WO2014162492A1 - Catheter for image diagnosis - Google Patents
Catheter for image diagnosis Download PDFInfo
- Publication number
- WO2014162492A1 WO2014162492A1 PCT/JP2013/060005 JP2013060005W WO2014162492A1 WO 2014162492 A1 WO2014162492 A1 WO 2014162492A1 JP 2013060005 W JP2013060005 W JP 2013060005W WO 2014162492 A1 WO2014162492 A1 WO 2014162492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheath
- relief valve
- drive shaft
- liquid
- catheter
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4416—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0891—Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/445—Details of catheter construction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/065—Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
- A61B5/066—Superposing sensor position on an image of the patient, e.g. obtained by ultrasound or x-ray imaging
Definitions
- the present invention relates to a diagnostic imaging catheter.
- Patent Document 1 discloses a catheter for image diagnosis such as a catheter that obtains an image by intravascular ultrasound (Intra Vascular Ultra Sound: IVUS) and a catheter that obtains an image by optical coherence tomography (OCT).
- a drive shaft provided with a test wave transmission / reception unit for transmitting / receiving a test wave such as an ultrasonic wave at a distal end thereof is housed in a sheath inserted into the body.
- the inspection wave is emitted from the inspection wave transmission / reception unit into the body, and the reflected wave from the body is received by the inspection wave transmission / reception unit.
- the inspection wave transmitting / receiving unit emits an inspection wave into the body based on a signal transmitted from a signal path provided in the drive shaft.
- a signal corresponding to the reflected wave is transmitted to another device connected to the diagnostic imaging catheter through a signal path provided in the drive shaft.
- gas is excluded from the inside of the sheath by performing priming for filling the sheath with a liquid such as physiological saline.
- a liquid such as physiological saline.
- Such a liquid is press-fitted from the proximal end side toward the distal end side using a syringe through a port communicating with the inside of the sheath provided on the proximal end side of the diagnostic imaging catheter.
- the extension of the drive shaft in particular, the extension / breakage of the signal path provided in the inside thereof is suppressed, and the function of the diagnostic imaging catheter is exhibited well.
- the present inventors have found that.
- the drive shaft is connected to the proximal end side of the diagnostic imaging catheter. Leakage of liquid to the driving device to be driven is prevented. For this reason, the drive device operates favorably, and the function of the diagnostic imaging catheter is thereby satisfactorily exhibited.
- the present invention has been made based on the knowledge obtained by the present inventors, and provides an imaging diagnostic catheter that solves the above-described problems by reducing excessive pressure applied during priming. With the goal.
- a diagnostic imaging catheter is provided with a test shaft transmission / reception unit at a distal end and a drive shaft having a signal path connected to the test wave transmission / reception unit, and the drive shaft accommodated therein.
- a sheath to be inserted into the body a liquid injection part for injecting liquid in communication with the inside of the sheath, provided in a member disposed outside the body provided on the proximal end side of the sheath, and disposed outside the body
- a relief valve provided in a communication portion that communicates with the inside of the sheath formed in the member, and the relief valve passes through the communication portion and the liquid from the liquid injection portion to the sheath.
- the relief valve reduces excessive pressure, and as a result, the extension of the drive shaft and the backflow of liquid to the proximal end side are suppressed.
- the function of the diagnostic imaging catheter is exhibited more satisfactorily, such as obtaining a good image by suppressing the residual.
- the hub unit is provided with a fluid tightness between a drive unit that drives the drive shaft and a hub unit that is provided on the base end side of the members disposed outside the body and is connected to the drive unit. If the communication part and the relief valve are provided on the distal end side of the sealed member, the excessively pressurized liquid that flows back to the proximal end side is caused by the relief valve on the distal end side with respect to the seal member. Since the pressure is reduced and stopped by the sealing member, the leakage of the liquid to the driving device is more effectively prevented.
- the liquid injection part if the communication part and the relief valve are provided in the liquid injection part, the liquid is depressurized at an early stage from when it is injected until it is filled in the sheath. Do not move in the diagnostic imaging catheter under high pressure. As a result, at least one of the extension of the drive shaft, the back flow of the liquid to the proximal end side, and the remaining of the bubbles is more effectively suppressed, so that the diagnostic imaging catheter that obtains an image with excellent visibility can be obtained. Function is demonstrated better.
- the existing image diagnostic catheter can be utilized without changing the design, or the design can be changed. Since the relief valve can be provided while being suppressed, the above-described desired effect can be easily obtained.
- the diagnostic imaging catheter 100 includes an ultrasonic transducer 101 (examination wave transmitting / receiving unit) that transmits and receives ultrasonic waves (examination waves), and an ultrasonic transducer 101 at the tip. And a drive shaft 102 provided in the section.
- the diagnostic imaging catheter 100 includes a sheath 103 in which an ultrasonic transducer 101 and a drive shaft 102 are accommodated.
- the diagnostic imaging catheter 100 includes a tube portion 110 and a hub portion 120 that are provided on the proximal end side of the sheath 103 and disposed outside the body.
- the sheath 103 is inserted into a body cavity such as a blood vessel, a bile duct, a urethra, or a digestive tract.
- the sheath 103 has flexibility.
- the constituent material of the sheath 103 include polyolefins such as polyvinyl chloride, polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, polyurethane, and polyamide.
- a reinforcing layer may be provided on the inner surface or the outer surface of the sheath 103.
- the constituent material of the reinforcing layer include stainless steel, Ni—Ti, or a composite material of a synthetic resin and a metal.
- the outer diameter of the sheath 103 is, for example, 0.5 mm to 3 mm.
- the axial length of the sheath 103 is, for example, 30 cm to 200 cm.
- the dimensions of the sheath 103 are not limited to these.
- the drive shaft 102 extends to the hub part 120 through the inside of the pipe part 110.
- the proximal end of the drive shaft 102 is fixed to the hub portion 120.
- the ultrasonic transducer 101 and the drive shaft 102 move back and forth within the sheath 103 in conjunction with the forward and backward movement of the hub portion 120.
- the tube part 110 covers and protects the drive shaft 102 between the sheath 103 and the hub part 120.
- the pipe part 110 has an outer pipe 111 and an inner pipe 112 through which the drive shaft 102 passes.
- the tube part 110 includes a connector 113 provided on the distal end side of the outer tube 111 and having a hollow shape that connects the sheath 103 and the outer tube 111.
- the tube part 110 includes a connector 114 provided on the proximal end side of the outer tube 111 and having a hollow shape that connects the outer tube 111 and the inner tube 112 in a telescopic manner.
- the inner pipe 112 is connected to the hub portion 120.
- the inner tube 112 that has been housed in the outer tube 111 is pulled out through the connector 114. Since the stopper 115 that is hooked to the connector 114 is provided at the tip of the inner tube 112, the inner tube 112 does not come out of the connector 114. When the hub portion 120 is pushed toward the distal end side, the drawn out inner tube 112 passes through the connector 114 and fits inside the outer tube 111.
- the hub portion 120 covers a connector 121 that is mechanically and electrically coupled to a drive device that drives the drive shaft 102, a signal path 102a that is electrically connected to the connector 121, and the signal path 102a. It has a pipe 122.
- the pipe 122 is fixed to the proximal end of the drive shaft 102 on the distal end side.
- the signal path 102 a passes through the pipe 122 and the drive shaft 102 and is electrically connected to the ultrasonic transducer 101.
- the drive shaft 102 has a configuration in which a signal path 102a is passed through a flexible tube.
- This tubular body is constituted by, for example, multilayer coils having different winding directions around the axis. Examples of the constituent material of the coil include stainless steel and Ni—Ti.
- the signal path 102 a transmits an electrical signal between the driving device connected to the connector 121 and the ultrasonic transducer 101.
- the hub part 120 has a rotor 123 that holds the base end of the pipe 122 and the connector 121.
- the rotor 123 is held inside the hub portion 120 so as to be rotatable about an axis.
- the connector 121, the signal path 102 a, the rotor 123, the pipe 122, the drive shaft 102, and the ultrasonic transducer 101 rotate around the axis by the force around the axis applied from the drive device connected to the connector 121.
- the hub part 120 has a port 124 (injection part) through which physiological saline (liquid) can be injected.
- the port 124 has a cylindrical shape in which an opening 124 a is formed on the side opposite to the side connected to the hub portion main body 125.
- the port 124 communicates with a passage 126 formed inside the hub portion main body 125 and communicating with the sheath 103.
- the hub part 120 has an O-ring 127 (seal member) that keeps the space between the drive unit connected to the connector 121 and the hub part 120 liquid-tight, on the proximal end side of the passage 126.
- the physiological saline injected from the port 124 passes through the passage 126 and flows into the inner tube 112 and the protective tube 116 that covers the drive shaft 102 inside the inner tube 112.
- the O-ring 127 prevents the physiological saline from leaking to the base end side of the O-ring 127.
- the physiological saline flows from the inner tube 112 and the protective tube 116 into the sheath 103 through the connector 114, the outer tube 111, and the connector 113 provided on the distal end side thereof.
