the semiconductor memory device 21 of the first embodiment, also in the PRE operation, the bit line 8 and the inverted sense amplifier bit line BLSAB of the sense amplifier 19 are connected as in the ACT operation. As a result, the voltage VSS is supplied to the bit line 8, and the voltage of the bit line 8 drops to VSS. That is, when shifting to the PRE operation at timing T5 ', the voltage supplied to the bit line 8 is not inverted from the voltage of the bit line 8 detected by the ACT operation. Specifically, the bit line 8 is lowered to the low level during the ACT operation, and the low level is supplied to the bit line 8 during the PRE operation. Further, after the timing T5 ', since the bit line 8 is at the low level (VSS), the thyristor 36 is non-conductive.
 タイミングT6’になると、サブワード線ドライバ3はサブワード線SWLiの電圧をワード線ライト電圧VWLWまで上昇させる。これに伴いキャパシタC1を介してメモリセル26のFB節点は電圧VBI以上まで一旦上昇するが、FB節点(P型領域)とカソードVSS(N型領域)との間のPN接合により電圧VBIレベルまで高速に低下する。 At the timing T6 ', the sub word line driver 3 increases the voltage of the sub word line SWLi to the word line write voltage VWLW. Along with this, the FB node of the memory cell 26 temporarily rises to the voltage VBI or higher through the capacitor C1, but it reaches the voltage VBI level by the PN junction between the FB node (P-type region) and the cathode VSS (N-type region). Decrease at high speed.
 タイミングT7’になると、サブワード線ドライバ3はビット線8の電圧をワード線プリチャージ電圧VWLPまで引き下げる。サイリスタ36は非導通状態であるので、サブワード線SWLの電圧の低下につれて、キャパシタC1を介してFB節点の電圧は低い電圧まで低下する。 At the timing T7 ', the sub word line driver 3 reduces the voltage of the bit line 8 to the word line precharge voltage VWLP. Since the thyristor 36 is in a non-conductive state, the voltage at the FB node decreases to a low voltage via the capacitor C1 as the voltage of the sub word line SWL decreases.
 タイミングT8’では、ビット線8が反転センスアンプビット線BLSABから切り離されると共に、ビット線8の電圧はLowレベル(VSS)に固定される。また、センスアンプ19のフリップフロップF.F.の電源SAPをLowレベルに、電源SANをHighレベルにして、フリップフロップF.F.を非活性化する。 At timing T8 ', the bit line 8 is disconnected from the inversion sense amplifier bit line BLSAB, and the voltage of the bit line 8 is fixed to the low level (VSS). Further, the flip-flop F.F. F. The power supply SAP is set to the low level, the power supply SAN is set to the high level, and the flip-flop F. F. Is deactivated.
 タイミングT9’では、サブワード線SWLiの電圧をワード線プリチャージ電圧VWLPからワード線スタンバイ電圧VWLSまで引き下げる。サイリスタ36は非導通状態なので、キャパシタC1を介してFB節点は電圧VLまで低下する。 At timing T9 ', the voltage of the sub word line SWLi is lowered from the word line precharge voltage VWLP to the word line standby voltage VWLS. Since the thyristor 36 is in a non-conductive state, the FB node is lowered to the voltage VL via the capacitor C1.
 また、タイミングT9’では、サブワード線SWLiがワード線プリチャージ電圧VWLPからワード線スタンバイ電圧VWLSまで立ち下がったことを受けて、サブワード線SWLiに接続されたSWLカウンタ回路23がカウントアップし、SWLカウンタ回路23のNC1がHighレベルからLowレベルに遷移する。また、タイミングT9’において、SWLカウンタ回路23のN型トランジスタM3はオフするので、データ反転制御信号14はフローティング状態となる。 At timing T9 ′, the SWL counter circuit 23 connected to the sub word line SWLi counts up in response to the sub word line SWLi falling from the word line precharge voltage VWLP to the word line standby voltage VWLS. NC1 of the circuit 23 transitions from the High level to the Low level. At timing T9 ', the N-type transistor M3 of the SWL counter circuit 23 is turned off, so that the data inversion control signal 14 is in a floating state.
 期間T5’~T9’によるPRE動作では、メモリセル26に対し、ビット線8にLowレベルの電圧を供給して書き込んでいるため、メモリセル26の記憶状態はセルLowの状態に再度反転し、タイミングT1の時の正転論理のデータ「0」に戻っている。タイミングT9’のように、ノードNC1がLowに遷移した場合は、ノードNC1は、サブワード線SWLiが活性化した回数が偶数であり、サブワード線SWLiに接続されたメモリセル26のデータが正転した論理で記憶されているという情報を保持している。 In the PRE operation in the periods T5 ′ to T9 ′, since the low level voltage is supplied to the bit line 8 and written to the memory cell 26, the memory state of the memory cell 26 is inverted again to the cell low state, It returns to the normal logic data “0” at the timing T1. When the node NC1 transitions to low as at the timing T9 ′, the node NC1 has an even number of times that the sub word line SWLi has been activated, and the data in the memory cell 26 connected to the sub word line SWLi has been normally rotated. It holds information that it is stored in logic.
 尚、図6において、メモリセル26nに接続された隣接ビット線8nの電圧を破線で示している。タイミングT1において、メモリセル26nはメモリセル26と異なり、セルHighの状態である。従って、タイミングT1~T9における隣接ビット線8nの波形は、タイミングT1’~T9 ’におけるビット線8の波形と同様になる。また、タイミングT1’~T9 ’における隣接ビット線8nの波形は、タイミングT1~T9 におけるビット線8の波形と同様になる。 In FIG. 6, the voltage of the adjacent bit line 8n connected to the memory cell 26n is indicated by a broken line. At the timing T1, the memory cell 26n is different from the memory cell 26 and is in the state of the cell High. Therefore, the waveform of the adjacent bit line 8n at the timings T1 to T9 is the same as the waveform of the bit line 8 at the timings T1 'to T9'. The waveform of the adjacent bit line 8n at the timings T1 'to T9' is the same as the waveform of the bit line 8 at the timings T1 to T9 '.
 図6のビット線8と隣接ビット線8nの電圧波形を参照すると、タイミングT1、T1’において、ビット線8と隣接ビット線8nの電圧がVSSからVARYに立ち上がるが、ビット線8と隣接ビット線8nとで同じ電圧に駆動させているので、このときのカップリング容量(図5の31)の充放電による消費電流は、小さい。また、PRE動作に移行するタイミングT5、T5’において、前述したように、ビット線8及び隣接ビット線8nの電圧を反転させないようにしたので、カップリング容量(図5の31)の充放電による消費電流を大幅に削減することができる。この効果の詳細については比較例との比較において後述する。 Referring to the voltage waveforms of the bit line 8 and the adjacent bit line 8n in FIG. 6, the voltages of the bit line 8 and the adjacent bit line 8n rise from VSS to VARY at timings T1 and T1 ′. Since the same voltage is used for 8n, the current consumption due to charging / discharging of the coupling capacitor (31 in FIG. 5) at this time is small. Further, as described above, since the voltages of the bit line 8 and the adjacent bit line 8n are not inverted at the timings T5 and T5 ′ for shifting to the PRE operation, charging / discharging of the coupling capacitor (31 in FIG. 5) is performed. Current consumption can be greatly reduced. Details of this effect will be described later in comparison with a comparative example.
 図6に表示した波形の例では、タイミングT1においてSWLカウンタ回路23(図3)のノードNC1はLowレベルにあるとしたが、本願開示において特にLowレベルに限定されるものではない。本願開示は揮発性メモリに適用されるものである。揮発性メモリの半導体記憶装置21は、電源投入の後に行われるアクセス動作でのWRITEコマンドにおいて入力された外部データの情報を記憶しておくものであって、その後のREADコマンドにおいて記憶されているデータを外部出力するものである。このためWRITEコマンドで入力される時のSWLカウンタ回路23(図3)のノードNC1の論理に合わせてデータの反転/非反転をさせ、その後のREADコマンドでもデータを外部出力する時のノードNC1の論理でデータの反転/非反転をさせれば、自動的にWRITEコマンドの後READコマンドまでに当該サブワード線が活性化された回数(偶数回、または奇数回)にあわせ、WRITEコマンド時とREADコマンド時で、外部データの入力論理(反転/非反転)と、外部出力データの論理(反転/非反転)が合うことになる。従って、電源投入の直後などにSWLカウンタ回路23(図3)のノードNC1をLowレベルに初期化する必要性は無く、ノードNC1の初期の論理は、電源投入においてインバータ回路INV2、INV3で構成されるラッチ回路で偶然決まる論理でも良い。 In the example of the waveform displayed in FIG. 6, the node NC1 of the SWL counter circuit 23 (FIG. 3) is at the low level at the timing T1, but the present disclosure is not particularly limited to the low level. The present disclosure is applied to a volatile memory. The volatile memory semiconductor memory device 21 stores information of external data input in the WRITE command in the access operation performed after power-on, and the data stored in the subsequent READ command. Is output externally. Therefore, data is inverted / non-inverted according to the logic of the node NC1 of the SWL counter circuit 23 (FIG. 3) when it is input by the WRITE command, and the data of the node NC1 when the data is output externally also by the subsequent READ command. If the data is inverted / non-inverted by logic, the number of times the sub word line is activated (even times or odd times) after the WRITE command and before the READ command is automatically set. Sometimes, the input logic (inverted / non-inverted) of the external data matches the logic (inverted / non-inverted) of the external output data. Therefore, there is no need to initialize the node NC1 of the SWL counter circuit 23 (FIG. 3) to a low level immediately after the power is turned on, and the initial logic of the node NC1 is composed of the inverter circuits INV2 and INV3 when the power is turned on. The logic may be determined by chance by the latch circuit.
