WO2014162480A1 - Sealing composition, multilayer glass, and solar panel - Google Patents

Sealing composition, multilayer glass, and solar panel Download PDF

Info

Publication number
WO2014162480A1
WO2014162480A1 PCT/JP2013/059988 JP2013059988W WO2014162480A1 WO 2014162480 A1 WO2014162480 A1 WO 2014162480A1 JP 2013059988 W JP2013059988 W JP 2013059988W WO 2014162480 A1 WO2014162480 A1 WO 2014162480A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
layer
glass
sealing composition
solar cell
Prior art date
Application number
PCT/JP2013/059988
Other languages
French (fr)
Japanese (ja)
Inventor
康 武蔵島
真一郎 小瀬
哲朗 多賀
浩喜 藤井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to PCT/JP2013/059988 priority Critical patent/WO2014162480A1/en
Publication of WO2014162480A1 publication Critical patent/WO2014162480A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • B32B17/10302Edge sealing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0607Rubber or rubber derivatives
    • C09K2200/061Butyl rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • C09K2200/062Polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sealing composition, a multilayer glass and a solar cell panel, and more specifically, a sealing composition used for sealing various industrial products, and a multilayer glass and a solar whose ends are sealed with the sealing composition. It relates to a battery panel.
  • a sealing material for example, a sealing material containing polyisobutylene having a viscosity average molecular weight of 50,000 to 90,000 and an inorganic filler has been proposed (for example, see Patent Document 1). Moreover, in patent document 1, using a sealing material for a solar panel is proposed.
  • JP 2006-117758 A Japanese Patent Laid-Open No. 10-110072
  • the sealing material proposed in Patent Document 1 and the sealing agent composition proposed in Patent Document 2 have insufficient water vapor barrier properties, the solar panel provided in the solar panel is used when sealing the solar panel. There is a problem that the electronic element cannot be sufficiently prevented from being deteriorated by water vapor, so that the performance of the solar cell panel is lowered.
  • An object of the present invention is to provide a sealing composition excellent in shape following property and water vapor barrier property at room temperature, thereby easily and efficiently sealing various industrial products, in particular, end portions of multi-layer glass and solar cell panels.
  • Another object of the present invention is to provide a multilayer glass and a solar cell panel having excellent reliability.
  • the sealing composition of the present invention is a sealing composition comprising a rubber component and a polyolefin obtained by polymerizing an alkene having 2 to 3 carbon atoms.
  • the 90 ° peel adhesion when peeled at 90 ° to the glass plate at a speed of 300 mm / min is 0.1 N / 10 mm or more
  • the 90 ° peel adhesive strength when peeled at 90 ° from the glass plate at a speed of 300 mm / min is 2N / 10 mm or more.
  • the sealing composition of the present invention further contains a tackifier, the tackifier contains a coumarone resin having a softening point of 90 to 140 ° C., and the blending ratio of the tackifier is the rubber. It is preferable that it exceeds 30 mass parts with respect to 100 mass parts of total amounts of a component and the said polyolefin.
  • the rubber component contains butyl rubber and polyisobutylene.
  • the sealing composition of the present invention further contains a filler, and the blending ratio of the filler is 0.1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin. Is preferred.
  • the filler is at least one selected from the group consisting of calcium carbonate, talc, titanium oxide and carbon black.
  • the sealing composition of the present invention is used for sealing an end portion of a multilayer glass.
  • the multilayer glass of the present invention is provided between two glass layers arranged at intervals in the thickness direction and the two glass layers, and is arranged inside an end portion of the glass layer.
  • a sealing material made of a sealing composition filled so as to seal the intermediate layer between end portions of the two glass layers, and the sealing composition is tackified
  • the tackifier further includes a coumarone resin having a softening point of 90 to 140 ° C., and the blending ratio of the tackifier is 100 parts by mass with respect to the total amount of the rubber component and the polyolefin. More than 30 parts by mass.
  • the sealing composition of the present invention is preferably used for sealing an end portion of a solar cell panel.
  • the solar cell panel of the present invention is provided between the glass layer, the glass layer and the support layer disposed at a distance in the thickness direction, the glass layer and the support layer, the glass layer and the glass layer
  • the sealing resin layer is sealed between the solar cell element disposed inside the end portion of the support layer and the sealing resin layer sealing the solar cell element, and the end portions of the glass layer and the support layer.
  • a sealing material comprising a sealing composition filled in, the sealing composition further containing a tackifier, the tackifier containing a coumarone resin having a softening point of 90 to 140 ° C,
  • the blending ratio of the tackifier exceeds 30 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin.
  • the sealing material comprising the sealing composition of the present invention is excellent in shape followability at room temperature, it can be easily and reliably attached to various industrial products, particularly multilayer glass and solar cell panels at room temperature. .
  • this sealing composition is excellent in adhesiveness after being heated at a high temperature, it is excellent in them by being stuck (temporarily fixed) to the double-glazed glass and the solar cell panel and then heated at a high temperature.
  • Water vapor barrier properties can be imparted. Therefore, the fall of the performance of a multilayer glass and a solar cell panel can be prevented effectively, and the outstanding reliability can be provided.
  • FIG. 1 shows a cross-sectional view of an embodiment of a sealing material comprising the sealing composition of the present invention.
  • FIG. 2 is a process diagram for explaining a method of adhering a test piece to a glass plate in a 90-degree peel adhesion test, and FIG. 2 (a) is a process of lining a sealing material with a lining material, FIG. (B) shows the process of sticking a test piece on a glass plate.
  • FIG. 3 is an embodiment of the multi-layer glass of the present invention (an embodiment comprising four sealing materials), FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a plan view of FIG. (C) shows a partially cutaway cross-sectional perspective view.
  • FIG. 4A and 4B are process diagrams for explaining a method of manufacturing the multi-layer glass shown in FIG. 3A.
  • FIG. 4A is a process for preparing an upper glass layer
  • FIG. 4B is a sealing process.
  • FIG. 4C shows the step of arranging the sealing material
  • FIG. 4D shows the step of arranging the lower glass layer.
  • FIG. 5 shows a plan view of a solar cell module (a mode in which a single sealing material is formed).
  • 6A and 6B show an embodiment of the solar cell panel of the present invention.
  • FIG. 6A is a cross-sectional view
  • FIG. 6B is a plan view
  • FIG. The figure is shown.
  • FIG. 7A and 7B are process diagrams for explaining a method of manufacturing the solar cell panel shown in FIG. 6A, in which FIG. 7A is a step of preparing an upper glass layer, and FIG. 7B is a solar cell.
  • FIG. 7 (c) shows the step of arranging the sealing resin layer
  • FIG. 7 (d) shows the step of arranging the sealing material
  • FIG. 7 (e) shows the arrangement of the lower glass layer.
  • FIG. 8 shows a partially enlarged cross-sectional view of a frameless solar cell module (a frameless solar cell module provided with a second sealing material) including the solar cell panel shown in FIG. 6.
  • FIG. 9 is an explanatory diagram of a solar cell module (solar cell module provided with a frame) including the solar cell panel shown in FIG. 6, and FIG. 9A is a partially enlarged cross-sectional view, and FIG. ) Shows a partial cross-sectional perspective view.
  • FIG. 10 shows a cross-sectional view of a measuring apparatus used for evaluating the
  • the sealing composition of the present invention is used for sealing various industrial products and contains a rubber component and a specific polyolefin (excluding polyisobutylene described later).
  • the rubber component is contained in order to impart elasticity to the sealing material made of the sealing composition.
  • rubber components include acrylic rubber, silicone rubber, urethane rubber, vinyl alkyl ether rubber, polyvinyl alcohol rubber, polyvinyl pyrrolidone rubber, polyacrylamide rubber, cellulose rubber, natural rubber, butadiene rubber, chloroprene rubber, styrene / butadiene rubber, Examples include acrylonitrile / butadiene rubber, styrene / ethylene / butadiene / styrene rubber, styrene / isoprene / styrene rubber, isoprene rubber, styrene / butadiene / styrene rubber, butyl rubber, and polyisobutylene rubber.
  • the rubber component is preferably butyl rubber or polyisobutylene.
  • rubber components can be used alone or in combination of two or more.
  • butyl rubber and polyisobutylene are used in combination.
  • Butyl rubber is a copolymer of isobutene (isobutylene) and a small amount of isoprene (isobutylene / isoprene rubber), and is a rubber elastic body having a high water vapor barrier property.
  • the degree of unsaturation of butyl rubber is, for example, 0.6 to 2.5 mol%, preferably 0.7 to 2.0 mol%.
  • the degree of unsaturation of butyl rubber is measured by the iodine adsorption method.
  • the Mooney viscosity of butyl rubber is, for example, 20 to 70 (ML 1 + 8 , 125 ° C.), preferably 30 to 60 (ML 1 + 8 , 125 ° C.).
  • Butyl rubber has a viscosity average molecular weight of, for example, 300,000 to 700,000, preferably 300,000 to 500,000.
  • Viscosity average molecular weight is measured by size exclusion chromatography (SEC) using standard polystyrene according to JIS K 7252 01 (2008). The same applies to the viscosity average molecular weight described later.
  • Polyisobutylene is a polymer of isobutylene, for example, high molecular weight polyisobutylene having a viscosity average molecular weight of 300,000 or more.
  • polyisobutylene in combination with butyl rubber, it is possible to improve (improve) the flowability of butyl rubber at high temperatures, maintain excellent water vapor barrier properties, and improve temperature characteristics.
  • Polyisobutylene has a viscosity average molecular weight of preferably 500,000 to 3,000,000, more preferably 700 to 2,000,000, and particularly preferably 900,000 to 1,500,000.
  • the viscosity average molecular weight of the polyisobutylene is less than the above-mentioned range, dripping may occur when the multi-layer glass 3 or the solar cell panel 4 described later is assembled.
  • the blending ratio of butyl rubber and polyisobutylene is, for example, 9/1 to 1/6, preferably 4/1 to 1/3, based on their mass.
  • the blending ratio of the rubber component is, for example, 40 to 90 parts by mass, preferably 50 to 80 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin. If the blending ratio of the rubber component is in the above range, there is an advantage that the water vapor barrier property is improved by maintaining rubber elasticity in a wide temperature range.
  • the specific polyolefin is a polyolefin obtained by polymerizing an alkene having 2 to 3 (2 and / or 3) carbon atoms, and specifically includes polyethylene, polypropylene, or ethylene / propylene copolymer.
  • polyethylene examples include low-density polyethylene such as linear low-density polyethylene, for example, medium-density polyethylene, for example, high-density polyethylene.
  • polypropylene examples include isotactic polypropylene and syndiotactic polypropylene.
  • Examples of the ethylene / propylene copolymer include an ethylene / propylene random copolymer and an ethylene / propylene block copolymer.
  • the specific polyolefin includes, for example, crystalline polyolefin (specifically, crystalline polyethylene and the like).
  • the softening point (ring and ball method) of the specific polyolefin is, for example, 100 to 150 ° C., preferably 110 to 140 ° C.
  • the specific polyolefin is preferably polyethylene, and more preferably crystalline polyethylene.
  • the blending ratio of the specific polyolefin is, for example, 10 to 60 parts by mass, preferably 20 to 50 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin. If the blending ratio of the polyolefin is less than the above range, the reinforcing property of the reeling material at room temperature may not be sufficient.
  • a tackifier and / or a filler can be blended in the sealing composition.
  • the tackifier is contained in the sealing composition in order to improve the peel adhesion (described later) at 25 ° C. and 150 ° C. of the sheet formed from the sealing composition.
  • the tackifier include petroleum resins such as hydrocarbon resins such as C5-hydrocarbon resins, phenol resins, rosin resins, terpene resins, and coumarone resins.
  • the tackifier is preferably a hydrocarbon resin, and more preferably a coumarone resin.
  • coumarone resins examples include coumarone resins and coumarone-indene resins (including coumarone-indene-styrene copolymers).
  • coumarone-indene resin is used.
  • the softening point of the coumarone-based resin is, for example, 90 to 140 ° C, preferably 100 to 130 ° C.
  • the softening point of the coumarone resin is calculated as a deflection temperature under load measured according to JIS K6911 (1995).
  • tackifiers can be used alone or in combination of two or more.
  • the blending ratio of the tackifier is, for example, more than 30 parts by weight, preferably 35 parts by weight or more, more preferably 40 parts by weight or more, particularly preferably 100 parts by weight of the total amount of the rubber component and the specific polyolefin. Is 45 parts by mass or more, for example, 100 parts by mass or less, preferably 80 parts by mass or less, and more preferably 60 parts by mass or less.
  • the blending ratio of the tackifier is less than the above lower limit, sufficient water vapor barrier properties may not be obtained.
  • the sealing material may become brittle.
  • the filler is contained in the sealing composition as a reinforcing agent for improving the reinforcing property of the sealing material.
  • the filler include inorganic fillers such as pigments (for example, inorganic pigments).
  • pigments for example, inorganic pigments.
  • calcium carbonate for example, heavy calcium carbonate or light calcium carbonate
  • talc titanium oxide
  • carbon black examples thereof include black, silica, and magnesium oxide.
  • the filler is preferably calcium carbonate, talc, titanium oxide, carbon black, more preferably carbon black.
  • ⁇ Fillers can be used alone or in combination of two or more. Preferably, carbon black is used alone.
  • the average particle diameter of the filler is, for example, 1 nm to 1000 ⁇ m, preferably 10 nm to 100 ⁇ m.
  • the compounding ratio of the filler is, for example, 0.1 to 100 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin. If the blending ratio of the filler is in the above range, the reinforcing property can be improved.
  • the sealing composition may contain, for example, a softening agent, a hygroscopic compound (for example, silica gel, alumina, zeolite, etc.), an antioxidant (hindered phenol), a lubricant, an anti-aging agent, an antistatic agent.
  • a softening agent for example, silica gel, alumina, zeolite, etc.
  • an antioxidant hindered phenol
  • a lubricant for example, silica gel, alumina, zeolite, etc.
  • An additive such as an agent, a plasticizer, a heat stabilizer, a silane coupling agent (for example, a hydrolyzable silyl group-containing compound), and a foaming agent can be added at an appropriate ratio.
  • Softener is contained in the sealing material as necessary in order to improve the handleability of the sealing material.
  • the softening agent include low molecular weight polyisobutylene, liquid polybutene, oils (eg, process oil), paraffins, waxes, aromas, asphalts, drying oils, animal and vegetable oils, and the like.
  • the softening agent is preferably low molecular weight polyisobutylene.
  • the viscosity average molecular weight of the low molecular weight polyisobutylene is, for example, less than 300,000, preferably 1 to 250,000, and more preferably 30,000 to 60,000.
  • These softeners can be used alone or in combination of two or more.
  • the blending ratio of the softener is, for example, 0.5 to 30 parts by mass, preferably 1 to 25 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin.
  • the handleability of the sealing material can be improved.
  • the sealing composition of the present invention can be obtained as a kneaded product by blending the above-described components in the above proportions, heating and kneading.
  • kneading for example, a batch kneader such as a kneader, a Banbury mixer, a mixing roll, or a continuous kneader such as a biaxial kneader is used.
  • the heating temperature in the kneading is, for example, 70 to 130 ° C, preferably 90 to 120 ° C.
  • the sealing composition thus obtained can be molded into an appropriate shape to obtain a sealing material.
  • FIG. 1 shows a cross-sectional view of an embodiment of a sealing material comprising the sealing composition of the present invention
  • FIG. 2 is a process for explaining a method for adhering a test piece to a glass plate in a 90-degree peel adhesion test. The figure is shown.
  • the sealing composition obtained above is heated, for example, by a molding apparatus such as an extruder, a calender roll, or a press machine (heat press machine) to be molded into a sheet shape, for example, to obtain a sheet.
  • a molding apparatus such as an extruder, a calender roll, or a press machine (heat press machine) to be molded into a sheet shape, for example, to obtain a sheet.
  • the obtained sheet is laminated on the surface of the release film 2.
  • a molding apparatus such as an extruder, a calender roll, or a press machine (heat press machine)
  • a press machine heat press machine
  • the obtained sheet is laminated on the surface of the release film 2.
  • an extruder and a calender roll are used as the molding device, and more preferably a calender roll is used.
  • the sheet includes a tape and / or a film.
  • the release film 2 examples include known release films such as a synthetic resin film such as a polyethylene film, a polypropylene film, and a polyethylene terephthalate (PET) film.
  • the thickness of the release film 2 is, for example, 1 to 1000 ⁇ m.
  • a release treatment may be performed on the surface of the release film 2.
  • the sealing material 1 is formed in a long and wide flat strip shape extending in the longitudinal direction.
  • the thickness of the sealing material 1 is appropriately selected depending on the dimensions of the intermediate layer 6 and the sealing resin layer 9, as shown in FIGS. 4D and 7E, and is, for example, 0.3 to 2.0 mm.
  • the thickness is preferably 0.4 to 1.0 mm.
  • the width of the sealing material 1 (the length in the direction perpendicular to the longitudinal direction) is, for example, 5 to 30 mm, preferably 10 to 20 mm.
  • the release film 2 can be laminated
  • times with respect to a glass plate is 0.1 N / 10mm or more.