- the hub portion 120 has a relief valve 129 provided in a hole 128 (communication portion) formed in the port 124.
- the hole 128 communicates with the inside of the port 124 and communicates with the inside of the sheath 103 through the passage 126.
- the hole 128 and the relief valve 129 are provided on the tip side of the O-ring 127.
- the relief valve 129 includes a valve body 129a that closes the communication between the inside and the outside of the port 124 through the hole 128 and a spring 129b that biases the valve body 129a to close.
- the relief valve 129 has an enclosing wall 129 c that is provided so as to surround the hole 128 and in which the spring 129 b is accommodated.
- One end of the spring 129 b is fixed to the outer periphery of the port 124.
- the other end of the spring 129b is fixed to the valve body 129a.
- the valve body 129a is closed by being biased by a spring 129b and is in close contact with the edge of the surrounding wall 129c.
- a hole 103 a communicating with the inside of the sheath 103 is formed at the distal end portion of the sheath 103.
- the air inside the sheath 103 is expelled from the sheath 103 through the hole 103a.
- the ultrasonic transducer 101 is housed in a housing 101 a fixed to the tip of the drive shaft 102.
- the ultrasonic transducer 101 is, for example, an ultrasonic transducer.
- a tubular member 104 into which the guide wire W is inserted is integrally provided at the distal end portion of the sheath 103 so as to follow the sheath 103.
- a marker 105 having X-ray contrast is attached to a member 104 through which the guide wire W is inserted.
- the hub portion 120 is coupled to the drive device 10 that drives the drive shaft 102, and the physiological effect is applied to the sheath 103 in a state where the hub portion 120 is pulled toward the proximal end and the inner tube 112 is pulled out most.
- Priming to fill with saline solution is performed. Priming may be performed before the hub portion 120 is connected to the driving device 10. In priming, the distal end of the syringe S filled with physiological saline is inserted into the port 124, and the pusher is pushed, whereby the physiological saline is pressed into the sheath 103 through the port 124.
- the relief valve 129 opens the valve body 129a to reduce the pressure.
- air or physiological saline is released through the hole 128 in a direction crossing the physiological saline injection direction. Since the relief valve 129 reduces excessive pressure through the hole 128, the extension of the drive shaft 102 due to the injection of physiological saline is suppressed.
- the relief valve 129 is closed at a pressure lower than a predetermined pressure, and is opened at a predetermined pressure or higher.
- the pressure when the relief valve 129 opens is, for example, 0.2 MPa or more, but is not limited to this as long as the excessive pressure can be reduced to suppress the extension of the drive shaft 102.
- the pressure at which the relief valve 129 opens can be set as appropriate according to the material of the members constituting the drive shaft 102, the dimensions of the sheath 103, the viscosity of the liquid to be injected, and the like.
- the ultrasonic transducer 101 pushed to the most distal side is rotated around the axis by the driving device 10 and transmitted and received ultrasonic waves while being moved to the proximal side.
- the image inside is obtained.
- the drive device 10 includes a rotation drive device 11 that is connected to the hub portion 120 and rotates the drive shaft 102 around the axis, and a linear drive device 12 that moves the rotation drive device 11 in the axial direction.
- the rotation drive device 11 includes a connector 11a connected to a connector 121 provided in the hub portion 120, a rotary joint 11b that rotatably supports the connector 11a around an axis, a motor 11c that rotates the connector 11a around an axis, And an encoder 11d for detecting the rotation angle of the motor 11c.
- the linear drive device 12 includes a ball screw 12a, a support portion 12b that supports the rotation drive device 11 and is coupled to the ball screw 12a, and a motor 12c that rotates the ball screw 12a.
- the support portion 12b moves forward and backward.
- the rotary drive device 11 moves forward and backward together with the support portion 12b.
- the hub 120, the inner tube 112, the drive shaft 102, and the ultrasonic transducer 101 move in the axial direction.
- the linear drive device 12 has a movement amount detector 12d for detecting the operation of the motor 12c and calculating the movement amount of the rotation drive device 11.
- the movement amount detector 12d is, for example, a three-phase encoder.
- the linear drive device 12 includes a base 12e on which the ball screw 12a is installed, and a holding member 12f that is provided on the base 12e and holds the connector 114.
- the control device 20 that controls the driving device 10 is electrically connected to the motor 11c, the encoder 11d, the motor 12c, and the movement amount detector 12d.
- the control device 20 controls the rotation of the motor 11c based on the signal from the encoder 11d.
- the control device 20 controls the rotation of the motor 12c based on the signal from the movement amount detector 12d. Thereby, the axial movement of the drive shaft 102 and the ultrasonic transducer 101 is controlled.
- the ultrasonic transducer 101 moves to the proximal side in the axial direction while rotating around the axis, and is ultrasonic based on a signal sent from the control device 20 via the signal path 102a inside the rotary drive device 11 and the drive shaft 102. Is emitted into the body cavity and the reflected wave is received. A signal based on the reflected wave received by the ultrasonic transducer 101 is transmitted from the ultrasonic transducer 101 to the control device 20 via the signal path 102 a and the rotation drive device 11. The control device 20 generates a tomographic image of the body cavity based on the signal sent from the ultrasonic transducer 101 and displays the generated image on the electrically connected monitor 30.
- the relief valve 129 reduces the pressure excessively. As a result, the elongation and breakage of the drive shaft 102, particularly the elongation and breakage of the signal path 102a provided therein is suppressed.
- the excessive pressure caused by the injection of the physiological saline is reduced by the relief valve 129, so that the reverse flow of the physiological saline toward the proximal end of the diagnostic imaging catheter 100 is suppressed. Leakage of saline is prevented. For this reason, the short circuit and corrosion of the rotation drive device 11 are prevented, and the rotation drive device 11 operates favorably, and the function of the diagnostic imaging catheter 100 is thereby exhibited better.
- the excessive pressure caused by the injection of the physiological saline is suppressed by the relief valve 129, the physiological saline and the gas inside the sheath 103 are smoothly exchanged, so that bubbles remain in the sheath 103. It is difficult to obtain an image with excellent visibility.
- the hole 128 and the relief valve 129 are provided on the distal end side with respect to the O-ring 127, the physiological saline that is excessively pressurized to flow backward to the proximal end side is disposed on the distal end side with respect to the O-ring 127. Since the pressure is reduced by the pressure and is stopped by the O-ring 127, the leakage of the liquid to the rotary drive device 11 is more effectively prevented.
- the physiological saline is depressurized at an early stage between the time when it is injected and the time when the sheath 103 is filled.
- the inside of the diagnostic imaging catheter 100 is not moved under high pressure.
- the extension of the drive shaft 102, the backflow of the liquid toward the proximal end, and the remaining of bubbles in the sheath 103 are more effectively suppressed, so that an image diagnostic catheter that obtains an image with excellent visibility is obtained. 100 functions are exhibited better.
- the diagnostic imaging catheter 200 of the second embodiment is the first embodiment in that the relief valve 129 is not provided in the port 124 but in the detachable detachable member 201 communicating with the port 124.
- the overlapping description here is abbreviate
- the same reference numerals are assigned to the same components as those in the first embodiment.
- the relief valve 129 is provided in a hole 202 (communication portion) communicating with the inside of the detachable member 201.
- the configuration and function of the relief valve 129 itself are the same as in the first embodiment.
- the detachable member 201 has a cylindrical shape in which openings 201a and 201b are formed at both ends in a direction orthogonal to the circular cross section.
- the diameter of the periphery forming the opening 201b is smaller than the diameter of the opening 124a of the port 124.
- the detachable member 201 is connected to the port 124 by inserting the end on the side where the opening 201b is formed into the opening 124a.
- the detachable member 201 inserted and connected to the port 124 can be removed from the port 124 by being pulled out.
- connection between the detachable member 201 and the port 124 is a so-called luer lock system in which the connection is maintained by a fastening force by a screw in addition to a frictional force between members fitted to each other, but is not limited thereto.
- the connection between the detachable member 201 and the port 124 may be a so-called luer slip method in which the connection is maintained by the frictional force between the members that fit together.
- physiological saline is injected from the syringe S inserted into the opening 201 a of the detachable member 201.
- the physiological saline passes through the removable member 201, the port 124, and the passage 126 and is filled into the sheath 103. If excessive pressure is applied, the relief valve 129 opens to reduce the pressure.
- the relief valve 129 can be provided while making use of an existing diagnostic imaging catheter such as a commercially available one without changing the design or suppressing the change in design. The effect of one embodiment can be obtained easily.
- the diagnostic imaging catheter is not limited to an IVUS (Intra Vascular Ultra Sound) or the like that obtains an image using an ultrasonic wave as an inspection wave as in the above embodiment.
- the diagnostic imaging catheter may be an OCT (Optical Coherence Tomography) or the like that obtains an image using light as an inspection wave.
- the signal path provided inside the drive shaft is an optical fiber that transmits light as a signal, and the inspection wave transmitting / receiving unit emits the light transmitted by the optical fiber into the body and receives the reflected light.
