WO2014162698A1 - Input device - Google Patents

Input device Download PDF

Info

Publication number
WO2014162698A1
WO2014162698A1 PCT/JP2014/001776 JP2014001776W WO2014162698A1 WO 2014162698 A1 WO2014162698 A1 WO 2014162698A1 JP 2014001776 W JP2014001776 W JP 2014001776W WO 2014162698 A1 WO2014162698 A1 WO 2014162698A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
image
state
proximity
control unit
Prior art date
Application number
PCT/JP2014/001776
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014162698A1 publication Critical patent/WO2014162698A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3664Details of the user input interface, e.g. buttons, knobs or sliders, including those provided on a touch screen; remote controllers; input using gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction

Definitions

  • This disclosure relates to an input device that performs input for information display on a display unit by an operator's finger operation.
  • Patent Document 1 As a conventional input device, for example, the one disclosed in Patent Document 1 is known.
  • a remote touchpad unit for a user to perform a touch operation, and various modes of the multimedia system according to a three-dimensional signal received from the remote touchpad unit.
  • a display unit for displaying and a control unit for controlling the multimedia system to operate according to the three-dimensional signal of the remote touchpad unit are provided.
  • the operation standby screen can be switched on the radio main screen.
  • Patent Document 1 it is difficult to intuitively understand the current finger height position and the operation content corresponding to the finger height position. In some cases, it is difficult to know at what height the finger is currently located and what operation can be performed on which screen.
  • the present disclosure has been made in view of the above, and it is an object of the present disclosure to provide an input device that can intuitively grasp the position of a finger with respect to an operation surface and easily determine an operation procedure for an image.
  • the input device adopts the following configuration.
  • the input device is mounted on the vehicle and formed separately from the display unit that displays the images divided into a plurality of layers in a switchable manner, and operates the image by a user's finger operation on the operation surface. It is an input device in which input is performed.
  • the input device detects the operation state of the finger with respect to the operation surface during the finger operation, and the determination on the operation state detected by the detection unit is close to the operation surface with respect to the contact state in contact with the operation surface
  • a control unit that stereoscopically displays a planar image on the display unit when in the proximity state;
  • the original planar image is displayed three-dimensionally by the control unit. Therefore, the user can intuitively grasp that the finger has not yet reached the operation surface and is not in a state where it can be operated by touching the operation surface.
  • the image becomes an original flat display that does not hinder the finger operation. Therefore, since the user can easily grasp the proximity state or contact state of the finger with respect to the operation surface depending on whether the image is three-dimensional or planar, the operation procedure for the image can be easily discriminated. None get lost.
  • FIG. 1 is an explanatory diagram for explaining the arrangement of the navigation device and the remote operation device according to the first embodiment in a vehicle cabin.
  • FIG. 2 is a perspective view showing the remote control device of the first embodiment.
  • FIG. 3 is a configuration diagram showing the configurations of the navigation apparatus and the remote operation device in the first embodiment.
  • FIG. 4 is a diagram for explaining the relationship between the sensitivity value detected by the touch sensor and the operation state determined by the operation control unit in the remote operation device according to the first embodiment.
  • FIG. 5 is a diagram illustrating the relationship between each sensitivity threshold value, the operation state, and the screen display stored in the operation control unit of the first embodiment.
  • FIG. 6 is a flowchart illustrating an input process performed by the operation control unit in the remote operation device according to the first embodiment.
  • FIG. 7 is a diagram for explaining the switching of the image portion and the input operation associated with the movement of the finger based on the operation distance from the touch sensor to the finger in the remote operation device according to the first embodiment.
  • FIG. 8 is an explanatory diagram for explaining the arrangement of the navigation device and the remote operation device according to the second embodiment in the vehicle interior.
  • FIG. 9 is a configuration diagram showing configurations of the navigation apparatus and the remote operation device in the second embodiment.
  • FIG. 10 is a flowchart illustrating an input process performed by the operation control unit in the remote operation device according to the second embodiment.
  • FIG. 11 is a diagram for explaining switching of the image portion and input operation associated with the movement of the finger according to the operation distance from the touch sensor to the finger in the remote operation device according to the second embodiment.
  • the input device of the present disclosure is applied to a remote operation device 100 for operating a navigation device 50.
  • FIG. The remote operation device 100 is mounted on a vehicle and constitutes the display system 10 together with the navigation device 50 and the like.
  • the remote control device 100 is installed at a position adjacent to the palm rest 39 at the center console of the vehicle, and is within the reach of the operator (user and driver here).
  • the operation surface 32 is exposed in an easy range.
  • the remote operation device 100 includes a touch sensor 31, and the surface of the touch sensor 31 is formed as the operation surface 32 on which an operator's finger operation is performed. Note that “F” in FIG. 1 indicates an operator's finger.
  • the navigation device 50 exposes the display screen 53 of the liquid crystal display 52 so that it can be viewed by the operator, and with the display screen 53 facing the driver's seat and the passenger's seat side, It is installed in the center of (vehicle width direction).
  • the display system 10 liquid crystal display 52
  • the remote control device 100 is formed separately from the navigation device 50 and is set at a position away from the navigation device 50.
  • the remote operation device 100 is connected to a Controller Area Network bus (hereinafter referred to as a CAN bus) 90, an external battery 91, and the like.
  • the CAN bus 90 is a transmission path used for data transmission between in-vehicle devices in an in-vehicle communication network formed by connecting a plurality of in-vehicle devices mounted on a vehicle.
  • the remote operation device 100 can communicate with the navigation device 50 located remotely via the CAN bus 90.
  • the remote operation device 100 includes power interfaces 21 and 22, a communication control unit 23, a communication interface 24, a touch sensor 31, an operation surface 32, an operation control unit 33, and the like.
  • Each power supply interface 21, 22 stabilizes the power supplied from the battery 91 and supplies it to the operation control unit 33.
  • One power interface 21 is always supplied with power from the battery 91.
  • the other power interface 22 is supplied with electric power from the battery 91 when the switch 92 is energized when the accessory (ACC) power source of the vehicle is turned on.
  • the communication control unit 23 and the communication interface 24 are configured to output information processed by the operation control unit 33 to the CAN bus 90 and to acquire information output to the CAN bus 90 from other in-vehicle devices.
  • the communication control unit 23 and the communication interface 24 are connected to each other by a transmission signal line TX and a reception signal line RX.
  • the touch sensor 31 is a capacitance type detection unit (an example of a detection unit), is formed in a rectangular flat plate shape, and detects an operation state with a finger on the sensor surface.
  • the touch sensor 31 is formed by arranging electrodes extending along the x-axis direction and electrodes extending along the y-axis direction in a lattice shape. These electrodes are connected to the operation control unit 33.
  • Each electrode is configured such that the generated capacitance changes according to the position of the finger close to the sensor surface (x, y, z coordinate position in FIG. 2).
  • a signal (sensitivity value) is output to the operation control unit 33.
  • the sensor surface is covered with an insulating sheet made of an insulating material.
  • the operation surface 32 is a flat portion on which the operator performs finger operations, and is formed by, for example, a material that improves the sliding of the fingers over the entire insulating sheet on the sensor surface.
  • Input for operation on the display image 60 (see FIG. 7) displayed on the display screen 53 can be performed by an operator's finger operation on the operation surface 32 in the x-axis direction, the y-axis direction, or the z-axis direction. Is set.
  • the operation control unit 33 is a control unit of the present disclosure, and includes a processor that performs various types of arithmetic processing, a RAM that functions as a work area for arithmetic processing, and a flash memory that stores programs used for arithmetic processing. ing. In addition, the operation control unit 33 is connected to the power supply interfaces 21 and 22, the communication control unit 23, the touch sensor 31, and the like.
  • the operation control unit 33 acquires a sensitivity value (Hth) as a measurement value of the touch sensor 31 by measuring a capacitance signal of each electrode of the touch sensor 31 by executing a predetermined program.
  • a sensitivity value Hth
  • the operation control unit 33 includes an x-coordinate and a y-coordinate indicating a relative operation position (hereinafter referred to as “relative position”) of the finger in a direction in which the surface of the operation surface 32 spreads, and further, a distance from the operation surface 32 to the finger.
  • the z coordinate corresponding to (hereinafter referred to as “operation distance”) is calculated by a calculation process based on the sensitivity value.
  • the operation control unit 33 calculates a part (x coordinate position, y coordinate position) where the greatest sensitivity value is obtained among the electrodes on the x axis and the y axis as the current relative position of the finger. ing.
  • the operation control unit 33 calculates the current z coordinate position of the finger, that is, the operation distance, based on the magnitude of the obtained sensitivity value.
  • the operation control unit 33 operates a finger operation state (finger operation distance in the z-axis direction) and an operation on a display image 60 described later with respect to the obtained sensitivity value.
  • the operation control unit 33 includes a plurality of sensitivity threshold values Hth1 to Hth5 for determining the operation state in advance, and determines the operation state of the finger according to the sensitivity threshold value.
  • the operation state includes a “contact state” in which the finger is in contact with the operation surface 32 or is not actually in contact but is almost in contact, and a “proximity state” in which the finger is in proximity to the operation surface 32. , And the “non-contact state” in which the finger is further away from the operation surface 32 than the “proximity state”.
  • the “contact state” may be an operation state only when the finger substantially contacts the operation surface 32.
  • the “contact state” is referred to as “in contact”
  • the “proximity state” is referred to as “in proximity”
  • the “non-contact state” is referred to as “non-contact”.
  • the operation control unit 33 sets “proximity 1” when the sensitivity value is Hth2 (175) or more, “proximity 2” when the sensitivity value is Hth3 (150) or more, and the sensitivity value is Hth4 (125).
  • “proximity 3” is determined by dividing the “proximity state” into a plurality of “proximity 1 to 3 states”.
  • the operation control unit 33 results in repeated inversion (hunting). Therefore, the upper thresholds Hth1U to Hth5U corresponding to the positions separated by a predetermined distance are set above the sensitivity thresholds Hth1 to Hth5 (side closer to the operation surface 32). Further, lower thresholds Hth1D to Hth5D corresponding to positions separated by a predetermined distance are set below the sensitivity thresholds Hth1 to Hth5 (the side far from the operation surface 32), respectively.
  • each upper threshold Hth1U to Hth5U becomes a sensitivity threshold for determining the operation state.
  • the lower threshold values Hth1D to Hth5D are used for determining the operation state. Sensitivity threshold.
  • the operation control unit 33 detects a pressing operation (touch operation) when the operator gently presses the operation surface 32 with a finger. Then, the operation control unit 33 outputs the x, y, z coordinates indicating the position of the finger accompanying the finger slide operation and the presence or absence of the pressing operation to the CAN bus 90 through the communication control unit 23 and the communication interface 24.
  • a pressing operation touch operation
  • the operation control unit 33 outputs the x, y, z coordinates indicating the position of the finger accompanying the finger slide operation and the presence or absence of the pressing operation to the CAN bus 90 through the communication control unit 23 and the communication interface 24.
  • the navigation device 50 has an air conditioning operation setting function for the vehicle air conditioning device, an audio operation setting function for the vehicle audio, and various information retrieval via the Internet. It has a browsing function.
  • the navigation device 50 is connected to the CAN bus 90 so as to be able to communicate with the remote operation device 100 and the like, and includes a display control unit 51 and a liquid crystal display 52.
  • the display control unit 51 includes a processor that performs various arithmetic processes, a RAM that functions as a work area for arithmetic processes, a graphic processor that performs image drawing processes, a graphic RAM that functions as a work area for drawing processes, and the like.
  • the display control unit 51 has a flash memory for storing data used for arithmetic processing and drawing processing, a communication interface connected to the CAN bus 90, and a video output interface for outputting drawn image data to the liquid crystal display 52. is doing.
  • the display control unit 51 draws a display image 60 to be displayed on the display screen 53 based on information acquired from the CAN bus 90.
  • the display control unit 51 sequentially outputs the image data of the drawn display image 60 to the liquid crystal display 52 through the video output interface.
  • the liquid crystal display 52 is a dot matrix type display unit that realizes color display by controlling a plurality of pixels arranged on the display screen 53.
  • the liquid crystal display 52 displays video by continuously forming image data sequentially acquired from the display control unit 51 on the display screen 53.
  • the display image 60 displayed on the display screen 53 corresponds to an example of the image of the present disclosure, and is composed of images divided into a plurality of layers.
  • the image of the first layer is a plurality of main images for using various functions (navigation, air conditioner, audio, Internet, etc.) of the navigation device 50.
  • FIG. 7 shows a main image for an air conditioner as one main image.
  • a menu 61 is provided in which a plurality of types (names) of main images are used as menu items and these menu items are arranged in the left-right direction.
  • the menu 61 is always displayed in the same form regardless of the hierarchy of the display image 60.
  • the operator selects one of the desired menus 61 on the operation surface 32 by a finger operation, the selected main image is displayed on the display screen 53.
  • the operator can scroll the main images sequentially by sliding the finger on the operation surface 32 without operating the menu 61 when any main image is displayed.
  • the main image can be made.
  • Each main image is provided with a plurality of icons 62 for operating the image.
  • icons 62 for operating the image.
  • an air volume setting icon, a temperature setting icon, a dual setting icon, a blowing mode setting icon, etc. in the air conditioner operation are shown.
  • a frame-shaped focus 63 indicating that the icon 62 has been selected is displayed.
  • the finger is lightly pressed on the operation surface 32 so as to correspond to the position of the selected icon 62 (touch operation)
  • the icon 62 is determined, and the image of the second hierarchy, that is, determined.
  • the operation image corresponding to the icon is transferred, and various functions can be used in sequence.
  • step S100 an acquisition process for acquiring sensitivity values detected by each electrode of the touch sensor 31 is performed, and the process proceeds to step S110.
  • step S110 calculation processing of the x-coordinate indicating the relative position of the finger with respect to the operation surface 32, the y-coordinate, and the z-coordinate indicating the operation distance is performed from the sensitivity value acquired in step S100. Then, from the calculated value of the z coordinate indicating the operation distance, it is calculated whether the operation state of the finger is in contact, in proximity, or non-contact.
  • Hth1U Hth1
  • Hth5U Hth5U
  • Hth1D Hth5D
  • step S120 it is determined whether the calculated finger operation state is not in contact and the sensitivity value is Hth1 or more (actually, the upper threshold value Hth1U or more). If an affirmative determination is made here, the operator's finger approaches the operation surface 32 from a non-contact or approaching state and is in contact with the operation surface 32. In step S130, the operation state of the finger is contacted. Update inside.
  • step S140 the display screen 53 is updated to the in-contact screen.
  • the in-contact screen is a screen on which the display image 60 is displayed on the display screen 53 as an original planar (no tilt) image, as shown in FIG. 7 (in the right frame).
  • the focus 63 indicates the current operation state (operation setting state) of the device corresponding to the main image to be displayed.
  • the operator can perform original screen operations, that is, selection and determination of each menu 61 and various icons 62 by finger operation (slide, touch operation, etc.).
  • the display image 60 is an original planar image, the operator intuitively knows that the finger operation state is in contact and the finger operation on each menu 61 and various icons 62 is possible. Can know.
  • the first condition is that the operation state is non-contact and the sensitivity value is Hth5 or higher (actually the upper threshold Hth5U or higher), or 2
  • the sensitivity value is Hth1 or less (actually, the lower threshold value Hth1D or less). If an affirmative determination is made here, the operator's finger approaches the operation surface 32 from non-contact or is slightly away from the operation surface 32 during contact, and the operation state of the finger is approaching in step S160. Update to
  • step S170 it is determined whether the sensitivity value is Hth2 or more (actually, the lower threshold value Hth2D or more). If an affirmative determination is made here, the operation state of the finger is in proximity and closer to the operation surface 32 (proximity 1), and the display screen 53 is updated to the proximity 1 screen in step S180.
  • the close one screen is a screen on which the display image 60 is displayed as a three-dimensional image with respect to the original planar image during contact. .
  • a stereoscopic image is, for example, an image in which a portion of the original image is in a floating state and a portion corresponding to a shadow is formed below the floating image.
  • the display image 60 is operated with respect to the display screen 53 because of the positional relationship between the liquid crystal display located substantially in the center in the width direction of the vehicle and the operator (the driver on the right side in this case). It is displayed in a shape inclined to the right side to some extent so as to face the person. Note that the focus 63 in the display image 60 is not displayed in the proximity 1 screen.
  • step S190 determines whether the sensitivity value is equal to or higher than Hth3 (actually, lower threshold Hth3D). If an affirmative determination is made here, the operation state of the finger is in the state of being close and slightly away from the operation surface 32 (proximity 2), and the display screen 53 is updated to the proximity 2 screen in step S200.
  • the proximity two screen is a screen in which the display image 60 is displayed as a three-dimensional image as described in the above proximity one screen with respect to the original planar image during contact. Further, in the proximity two screens, the inclination of the display image 60 toward the operator is displayed in a shape inclined further to the right side than the image in the proximity one screen. In the proximity 2 screen, the focus 63 in the display image 60 is not displayed as in the proximity 1 screen.
  • step S210 it is determined in step S210 whether the sensitivity value is equal to or higher than Hth4 (actually, lower threshold Hth4D). If an affirmative determination is made here, the operation state of the finger is in a state of being in proximity and far away from the operation surface 32 (proximity 3), and the display screen 53 is updated to the proximity 3 screen in step S220.
  • the proximity 3 screen is a display image 60 as described in the above proximity 1 screen with respect to the original planar image during contact. It is a screen displayed as a three-dimensional image.
  • the inclination of the display image 60 toward the operator is displayed in a shape inclined further to the right side than the image in the proximity 2 screen. Note that the focus 63 in the display image 60 is not displayed on the three adjacent screens, as in the case of the close one screen. If it is determined NO in step S210, the flow ends.
  • proximity 1 screen, proximity 2 screen, and proximity 3 screen the operator can switch the main image by the menu 61 by a finger operation (gesture such as flick) during proximity.
  • a finger operation gesture such as flick
  • the operator can intuitively know that the position of the finger is in proximity (proximity 1 to proximity 3) from the three-dimensionally displayed display image 60.
  • the tilt of the display image 60 is smaller, the operator is closer to the operation surface 32 (on the proximity 1 side), and conversely, the greater the tilt is, the farther the finger is from the operation surface 32. It can be intuitively known that it is on the (near 3 side).
  • step S230 it is determined in step S230 whether or not the operation state is non-contact and the sensitivity value is Hth5 or less (actually lower threshold Hth5D or less). If an affirmative determination is made here, the operator's finger is in a state of being greatly separated from the operating surface 32 from the contacted or approaching state, and the operation state of the finger is updated to non-contact in step S240. If it is determined NO in step S230, this flow ends.
  • step S250 the display screen 53 is updated to a non-contact screen.
  • the non-contact screen is a screen on which the display image 60 is displayed as an original planar image (without inclination), like the in-contact screen.
  • a menu 61, various icons 62, and a focus 63 are displayed on the non-contact screen.
  • the non-contact screen shows the current operating state (operation setting state) of the device corresponding to the main image to be displayed.
  • the operator's finger is clearly separated from the operation surface 32, the operator has no intention to operate the display image 60, and the operator simply displays the display image 60 with the current device. It can be seen as a confirmation screen for confirming the operating state of
  • the original planar display image 60 is stereoscopically displayed by the operation control unit 33.
  • the operator can intuitively grasp that the finger has not yet reached the operation surface 32 and is not in a state where it can be operated by touching the operation surface 32.
  • the display image 60 is an original planar display that does not hinder the finger operation. Therefore, the operator can easily grasp the proximity state or contact state of the finger with respect to the operation surface 32 depending on whether the display image 60 is three-dimensional or planar, so that the operation procedure for the display image 60 can be easily determined. It becomes possible and it will not be lost in operation.
  • the operation control unit 33 displays the display image 60 that is three-dimensional in the proximity state so that the display image 60 is inclined so as to face the operator (driver) side, and the display image 60 is displayed as the finger moves away from the operation surface 32.
  • the display is made so that the inclination becomes large. Thereby, the operator can more clearly grasp whether the distance of the finger from the operation surface 32 is large or small by the inclination of the display image 60 with respect to the position of the finger in the proximity state.
  • the operation control unit 33 is the same as the display image 60 displayed on the liquid crystal display 52 in the contact state. I try to make it a flat image. That the operation state is in a non-contact state is a case where the operator does not substantially perform a finger operation. In such a case, the display image 60 is changed to an original planar image, The operator can view the display image 60 without any trouble.
  • FIGS. A remote operation device 100A of the second embodiment is shown in FIGS.
  • the display image 60 is input for a driver in a driver seat and a passenger seat in a passenger seat.
  • the remote operation device 100A is provided with proximity sensors 34a and 34b.
  • the proximity sensor 34 a is, for example, a sensor that is disposed on the right side of the operation surface 32 and detects that the driver's finger is approaching the operation surface 32 from the right side, and outputs the detected signal to the operation control unit 33. It is supposed to do.
  • the proximity sensor 34b is, for example, a sensor that is disposed on the left side of the operation surface 32 and detects that a passenger's finger approaches the operation surface 32 from the left side. 33 is output. Therefore, the operation control unit 33 can determine whether the operator of the operation surface 32 is a driver or a passenger seat based on a signal from the proximity sensor 34a or the proximity sensor 34b.
  • the flowchart of the input process performed by the operation control unit 33 is different from the flowchart (FIG. 6) described in the first embodiment whether the operator is a driver or a passenger. Steps S50, S51, and S52 for determining and setting the screen display according to the determination result are added.
  • step S50 the operation control unit 33 determines whether the operator is a driver or a passenger seat from the output signals of the proximity sensors 34a and 34b.
  • D seat in FIG. 10 means a driver seat
  • P seat means a passenger seat.
  • the operation control unit 33 performs screen display setting for the driver in step S51.
  • the screen display setting for the driver is set to a basic form including each menu 61 and various icons 62 as the display image 60. If the operation state of the driver's finger is close, as shown in FIG. 11 (in the right frame), the display image 60 displayed in three dimensions is actually displayed in steps S180, S200, and S220. The setting is such that the image is tilted toward the operator operating the finger.
  • the main image can be switched by the menu 61 in the display image 60 by a finger operation (gesture such as flick).
  • the driver intuitively knows that the current display image 60 is based on the driver's own input since the three-dimensionally displayed display image 60 is tilted in the direction of his / her own. I can know.
  • the smaller the inclination of the display image 60 displayed in a three-dimensional manner the closer the finger is to the operation surface 32 (the proximity 1 side), and vice versa. It is possible to intuitively know that the finger is at a position away from the operation surface 32 (proximity 3 side).
  • the operation control unit 33 assumes that the display image 60 is an original planar (no tilt) image in step S140.
  • the driver can perform original screen operations, that is, selection and determination of each menu 61 and various icons 62 by sliding or touching the finger.
  • the operation control unit 33 performs screen display settings for the passenger in step S52.
  • the screen display setting for the passenger seat first means that the display image 60 is an image provided with a dedicated content 64 that allows the passenger seat passenger to directly operate the basic image for the driver. It is set to be.
  • the display image 60 displayed in a three-dimensional manner is actually displayed in steps S180, S200, and S220. The image is tilted toward the front passenger seating the finger.
  • the main image can be switched by the menu 61 in the display image 60 by a finger operation (gesture such as flick).
  • the passenger seat exclusive content 64 corresponds to an example of the operation image unit of the present disclosure.
  • the passenger seat side temperature can be set independently. It is an icon for setting the seat side temperature.
  • the content 64 includes, for example, an upper temperature setting unit, a temperature rise setting unit, a maximum temperature setting unit, a lower temperature setting unit, a temperature lowering setting unit, and a minimum temperature setting unit with respect to the current set temperature. Etc. are provided.
  • the passenger's seat intuitively knows that the current display image 60 is based on the input of the passenger's seat himself because the three-dimensional display image 60 is tilted in the direction of his / her own. Can know.
  • the smaller the inclination of the display image 60 displayed in a three-dimensional manner the closer the finger is to the operation surface 32 (the proximity 1 side), and vice versa. It is possible to intuitively know that the finger is at a position away from the operation surface 32 (proximity 3 side).
  • the operation control unit 33 assumes that the display image 60 is an original flat (no tilt) image in step S140. During the contact, the passenger can slide or touch the finger to perform the original screen operation, that is, selection and determination of each menu 61, various icons 62, and further the content 64.
  • the operator's target is the driver and the passenger seat, and the finger operation on the operation surface 32 is performed.
  • the display image 60 to be displayed is tilted toward the operator who actually performed the finger operation. Therefore, the operator can intuitively understand that the current display image 60 is based on the input of the operator himself, and may be wondering whether the driver or the passenger in the passenger's seat is operating. The operability can be improved.
  • a dedicated content 64 that can be directly operated by the passenger seat is displayed in the display image 60. Thereby, the operability of the passenger seat can be improved.
  • the display image 60 when the operation state of the finger is in proximity, when the display image 60 is displayed in a three-dimensional manner, the display image 60 is tilted so as to face the operator side.
  • the image may be an original rectangular shape without inclination.
  • proximity 1 As the division for the proximity 1, proximity 2 and proximity 3, it can be dealt with by changing the distance between the original image portion of the stereoscopic display image 60 and the shadowed portion, for example. That is, in the case of the proximity 1, if the distance between the original image portion and the shadowed portion is reduced (set to a predetermined value), and the distance is increased as the shift to the proximity 2 and the proximity 3 is made, good.
  • the temperature setting content 64 in the air conditioner is used as the dedicated operation image unit for the passenger seat.
  • the present invention is not limited to this, and the temperature setting content for the seat heater is not limited thereto. Or a content for setting the position of the seat position.
  • the capacitive touch sensor 31 is used as the detection unit (an example of the detection means), the detection unit is not limited to this, and may be another pressure-sensitive touch sensor or the like.
  • a push switch may be provided in the remote operation device 100 or 100A, and when the content (icon or the like) selected by the finger operation is determined, it may be determined by pressing this push switch.