(比較例)
 次に、第1の実施形態による効果を示すために、図14~図16を参照して特許文献1に開示された比較例について説明する。尚、図14~図16において、第1の実施形態と実質的に同様に機能する構成要素に対しては、同じ参照符号を付し説明を省略する。
(Comparative example)
Next, in order to show the effects of the first embodiment, a comparative example disclosed in Patent Document 1 will be described with reference to FIGS. In FIG. 14 to FIG. 16, the same reference numerals are assigned to components that function in substantially the same manner as in the first embodiment, and description thereof is omitted.
 図14は、比較例の半導体記憶装置121の構成を示すブロック図である。比較例の半導体記憶装置121は、第1の実施形態の半導体記憶装置21に対して、以下の2点が相違している。第1に、比較例の半導体記憶装置121は、第1の実施形態の半導体記憶装置21のデータ反転制御信号生成部32を備えていない構成になっている。 FIG. 14 is a block diagram showing a configuration of a semiconductor memory device 121 of a comparative example. The semiconductor memory device 121 of the comparative example is different from the semiconductor memory device 21 of the first embodiment in the following two points. First, the semiconductor memory device 121 of the comparative example is configured not to include the data inversion control signal generation unit 32 of the semiconductor memory device 21 of the first embodiment.
 第2に、比較例の半導体記憶装置121のセンスアンプ59は、ビット線8とセンスアンプ59のノードを接続するスイッチとして、リードスイッチ(N型トランジスタN22、N22A)とライトスイッチ(N型トランジスタN3、N3A)の2種類のスイッチを備えている。そして、読み出し時は、リードスイッチN22、またはN22Aを導通させてビット線8と反転センスアンプビット線BLSAB(第1ノード)を接続する。一方、書き込み時は、ライトスイッチN3、またはN3Aを導通させてビット線8と非反転センスアンプビット線BLSAT(第2ノード)を接続する。また、制御信号TGR、TGRAはリードスイッチN22、N22Aをオン/オフ制御する制御信号であり、制御信号TGW、TGWAはライトスイッチN3、N3Aをオン/オフ制御する制御信号である。 Second, the sense amplifier 59 of the semiconductor memory device 121 of the comparative example has a read switch (N-type transistors N22, N22A) and a write switch (N-type transistor N3) as switches that connect the bit line 8 and the node of the sense amplifier 59. , N3A). At the time of reading, the read switch N22 or N22A is turned on to connect the bit line 8 and the inverted sense amplifier bit line BLSAB (first node). On the other hand, at the time of writing, the write switch N3 or N3A is turned on to connect the bit line 8 and the non-inverted sense amplifier bit line BLSAT (second node). Control signals TGR and TGRA are control signals for controlling on / off of the reed switches N22 and N22A. Control signals TGW and TGWA are control signals for controlling on / off of the light switches N3 and N3A.
 比較例では、サイリスタメモリのように読み出し時にビット線8に検出される電圧を反転せずに書き戻した場合に記憶状態が反転するメモリセルに対応するため、読み出し時と書き込み時とで、ビット線8と接続するセンスアンプ59のノードを互いに相補のノードに切り替えている。このようにビット線8とセンスアンプ59とを接続することで、第1の実施形態のように、PREコマンドで、メモリセル26に書き込み動作を行う度に記憶状態が反転することは発生しない。従って、READコマンド及びWRITEコマンドでデータを反転/非反転させる必要がないため、第1の実施形態のデータ反転制御信号生成部32を備えていない。 The comparative example corresponds to a memory cell in which the memory state is inverted when the voltage detected on the bit line 8 at the time of reading is written back without being inverted like a thyristor memory. The nodes of the sense amplifier 59 connected to the line 8 are switched to mutually complementary nodes. By connecting the bit line 8 and the sense amplifier 59 in this way, the storage state does not reverse every time a write operation is performed on the memory cell 26 by the PRE command as in the first embodiment. Therefore, since it is not necessary to invert / non-invert data by the READ command and the WRITE command, the data inversion control signal generation unit 32 of the first embodiment is not provided.
 次に、図16を参照しながら比較例の半導体記憶装置121の動作について説明する。図16では、メモリセル26が初期状態においてセルHighの場合とセルLowの場合の両方を表示している。図16中で、「H」が付いている波形は、初期状態でセルHighのメモリセルに関連した電圧波形を示し、「L」が付いている波形は初期状態でセルLowのメモリセルに関連した電圧波形を示している。以降の説明では、それぞれのメモリセルを、「H」のセル、「L」のセルと言うことにする。 Next, the operation of the semiconductor memory device 121 of the comparative example will be described with reference to FIG. In FIG. 16, both the case where the memory cell 26 is the cell high and the case where the memory cell 26 is the cell low are displayed in the initial state. In FIG. 16, a waveform with “H” indicates a voltage waveform related to the memory cell of the cell High in the initial state, and a waveform with “L” relates to the memory cell of the cell Low in the initial state. The voltage waveform is shown. In the following description, the respective memory cells are referred to as “H” cells and “L” cells.
 図16の各種の制御信号のうち、図6(第1の実施形態)の制御信号と異なるのは、ACT動作時にTGRを活性化し、PRE動作時にTGWを活性化している点だけであるので、以下の説明において制御信号の説明は重複するため省略する。図16も、ACT動作、及びPRE動作のみのリフレッシュ動作を示している。アクセス動作では、ACTコマンドとPREコマンドとの間に、READコマンド及び、またはWRITEコマンドが実行される。 Among the various control signals in FIG. 16, the only difference from the control signal in FIG. 6 (first embodiment) is that TGR is activated during the ACT operation and TGW is activated during the PRE operation. In the following description, description of the control signal is omitted because it overlaps. FIG. 16 also shows a refresh operation only for the ACT operation and the PRE operation. In the access operation, a READ command or a WRITE command is executed between the ACT command and the PRE command.
 また、図16において、「H」のセルのT1~T4の動作は、図6のT1’~T4’と同様であるため、説明を省略する。また、「L」のセルのT1~T4の動作は、図6のT1~T4と同様であるため、説明を省略する。 Also, in FIG. 16, the operations of T1 to T4 of the “H” cell are the same as those of T1 ′ to T4 ′ of FIG. Further, the operations of T1 to T4 of the “L” cell are the same as those of T1 to T4 in FIG.
 アクセス動作ではタイミングT4の後に、READコマンド及び、またはWRITEコマンドを実行する。 In the access operation, a READ command and / or a WRITE command are executed after timing T4.
 続いて、外部からPREコマンドが与えられると、タイミングT5において制御信号TGWが活性化し、ビット線8はセンスアンプ59の非反転センスアンプビット線BLSATと接続される。このとき、図16の破線枠領域Rに示すように、ビット線8の電圧は大きく変化する。具体的には、「H」のセルの場合、ビット線8の電圧(BL「H」)は、ACT動作時にサイリスタ36が導通状態となり電流が流れて徐々に低下するが、タイミングT5で非反転センスアンプビット線BLSATから電圧VARY(BLSAT「H」)が供給されて、電圧VARYに立ち上がる。一方、「L」のセルの場合、ビット線8の電圧(BL「L」)は、ACT動作時にサイリスタ36は非導通状態でサイリスタ36を介して電流が流れないのでBL「L」は電圧VARYを維持している。そして、タイミングT5で非反転センスアンプビット線BLSATから電圧VSS(BLSAT「L」)が供給されると、電圧VSSに立ち下がる。 Subsequently, when a PRE command is given from the outside, the control signal TGW is activated at timing T 5, and the bit line 8 is connected to the non-inverted sense amplifier bit line BLSAT of the sense amplifier 59. At this time, as indicated by a broken-line frame region R in FIG. 16, the voltage of the bit line 8 changes greatly. Specifically, in the case of the “H” cell, the voltage (BL “H”) of the bit line 8 is gradually decreased due to the thyristor 36 being in a conductive state during the ACT operation and flowing, but is not inverted at the timing T5. The voltage VARY (BLSAT “H”) is supplied from the sense amplifier bit line BLSAT, and rises to the voltage VARY. On the other hand, in the case of the “L” cell, the voltage (BL “L”) of the bit line 8 is the voltage VARY because the thyristor 36 is in a non-conductive state during ACT operation and no current flows through the thyristor 36. Is maintained. When the voltage VSS (BLSAT “L”) is supplied from the non-inverting sense amplifier bit line BLSAT at the timing T5, the voltage VSS falls.