- a prism optically connected to the optical fiber is provided to be directed to the optical fiber again.
- physiological saline is used as the liquid to be injected into the sheath, but the present invention is not limited to this.
- a contrast agent is used as a liquid to be injected into the sheath. Since the viscosity of such a contrast agent is generally higher than that of physiological saline, the fluid pressure during priming is increased, but excessive pressure is prevented from being applied by the relief valve.
- the relief valve is not limited to the above embodiment.
- the relief valve may be an umbrella valve 130 as shown in FIG. As shown in FIG. 12, in the umbrella valve 130, when excessive pressure is applied, the umbrella-shaped valve body 130a that blocks the hole 131 (communication portion) communicating with the inside of the port 124 opens so as to warp. , Reduce the pressure.
- the communication part and the relief valve may be provided on a member disposed outside the body, and are not limited to the form provided on the port 124 as in the above embodiment.
- the present invention includes a form in which a hole (communication portion) communicating with the passage 126 is formed in the hub portion main body 125 instead of the port 124, and a relief valve is provided in the hole.
- the present invention includes a form in which a hole (communication portion) communicating with the sheath 103 is formed in the connector 113 or the connector 114 instead of the hub portion 120 and a relief valve is provided in the hole.
- 10 drive device 11 Rotation drive device, 12 linear drive, 20 control device, 30 monitor, 100, 200 Imaging diagnostic catheter, 101 ultrasonic transducer (inspection wave transmitter / receiver), 102 drive shaft, 102a signal path, 103 sheath, 110 Pipe part (member arranged outside the body), 111 outer tube, 112 inner pipe, 113 connector, 114 connector, 120 Hub part (member arranged outside the body), 124 port (injection part), 127 O-ring (seal member), 128 holes (communication part), 129 Relief valve, 130 Umbrella valve (relief valve), 131 hole (communication part), 201 detachable member, 202 hole (communication part), S syringe, W Guide wire.
- 101 Ultrasonic transducer inspection wave transmitter / receiver
- 102 drive shaft 102a signal path
- 103 sheath 110 Pipe part (member arranged outside the body), 111 outer tube, 112 inner pipe, 113 connector, 114 connector, 120 Hub part (member arranged outside the body), 124 port
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
[Problem] To provide a catheter for image diagnosis which is capable of better performing a function of obtaining an image with excellent visibility by reducing excess pressure that is applied during priming. [Solution] A catheter for image diagnosis (100) comprises: a drive shaft (102) which is provided with an inspection wave transmission/reception part (101) on a distal end thereof and which includes a signal path (102a) that is connected to the inspection wave transmission/reception part; a sheath (103) in which the drive shaft is contained and which is inserted into the body; an infusion part (124) which is provided on a member (120) that is provided on a base end side of the sheath and is disposed outside the body and which communicates with the inside of the sheath to inject a liquid; and a relief valve (129) which is provided on a communication part (128) that is formed on the member disposed outside the body and communicates with the inside of the sheath, wherein the relief valve reduces excess pressure that accompanies the injection of liquid into the sheath from the infusion part, though the communication part.
Description
本発明は、画像診断用カテーテルに関する。
The present invention relates to a diagnostic imaging catheter.
血管内超音波(Intra Vascular Ultra Sound:IVUS)によって画像を得るカテーテル、および光干渉断層画像技術(Optical Coherent Tomography:OCT)によって画像を得るカテーテルのような画像診断用カテーテルは、例えば特許文献1に開示されているように、超音波等の検査波を送受信する検査波送受信部が先端部に設けられた駆動シャフトが、体内に挿入されるシース内に収められた構成を有する。
For example, Patent Document 1 discloses a catheter for image diagnosis such as a catheter that obtains an image by intravascular ultrasound (Intra Vascular Ultra Sound: IVUS) and a catheter that obtains an image by optical coherence tomography (OCT). As disclosed, a drive shaft provided with a test wave transmission / reception unit for transmitting / receiving a test wave such as an ultrasonic wave at a distal end thereof is housed in a sheath inserted into the body.
検査波が検査波送受信部から体内に出射され、また、体内からの反射波が検査波送受信部によって受信される。検査波送受信部は、駆動シャフトに備えられる信号路から伝えられる信号に基づき、検査波を体内に出射する。その反射波を検査波送受信部が受信すると、反射波に応じた信号が駆動シャフトに備えられる信号路によって画像診断用カテーテルに連結した他の装置に伝えられる。
The inspection wave is emitted from the inspection wave transmission / reception unit into the body, and the reflected wave from the body is received by the inspection wave transmission / reception unit. The inspection wave transmitting / receiving unit emits an inspection wave into the body based on a signal transmitted from a signal path provided in the drive shaft. When the test wave transmission / reception unit receives the reflected wave, a signal corresponding to the reflected wave is transmitted to another device connected to the diagnostic imaging catheter through a signal path provided in the drive shaft.
シースと検査波送受信部との間に気体が存在する場合、検査波送受信部から体内への検査波の出射およびその反射波の受信が気体によって妨げられる。そこで、シース内に生理食塩水等の液体を充填するプライミングが行われることによって、シース内から気体が排除される。このような液体は、画像診断用カテーテルの基端側に設けられるシース内と連通するポートを通じ、シリンジを用いて基端側から先端側に向かって圧入される。
When gas is present between the sheath and the test wave transmission / reception unit, emission of the test wave from the test wave transmission / reception unit to the body and reception of the reflected wave are hindered by the gas. Therefore, gas is excluded from the inside of the sheath by performing priming for filling the sheath with a liquid such as physiological saline. Such a liquid is press-fitted from the proximal end side toward the distal end side using a syringe through a port communicating with the inside of the sheath provided on the proximal end side of the diagnostic imaging catheter.
このとき、液の注入によってかかる過剰な圧を抑制すれば、駆動シャフトの伸び、特にその内部に備えらえた信号路の伸び・破断が抑制されて画像診断用カテーテルの機能が良好に発揮されることを本発明者らは見出した。
At this time, if the excessive pressure is suppressed by injecting the liquid, the extension of the drive shaft, in particular, the extension / breakage of the signal path provided in the inside thereof is suppressed, and the function of the diagnostic imaging catheter is exhibited well. The present inventors have found that.
また、液の注入によってかかる過剰な圧を抑制すれば、画像診断用カテーテルの基端側への液の逆流が抑えられ、その結果、画像診断用カテーテルの基端側に連結して駆動シャフトを駆動する駆動装置への液の漏出が防止される。このため駆動装置が良好に動作し、また、そのことによって画像診断用カテーテルの機能が良好に発揮される。
Further, if excessive pressure is suppressed by injecting the liquid, the backflow of the liquid to the proximal end side of the diagnostic imaging catheter can be suppressed. As a result, the drive shaft is connected to the proximal end side of the diagnostic imaging catheter. Leakage of liquid to the driving device to be driven is prevented. For this reason, the drive device operates favorably, and the function of the diagnostic imaging catheter is thereby satisfactorily exhibited.
さらに、液の注入によってかかる過剰な圧を抑制すれば、注入される液体とシース内の気体との円滑な交換が行われるため、シース内に気泡が残り難く、よって視認性に優れた画像を得られる。
Furthermore, if the excessive pressure caused by the liquid injection is suppressed, the liquid to be injected and the gas in the sheath are smoothly exchanged, so that bubbles hardly remain in the sheath, and thus an image with excellent visibility can be obtained. can get.
本発明は、これら本発明者らが得た知見に基づいてなされたものであり、プライミングの際に加わる過剰な圧を低下させることによって、上記の課題を解決した画像診断用カテーテルを提供することを目的とする。
The present invention has been made based on the knowledge obtained by the present inventors, and provides an imaging diagnostic catheter that solves the above-described problems by reducing excessive pressure applied during priming. With the goal.
上記目的を達成するための本発明の画像診断用カテーテルは、先端部に検査波送受信部が設けられるとともに前記検査波送受信部に接続した信号路を備える駆動シャフトと、当該駆動シャフトが収められた、体内に挿入されるシースと、当該シースの基端側に設けられた体外に配置される部材に備えられた、前記シースの内部と連通して液体を注入させる注液部と、体外に配置される前記部材に形成された前記シースの内部と連通する連通部に設けられた逃し弁と、を有し、当該逃し弁は、前記連通部を通じ、前記注液部から前記シースへの前記液体の注入にともなう過剰な圧力を低下させる。
In order to achieve the above object, a diagnostic imaging catheter according to the present invention is provided with a test shaft transmission / reception unit at a distal end and a drive shaft having a signal path connected to the test wave transmission / reception unit, and the drive shaft accommodated therein. A sheath to be inserted into the body, a liquid injection part for injecting liquid in communication with the inside of the sheath, provided in a member disposed outside the body provided on the proximal end side of the sheath, and disposed outside the body A relief valve provided in a communication portion that communicates with the inside of the sheath formed in the member, and the relief valve passes through the communication portion and the liquid from the liquid injection portion to the sheath. Reduce excess pressure associated with injection of
上記のように構成した画像診断用カテーテルによれば、逃し弁が過剰な圧を低下させる結果、駆動シャフトの伸び、および基端側への液の逆流を抑制し、さらにシース内での気泡の残留を抑制することにより良好な画像が取得されるなど、画像診断用カテーテルの機能がより良好に発揮される。
According to the diagnostic imaging catheter configured as described above, the relief valve reduces excessive pressure, and as a result, the extension of the drive shaft and the backflow of liquid to the proximal end side are suppressed. The function of the diagnostic imaging catheter is exhibited more satisfactorily, such as obtaining a good image by suppressing the residual.