  • the above 90 degree peel adhesion is measured as follows.
  • the backing material 31 is formed on the back surface 33 of the sealing material 1 (the opposite side surface to the surface 34 on which the release film 2 is laminated, the upper surface in FIG. 2A).
  • the sealing material 1 is backed by the backing material 31 after being laminated.
  • the backing material 31 examples include resin films such as polyethylene film, polypropylene film, and PET film, and metal foil such as copper foil.
  • the thickness of the backing material 31 is, for example, 1 to 1000 ⁇ m.
  • the sealing material 1 is cut out to a width of 10 mm to produce a strip-shaped test piece 30.
  • the release film 2 is peeled off from the test piece 30, and then the release film 2 is peeled off at 25 ° C. as shown in FIG. 2B.
  • the test piece 30 and the glass plate 32 are placed so that the surface 34 (the reverse side with respect to the back surface 33 on which the backing material 31 is laminated, the lower surface in FIG. 2B) is in contact with the surface 35 of the glass plate 32. Overlapping. Thereafter, the test piece 30 is adhered to the glass plate 32 by loading a predetermined weight at 25 ° C., for example.
  • the surface roughness Rz (ten-point average roughness according to JIS B0601-1994) of the surface 35 of the glass plate 32 is, for example, in the range of 0.01 to 10 ⁇ m.
  • test piece 30 and the glass plate 32 are left at 25 ° C., for example, for 10 to 60 minutes, and then set in a tensile tester. Then, the peeling adhesive force when the test piece 30 peels from the glass plate 32 at a speed of 300 mm / min at an angle of 90 degrees with respect to the glass plate 32 at 25 ° C. is measured.
  • the 90-degree peel adhesive strength described above is preferably 0.15 N / 10 mm or more, more preferably 0.25 N / 10 mm or more, particularly preferably 0.40 N / 10 mm or more, and 2.0 N / 10 mm. Is also less.
  • the peel adhesive strength when peeled at 90 ° from the glass plate 32 at a speed of 300 mm / min is 2N / 10 mm or more.
  • the above 90 degree peel adhesion is measured as follows.
  • the test piece 30 is attached to the glass plate 32 at 25 ° C., and the heating step and the cooling step are sequentially performed after the attachment, After being attached to the glass plate 32 at 25 ° C., the treatment is performed in the same manner as the 90 ° peel adhesive strength when peeled at 90 ° from the glass plate 32 at a speed of 300 mm / min.
  • the test piece 30 adhered to the glass plate 32 is heated by, for example, a vacuum hot press.
  • the test piece 30 is thermocompression-bonded to the glass plate 32 by hot pressing at 150 ° C. in a vacuum atmosphere, for example, at a pressure of 0.05 to 0.5 MPa for 1 to 60 minutes.
  • test piece 30 after thermocompression bonding is allowed to cool, for example, for 10 minutes to 48 hours.
  • the 90-degree peel adhesion described above is preferably 3 N / 10 mm or more, more preferably 4 N / 10 mm or more, particularly preferably 8 N / 10 mm or more, and most preferably 15 N / 10 mm or more, and 100 N / It is also 10 mm or less.
  • sealing material 1 obtained in this way is used for sealing of various industrial products.
  • it is used for sealing multi-layer glass and solar cell panels.
  • FIG. 3 shows an embodiment of the multilayer glass of the present invention (an embodiment comprising four sealing materials), and FIG. 4 shows a process chart for explaining the method for producing the multilayer glass shown in FIG.
  • FIG. 3B the upper glass layer 10 is omitted to clearly show the relative arrangement of the sealing material 1.
  • this multi-layer glass 3 is provided between the upper glass layer 10 and the lower glass layer 11 as two glass layers arranged at intervals in the thickness direction, An intermediate layer 6 disposed inside the peripheral end portion 5 of the glass layer 10 and the lower glass layer 11, and a sealing material 1 filled between the peripheral end portions 5 of the upper glass layer 10 and the lower glass layer 11, It has.
  • the upper glass layer 10 is provided on the outermost surface (upper surface) side of the multilayer glass 3 and is formed in a substantially rectangular shape in plan view.
  • the thickness of the upper glass layer 10 is, for example, 0.5 to 3.2 mm.
  • the lower glass layer 11 is provided on the outermost back surface (lower surface) side of the multilayer glass 3, and is formed in a substantially rectangular shape having the same size as the upper glass layer 10 in a plan view.
  • the thickness of the lower glass layer 11 is, for example, 0.5 to 3.2 mm.
  • the intermediate layer 6 is formed in a substantially rectangular shape smaller than the upper glass layer 10 and the lower glass layer 11 in plan view.
  • the material for forming the intermediate layer 6 is a material for forming the sealing resin layer 9 (described later).
  • the material is not particularly limited, and specifically, an ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral ( PVB) and polyvinylidene fluoride resins.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • the thickness of the intermediate layer 6 is, for example, 0.3 to 1.0 mm.
  • the sealing material 1 seals the intermediate layer 6. Further, as shown in FIG. 3 (b), the sealing material 1 comes into contact with two vertical sealing materials 13 having a substantially rectangular shape in plan view extending long in the vertical direction, and both longitudinal ends of each vertical sealing material 13. And two horizontal sealing members 14 having a substantially rectangular shape in plan view extending long in the horizontal direction.
  • the vertical sealing material 13 is filled between the thickness directions of both lateral ends of the upper glass layer 10 and the lower glass layer 11.
  • the horizontal sealing material 14 is filled between the thickness directions of both longitudinal ends of the upper glass layer 10 and the lower glass layer 11.
  • an upper glass layer 10 is prepared.
  • the sealing resin layer 9 as the intermediate layer 6 is disposed on the lower surface of the upper glass layer 10.
  • the sealing resin layer 9 is disposed so that the peripheral end of the upper glass layer 10 is exposed.
  • the thickness T1 of the sealing resin layer 9 is set to, for example, 0.3 to 2.0 mm, preferably 0.4 to 1.0 mm.
  • the sealing material 1 including the vertical sealing material 13 and the horizontal sealing material 14 shown in FIG. 3B is attached (temporarily fixed) in the above-described arrangement. If necessary, the sealing material 1 is disposed (heat-sealed) while being melted.
  • the thickness T2 of the sealing material 1 is set to be, for example, thick or the same thickness as the thickness T1 of the sealing resin layer 9 (sealing resin layer 9 before pressure bonding), specifically, 100 to 200%, preferably 105 to 120%. More specifically, the thickness T2 of the sealing material 1 is, for example, 0.3 to 2.0 mm, preferably 0.4 to 1.0 mm.
  • the thickness T2 of the sealing material 1 exceeds the above range, workability at the time of bonding to the lower glass layer 11 is reduced, or gas generated from the sealing resin layer 9 (for example, acetic acid gas generated from EVA) ) And / or air may not escape and bubbles may remain in the sealing resin layer 9.
  • gas generated from the sealing resin layer 9 for example, acetic acid gas generated from EVA
  • the thickness of the sealing material 1 is less than the above range, the sealing performance of the peripheral end portion 5 of the multilayer glass 3 may not be sufficiently secured.
  • the lower glass layer 11 In order to adhere the lower glass layer 11 to the sealing resin layer 9 and the sealing material 1, the lower glass layer 11 is brought into contact with the lower surface of the sealing material 1, and the lower glass layer 11 is crimped upward. To do.
  • the pressure bonding include thermocompression bonding as necessary.
  • the pressure bonding conditions are normal temperature or a heated atmosphere, and the pressure is, for example, 0.05 to 0.5 MPa, preferably 0.05 to 0.2 MPa, and the pressure bonding time is preferably 1 to 60 minutes, for example. Is 10 to 30 minutes.
  • the temperature is, for example, 100 to 180 ° C., preferably 110 to 160 ° C.
  • the thickness T3 of the sealing material 1 after pressure bonding and the thickness T1 of the sealing resin layer 9 are substantially the same.
  • the multi-layer glass 3 in which the peripheral end portion 5 is filled with the sealing material 1 can be obtained.
  • the above-mentioned sealing material 1 is excellent in shape followability at normal temperature (for example, 20 to 30 ° C.), it can be easily and reliably attached to the multilayer glass 3 at normal temperature.
  • the sealing material 1 is excellent in adhesion after being heated at a high temperature (for example, 100 to 160 ° C.), the sealing material 1 is adhered to the multi-layer glass 3 and then heated at a high temperature. , They can be imparted with an excellent water vapor barrier property.
  • the water vapor barrier property of the sealing material 1 measured by the examples described later is, for example, 2.0% or less, preferably 1.5% or less, more preferably 1.0% or less, Preferably, it is 0.5% or less, most preferably 0.3%, and it is also 0% or more.
  • the intermediate layer 6 is formed as a resin layer (sealing resin layer 9) made of a resin.
  • resin layer 9 is formed as an air layer made of air or an inert gas (for example, nitrogen).
  • inert gas for example, nitrogen
  • vacuum layer in a vacuum state (or reduced pressure state).
  • FIG. 5 shows a plan view of a solar cell module (a mode in which a single sealing material is formed).
  • the sealing material 1 is formed of four sealing materials having a substantially rectangular shape in plan view (two vertical sealing materials 13 and two horizontal sealing materials 14). For example, FIG. As shown, it can also be formed from a single sealing material.
  • the sealing material 1 can be obtained, for example, by forming it into a substantially rectangular shape in plan view using the above-described molding apparatus, and then punching the center (vertical center and lateral center), although not shown.
  • FIG. 6 is an embodiment of the solar cell panel of the present invention
  • FIG. 7 is a process diagram for explaining a method for producing the solar cell panel shown in FIG. 6A
  • FIG. 8 is a diagram of the solar cell panel shown in FIG.
  • FIG. 9 is a partially enlarged cross-sectional view of a frameless solar cell module provided (a frameless solar cell module provided with a second sealant)
  • FIG. 9 is a solar cell module provided with a solar cell panel shown in FIG. Explanatory drawing of a solar cell module) is shown.
  • the solar cell panel 4 includes an upper glass layer 10 as a glass layer, a lower glass layer 11 as a support layer disposed at a distance from the upper glass layer 10, and an upper glass layer 10. And the solar cell element 8 disposed between the upper glass layer 10 and the peripheral end portion 5 of the lower glass layer 11 and the sealing resin layer 9 that seals the solar cell element 8 provided between the lower glass layer 11 and the lower glass layer 11; And a sealing material 1 filled between the peripheral end portions 5 of the upper glass layer 10 and the lower glass layer 11.
  • Examples of the solar cell element 8 include known solar cell elements such as crystalline silicon type and amorphous silicon type.
  • the solar cell element 8 has a substantially rectangular flat plate shape, and is disposed at the center of the upper glass layer 10 and the lower glass layer 11 in plan view.
  • the solar cell element 8 is laminated on the lower surface of the upper glass layer 10.
  • the thickness of the solar cell element 8 is smaller than the thickness of the sealing resin layer 9, specifically, for example, 0.01 to 500 ⁇ m.
  • Sealing resin layer 9 seals solar cell element 8.
  • the sealing material 1 seals the sealing resin layer 9.
  • the solar cell element 8 is disposed on the lower surface of the upper glass layer 10.
  • the sealing resin layer 9 is disposed.
  • the sealing resin layer 9 is disposed so as to cover the solar cell element 8 and to expose the peripheral end portion of the upper glass layer 10.
  • the sealing material 1 is attached (temporarily fixed).
  • the lower glass layer 11 In order to adhere the lower glass layer 11 to the sealing resin layer 9 and the sealing material 1, the lower glass layer 11 is brought into contact with the lower surface of the sealing material 1, and the lower glass layer 11 is crimped upward. To do.
  • pressure bonding for example, pressure bonding is performed under vacuum (reduced pressure).
  • This solar cell panel 4 can effectively prevent a decrease in power generation efficiency due to degradation of the solar cell element 8 in addition to the above-described effects of the multilayer glass 3.
  • the support layer of the present invention is described as the lower glass layer 11.
  • it may be formed as the lower resin layer (back sheet) 11 made of a resin such as a moisture permeable resin. it can.
  • FIG. 6 can be used as a frameless solar cell module 12 that does not use a frame, or can be used as a solar cell module 7 that uses a frame, as shown in FIG. .
  • the frameless solar cell module 12 is used as a frameless solar cell module 12 in which a known sealing material (second sealing material) 15 is provided on the peripheral end portion 5 of the solar cell panel 4. You can also.
  • the second sealing material 15 is formed in a substantially U-shaped cross section that opens toward the inside of the solar cell panel 4 at the peripheral end 5 of the solar cell panel 4, and the peripheral side surface of the upper glass layer 10 And the upper surface, the peripheral side surface of the first sealing material 1, and the peripheral side surface and the lower surface of the lower glass layer 11.
  • the solar cell module 7 includes a solar cell panel 4, a frame 16 provided at the peripheral end 5 of the solar cell panel 4, and a second sealing material 15 interposed therebetween. .
  • the frame 16 is provided along each side of the solar cell panel 4.
  • the frame 16 is formed in a substantially U-shaped cross section that opens inward toward the solar cell panel 4.
  • the frame 16 is formed of, for example, a metal material (such as aluminum) or a resin material (such as acrylic resin), and is preferably formed of a metal material.
  • the frame 16 is assembled so that both ends in the longitudinal direction along each side are joined together to form four corners and form a substantially rectangular frame shape in plan view.
  • Examples 1 to 3 and Comparative Example 1 According to the formulation of Table 1, the ingredients listed in Table 1 are all added to a kneader (DS1-5GHB-E type, 1L kneader, with 6-inch open roll, manufactured by Moriyama Co., Ltd.) and kneaded at 120 ° C. The sealing composition was prepared as a kneaded product.
  • a kneader D1-5GHB-E type, 1L kneader, with 6-inch open roll, manufactured by Moriyama Co., Ltd.
  • the obtained kneaded product is rolled and formed with a calender roll (calendar roll 4L-8a, manufactured by Hitachi, Ltd.) to a thickness of 0.5 mm and a thickness of 1.0 mm, respectively, so that a sealing material made of a sealing composition is obtained. Obtained.
  • the rolling conditions of the calender roll are as follows: the roll temperature is adjusted to 30 to 90 ° C., and the ratio of the downstream roll (R ′) arranged downstream in the transport direction with respect to the roll speed (R) of the upstream roll (R ′ / R) was adjusted to 1.1.
  • Double-sided pressure-sensitive adhesive tape comprising an acrylic foam layer, an acrylic adhesive layer laminated on both surfaces (front and back) of the acrylic foam layer, and a release film laminated on the surface of one acrylic pressure-sensitive adhesive layer (product)
  • the name “Hyper Joint H9008” (manufactured by Nitto Denko Corporation, thickness 0.8 mm) was prepared as a sealing material of Comparative Example 2.
  • JSR BUTYL # 065 Butyl rubber, degree of unsaturation 0.8 mol%, Mooney viscosity 32 (ML 1 + 8 , 125 ° C.), JSR Opanol B-100EP: high molecular weight polyisobutylene, viscosity average molecular weight 1.1 million, BASF DFD -2005: Crystalline polyethylene, Nihon Unicar Co., Ltd.
  • Escron V-120 Coumarone-indene-styrene copolymer, softening point (deflection temperature under load) 120 ° C, Nikko Chemical's seast 3H: Carbon black, average particle size 27 nm Tetrax 4T manufactured by Tokai Carbon Co., Ltd .: Low molecular weight polyisobutylene, viscosity average molecular weight 40,000, JX Nippon Mining & Energy Corporation Tetrax 5T: Low molecular weight polyisobutylene, viscosity average molecular weight 50,000, manufactured by JX Nippon Mining & Energy Corporation ( Evaluation) About the sealing material obtained by each Example and each comparative example, (1) 90 degree
  • a backing material 31 (surface is not peeled) 31 made of a PET film having a thickness of 38 ⁇ m is laminated on the back surface 33 of the sealing material 1, and the backing material 31 Sealing material 1 was lined.
  • the sealing material 1 was cut out to a width of 10 mm to produce a strip-shaped test piece 30.
  • the release film 2 is peeled off from the test piece 30, and then, as shown in FIG.
  • the test piece 30 and the glass plate 32 are superposed so as to contact the surface 35 (surface roughness Rz: 0.06 ⁇ m) of the glass plate 32 made of 3.2 mm thick white plate unreinforced glass (manufactured by AGC). It was.
  • test piece 30 was adhered to the glass plate 32 by reciprocating once with a 2 kg roller at 25 ° C.
  • test piece 30 and the glass plate 32 were left at 25 ° C. for 30 minutes, and then placed on a tensile tester. Next, the peel adhesion force when the test piece 30 was peeled off at a speed of 300 mm / min with respect to the glass plate 32 at an angle of 90 degrees with respect to the glass plate 32 was measured.
  • Comparative Example 1 since the sealing material was a hot-melt type, it could not be adhered to the glass plate 32 at 25 ° C., and therefore the 90 ° peel adhesive strength could not be measured.
  • the sealing material of Examples 1 to 3 and Comparative Example 1 having a thickness of 0.5 mm and the sealing material of Comparative Example 2 were glass plates 32 at 25 ° C. Except that the heating step and the cooling step were sequentially carried out after the sticking, after sticking to the glass plate 32 at 25 ° C., when peeling to the glass plate 32 at 90 degrees and a speed of 300 mm / min. It processed similarly to 90 degree
  • the test piece 30 was hot-pressed to the glass plate 32 by being hot-pressed at 150 ° C. for 10 minutes in a vacuum atmosphere with a vacuum heating press.
  • test piece 30 after thermocompression bonding was allowed to cool for 24 hours.
  • the measuring device 20 includes a bottomed cylindrical cup 22 provided with a ring-shaped ridge 21 at its upper end, and a glass plate 23 that is disposed to face the ridge 21 with a gap in the thickness direction. It has.
  • the cup 22 is made of aluminum, and the depth of the bottom wall 24 is 15 mm and the inner diameter is 60 mm.
  • a hygroscopic agent 25 is uniformly laminated on the upper surface of the bottom wall 24 of the cup 22.
  • the hygroscopic agent 25 is made of calcium chloride and has a mass of 10 g.
  • the water vapor barrier property% is shown as a mass increase rate of the whole measuring device 20 after humidification with respect to the whole mass of the measuring device 20 before humidification.
  • the sealing composition is used for sealing the edge of the multilayer glass and the edge of the solar cell panel.