Abstract

Provided is an input device which makes it possible to intuitively ascertain the position of a finger in relation to an operation screen, and easily determine the purpose of an operation in relation to an image. An input device involving the execution of an input for operating an image (60) by a finger operation of a user on an operation screen (32), formed separately from a display unit (52) for displaying so as to be capable of switching the image (60) which is divided into a plurality of layers, and mounted in a vehicle, the input device being equipped with: a detection means (31) for detecting the operative state of a finger in relation to the operation screen (32) at the time of the finger operation; and a control unit (33) for, when determined that the operative state detected by the detection unit (31) is an approaching state approaching the operation screen (32), relative to a contact state for contacting the operation screen (32), three-dimensionally displaying the flat image (60) on the display unit (52).

Description

入力装置Input device 関連出願の相互参照Cross-reference of related applications
 本出願は、2013年4月2日に出願された日本国特許出願2013-77249号に基づくものであり、ここにその開示を参照により援用する。 This application is based on Japanese Patent Application No. 2013-77249 filed on April 2, 2013, the disclosure of which is incorporated herein by reference.
 本開示は、操作者の指操作によって表示部における情報表示のための入力を行う入力装置に関するものである。 This disclosure relates to an input device that performs input for information display on a display unit by an operator's finger operation.
 従来の入力装置として、例えば特許文献1に示されるものが知られている。特許文献1の入力装置(操作用ユーザーインターフェイス装置)では、ユーザーがタッチ操作を行うための遠隔タッチパッド部と、遠隔タッチパッド部から受信された3次元信号に応じてマルチメディアシステムの各種モードを表示するディスプレイ部と、遠隔タッチパッド部の3次元信号に応じて、マルチメディアシステムが作動するように制御する制御部とを備えている。 As a conventional input device, for example, the one disclosed in Patent Document 1 is known. In the input device (operation user interface device) of Patent Document 1, a remote touchpad unit for a user to perform a touch operation, and various modes of the multimedia system according to a three-dimensional signal received from the remote touchpad unit. A display unit for displaying and a control unit for controlling the multimedia system to operate according to the three-dimensional signal of the remote touchpad unit are provided.
 特許文献1の入力装置では、ユーザーの指の位置が、遠隔タッチパッド部の表面から第1高さの範囲にあるときに、ディスプレイ部に指の位置(ポインタ)を表示し、ポインタの移動、およびメニューの移動による微細操作が可能となっている。 In the input device of Patent Document 1, when the position of the user's finger is within the first height range from the surface of the remote touchpad unit, the finger position (pointer) is displayed on the display unit, and the pointer is moved. And fine operation by moving menu is possible.
 また、ユーザーの指の位置が、第1高さから第2高さの範囲にあるときに、ワイプパスジェスチャーによる第1モードおよび第2モードの切替え、更には、ホーム、メイン、サブ画面の移動が可能となっている。 Also, when the position of the user's finger is in the range from the first height to the second height, switching between the first mode and the second mode by the wipe pass gesture, and further moving the home, main and sub screens Is possible.
 更に、ユーザーの指の位置が、第2高さから第3高さの範囲にあるときに、ラジオメイン画面において、操作待機画面に切替えられるようになっている。 Furthermore, when the position of the user's finger is in the range from the second height to the third height, the operation standby screen can be switched on the radio main screen.
特開2011―118857号公報JP 2011-118857 A
 しかしながら、本願発明者の検討によれば、上記特許文献1では、現在の指の高さ位置と、これに対応可能な操作内容とが直感的には分かりづらく、ユーザーは、指の操作中において、現在、指がどの高さ位置にあり、どの画面に対してどのような操作が可能であるのかわからずに困る場合がある。 However, according to the study of the present inventor, in the above-mentioned Patent Document 1, it is difficult to intuitively understand the current finger height position and the operation content corresponding to the finger height position. In some cases, it is difficult to know at what height the finger is currently located and what operation can be performed on which screen.
 本開示は、上記に鑑みてなされたものであって、操作面に対する指の位置を直感的に把握でき、画像に対する操作要領が容易に判別可能となる入力装置を提供することにある。 The present disclosure has been made in view of the above, and it is an object of the present disclosure to provide an input device that can intuitively grasp the position of a finger with respect to an operation surface and easily determine an operation procedure for an image.
 本開示の一例に係る入力装置は、以下の構成を採用する。 The input device according to an example of the present disclosure adopts the following configuration.
 入力装置は、車両に搭載されて、複数の階層に分かれた画像を切替え可能に表示する表示部に対して別体で形成されており、操作面に対する使用者の指操作によって、画像を操作するための入力が行われる入力装置である。入力装置は、指操作時の操作面に対する指の操作状態を検出する検出部と、検出部によって検出された操作状態に対する判定が、操作面に接触する接触状態に対して、操作面に近接した近接状態にあると、表示部における平面的な画像を立体的に表示する制御部とを備える。 The input device is mounted on the vehicle and formed separately from the display unit that displays the images divided into a plurality of layers in a switchable manner, and operates the image by a user's finger operation on the operation surface. It is an input device in which input is performed. The input device detects the operation state of the finger with respect to the operation surface during the finger operation, and the determination on the operation state detected by the detection unit is close to the operation surface with respect to the contact state in contact with the operation surface A control unit that stereoscopically displays a planar image on the display unit when in the proximity state;
 このような入力装置によれば、画像を操作するにあたって、使用者の指が近接状態にあるときは、制御部によって、本来の平面的な画像が立体的に表示される。よって、使用者は、指はまだ操作面に至っておらず、操作面をタッチして操作できる状態にはない、ということを直感的に把握することができる。また、指が近接状態に対して接触状態となると、画像は、指操作をするにあたって支障のない本来の平面的な表示となる。よって、使用者は、画像が立体的か平面的かによって操作面に対する指の近接状態、あるは接触状態を容易に把握することができるので、画像に対する操作要領が容易に判別可能となり、操作に迷うことがなくなる。 According to such an input device, when the user's finger is in the proximity state when operating the image, the original planar image is displayed three-dimensionally by the control unit. Therefore, the user can intuitively grasp that the finger has not yet reached the operation surface and is not in a state where it can be operated by touching the operation surface. In addition, when the finger is in contact with the proximity state, the image becomes an original flat display that does not hinder the finger operation. Therefore, since the user can easily grasp the proximity state or contact state of the finger with respect to the operation surface depending on whether the image is three-dimensional or planar, the operation procedure for the image can be easily discriminated. Never get lost.
図1は、第1実施形態のナビゲーション装置および遠隔操作デバイスの車室内での配置を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining the arrangement of the navigation device and the remote operation device according to the first embodiment in a vehicle cabin. 図2は、第1実施形態の遠隔操作デバイスを示す斜視図である。FIG. 2 is a perspective view showing the remote control device of the first embodiment. 図3は、第1実施形態におけるナビゲーション装置および遠隔操作デバイスの構成を示す構成図である。FIG. 3 is a configuration diagram showing the configurations of the navigation apparatus and the remote operation device in the first embodiment. 図4は、第1実施形態の遠隔操作デバイスにおいて、タッチセンサにより検出される感度値と、操作制御部により判定される操作状態との関係を説明するための図である。FIG. 4 is a diagram for explaining the relationship between the sensitivity value detected by the touch sensor and the operation state determined by the operation control unit in the remote operation device according to the first embodiment. 図5は、第1実施形態の操作制御部に記憶されている各感度閾値、操作状態、および画面表示の関係を示す図である。FIG. 5 is a diagram illustrating the relationship between each sensitivity threshold value, the operation state, and the screen display stored in the operation control unit of the first embodiment. 図6は、第1実施形態の遠隔操作デバイスにおいて、操作制御部により実施される入力処理を示すフローチャートである。FIG. 6 is a flowchart illustrating an input process performed by the operation control unit in the remote operation device according to the first embodiment. 図7は、第1実施形態の遠隔操作デバイスにおいて、タッチセンサから指までの操作距離により、指の移動と関連付けられる画像部の切替えと入力操作とを説明するための図である。FIG. 7 is a diagram for explaining the switching of the image portion and the input operation associated with the movement of the finger based on the operation distance from the touch sensor to the finger in the remote operation device according to the first embodiment. 図8は、第2実施形態のナビゲーション装置および遠隔操作デバイスの車室内での配置を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining the arrangement of the navigation device and the remote operation device according to the second embodiment in the vehicle interior. 図9は、第2実施形態におけるナビゲーション装置および遠隔操作デバイスの構成を示す構成図である。FIG. 9 is a configuration diagram showing configurations of the navigation apparatus and the remote operation device in the second embodiment. 図10は、第2実施形態の遠隔操作デバイスにおいて、操作制御部により実施される入力処理を示すフローチャートである。FIG. 10 is a flowchart illustrating an input process performed by the operation control unit in the remote operation device according to the second embodiment. 図11は、第2実施形態の遠隔操作デバイスにおいて、タッチセンサから指までの操作距離により、指の移動と関連付けられる画像部の切替えと入力操作とを説明するための図である。FIG. 11 is a diagram for explaining switching of the image portion and input operation associated with the movement of the finger according to the operation distance from the touch sensor to the finger in the remote operation device according to the second embodiment.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other part of the configuration. In addition, not only combinations of configurations explicitly described in the description of each embodiment, but also the configurations of a plurality of embodiments can be partially combined even if they are not explicitly specified unless there is a problem with the combination. .
 (第1実施形態)
 第1実施形態(図1~図7)は、本開示の入力装置を、ナビゲーション装置50を操作するための遠隔操作デバイス100に適用したものである。遠隔操作デバイス100は、車両に搭載され、ナビゲーション装置50等と共に表示システム10を構成している。
(First embodiment)
In the first embodiment (FIGS. 1 to 7), the input device of the present disclosure is applied to a remote operation device 100 for operating a navigation device 50. FIG. The remote operation device 100 is mounted on a vehicle and constitutes the display system 10 together with the navigation device 50 and the like.
 図1、図2に示すように、遠隔操作デバイス100は、車両のセンターコンソールにてパームレスト39と隣接する位置に設置され、操作者(使用者でありここでは運転者とする)の手の届き易い範囲に操作面32を露出させている。遠隔操作デバイス100は、タッチセンサ31を有しており、タッチセンサ31の表面が、操作者の指操作が行われる上記の操作面32として形成されている。尚、図1中の「F」は操作者の指を示している。 As shown in FIGS. 1 and 2, the remote control device 100 is installed at a position adjacent to the palm rest 39 at the center console of the vehicle, and is within the reach of the operator (user and driver here). The operation surface 32 is exposed in an easy range. The remote operation device 100 includes a touch sensor 31, and the surface of the touch sensor 31 is formed as the operation surface 32 on which an operator's finger operation is performed. Note that “F” in FIG. 1 indicates an operator's finger.
 また、ナビゲーション装置50は、操作者から目視されるよう液晶ディスプレイ52の表示画面53を露出させ且つ表示画面53を運転席および助手席側に向けた姿勢にて、車両のインストルメントパネルの左右方向(車両の幅方向)の中央に設置されている。表示システム10(液晶ディスプレイ52)は、種々の表示画像60を表示画面53に切替えて表示する。上記の遠隔操作デバイス100は、ナビゲーション装置50に対して別体で形成されており、ナビゲーション装置50から離れた位置に設定されている。 In addition, the navigation device 50 exposes the display screen 53 of the liquid crystal display 52 so that it can be viewed by the operator, and with the display screen 53 facing the driver's seat and the passenger's seat side, It is installed in the center of (vehicle width direction). The display system 10 (liquid crystal display 52) switches and displays various display images 60 on the display screen 53. The remote control device 100 is formed separately from the navigation device 50 and is set at a position away from the navigation device 50.