また、前記駆動シャフトを駆動する駆動装置と、体外に配置される前記部材のうち基端側に設けられて前記駆動装置に連結するハブ部との間を液密に保つ、前記ハブ部に備えられたシール部材よりも先端側に、前記連通部および前記逃し弁は設けられるようにすれば、基端側へ逆流する過剰な圧がかかった液は、シール部材に対し先端側で逃し弁によって減圧され、その上、シール部材によって止められるため、駆動装置への液の漏出がより効果的に防止される。
In addition, the hub unit is provided with a fluid tightness between a drive unit that drives the drive shaft and a hub unit that is provided on the base end side of the members disposed outside the body and is connected to the drive unit. If the communication part and the relief valve are provided on the distal end side of the sealed member, the excessively pressurized liquid that flows back to the proximal end side is caused by the relief valve on the distal end side with respect to the seal member. Since the pressure is reduced and stopped by the sealing member, the leakage of the liquid to the driving device is more effectively prevented.
また、前記連通部および前記逃し弁は、前記注液部に設けられるようにすれば、液体は、注入されてからシース内に充填されるまでの間の早い段階で減圧されるため、液体が高圧な状態で画像診断用カテーテル内を移動しない。これによって、駆動シャフトの伸び、基端側への液の逆流、および気泡の残留のうちの少なくとも一つがより効果的に抑制されるため、視認性に優れた画像を得るという画像診断用カテーテルの機能がより良好に発揮される。
Further, if the communication part and the relief valve are provided in the liquid injection part, the liquid is depressurized at an early stage from when it is injected until it is filled in the sheath. Do not move in the diagnostic imaging catheter under high pressure. As a result, at least one of the extension of the drive shaft, the back flow of the liquid to the proximal end side, and the remaining of the bubbles is more effectively suppressed, so that the diagnostic imaging catheter that obtains an image with excellent visibility can be obtained. Function is demonstrated better.
また、前記連通部および前記逃し弁は、前記注液部に連通する着脱可能な着脱部材に設けられるようにすれば、既存の画像診断用カテーテルを設計変更することなく生かしつつ、または設計変更を抑えつつ逃し弁を設けることができるため、前述の所望の作用効果を簡単に得ることができる。
Further, if the communication part and the relief valve are provided on a detachable detachable member that communicates with the liquid injection part, the existing image diagnostic catheter can be utilized without changing the design, or the design can be changed. Since the relief valve can be provided while being suppressed, the above-described desired effect can be easily obtained.
以下、図面を参照して本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率と異なる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and differs from an actual ratio.
<第1実施形態>
図1に示すように、第1実施形態の画像診断用カテーテル100は、超音波(検査波)を送信および受信する超音波振動子101(検査波送受信部)と、超音波振動子101が先端部に設けられた駆動シャフト102と、を有する。画像診断用カテーテル100は、超音波振動子101および駆動シャフト102が収められたシース103を有する。画像診断用カテーテル100は、シース103の基端側に設けられた、体外に配置される管部110およびハブ部120を有する。 <First Embodiment>
As shown in FIG. 1, thediagnostic imaging catheter 100 according to the first embodiment includes an ultrasonic transducer 101 (examination wave transmitting / receiving unit) that transmits and receives ultrasonic waves (examination waves), and an ultrasonic transducer 101 at the tip. And a drive shaft 102 provided in the section. The diagnostic imaging catheter 100 includes a sheath 103 in which an ultrasonic transducer 101 and a drive shaft 102 are accommodated. The diagnostic imaging catheter 100 includes a tube portion 110 and a hub portion 120 that are provided on the proximal end side of the sheath 103 and disposed outside the body.
図1に示すように、第1実施形態の画像診断用カテーテル100は、超音波(検査波)を送信および受信する超音波振動子101(検査波送受信部)と、超音波振動子101が先端部に設けられた駆動シャフト102と、を有する。画像診断用カテーテル100は、超音波振動子101および駆動シャフト102が収められたシース103を有する。画像診断用カテーテル100は、シース103の基端側に設けられた、体外に配置される管部110およびハブ部120を有する。 <First Embodiment>
As shown in FIG. 1, the
シース103は、血管、胆管、尿道管、または消化管等の体腔に挿入される。シース103は、可撓性を有する。シース103の構成材料として、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリスチレン、ポリウレタン、ポリアミド、ポリイミド、ポリオキシメチレン、ポリビニルアルコール、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、その他フッ素系樹脂等の各種樹脂、ポリアミドエラストマー、ポリエステルエラストマー等の熱可塑性エラストマー、シリコーンゴム、ラテックスゴム等の各種ゴムが挙げられる。シース103の内面もしくは外面に補強層が設けられてもよい。この補強層の構成材料としては、ステンレス、Ni-Ti、または合成樹脂と金属との複合材料等が挙げられる。
The sheath 103 is inserted into a body cavity such as a blood vessel, a bile duct, a urethra, or a digestive tract. The sheath 103 has flexibility. Examples of the constituent material of the sheath 103 include polyolefins such as polyvinyl chloride, polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, polyurethane, and polyamide. , Polyimide, polyoxymethylene, polyvinyl alcohol, polytetrafluoroethylene, polyvinylidene fluoride, other resins such as fluororesin, thermoplastic elastomers such as polyamide elastomer and polyester elastomer, various rubbers such as silicone rubber and latex rubber It is done. A reinforcing layer may be provided on the inner surface or the outer surface of the sheath 103. Examples of the constituent material of the reinforcing layer include stainless steel, Ni—Ti, or a composite material of a synthetic resin and a metal.
シース103の外径は、例えば0.5mm~3mmである。シース103の軸方向の長さは、例えば30cm~200cmである。シース103の寸法はこれらに限定されない。
The outer diameter of the sheath 103 is, for example, 0.5 mm to 3 mm. The axial length of the sheath 103 is, for example, 30 cm to 200 cm. The dimensions of the sheath 103 are not limited to these.
駆動シャフト102は、管部110の内部を通ってハブ部120へ伸びる。駆動シャフト102の基端は、ハブ部120に固定されている。
The drive shaft 102 extends to the hub part 120 through the inside of the pipe part 110. The proximal end of the drive shaft 102 is fixed to the hub portion 120.
図2に示すように、超音波振動子101および駆動シャフト102は、ハブ部120の進退動に連動してシース103内を進退動する。管部110は、シース103とハブ部120との間で駆動シャフト102を覆い保護する。
As shown in FIG. 2, the ultrasonic transducer 101 and the drive shaft 102 move back and forth within the sheath 103 in conjunction with the forward and backward movement of the hub portion 120. The tube part 110 covers and protects the drive shaft 102 between the sheath 103 and the hub part 120.
管部110は、駆動シャフト102が通る外管111および内管112を有する。管部110は、外管111の先端側に設けられた、シース103と外管111とを連結する中空形状を有するコネクタ113を備える。管部110は、外管111の基端側に設けられた、外管111と内管112とを相互に入子式に連結する中空形状を有するコネクタ114を備える。内管112はハブ部120に接続している。
The pipe part 110 has an outer pipe 111 and an inner pipe 112 through which the drive shaft 102 passes. The tube part 110 includes a connector 113 provided on the distal end side of the outer tube 111 and having a hollow shape that connects the sheath 103 and the outer tube 111. The tube part 110 includes a connector 114 provided on the proximal end side of the outer tube 111 and having a hollow shape that connects the outer tube 111 and the inner tube 112 in a telescopic manner. The inner pipe 112 is connected to the hub portion 120.
ハブ部120が基端側に引かれると、外管111の内部に収まっていた内管112がコネクタ114を通って引き出される。内管112の先端にコネクタ114に引っ掛るストッパ115が設けられているため、内管112はコネクタ114から抜けない。ハブ部120を先端側に押し込むと、引き出された内管112がコネクタ114を通り外管111の内部に収まる。
When the hub portion 120 is pulled to the proximal end side, the inner tube 112 that has been housed in the outer tube 111 is pulled out through the connector 114. Since the stopper 115 that is hooked to the connector 114 is provided at the tip of the inner tube 112, the inner tube 112 does not come out of the connector 114. When the hub portion 120 is pushed toward the distal end side, the drawn out inner tube 112 passes through the connector 114 and fits inside the outer tube 111.