 このように、比較例の半導体記憶装置121の場合、PREコマンドを開始した直後のタイミングT5において、破線枠領域Rに示すように、ビット線8の電圧が反転するため、ビット線8の充放電による消費電流が大きくなる。特に、ビット線8と隣接ビット線8n間で、異なるデータを扱っている場合(即ち、図16において、ビット線8と隣接ビット線8nのうち、一方が「H」のセル、他方が「L」のセルと接続されている場合)、タイミングT5でお互いの電圧が逆転するので、ビット線8と隣接ビット線8n間のカップリング容量(図15の31)の充放電による消費電流が非常に大きくなってしまう問題がある。 As described above, in the case of the semiconductor memory device 121 of the comparative example, the voltage of the bit line 8 is inverted at the timing T5 immediately after the PRE command is started, as indicated by the broken line frame region R. The current consumption due to increases. In particular, when different data is handled between the bit line 8 and the adjacent bit line 8n (that is, in FIG. 16, one of the bit line 8 and the adjacent bit line 8n is an “H” cell, and the other is “L”. ”), The voltages are reversed at timing T5, so that the current consumption due to charging / discharging of the coupling capacitance (31 in FIG. 15) between the bit line 8 and the adjacent bit line 8n is very high. There is a problem that gets bigger.
 次に、図16のタイミングT6~T9の動作波形は、FB節点の波形を除いて、「H」のセルの場合は、図6(第1の実施形態)のタイミングT6~T9と同様であり、「L」のセルの場合は、図6(第1の実施形態)のタイミングT6’~T9’の動作と同様である。そこで、FB節点の電圧について以下に説明する。 Next, the operation waveforms at timings T6 to T9 in FIG. 16 are the same as the timings T6 to T9 in FIG. 6 (first embodiment) in the case of the “H” cell, except for the waveform of the FB node. In the case of the “L” cell, the operation is the same as that at the timings T6 ′ to T9 ′ in FIG. 6 (first embodiment). Therefore, the voltage at the FB node will be described below.
 「H」のセルの場合、タイミングT5でビット線8の電圧がVARYに立ち上がった後、サイリスタ36は導通している。サイリスタ36が導通している場合、FB節点はPNPトランジスタQ2のオン抵抗と、FB節点とVSS(カソード)との間のPN接合ダイオードの内部抵抗との比で決まる電圧VONのレベルになる。また、タイミングT6においても、FB節点は電圧VONのレベルを維持する。 In the case of the “H” cell, the thyristor 36 is conductive after the voltage of the bit line 8 rises to VARY at the timing T5. When the thyristor 36 is conductive, the FB node is at the level of the voltage VON determined by the ratio between the ON resistance of the PNP transistor Q2 and the internal resistance of the PN junction diode between the FB node and VSS (cathode). Also at the timing T6, the FB node maintains the level of the voltage VON.
 「L」のセルの場合、タイミングT5でビット線BLの電圧がVSSに立ち下がった後、サイリスタ36は非導通になる。サイリスタ36が非導通の場合、タイミングT6で、キャパシタC1を介してFB節点の電圧はVBI以上に一旦上昇するが、FB節点の電圧とカソードVSSとの間のPN接合により、電圧VBIレベルまで高速に低下する。 In the case of the “L” cell, the thyristor 36 becomes non-conductive after the voltage of the bit line BL falls to VSS at the timing T5. When the thyristor 36 is non-conductive, the voltage at the FB node once rises to VBI or higher through the capacitor C1 at timing T6, but the voltage is increased to the voltage VBI level by the PN junction between the voltage at the FB node and the cathode VSS. To drop.
 続いて、「H」のセルの場合、タイミングT8までサイリスタ36は導通しているので、FB節点は電圧VONを維持する。一方、「L」のセルの場合、タイミングT7において、FB節点はキャパシタC1を介してサブワード線SWLiの電圧がワード線プリチャージ電圧VWLPまで低下するのに伴い、電圧が低下する。 Subsequently, in the case of the “H” cell, since the thyristor 36 is conductive until the timing T8, the FB node maintains the voltage VON. On the other hand, in the case of the “L” cell, at the timing T7, the voltage at the FB node decreases as the voltage of the sub word line SWLi decreases to the word line precharge voltage VWLP via the capacitor C1.
 次に、「H」のセルの場合、タイミングT8でビット線8の電圧がVSSまで低下すると、サイリスタ36が非導通になりFB節点は電圧VBIまで低下する。一方、「L」のセルの場合は、タイミングT8の前からサイリスタ36は非導通であるため、FB節点の電圧は変化しない。 Next, in the case of the “H” cell, when the voltage of the bit line 8 decreases to VSS at the timing T8, the thyristor 36 becomes non-conductive and the FB node decreases to the voltage VBI. On the other hand, in the case of the “L” cell, since the thyristor 36 is non-conductive before the timing T8, the voltage at the FB node does not change.
 次に、タイミング9において、「H」のセル、「L」のセルは、いずれもサイリスタ36が非導通であるため、キャパシタC1を介してサブワード線SWLiの電圧がVWLPからVWLSに低下したことに伴って、それぞれ電圧が低下する。その結果、「H」のセルの場合は、FB節点は電圧VHになり、「L」のセルの場合は、FB節点は電圧VLになる。 Next, at timing 9, since the thyristor 36 is non-conductive in both the “H” cell and the “L” cell, the voltage of the sub-word line SWLi has decreased from VWLP to VWLS via the capacitor C 1. Along with this, the voltage decreases. As a result, in the case of the “H” cell, the FB node becomes the voltage VH, and in the case of the “L” cell, the FB node becomes the voltage VL.
 次に、第1の実施形態と比較例を比較することにより、第1の実施形態で得られる効果について説明する。 Next, effects obtained in the first embodiment will be described by comparing the first embodiment with a comparative example.
 第1に、比較例の半導体記憶装置121のセンスアンプ59では、読み出し時にビット線8と接続するリードスイッチN22、N22Aと、書き込み時にビット線8と接続するライトスイッチN3、N3Aの2種類のスイッチを備えている。一方、第1の実施形態の半導体記憶装置21のセンスアンプ19では、読み出し時と書き込み時で共通化したリードライトスイッチN2、N2Aのみで構成している。これにより、第1の実施形態では、センスアンプ19のレイアウトサイズを小さくすることが可能になる。 First, in the sense amplifier 59 of the semiconductor memory device 121 of the comparative example, two types of switches, read switches N22 and N22A connected to the bit line 8 at the time of reading, and write switches N3 and N3A connected to the bit line 8 at the time of writing. It has. On the other hand, the sense amplifier 19 of the semiconductor memory device 21 according to the first embodiment is composed of only the read / write switches N2 and N2A that are shared during reading and writing. Thereby, in the first embodiment, the layout size of the sense amplifier 19 can be reduced.
 第2に、比較例の半導体記憶装置121では、ACT動作の後、PRE動作に移行する際に、ビット線8の電圧を反転させるため、ビット線8の充放電による消費電流が大きくなる(図16の破線枠領域R)。特に、ビット線8と隣接ビット線8n間とで異なるデータを扱っている場合にカップリング容量(図15の31)の充放電による消費電流が非常に大きくなる。一方、第1の実施形態の半導体記憶装置21では、ACT動作の後、PRE動作に移行する際に、ビット線8の電圧を反転させないため、比較例で問題となるビット線8の充放電、及びビット線8と隣接ビット線8n間のカップリング容量(図15の31)の充放電による消費電流を削減することができる。 Secondly, in the semiconductor memory device 121 of the comparative example, the voltage of the bit line 8 is inverted when shifting to the PRE operation after the ACT operation, so that the current consumption due to charging / discharging of the bit line 8 increases (FIG. 16 dashed frame regions R). In particular, when different data is handled between the bit line 8 and the adjacent bit line 8n, current consumption due to charging / discharging of the coupling capacitor (31 in FIG. 15) becomes very large. On the other hand, in the semiconductor memory device 21 of the first embodiment, the voltage of the bit line 8 is not inverted when the PRE operation is performed after the ACT operation. In addition, current consumption due to charging / discharging of the coupling capacitance (31 in FIG. 15) between the bit line 8 and the adjacent bit line 8n can be reduced.
 また、第1の実施形態では、PRE動作を行う度にメモリセル26の記憶状態が反転するが、データ反転制御信号14に応じてデータアンプ6でデータを反転/非反転させることにより、外部出力するデータを正転した論理とすることができる。また、データを外部入力する際にも、データ反転制御信号14に応じてデータアンプ6でデータを反転/非反転させることにより、センスアンプ19のフリップフロップF.F.に書き込むデータを、データ反転制御信号14に対応した値にすることができる。 In the first embodiment, the memory state of the memory cell 26 is inverted every time the PRE operation is performed. However, the data amplifier 6 inverts / non-inverts the data in accordance with the data inversion control signal 14, thereby external output. It is possible to make the data to be forward rotated logic. In addition, when data is externally input, the data amplifier 6 inverts / non-inverts the data in accordance with the data inversion control signal 14, so that the flip-flop F. F. The data to be written to can be set to a value corresponding to the data inversion control signal 14.