 以下、遠隔操作デバイス100、およびナビゲーション装置50の各構成について、図3を加えて詳しく説明する。 Hereinafter, each configuration of the remote operation device 100 and the navigation device 50 will be described in detail with reference to FIG.
 遠隔操作デバイス100は、Controller Area Networkバス(以下、CANバス)90、および外部のバッテリ91等と接続されている。CANバス90は、車両に搭載された複数の車載装置を相互に接続してなる車内通信ネットワークにおいて、各車載装置間でのデータの伝送に用いられる伝送路である。遠隔操作デバイス100は、CANバス90を通じて、離れて位置するナビゲーション装置50と通信可能となっている。 The remote operation device 100 is connected to a Controller Area Network bus (hereinafter referred to as a CAN bus) 90, an external battery 91, and the like. The CAN bus 90 is a transmission path used for data transmission between in-vehicle devices in an in-vehicle communication network formed by connecting a plurality of in-vehicle devices mounted on a vehicle. The remote operation device 100 can communicate with the navigation device 50 located remotely via the CAN bus 90.
 遠隔操作デバイス100は、電源インターフェース21、22、通信制御部23、通信インターフェース24、タッチセンサ31、操作面32、および操作制御部33等によって構成されている。各電源インターフェース21、22は、バッテリ91から供給される電力を安定化して、操作制御部33に供給する。一方の電源インターフェース21には、バッテリ91から常に電力が供給されている。他方の電源インターフェース22には、車両のアクセサリ(ACC)電源がオン状態とされたことに基づいてスイッチ92が通電状態となることにより、バッテリ91から電力が供給されるようになっている。 The remote operation device 100 includes power interfaces 21 and 22, a communication control unit 23, a communication interface 24, a touch sensor 31, an operation surface 32, an operation control unit 33, and the like. Each power supply interface 21, 22 stabilizes the power supplied from the battery 91 and supplies it to the operation control unit 33. One power interface 21 is always supplied with power from the battery 91. The other power interface 22 is supplied with electric power from the battery 91 when the switch 92 is energized when the accessory (ACC) power source of the vehicle is turned on.
 通信制御部23および通信インターフェース24は、操作制御部33によって処理された情報をCANバス90に出力すると共に、他の車載装置からCANバス90に出力された情報を取得するための構成である。通信制御部23および通信インターフェース24は、送信用の信号線TXおよび受信用の信号線RXによって互いに接続されている。 The communication control unit 23 and the communication interface 24 are configured to output information processed by the operation control unit 33 to the CAN bus 90 and to acquire information output to the CAN bus 90 from other in-vehicle devices. The communication control unit 23 and the communication interface 24 are connected to each other by a transmission signal line TX and a reception signal line RX.
 タッチセンサ31は、静電容量式の検出部(検出手段の一例)であって、矩形の平板状に形成されており、センサ表面に対する指による操作状態を検出する。タッチセンサ31は、x軸方向に沿って延びる電極と、y軸方向に沿って延びる電極とが格子状に配列されることにより形成されている。これら電極は、操作制御部33と接続されている。各電極は、センサ表面に近接する指の位置(図2のx、y、z座標位置)に応じて、発生される静電容量が変化するようになっており、発生される静電容量の信号(感度値)が操作制御部33に出力されるようになっている。センサ表面は、絶縁材よりなる絶縁シートによって覆われている。 The touch sensor 31 is a capacitance type detection unit (an example of a detection unit), is formed in a rectangular flat plate shape, and detects an operation state with a finger on the sensor surface. The touch sensor 31 is formed by arranging electrodes extending along the x-axis direction and electrodes extending along the y-axis direction in a lattice shape. These electrodes are connected to the operation control unit 33. Each electrode is configured such that the generated capacitance changes according to the position of the finger close to the sensor surface (x, y, z coordinate position in FIG. 2). A signal (sensitivity value) is output to the operation control unit 33. The sensor surface is covered with an insulating sheet made of an insulating material.
 操作面32は、操作者が指操作を行う平面部であり、例えば、センサ表面の絶縁シート全体にわたって指の滑りを良くする素材等が設けられることで形成されている。操作面32上におけるx軸方向、y軸方向、あるいはz軸方向の操作者の指操作により、表示画面53に表示される表示画像60(図7参照)に対する操作のための入力ができるように設定されている。 The operation surface 32 is a flat portion on which the operator performs finger operations, and is formed by, for example, a material that improves the sliding of the fingers over the entire insulating sheet on the sensor surface. Input for operation on the display image 60 (see FIG. 7) displayed on the display screen 53 can be performed by an operator's finger operation on the operation surface 32 in the x-axis direction, the y-axis direction, or the z-axis direction. Is set.
 操作制御部33は、本開示の制御部であり、各種の演算処理を行うプロセッサ、演算処理の作業領域として機能するRAM、および演算処理に用いられるプログラム等が格納されたフラッシュメモリ等によって構成されている。加えて、操作制御部33は、各電源インターフェース21、22、通信制御部23、およびタッチセンサ31等と接続されている。 The operation control unit 33 is a control unit of the present disclosure, and includes a processor that performs various types of arithmetic processing, a RAM that functions as a work area for arithmetic processing, and a flash memory that stores programs used for arithmetic processing. ing. In addition, the operation control unit 33 is connected to the power supply interfaces 21 and 22, the communication control unit 23, the touch sensor 31, and the like.
 操作制御部33は、所定のプログラムを実行することによってタッチセンサ31の各電極の静電容量の信号を計測することにより、タッチセンサ31の計測値としての感度値(Hth)を取得する。操作者の指が操作面32(センサ表面)に近接すると、電極と指との間に電荷が蓄えられる。操作制御部33は、操作面32の面の拡がる方向における指の相対的な操作位置(以下、「相対位置」という)を示すx座標およびy座標、更には、操作面32から指までの距離(以下、「操作距離」という)に相当するz座標を、感度値に基づく算出処理によって算出するようになっている。 The operation control unit 33 acquires a sensitivity value (Hth) as a measurement value of the touch sensor 31 by measuring a capacitance signal of each electrode of the touch sensor 31 by executing a predetermined program. When the operator's finger is close to the operation surface 32 (sensor surface), electric charge is stored between the electrode and the finger. The operation control unit 33 includes an x-coordinate and a y-coordinate indicating a relative operation position (hereinafter referred to as “relative position”) of the finger in a direction in which the surface of the operation surface 32 spreads, and further, a distance from the operation surface 32 to the finger. The z coordinate corresponding to (hereinafter referred to as “operation distance”) is calculated by a calculation process based on the sensitivity value.
 具体的には、図4に示すように、例えば、x軸方向に並ぶ電極に対して、ある任意の電極部の位置に対応する操作面32上で指を接触させると感度値は大きく得られ、接触位置から離れた位置になるほど、指の接触状態がなくなっていくことから、感度値は小さくなっていく。y軸方向に並ぶ電極に対しても同様である。よって、操作制御部33は、x軸およびy軸における電極の中で、最も大きな感度値が得られる部位(x座標位置、y座標位置)を、現在の指の相対位置として算出するようになっている。 Specifically, as shown in FIG. 4, for example, when a finger is brought into contact with the electrode arranged in the x-axis direction on the operation surface 32 corresponding to the position of an arbitrary electrode portion, a large sensitivity value can be obtained. Since the contact state of the finger disappears as the position becomes farther from the contact position, the sensitivity value becomes smaller. The same applies to the electrodes arranged in the y-axis direction. Therefore, the operation control unit 33 calculates a part (x coordinate position, y coordinate position) where the greatest sensitivity value is obtained among the electrodes on the x axis and the y axis as the current relative position of the finger. ing.
 z軸方向については、指が操作面32に近づくほど、感度値は大きくなり、逆に指が操作面32から遠ざかるほど、感度値は小さくなる。よって、操作制御部33は、得られる感度値の大小によって、現在の指のz座標位置、即ち、操作距離を算出するようになっている。 In the z-axis direction, the sensitivity value increases as the finger approaches the operation surface 32, and conversely, the sensitivity value decreases as the finger moves away from the operation surface 32. Therefore, the operation control unit 33 calculates the current z coordinate position of the finger, that is, the operation distance, based on the magnitude of the obtained sensitivity value.
 また、操作制御部33は、図4、図5に示すように、得られる感度値に対して、指の操作状態(z軸方向における指の操作距離)、および後述する表示画像60への操作処置を関連付けするようになっている。操作制御部33は、操作状態を判定するための、複数の感度閾値Hth1~5を予め備えており、その感度閾値に応じて、指の操作状態を判定するようにしている。操作状態としては、指が操作面32に接触する、あるいは実際には接触していないがほとんど接触に近い「接触状態」と、指が操作面32に対して近接している「近接状態」と、指が「近接状態」よりも操作面32から更に遠ざかっている「非接触状態」とに区分けされている。尚、「接触状態」については、指が操作面32に実質的に接触する場合のみの操作状態とするようにしても良い。 Further, as shown in FIGS. 4 and 5, the operation control unit 33 operates a finger operation state (finger operation distance in the z-axis direction) and an operation on a display image 60 described later with respect to the obtained sensitivity value. Associate actions. The operation control unit 33 includes a plurality of sensitivity threshold values Hth1 to Hth5 for determining the operation state in advance, and determines the operation state of the finger according to the sensitivity threshold value. The operation state includes a “contact state” in which the finger is in contact with the operation surface 32 or is not actually in contact but is almost in contact, and a “proximity state” in which the finger is in proximity to the operation surface 32. , And the “non-contact state” in which the finger is further away from the operation surface 32 than the “proximity state”. The “contact state” may be an operation state only when the finger substantially contacts the operation surface 32.
 例えば、操作制御部33は、感度閾値として、Hht1=count200、Hht2=count175、Hht3=count150、Hht4=count125、Hht5=count100を備えている。そして、感度値がHth1(200)以上であると指は操作面32に対して「接触状態」であると判定する。また、感度値がHth1~Hth5(200~101)の間にあると指は操作面32に対して「近接状態」であると判定する。また、感度値がHth5(100)以下であると指は操作面32に対して「非接触状態」であると判定する。以下、「接触状態」を「接触中」、「近接状態」を「近接中」、「非接触状態」を「非接触」と呼ぶことにする。 For example, the operation control unit 33 includes Hht1 = count200, Hht2 = count175, Hht3 = count150, Hht4 = count125, and Hht5 = count100 as sensitivity thresholds. If the sensitivity value is equal to or higher than Hth1 (200), the finger is determined to be in “contact state” with respect to the operation surface 32. If the sensitivity value is between Hth1 to Hth5 (200 to 101), it is determined that the finger is in the “proximity state” with respect to the operation surface 32. If the sensitivity value is Hth5 (100) or less, it is determined that the finger is in a “non-contact state” with respect to the operation surface 32. Hereinafter, the “contact state” is referred to as “in contact”, the “proximity state” is referred to as “in proximity”, and the “non-contact state” is referred to as “non-contact”.
 また、操作制御部33は、「近接状態」については、感度値がHth2(175)以上で「近接1」、感度値がHth3(150)以上で「近接2」、感度値がHth4(125)以上で「近接3」として、「近接状態」を更に複数の「近接1~3の状態」に分割して判定するようにしている。 In addition, regarding the “proximity state”, the operation control unit 33 sets “proximity 1” when the sensitivity value is Hth2 (175) or more, “proximity 2” when the sensitivity value is Hth3 (150) or more, and the sensitivity value is Hth4 (125). As described above, “proximity 3” is determined by dividing the “proximity state” into a plurality of “proximity 1 to 3 states”.
 尚、各感度閾値Hth1~Hth5近傍で指が微妙に上下移動すると、操作制御部33による操作状態の判定結果に反転繰返し(ハンチング)が発生してしまう。よって、各感度閾値Hth1~Hth5の上側(操作面32に近い側)には、所定距離だけ離れた位置に対応する上側閾値Hth1U~Hth5Uがそれぞれ設定されている。また、各感度閾値Hth1~Hth5の下側(操作面32に遠い側)には、所定距離だけ離れた位置に対応する下側閾値Hth1D~Hth5Dがそれぞれ設定されている。指が各感度閾値Hth1~Hth5の下側(遠い側)から上側(近い側)に向けて移動される際には、各上側閾値Hth1U~Hth5Uが、操作状態を判定する際の感度閾値となる。逆に、指が各感度閾値Hth1~Hth5の上側(近い側)から下側(遠い側)に向けて移動される際には、各下側閾値Hth1D~Hth5Dが、操作状態を判定する際の感度閾値となる。 It should be noted that if the finger slightly moves up and down in the vicinity of each of the sensitivity thresholds Hth1 to Hth5, the operation control unit 33 results in repeated inversion (hunting). Therefore, the upper thresholds Hth1U to Hth5U corresponding to the positions separated by a predetermined distance are set above the sensitivity thresholds Hth1 to Hth5 (side closer to the operation surface 32). Further, lower thresholds Hth1D to Hth5D corresponding to positions separated by a predetermined distance are set below the sensitivity thresholds Hth1 to Hth5 (the side far from the operation surface 32), respectively. When the finger is moved from the lower side (far side) to the upper side (near side) of each sensitivity threshold Hth1 to Hth5, each upper threshold Hth1U to Hth5U becomes a sensitivity threshold for determining the operation state. . Conversely, when the finger is moved from the upper side (near side) to the lower side (far side) of each sensitivity threshold value Hth1 to Hth5, the lower threshold values Hth1D to Hth5D are used for determining the operation state. Sensitivity threshold.