図3に示すように、ハブ部120は、駆動シャフト102を駆動する駆動装置に機械的および電気的に連結されるコネクタ121、コネクタ121に電気的に接続した信号路102a、信号路102aを覆うパイプ122を有する。
As shown in FIG. 3, the hub portion 120 covers a connector 121 that is mechanically and electrically coupled to a drive device that drives the drive shaft 102, a signal path 102a that is electrically connected to the connector 121, and the signal path 102a. It has a pipe 122.
パイプ122は、先端側で駆動シャフト102の基端に固定されている。信号路102aは、パイプ122および駆動シャフト102の内部を通り、超音波振動子101に電気的に接続している。駆動シャフト102は、可撓性を有する管体の内部に信号路102aが通された構成を有する。この管体は、例えば軸まわりの巻き方向が異なる多層のコイルによって構成される。コイルの構成材料として、例えばステンレス、Ni-Tiが挙げられる。信号路102aは、コネクタ121に連結する駆動装置と超音波振動子101との間で電気的信号を伝える。
The pipe 122 is fixed to the proximal end of the drive shaft 102 on the distal end side. The signal path 102 a passes through the pipe 122 and the drive shaft 102 and is electrically connected to the ultrasonic transducer 101. The drive shaft 102 has a configuration in which a signal path 102a is passed through a flexible tube. This tubular body is constituted by, for example, multilayer coils having different winding directions around the axis. Examples of the constituent material of the coil include stainless steel and Ni—Ti. The signal path 102 a transmits an electrical signal between the driving device connected to the connector 121 and the ultrasonic transducer 101.
ハブ部120は、パイプ122の基端およびコネクタ121を保持するロータ123を有する。ロータ123は、軸まわりに回転自在にハブ部120の内部で保持されている。コネクタ121に連結する駆動装置から加えられる軸まわりの力によって、コネクタ121、信号路102a、ロータ123、パイプ122、駆動シャフト102、および超音波振動子101は、軸まわりに回転する。
The hub part 120 has a rotor 123 that holds the base end of the pipe 122 and the connector 121. The rotor 123 is held inside the hub portion 120 so as to be rotatable about an axis. The connector 121, the signal path 102 a, the rotor 123, the pipe 122, the drive shaft 102, and the ultrasonic transducer 101 rotate around the axis by the force around the axis applied from the drive device connected to the connector 121.
ハブ部120は、生理食塩水(液体)を注入可能なポート124(注液部)を有する。ポート124は、ハブ部本体125と接続する側と反対側に開口部124aが形成された筒形状を有する。ポート124は、ハブ部本体125の内部に形成された、シース103と連通する通路126と連通している。ハブ部120は、コネクタ121に連結する駆動装置とハブ部120との間を液密に保つOリング127(シール部材)を通路126の基端側に有する。
The hub part 120 has a port 124 (injection part) through which physiological saline (liquid) can be injected. The port 124 has a cylindrical shape in which an opening 124 a is formed on the side opposite to the side connected to the hub portion main body 125. The port 124 communicates with a passage 126 formed inside the hub portion main body 125 and communicating with the sheath 103. The hub part 120 has an O-ring 127 (seal member) that keeps the space between the drive unit connected to the connector 121 and the hub part 120 liquid-tight, on the proximal end side of the passage 126.
ポート124から注入される生理食塩水は、通路126を通り、内管112および内管112の内部で駆動シャフト102を覆う保護管116に流入する。Oリング127によって、Oリング127よりも基端側への生理食塩水の漏出が防止される。生理食塩水は、内管112および保護管116から、その先端側に設けられた、コネクタ114、外管111、およびコネクタ113の内部を通り、シース103内に流入する。
The physiological saline injected from the port 124 passes through the passage 126 and flows into the inner tube 112 and the protective tube 116 that covers the drive shaft 102 inside the inner tube 112. The O-ring 127 prevents the physiological saline from leaking to the base end side of the O-ring 127. The physiological saline flows from the inner tube 112 and the protective tube 116 into the sheath 103 through the connector 114, the outer tube 111, and the connector 113 provided on the distal end side thereof.
ハブ部120は、ポート124に形成された孔128(連通部)に設けられた逃し弁129を有する。孔128は、ポート124の内部と連通し、通路126を通じシース103の内部と連通する。孔128および逃し弁129は、Oリング127よりも先端側に設けられている。
The hub portion 120 has a relief valve 129 provided in a hole 128 (communication portion) formed in the port 124. The hole 128 communicates with the inside of the port 124 and communicates with the inside of the sheath 103 through the passage 126. The hole 128 and the relief valve 129 are provided on the tip side of the O-ring 127.
逃し弁129は、閉じることによって孔128を通じたポート124の内部と外部との連通を遮断する弁体129aと、弁体129aを閉じるように付勢するバネ129bと、を有する。逃し弁129は、孔128を囲むように設けられた、バネ129bが収まる囲い壁129cを有する。バネ129bの一端は、ポート124の外周に固定されている。バネ129bの他端は、弁体129aに固定されている。弁体129aは、バネ129bによって付勢されて閉じ、囲い壁129cの縁に密着する。
The relief valve 129 includes a valve body 129a that closes the communication between the inside and the outside of the port 124 through the hole 128 and a spring 129b that biases the valve body 129a to close. The relief valve 129 has an enclosing wall 129 c that is provided so as to surround the hole 128 and in which the spring 129 b is accommodated. One end of the spring 129 b is fixed to the outer periphery of the port 124. The other end of the spring 129b is fixed to the valve body 129a. The valve body 129a is closed by being biased by a spring 129b and is in close contact with the edge of the surrounding wall 129c.
図4に示すように、シース103の内部と連通する孔103aが、シース103の先端部に形成されている。生理食塩水がシース103の内部に流入すると、シース103の内部の空気は、孔103aからシース103の外に追い出される。シース103の内部から空気を排除する、特に超音波振動子101の近傍に気泡が残らないようにシース103の内部から空気を排除することによって、超音波が良好に伝播するため、視認性に優れた画像を得られる。超音波振動子101は、駆動シャフト102の先端に固定されたハウジング101aに収められている。超音波振動子101は、例えば超音波トランスデューサである。
As shown in FIG. 4, a hole 103 a communicating with the inside of the sheath 103 is formed at the distal end portion of the sheath 103. When the physiological saline flows into the sheath 103, the air inside the sheath 103 is expelled from the sheath 103 through the hole 103a. By excluding air from the inside of the sheath 103, in particular, by excluding air from the inside of the sheath 103 so that no bubbles remain in the vicinity of the ultrasonic transducer 101, the ultrasonic wave propagates well, so that the visibility is excellent. You can get a good picture. The ultrasonic transducer 101 is housed in a housing 101 a fixed to the tip of the drive shaft 102. The ultrasonic transducer 101 is, for example, an ultrasonic transducer.
シース103の先端部に、ガイドワイヤWが挿通される管状の部材104がシース103に沿うように一体に設けられている。X線造影性を有するマーカ105が、ガイドワイヤWが挿通される部材104に取り付けられている。
A tubular member 104 into which the guide wire W is inserted is integrally provided at the distal end portion of the sheath 103 so as to follow the sheath 103. A marker 105 having X-ray contrast is attached to a member 104 through which the guide wire W is inserted.
図5に示すように、駆動シャフト102を駆動する駆動装置10にハブ部120が連結するとともにハブ部120が基端側に引かれて内管112が最も引き出された状態で、シース103に生理食塩水を充填するプライミングが行われる。駆動装置10にハブ部120が連結される前に、プライミングが行われてもよい。プライミングでは生理食塩水が充填されたシリンジSの先端がポート124に挿入され、押し子が押し込まれることによって、ポート124を通じて生理食塩水がシース103の内部へと圧入される。
As shown in FIG. 5, the hub portion 120 is coupled to the drive device 10 that drives the drive shaft 102, and the physiological effect is applied to the sheath 103 in a state where the hub portion 120 is pulled toward the proximal end and the inner tube 112 is pulled out most. Priming to fill with saline solution is performed. Priming may be performed before the hub portion 120 is connected to the driving device 10. In priming, the distal end of the syringe S filled with physiological saline is inserted into the port 124, and the pusher is pushed, whereby the physiological saline is pressed into the sheath 103 through the port 124.
図6に示すように、プライミングの際、例えば作業者がシリンジSの押し子をすばやく強く押し込む等によって必要以上の圧力がかかると、弁体129aを閉じる方向のバネ129bの付勢力よりも大きな力が弁体129aを開く方向に加わり、その結果、逃し弁129は弁体129aを開いて圧力を低下させる。逃し弁129が開くと、孔128を通じ、生理食塩水の注入方向と交差する方向に空気または生理食塩水が放出される。逃し弁129が孔128を通じて過剰な圧力を低下させるため、生理食塩水の圧入にともなう駆動シャフト102の伸びが抑制される。逃し弁129は、所定の圧力より小さい圧力では閉じており、所定の圧力以上で開く。
As shown in FIG. 6, during priming, if an operator applies more pressure than necessary, for example, by quickly and strongly pushing the pusher of the syringe S, the force is greater than the biasing force of the spring 129b in the direction of closing the valve body 129a. Is added in the direction of opening the valve body 129a, and as a result, the relief valve 129 opens the valve body 129a to reduce the pressure. When the relief valve 129 is opened, air or physiological saline is released through the hole 128 in a direction crossing the physiological saline injection direction. Since the relief valve 129 reduces excessive pressure through the hole 128, the extension of the drive shaft 102 due to the injection of physiological saline is suppressed. The relief valve 129 is closed at a pressure lower than a predetermined pressure, and is opened at a predetermined pressure or higher.