(第1の実施形態の変形例1)
 次に、第1の実施形態の変形例1について、図7を参照しながら説明する。図7は、第1の実施形態の変形例1によるFBCメモリのメモリセル27の回路図である。第1の実施形態ではメモリ素子はサイリスタ36であったが、第1の実施形態の変形例1のメモリ素子はバイポーラトランジスタ37である。しかし、メモリ素子の構造及び動作原理が若干違うことを除いて基本的な書き込み及び読み出し動作波形や回路構成はほとんど第1の実施形態と変える必要はない。以下に第1の実施形態と異なる点のみ説明する。図7において、第1の実施形態の図4と比較すると、第1の実施形態では、ビット線(BL)8がサイリスタのアノードに接続されていたのに対して第1の実施形態の変形例1では、バイポーラトランジスタ37のコレクタに接続されている。また、エミッタが電源ノード102に接続され、ベースがキャパシタC2のサブワード線SWLの対向電極に接続されている。
(Modification 1 of the first embodiment)
Next, Modification 1 of the first embodiment will be described with reference to FIG. FIG. 7 is a circuit diagram of the memory cell 27 of the FBC memory according to the first modification of the first embodiment. Although the memory element is the thyristor 36 in the first embodiment, the memory element of the first modification of the first embodiment is the bipolar transistor 37. However, the basic write and read operation waveforms and circuit configuration need not be changed from the first embodiment except that the structure and operation principle of the memory element are slightly different. Only differences from the first embodiment will be described below. In FIG. 7, compared with FIG. 4 of the first embodiment, in the first embodiment, the bit line (BL) 8 is connected to the anode of the thyristor, whereas the modification of the first embodiment. 1 is connected to the collector of the bipolar transistor 37. The emitter is connected to the power supply node 102, and the base is connected to the counter electrode of the sub word line SWL of the capacitor C2.
 FBCメモリのメモリセルの動作原理に関しては、特許文献1に詳細が記載されており、説明は省略する。 The operation principle of the memory cell of the FBC memory is described in detail in Patent Document 1, and the description is omitted.
 また、前述した第1の実施形態の説明において、メモリセル26と記載されている箇所をメモリセル27と読み変え、メモリ素子についてサイリスタ36と記載されている箇所をバイポーラトランジスタ37と読み変えれば、第1の実施形態の説明はそのまま第1の実施形態の変形例1の説明とすることができる。 Further, in the description of the first embodiment described above, if the location described as the memory cell 26 is read as the memory cell 27 and the location indicated as the thyristor 36 for the memory element is read as the bipolar transistor 37, The description of the first embodiment can be used as it is for the first modification of the first embodiment.
 第1の実施形態の変形例1では、第1の実施形態と同様の効果が得られる。 In the first modification of the first embodiment, the same effect as in the first embodiment can be obtained.
(第1の実施形態の変形例2)
 次に、第1の実施形態の変形例2について、図8を参照しながら説明する。図8は、一般的なサイリスタメモリのメモリセル28の回路図である。FB節点をサブストレートとするNMOSトランジスタNCがある。そして、PNPトランジスタQ4、寄生NPNトランジスタQ3がサイリスタ38を構成している。節点FNのN型領域がベースとなるPNPトランジスタQ4のエミッタはビット線BL(アノード)に接続され、NMOSトランジスタNCのゲートはサブワード線SWLに接続され、NMOSトランジスタNCのソースは電源ノード102に接続される。非選択時のFB節点はフローティングであり、NMOSトランジスタNCのゲートとFB節点の間のゲート容量に電荷を蓄えることでメモリ動作する。
(Modification 2 of the first embodiment)
Next, Modification 2 of the first embodiment will be described with reference to FIG. FIG. 8 is a circuit diagram of a memory cell 28 of a general thyristor memory. There is an NMOS transistor NC whose substrate is an FB node. The PNP transistor Q4 and the parasitic NPN transistor Q3 constitute a thyristor 38. The emitter of the PNP transistor Q4 whose base is the N-type region of the node FN is connected to the bit line BL (anode), the gate of the NMOS transistor NC is connected to the sub word line SWL, and the source of the NMOS transistor NC is connected to the power supply node 102. Is done. When not selected, the FB node is floating, and a memory operation is performed by storing electric charge in the gate capacitance between the gate of the NMOS transistor NC and the FB node.
 前述した第1の実施形態の説明において、サイリスタメモリのメモリセル26と記載されている箇所をサイリスタメモリのメモリセル28と読み変え、サイリスタ36と記載されている箇所をサイリスタ38と読み変えれば、第1の実施形態の説明はそのまま第1の実施形態の変形例2の説明とすることができる。 In the description of the first embodiment described above, if the location described as the memory cell 26 of the thyristor memory is replaced with the memory cell 28 of the thyristor memory, and the location described as the thyristor 36 is replaced with the thyristor 38, The description of the first embodiment can be used as it is for the modification 2 of the first embodiment.
 第1の実施形態の変形例2では、第1の実施形態と同様の効果が得られる。 In the second modification of the first embodiment, the same effect as in the first embodiment can be obtained.
(第1の実施形態の変形例3)
 次に、第1の実施形態の変形例3について、図9を参照しながら説明する。図9は、一般的なFBCメモリのメモリセル29の回路図である。節点FBをサブストレートとするNMOSトランジスタNCがあり、バイポーラトランジスタ39が構成されている。NMOSトランジスタNCのドレインはビット線BL(ドレイン)に接続され、NMOSトランジスタNCのゲートはサブワード線SWLに接続され、NMOSトランジスタNCのソースは電源ノード102に接続される。非選択時のFB節点はフローティングであり、NMOSトランジスタNCのゲートとFB節点の間のゲート容量に電荷を蓄えることでメモリ動作する。
(Modification 3 of the first embodiment)
Next, a third modification of the first embodiment will be described with reference to FIG. FIG. 9 is a circuit diagram of a memory cell 29 of a general FBC memory. There is an NMOS transistor NC having a node FB as a substrate, and a bipolar transistor 39 is formed. The drain of the NMOS transistor NC is connected to the bit line BL (drain), the gate of the NMOS transistor NC is connected to the sub word line SWL, and the source of the NMOS transistor NC is connected to the power supply node 102. When not selected, the FB node is floating, and a memory operation is performed by storing electric charge in the gate capacitance between the gate of the NMOS transistor NC and the FB node.
 前述した第1の実施形態の説明において、サイリスタメモリのメモリセル26と記載されている箇所をFBCメモリのメモリセル29と読み変え、サイリスタ36と記載されている箇所をバイポーラトランジスタ39と読み変えれば、第1の実施形態の説明はそのまま第1の実施形態の変形例3の説明とすることができる。 In the description of the first embodiment described above, the place where the memory cell 26 of the thyristor memory is read as the memory cell 29 of the FBC memory, and the place where the thyristor 36 is written is read as the bipolar transistor 39. The description of the first embodiment can be used as it is for the modification 3 of the first embodiment.
 第1の実施形態の変形例3では、第1の実施形態と同様の効果が得られる。 In the third modification of the first embodiment, the same effect as in the first embodiment can be obtained.
[第2の実施形態]
(第2の実施形態の構成)
 次に、第2の実施形態の構成について、図10~図12を参照しながら説明する。第2の実施形態は、第1の実施形態のSWLカウンタ回路23を、メモリセル26と実質的に同じカウンタセル(図11の16a)に置き換え、カウンタセル(図11の16a)により、SWLiが活性化した回数をカウントするようにしている。即ち、実施形態の概要説明で参照した図1のカウンタ104は、第2の実施形態では、カウンタセル(図11の16a)により構成される。
[Second Embodiment]
(Configuration of Second Embodiment)
Next, the configuration of the second embodiment will be described with reference to FIGS. In the second embodiment, the SWL counter circuit 23 of the first embodiment is replaced with a counter cell (16a in FIG. 11) substantially the same as the memory cell 26, and SWLi is reduced by the counter cell (16a in FIG. 11). The number of activations is counted. That is, the counter 104 in FIG. 1 referred to in the outline description of the embodiment is configured by a counter cell (16a in FIG. 11) in the second embodiment.