 更に、操作制御部33は、操作者が操作面32を指で軽く押さえたときの押圧操作(タッチ操作)を検知する。そして操作制御部33は、指のスライド操作に伴う指の位置を示すx、y、z座標、および押圧操作の有無を、通信制御部23および通信インターフェース24を通じて、CANバス90に出力する。 Furthermore, the operation control unit 33 detects a pressing operation (touch operation) when the operator gently presses the operation surface 32 with a finger. Then, the operation control unit 33 outputs the x, y, z coordinates indicating the position of the finger accompanying the finger slide operation and the presence or absence of the pressing operation to the CAN bus 90 through the communication control unit 23 and the communication interface 24.
 ナビゲーション装置50は、地図上における現在の位置表示や目的地案内等を行うナビゲーション機能に加えて、車両用空調装置に対する空調作動設定機能、車両用オーディオに対するオーディオ作動設定機能、およびインターネットによる各種情報検索閲覧機能等を備えている。ナビゲーション装置50は、遠隔操作デバイス100等と通信可能なようにCANバス90と接続されており、表示制御部51および液晶ディスプレイ52を有している。 In addition to the navigation function for displaying the current position on the map and destination guidance, the navigation device 50 has an air conditioning operation setting function for the vehicle air conditioning device, an audio operation setting function for the vehicle audio, and various information retrieval via the Internet. It has a browsing function. The navigation device 50 is connected to the CAN bus 90 so as to be able to communicate with the remote operation device 100 and the like, and includes a display control unit 51 and a liquid crystal display 52.
 ナビゲーション装置50における上記の各種機能については、後述する液晶ディスプレイ52の表示画像60中のメニュー項目61において、「Climate(エアコン操作)」、「Map(地図表示)」、「Destination(目的地設定)」、「Media(オーディオ操作)」、「Network(インターネット操作)」等のように表示されるようになっている(図7)。 Regarding the various functions described above in the navigation device 50, “Climate (air conditioner operation)”, “Map (map display)”, “Destination (destination setting) are set in a menu item 61 in a display image 60 of the liquid crystal display 52 described later. ”,“ Media (audio operation) ”,“ Network (Internet operation) ”, etc. (FIG. 7).
 表示制御部51は、各種の演算処理を行うプロセッサ、演算処理の作業領域として機能するRAM、画像の描画処理を行うグラフィックプロセッサ、描画処理の作業領域として機能するグラフィックRAM等によって構成されている。加えて表示制御部51は、演算処理および描画処理に用いられるデータを格納するフラッシュメモリ、CANバス90と接続される通信インターフェース、および描画した画像データを液晶ディスプレイ52に出力する映像出力インターフェースを有している。表示制御部51は、CANバス90から取得する情報に基づいて、表示画面53に表示する表示画像60を描画する。そして表示制御部51は、描画した表示画像60の画像データを、映像出力インターフェースを通じて液晶ディスプレイ52に逐次出力する。 The display control unit 51 includes a processor that performs various arithmetic processes, a RAM that functions as a work area for arithmetic processes, a graphic processor that performs image drawing processes, a graphic RAM that functions as a work area for drawing processes, and the like. In addition, the display control unit 51 has a flash memory for storing data used for arithmetic processing and drawing processing, a communication interface connected to the CAN bus 90, and a video output interface for outputting drawn image data to the liquid crystal display 52. is doing. The display control unit 51 draws a display image 60 to be displayed on the display screen 53 based on information acquired from the CAN bus 90. The display control unit 51 sequentially outputs the image data of the drawn display image 60 to the liquid crystal display 52 through the video output interface.
 液晶ディスプレイ52は、表示画面53に配列された複数の画素を制御することにより、カラー表示を実現するドットマトリクス方式の表示部である。液晶ディスプレイ52は、表示制御部51から逐次取得する画像データを表示画面53に連続的に形成することにより、映像を表示する。 The liquid crystal display 52 is a dot matrix type display unit that realizes color display by controlling a plurality of pixels arranged on the display screen 53. The liquid crystal display 52 displays video by continuously forming image data sequentially acquired from the display control unit 51 on the display screen 53.
 表示画面53に表示される表示画像60は、本開示の画像の一例に対応するものであり、複数の階層に分かれた画像から構成されている。例えば、複数の階層の画像のうち、第1階層(所定階層)の画像は、ナビゲーション装置50の各種機能(ナビゲーション、エアコン、オーディオ、インターネット等)を使用するための複数のメイン画像となっている。例えば、図7では、1つのメイン画像として、エアコン用のメイン画像を示している。 The display image 60 displayed on the display screen 53 corresponds to an example of the image of the present disclosure, and is composed of images divided into a plurality of layers. For example, among the images of a plurality of layers, the image of the first layer (predetermined layer) is a plurality of main images for using various functions (navigation, air conditioner, audio, Internet, etc.) of the navigation device 50. . For example, FIG. 7 shows a main image for an air conditioner as one main image.
 表示画像60の上側には、複数のメイン画像の種類(名称)をメニュー項目として、これらメニュー項目が左右方向に並ぶように形成されたメニュー61が設けられている。メニュー61は、表示画像60がどの階層の画像に切替えられても、常に同一の形で表示されるようになっている。操作者は、所望するメニュー61のうちの1つを操作面32上で指操作により選択すると、表示画面53には、選択されたメイン画像が表示されるようになっている。あるいは、操作者は、任意のメイン画像が表示されているときに、メニュー61を操作することなく、操作面32上で指をスライド操作することで、メイン画像を順次スクロールすることができ、所望のメイン画像にすることができるようになっている。 On the upper side of the display image 60, a menu 61 is provided in which a plurality of types (names) of main images are used as menu items and these menu items are arranged in the left-right direction. The menu 61 is always displayed in the same form regardless of the hierarchy of the display image 60. When the operator selects one of the desired menus 61 on the operation surface 32 by a finger operation, the selected main image is displayed on the display screen 53. Alternatively, the operator can scroll the main images sequentially by sliding the finger on the operation surface 32 without operating the menu 61 when any main image is displayed. The main image can be made.
 各メイン画像には、画像を操作するための複数のアイコン62が設けられている。図7の例では、エアコン操作における風量設定アイコン、温度設定アイコン、デュアル設定アイコン、吹出しモード設定アイコン等を示している。操作者は、操作面32上で指をスライド操作することによって所望のアイコン62を選択すると、そのアイコン62が選択されたことを示す枠状のフォーカス63が表示されるようになっている。更に、選択されたアイコン62の位置に対応するように操作面32上で指を軽く押さえてやると(タッチ操作すると)、そのアイコン62が決定状態となり、第2階層の画像、つまり決定されたアイコンに対応する操作用の画像に移行し、順次、各種機能が使用できるようになっている。 Each main image is provided with a plurality of icons 62 for operating the image. In the example of FIG. 7, an air volume setting icon, a temperature setting icon, a dual setting icon, a blowing mode setting icon, etc. in the air conditioner operation are shown. When the operator selects a desired icon 62 by sliding a finger on the operation surface 32, a frame-shaped focus 63 indicating that the icon 62 has been selected is displayed. Further, when the finger is lightly pressed on the operation surface 32 so as to correspond to the position of the selected icon 62 (touch operation), the icon 62 is determined, and the image of the second hierarchy, that is, determined. The operation image corresponding to the icon is transferred, and various functions can be used in sequence.
 次に、操作制御部33によるタッチセンサ31からの入力処理の詳細を図6、図7に基づいて説明する。 Next, details of input processing from the touch sensor 31 by the operation control unit 33 will be described with reference to FIGS.
 図6において、まず、ステップS100では、タッチセンサ31の各電極にて検出される感度値を取得する取得処理を実施し、ステップS110に進む。ステップS110では、ステップS100にて取得される感度値から、操作面32に対する指の相対位置を示すx座標、y座標、および操作距離を示すz座標の計算処理を実施する。そして、操作距離を示すz座標の計算値から、指の操作状態が、接触中、近接中、あるいは非接触のいずれにあるかを算出する。 In FIG. 6, first, in step S100, an acquisition process for acquiring sensitivity values detected by each electrode of the touch sensor 31 is performed, and the process proceeds to step S110. In step S110, calculation processing of the x-coordinate indicating the relative position of the finger with respect to the operation surface 32, the y-coordinate, and the z-coordinate indicating the operation distance is performed from the sensitivity value acquired in step S100. Then, from the calculated value of the z coordinate indicating the operation distance, it is calculated whether the operation state of the finger is in contact, in proximity, or non-contact.
 具体的には、タッチセンサ31によって検出される感度値がHth1(Hth1U)よりも大きいときは接触中、また、感度値がHth5(Hth5U)~Hth1(Hth1D)の間にあるときは近接中、更に、感度値がHth5(Hth5D)よりも小さいときは非接触と算出する。 Specifically, when the sensitivity value detected by the touch sensor 31 is larger than Hth1 (Hth1U), during contact, and when the sensitivity value is between Hth5 (Hth5U) and Hth1 (Hth1D), during proximity, Furthermore, when the sensitivity value is smaller than Hth5 (Hth5D), it is calculated as non-contact.
 そして、ステップS120で、算出された指の操作状態は接触中ではなく、且つ感度値がHth1以上(実際には上側閾値Hth1U以上)あるか否かを判定する。ここで肯定判定すると、操作者の指は非接触あるいは近接中の状態から操作面32に近づき、操作面32に対して接触した状態にあることになり、ステップS130で、指の操作状態を接触中に更新する。 Then, in step S120, it is determined whether the calculated finger operation state is not in contact and the sensitivity value is Hth1 or more (actually, the upper threshold value Hth1U or more). If an affirmative determination is made here, the operator's finger approaches the operation surface 32 from a non-contact or approaching state and is in contact with the operation surface 32. In step S130, the operation state of the finger is contacted. Update inside.
 そして、ステップS140で、表示画面53を接触中画面に更新する。接触中画面とは、図7(右側の枠内)に示すように、表示画像60が表示画面53上で本来の平面的な(傾きのない)画像として表示される画面である。フォーカス63は、表示されるメイン画像に対応する機器の現時点での作動状態(作動設定状態)を示す。 In step S140, the display screen 53 is updated to the in-contact screen. The in-contact screen is a screen on which the display image 60 is displayed on the display screen 53 as an original planar (no tilt) image, as shown in FIG. 7 (in the right frame). The focus 63 indicates the current operation state (operation setting state) of the device corresponding to the main image to be displayed.
 接触中画面においては、操作者は、指操作(スライド、タッチ操作等)によって、本来の画面操作、つまり各メニュー61、および各種アイコン62の選択、および決定等が可能となる。このとき、操作者は、表示画像60が本来の平面的な画像であることから、指の操作状態が接触中にあり、各メニュー61、および各種アイコン62に対する指操作が可能であることを直感的に知ることができる。 In the contact screen, the operator can perform original screen operations, that is, selection and determination of each menu 61 and various icons 62 by finger operation (slide, touch operation, etc.). At this time, since the display image 60 is an original planar image, the operator intuitively knows that the finger operation state is in contact and the finger operation on each menu 61 and various icons 62 is possible. Can know.
 次に、ステップS120で、否と判定すると、ステップS150で、1つ目の条件として操作状態は非接触であり、且つ感度値がHth5以上(実際には上側閾値Hth5U以上)あるか、または2つ目の条件として操作状態は接触中であり、且つ感度値がHth1以下(実際には下側閾値Hth1D以下)であるか、のいずれかであるか否かを判定する。ここで肯定判定すると、操作者の指は非接触から操作面32に近づく、あるいは接触中から操作面32に対して多少離れる状態にあることになり、ステップS160で、指の操作状態を近接中に更新する。 Next, if it is determined NO in step S120, in step S150, the first condition is that the operation state is non-contact and the sensitivity value is Hth5 or higher (actually the upper threshold Hth5U or higher), or 2 As a first condition, it is determined whether or not the operation state is in contact and the sensitivity value is Hth1 or less (actually, the lower threshold value Hth1D or less). If an affirmative determination is made here, the operator's finger approaches the operation surface 32 from non-contact or is slightly away from the operation surface 32 during contact, and the operation state of the finger is approaching in step S160. Update to