Abstract

This sealing composition contains a rubber component, and a polyolefin obtained by polymerizing alkenes with two to three carbons. The sealing composition has: a 90-degree peel adhesion of at least 0.1 N/10 mm when peeled at a rate of 300 mm/minute at 90 degrees to a glass substrate after a sheet formed from the sealing composition has been attached to the glass substrate at 25°C; and a 90-degree peel adhesion of at least 2 N/10 mm when peeled at a rate of 300 mm/minute at 90 degrees to a glass substrate after a sheet has been attached to the glass substrate at 150°C.

Description

シーリング組成物、複層ガラスおよび太陽電池パネルSealing composition, double glazing and solar cell panel
 本発明は、シーリング組成物、複層ガラスおよび太陽電池パネル、詳しくは、各種産業製品の封止に用いられるシーリング組成物と、そのシーリング組成物により端部が封止される複層ガラスおよび太陽電池パネルに関する。 The present invention relates to a sealing composition, a multilayer glass and a solar cell panel, and more specifically, a sealing composition used for sealing various industrial products, and a multilayer glass and a solar whose ends are sealed with the sealing composition. It relates to a battery panel.
 各種産業製品には、その内部に、水または湿気などの流体が浸入することを防止すべく、シール材を端部に設けることが広く知られている。 It is widely known that various industrial products are provided with a sealing material at the end in order to prevent fluid such as water or moisture from entering inside.
 そのようなシール材として、例えば、粘度平均分子量が5万~9万のポリイソブチレンと無機充填剤とを含有するシーリング材が提案されている(例えば、特許文献1参照。)。また、特許文献1では、シーリング材をソーラーパネルに用いることが提案されている。 As such a sealing material, for example, a sealing material containing polyisobutylene having a viscosity average molecular weight of 50,000 to 90,000 and an inorganic filler has been proposed (for example, see Patent Document 1). Moreover, in patent document 1, using a sealing material for a solar panel is proposed.
 また、例えば、ブチル系ゴムと結晶性ポリエチレンとを含有するホットメルト型のシーリング剤組成物が提案されている(例えば、特許文献2参照。)。 Also, for example, a hot-melt type sealing agent composition containing butyl rubber and crystalline polyethylene has been proposed (see, for example, Patent Document 2).
 特許文献1で提案されるシーリング材または特許文献2で提案されるシーリング剤組成物を、ソーラーパネルの端部に設けるには、これらを加熱して溶融させた後、ソーラーパネルの端部に塗布し、次いで、他方のパネルを組み付ける。その後、シーリング材を常温にて冷却する。 In order to provide the sealing material proposed in Patent Document 1 or the sealing agent composition proposed in Patent Document 2 at the end of the solar panel, these are heated and melted, and then applied to the end of the solar panel. Then, the other panel is assembled. Thereafter, the sealing material is cooled at room temperature.
特開2006-117758号公報JP 2006-117758 A 特開平10-110072号公報Japanese Patent Laid-Open No. 10-110072
 しかるに、特許文献1で提案されるシーリング材および特許文献2で提案されるシーリング剤組成物は、常温(25℃)での形状追従性が低いため、他方のパネルの組付時には、一旦、高温に加熱して溶融させ、その後、冷却する必要がある。また、これらのシーリング材およびシーリング剤組成物では、加熱および冷却のための時間を別途設ける必要がある。 However, since the sealing material proposed in Patent Document 1 and the sealing agent composition proposed in Patent Document 2 have low shape followability at room temperature (25 ° C.), once the other panel is assembled, It is necessary to heat to melt and then cool. Moreover, in these sealing materials and sealing agent compositions, it is necessary to provide time for heating and cooling separately.
 さらに、特許文献1で提案されるシーリング材および特許文献2で提案されるシーリング剤組成物は、水蒸気バリア性が不十分であるため、ソーラーパネルの封止に用いると、ソーラーパネルに設けられる太陽電子素子が水蒸気によって劣化することを十分に防止できず、そのため、太陽電池パネルの性能が低下するという不具合がある。 Furthermore, since the sealing material proposed in Patent Document 1 and the sealing agent composition proposed in Patent Document 2 have insufficient water vapor barrier properties, the solar panel provided in the solar panel is used when sealing the solar panel. There is a problem that the electronic element cannot be sufficiently prevented from being deteriorated by water vapor, so that the performance of the solar cell panel is lowered.
 本発明の目的は、常温での形状追従性および水蒸気バリア性に優れるシーリング組成物、それによって、各種産業製品、とりわけ、複層ガラスおよび太陽電池パネルの端部を、簡易かつ効率的に封止した、信頼性に優れる複層ガラスおよび太陽電池パネルを提供することにある。 An object of the present invention is to provide a sealing composition excellent in shape following property and water vapor barrier property at room temperature, thereby easily and efficiently sealing various industrial products, in particular, end portions of multi-layer glass and solar cell panels. Another object of the present invention is to provide a multilayer glass and a solar cell panel having excellent reliability.
 上記目的を達成するために、本発明のシーリング組成物は、ゴム成分と、炭素数2~3のアルケンを重合させることにより得られるポリオレフィンとを含有するシーリング組成物であり、前記シーリング組成物から形成されたシートを25℃でガラス板に貼着した後、前記ガラス板に対して90度で速度300mm/分で剥離したときの90度剥離接着力が、0.1N/10mm以上であり、前記シートを150℃でガラス板に貼着した後、前記ガラス板に対して90度で速度300mm/分で剥離したときの90度剥離接着力が、2N/10mm以上であることを特徴としている。 In order to achieve the above object, the sealing composition of the present invention is a sealing composition comprising a rubber component and a polyolefin obtained by polymerizing an alkene having 2 to 3 carbon atoms. After sticking the formed sheet to a glass plate at 25 ° C., the 90 ° peel adhesion when peeled at 90 ° to the glass plate at a speed of 300 mm / min is 0.1 N / 10 mm or more, After adhering the sheet to a glass plate at 150 ° C., the 90 ° peel adhesive strength when peeled at 90 ° from the glass plate at a speed of 300 mm / min is 2N / 10 mm or more. .
 また、本発明のシーリング組成物は、粘着付与剤をさらに含有し、前記粘着付与剤は、軟化点が90~140℃のクマロン系樹脂を含有し、前記粘着付与剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、30質量部を超えることが好適である。 The sealing composition of the present invention further contains a tackifier, the tackifier contains a coumarone resin having a softening point of 90 to 140 ° C., and the blending ratio of the tackifier is the rubber. It is preferable that it exceeds 30 mass parts with respect to 100 mass parts of total amounts of a component and the said polyolefin.
 また、本発明のシーリング組成物では、前記ゴム成分が、ブチルゴムおよびポリイソブチレンを含有することが好適である。 In the sealing composition of the present invention, it is preferable that the rubber component contains butyl rubber and polyisobutylene.
 また、本発明のシーリング組成物は、充填剤をさらに含有し、前記充填剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、0.1~100質量部であることが好適である。 The sealing composition of the present invention further contains a filler, and the blending ratio of the filler is 0.1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin. Is preferred.
 また、本発明のシーリング組成物では、前記充填剤が、炭酸カルシウム、タルク、酸化チタンおよびカーボンブラックからなる群から選択される少なくとも1種であることが好適である。 In the sealing composition of the present invention, it is preferable that the filler is at least one selected from the group consisting of calcium carbonate, talc, titanium oxide and carbon black.
 また、本発明のシーリング組成物は、複層ガラスの端部の封止に用いられることが好適である。 Moreover, it is preferable that the sealing composition of the present invention is used for sealing an end portion of a multilayer glass.
 また、本発明の複層ガラスは、厚み方向に互いに間隔を隔てて配置される2枚のガラス層と、2枚の前記ガラス層の間に設けられ、前記ガラス層の端部の内側に配置される中間層と、2枚の前記ガラス層の端部の間に、前記中間層を封止するように充填されるシーリング組成物からなるシール材とを備え、前記シーリング組成物は、粘着付与剤をさらに含有し、前記粘着付与剤は、軟化点が90~140℃のクマロン系樹脂を含有し、前記粘着付与剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、30質量部を超えることを特徴としている。 Further, the multilayer glass of the present invention is provided between two glass layers arranged at intervals in the thickness direction and the two glass layers, and is arranged inside an end portion of the glass layer. And a sealing material made of a sealing composition filled so as to seal the intermediate layer between end portions of the two glass layers, and the sealing composition is tackified The tackifier further includes a coumarone resin having a softening point of 90 to 140 ° C., and the blending ratio of the tackifier is 100 parts by mass with respect to the total amount of the rubber component and the polyolefin. More than 30 parts by mass.
 また、本発明のシーリング組成物は、太陽電池パネルの端部の封止に用いられることが好適である。 Further, the sealing composition of the present invention is preferably used for sealing an end portion of a solar cell panel.
 また、本発明の太陽電池パネルは、ガラス層と、前記ガラス層と厚み方向に間隔を隔てて配置される支持層と、前記ガラス層および前記支持層の間に設けられ、前記ガラス層および前記支持層の端部の内側に配置される太陽電池素子およびそれを封止する封止樹脂層と、前記ガラス層および前記支持層の端部の間に、前記封止樹脂層を封止するように充填されるシーリング組成物からなるシール材とを備え、前記シーリング組成物は、粘着付与剤をさらに含有し、前記粘着付与剤は、軟化点が90~140℃のクマロン系樹脂を含有し、前記粘着付与剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、30質量部を超えることを特徴としている。 Moreover, the solar cell panel of the present invention is provided between the glass layer, the glass layer and the support layer disposed at a distance in the thickness direction, the glass layer and the support layer, the glass layer and the glass layer The sealing resin layer is sealed between the solar cell element disposed inside the end portion of the support layer and the sealing resin layer sealing the solar cell element, and the end portions of the glass layer and the support layer. A sealing material comprising a sealing composition filled in, the sealing composition further containing a tackifier, the tackifier containing a coumarone resin having a softening point of 90 to 140 ° C, The blending ratio of the tackifier exceeds 30 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin.
 本発明のシーリング組成物からなるシール材は、常温における形状追従性に優れているので、常温で、各種産業製品、とりわけ、複層ガラスおよび太陽電池パネルに簡易かつ確実に貼着することができる。 Since the sealing material comprising the sealing composition of the present invention is excellent in shape followability at room temperature, it can be easily and reliably attached to various industrial products, particularly multilayer glass and solar cell panels at room temperature. .
 また、このシーリング組成物は、高温で加熱した後の密着性に優れているため、複層ガラスおよび太陽電池パネルに貼着(仮固定)した後、高温で加熱することにより、それらに、優れた水蒸気バリア性を付与することができる。そのため、複層ガラスおよび太陽電池パネルの性能の低下を有効に防止して、優れた信頼性を付与することができる。 Moreover, since this sealing composition is excellent in adhesiveness after being heated at a high temperature, it is excellent in them by being stuck (temporarily fixed) to the double-glazed glass and the solar cell panel and then heated at a high temperature. Water vapor barrier properties can be imparted. Therefore, the fall of the performance of a multilayer glass and a solar cell panel can be prevented effectively, and the outstanding reliability can be provided.
図1は、本発明のシーリング組成物からなるシール材の一実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of an embodiment of a sealing material comprising the sealing composition of the present invention. 図2は、90度剥離接着力試験において、試験片をガラス板に貼着する方法を説明する工程図であって、図2(a)は、シール材を裏打ち材で裏打ちする工程、図2(b)は、ガラス板に試験片を貼着する工程を示す。FIG. 2 is a process diagram for explaining a method of adhering a test piece to a glass plate in a 90-degree peel adhesion test, and FIG. 2 (a) is a process of lining a sealing material with a lining material, FIG. (B) shows the process of sticking a test piece on a glass plate. 図3は、本発明の複層ガラスの一実施形態(シール材が4枚からなる態様)であって、図3(a)は、断面図、図3(b)は、図3平面図、(c)は、一部切欠断面斜視図を示す。FIG. 3 is an embodiment of the multi-layer glass of the present invention (an embodiment comprising four sealing materials), FIG. 3 (a) is a cross-sectional view, and FIG. 3 (b) is a plan view of FIG. (C) shows a partially cutaway cross-sectional perspective view. 図4は、図3(a)に示す複層ガラスの製造方法を説明する工程図であって、図4(a)は、上側ガラス層を用意する工程、図4(b)は、封止樹脂層を配置する工程、図4(c)は、シール材を配置する工程、図4(d)は、下側ガラス層を配置する工程を示す。4A and 4B are process diagrams for explaining a method of manufacturing the multi-layer glass shown in FIG. 3A. FIG. 4A is a process for preparing an upper glass layer, and FIG. 4B is a sealing process. The step of arranging the resin layer, FIG. 4C shows the step of arranging the sealing material, and FIG. 4D shows the step of arranging the lower glass layer. 図5は、太陽電池モジュール(シール材が1枚からなる態様)の平面図を示す。FIG. 5 shows a plan view of a solar cell module (a mode in which a single sealing material is formed). 図6は、本発明の太陽電池パネルの一実施形態であって、図6(a)は、断面図、図6(b)は、平面図、図6(c)は、一部切欠断面斜視図を示す。6A and 6B show an embodiment of the solar cell panel of the present invention. FIG. 6A is a cross-sectional view, FIG. 6B is a plan view, and FIG. The figure is shown. 図7は、図6(a)に示す太陽電池パネルの製造方法を説明する工程図であって、図7(a)は、上側ガラス層を用意する工程、図7(b)は、太陽電池素子を配置する工程、図7(c)は、封止樹脂層を配置する工程、図7(d)は、シール材を配置する工程、図7(e)は、下側ガラス層を配置する工程を示す。7A and 7B are process diagrams for explaining a method of manufacturing the solar cell panel shown in FIG. 6A, in which FIG. 7A is a step of preparing an upper glass layer, and FIG. 7B is a solar cell. FIG. 7 (c) shows the step of arranging the sealing resin layer, FIG. 7 (d) shows the step of arranging the sealing material, and FIG. 7 (e) shows the arrangement of the lower glass layer. A process is shown. 図8は、図6に示す太陽電池パネルを備えるフレームレス太陽電池モジュール(第2シール材が設けられたフレームレス太陽電池モジュール)の一部拡大断面図を示す。FIG. 8 shows a partially enlarged cross-sectional view of a frameless solar cell module (a frameless solar cell module provided with a second sealing material) including the solar cell panel shown in FIG. 6. 図9は、図6に示す太陽電池パネルを備える太陽電池モジュール(フレームが設けられた太陽電池モジュール)の説明図であって、図9(a)は、一部拡大断面図、図9(b)は、一部断面斜視図を示す。FIG. 9 is an explanatory diagram of a solar cell module (solar cell module provided with a frame) including the solar cell panel shown in FIG. 6, and FIG. 9A is a partially enlarged cross-sectional view, and FIG. ) Shows a partial cross-sectional perspective view. 図10は、水蒸気バリア性の評価に用いられる測定装置の断面図を示す。FIG. 10 shows a cross-sectional view of a measuring apparatus used for evaluating the water vapor barrier property.
 本発明のシーリング組成物は、各種産業製品の封止に用いられ、ゴム成分と、特定のポリオレフィン(後述するポリイソブチレンを除く)とを含有している。 The sealing composition of the present invention is used for sealing various industrial products and contains a rubber component and a specific polyolefin (excluding polyisobutylene described later).
 ゴム成分は、シーリング組成物からなるシール材に弾性を付与するために含有される。ゴム成分としては、例えば、アクリルゴム、シリコーンゴム、ウレタンゴム、ビニルアルキルエーテルゴム、ポリビニルアルコールゴム、ポリビニルピロリドンゴム、ポリアクリルアミドゴム、セルロースゴム、天然ゴム、ブタジエンゴム、クロロプレンゴム、スチレン・ブタジエンゴム、アクリロニトリル・ブタジエンゴム、スチレン・エチレン・ブタジエン・スチレンゴム、スチレン・イソプレン・スチレンゴム、イソプレンゴム、スチレン・ブタジエン・スチレンゴム、ブチルゴム、ポリイソブチレンゴムなどが挙げられる。ゴム成分として、好ましくは、ブチルゴム、ポリイソブチレンが挙げられる。 The rubber component is contained in order to impart elasticity to the sealing material made of the sealing composition. Examples of rubber components include acrylic rubber, silicone rubber, urethane rubber, vinyl alkyl ether rubber, polyvinyl alcohol rubber, polyvinyl pyrrolidone rubber, polyacrylamide rubber, cellulose rubber, natural rubber, butadiene rubber, chloroprene rubber, styrene / butadiene rubber, Examples include acrylonitrile / butadiene rubber, styrene / ethylene / butadiene / styrene rubber, styrene / isoprene / styrene rubber, isoprene rubber, styrene / butadiene / styrene rubber, butyl rubber, and polyisobutylene rubber. The rubber component is preferably butyl rubber or polyisobutylene.
 これらのゴム成分は、単独使用または2種以上併用することができる。好ましくは、ブチルゴム、ポリイソブチレンが併用される。 These rubber components can be used alone or in combination of two or more. Preferably, butyl rubber and polyisobutylene are used in combination.
 ブチルゴムは、イソブテン(イソブチレン)および少量のイソプレンの共重合体(イソブチレン・イソプレンゴム)であり、水蒸気バリア性が高いゴム弾性体である。 Butyl rubber is a copolymer of isobutene (isobutylene) and a small amount of isoprene (isobutylene / isoprene rubber), and is a rubber elastic body having a high water vapor barrier property.
 ブチルゴムの不飽和度は、例えば、0.6~2.5モル%、好ましくは、0.7~2.0モル%である。ブチルゴムの不飽和度は、ヨウ素吸着法により測定される。 The degree of unsaturation of butyl rubber is, for example, 0.6 to 2.5 mol%, preferably 0.7 to 2.0 mol%. The degree of unsaturation of butyl rubber is measured by the iodine adsorption method.
 また、ブチルゴムのムーニー粘度は、例えば、20~70(ML1+8、125℃)、好ましくは、30~60(ML1+8、125℃)である。 The Mooney viscosity of butyl rubber is, for example, 20 to 70 (ML 1 + 8 , 125 ° C.), preferably 30 to 60 (ML 1 + 8 , 125 ° C.).
 ブチルゴムは、その粘度平均分子量が、例えば、30万~70万、好ましくは、30万~50万である。 Butyl rubber has a viscosity average molecular weight of, for example, 300,000 to 700,000, preferably 300,000 to 500,000.
 粘度平均分子量は、JIS K 7252 01(2008年)に準拠して、標準ポリスチレンを用いて、サイズ排除クロマトグラフィー(SEC)によって測定される。なお、後述の粘度平均分子量についても同様である。 Viscosity average molecular weight is measured by size exclusion chromatography (SEC) using standard polystyrene according to JIS K 7252 01 (2008). The same applies to the viscosity average molecular weight described later.