 図10は第2の実施形態に係る半導体記憶装置22の構成を示すブロック図である。図10を図2(第1の実施形態)と比較すると分かるように、図10の半導体記憶装置22は、図2のデータ反転制御信号生成部32をデータ反転制御信号生成部42(図10中の一点鎖線内)に置き換えた構成になっている。その他の部分は、図2と同様であり、同じ参照符号を付し、重複する説明を省略する。ここで、データ反転制御信号生成部42は、カウンタセル16a(図11)を含み、サブワード線SWLiと接続されたメモリセル26の読み出し/書き込み動作と同時に、サブワード線SWLiと接続されたカウンタセル16aの読み出し/書き込み動作を行い、該カウンタセル16aから読み出したデータに基づいて、データ反転制御信号14を生成する。 FIG. 10 is a block diagram showing a configuration of the semiconductor memory device 22 according to the second embodiment. As can be seen by comparing FIG. 10 with FIG. 2 (first embodiment), the semiconductor memory device 22 of FIG. 10 replaces the data inversion control signal generator 32 of FIG. 2 with the data inversion control signal generator 42 (in FIG. 10). It is a configuration that is replaced with (within the alternate long and short dash line). The other parts are the same as those in FIG. 2, and are given the same reference numerals and redundant description is omitted. Here, the data inversion control signal generation unit 42 includes the counter cell 16a (FIG. 11), and simultaneously with the read / write operation of the memory cell 26 connected to the sub word line SWLi, the counter cell 16a connected to the sub word line SWLi. The data inversion control signal 14 is generated based on the data read from the counter cell 16a.
 図10において、カウンタセル16a(図11)は、Xデコ-ダ4側に最も近い位置のビット線であるカウンタビット線(CBL)8aに接続される。図10において、複数のセル領域1のうち、カウンタビット線8aを含むセル領域を、カウンタセル付きセル領域1aと言う。また、カウンタビット線8aは、センスアンプ19と同じ構成のカウンタセル用センスアンプ(図11の49:CSA)と接続される。図10において、カウンタセル用センスアンプ(CSA)49を含む領域を、カウンタセル用センスアンプ付きセンスアンプ領域(CSA付きSA領域)2aと言う。 In FIG. 10, the counter cell 16a (FIG. 11) is connected to a counter bit line (CBL) 8a which is a bit line closest to the X decoder 4 side. In FIG. 10, a cell region including the counter bit line 8a among the plurality of cell regions 1 is referred to as a cell region 1a with a counter cell. The counter bit line 8a is connected to a counter cell sense amplifier (49: CSA in FIG. 11) having the same configuration as that of the sense amplifier 19. In FIG. 10, a region including the counter cell sense amplifier (CSA) 49 is referred to as a counter cell sense amplifier-equipped sense amplifier region (SA region with CSA) 2a.
 さらに、図10のデータ反転制御信号生成部42は、バッファ回路15と、CYS発生回路5aを含んでいる。これらの詳細は後述する。 Furthermore, the data inversion control signal generation unit 42 in FIG. 10 includes a buffer circuit 15 and a CYS generation circuit 5a. Details of these will be described later.
 次に、図11を参照しながら、カウンタセル16aとカウンタセル用センスアンプ(CSA)49の構成について説明する。図11は、2つのカウンタセル付きセル領域1aと、それらの間に配置されたCSA付きSA領域2aを示している。図11に示すように、複数のサブワード線7に対応して、複数のカウンタセル16aがカウンタビット線(CBL)8aに接続されている。 Next, the configuration of the counter cell 16a and the counter cell sense amplifier (CSA) 49 will be described with reference to FIG. FIG. 11 shows two cell areas 1a with counter cells and an SA area 2a with CSA arranged between them. As shown in FIG. 11, a plurality of counter cells 16a are connected to a counter bit line (CBL) 8a corresponding to the plurality of sub-word lines 7.
 また、カウンタビット線(CBL)8aと接続されるカウンタセル用センスアンプ(CSA)49の構成も、ビット線8に接続されるセンスアンプ19(図11のSA0、SA1等)の構成と同じである。電源投入後、あるサブワード線SWLiが活性化すると、サブワード線SWLiに接続されたカウンタセル16aは、サブワード線SWLiに接続されたメモリセル26と同様に、ACTコマンド時とPREコマンド時に、それぞれ読み出し動作と書き込み動作を行う。 The configuration of the counter cell sense amplifier (CSA) 49 connected to the counter bit line (CBL) 8a is the same as the configuration of the sense amplifier 19 (SA0, SA1, etc. in FIG. 11) connected to the bit line 8. is there. When a certain sub word line SWLi is activated after the power is turned on, the counter cell 16a connected to the sub word line SWLi performs a read operation at the time of an ACT command and a PRE command, respectively, similarly to the memory cell 26 connected to the sub word line SWLi. And write operation.
 上記の構成により、各カウンタセル16aは、対応したサブワード線SWLiが活性化すると、PREコマンド動作の時にカウントアップし、活性化した回数をカウンタセル16aに保持する。具体的には、PREコマンド動作の時に、活性化した回数が偶数のときと奇数のときで、セルLow、セルHighを反転させて書き込まれ、データを保持する。なお、活性化した回数が偶数、奇数のときのセルLow、セルHighの対応はどちらでもかまわない。電源投入後当該セル(当該サブワード線)が最初に活性化されたときにカウンタセル用センスアンプ(CSA)のフリップフロップF.F.を活性化(電源SAPをHigh、電源SANをLowにする)した時に、非反転センスアンプビット線BLSATと反転センスアンプビット線BLSABの論理のHigh、Lowが偶然に左右されて決着するが、その決着した論理で活性化した回数の偶数、奇数と、セルLow、セルHighとを対応させれば良く、またこの対応は電源投入を続けている限り引き継がれる。 With the above configuration, each counter cell 16a counts up during the PRE command operation when the corresponding sub word line SWLi is activated, and holds the number of activations in the counter cell 16a. Specifically, during the PRE command operation, the cell Low and the cell High are inverted and written when the number of times of activation is even and odd, and the data is retained. Note that the correspondence between the cell low and the cell high when the number of times of activation is even or odd may be either. When the cell (the sub word line) is first activated after power-on, the flip-flop F.F of the counter cell sense amplifier (CSA) is activated. F. Is activated (the power supply SAP is set to High and the power supply SAN is set to Low), the logic High and Low of the non-inverted sense amplifier bit line BLSAT and the inverted sense amplifier bit line BLSAB are influenced by chance, and are determined. The even number and the odd number of times of activation with the determined logic may be associated with the cell low and cell high, and this correspondence is inherited as long as the power is turned on.
 カウンタセル用センスアンプ(CSA)49のフリップフロップF.F.の反転センスアンプビット線BLSAB及び非反転センスアンプビット線BLSATは、N型トランジスタN6、N7を介してそれぞれ反転カウンタIO線(CIOB線)、非反転カウンタIO線(CIOT線)と接続される。カウンタセル用センスアンプ(CSA)49内のN型トランジスタN6、N7は、CYS発生回路5aが出力するカウンタカラム選択信号(CYS)9aによりオン/オフ制御される。即ち、カウンタカラム選択信号(CYS)9aが活性化状態のときに、カウンタセル用センスアンプ(CSA)49の反転センスアンプビット線BLSAB及び非反転センスアンプビット線BLSATは、それぞれCIOB線、CIOT線と接続される。 Flip-flop F. of the sense amplifier (CSA) 49 for counter cell. F. Inverted sense amplifier bit line BLSAB and non-inverted sense amplifier bit line BLSAT are connected to an inverted counter IO line (CIOB line) and a non-inverted counter IO line (CIOT line) through N-type transistors N6 and N7, respectively. The N-type transistors N6 and N7 in the counter cell sense amplifier (CSA) 49 are ON / OFF controlled by a counter column selection signal (CYS) 9a output from the CYS generation circuit 5a. That is, when the counter column selection signal (CYS) 9a is in the activated state, the inverted sense amplifier bit line BLSAB and the non-inverted sense amplifier bit line BLSAT of the counter cell sense amplifier (CSA) 49 are the CIOB line and the CIOT line, respectively. Connected.
 次に、図11のバッファ回路15の詳細について、図12を参照しながら説明する。図12はバッファ回路15の回路図である。バッファ回路15は、CIOB線、CIOT線を介して読み出したカウンタセル用センスアンプ(CSA)49のフリップフロップF.F.の信号を入力し、データ反転制御信号14を出力する回路である。バッファ回路15は、ドライバを構成するP型トランジスタP91及びN型トランジスタN91を備えている。P型トランジスタP91及びN型トランジスタN91のゲートには、それぞれNAND回路91、NOR回路91の出力端子が接続される。また、NAND回路91、NOR回路91の一端にはCIOBT線が接続される。また、NAND回路91、NOR回路91の他端にはインバータ回路INV91を介してCIOB線が接続される。また、P型トランジスタP92が、電源VARYとCIOB線の間に接続される。また、P型トランジスタP93が、電源VARYとCIOT線の間に接続される。ここで、P型トランジスタP92、P93のゲートは共に電源SAPに接続される。 Next, details of the buffer circuit 15 of FIG. 11 will be described with reference to FIG. FIG. 12 is a circuit diagram of the buffer circuit 15. The buffer circuit 15 includes a flip-flop F.F. of the counter cell sense amplifier (CSA) 49 read via the CIOB line and the CIOT line. F. Is a circuit that outputs the data inversion control signal 14. The buffer circuit 15 includes a P-type transistor P91 and an N-type transistor N91 that constitute a driver. The output terminals of the NAND circuit 91 and the NOR circuit 91 are connected to the gates of the P-type transistor P91 and the N-type transistor N91, respectively. Also, the CIOBT line is connected to one end of the NAND circuit 91 and the NOR circuit 91. The CIOB line is connected to the other ends of the NAND circuit 91 and the NOR circuit 91 through an inverter circuit INV91. A P-type transistor P92 is connected between the power supply VARY and the CIOB line. A P-type transistor P93 is connected between the power supply VARY and the CIOT line. Here, the gates of the P-type transistors P92 and P93 are both connected to the power supply SAP.