 そして、ステップS170で、感度値がHth2以上(実際には下側閾値Hth2D以上)あるかを判定する。ここで肯定判定すると、指の操作状態は、近接中にあって操作面32に対してより近い状態(近接1)にあり、ステップS180で、表示画面53を近接1画面に更新する。近接1画面とは、図7(真ん中の枠内の右側)に示すように、表示画像60が、接触中における本来の平面的な画像に対して、立体的な画像として表示される画面である。立体的な画像は、例えば、本来の画像の部分が浮いた状態となって、浮いている画像の下側に影に相当する部分が形成された画像となっている。更に、近接1画面においては、車両の幅方向のほぼ中央に位置する液晶ディスプレイと、操作者(この場合は右側の運転者)との位置関係から、表示画像60は表示画面53に対して操作者側に向くようにある程度、右側に傾いた形となって表示されるようになっている。尚、近接1画面においては、表示画像60中のフォーカス63は表示されない。 In step S170, it is determined whether the sensitivity value is Hth2 or more (actually, the lower threshold value Hth2D or more). If an affirmative determination is made here, the operation state of the finger is in proximity and closer to the operation surface 32 (proximity 1), and the display screen 53 is updated to the proximity 1 screen in step S180. As shown in FIG. 7 (on the right side in the middle frame), the close one screen is a screen on which the display image 60 is displayed as a three-dimensional image with respect to the original planar image during contact. . A stereoscopic image is, for example, an image in which a portion of the original image is in a floating state and a portion corresponding to a shadow is formed below the floating image. Further, in the close one screen, the display image 60 is operated with respect to the display screen 53 because of the positional relationship between the liquid crystal display located substantially in the center in the width direction of the vehicle and the operator (the driver on the right side in this case). It is displayed in a shape inclined to the right side to some extent so as to face the person. Note that the focus 63 in the display image 60 is not displayed in the proximity 1 screen.
 また、上記ステップS170で、否定判定すると、ステップS190で、感度値がHth3以上(実際には下側閾値Hth3D以上)あるかを判定する。ここで肯定判定すると、指の操作状態は、近接中にあって操作面32に対して多少離れた状態(近接2)にあり、ステップS200で、表示画面53を近接2画面に更新する。近接2画面とは、表示画像60が、接触中における本来の平面的な画像に対して、上記の近接1画面で説明したように、立体的な画像として表示される画面である。更に、近接2画面においては、表示画像60の操作者側に向く傾きが、近接1画面における画像よりも更に、右側に傾いた形となって表示されるようになっている。尚、近接2画面においては、近接1画面と同様に、表示画像60中のフォーカス63は表示されない。 If a negative determination is made in step S170, it is determined in step S190 whether the sensitivity value is equal to or higher than Hth3 (actually, lower threshold Hth3D). If an affirmative determination is made here, the operation state of the finger is in the state of being close and slightly away from the operation surface 32 (proximity 2), and the display screen 53 is updated to the proximity 2 screen in step S200. The proximity two screen is a screen in which the display image 60 is displayed as a three-dimensional image as described in the above proximity one screen with respect to the original planar image during contact. Further, in the proximity two screens, the inclination of the display image 60 toward the operator is displayed in a shape inclined further to the right side than the image in the proximity one screen. In the proximity 2 screen, the focus 63 in the display image 60 is not displayed as in the proximity 1 screen.
 また、上記ステップS190で、否定判定すると、ステップS210で、感度値がHth4以上(実際には下側閾値Hth4D以上)あるかを判定する。ここで肯定判定すると、指の操作状態は、近接中にあって操作面32からかなり離れた状態(近接3)にあり、ステップS220で、表示画面53を近接3画面に更新する。近接3画面とは、図7(真ん中の枠内の左側)に示すように、表示画像60が、接触中における本来の平面的な画像に対して、上記の近接1画面で説明したように、立体的な画像として表示される画面である。更に、近接3画面においては、表示画像60の操作者側に向く傾きが、近接2画面における画像よりも更に、右側に傾いた形となって表示されるようになっている。尚、近接3画面においては、近接1画面と同様に、表示画像60中のフォーカス63は表示されない。また、ステップS210で否と判定すると、このフローを終了する。 If a negative determination is made in step S190, it is determined in step S210 whether the sensitivity value is equal to or higher than Hth4 (actually, lower threshold Hth4D). If an affirmative determination is made here, the operation state of the finger is in a state of being in proximity and far away from the operation surface 32 (proximity 3), and the display screen 53 is updated to the proximity 3 screen in step S220. As shown in FIG. 7 (left side in the middle frame), the proximity 3 screen is a display image 60 as described in the above proximity 1 screen with respect to the original planar image during contact. It is a screen displayed as a three-dimensional image. Further, in the proximity 3 screen, the inclination of the display image 60 toward the operator is displayed in a shape inclined further to the right side than the image in the proximity 2 screen. Note that the focus 63 in the display image 60 is not displayed on the three adjacent screens, as in the case of the close one screen. If it is determined NO in step S210, the flow ends.
 上記の近接1画面、近接2画面、および近接3画面においては、操作者は、近接中における指操作(フリック等のジェスチャ)によって、メニュー61によるメイン画像の切替えが可能となる。このとき、操作者は、立体的に表示された表示画像60から指の位置が近接中(近接1~近接3)にあることを直感的に知ることができる。併せて、操作者は、表示画像60の傾きがより小さいほど、指は操作面32に近い位置(近接1側)にあり、逆に傾きがより大きいほど、指は操作面32から離れた位置(近接3側)にあることを直感的に知ることができる。 In the above proximity 1 screen, proximity 2 screen, and proximity 3 screen, the operator can switch the main image by the menu 61 by a finger operation (gesture such as flick) during proximity. At this time, the operator can intuitively know that the position of the finger is in proximity (proximity 1 to proximity 3) from the three-dimensionally displayed display image 60. At the same time, as the tilt of the display image 60 is smaller, the operator is closer to the operation surface 32 (on the proximity 1 side), and conversely, the greater the tilt is, the farther the finger is from the operation surface 32. It can be intuitively known that it is on the (near 3 side).
 次に、ステップS150で、否と判定すると、ステップS230で、操作状態は非接触ではなく、且つ感度値がHth5以下(実際には下側閾値Hth5D以下)であるか否かを判定する。ここで肯定判定すると、操作者の指は接触中あるいは近接中の状態から操作面32に対して大きく離れる状態にあることになり、ステップS240で、指の操作状態を非接触に更新する。尚、ステップS230で否と判定すると、このフローを終了する。 Next, if it is determined as NO in step S150, it is determined in step S230 whether or not the operation state is non-contact and the sensitivity value is Hth5 or less (actually lower threshold Hth5D or less). If an affirmative determination is made here, the operator's finger is in a state of being greatly separated from the operating surface 32 from the contacted or approaching state, and the operation state of the finger is updated to non-contact in step S240. If it is determined NO in step S230, this flow ends.
 そして、ステップS250で、表示画面53を非接触画面に更新する。非接触画面とは、図7(左側の枠内)に示すように、接触中画面と同様に、表示画像60が本来の平面的な(傾きのない)画像として表示される画面である。非接触画面には、メニュー61、各種アイコン62、およびフォーカス63が表示される。非接触画面は、表示されるメイン画像に対応する機器の現時点での作動状態(作動設定状態)を示す。 In step S250, the display screen 53 is updated to a non-contact screen. As shown in FIG. 7 (in the left frame), the non-contact screen is a screen on which the display image 60 is displayed as an original planar image (without inclination), like the in-contact screen. A menu 61, various icons 62, and a focus 63 are displayed on the non-contact screen. The non-contact screen shows the current operating state (operation setting state) of the device corresponding to the main image to be displayed.
 非接触画面においては、操作者の指は操作面32から明らかに離れた状態にあり、操作者には表示画像60を操作する意志は無く、操作者は表示画像60を、単純に現在の機器の作動状態を確認するための確認用画面として見ることができる。 In the non-contact screen, the operator's finger is clearly separated from the operation surface 32, the operator has no intention to operate the display image 60, and the operator simply displays the display image 60 with the current device. It can be seen as a confirmation screen for confirming the operating state of
 以上のように、本実施形態では、表示画像60を操作するにあたって、操作者の指が近接状態にあるときは、操作制御部33によって、本来の平面的な表示画像60が立体的に表示される。よって、操作者は、指はまだ操作面32に至っておらず、操作面32をタッチして操作できる状態にはない、ということを直感的に把握することができる。また、指が近接状態に対して接触状態となると、表示画像60は、指操作をするにあたって支障のない本来の平面的な表示となる。よって、操作者は、表示画像60が立体的か平面的かによって操作面32に対する指の近接状態、あるは接触状態を容易に把握することができるので、表示画像60に対する操作要領が容易に判別可能となり、操作に迷うことがなくなる。 As described above, in the present embodiment, when the operator's finger is in the proximity state when operating the display image 60, the original planar display image 60 is stereoscopically displayed by the operation control unit 33. The Therefore, the operator can intuitively grasp that the finger has not yet reached the operation surface 32 and is not in a state where it can be operated by touching the operation surface 32. When the finger is in a contact state with respect to the proximity state, the display image 60 is an original planar display that does not hinder the finger operation. Therefore, the operator can easily grasp the proximity state or contact state of the finger with respect to the operation surface 32 depending on whether the display image 60 is three-dimensional or planar, so that the operation procedure for the display image 60 can be easily determined. It becomes possible and it will not be lost in operation.
 また、操作制御部33は、近接状態において立体的となる表示画像60が、操作者(運転者)側を向くように傾けて表示すると共に、操作面32から指が遠ざかるほど、表示画像60の傾きが大きくなるように表示するようにしている。これにより、操作者は、近接状態にある指の位置について、表示画像60の傾きによって、操作面32からの指の距離が大きいのか小さいのかを、より明確に把握することが可能となる。 In addition, the operation control unit 33 displays the display image 60 that is three-dimensional in the proximity state so that the display image 60 is inclined so as to face the operator (driver) side, and the display image 60 is displayed as the finger moves away from the operation surface 32. The display is made so that the inclination becomes large. Thereby, the operator can more clearly grasp whether the distance of the finger from the operation surface 32 is large or small by the inclination of the display image 60 with respect to the position of the finger in the proximity state.
 また、操作制御部33は、検出される操作状態が、操作面32に対して近接状態よりも遠ざかる非接触状態にあると、液晶ディスプレイ52に表示される表示画像60を接触状態のときと同一の平面的な画像にするようにしている。操作状態が非接触状態にあるということは、操作者が実質的に指操作を行っていない場合であり、このようなときは、表示画像60が本来の平面的な画像にされることで、操作者は何ら支障なく表示画像60を見ることができる。 Further, when the detected operation state is in a non-contact state that is further away from the proximity state than the operation surface 32, the operation control unit 33 is the same as the display image 60 displayed on the liquid crystal display 52 in the contact state. I try to make it a flat image. That the operation state is in a non-contact state is a case where the operator does not substantially perform a finger operation. In such a case, the display image 60 is changed to an original planar image, The operator can view the display image 60 without any trouble.
 (第2実施形態)
 第2実施形態の遠隔操作デバイス100Aを図8~図11に示す。第2実施形態は、操作者として、運転席における運転者、および助手席における助手席者を対象とした表示画像60の入力処理を行うものとなっている。
(Second Embodiment)
A remote operation device 100A of the second embodiment is shown in FIGS. In the second embodiment, as an operator, the display image 60 is input for a driver in a driver seat and a passenger seat in a passenger seat.
 図8、図9に示すように、遠隔操作デバイス100Aには、近接センサ34a、34bが設けられている。近接センサ34aは、例えば、操作面32の右側に配置されて、運転者の指が操作面32に対して右側から近接することを検知するセンサであり、検知した信号を操作制御部33に出力するようになっている。また、近接センサ34bは、例えば、操作面32の左側に配置されて、助手席者の指が操作面32に対して左側から近接することを検知するセンサであり、検知した信号を操作制御部33に出力するようになっている。よって、操作制御部33は、近接センサ34a、あるいは近接センサ34bからの信号に基づいて、操作面32の操作者が運転者か、助手席者かを判定できるようになっている。 8 and 9, the remote operation device 100A is provided with proximity sensors 34a and 34b. The proximity sensor 34 a is, for example, a sensor that is disposed on the right side of the operation surface 32 and detects that the driver's finger is approaching the operation surface 32 from the right side, and outputs the detected signal to the operation control unit 33. It is supposed to do. The proximity sensor 34b is, for example, a sensor that is disposed on the left side of the operation surface 32 and detects that a passenger's finger approaches the operation surface 32 from the left side. 33 is output. Therefore, the operation control unit 33 can determine whether the operator of the operation surface 32 is a driver or a passenger seat based on a signal from the proximity sensor 34a or the proximity sensor 34b.