 ポリイソブチレンは、イソブチレンの重合体であり、例えば、粘度平均分子量が30万以上の高分子量ポリイソブチレンである。ポリイソブチレンをブチルゴムと併用することにより、ブチルゴムの高温における流れ性を向上(改善)することができ、優れた水蒸気バリア性を維持して、温度特性を向上させることができる。 Polyisobutylene is a polymer of isobutylene, for example, high molecular weight polyisobutylene having a viscosity average molecular weight of 300,000 or more. By using polyisobutylene in combination with butyl rubber, it is possible to improve (improve) the flowability of butyl rubber at high temperatures, maintain excellent water vapor barrier properties, and improve temperature characteristics.
 ポリイソブチレンは、その粘度平均分子量が、好ましくは、50万~300万、さらに好ましくは、70~200万、とりわけ好ましくは、90万~150万である。 Polyisobutylene has a viscosity average molecular weight of preferably 500,000 to 3,000,000, more preferably 700 to 2,000,000, and particularly preferably 900,000 to 1,500,000.
 ポリイソブチレンの粘度平均分子量が上記した範囲に満たないと、後述する複層ガラス3または太陽電池パネル4の組付時に、液だれを生じる場合がある。 If the viscosity average molecular weight of the polyisobutylene is less than the above-mentioned range, dripping may occur when the multi-layer glass 3 or the solar cell panel 4 described later is assembled.
 一方、ポリイソブチレンの粘度平均分子量が上記した範囲を超えると、形状追従性が低下する場合がある。 On the other hand, when the viscosity average molecular weight of the polyisobutylene exceeds the above range, the shape followability may be deteriorated.
 ブチルゴムおよびポリイソブチレンの配合割合は、それらの質量基準で、例えば、9/1~1/6、好ましくは、4/1~1/3である。 The blending ratio of butyl rubber and polyisobutylene is, for example, 9/1 to 1/6, preferably 4/1 to 1/3, based on their mass.
 ゴム成分の配合割合は、ゴム成分および特定のポリオレフィンの総量100質量部に対して、例えば、40~90質量部、好ましくは、50~80質量部である。ゴム成分の配合割合が上記した範囲内にあれば、広い温度領域におけるゴム弾性を維持することにより、水蒸気バリア性が向上する利点がある。 The blending ratio of the rubber component is, for example, 40 to 90 parts by mass, preferably 50 to 80 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin. If the blending ratio of the rubber component is in the above range, there is an advantage that the water vapor barrier property is improved by maintaining rubber elasticity in a wide temperature range.
 特定のポリオレフィンは、炭素数2~3(2および/または3)のアルケンを重合させることにより得られるポリオレフィンであり、具体的には、ポリエチレン、ポリプロピレンまたはエチレン・プロピレン共重合体が挙げられる。特定のポリオレフィンを本発明のシーリング組成物に配合することにより、特定のポリオレフィンの軟化点の温度領域までは補強性を付与することができる。 The specific polyolefin is a polyolefin obtained by polymerizing an alkene having 2 to 3 (2 and / or 3) carbon atoms, and specifically includes polyethylene, polypropylene, or ethylene / propylene copolymer. By blending the specific polyolefin into the sealing composition of the present invention, it is possible to impart reinforcement to the temperature range of the softening point of the specific polyolefin.
 ポリエチレンとしては、例えば、線状低密度ポリエチレンなどの低密度ポリエチレン、例えば、中密度ポリエチレン、例えば、高密度ポリエチレンなどが挙げられる。 Examples of the polyethylene include low-density polyethylene such as linear low-density polyethylene, for example, medium-density polyethylene, for example, high-density polyethylene.
 ポリプロピレンとしては、例えば、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレンなどが挙げられる。 Examples of polypropylene include isotactic polypropylene and syndiotactic polypropylene.
 エチレン・プロピレン共重合体としては、例えば、エチレン・プロピレンランダム共重合体、エチレン・プロピレンブロック共重合体などが挙げられる。 Examples of the ethylene / propylene copolymer include an ethylene / propylene random copolymer and an ethylene / propylene block copolymer.
 また、特定のポリオレフィンは、例えば、結晶性ポリオレフィン(具体的には、結晶性ポリエチレンなど)を含んでいる。 Further, the specific polyolefin includes, for example, crystalline polyolefin (specifically, crystalline polyethylene and the like).
 また、特定のポリオレフィンの軟化点(環球法)は、例えば、100~150℃、好ましくは、110~140℃である。 Further, the softening point (ring and ball method) of the specific polyolefin is, for example, 100 to 150 ° C., preferably 110 to 140 ° C.
 特定のポリオレフィンとして、好ましくは、ポリエチレン、さらに好ましくは、結晶性ポリエチレンが挙げられる。 The specific polyolefin is preferably polyethylene, and more preferably crystalline polyethylene.
 これらの特定のポリオレフィンは、単独使用または2種以上併用することができる。 These specific polyolefins can be used alone or in combination of two or more.
 特定のポリオレフィンの配合割合は、ゴム成分および特定のポリオレフィンの総量100質量部に対して、例えば、10~60質量部、好ましくは、20~50質量部である。ポリオレフィンの配合割合が上記した範囲に満たないと、常温におけるリーリング材の補強性が十分でない場合がある。 The blending ratio of the specific polyolefin is, for example, 10 to 60 parts by mass, preferably 20 to 50 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin. If the blending ratio of the polyolefin is less than the above range, the reinforcing property of the reeling material at room temperature may not be sufficient.
 また、シーリング組成物には、例えば、粘着付与剤および/または充填剤を配合することができる。 Moreover, for example, a tackifier and / or a filler can be blended in the sealing composition.
 粘着付与剤は、シーリング組成物から形成されるシートの25℃および150℃における剥離接着力(後述)を向上させるために、シーリング組成物に含有される。粘着付与剤としては、例えば、石油系樹脂、例えば、C5-炭化水素系樹脂、フェノール系樹脂、ロジン系樹脂、テルペン系樹脂、クマロン系樹脂などの炭化水素系樹脂が挙げられる。粘着付与剤としては、好ましくは、炭化水素系樹脂、さらに好ましくは、クマロン系樹脂が挙げられる。 The tackifier is contained in the sealing composition in order to improve the peel adhesion (described later) at 25 ° C. and 150 ° C. of the sheet formed from the sealing composition. Examples of the tackifier include petroleum resins such as hydrocarbon resins such as C5-hydrocarbon resins, phenol resins, rosin resins, terpene resins, and coumarone resins. The tackifier is preferably a hydrocarbon resin, and more preferably a coumarone resin.
 クマロン系樹脂としては、例えば、クマロン樹脂、クマロン-インデン樹脂(クマロン-インデン-スチレン共重合体を含む。)などが挙げられる。好ましくは、クマロン-インデン樹脂が挙げられる。 Examples of coumarone resins include coumarone resins and coumarone-indene resins (including coumarone-indene-styrene copolymers). Preferably, coumarone-indene resin is used.
 クマロン系樹脂の軟化点は、例えば、90~140℃、好ましくは、100~130℃である。 The softening point of the coumarone-based resin is, for example, 90 to 140 ° C, preferably 100 to 130 ° C.
 なお、クマロン系樹脂の軟化点は、JIS K6911(1995年)に準拠して測定される荷重たわみ温度として算出される。 The softening point of the coumarone resin is calculated as a deflection temperature under load measured according to JIS K6911 (1995).
 これらの粘着付与剤は、単独使用または2種以上併用することができる。 These tackifiers can be used alone or in combination of two or more.
 粘着付与剤の配合割合は、ゴム成分および特定のポリオレフィンの総量100質量部に対して、例えば、30質量部を超え、好ましくは、35質量部以上、さらに好ましくは、40質量部以上、とりわけ好ましくは、45質量部以上であり、例えば、100質量部以下、好ましくは、80質量部以下、さらに好ましくは、60質量部以下でもある。 The blending ratio of the tackifier is, for example, more than 30 parts by weight, preferably 35 parts by weight or more, more preferably 40 parts by weight or more, particularly preferably 100 parts by weight of the total amount of the rubber component and the specific polyolefin. Is 45 parts by mass or more, for example, 100 parts by mass or less, preferably 80 parts by mass or less, and more preferably 60 parts by mass or less.
 粘着付与剤の配合割合が上記下限に満たないと、十分な水蒸気バリア性が得られない場合がある。 If the blending ratio of the tackifier is less than the above lower limit, sufficient water vapor barrier properties may not be obtained.
 一方、粘着付与剤の配合割合が、上記上限を超えると、シール材が脆くなる場合がある。 On the other hand, if the blending ratio of the tackifier exceeds the above upper limit, the sealing material may become brittle.
 充填剤は、シール材の補強性を向上させるための補強剤としてシーリング組成物に含有される。充填剤としては、例えば、顔料(例えば、無機顔料)などの無機充填剤が挙げられ、具体的には、炭酸カルシウム(例えば、重質炭酸カルシウムまたは軽質炭酸カルシウムなど)、タルク、酸化チタン、カーボンブラック、シリカ、酸化マグネシウムなどが挙げられる。充填剤としては、好ましくは、炭酸カルシウム、タルク、酸化チタン、カーボンブラック、さらに好ましくは、カーボンブラックが挙げられる。 The filler is contained in the sealing composition as a reinforcing agent for improving the reinforcing property of the sealing material. Examples of the filler include inorganic fillers such as pigments (for example, inorganic pigments). Specifically, calcium carbonate (for example, heavy calcium carbonate or light calcium carbonate), talc, titanium oxide, carbon Examples thereof include black, silica, and magnesium oxide. The filler is preferably calcium carbonate, talc, titanium oxide, carbon black, more preferably carbon black.
 充填剤は、単独使用または2種以上併用することができる。好ましくは、カーボンブラックの単独使用が挙げられる。 ∙ Fillers can be used alone or in combination of two or more. Preferably, carbon black is used alone.
 充填剤の平均粒子径は、例えば、1nm~1000μm、好ましくは、10nm~100μmである。 The average particle diameter of the filler is, for example, 1 nm to 1000 μm, preferably 10 nm to 100 μm.
 充填剤の配合割合は、ゴム成分および特定のポリオレフィンの総量100質量部に対して、例えば、0.1~100質量部、好ましくは、0.5~10質量部である。充填剤の配合割合が上記した範囲内にあれば、補強性を向上させることができる。 The compounding ratio of the filler is, for example, 0.1 to 100 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin. If the blending ratio of the filler is in the above range, the reinforcing property can be improved.
 また、シーリング組成物には、必要により、例えば、軟化剤、さらには、吸湿化合物(例えば、シリカゲル、アルミナ、ゼオライトなど)、酸化防止剤(ヒンダードフェノール系)、滑剤、老化防止剤、帯電防止剤、可塑剤、熱安定剤、シランカップリング剤(例えば、加水分解性シリル基含有化合物など)、発泡剤などの添加剤を適宜の割合で添加することができる。 In addition, the sealing composition may contain, for example, a softening agent, a hygroscopic compound (for example, silica gel, alumina, zeolite, etc.), an antioxidant (hindered phenol), a lubricant, an anti-aging agent, an antistatic agent. An additive such as an agent, a plasticizer, a heat stabilizer, a silane coupling agent (for example, a hydrolyzable silyl group-containing compound), and a foaming agent can be added at an appropriate ratio.
 軟化剤は、シール材の取り扱い性を向上させるために、必要によりシール材に含有される。軟化剤としては、例えば、低分子量ポリイソブチレン、液状ポリブテン、オイル類(例えば、プロセスオイルなど)、パラフィン類、ワックス類、アロマ類、アスファルト類、乾性油類、動植物油類などが挙げられる。軟化剤としては、好ましくは、低分子量ポリイソブチレンが挙げられる。 Softener is contained in the sealing material as necessary in order to improve the handleability of the sealing material. Examples of the softening agent include low molecular weight polyisobutylene, liquid polybutene, oils (eg, process oil), paraffins, waxes, aromas, asphalts, drying oils, animal and vegetable oils, and the like. The softening agent is preferably low molecular weight polyisobutylene.
 低分子量ポリイソブチレンの粘度平均分子量は、例えば、30万未満、好ましくは、1~25万、さらに好ましくは、3~6万である。 The viscosity average molecular weight of the low molecular weight polyisobutylene is, for example, less than 300,000, preferably 1 to 250,000, and more preferably 30,000 to 60,000.
 これらの軟化剤は、単独使用または2種以上併用することができる。 These softeners can be used alone or in combination of two or more.
 軟化剤の配合割合は、ゴム成分および特定のポリオレフィンの総量100質量部に対して、例えば、0.5~30質量部、好ましくは、1~25質量部である。軟化剤の配合割合が上記した範囲内であれば、シール材の取扱性を向上させることができる。 The blending ratio of the softener is, for example, 0.5 to 30 parts by mass, preferably 1 to 25 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the specific polyolefin. When the blending ratio of the softening agent is within the above range, the handleability of the sealing material can be improved.
 そして、本発明のシーリング組成物は、上記した各成分を上記した割合で配合して、加熱して混練して混練物として得ることができる。 The sealing composition of the present invention can be obtained as a kneaded product by blending the above-described components in the above proportions, heating and kneading.
 混練は、例えば、ニーダー、バンバリーミキサー、ミキシングロールなどのバッチ式混練機や、2軸混練機などの連続混練機などが用いられる。混練における加熱温度は、例えば、70~130℃、好ましくは、90~120℃である。 For kneading, for example, a batch kneader such as a kneader, a Banbury mixer, a mixing roll, or a continuous kneader such as a biaxial kneader is used. The heating temperature in the kneading is, for example, 70 to 130 ° C, preferably 90 to 120 ° C.
 このようにして得られたシーリング組成物は、適宜の形状に成形することにより、シール材を得ることができる。 The sealing composition thus obtained can be molded into an appropriate shape to obtain a sealing material.
 図1は、本発明のシーリング組成物からなるシール材の一実施形態の断面図を示し、図2は、90度剥離接着力試験において、試験片をガラス板に貼着する方法を説明する工程図を示す。 FIG. 1 shows a cross-sectional view of an embodiment of a sealing material comprising the sealing composition of the present invention, and FIG. 2 is a process for explaining a method for adhering a test piece to a glass plate in a 90-degree peel adhesion test. The figure is shown.
 次に、本発明のシーリング組成物からなるシール材について、図1を参照して説明する。 Next, a sealing material comprising the sealing composition of the present invention will be described with reference to FIG.
 上記により得られたシーリング組成物を、例えば、押出機、カレンダーロール、プレス機(熱プレス機)などの成形装置により、加熱して、例えば、シート形状に成形して、シートを得る。次いで、得られたシートを離型フィルム2の表面に積層する。好ましくは、成形装置として、押出機、カレンダーロールが用いられ、さらに好ましくは、カレンダーロールが用いられる。なお、シートは、テープ、および/または、フィルムを含んでいる。 The sealing composition obtained above is heated, for example, by a molding apparatus such as an extruder, a calender roll, or a press machine (heat press machine) to be molded into a sheet shape, for example, to obtain a sheet. Next, the obtained sheet is laminated on the surface of the release film 2. Preferably, an extruder and a calender roll are used as the molding device, and more preferably a calender roll is used. The sheet includes a tape and / or a film.
 離型フィルム2としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレート(PET)フィルムなどの合成樹脂フィルムなど、公知の離型フィルムが挙げられる。離型フィルム2の厚みは、例えば、1~1000μmである。離型フィルム2の表面には、例えば、離型処理を施すこともできる。 Examples of the release film 2 include known release films such as a synthetic resin film such as a polyethylene film, a polypropylene film, and a polyethylene terephthalate (PET) film. The thickness of the release film 2 is, for example, 1 to 1000 μm. For example, a release treatment may be performed on the surface of the release film 2.
 このようにして、シートとしてのシール材(第1シール材)1を得る。 In this way, a sealing material (first sealing material) 1 as a sheet is obtained.
 シール材1は、長手方向に延びる長尺状の広幅平帯状に形成される。 The sealing material 1 is formed in a long and wide flat strip shape extending in the longitudinal direction.
 シール材1の厚みは、図4(d)および図7(e)が参照されるように、中間層6および封止樹脂層9の寸法によって適宜選択され、例えば、0.3~2.0mm、好ましくは、0.4~1.0mmである。 The thickness of the sealing material 1 is appropriately selected depending on the dimensions of the intermediate layer 6 and the sealing resin layer 9, as shown in FIGS. 4D and 7E, and is, for example, 0.3 to 2.0 mm. The thickness is preferably 0.4 to 1.0 mm.
 また、シール材1の幅(長手方向に対する直交方向長さ)は、例えば、5~30mm、好ましくは、10~20mmである。 The width of the sealing material 1 (the length in the direction perpendicular to the longitudinal direction) is, for example, 5 to 30 mm, preferably 10 to 20 mm.
 なお、シール材1の表面(下面)には、図1に示すように、離型フィルム2を積層して、それらの積層体をロール状に巻回することもできる。 In addition, as shown in FIG. 1, the release film 2 can be laminated | stacked on the surface (lower surface) of the sealing material 1, and those laminated bodies can also be wound in roll shape.
 そして、シール材1を25℃でガラス板に貼着した後、ガラス板に対して90度で速度300mm/分で剥離したときの90度剥離接着力は、0.1N/10mm以上である。 And after sticking the sealing material 1 on a glass plate at 25 degreeC, 90 degree peeling adhesive force when peeling at a speed | rate of 300 mm / min at 90 degree | times with respect to a glass plate is 0.1 N / 10mm or more.
 上記した90度剥離接着力が上記下限に満たないと、常温における形状追従性が不十分となる。 If the above 90-degree peel adhesive strength is less than the above lower limit, shape followability at room temperature is insufficient.
 上記した90度剥離接着力は、次のようにして測定する。 The above 90 degree peel adhesion is measured as follows.
 まず、図2(a)に示すように、例えば、裏打ち材31を、シール材1の裏面(離型フィルム2が積層される面34に対する逆側面、図2(a)における上面。)33に積層して、裏打ち材31によりシール材1を裏打ちする。 First, as shown in FIG. 2A, for example, the backing material 31 is formed on the back surface 33 of the sealing material 1 (the opposite side surface to the surface 34 on which the release film 2 is laminated, the upper surface in FIG. 2A). The sealing material 1 is backed by the backing material 31 after being laminated.
 裏打ち材31としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、PETフィルムなどの樹脂フィルム、例えば、銅箔などの金属箔などが挙げられる。裏打ち材31の厚みは、例えば、1~1000μmである。 Examples of the backing material 31 include resin films such as polyethylene film, polypropylene film, and PET film, and metal foil such as copper foil. The thickness of the backing material 31 is, for example, 1 to 1000 μm.
 次いで、シール材1を、10mm幅に切り出して短冊状の試験片30を作製する。 Next, the sealing material 1 is cut out to a width of 10 mm to produce a strip-shaped test piece 30.
 次いで、図2(a)の仮想線で示すように、離型フィルム2を試験片30から引き剥がし、その後、図2(b)に示すように、25℃において、離型フィルム2が引き剥がされた表面(裏打ち材31が積層される裏面33に対する逆側面、図2(b)における下面。)34が、ガラス板32の表面35に接触するように、試験片30とガラス板32とを重ね合わせる。その後、25℃で、例えば、所定の重さを負荷することにより、試験片30をガラス板32に貼着させる。 Next, as shown by the phantom line in FIG. 2A, the release film 2 is peeled off from the test piece 30, and then the release film 2 is peeled off at 25 ° C. as shown in FIG. 2B. The test piece 30 and the glass plate 32 are placed so that the surface 34 (the reverse side with respect to the back surface 33 on which the backing material 31 is laminated, the lower surface in FIG. 2B) is in contact with the surface 35 of the glass plate 32. Overlapping. Thereafter, the test piece 30 is adhered to the glass plate 32 by loading a predetermined weight at 25 ° C., for example.