逃し弁129が開くときの圧力は、例えば0.2MPa以上であるが、過剰な圧力を低下させて駆動シャフト102の伸びを抑制できるのであれば、これに限定されない。逃し弁129が開くときの圧力は、駆動シャフト102を構成する部材の材質、シース103の寸法、および注入する液体の粘度等に応じて適宜設定され得る。
The pressure when the relief valve 129 opens is, for example, 0.2 MPa or more, but is not limited to this as long as the excessive pressure can be reduced to suppress the extension of the drive shaft 102. The pressure at which the relief valve 129 opens can be set as appropriate according to the material of the members constituting the drive shaft 102, the dimensions of the sheath 103, the viscosity of the liquid to be injected, and the like.
図7に示すように、プライミング後、最も先端側まで押し込まれた超音波振動子101が駆動装置10によって軸まわりに回転させられるとともに基端側に移動させられつつ超音波を送受信することによって体腔内の画像が得られる。
As shown in FIG. 7, after priming, the ultrasonic transducer 101 pushed to the most distal side is rotated around the axis by the driving device 10 and transmitted and received ultrasonic waves while being moved to the proximal side. The image inside is obtained.
駆動装置10は、ハブ部120に連結され駆動シャフト102を軸まわりに回転させる回転駆動装置11と、回転駆動装置11を軸方向に移動させる直線駆動装置12と、を有する。
The drive device 10 includes a rotation drive device 11 that is connected to the hub portion 120 and rotates the drive shaft 102 around the axis, and a linear drive device 12 that moves the rotation drive device 11 in the axial direction.
回転駆動装置11は、ハブ部120に備えられたコネクタ121に連結するコネクタ11aと、コネクタ11aを軸まわりに回転自在に支持するロータリジョイント11bと、コネクタ11aを軸まわりに回転させるモータ11cと、モータ11cの回転角度を検出するエンコーダ11dと、を有する。
The rotation drive device 11 includes a connector 11a connected to a connector 121 provided in the hub portion 120, a rotary joint 11b that rotatably supports the connector 11a around an axis, a motor 11c that rotates the connector 11a around an axis, And an encoder 11d for detecting the rotation angle of the motor 11c.
直線駆動装置12は、ボールネジ12a、回転駆動装置11を支持するとともにボールネジ12aに連結する支持部12b、およびボールネジ12aを回転させるモータ12cを有する。
The linear drive device 12 includes a ball screw 12a, a support portion 12b that supports the rotation drive device 11 and is coupled to the ball screw 12a, and a motor 12c that rotates the ball screw 12a.
モータ12cがボールネジ12aを回転させることによって、支持部12bは前後進する。回転駆動装置11は支持部12bとともに前後進する。回転駆動装置11の移動にともない、ハブ部120、内管112、駆動シャフト102、および超音波振動子101は、軸方向に移動する。
When the motor 12c rotates the ball screw 12a, the support portion 12b moves forward and backward. The rotary drive device 11 moves forward and backward together with the support portion 12b. As the rotation drive device 11 moves, the hub 120, the inner tube 112, the drive shaft 102, and the ultrasonic transducer 101 move in the axial direction.
直線駆動装置12は、モータ12cの動作を検出し回転駆動装置11の移動量を算出するための移動量検出器12dを有する。移動量検出器12dは、例えば3相のエンコーダである。直線駆動装置12は、ボールネジ12aが設置される基台12eと、基台12eに設けられコネクタ114を保持する保持部材12fと、を有する。
The linear drive device 12 has a movement amount detector 12d for detecting the operation of the motor 12c and calculating the movement amount of the rotation drive device 11. The movement amount detector 12d is, for example, a three-phase encoder. The linear drive device 12 includes a base 12e on which the ball screw 12a is installed, and a holding member 12f that is provided on the base 12e and holds the connector 114.
駆動装置10を制御する制御装置20は、モータ11c、エンコーダ11d、モータ12c、および移動量検出器12dに電気的に接続する。制御装置20は、エンコーダ11dからの信号に基づきモータ11cの回転を制御する。これによって駆動シャフト102および超音波振動子101の軸まわりの回転が制御される。制御装置20は、移動量検出器12dからの信号に基づきモータ12cの回転を制御する。これによって駆動シャフト102および超音波振動子101の軸方向の移動が制御される。
The control device 20 that controls the driving device 10 is electrically connected to the motor 11c, the encoder 11d, the motor 12c, and the movement amount detector 12d. The control device 20 controls the rotation of the motor 11c based on the signal from the encoder 11d. As a result, the rotation of the drive shaft 102 and the ultrasonic transducer 101 around the axis is controlled. The control device 20 controls the rotation of the motor 12c based on the signal from the movement amount detector 12d. Thereby, the axial movement of the drive shaft 102 and the ultrasonic transducer 101 is controlled.
超音波振動子101は、軸まわりに回転しつつ軸方向基端側へ移動し、回転駆動装置11および駆動シャフト102の内部の信号路102aを介して制御装置20から送られる信号に基づき超音波を体腔内に出射するとともにその反射波を受信する。超音波振動子101が受信した反射波に基づく信号は、超音波振動子101から信号路102aおよび回転駆動装置11を介して制御装置20に伝えられる。制御装置20は、超音波振動子101から送られてくる信号に基づき体腔の断層画像を生成し、生成した画像を電気的に接続したモニタ30に表示する。
The ultrasonic transducer 101 moves to the proximal side in the axial direction while rotating around the axis, and is ultrasonic based on a signal sent from the control device 20 via the signal path 102a inside the rotary drive device 11 and the drive shaft 102. Is emitted into the body cavity and the reflected wave is received. A signal based on the reflected wave received by the ultrasonic transducer 101 is transmitted from the ultrasonic transducer 101 to the control device 20 via the signal path 102 a and the rotation drive device 11. The control device 20 generates a tomographic image of the body cavity based on the signal sent from the ultrasonic transducer 101 and displays the generated image on the electrically connected monitor 30.
本実施形態の作用効果を述べる。
The effect of this embodiment will be described.
本実施形態の画像診断用カテーテル100においては、プライミングの際、必要以上の圧力で生理食塩水が圧入された場合、逃し弁129が過剰な圧力低下させる。その結果、駆動シャフト102の伸びと破断、特にその内部に備えられた信号路102aの伸びと破断が抑制される。
In the diagnostic imaging catheter 100 of the present embodiment, when physiological saline is injected at a pressure higher than necessary during priming, the relief valve 129 reduces the pressure excessively. As a result, the elongation and breakage of the drive shaft 102, particularly the elongation and breakage of the signal path 102a provided therein is suppressed.
また、生理食塩水の注入によってかかる過剰な圧を逃し弁129が低下させることによって、画像診断用カテーテル100の基端側への生理食塩水の逆流が抑制され、その結果、回転駆動装置11への生理食塩水の漏出が防止される。このため回転駆動装置11の短絡や腐食が防止されて回転駆動装置11が良好に動作し、また、そのことによって画像診断用カテーテル100の機能がより良好に発揮される。
In addition, the excessive pressure caused by the injection of the physiological saline is reduced by the relief valve 129, so that the reverse flow of the physiological saline toward the proximal end of the diagnostic imaging catheter 100 is suppressed. Leakage of saline is prevented. For this reason, the short circuit and corrosion of the rotation drive device 11 are prevented, and the rotation drive device 11 operates favorably, and the function of the diagnostic imaging catheter 100 is thereby exhibited better.
さらに、生理食塩水の注入によってかかる過剰な圧を逃し弁129によって抑制することによって、生理食塩水とシース103の内部の気体との円滑な交換が行われるため、シース103の内部に気泡が残り難く、よって視認性に優れた画像を得られる。
Furthermore, since the excessive pressure caused by the injection of the physiological saline is suppressed by the relief valve 129, the physiological saline and the gas inside the sheath 103 are smoothly exchanged, so that bubbles remain in the sheath 103. It is difficult to obtain an image with excellent visibility.
また、孔128および逃し弁129がOリング127よりも先端側に設けられることによって、基端側へ逆流する過剰な圧がかかった生理食塩水は、Oリング127に対し先端側で逃し弁129によって減圧され、その上、Oリング127によって止められるため、回転駆動装置11への液の漏出がより効果的に防止される。
In addition, since the hole 128 and the relief valve 129 are provided on the distal end side with respect to the O-ring 127, the physiological saline that is excessively pressurized to flow backward to the proximal end side is disposed on the distal end side with respect to the O-ring 127. Since the pressure is reduced by the pressure and is stopped by the O-ring 127, the leakage of the liquid to the rotary drive device 11 is more effectively prevented.