 操作制御部33が行う入力処理のフローチャートは、図10に示すように、上記第1実施形態で説明したフローチャート(図6)に対して、操作者が運転者か助手席者かのいずれかを判定して、判定結果に応じた画面表示の設定を行うためのステップS50、S51、S52が追加されたものとなっている。 As shown in FIG. 10, the flowchart of the input process performed by the operation control unit 33 is different from the flowchart (FIG. 6) described in the first embodiment whether the operator is a driver or a passenger. Steps S50, S51, and S52 for determining and setting the screen display according to the determination result are added.
 操作制御部33は、ステップS50で、近接センサ34a、34bの出力信号から、操作者は、運転者か助手席者かを判定する。尚、図10中の「D席」は運転席(Driver seat)を意味し、また、「P席」は助手席(Passenger seat)を意味している。 In step S50, the operation control unit 33 determines whether the operator is a driver or a passenger seat from the output signals of the proximity sensors 34a and 34b. Note that “D seat” in FIG. 10 means a driver seat, and “P seat” means a passenger seat.
 そして、ステップS50で、操作者は、運転者であると判定すると、操作制御部33は、ステップS51で、運転者用の画面表示設定を行う。運転者用の画面表示設定とは、まず、表示画像60として、各メニュー61、および各種アイコン62を備える基本形態とする設定となっている。そして、運転者の指の操作状態が近接中であると、図11(右側の枠内)に示すように、ステップS180、S200、S220において、立体的に表示される表示画像60が、実際に指操作している運手者に向けて傾く画像とする設定となっている。尚、上記第1実施形態で説明したように、近接中において運転者の指が操作面32に近いほど立体的画像の傾きは小さく、指が操作面32から遠ざかるほど立体的画像の傾きが大きく表示される。運転者は、近接中においては、指操作(フリック等のジェスチャ)によって、表示画像60中のメニュー61によるメイン画像の切替えが可能となる。 If the operator is determined to be a driver in step S50, the operation control unit 33 performs screen display setting for the driver in step S51. The screen display setting for the driver is set to a basic form including each menu 61 and various icons 62 as the display image 60. If the operation state of the driver's finger is close, as shown in FIG. 11 (in the right frame), the display image 60 displayed in three dimensions is actually displayed in steps S180, S200, and S220. The setting is such that the image is tilted toward the operator operating the finger. As described in the first embodiment, the closer the driver's finger is to the operation surface 32 in proximity, the smaller the inclination of the stereoscopic image, and the further away the finger is from the operation surface 32, the greater the inclination of the stereoscopic image. Is displayed. When the driver is approaching, the main image can be switched by the menu 61 in the display image 60 by a finger operation (gesture such as flick).
 このとき、運転者は、立体的に表示された表示画像60の傾き方向が自身を向く方向となることから、現在の表示画像60が運転者自身の入力に基づくものであることを直感的に知ることができる。併せて、第1実施形態と同様に、立体的に表示された表示画像60の傾きがより小さいほど、指は操作面32に近い位置(近接1側)にあり、逆に傾きがより大きいほど、指は操作面32から離れた位置(近接3側)にあることを直感的に知ることができる。 At this time, the driver intuitively knows that the current display image 60 is based on the driver's own input since the three-dimensionally displayed display image 60 is tilted in the direction of his / her own. I can know. At the same time, as in the first embodiment, the smaller the inclination of the display image 60 displayed in a three-dimensional manner, the closer the finger is to the operation surface 32 (the proximity 1 side), and vice versa. It is possible to intuitively know that the finger is at a position away from the operation surface 32 (proximity 3 side).
 尚、運転者の指の操作状態が接触中であると、操作制御部33は、ステップS140において、表示画像60としては、本来の平面的な(傾きのない)画像とする。接触中においては、運転者は、指をスライド、あるいはタッチすることで、本来の画面操作、つまり各メニュー61、および各種アイコン62の選択および決定等が可能となる。 If the operation state of the driver's finger is in contact, the operation control unit 33 assumes that the display image 60 is an original planar (no tilt) image in step S140. During contact, the driver can perform original screen operations, that is, selection and determination of each menu 61 and various icons 62 by sliding or touching the finger.
 一方、ステップS50で、操作者は、助手席者であると判定すると、操作制御部33は、ステップS52で、助手席者用の画面表示設定を行う。助手席者用の画面表示設定とは、まず、表示画像60として、上記の運転者用の基本画像に対して、助手席者のダイレクト操作が可能となる専用のコンテンツ64が設けられた画像とする設定となっている。そして、助手席者の指の操作状態が近接中であると、図11(左側の枠内)に示すように、ステップS180、S200、S220において、立体的に表示される表示画像60が、実際に指操作している助手席者に向けて傾く画像とする設定となっている。尚、助手席者の指が操作面32に近いほど立体的画像の傾きは小さく、指が操作面32から遠ざかるほど立体的画像の傾きが大きく表示される。助手席者は、近接中においては、指操作(フリック等のジェスチャ)によって、表示画像60中のメニュー61によるメイン画像の切替えが可能となる。 On the other hand, if it is determined in step S50 that the operator is a passenger, the operation control unit 33 performs screen display settings for the passenger in step S52. The screen display setting for the passenger seat first means that the display image 60 is an image provided with a dedicated content 64 that allows the passenger seat passenger to directly operate the basic image for the driver. It is set to be. When the operation state of the passenger's finger is close, as shown in FIG. 11 (in the left frame), the display image 60 displayed in a three-dimensional manner is actually displayed in steps S180, S200, and S220. The image is tilted toward the front passenger seating the finger. Note that the closer the passenger's finger is to the operation surface 32, the smaller the inclination of the stereoscopic image, and the farther the finger is from the operation surface 32, the larger the inclination of the stereoscopic image is displayed. When the passenger is in the vicinity, the main image can be switched by the menu 61 in the display image 60 by a finger operation (gesture such as flick).
 上記の助手席者用の専用のコンテンツ64は、本開示の操作画像部の一例に対応するものであり、例えば、エアコン用のメイン画像において、助手席側の温度を単独で設定可能とする助手席側温度設定用のアイコンとなっている。コンテンツ64には、例えば、現状の設定温度値に対する上側温度の設定部、温度上昇設定部、最大温度設定部、現状の設定温度に対する下側温度の設定部、温度低下設定部、最小温度設定部等の操作部が設けられたものとなっている。 The passenger seat exclusive content 64 corresponds to an example of the operation image unit of the present disclosure. For example, in the main image for an air conditioner, the passenger seat side temperature can be set independently. It is an icon for setting the seat side temperature. The content 64 includes, for example, an upper temperature setting unit, a temperature rise setting unit, a maximum temperature setting unit, a lower temperature setting unit, a temperature lowering setting unit, and a minimum temperature setting unit with respect to the current set temperature. Etc. are provided.
 このとき、助手席者は、立体的に表示された表示画像60の傾き方向が自身を向く方向となることから、現在の表示画像60が助手席者自身の入力に基づくものであることを直感的に知ることができる。併せて、第1実施形態と同様に、立体的に表示された表示画像60の傾きがより小さいほど、指は操作面32に近い位置(近接1側)にあり、逆に傾きがより大きいほど、指は操作面32から離れた位置(近接3側)にあることを直感的に知ることができる。 At this time, the passenger's seat intuitively knows that the current display image 60 is based on the input of the passenger's seat himself because the three-dimensional display image 60 is tilted in the direction of his / her own. Can know. At the same time, as in the first embodiment, the smaller the inclination of the display image 60 displayed in a three-dimensional manner, the closer the finger is to the operation surface 32 (the proximity 1 side), and vice versa. It is possible to intuitively know that the finger is at a position away from the operation surface 32 (proximity 3 side).
 尚、助手席者の指の操作状態が接触中であると、操作制御部33は、ステップS140において、表示画像60としては、本来の平面的な(傾きのない)画像とする。接触中においては、助手席者は、指をスライド、あるいはタッチすることで、本来の画面操作、つまり各メニュー61、各種アイコン62、更にはコンテンツ64の選択および決定等が可能となる。 If the operation state of the passenger's finger is in contact, the operation control unit 33 assumes that the display image 60 is an original flat (no tilt) image in step S140. During the contact, the passenger can slide or touch the finger to perform the original screen operation, that is, selection and determination of each menu 61, various icons 62, and further the content 64.
 以上のように、本実施形態においては、操作者の対象を運転者と助手席者としており、操作面32に対する指操作が行われ、このときの操作状態が近接中であると、立体的となる表示画像60が実際に指操作を行った操作者に向けて傾いて表示されるようにしている。よって、操作者は、現在の表示画像60が、操作者自身の入力に基づくものであることが直感的に分かり、運転者あるいは助手席者のいずれの操作者が操作しているのか迷うことがなく、操作性を向上させることができる。 As described above, in the present embodiment, the operator's target is the driver and the passenger seat, and the finger operation on the operation surface 32 is performed. The display image 60 to be displayed is tilted toward the operator who actually performed the finger operation. Therefore, the operator can intuitively understand that the current display image 60 is based on the input of the operator himself, and may be wondering whether the driver or the passenger in the passenger's seat is operating. The operability can be improved.
 また、助手席者が指操作した場合には、表示画像60中に助手席者によるダイレクト操作が可能となる専用のコンテンツ64を表示するようにしている。これにより、助手席者の操作性を向上させることができる。 In addition, when the passenger seat is operated by a finger, a dedicated content 64 that can be directly operated by the passenger seat is displayed in the display image 60. Thereby, the operability of the passenger seat can be improved.
 (その他の実施形態)
 上記の各実施形態では、指の操作状態として、近接状態において、近接1、近接2、近接3という、3つの区分を設けたが、これに限定されることなく、1つの近接、あるいは2つの近接、あるいは4つ以上の近接等、適宜設定するようにしても良い。
(Other embodiments)
In each of the above-described embodiments, as the operation state of the finger, in the proximity state, three sections of proximity 1, proximity 2, and proximity 3 are provided. Proximity or four or more proximity may be set as appropriate.
 また、上記第1実施形態では、指の操作状態が近接中のときに、表示画像60を立体的に表示するにあたって、操作者側を向くように傾けて表示するようにしたが、これに限らず、傾きを持たすことなく本来の矩形形状のままの画像としても良い。 Further, in the first embodiment, when the operation state of the finger is in proximity, when the display image 60 is displayed in a three-dimensional manner, the display image 60 is tilted so as to face the operator side. Alternatively, the image may be an original rectangular shape without inclination.
 この場合、近接1、近接2、および近接3に対する区分けとしては、例えば、立体的な表示画像60の本来の画像部分と影となる部分との距離を変えることで対応可能である。つまり、近接1のときは、本来の画像部分と影となる部分との距離を小さくし(所定値とし)、近接2、近接3に移行するにしたがって、この距離をより大きくするようにすれば良い。 In this case, as the division for the proximity 1, proximity 2 and proximity 3, it can be dealt with by changing the distance between the original image portion of the stereoscopic display image 60 and the shadowed portion, for example. That is, in the case of the proximity 1, if the distance between the original image portion and the shadowed portion is reduced (set to a predetermined value), and the distance is increased as the shift to the proximity 2 and the proximity 3 is made, good.
 また、上記第2実施形態では、助手席者用の専用の操作画像部として、エアコンにおける温度設定用のコンテンツ64としたが、これに限らず、その他にも、シートヒータの温度設定用のコンテンツとする、あるいは、シートポジションの位置設定用のコンテンツとする等の対応が可能である。 In the second embodiment, the temperature setting content 64 in the air conditioner is used as the dedicated operation image unit for the passenger seat. However, the present invention is not limited to this, and the temperature setting content for the seat heater is not limited thereto. Or a content for setting the position of the seat position.
 また、検出部(検出手段の一例)として静電容量式のタッチセンサ31を用いたが、これに限定されるものではなく、他の感圧式のタッチセンサ等としても良い。 In addition, although the capacitive touch sensor 31 is used as the detection unit (an example of the detection means), the detection unit is not limited to this, and may be another pressure-sensitive touch sensor or the like.
 また、遠隔操作デバイス100、100Aにプッシュスイッチを設けて、指操作によって選択した内容(アイコン等)を決定する際に、このプッシュスイッチを押込むことで、決定するようにしても良い。 Further, a push switch may be provided in the remote operation device 100 or 100A, and when the content (icon or the like) selected by the finger operation is determined, it may be determined by pressing this push switch.
 以上、本開示に係る実施の形態および構成を例示したが、本開示に係る実施の形態および構成は、上述した各実施の形態および各構成に限定されるものではない。異なる実施の形態および構成にそれぞれ開示された技術的要素を適宜組み合わせて得られる実施の形態および構成についても本開示に係る実施の形態および構成の範囲に含まれる。 As mentioned above, although embodiment and a structure concerning this indication were illustrated, an embodiment and a composition concerning this indication are not limited to each embodiment and each composition mentioned above. Embodiments and configurations obtained by appropriately combining technical elements disclosed in different embodiments and configurations are also included in the scope of the embodiments and configurations according to the present disclosure.