 なお、ガラス板32の表面35の表面粗さRz(JIS B0601-1994に準拠する十点平均粗さ)は、例えば、0.01~10μmの範囲である。 The surface roughness Rz (ten-point average roughness according to JIS B0601-1994) of the surface 35 of the glass plate 32 is, for example, in the range of 0.01 to 10 μm.
 次いで、試験片30およびガラス板32を、25℃で、例えば、10~60分間放置した後、引張試験機にセットする。その後、試験片30を、25℃で、ガラス板32に対して90度の角度で、速度300mm/分で、ガラス板32から剥離したときの剥離接着力を測定する。 Next, the test piece 30 and the glass plate 32 are left at 25 ° C., for example, for 10 to 60 minutes, and then set in a tensile tester. Then, the peeling adhesive force when the test piece 30 peels from the glass plate 32 at a speed of 300 mm / min at an angle of 90 degrees with respect to the glass plate 32 at 25 ° C. is measured.
 上記した90度剥離接着力は、好ましくは、0.15N/10mm以上、さらに好ましくは、0.25N/10mm以上、とりわけ好ましくは、0.40N/10mm以上であり、また、2.0N/10mm未満でもある。 The 90-degree peel adhesive strength described above is preferably 0.15 N / 10 mm or more, more preferably 0.25 N / 10 mm or more, particularly preferably 0.40 N / 10 mm or more, and 2.0 N / 10 mm. Is also less.
 一方、シール材1を150℃でガラス32板に貼着した後、ガラス板32に対して90度で速度300mm/分で剥離したときの剥離接着力は、2N/10mm以上である。 On the other hand, after adhering the sealing material 1 to the glass 32 plate at 150 ° C., the peel adhesive strength when peeled at 90 ° from the glass plate 32 at a speed of 300 mm / min is 2N / 10 mm or more.
 上記した90度剥離接着力が上記下限に満たないと、ガラス板32に対する接着力が不十分となり、水蒸気バリア性が不十分となる。 If the above 90-degree peel adhesion is less than the above lower limit, the adhesion to the glass plate 32 is insufficient, and the water vapor barrier property is insufficient.
 上記した90度剥離接着力は、次のようにして測定する。 The above 90 degree peel adhesion is measured as follows.
 すなわち、図2(a)および図2(b)が参照されるように、試験片30を25℃でガラス板32に貼着し、貼着後に加熱工程および冷却工程を順次実施する以外は、25℃でガラス板32に貼着した後、ガラス板32に対して90度で速度300mm/分で剥離したときの90度剥離接着力と同様に処理して測定する。 That is, as shown in FIG. 2 (a) and FIG. 2 (b), the test piece 30 is attached to the glass plate 32 at 25 ° C., and the heating step and the cooling step are sequentially performed after the attachment, After being attached to the glass plate 32 at 25 ° C., the treatment is performed in the same manner as the 90 ° peel adhesive strength when peeled at 90 ° from the glass plate 32 at a speed of 300 mm / min.
 加熱工程では、ガラス板32に貼着した試験片30を、例えば、真空熱プレス機により加熱する。具体的には、真空雰囲気下、例えば、圧力0.05~0.5MPa、1~60分間、150℃で熱プレスすることにより、試験片30をガラス板32に熱圧着する。 In the heating step, the test piece 30 adhered to the glass plate 32 is heated by, for example, a vacuum hot press. Specifically, the test piece 30 is thermocompression-bonded to the glass plate 32 by hot pressing at 150 ° C. in a vacuum atmosphere, for example, at a pressure of 0.05 to 0.5 MPa for 1 to 60 minutes.
 冷却工程では、熱圧着後の試験片30を、例えば、10分間以上、48時間以下、放冷する。 In the cooling step, the test piece 30 after thermocompression bonding is allowed to cool, for example, for 10 minutes to 48 hours.
 上記した90度剥離接着力は、好ましくは、3N/10mm以上、さらに好ましくは、4N/10mm以上、とりわけ好ましくは、8N/10mm以上、もっとも好ましくは、15N/10mm以上であり、また、100N/10mm以下でもある。 The 90-degree peel adhesion described above is preferably 3 N / 10 mm or more, more preferably 4 N / 10 mm or more, particularly preferably 8 N / 10 mm or more, and most preferably 15 N / 10 mm or more, and 100 N / It is also 10 mm or less.
 そして、このようにして得られるシール材1は、各種産業製品の封止に用いられる。 And the sealing material 1 obtained in this way is used for sealing of various industrial products.
 好ましくは、複層ガラスおよび太陽電池パネルの封止に用いられる。 Preferably, it is used for sealing multi-layer glass and solar cell panels.
 図3は、本発明の複層ガラスの一実施形態(シール材が4枚からなる態様)、図4は、図3(a)に示す複層ガラスの製造方法を説明する工程図を示す。 FIG. 3 shows an embodiment of the multilayer glass of the present invention (an embodiment comprising four sealing materials), and FIG. 4 shows a process chart for explaining the method for producing the multilayer glass shown in FIG.
 なお、図3(b)において、上側ガラス層10は、シール材1の相対配置を明確に示すため、省略されている。 In FIG. 3B, the upper glass layer 10 is omitted to clearly show the relative arrangement of the sealing material 1.
 次に、上記したシール材によって周端部が封止される複層ガラスについて、図3を参照して説明する。 Next, the multi-layer glass whose peripheral end portion is sealed with the sealing material described above will be described with reference to FIG.
 図3において、この複層ガラス3は、厚み方向に互いに間隔を隔てて配置される2枚のガラス層としての、上側ガラス層10および下側ガラス層11と、それらの間に設けられ、上側ガラス層10および下側ガラス層11の周端部5の内側に配置される中間層6と、上側ガラス層10および下側ガラス層11の周端部5の間に充填されるシール材1とを備えている。 In FIG. 3, this multi-layer glass 3 is provided between the upper glass layer 10 and the lower glass layer 11 as two glass layers arranged at intervals in the thickness direction, An intermediate layer 6 disposed inside the peripheral end portion 5 of the glass layer 10 and the lower glass layer 11, and a sealing material 1 filled between the peripheral end portions 5 of the upper glass layer 10 and the lower glass layer 11, It has.
 上側ガラス層10は、複層ガラス3の最表面(上面)側に設けられ、平面視略矩形状に形成されている。上側ガラス層10の厚みは、例えば、0.5~3.2mmである。 The upper glass layer 10 is provided on the outermost surface (upper surface) side of the multilayer glass 3 and is formed in a substantially rectangular shape in plan view. The thickness of the upper glass layer 10 is, for example, 0.5 to 3.2 mm.
 下側ガラス層11は、複層ガラス3の最裏面(下面)側に設けられ、平面視において、上側ガラス層10と同じ大きさの略矩形状に形成されている。下側ガラス層11の厚みは、例えば、0.5~3.2mmである。 The lower glass layer 11 is provided on the outermost back surface (lower surface) side of the multilayer glass 3, and is formed in a substantially rectangular shape having the same size as the upper glass layer 10 in a plan view. The thickness of the lower glass layer 11 is, for example, 0.5 to 3.2 mm.
 中間層6は、平面視において、上側ガラス層10および下側ガラス層11より小さい略矩形状に形成されている。 The intermediate layer 6 is formed in a substantially rectangular shape smaller than the upper glass layer 10 and the lower glass layer 11 in plan view.
 中間層6を形成する材料は、封止樹脂層9(後述)を形成する材料であり、例えば、特に限定されず、具体的には、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリフッ化ビニリデンなどの樹脂が挙げられる。中間層6の厚みは、例えば、0.3~1.0mmである。 The material for forming the intermediate layer 6 is a material for forming the sealing resin layer 9 (described later). For example, the material is not particularly limited, and specifically, an ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral ( PVB) and polyvinylidene fluoride resins. The thickness of the intermediate layer 6 is, for example, 0.3 to 1.0 mm.
 シール材1は、中間層6を封止している。また、シール材1は、図3(b)に示すように、縦方向に長く延びる平面視略矩形状の2枚の縦シール材13と、各縦シール材13の縦方向両端部に接触し、横方向に長く延びる平面視略矩形状の2枚の横シール材14とを備えている。 The sealing material 1 seals the intermediate layer 6. Further, as shown in FIG. 3 (b), the sealing material 1 comes into contact with two vertical sealing materials 13 having a substantially rectangular shape in plan view extending long in the vertical direction, and both longitudinal ends of each vertical sealing material 13. And two horizontal sealing members 14 having a substantially rectangular shape in plan view extending long in the horizontal direction.
 縦シール材13は、上側ガラス層10および下側ガラス層11の横方向両端部の厚み方向間に充填されている。また、横シール材14は、上側ガラス層10および下側ガラス層11の縦方向両端部の厚み方向間に充填されている。 The vertical sealing material 13 is filled between the thickness directions of both lateral ends of the upper glass layer 10 and the lower glass layer 11. Moreover, the horizontal sealing material 14 is filled between the thickness directions of both longitudinal ends of the upper glass layer 10 and the lower glass layer 11.
 次に、上記した複層ガラス3を製造する方法について、図4を参照して説明する。 Next, a method for manufacturing the multilayer glass 3 will be described with reference to FIG.
 この方法では、図4(a)に示すように、まず、上側ガラス層10を用意する。 In this method, as shown in FIG. 4A, first, an upper glass layer 10 is prepared.
 次いで、図4(b)に示すように、中間層6としての封止樹脂層9を上側ガラス層10の下面に配置する。 Next, as shown in FIG. 4B, the sealing resin layer 9 as the intermediate layer 6 is disposed on the lower surface of the upper glass layer 10.
 封止樹脂層9は、上側ガラス層10の周端部が露出するように、配置する。 The sealing resin layer 9 is disposed so that the peripheral end of the upper glass layer 10 is exposed.
 封止樹脂層9の厚みT1は、例えば、0.3~2.0mm、好ましくは、0.4~1.0mmに設定されている。 The thickness T1 of the sealing resin layer 9 is set to, for example, 0.3 to 2.0 mm, preferably 0.4 to 1.0 mm.
 次いで、図4(c)に示すように、上記した図3(b)に示す縦シール材13および横シール材14を備えるシール材1を、上記した配置で貼着(仮固定)する。シール材1は、必要により、溶融させながら配置(熱融着)する。 Next, as shown in FIG. 4C, the sealing material 1 including the vertical sealing material 13 and the horizontal sealing material 14 shown in FIG. 3B is attached (temporarily fixed) in the above-described arrangement. If necessary, the sealing material 1 is disposed (heat-sealed) while being melted.
 シール材1の厚みT2は、上記した封止樹脂層9(圧着前の封止樹脂層9)の厚みT1に対して、例えば、厚く、または、同一の厚みに設定され、具体的には、100~200%、好ましくは、105~120%である。より具体的には、シール材1の厚みT2は、例えば、0.3~2.0mm、好ましくは、0.4~1.0mmである。 The thickness T2 of the sealing material 1 is set to be, for example, thick or the same thickness as the thickness T1 of the sealing resin layer 9 (sealing resin layer 9 before pressure bonding), specifically, 100 to 200%, preferably 105 to 120%. More specifically, the thickness T2 of the sealing material 1 is, for example, 0.3 to 2.0 mm, preferably 0.4 to 1.0 mm.
 シール材1の厚みT2が上記した範囲を超えると、下側ガラス層11との貼り合わせ時の加工性が低下したり、封止樹脂層9から発生するガス(例えば、EVAから発生する酢酸ガス)および/または空気が抜けずに、気泡が封止樹脂層9に残存する場合がある。 When the thickness T2 of the sealing material 1 exceeds the above range, workability at the time of bonding to the lower glass layer 11 is reduced, or gas generated from the sealing resin layer 9 (for example, acetic acid gas generated from EVA) ) And / or air may not escape and bubbles may remain in the sealing resin layer 9.
 一方、シール材1の厚みが上記した範囲に満たないと、複層ガラス3の周端部5のシール性を十分に確保することができない場合がある。 On the other hand, if the thickness of the sealing material 1 is less than the above range, the sealing performance of the peripheral end portion 5 of the multilayer glass 3 may not be sufficiently secured.
 その後、この方法では、図4(d)に示すように、下側ガラス層11を封止樹脂層9およびシール材1に貼着する。 Thereafter, in this method, the lower glass layer 11 is adhered to the sealing resin layer 9 and the sealing material 1 as shown in FIG.
 下側ガラス層11を封止樹脂層9およびシール材1に貼着するには、下側ガラス層11をシール材1の下面に接触させて、上方に向けて、下側ガラス層11を圧着する。圧着としては、例えば、必要により、熱圧着などが挙げられる。 In order to adhere the lower glass layer 11 to the sealing resin layer 9 and the sealing material 1, the lower glass layer 11 is brought into contact with the lower surface of the sealing material 1, and the lower glass layer 11 is crimped upward. To do. Examples of the pressure bonding include thermocompression bonding as necessary.
 圧着の条件は、常温または加熱雰囲気下で、圧力が、例えば、0.05~0.5MPa、好ましくは、0.05~0.2MPaであり、圧着時間が、例えば、1~60分間、好ましくは、10~30分間である。 The pressure bonding conditions are normal temperature or a heated atmosphere, and the pressure is, for example, 0.05 to 0.5 MPa, preferably 0.05 to 0.2 MPa, and the pressure bonding time is preferably 1 to 60 minutes, for example. Is 10 to 30 minutes.
 熱圧着の場合は、温度が、例えば、100~180℃、好ましくは、110~160℃である。 In the case of thermocompression bonding, the temperature is, for example, 100 to 180 ° C., preferably 110 to 160 ° C.
 圧着により、シール材1が圧縮され、シール材1の厚みT2が封止樹脂層9の厚みT1より厚い場合には、圧着後のシール材1の厚みT3と封止樹脂層9の厚みT1とが略同一となる。 When the sealing material 1 is compressed by pressure bonding and the thickness T2 of the sealing material 1 is thicker than the thickness T1 of the sealing resin layer 9, the thickness T3 of the sealing material 1 after pressure bonding and the thickness T1 of the sealing resin layer 9 Are substantially the same.
 これにより、周端部5に、シール材1が充填された複層ガラス3を得ることができる。 Thereby, the multi-layer glass 3 in which the peripheral end portion 5 is filled with the sealing material 1 can be obtained.
 そして、上記したシール材1は、常温(例えば、20~30℃)における形状追従性に優れているので、常温で、複層ガラス3に簡易かつ確実に貼着することができる。 And since the above-mentioned sealing material 1 is excellent in shape followability at normal temperature (for example, 20 to 30 ° C.), it can be easily and reliably attached to the multilayer glass 3 at normal temperature.
 また、このシール材1は、高温(例えば、100~160℃)で加熱した後の密着性に優れているため、シール材1を複層ガラス3に貼着した後、高温で加熱することにより、それらに優れた水蒸気バリア性を付与することができる。 Further, since the sealing material 1 is excellent in adhesion after being heated at a high temperature (for example, 100 to 160 ° C.), the sealing material 1 is adhered to the multi-layer glass 3 and then heated at a high temperature. , They can be imparted with an excellent water vapor barrier property.
 そのため、複層ガラス3の性能の低下を有効に防止して、優れた信頼性を付与することができる。 Therefore, it is possible to effectively prevent the performance of the double-glazed glass 3 from being deteriorated and to impart excellent reliability.
 具体的には、後述する実施例により測定されるシール材1の水蒸気バリア性は、例えば、2.0%以下、好ましくは、1.5%以下、さらに好ましくは、1.0%以下、とりわけ好ましくは、0.5%以下、もっとも好ましくは、0.3%であり、また、0%以上でもある。 Specifically, the water vapor barrier property of the sealing material 1 measured by the examples described later is, for example, 2.0% or less, preferably 1.5% or less, more preferably 1.0% or less, Preferably, it is 0.5% or less, most preferably 0.3%, and it is also 0% or more.
 なお、上記した説明では、中間層6を樹脂からなる樹脂層(封止樹脂層9)として形成しているが、例えば、空気または不活性気体(例えば、窒素など)からなる空気層として形成することができ、さらには、真空状態(あるいは減圧状態)とした真空層として形成することもできる。 In the above description, the intermediate layer 6 is formed as a resin layer (sealing resin layer 9) made of a resin. However, for example, it is formed as an air layer made of air or an inert gas (for example, nitrogen). Further, it can be formed as a vacuum layer in a vacuum state (or reduced pressure state).
 図5は、太陽電池モジュール(シール材が1枚からなる態様)の平面図を示す。 FIG. 5 shows a plan view of a solar cell module (a mode in which a single sealing material is formed).
 上記した説明では、シール材1を、4枚の平面視略矩形状のシール材(2枚の縦シール材13および2枚の横シール材14)から形成しているが、例えば、図5に示すように、1枚のシール材から形成することもできる。 In the above description, the sealing material 1 is formed of four sealing materials having a substantially rectangular shape in plan view (two vertical sealing materials 13 and two horizontal sealing materials 14). For example, FIG. As shown, it can also be formed from a single sealing material.
 シール材1は、例えば、図示しないが、上記した成形装置により、平面視略矩形状に形成し、その後、中央(縦方向中央および横方向中央)を打ち抜き加工することにより得ることができる。 The sealing material 1 can be obtained, for example, by forming it into a substantially rectangular shape in plan view using the above-described molding apparatus, and then punching the center (vertical center and lateral center), although not shown.
 図6は、本発明の太陽電池パネルの一実施形態、図7は、図6(a)に示す太陽電池パネルの製造方法を説明する工程図、図8は、図6に示す太陽電池パネルを備えるフレームレス太陽電池モジュール(第2シール材が設けられたフレームレス太陽電池モジュール)の一部拡大断面図、図9は、図6に示す太陽電池パネルを備える太陽電池モジュール(フレームが設けられた太陽電池モジュール)の説明図を示す。 FIG. 6 is an embodiment of the solar cell panel of the present invention, FIG. 7 is a process diagram for explaining a method for producing the solar cell panel shown in FIG. 6A, and FIG. 8 is a diagram of the solar cell panel shown in FIG. FIG. 9 is a partially enlarged cross-sectional view of a frameless solar cell module provided (a frameless solar cell module provided with a second sealant), and FIG. 9 is a solar cell module provided with a solar cell panel shown in FIG. Explanatory drawing of a solar cell module) is shown.
 次に、上記したシール材によって周端部が封止される太陽電池パネルについて、図6および図7を参照して説明する。 Next, a solar cell panel whose peripheral end portion is sealed with the above-described sealing material will be described with reference to FIG. 6 and FIG.
 なお、以降の各図面において、上記した各部に対応する部材については、同一の参照符号を付し、その詳細な説明を省略する。 In the following drawings, members corresponding to the above-described parts are assigned the same reference numerals, and detailed descriptions thereof are omitted.
 図6において、この太陽電池パネル4は、ガラス層としての上側ガラス層10と、上側ガラス層10と下方に間隔を隔てて配置される支持層としての下側ガラス層11と、上側ガラス層10および下側ガラス層11の間に設けられ、上側ガラス層10および下側ガラス層11の周端部5の内側に配置される太陽電池素子8およびそれを封止する封止樹脂層9と、上側ガラス層10および下側ガラス層11の周端部5の間に充填されるシール材1とを備えている。 In FIG. 6, the solar cell panel 4 includes an upper glass layer 10 as a glass layer, a lower glass layer 11 as a support layer disposed at a distance from the upper glass layer 10, and an upper glass layer 10. And the solar cell element 8 disposed between the upper glass layer 10 and the peripheral end portion 5 of the lower glass layer 11 and the sealing resin layer 9 that seals the solar cell element 8 provided between the lower glass layer 11 and the lower glass layer 11; And a sealing material 1 filled between the peripheral end portions 5 of the upper glass layer 10 and the lower glass layer 11.