 上記の構成により、電源SAPがLowレベルのときには、P型トランジスタP92、P93がオンし、P型トランジスタP92、P93のドレインが電圧VARYになり、P型トランジスタP91及びN型トランジスタN91が共にオフし、データ反転制御信号14は、フローティング状態となる。 With the above configuration, when the power supply SAP is at the low level, the P-type transistors P92 and P93 are turned on, the drains of the P-type transistors P92 and P93 are at the voltage VARY, and both the P-type transistor P91 and the N-type transistor N91 are turned off. The data inversion control signal 14 is in a floating state.
 また、電源SAPがHighレベルのときで、CIOB線がHighレベル、CIOT線がLowレベルの場合には、NAND回路91及びNOR回路91の出力が共にHighレベルになり、データ反転制御信号14はLowレベルになる。また、電源SAPがHighレベルのときで、CIOB線がLowレベル、CIOT線がHighレベルの場合には、NAND回路91及びNOR回路91の出力が共にLowレベルになり、データ反転制御信号14は電圧VARYのHighレベルになる。即ち、バッファ回路15は電源SAPがHighレベルかつカウンタカラム選択信号(CYS)が活性の時に、カウンタセル用センスアンプ(CSA)49の非反転センスアンプビット線BLSATのレベルをデータ反転制御信号14に出力する。 When the power supply SAP is at a high level and the CIOB line is at a high level and the CIOT line is at a low level, the outputs of the NAND circuit 91 and the NOR circuit 91 are both at a high level, and the data inversion control signal 14 is low. Become a level. When the power supply SAP is at a high level and the CIOB line is at a low level and the CIOT line is at a high level, the outputs of the NAND circuit 91 and the NOR circuit 91 are both at a low level, and the data inversion control signal 14 is a voltage. It becomes VARY High level. That is, the buffer circuit 15 sets the level of the non-inverted sense amplifier bit line BLSAT of the counter cell sense amplifier (CSA) 49 to the data inversion control signal 14 when the power supply SAP is at a high level and the counter column selection signal (CYS) is active. Output.
(第2の実施形態の動作)
 次に、第2の実施形態の動作について、図13を参照しながら説明する。第2の実施形態の半導体記憶装置22において、第1の実施形態の半導体記憶装置21と異なる動作となる部分は、データ反転制御信号生成部42の部分の動作である。その他の部分に関しては第1の実施形態の半導体記憶装置21の動作を示す図6と同じであるので説明を省略する。
(Operation of Second Embodiment)
Next, the operation of the second embodiment will be described with reference to FIG. In the semiconductor memory device 22 of the second embodiment, the part that is different from the operation of the semiconductor memory device 21 of the first embodiment is the operation of the data inversion control signal generation unit 42. The other parts are the same as those in FIG. 6 showing the operation of the semiconductor memory device 21 of the first embodiment, and thus the description thereof is omitted.
 そこで、図13において、一点鎖線枠のカウンタカラム選択信号CYS及びデータ反転制御信号14についてのみ説明する。カウンタカラム選択信号CYSは、CYS発生回路5aが発生する。データ反転制御信号14が必要となる期間は、READコマンド及びWRITEコマンドの実行時である。そのため、CYS発生回路5aは、図13に示すようにACT動作が終了したタイミングT4においてカウンタカラム選択信号CYSを活性化(Highレベル)している。 Therefore, in FIG. 13, only the counter column selection signal CYS and the data inversion control signal 14 of the one-dot chain line frame are described. The counter column selection signal CYS is generated by the CYS generation circuit 5a. The period during which the data inversion control signal 14 is required is when the READ command and the WRITE command are executed. Therefore, as shown in FIG. 13, the CYS generation circuit 5a activates the counter column selection signal CYS (High level) at the timing T4 when the ACT operation ends.
 また、カウンタカラム選択信号CYSが活性化(Highレベル)状態で、電源SAPがHighレベルの場合に、バッファ回路15は、前述したように、活性化されたサブワード線SWLiに接続されたカウンタセル16aからCIOB線及びCIOT線を介して読み出したデータによりデータ反転制御信号14を生成する。 In addition, when the counter column selection signal CYS is activated (High level) and the power supply SAP is at the High level, the buffer circuit 15 as described above, the counter cell 16a connected to the activated sub word line SWLi. The data inversion control signal 14 is generated from the data read out via the CIOB line and the CIOT line.
 そして、データ反転制御信号14は、READコマンド及びWRITEコマンド実行時にデータアンプ6に供給される。そして、データアンプ6において、データ反転制御信号14に応じたデータの反転/非反転を行うことにより、データを外部出力する際に正転した論理のデータを出力することができる。また、データを外部入力する際に、センスアンプ19のフリップフロップF.F.に書き込むデータをデータ反転制御信号14対応したデータにすることができる。 The data inversion control signal 14 is supplied to the data amplifier 6 when the READ command and the WRITE command are executed. In the data amplifier 6, by performing the inversion / non-inversion of the data in accordance with the data inversion control signal 14, it is possible to output the normally inverted logic data when the data is output to the outside. When data is externally input, the flip-flop F.F. F. The data to be written to can be made to correspond to the data inversion control signal 14.
 以上説明したように、第2の実施形態による半導体記憶装置22によれば、第1の実施形態と同様に、ACT動作の後、PRE動作に移行する際に、ビット線8の充放電及びビット線8と隣接ビット線8n間のカップリング容量(図5の31)の充放電による消費電流が削減される。これにより、第1の実施形態と同様に、消費電流が削減される効果が得られる。さらに、第2の実施形態による半導体装置では、第1の実施形態のSWLカウンタ回路23をカウンタセル16aに置き換えることで、レイアウト面積を第1の実施形態よりも小さくすることができるという効果が得られる。 As described above, according to the semiconductor memory device 22 according to the second embodiment, as in the first embodiment, after the ACT operation, when the transition to the PRE operation is performed, the charge / discharge of the bit line 8 and the bit Current consumption due to charging / discharging of the coupling capacitance (31 in FIG. 5) between the line 8 and the adjacent bit line 8n is reduced. As a result, the effect of reducing the current consumption can be obtained as in the first embodiment. Furthermore, in the semiconductor device according to the second embodiment, the layout area can be made smaller than that of the first embodiment by replacing the SWL counter circuit 23 of the first embodiment with the counter cell 16a. It is done.
 本願開示は、サイリスタメモリやFBCメモリ等のように、読み出し動作から書き戻し動作に移行する際に、メモリセルの記憶状態の電位が反転するメモリ素子を用いた半導体記憶装置に適用すると有効である。 The present disclosure is effective when applied to a semiconductor memory device using a memory element in which the potential of the storage state of a memory cell is inverted when shifting from a read operation to a write back operation, such as a thyristor memory or an FBC memory. .
 なお、本発明の全開示(請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。 It should be noted that, within the scope of the entire disclosure (including claims and drawings) of the present invention, the embodiments can be changed and adjusted based on the basic technical concept. Various disclosed elements (including each element of each claim, each element of each embodiment, each element of each drawing, etc.) can be combined or selected within the framework of the entire disclosure of the present invention. That is, the present invention naturally includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the drawings, and the technical idea. In particular, with respect to the numerical ranges described in this document, any numerical value or small range included in the range should be construed as being specifically described even if there is no specific description.