また、孔128および逃し弁129がポート124に設けられることによって、生理食塩水は、注入されてからシース103の内部に充填されるまでの間の早い段階で減圧されるため、生理食塩水が高圧な状態で画像診断用カテーテル100の内部を移動しない。その結果、駆動シャフト102の伸び、基端側への液の逆流、およびシース103内での気泡の残留がより効果的に抑制されるため、視認性に優れた画像を得るという画像診断用カテーテル100の機能がより良好に発揮される。
Further, since the hole 128 and the relief valve 129 are provided in the port 124, the physiological saline is depressurized at an early stage between the time when it is injected and the time when the sheath 103 is filled. The inside of the diagnostic imaging catheter 100 is not moved under high pressure. As a result, the extension of the drive shaft 102, the backflow of the liquid toward the proximal end, and the remaining of bubbles in the sheath 103 are more effectively suppressed, so that an image diagnostic catheter that obtains an image with excellent visibility is obtained. 100 functions are exhibited better.
<第2実施形態>
図8において概説すると、第2実施形態の画像診断用カテーテル200は、逃し弁129がポート124に設けられるのではなく、ポート124に連通する着脱可能な着脱部材201に設けられる点で第1実施形態と異なる。その他の構成および駆動装置による動作については、画像診断用カテーテル200は、第1実施形態の画像診断用カテーテル100と略同様であるため、ここでの重複する説明を省略する。画像診断用カテーテル200において第1実施形態と共通する構成については図中で同じ符号を付す。 Second Embodiment
As outlined in FIG. 8, thediagnostic imaging catheter 200 of the second embodiment is the first embodiment in that the relief valve 129 is not provided in the port 124 but in the detachable detachable member 201 communicating with the port 124. Different from form. About the operation | movement by another structure and a drive device, since the diagnostic imaging catheter 200 is substantially the same as the diagnostic imaging catheter 100 of 1st Embodiment, the overlapping description here is abbreviate | omitted. In the diagnostic imaging catheter 200, the same reference numerals are assigned to the same components as those in the first embodiment.
図8において概説すると、第2実施形態の画像診断用カテーテル200は、逃し弁129がポート124に設けられるのではなく、ポート124に連通する着脱可能な着脱部材201に設けられる点で第1実施形態と異なる。その他の構成および駆動装置による動作については、画像診断用カテーテル200は、第1実施形態の画像診断用カテーテル100と略同様であるため、ここでの重複する説明を省略する。画像診断用カテーテル200において第1実施形態と共通する構成については図中で同じ符号を付す。 Second Embodiment
As outlined in FIG. 8, the
図9に示すように、逃し弁129は、着脱部材201の内部に連通する孔202(連通部)に設けられる。逃し弁129自体の構成および機能は第1実施形態と同様である。着脱部材201は、円形断面に対して直交する方向の両端に開口部201a、201bが形成された筒形状を有する。
As shown in FIG. 9, the relief valve 129 is provided in a hole 202 (communication portion) communicating with the inside of the detachable member 201. The configuration and function of the relief valve 129 itself are the same as in the first embodiment. The detachable member 201 has a cylindrical shape in which openings 201a and 201b are formed at both ends in a direction orthogonal to the circular cross section.
開口部201bを形成する周縁の径は、ポート124の開口部124aの径より小さい。着脱部材201は、開口部201bが形成されている側の端部が開口部124aに挿入されることによって、ポート124に接続する。ポート124に挿入されて接続した着脱部材201は、引き抜くことによってポート124から取り外せる。
The diameter of the periphery forming the opening 201b is smaller than the diameter of the opening 124a of the port 124. The detachable member 201 is connected to the port 124 by inserting the end on the side where the opening 201b is formed into the opening 124a. The detachable member 201 inserted and connected to the port 124 can be removed from the port 124 by being pulled out.
着脱部材201とポート124との接続は、互いに嵌合する部材間の摩擦力に加え、ネジによる締結力によって接続が保持される、いわゆるルアーロック方式であるが、これに限定されない。例えば、着脱部材201とポート124との接続は、これら互いに嵌合する部材間の摩擦力によって接続が保持される、いわゆるルアースリップ方式であってもよい。
The connection between the detachable member 201 and the port 124 is a so-called luer lock system in which the connection is maintained by a fastening force by a screw in addition to a frictional force between members fitted to each other, but is not limited thereto. For example, the connection between the detachable member 201 and the port 124 may be a so-called luer slip method in which the connection is maintained by the frictional force between the members that fit together.
図10に示すように、着脱部材201の開口部201aに挿入されたシリンジSから生理食塩水が注入される。生理食塩水は、着脱部材201、ポート124、および通路126を通り、シース103の内部へと充填される。過剰な圧がかかると、逃し弁129は開いて圧力を低下させる。
As shown in FIG. 10, physiological saline is injected from the syringe S inserted into the opening 201 a of the detachable member 201. The physiological saline passes through the removable member 201, the port 124, and the passage 126 and is filled into the sheath 103. If excessive pressure is applied, the relief valve 129 opens to reduce the pressure.
本実施形態の着脱部材201を用いれば、例えば市販されているような既存の画像診断用カテーテルを設計変更することなく生かしつつ、または設計変更を抑えつつ逃し弁129を設けることができるため、第1実施形態の作用効果を簡単に得ることができる。
If the detachable member 201 of the present embodiment is used, the relief valve 129 can be provided while making use of an existing diagnostic imaging catheter such as a commercially available one without changing the design or suppressing the change in design. The effect of one embodiment can be obtained easily.
本発明は、上述した実施形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変できる。
The present invention is not limited to the embodiment described above, and can be variously modified within the scope of the claims.
例えば、画像診断用カテーテルは、IVUS(Intra Vascular Ultra Sound)等、上記実施形態のように検査波として超音波を用いて画像を得るものに限定されない。画像診断用カテーテルは、OCT(Optical Coherence Tomography)等、検査波として光を用いて画像を得るものであってもよい。この場合、駆動シャフトの内部に備えられる信号路は、信号としての光を伝える光ファイバであり、検査波送受信部は、光ファイバによって伝えらえた光を体内に出射するとともにその反射光を受けて再度光ファイバへ向かわせる、光ファイバと光学的に接続したプリズムを備える。
For example, the diagnostic imaging catheter is not limited to an IVUS (Intra Vascular Ultra Sound) or the like that obtains an image using an ultrasonic wave as an inspection wave as in the above embodiment. The diagnostic imaging catheter may be an OCT (Optical Coherence Tomography) or the like that obtains an image using light as an inspection wave. In this case, the signal path provided inside the drive shaft is an optical fiber that transmits light as a signal, and the inspection wave transmitting / receiving unit emits the light transmitted by the optical fiber into the body and receives the reflected light. A prism optically connected to the optical fiber is provided to be directed to the optical fiber again.
また、上記実施形態では、シースの内部に注入する液体として生理食塩水が用いられたが、これに限定されない。例えば、OCTように光を用いて画像を得る場合、シースの内部に注入する液体として造影剤が用いられる。このような造影剤の粘度は生理食塩水に比べ一般的に大きいため、プライミングの際の液圧が大きくなるが、逃し弁によって過剰な圧がかかることが防止される。
In the above embodiment, physiological saline is used as the liquid to be injected into the sheath, but the present invention is not limited to this. For example, when an image is obtained using light as in OCT, a contrast agent is used as a liquid to be injected into the sheath. Since the viscosity of such a contrast agent is generally higher than that of physiological saline, the fluid pressure during priming is increased, but excessive pressure is prevented from being applied by the relief valve.
また、逃し弁は上記実施形態に限定されない。例えば、逃し弁は、図11に示すようなアンブレラバルブ130であってもよい。図12に示すように、アンブレラバルブ130においては、過剰な圧がかかると、ポート124の内部に連通する孔131(連通部)を塞いでいた傘状の弁体130aが反るようにして開き、圧力を低下させる。
Further, the relief valve is not limited to the above embodiment. For example, the relief valve may be an umbrella valve 130 as shown in FIG. As shown in FIG. 12, in the umbrella valve 130, when excessive pressure is applied, the umbrella-shaped valve body 130a that blocks the hole 131 (communication portion) communicating with the inside of the port 124 opens so as to warp. , Reduce the pressure.
また、連通部および逃し弁は、体外に配置される部材に設けられればよく、上記実施形態のようにポート124に設けられる形態に限定されない。例えば、上記実施形態において、ポート124ではなく、ハブ部本体125に通路126と連通する孔(連通部)が形成され、これに逃し弁が設けられた形態を本発明は含む。また、ハブ部120ではなく、例えばコネクタ113またはコネクタ114にシース103へと連通する孔(連通部)が形成され、その孔に逃し弁が設けられる形態を本発明は含む。
Further, the communication part and the relief valve may be provided on a member disposed outside the body, and are not limited to the form provided on the port 124 as in the above embodiment. For example, in the above embodiment, the present invention includes a form in which a hole (communication portion) communicating with the passage 126 is formed in the hub portion main body 125 instead of the port 124, and a relief valve is provided in the hole. In addition, the present invention includes a form in which a hole (communication portion) communicating with the sheath 103 is formed in the connector 113 or the connector 114 instead of the hub portion 120 and a relief valve is provided in the hole.