 太陽電池素子8としては、例えば、結晶シリコン系やアモルファスシリコン系などの公知の太陽電池素子が挙げられる。太陽電池素子8は、略矩形平板形状をなし、平面視において、上側ガラス層10および下側ガラス層11の中央部に配置されている。 Examples of the solar cell element 8 include known solar cell elements such as crystalline silicon type and amorphous silicon type. The solar cell element 8 has a substantially rectangular flat plate shape, and is disposed at the center of the upper glass layer 10 and the lower glass layer 11 in plan view.
 また、太陽電池素子8は、上側ガラス層10の下面に積層されている。太陽電池素子8の厚みは、封止樹脂層9の厚みより薄く、具体的には、例えば、0.01~500μmである。 Moreover, the solar cell element 8 is laminated on the lower surface of the upper glass layer 10. The thickness of the solar cell element 8 is smaller than the thickness of the sealing resin layer 9, specifically, for example, 0.01 to 500 μm.
 封止樹脂層9は、太陽電池素子8を封止している。 Sealing resin layer 9 seals solar cell element 8.
 シール材1は、封止樹脂層9を封止している。 The sealing material 1 seals the sealing resin layer 9.
 次に、上記した太陽電池パネル4を製造する方法について、図7を参照して説明する。 Next, a method for manufacturing the solar cell panel 4 will be described with reference to FIG.
 この方法では、まず、図7(a)および図7(b)に示すように、太陽電池素子8を上側ガラス層10の下面に配置する。 In this method, first, as shown in FIGS. 7A and 7B, the solar cell element 8 is disposed on the lower surface of the upper glass layer 10.
 次いで、図7(c)に示すように、封止樹脂層9を配置する。 Next, as shown in FIG. 7C, the sealing resin layer 9 is disposed.
 封止樹脂層9は、太陽電池素子8を被覆し、かつ、上側ガラス層10の周端部が露出するように、配置する。 The sealing resin layer 9 is disposed so as to cover the solar cell element 8 and to expose the peripheral end portion of the upper glass layer 10.
 次いで、図7(d)に示すように、シール材1を貼着(仮固定)する。 Next, as shown in FIG. 7D, the sealing material 1 is attached (temporarily fixed).
 その後、この方法では、図7(e)に示すように、下側ガラス層11を封止樹脂層9およびシール材1に貼着する。 Thereafter, in this method, the lower glass layer 11 is adhered to the sealing resin layer 9 and the sealing material 1 as shown in FIG.
 下側ガラス層11を封止樹脂層9およびシール材1に貼着するには、下側ガラス層11をシール材1の下面に接触させて、上方に向けて、下側ガラス層11を圧着する。圧着では、例えば、真空(減圧)下で、圧着する。 In order to adhere the lower glass layer 11 to the sealing resin layer 9 and the sealing material 1, the lower glass layer 11 is brought into contact with the lower surface of the sealing material 1, and the lower glass layer 11 is crimped upward. To do. In the pressure bonding, for example, pressure bonding is performed under vacuum (reduced pressure).
 これにより、周端部5に、シール材1が充填された太陽電池パネル4を得ることができる。 Thereby, the solar cell panel 4 in which the peripheral edge portion 5 is filled with the sealing material 1 can be obtained.
 この太陽電池パネル4では、上記した複層ガラス3の作用効果に加えて、太陽電池素子8の劣化に起因する発電効率の低下を有効に防止することができる。 This solar cell panel 4 can effectively prevent a decrease in power generation efficiency due to degradation of the solar cell element 8 in addition to the above-described effects of the multilayer glass 3.
 なお、上記した説明では、本発明の支持層を、下側ガラス層11として説明しているが、例えば、透湿性樹脂などの樹脂からなる下側樹脂層(バックシート)11として形成することもできる。 In the above description, the support layer of the present invention is described as the lower glass layer 11. However, for example, it may be formed as the lower resin layer (back sheet) 11 made of a resin such as a moisture permeable resin. it can.
 また、上記した図6の太陽電池パネル4は、フレームを用いないフレームレス太陽電池モジュール12として用いることができ、あるいは、図9に示すように、フレームを用いる太陽電池モジュール7として用いることもできる。 6 can be used as a frameless solar cell module 12 that does not use a frame, or can be used as a solar cell module 7 that uses a frame, as shown in FIG. .
 また、図8に示すように、フレームレス太陽電池モジュール12は、太陽電池パネル4の周端部5に公知のシール材(第2シール材)15が設けられたフレームレス太陽電池モジュール12として用いることもできる。 Further, as shown in FIG. 8, the frameless solar cell module 12 is used as a frameless solar cell module 12 in which a known sealing material (second sealing material) 15 is provided on the peripheral end portion 5 of the solar cell panel 4. You can also.
 図8において、第2シール材15は、太陽電池パネル4の周端部5において、太陽電池パネル4の内側に向かって開く断面略コ字形状に形成されており、上側ガラス層10の周側面および上面と、第1シール材1の周側面と、下側ガラス層11の周側面および下面とに、連続して形成されている。 In FIG. 8, the second sealing material 15 is formed in a substantially U-shaped cross section that opens toward the inside of the solar cell panel 4 at the peripheral end 5 of the solar cell panel 4, and the peripheral side surface of the upper glass layer 10 And the upper surface, the peripheral side surface of the first sealing material 1, and the peripheral side surface and the lower surface of the lower glass layer 11.
 図9において、この太陽電池モジュール7は、太陽電池パネル4と、太陽電池パネル4の周端部5に設けられるフレーム16と、それらの間に介在される第2シール材15とを備えている。 In FIG. 9, the solar cell module 7 includes a solar cell panel 4, a frame 16 provided at the peripheral end 5 of the solar cell panel 4, and a second sealing material 15 interposed therebetween. .
 フレーム16は、太陽電池パネル4の各辺に沿って、それぞれ設けられる。フレーム16は、太陽電池パネル4に向かって内側に開く断面略コ字形状に形成されている。フレーム16は、例えば、金属材料(アルミニウムなど)や樹脂材料(アクリル樹脂など)から形成され、好ましくは、金属材料から形成されている。 The frame 16 is provided along each side of the solar cell panel 4. The frame 16 is formed in a substantially U-shaped cross section that opens inward toward the solar cell panel 4. The frame 16 is formed of, for example, a metal material (such as aluminum) or a resin material (such as acrylic resin), and is preferably formed of a metal material.
 フレーム16は、図9(b)に示すように、各辺に沿う長手方向両端部が互いに接合されて4つの角を形成し、平面視において略矩形枠状となるように組み付けられる。 As shown in FIG. 9B, the frame 16 is assembled so that both ends in the longitudinal direction along each side are joined together to form four corners and form a substantially rectangular frame shape in plan view.
 以下に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
  実施例1~3および比較例1
 表1に記載される各成分を、表1の配合処方に従って、ニーダー(DS1-5GHB-E型、1Lニーダー、6インチオープンロール付き、モリヤマ社製)に一括投入して、120℃で混練し、シーリング組成物を混練物として調製した。
Examples 1 to 3 and Comparative Example 1
According to the formulation of Table 1, the ingredients listed in Table 1 are all added to a kneader (DS1-5GHB-E type, 1L kneader, with 6-inch open roll, manufactured by Moriyama Co., Ltd.) and kneaded at 120 ° C. The sealing composition was prepared as a kneaded product.
 次いで、得られた混練物を、カレンダーロール(カレンダーロール4L-8a、日立製作所社製)で、厚み0.5mmおよび厚み1.0mmにそれぞれ圧延成形することにより、シーリング組成物からなるシール材を得た。なお、カレンダーロールの圧延条件は、ロール温度を30~90℃に調製し、上流側ロールのロール速度(R)に対する、それの搬送方向下流側に配置される下流側ロール(R’)の割合(R’/R)を1.1に調整した。 Next, the obtained kneaded product is rolled and formed with a calender roll (calendar roll 4L-8a, manufactured by Hitachi, Ltd.) to a thickness of 0.5 mm and a thickness of 1.0 mm, respectively, so that a sealing material made of a sealing composition is obtained. Obtained. The rolling conditions of the calender roll are as follows: the roll temperature is adjusted to 30 to 90 ° C., and the ratio of the downstream roll (R ′) arranged downstream in the transport direction with respect to the roll speed (R) of the upstream roll (R ′ / R) was adjusted to 1.1.
 その後、シール材の片面に離型フィルムを積層して、ロール状に巻回した(図1参照)。その後、所定の幅となるように幅方向両端部を切断(幅加工)することにより、実施例1~3および比較例1のシール材をそれぞれ得た。 Thereafter, a release film was laminated on one side of the sealing material and wound into a roll (see FIG. 1). Thereafter, both end portions in the width direction were cut (width processing) so as to have a predetermined width, thereby obtaining the sealing materials of Examples 1 to 3 and Comparative Example 1, respectively.
  比較例2
 アクリルフォーム層と、アクリルフォーム層の両面(表面および裏面)に積層されたアクリル系接着剤層と、一方のアクリル系粘着剤層の表面に積層された離型フィルムとを備える両面粘着テープ(商品名「ハイパージョイントH9008」、日東電工社製、厚み0.8mm)を、比較例2のシール材として用意した。
Comparative Example 2
Double-sided pressure-sensitive adhesive tape comprising an acrylic foam layer, an acrylic adhesive layer laminated on both surfaces (front and back) of the acrylic foam layer, and a release film laminated on the surface of one acrylic pressure-sensitive adhesive layer (product) The name “Hyper Joint H9008” (manufactured by Nitto Denko Corporation, thickness 0.8 mm) was prepared as a sealing material of Comparative Example 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1の各成分の詳細を以下に記載する。
JSR BUTYL ♯065:ブチルゴム、不飽和度0.8モル%、ムーニー粘度32(ML1+8、125℃)、JSR社製
Oppanol B-100EP:高分子量ポリイソブチレン、粘度平均分子量110万、BASF社製
DFD-2005:結晶性ポリエチレン、日本ユニカー社製
エスクロンV-120:クマロン-インデン-スチレン共重合体、軟化点(荷重たわみ温度)120℃、日塗化学社製
シースト3H:カーボンブラック、平均粒子径27nm、東海カーボン社製
テトラックス4T:低分子量ポリイソブチレン、粘度平均分子量4万、JX日鉱日石エネルギー社製
テトラックス5T:低分子量ポリイソブチレン、粘度平均分子量5万、JX日鉱日石エネルギー社製
 (評価)
 各実施例および各比較例で得られたシール材について、(1)25℃で貼着後の90度剥離接着力、(2)150℃で貼着後の90度剥離接着力、および、(3)水蒸気バリア性について評価した。
In addition, the detail of each component of Table 1 is described below.
JSR BUTYL # 065: Butyl rubber, degree of unsaturation 0.8 mol%, Mooney viscosity 32 (ML 1 + 8 , 125 ° C.), JSR Opanol B-100EP: high molecular weight polyisobutylene, viscosity average molecular weight 1.1 million, BASF DFD -2005: Crystalline polyethylene, Nihon Unicar Co., Ltd. Escron V-120: Coumarone-indene-styrene copolymer, softening point (deflection temperature under load) 120 ° C, Nikko Chemical's seast 3H: Carbon black, average particle size 27 nm Tetrax 4T manufactured by Tokai Carbon Co., Ltd .: Low molecular weight polyisobutylene, viscosity average molecular weight 40,000, JX Nippon Mining & Energy Corporation Tetrax 5T: Low molecular weight polyisobutylene, viscosity average molecular weight 50,000, manufactured by JX Nippon Mining & Energy Corporation ( Evaluation)
About the sealing material obtained by each Example and each comparative example, (1) 90 degree | times peeling adhesive force after sticking at 25 degreeC, (2) 90 degree peeling adhesive force after sticking at 150 degreeC, and ( 3) The water vapor barrier property was evaluated.
 各評価の詳細を以下に記載する。
(1)25℃で貼着後の90度剥離接着力試験
 実施例1~3および比較例2の厚み0.5mmのシール材について、25℃で貼着後の90度剥離接着力試験を実施した。
Details of each evaluation are described below.
(1) 90-degree peel adhesion test after pasting at 25 ° C. 90-degree peel adhesion test after pasting at 25 ° C. for the sealing materials of Examples 1 to 3 and Comparative Example 2 having a thickness of 0.5 mm did.
 すなわち、まず、図2(a)に示すように、厚み38μmのPETフィルムからなる裏打ち材(表面が剥離処理されていない)31を、シール材1の裏面33に積層して、裏打ち材31によりシール材1を裏打ちした。 That is, first, as shown in FIG. 2 (a), a backing material 31 (surface is not peeled) 31 made of a PET film having a thickness of 38 μm is laminated on the back surface 33 of the sealing material 1, and the backing material 31 Sealing material 1 was lined.
 次いで、シール材1を10mm幅に切り出し、短冊状の試験片30を作製した。 Next, the sealing material 1 was cut out to a width of 10 mm to produce a strip-shaped test piece 30.
 次いで、図2(a)の仮想線で示すように、離型フィルム2を試験片30から引き剥がし、その後、図2(b)に示すように、25℃において、シール材1の表面34が、厚み3.2mmの白板未強化ガラス(AGC社製)からなるガラス板32の表面35(表面粗さRz:0.06μm)に接触するように、試験片30とガラス板32とを重ね合わせた。 Next, as shown by the phantom lines in FIG. 2A, the release film 2 is peeled off from the test piece 30, and then, as shown in FIG. The test piece 30 and the glass plate 32 are superposed so as to contact the surface 35 (surface roughness Rz: 0.06 μm) of the glass plate 32 made of 3.2 mm thick white plate unreinforced glass (manufactured by AGC). It was.
 その後、25℃で、その上を2Kgのローラーで1往復することにより、試験片30をガラス板32に貼着させた。 Thereafter, the test piece 30 was adhered to the glass plate 32 by reciprocating once with a 2 kg roller at 25 ° C.
 次いで、試験片30およびガラス板32を、25℃で30分放置した後、引張試験機に配置した。次いで、試験片30を、ガラス板32に対して90度の角度で、速度300mm/分で、試験片30を剥離したときの剥離接着力を測定した。 Next, the test piece 30 and the glass plate 32 were left at 25 ° C. for 30 minutes, and then placed on a tensile tester. Next, the peel adhesion force when the test piece 30 was peeled off at a speed of 300 mm / min with respect to the glass plate 32 at an angle of 90 degrees with respect to the glass plate 32 was measured.
 その結果を、表1に示す。 The results are shown in Table 1.
 一方、比較例1については、シール材が、ホットメルト型であるため、25℃ではガラス板32に貼着することができず、そのため、90度剥離接着力を測定することができなかった。
(2)150℃で貼着後の90度剥離接着力試験
 実施例1~3および比較例1の厚み0.5mmのシール材と、比較例2のシール材とを、25℃でガラス板32に貼着し、貼着後に加熱工程および冷却工程を順次実施した以外は、25℃でガラス板32に貼着した後、ガラス板32に対して90度で速度300mm/分で剥離したときの90度剥離接着力と同様に処理してそれぞれ測定した。
On the other hand, in Comparative Example 1, since the sealing material was a hot-melt type, it could not be adhered to the glass plate 32 at 25 ° C., and therefore the 90 ° peel adhesive strength could not be measured.
(2) 90 ° peel adhesion test after pasting at 150 ° C. The sealing material of Examples 1 to 3 and Comparative Example 1 having a thickness of 0.5 mm and the sealing material of Comparative Example 2 were glass plates 32 at 25 ° C. Except that the heating step and the cooling step were sequentially carried out after the sticking, after sticking to the glass plate 32 at 25 ° C., when peeling to the glass plate 32 at 90 degrees and a speed of 300 mm / min. It processed similarly to 90 degree | times peeling adhesive force, and each measured.
 すなわち、加熱工程では、試験片30を、真空加熱プレス機により、真空雰囲気下、0.1MPa、10分間、150℃で熱プレスして、ガラス板32に熱圧着した。 That is, in the heating step, the test piece 30 was hot-pressed to the glass plate 32 by being hot-pressed at 150 ° C. for 10 minutes in a vacuum atmosphere with a vacuum heating press.
 冷却工程では、熱圧着後の試験片30を、24時間放冷した。 In the cooling process, the test piece 30 after thermocompression bonding was allowed to cool for 24 hours.
 その結果を、表1に示す。
(3)水蒸気バリア性試験
 実施例1~3および比較例1の厚み1.0mmのシール材と、比較例2のシール材とについて、次に説明する測定装置を用いて、水蒸気バリア性試験を実施した。
The results are shown in Table 1.
(3) Water vapor barrier property test About the sealing material of Examples 1 to 3 and Comparative Example 1 having a thickness of 1.0 mm and the sealing material of Comparative Example 2, a water vapor barrier property test was performed using a measuring device described below. Carried out.
 すなわち、図10において、測定装置20は、上端部にリング形状の鍔21が設けられた有底円筒状のカップ22と、鍔21と厚み方向に間隔を隔てて対向配置されるガラス板23とを備えている。カップ22は、アルミ製であり、底壁24の深さが15mm、内径が60mmである。 That is, in FIG. 10, the measuring device 20 includes a bottomed cylindrical cup 22 provided with a ring-shaped ridge 21 at its upper end, and a glass plate 23 that is disposed to face the ridge 21 with a gap in the thickness direction. It has. The cup 22 is made of aluminum, and the depth of the bottom wall 24 is 15 mm and the inner diameter is 60 mm.
 また、測定装置20において、カップ22の底壁24の上面には、吸湿剤25が均一に積層されている。吸湿剤25は、塩化カルシウムからなり、質量が10gである。 Further, in the measuring device 20, a hygroscopic agent 25 is uniformly laminated on the upper surface of the bottom wall 24 of the cup 22. The hygroscopic agent 25 is made of calcium chloride and has a mass of 10 g.
 そして、実施例1~3と、比較例1および2のシール材1とを、鍔21より幅狭(5mm幅)のリング形状に対応するように切断加工した後、それを鍔21の上面に配置し、その後、ガラス板23をシール材1に、150℃で熱圧着させて、カップ22の円筒内を封止した。その後、この装置20を、40℃、92%RHの高温高湿器に投入し、100時間後の装置20全体の質量を測定した。なお、上記の熱圧着時に、シール材1に液だれがないことを確認した。 Then, after cutting Examples 1 to 3 and the sealing materials 1 of Comparative Examples 1 and 2 so as to correspond to a ring shape that is narrower (5 mm width) than the flange 21, it is applied to the upper surface of the flange 21. After that, the glass plate 23 was thermocompression bonded to the sealing material 1 at 150 ° C. to seal the inside of the cup 22. Thereafter, this apparatus 20 was put into a high-temperature humidifier at 40 ° C. and 92% RH, and the mass of the entire apparatus 20 after 100 hours was measured. In addition, it was confirmed that there was no dripping of the sealing material 1 during the above-described thermocompression bonding.
 水蒸気バリア性%は、加湿前の測定装置20全体の質量に対する加湿後の測定装置20全体の質量増加率として示す。 The water vapor barrier property% is shown as a mass increase rate of the whole measuring device 20 after humidification with respect to the whole mass of the measuring device 20 before humidification.
 その結果を表1に示す。 The results are shown in Table 1.
1  シール材(シート)
3  複層ガラス
4  太陽電池パネル
5  周端部
6  中間層
7  太陽電池モジュール
8  太陽電池素子
9  封止樹脂層
10 上側ガラス層
11 下側ガラス層
12 フレームレス太陽電池モジュール
32 ガラス板
1 Sealing material (sheet)
DESCRIPTION OF SYMBOLS 3 Multi-layer glass 4 Solar cell panel 5 Perimeter edge part 6 Middle layer 7 Solar cell module 8 Solar cell element 9 Sealing resin layer 10 Upper glass layer 11 Lower glass layer 12 Frameless solar cell module 32 Glass plate
 シーリング組成物は、複層ガラスの端部や太陽電池パネルの端部の封止に用いられる。 The sealing composition is used for sealing the edge of the multilayer glass and the edge of the solar cell panel.