1:セル領域
1a:カウンタセル付きセル領域
2:センスアンプ領域(SA領域)
2a:カウンタセル用センスアンプ付きセンスアンプ領域(CSA付きSA領域)
3:サブワード線ドライバ(ワード線ドライバ)
4:Xデコーダ
5:Yデコーダ
5a:CYS発生回路
6:データアンプ
7:サブワード線(SWL、SWLi)
8、120:ビット線(BL、BLA)
8a:カウンタビット線(CBL)
8n、131:隣接ビット線(隣接BL)
9:カラム選択信号(YS、YSi)
9a:カウンタカラム選択信号(CYS)
10a、10b:反転IO線(IOB)及び非反転IO線(IOT)
11:データ入出力回路
12:データ入出力端子
13:SWLカウンタ領域
14:データ反転制御信号
15:バッファ回路
16a:カウンタセル
19、59:センスアンプ(SA)
21、22、100、121:半導体記憶装置
23:SWLカウンタ回路(カウンタ回路)
26、26n、28:(サイリスタメモリの)メモリセル
27、29:FBCメモリのメモリセル
31、111:カップリング容量
32、42、112:データ反転制御信号生成部
36、38:サイリスタ
37、39:バイポーラトランジスタ
49:カウンタセル用センスアンプ(CSA)
101:メモリセル(MC)
102:電源ノード
103:メモリセルの制御端子
103a~d:サブワード線接続端子(メモリセルの制御端子)
104:カウンタ
105:リードライトスイッチ
106:保持回路
107:第1ノード
108:外部入出力回路
109:センスアンプ(SA、SAi)
110、110a~d:ビット線接続端子
122:ワード線(WL)
221:アノード
222:カソード
223:ゲート
C1、C2:キャパシタ
Q1、Q3:NPNトランジスタ
Q2、Q4:PNPトランジスタ
N1、N1A、N4~7、N91、M1~3:N型トランジスタ
N2、N2A:リードライトスイッチ(N型トランジスタ)
N22、N22A:リードスイッチ(N型トランジスタ)
N3、N3A:ライトスイッチ(N型トランジスタ)
P1~P6、P91~93:P型トランジスタ
NC:MOSトランジスタ
INV1~6、INV91:インバータ回路
NAND91:NAND回路
NOR91:NOR回路
F.F.:フリップフロップ
NC1~3:ノード
FB:フローティングボディ
SAN、SAP:電源
BLSAB:反転センスアンプビット線(第1ノード)
BLSAT:非反転センスアンプビット線(第2ノード)
IOB:反転IO線
IOT:非反転IO線
BLDIS、TG、TGR、TGRA、TGW、TGWA、ACT1B、ACT2B:制御信号
VIREF:定電流リファレンス
YS(YSi):カラム選択信号
VARY:アレイ電源
VBLREF:ビット線判定基準電源
CIOB:反転カウンタIO線
CIOT:非反転カウンタIO線
1: Cell area 1a: Cell area with counter cell 2: Sense amplifier area (SA area)
2a: Sense amplifier area with sense amplifier for counter cell (SA area with CSA)
3: Sub-word line driver (word line driver)
4: X decoder 5: Y decoder 5a: CYS generation circuit 6: Data amplifier 7: Sub word line (SWL, SWLi)
8, 120: Bit lines (BL, BLA)
8a: Counter bit line (CBL)
8n, 131: Adjacent bit line (adjacent BL)
9: Column selection signal (YS, YSi)
9a: Counter column selection signal (CYS)
10a, 10b: Inverted IO line (IOB) and non-inverted IO line (IOT)
11: Data input / output circuit 12: Data input / output terminal 13: SWL counter area 14: Data inversion control signal 15: Buffer circuit 16a: Counter cell 19, 59: Sense amplifier (SA)
21, 22, 100, 121: Semiconductor memory device 23: SWL counter circuit (counter circuit)
26, 26n, 28: Memory cell 27 (of thyristor memory), 29: Memory cell 31 of FBC memory, 111: Coupling capacitance 32, 42, 112: Data inversion control signal generator 36, 38: Thyristor 37, 39: Bipolar transistor 49: Sense amplifier (CSA) for counter cell
101: Memory cell (MC)
102: Power supply node 103: Memory cell control terminals 103a to 103d: Sub-word line connection terminals (memory cell control terminals)
104: counter 105: read / write switch 106: holding circuit 107: first node 108: external input / output circuit 109: sense amplifier (SA, SAi)
110, 110a to d: Bit line connection terminal 122: Word line (WL)
221: Anode 222: Cathode 223: Gate C1, C2: Capacitor Q1, Q3: NPN transistor Q2, Q4: PNP transistors N1, N1A, N4-7, N91, M1-3: N-type transistor N2, N2A: Read / write switch (N-type transistor)
N22, N22A: Reed switch (N-type transistor)
N3, N3A: Light switch (N-type transistor)
P1-P6, P91-93: P-type transistor NC: MOS transistors INV1-6, INV91: Inverter circuit NAND91: NAND circuit NOR91: NOR circuit F.P. F. : Flip-flop NC1-3: Node FB: Floating body SAN, SAP: Power supply BLSAB: Inverted sense amplifier bit line (first node)
BLSAT: Non-inverting sense amplifier bit line (second node)
IOB: Inverted IO line IOT: Non-inverted IO line BLDIS, TG, TGR, TGRA, TGW, TGWA, ACT1B, ACT2B: Control signal VIREF: Constant current reference YS (YSi): Column selection signal VARY: Array power supply VBLREF: Bit line Determination reference power supply CIOB: inverted counter IO line CIOT: non-inverted counter IO line

Claims (13)

  1.  ビット線と電源ノードの間に接続され、読み出し時に検出された電圧を反転せずに書き戻しを行った場合に記憶データが反転するメモリセルと、
     前記メモリセルの制御端子と接続されるワード線と、
     前記メモリセルからの読み出しデータを一時保存する保持回路と、該保持回路の第1ノードと前記ビット線の間に接続されたリードライトスイッチと、を有するセンスアンプと、
     前記ワード線に対応して設けられ、前記ワード線が活性化された回数をカウントし、前記回数が偶数か奇数かを示すデータ反転制御信号を出力するカウンタと、
     前記センスアンプの前記保持回路のデータを外部入力/外部出力する際に、前記データ反転制御信号に基づいて、データの反転/非反転を行う外部入出力回路と、
     を備える半導体記憶装置。
    A memory cell connected between the bit line and the power supply node, and in which the stored data is inverted when writing back without inverting the voltage detected at the time of reading;
    A word line connected to a control terminal of the memory cell;
    A sense amplifier having a holding circuit for temporarily storing read data from the memory cell, and a read / write switch connected between the first node of the holding circuit and the bit line;
    A counter provided corresponding to the word line, counting the number of times the word line is activated, and outputting a data inversion control signal indicating whether the number is even or odd;
    An external input / output circuit that performs inversion / non-inversion of data based on the data inversion control signal when data of the holding circuit of the sense amplifier is externally input / output;
    A semiconductor memory device.
  2.  読み出し時に、前記リードライトスイッチを導通して、前記ビット線を介して前記センスアンプの第1ノードに前記メモリセルのデータを読み出して、前記センスアンプの保持回路に一時保存し、
     書き戻し時に、前記リードライトスイッチを導通して、前記センスアンプの第1ノードの電圧を反転せずに前記ビット線に供給して、前記メモリセルに書き戻しを行う、請求項1に記載の半導体記憶装置。
    At the time of reading, the read / write switch is turned on, the data of the memory cell is read to the first node of the sense amplifier via the bit line, and temporarily stored in the holding circuit of the sense amplifier,
    2. The write-back to the memory cell according to claim 1, wherein at the time of writing back, the read / write switch is turned on to supply the bit line to the bit line without inverting the voltage of the first node of the sense amplifier. Semiconductor memory device.
  3.  前記カウンタは、前記ワード線の活性化を受けてカウントアップするカウンタ回路である請求項1または2に記載の半導体記憶装置。 3. The semiconductor memory device according to claim 1, wherein the counter is a counter circuit that counts up upon activation of the word line.
  4.  前記カウンタは、前記メモリセルと実質的に同じであるカウンタセルで構成され、
     前記ワード線に対応する前記カウンタセルは、前記ワード線に接続された前記メモリセルと同時に読み出し/書き込み動作が行われ、
     前記カウンタセルの読み出しデータに基づいて前記データ反転制御信号を生成する、請求項1または2に記載の半導体記憶装置。
    The counter comprises a counter cell that is substantially the same as the memory cell;
    The counter cell corresponding to the word line is read / written simultaneously with the memory cell connected to the word line,
    The semiconductor memory device according to claim 1, wherein the data inversion control signal is generated based on read data of the counter cell.
  5.  前記カウンタセルに対応し、前記センスアンプと実質的に同じであるカウンタセル用センスアンプをさらに備える請求項4に記載の半導体記憶装置。 5. The semiconductor memory device according to claim 4, further comprising a counter cell sense amplifier corresponding to the counter cell and substantially the same as the sense amplifier.
  6.  前記カウンタセル用センスアンプの保持回路の第1ノード及び前記第1ノードと相補の第2ノードと電気的に接続されるカウンタIO線対の信号に基づいて、前記データ反転制御信号を生成するバッファ回路をさらに備える請求項5に記載の半導体記憶装置。 A buffer for generating the data inversion control signal based on a signal of a counter IO line pair electrically connected to a first node of the holding circuit of the counter amplifier for the counter cell and a second node complementary to the first node The semiconductor memory device according to claim 5, further comprising a circuit.
  7.  前記メモリセルは、フローティングボディに電荷を蓄積することによりデータを記憶するメモリ素子を含み、
     前記フローティングボディはキャパシタを介して前記メモリセルの制御端子と接続される、請求項1乃至6のいずれか一に記載の半導体記憶装置。
    The memory cell includes a memory element that stores data by accumulating charges in a floating body;
    7. The semiconductor memory device according to claim 1, wherein the floating body is connected to a control terminal of the memory cell via a capacitor.
  8.  前記メモリ素子はサイリスタであり、
     前記サイリスタのアノードが前記ビット線と接続され、
     前記サイリスタのカソードが前記電源ノードと接続され、
     前記サイリスタのゲートが前記フローティングボディを構成する、請求項7に記載の半導体記憶装置。
    The memory element is a thyristor;
    The anode of the thyristor is connected to the bit line;
    The cathode of the thyristor is connected to the power supply node;
    The semiconductor memory device according to claim 7, wherein a gate of the thyristor constitutes the floating body.
  9.  前記メモリ素子はバイポーラトランジスタであり、
     前記バイポーラトランジスタのコレクタが前記ビット線と接続され、
     前記バイポーラトランジスタのエミッタが前記電源ノードと接続され、
     前記バイポーラトランジスタのベースが前記フローティングボディを構成する、請求項7に記載の半導体記憶装置。
    The memory element is a bipolar transistor;
    The collector of the bipolar transistor is connected to the bit line;
    An emitter of the bipolar transistor is connected to the power supply node;
    The semiconductor memory device according to claim 7, wherein a base of the bipolar transistor constitutes the floating body.
  10.  前記ワード線の電圧を制御するワード線ドライバをさらに備え、
     前記ワード線を活性化し読み出し動作を行う場合に、
     前記ワード線ドライバが前記ワード線の電圧をワード線スタンバイ電圧に保持し、前記センスアンプが前記ビット線を第1の電圧にプリチャージする第1の制御と、
     前記第1の制御の後、前記ワード線ドライバが前記ワード線をワード線リード電圧に設定し、その後前記センスアンプが前記ビット線のプリチャージを解除し、前記ビット線から前記センスアンプに前記メモリセルのデータを読み出す第2の制御と、
     を行う請求項1乃至9のいずれか一に記載の半導体記憶装置。
    A word line driver for controlling the voltage of the word line;
    When the word line is activated and a read operation is performed,
    A first control in which the word line driver holds the voltage of the word line at a word line standby voltage, and the sense amplifier precharges the bit line to a first voltage;
    After the first control, the word line driver sets the word line to the word line read voltage, and then the sense amplifier releases the precharge of the bit line, and the memory is transferred from the bit line to the sense amplifier. A second control for reading cell data;
    The semiconductor memory device according to claim 1, wherein:
  11.  前記センスアンプに読み出したデータを前記メモリセルに書き戻す動作を行う場合に、
     前記センスアンプが前記読み出したデータの電圧を反転せずに前記ビット線に設定する第3の制御と、
     前記第3の制御の後、前記ワード線ドライバが前記ワード線を前記ワード線リード電圧より高い電圧であるワード線ライト電圧に設定する第4の制御と、
     前記第4の制御の後、前記ワード線ドライバが前記ワード線を前記ワード線リード電圧と前記ワード線スタンバイ電圧との中間電圧であるワード線プリチャージ電圧に設定する第5の制御と、
     前記第5の制御の後、前記センスアンプが前記ビット線を前記電源ノードに供給される第1の電源電圧に設定する第6の制御と、
     前記第6の制御の後、前記ワード線ドライバが前記ワード線の電圧を前記ワード線スタンバイ電圧に戻す第7の制御と、
     を行う請求項10に記載の半導体記憶装置。
    When performing the operation of writing back the data read to the sense amplifier to the memory cell,
    A third control in which the sense amplifier sets the bit line without inverting the voltage of the read data;
    After the third control, a fourth control in which the word line driver sets the word line to a word line write voltage that is higher than the word line read voltage;
    After the fourth control, a fifth control in which the word line driver sets the word line to a word line precharge voltage that is an intermediate voltage between the word line read voltage and the word line standby voltage;
    After the fifth control, a sixth control in which the sense amplifier sets the bit line to a first power supply voltage supplied to the power supply node;
    After the sixth control, a seventh control in which the word line driver returns the voltage of the word line to the word line standby voltage;
    The semiconductor memory device according to claim 10.
  12.  第1の方向に配線された複数の前記ワード線と、
     前記第1の方向と交差する第2の方向に配線された複数の前記ビット線と、
     前記複数のワード線と前記複数のビット線の交点にそれぞれ対応して設けられた複数の前記メモリセルと、
     前記複数のビット線に対応して、それぞれ設けられた複数の前記センスアンプと、
     前記複数のワード線に対応して、それぞれ設けられた複数の前記カウンタと、
     を備える請求項1乃至11のいずれか一に記載の半導体記憶装置。
    A plurality of the word lines wired in a first direction;
    A plurality of the bit lines wired in a second direction intersecting the first direction;
    A plurality of memory cells provided corresponding to intersections of the plurality of word lines and the plurality of bit lines;
    A plurality of the sense amplifiers respectively provided corresponding to the plurality of bit lines;
    A plurality of counters respectively provided corresponding to the plurality of word lines;
    A semiconductor memory device according to claim 1, comprising:
  13.  前記複数のワード線は、メインワード線とサブワード線からなる階層構造を有し、
     前記複数のカウンタは、複数の前記サブワード線に対応してそれぞれ設けられた、請求項12に記載の半導体記憶装置。
    The plurality of word lines have a hierarchical structure including a main word line and a sub word line,
    The semiconductor memory device according to claim 12, wherein the plurality of counters are provided corresponding to the plurality of sub-word lines, respectively.
PCT/JP2014/059959 2013-04-05 2014-04-04 Semiconductor memory device WO2014163183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-079775 2013-04-05
JP2013079775 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014163183A1 true WO2014163183A1 (en) 2014-10-09

Family

ID=51658470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059959 WO2014163183A1 (en) 2013-04-05 2014-04-04 Semiconductor memory device

Country Status (1)

Country Link
WO (1) WO2014163183A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116376A (en) * 1997-06-23 1999-01-22 Nec Corp Nonvolatile semiconductor memory device
JP2002184172A (en) * 2000-10-04 2002-06-28 Rohm Co Ltd Data storage device
JP2002343078A (en) * 2001-05-21 2002-11-29 Matsushita Electric Ind Co Ltd Ferroelectric memory device
US7460395B1 (en) * 2005-06-22 2008-12-02 T-Ram Semiconductor, Inc. Thyristor-based semiconductor memory and memory array with data refresh
US20090213648A1 (en) * 2007-12-21 2009-08-27 Qimonda Ag Integrated Circuit Comprising a Thyristor and Method of Controlling a Memory Cell Comprising a Thyristor
JP2011070727A (en) * 2009-09-25 2011-04-07 Toshiba Corp Semiconductor memory device
JP2012234940A (en) * 2011-04-28 2012-11-29 Elpida Memory Inc Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116376A (en) * 1997-06-23 1999-01-22 Nec Corp Nonvolatile semiconductor memory device
JP2002184172A (en) * 2000-10-04 2002-06-28 Rohm Co Ltd Data storage device
JP2002343078A (en) * 2001-05-21 2002-11-29 Matsushita Electric Ind Co Ltd Ferroelectric memory device
US7460395B1 (en) * 2005-06-22 2008-12-02 T-Ram Semiconductor, Inc. Thyristor-based semiconductor memory and memory array with data refresh
US20090213648A1 (en) * 2007-12-21 2009-08-27 Qimonda Ag Integrated Circuit Comprising a Thyristor and Method of Controlling a Memory Cell Comprising a Thyristor
JP2011070727A (en) * 2009-09-25 2011-04-07 Toshiba Corp Semiconductor memory device
JP2012234940A (en) * 2011-04-28 2012-11-29 Elpida Memory Inc Semiconductor device

Similar Documents

Publication Publication Date Title
US8009459B2 (en) Circuit for high speed dynamic memory
US9275721B2 (en) Split bit line architecture circuits and methods for memory devices
JP2004134026A (en) Semiconductor memory device and its control method
JP2011123970A (en) Semiconductor memory device
JP2007042172A (en) Semiconductor memory apparatus
WO2014034559A1 (en) Fbc memory or thyristor memory for refreshing unused word line
JP6308218B2 (en) Semiconductor memory device
JP2009070480A (en) Semiconductor storage device
US6144600A (en) Semiconductor memory device having first and second pre-charging circuits
KR100224959B1 (en) Dynamic random access memory
JPWO2013084385A1 (en) Semiconductor memory device
JP2009070474A (en) Semiconductor integrated circuit
US8279692B2 (en) Semiconductor device having hierarchical data line structure and control method thereof
JP2016033841A (en) Semiconductor device
JP2012256390A (en) Semiconductor device
JP2014078305A (en) Semiconductor storage device
JP2010186535A (en) Memory circuit and method of accessing the same
JP2016115376A (en) Bit line pre-charge circuit, static ram, electronic device, and method for static-ram bit line pre-charge
US8619483B2 (en) Memory circuits, systems, and methods for accessing the memory circuits
JP2016212934A (en) Semiconductor device and its control method
KR100294450B1 (en) Internal voltage generation circuit of array of semiconductor memory device
WO2014163183A1 (en) Semiconductor memory device
TW201826274A (en) Six-transistor static random access memory cell and operation method thereof
JP5867275B2 (en) Semiconductor memory device and data writing method thereof
JPH11250670A (en) Semiconductor memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778344

Country of ref document: EP

Kind code of ref document: A1