Claims (5)

  1.  車両に搭載されて、複数の階層に分かれた画像(60)を切替え可能に表示する表示部(52)に対して別体で形成されており、操作面(32)に対する使用者の指操作によって、前記画像(60)を操作するための入力が行われる入力装置であって、
     前記指操作時の前記操作面(32)に対する指の操作状態を検出する検出部(31)と、
     前記検出部(31)によって検出された前記操作状態に対する判定が、前記操作面(32)に接触する接触状態に対して、前記操作面(32)に近接した近接状態にあると、前記表示部(52)における平面的な前記画像(60)を立体的に表示する制御部(33)とを備える入力装置。
    It is formed separately from the display unit (52) that is mounted on the vehicle and displays the image (60) divided into a plurality of layers in a switchable manner, and is operated by a user's finger operation on the operation surface (32). , An input device for performing input for operating the image (60),
    A detection unit (31) for detecting an operation state of the finger on the operation surface (32) during the finger operation;
    When the determination on the operation state detected by the detection unit (31) is in the proximity state close to the operation surface (32) with respect to the contact state in contact with the operation surface (32), the display unit An input device comprising: a control unit (33) that stereoscopically displays the planar image (60) in (52).
  2.  前記表示部(52)は前記使用者の前側で前記車両の幅方向の中央部に配置されており、
     前記制御部(33)は、前記近接状態において前記立体的となる前記画像(60)が、前記使用者側を向くように傾けて表示する請求項1に記載の入力装置。
    The display unit (52) is disposed in the center of the vehicle in the width direction on the front side of the user,
    The input device according to claim 1, wherein the control unit (33) displays the image (60) that is stereoscopic in the proximity state so as to be inclined toward the user side.
  3.  前記制御部(33)は、前記近接状態において前記操作面(32)から前記指が遠ざかるほど、前記画像(60)の傾きが大きくなるように表示する請求項2に記載の入力装置。 The input device according to claim 2, wherein the control unit (33) displays the image (60) so that the inclination of the image (60) increases as the finger moves away from the operation surface (32) in the proximity state.
  4.  前記使用者は、前記車両の運転者および助手席者を含み、
     制御部(33)は、前記操作面(32)に対する前記指操作が前記運転者によるものか前記助手席者によるものかを判定すると共に、
     前記指操作が前記助手席者による場合は、前記画像(60)中に助手席者によるダイレクト操作が可能となる専用の操作画像部(64)を表示する請求項1~請求項3のいずれか1つに記載の入力装置。
    The user includes a driver and a passenger seat of the vehicle,
    The control unit (33) determines whether the finger operation on the operation surface (32) is performed by the driver or the front passenger,
    When the finger operation is performed by the passenger seat person, a dedicated operation image section (64) that enables direct operation by the passenger seat person is displayed in the image (60). The input device according to one.
  5.  前記制御部(33)は、前記検出部(31)によって検出された前記操作状態に対する判定が、前記操作面(32)に対して前記近接状態よりも遠ざかる非接触状態にあると、前記表示部(52)における前記画像(60)を前記接触状態のときと同一の平面的な前記画像(60)とする請求項1~請求項4のいずれか1つに記載の入力装置。 When the determination on the operation state detected by the detection unit (31) is in a non-contact state in which the control unit (33) is further away from the proximity state than the operation surface (32), the display unit The input device according to any one of claims 1 to 4, wherein the image (60) in (52) is the same planar image (60) as in the contact state.
PCT/JP2014/001776 2013-04-02 2014-03-27 Input device WO2014162698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013077249A JP2014203177A (en) 2013-04-02 2013-04-02 Input device
JP2013-077249 2013-04-02