Claims (9)

  1.  ゴム成分と、
     炭素数2~3のアルケンを重合させることにより得られるポリオレフィンと
    を含有するシーリング組成物であり、
     前記シーリング組成物から形成されたシートを25℃でガラス板に貼着した後、前記ガラス板に対して90度で速度300mm/分で剥離したときの90度剥離接着力が、0.1N/10mm以上であり、
     前記シートを150℃でガラス板に貼着した後、前記ガラス板に対して90度で速度300mm/分で剥離したときの90度剥離接着力が、2N/10mm以上であることを特徴とする、シーリング組成物。
    Rubber component,
    A sealing composition containing a polyolefin obtained by polymerizing an alkene having 2 to 3 carbon atoms,
    After the sheet formed from the sealing composition was attached to a glass plate at 25 ° C., the 90 ° peel adhesion when peeled at 90 ° from the glass plate at a speed of 300 mm / min was 0.1 N / 10 mm or more,
    After the sheet is attached to a glass plate at 150 ° C., the 90 ° peel adhesive strength when peeled at 90 ° from the glass plate at a speed of 300 mm / min is 2N / 10 mm or more. , Sealing composition.
  2.  粘着付与剤をさらに含有し、
     前記粘着付与剤は、軟化点が90~140℃のクマロン系樹脂を含有し、
     前記粘着付与剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、30質量部を超えることを特徴とする、請求項1に記載のシーリング組成物。
    Further containing a tackifier,
    The tackifier contains a coumarone resin having a softening point of 90 to 140 ° C.,
    The sealing composition according to claim 1, wherein the blending ratio of the tackifier exceeds 30 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin.
  3.  前記ゴム成分が、ブチルゴムおよびポリイソブチレンを含有することを特徴とする、請求項1に記載のシーリング組成物。 The sealing composition according to claim 1, wherein the rubber component contains butyl rubber and polyisobutylene.
  4.  充填剤をさらに含有し、
     前記充填剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、0.1~100質量部であることを特徴とする、請求項1に記載のシーリング組成物。
    Further containing a filler,
    The sealing composition according to claim 1, wherein the blending ratio of the filler is 0.1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin.
  5.  前記充填剤が、炭酸カルシウム、タルク、酸化チタンおよびカーボンブラックからなる群から選択される少なくとも1種であることを特徴とする、請求項4に記載のシーリング組成物。 The sealing composition according to claim 4, wherein the filler is at least one selected from the group consisting of calcium carbonate, talc, titanium oxide and carbon black.
  6.  複層ガラスの端部の封止に用いられることを特徴とする、請求項1に記載のシーリング組成物。 The sealing composition according to claim 1, wherein the sealing composition is used for sealing an end portion of a multilayer glass.
  7.  厚み方向に互いに間隔を隔てて配置される2枚のガラス層と、
     2枚の前記ガラス層の間に設けられ、前記ガラス層の端部の内側に配置される中間層と、
     2枚の前記ガラス層の端部の間に、前記中間層を封止するように充填されるシーリング組成物からなるシール材と
    を備え、
     前記シーリング組成物は、
     粘着付与剤をさらに含有し、
     前記粘着付与剤は、軟化点が90~140℃のクマロン系樹脂を含有し、
     前記粘着付与剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、30質量部を超えることを特徴とする、複層ガラス。
    Two glass layers arranged at intervals in the thickness direction;
    An intermediate layer provided between the two glass layers and disposed inside the end of the glass layer;
    A sealant made of a sealing composition filled between the end portions of the two glass layers so as to seal the intermediate layer;
    The sealing composition is:
    Further containing a tackifier,
    The tackifier contains a coumarone resin having a softening point of 90 to 140 ° C.,
    Multi-layer glass, wherein the compounding ratio of the tackifier exceeds 30 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin.
  8.  太陽電池パネルの端部の封止に用いられることを特徴とする、請求項1に記載のシーリング組成物。 The sealing composition according to claim 1, wherein the sealing composition is used for sealing an end of a solar cell panel.
  9.  ガラス層と、
     前記ガラス層と厚み方向に間隔を隔てて配置される支持層と、
     前記ガラス層および前記支持層の間に設けられ、前記ガラス層および前記支持層の端部の内側に配置される太陽電池素子およびそれを封止する封止樹脂層と、
     前記ガラス層および前記支持層の端部の間に、前記封止樹脂層を封止するように充填されるシーリング組成物からなるシール材と
    を備え、
     前記シーリング組成物は、粘着付与剤をさらに含有し、
     前記粘着付与剤は、軟化点が90~140℃のクマロン系樹脂を含有し、
     前記粘着付与剤の配合割合が、前記ゴム成分および前記ポリオレフィンの総量100質量部に対して、30質量部を超えることを特徴とする、太陽電池パネル。
    A glass layer,
    A support layer disposed at an interval in the thickness direction from the glass layer;
    A solar cell element that is provided between the glass layer and the support layer, and is disposed inside ends of the glass layer and the support layer, and a sealing resin layer that seals the solar cell element;
    A sealing material made of a sealing composition filled so as to seal the sealing resin layer between the glass layer and the end of the support layer,
    The sealing composition further contains a tackifier,
    The tackifier contains a coumarone resin having a softening point of 90 to 140 ° C.,
    The solar cell panel, wherein a blending ratio of the tackifier exceeds 30 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the polyolefin.
PCT/JP2013/059988 2013-04-01 2013-04-01 Sealing composition, multilayer glass, and solar panel WO2014162480A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059988 WO2014162480A1 (en) 2013-04-01 2013-04-01 Sealing composition, multilayer glass, and solar panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059988 WO2014162480A1 (en) 2013-04-01 2013-04-01 Sealing composition, multilayer glass, and solar panel