10 駆動装置、
11 回転駆動装置、
12 直線駆動装置、
20 制御装置、
30 モニタ、
100、200 画像診断用カテーテル、
101 超音波振動子(検査波送受信部)、
102 駆動シャフト、
102a 信号路、
103 シース、
110 管部(体外に配置される部材)、
111 外管、
112 内管、
113 コネクタ、
114 コネクタ、
120 ハブ部(体外に配置される部材)、
124 ポート(注液部)、
127 Oリング(シール部材)、
128 孔(連通部)、
129 逃し弁、
130 アンブレラバルブ(逃し弁)、
131 孔(連通部)、
201 着脱部材、
202 孔(連通部)、
S シリンジ、
W ガイドワイヤ。 10 drive device,
11 Rotation drive device,
12 linear drive,
20 control device,
30 monitor,
100, 200 Imaging diagnostic catheter,
101 ultrasonic transducer (inspection wave transmitter / receiver),
102 drive shaft,
102a signal path,
103 sheath,
110 Pipe part (member arranged outside the body),
111 outer tube,
112 inner pipe,
113 connector,
114 connector,
120 Hub part (member arranged outside the body),
124 port (injection part),
127 O-ring (seal member),
128 holes (communication part),
129 Relief valve,
130 Umbrella valve (relief valve),
131 hole (communication part),
201 detachable member,
202 hole (communication part),
S syringe,
W Guide wire.
11 回転駆動装置、
12 直線駆動装置、
20 制御装置、
30 モニタ、
100、200 画像診断用カテーテル、
101 超音波振動子(検査波送受信部)、
102 駆動シャフト、
102a 信号路、
103 シース、
110 管部(体外に配置される部材)、
111 外管、
112 内管、
113 コネクタ、
114 コネクタ、
120 ハブ部(体外に配置される部材)、
124 ポート(注液部)、
127 Oリング(シール部材)、
128 孔(連通部)、
129 逃し弁、
130 アンブレラバルブ(逃し弁)、
131 孔(連通部)、
201 着脱部材、
202 孔(連通部)、
S シリンジ、
W ガイドワイヤ。 10 drive device,
11 Rotation drive device,
12 linear drive,
20 control device,
30 monitor,
100, 200 Imaging diagnostic catheter,
101 ultrasonic transducer (inspection wave transmitter / receiver),
102 drive shaft,
102a signal path,
103 sheath,
110 Pipe part (member arranged outside the body),
111 outer tube,
112 inner pipe,
113 connector,
114 connector,
120 Hub part (member arranged outside the body),
124 port (injection part),
127 O-ring (seal member),
128 holes (communication part),
129 Relief valve,
130 Umbrella valve (relief valve),
131 hole (communication part),
201 detachable member,
202 hole (communication part),
S syringe,
W Guide wire.
Claims (4)
- 先端部に検査波送受信部が設けられるとともに前記検査波送受信部に接続した信号路を備える駆動シャフトと、
当該駆動シャフトが収められた、体内に挿入されるシースと、
当該シースの基端側に設けられた体外に配置される部材に備えられた、前記シースの内部と連通して液体を注入させる注液部と、
体外に配置される前記部材に形成された前記シースの内部と連通する連通部に設けられた逃し弁と、を有し、
当該逃し弁は、前記連通部を通じ、前記注液部から前記シースへの前記液体の注入にともなう過剰な圧力を低下させる、画像診断用カテーテル。 A driving shaft having a signal path connected to the inspection wave transmission / reception unit while being provided with an inspection wave transmission / reception unit at a tip part;
A sheath to be inserted into the body containing the drive shaft;
A liquid injection part provided in a member disposed outside the body provided on the proximal end side of the sheath, injecting liquid in communication with the inside of the sheath;
A relief valve provided at a communication portion communicating with the inside of the sheath formed on the member disposed outside the body,
The relief valve is an imaging diagnostic catheter that reduces an excessive pressure accompanying the injection of the liquid from the liquid injection part to the sheath through the communication part. - 前記駆動シャフトを駆動する駆動装置と、体外に配置される前記部材のうち基端側に設けられて前記駆動装置に連結するハブ部との間を液密に保つ、前記ハブ部に備えられたシール部材よりも先端側に、前記連通部および前記逃し弁は設けられる、請求項1に記載の画像診断用カテーテル。 The hub portion is provided in the hub portion, which is liquid-tightly maintained between a drive device that drives the drive shaft and a hub portion that is provided on the base end side of the members arranged outside the body and is connected to the drive device. The diagnostic imaging catheter according to claim 1, wherein the communication portion and the relief valve are provided on the distal end side of the seal member.
- 前記連通部および前記逃し弁は、前記注液部に設けられる、請求項1または請求項2に記載の画像診断用カテーテル。 3. The diagnostic imaging catheter according to claim 1, wherein the communication part and the relief valve are provided in the liquid injection part.
- 前記連通部および前記逃し弁は、前記注液部に連通する着脱可能な着脱部材に設けられる、請求項1または請求項2に記載の画像診断用カテーテル。 3. The diagnostic imaging catheter according to claim 1, wherein the communication part and the relief valve are provided on a detachable detachable member that communicates with the liquid injection part.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/060005 WO2014162492A1 (en) | 2013-04-01 | 2013-04-01 | Catheter for image diagnosis |
JP2015509745A JPWO2014162492A1 (en) | 2013-04-01 | 2013-04-01 | Diagnostic imaging catheter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/060005 WO2014162492A1 (en) | 2013-04-01 | 2013-04-01 | Catheter for image diagnosis |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014162492A1 true WO2014162492A1 (en) | 2014-10-09 |
Family
ID=51657825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/060005 WO2014162492A1 (en) | 2013-04-01 | 2013-04-01 | Catheter for image diagnosis |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014162492A1 (en) |
WO (1) | WO2014162492A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021052823A (en) * | 2019-09-26 | 2021-04-08 | テルモ株式会社 | Medical device and medical device set |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6829124B2 (en) * | 2017-03-22 | 2021-02-10 | テルモ株式会社 | Diagnostic imaging device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09289968A (en) * | 1996-04-26 | 1997-11-11 | Olympus Optical Co Ltd | Intra-celom ultrasonic diagnostic system |
JP2004337249A (en) * | 2003-05-13 | 2004-12-02 | Olympus Corp | Ultrasonic probe system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3519181B2 (en) * | 1995-06-30 | 2004-04-12 | テルモ株式会社 | Ultrasound catheter |
-
2013
- 2013-04-01 WO PCT/JP2013/060005 patent/WO2014162492A1/en active Application Filing
- 2013-04-01 JP JP2015509745A patent/JPWO2014162492A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09289968A (en) * | 1996-04-26 | 1997-11-11 | Olympus Optical Co Ltd | Intra-celom ultrasonic diagnostic system |
JP2004337249A (en) * | 2003-05-13 | 2004-12-02 | Olympus Corp | Ultrasonic probe system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021052823A (en) * | 2019-09-26 | 2021-04-08 | テルモ株式会社 | Medical device and medical device set |
JP7262357B2 (en) | 2019-09-26 | 2023-04-21 | テルモ株式会社 | Medical devices and medical device sets |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014162492A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6110363B2 (en) | catheter | |
US11317890B2 (en) | Catheter and imaging apparatus for diagnosis | |
WO2014188509A1 (en) | Catheter | |
US10842465B2 (en) | Medical device | |
CN107624050B (en) | Intravascular device with captured retained filler | |
WO2013077275A1 (en) | Medical tube and catheter | |
US11717259B2 (en) | Diagnostic imaging catheter | |
JP2011152274A (en) | In-vivo diagnostic apparatus and control method for the same | |
CN111970975A (en) | Photographing apparatus | |
JP2023009281A (en) | Image diagnostic catheter | |
JP2015066036A (en) | Imaging diagnosis catheter | |
US20170303890A1 (en) | Medical device | |
WO2014162492A1 (en) | Catheter for image diagnosis | |
WO2016035539A1 (en) | Medical device | |
JP5171354B2 (en) | In vivo diagnostic imaging probe | |
WO2016111296A1 (en) | Medical device | |
WO2022196417A1 (en) | Catheter for image diagnosis | |
JP6455885B2 (en) | Diagnostic imaging catheter | |
US10905395B2 (en) | Diagnostic imaging catheter | |
WO2014192146A1 (en) | Catheter for diagnostic imaging | |
WO2022181361A1 (en) | Image diagnosis catheter | |
WO2017149974A1 (en) | Medical device | |
JP2018121701A (en) | Medical device | |
WO2023008539A1 (en) | Catheter for diagnostic imaging | |
JP2014014591A (en) | Medical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13881444 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015509745 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13881444 Country of ref document: EP Kind code of ref document: A1 |