Publications (1)

Publication Number Publication Date
WO2014162698A1 true WO2014162698A1 (en) 2014-10-09

Family

ID=51658012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001776 WO2014162698A1 (en) 2013-04-02 2014-03-27 Input device

Country Status (2)

Country Link
JP (1) JP2014203177A (en)
WO (1) WO2014162698A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594466B2 (en) 2013-04-02 2017-03-14 Denso Corporation Input device
US9778764B2 (en) 2013-04-03 2017-10-03 Denso Corporation Input device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022986A (en) * 2011-07-17 2013-02-04 Denso Corp Operation input device for vehicle and control system
WO2013029773A1 (en) * 2011-09-03 2013-03-07 Volkswagen Aktiengesellschaft Method and device for making available a user interface, in particular in a vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022986A (en) * 2011-07-17 2013-02-04 Denso Corp Operation input device for vehicle and control system
WO2013029773A1 (en) * 2011-09-03 2013-03-07 Volkswagen Aktiengesellschaft Method and device for making available a user interface, in particular in a vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594466B2 (en) 2013-04-02 2017-03-14 Denso Corporation Input device
US9778764B2 (en) 2013-04-03 2017-10-03 Denso Corporation Input device

Also Published As

Publication number Publication date
JP2014203177A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5928397B2 (en) Input device
JP5858059B2 (en) Input device
US9489500B2 (en) Manipulation apparatus
JP5413448B2 (en) Display system, display device, and operation device
JP2016009300A (en) Vehicle input device and vehicle cockpit module
JP2013222214A (en) Display operation device and display system
WO2013153750A1 (en) Display system, display device, and operation device
JP5751233B2 (en) Operation device
JP5954145B2 (en) Input device
JP5754483B2 (en) Operation device
WO2014162698A1 (en) Input device
WO2016031152A1 (en) Input interface for vehicle
WO2014087604A1 (en) Operation device and operation teaching method for operation device
US20170255326A1 (en) Vehicular touch pad and vehicular input interface
JP6274003B2 (en) Display operation system
US10452225B2 (en) Vehicular input device and method of controlling vehicular input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779628

Country of ref document: EP

Kind code of ref document: A1