Publications (1)

Publication Number Publication Date
WO2014162480A1 true WO2014162480A1 (en) 2014-10-09

Family

ID=51657813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059988 WO2014162480A1 (en) 2013-04-01 2013-04-01 Sealing composition, multilayer glass, and solar panel

Country Status (1)

Country Link
WO (1) WO2014162480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203533A1 (en) * 2016-02-03 2017-08-09 ML SYSTEM Spólka Akcyjna A laminated thermally insulating photovoltaic module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197378A (en) * 1984-10-18 1986-05-15 Toyoda Gosei Co Ltd Sealant for air duct
JP2011231309A (en) * 2010-04-09 2011-11-17 Nitto Denko Corp Sealing composition, double glazing and solar cell panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197378A (en) * 1984-10-18 1986-05-15 Toyoda Gosei Co Ltd Sealant for air duct
JP2011231309A (en) * 2010-04-09 2011-11-17 Nitto Denko Corp Sealing composition, double glazing and solar cell panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203533A1 (en) * 2016-02-03 2017-08-09 ML SYSTEM Spólka Akcyjna A laminated thermally insulating photovoltaic module

Similar Documents

Publication Publication Date Title
EP2380930B1 (en) Sealing composition, multiple glass and solar cell panel
US20200010730A1 (en) Dielectric heating adhesive film and adhesion method using dielectric heating adhesive film
US9708510B2 (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and moisture-permeable waterproof pressure-sensitive adhesive sheet
EP2841519B1 (en) Electric instruments comprising a hot-melt adhesive
US10919264B2 (en) Adhesive sheet
EP3533848A1 (en) Dielectric-heating bonding film and bonding method using dielectric-heating bonding film
CN101901848A (en) The hermetically-sealed construction of no frameless solar cell module adhesive seal material for end portion, no frameless solar cell module and end thereof
CN111129192B (en) Polyolefin film, preparation method thereof, solar cell back plate and solar cell
US20220176642A1 (en) Bonding method, and high-frequency dielectric heating adhesive sheet
EP2787540A1 (en) Solar cell panel end-sealing composition, solar cell panel end-sealing sheet, and solar cell panel
JP2013082764A (en) Sealing composition, multiple glass and solar cell panel
WO2014162481A1 (en) Sealing composition, multilayer glass, and solar panel
WO2014162480A1 (en) Sealing composition, multilayer glass, and solar panel
JP2013082765A (en) Sealing composition, multilayer glass, and solar cell panel
JP6050017B2 (en) Hot melt seal composition
JP2013082762A (en) Sealing composition, multilayer glass, and solar cell panel
JP5959362B2 (en) Hot melt seal composition
JP4156242B2 (en) Double-sided pressure-sensitive adhesive sheet and method for producing the same
JP6068214B2 (en) Hot melt seal composition
JP2013082763A (en) Sealing composition, sealing sheet and method for manufacturing the same, multilayer glass, and solar cell panel
CN111373012B (en) Sealing material for flexible organic devices and use thereof
JPH09143278A (en) Production of rubber sheet
JP2015043353A (en) Adhesive seal material for solar cell panel end and solar cell module
CN117447941A (en) Butyl rubber and preparation method thereof, photovoltaic module and electronic element
JP2013026562A (en) Solar battery sealing material and solar battery module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP