WO2014162359A1 - Extracorporeal circulation device, and control method and storage medium for extracorporeal circulation device - Google Patents

Extracorporeal circulation device, and control method and storage medium for extracorporeal circulation device Download PDF

Info

Publication number
WO2014162359A1
WO2014162359A1 PCT/JP2013/002373 JP2013002373W WO2014162359A1 WO 2014162359 A1 WO2014162359 A1 WO 2014162359A1 JP 2013002373 W JP2013002373 W JP 2013002373W WO 2014162359 A1 WO2014162359 A1 WO 2014162359A1
Authority
WO
WIPO (PCT)
Prior art keywords
extracorporeal circulation
circulation device
power supply
emergency transport
emergency
Prior art date
Application number
PCT/JP2013/002373
Other languages
French (fr)
Japanese (ja)
Inventor
知樹 櫨田
強 長谷川
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2013/002373 priority Critical patent/WO2014162359A1/en
Publication of WO2014162359A1 publication Critical patent/WO2014162359A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/367Circuit parts not covered by the preceding subgroups of group A61M1/3621
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • A61M2205/8212Internal energy supply devices battery-operated with means or measures taken for minimising energy consumption

Definitions

  • the present invention relates to an extracorporeal circulation device, a control method for the extracorporeal circulation device, and a storage medium.
  • Patent Literature 1 discloses an extracorporeal circulation device that automatically adjusts the circulation state.
  • the extracorporeal circulation device is mainly used for cardiac surgery or the like in a hospital, but is also provided in an ambulance vehicle to send blood to a patient in an emergency.
  • the extracorporeal circulation device is normally connected to an AC power source in a room such as a hospital, and thus operates while charging the battery.
  • a room such as a hospital
  • the extracorporeal circulation device is normally connected to an AC power source in a room such as a hospital, and thus operates while charging the battery.
  • the power supply is limited and the supply becomes unstable. It is necessary to operate with minimum power consumption.
  • an object of the present invention is to provide an extracorporeal circulation device that effectively utilizes a limited power supply during emergency transport.
  • An extracorporeal circulation apparatus that achieves the above object is as follows.
  • An extracorporeal circulation device for circulating the blood of a subject outside the body Determination means for determining the stability of a power supply state from an external power source to the extracorporeal circulation device; When the power supply state is determined to be unstable by the determination means, it is determined that the emergency transport is being performed, and the emergency operation that operates while reducing the power consumption from the normal mode that operates without reducing the power consumption.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of the extracorporeal circulation device 100 according to the first embodiment of the present invention.
  • the extracorporeal circulation device 100 is used not only for extracorporeal circulation such as cardiac surgery but also for auxiliary circulation procedures such as PCPS (percutaneous cardiopulmonary support) and ECMO (extracorporeal membrane oxygenation), and performs cardiopulmonary assist operations (extracorporeal circulation operation, priming operation). Do.
  • the extracorporeal circulation apparatus 100 has a blood extracorporeal circuit (hereinafter referred to as a circulation circuit) indicated by an arrow in the figure. In the extracorporeal circulation apparatus 100, after performing the priming operation, the blood of the subject 130 is circulated extracorporeally using this circulation circuit.
  • the priming operation refers to an operation of removing the bubbles in the circuit by circulating the priming solution in the circulation circuit in a state where the circulation circuit is sufficiently filled with the priming solution (for example, physiological saline).
  • the priming solution for example, physiological saline
  • the extracorporeal circulation device 100 includes a controller 110 that functions as a control device, a drive motor 111, a centrifugal pump 112, an oxygenator 113, an oxygen supply source 117, a catheter (venous side) 119, and a catheter (arterial side) 120.
  • the catheter (arterial side) 120 pumps blood toward the body of the subject 130, and the catheter (venous side) 119 performs blood removal from the body of the subject 130.
  • the centrifugal pump 112 is also called a centrifugal artificial heart, drives a rotating body provided inside, applies pressure to the blood, and circulates the blood in the circulation circuit.
  • the drive motor 111 gives a rotational driving force to the rotating body of the centrifugal pump 112.
  • the pressure in the circulation circuit before being pressurized by the centrifugal pump 112 is detected by the pressure sensor 123.
  • the artificial lung 113 performs blood circulation and blood gas exchange (oxygen addition, carbon dioxide removal, etc.).
  • the oxygen supply source 117 is realized by, for example, an oxygen cylinder and supplies oxygen to be added to blood.
  • the oxygen supplied from the oxygen supply source 117 is used at the time of gas exchange by the artificial lung 113.
  • the bubble sensor 114 detects bubbles contained in the priming liquid (or blood) flowing in the circulation circuit during the priming operation (or during the extracorporeal circulation operation) by a predetermined detection method (ultrasonic wave, light, etc.).
  • the blood filter 116 filters blood or removes bubbles in the blood.
  • the flow sensor 115 includes, for example, a built-in ultrasonic transceiver, and detects the flow rate of the priming liquid (or blood) in the circulation circuit.
  • the clamp 122 is a member for closing the tube so as to forcibly stop the blood supply toward the body of the subject 130 during the extracorporeal circulation operation.
  • the clamp 122 performs blood feeding based on a manual mode in which a medical worker performs an occlusion operation by inputting an occlusion instruction on the controller 110 and output signals from the bubble sensor 114, the flow sensor 115, the pressure sensor 123, and the like.
  • a manual mode in which a medical worker performs an occlusion operation by inputting an occlusion instruction on the controller 110 and output signals from the bubble sensor 114, the flow sensor 115, the pressure sensor 123, and the like.
  • the branch line 118 switches the flow path of the circulation circuit. Specifically, when the blood of the subject 130 is circulated extracorporeally, a circulation circuit passing through the body of the subject 130 is constructed as shown in 1A of FIG. Circulate. During the priming operation, as shown in 1B of FIG. 1, the circuit of the circulation circuit to the inside of the body of the subject 130 is blocked by the branch line 118 (in other words, the circulation circuit that passes only the outside of the subject 130 (in other words, the subject A circulation circuit that does not pass through the body of the person 130 is constructed, and the circulation circuit is filled with the priming liquid (without passing through the body of the subject) to circulate the priming liquid.
  • one or a plurality of bubble discharge ports for discharging bubbles are provided on the circulation circuit.
  • the bubbles in the circulation circuit are circulated. It will be discharged from the bubble discharge port.
  • the controller 110 comprehensively controls the extracorporeal circulation operation and the priming operation in the extracorporeal circulation device 100.
  • the centrifugal motor 112 is driven by controlling the drive motor 111, or the gas exchange operation is performed by controlling the artificial lung 113.
  • the bubble sensor 114 is controlled to acquire an output signal from the bubble sensor 114, and the flow rate sensor 115 and the pressure sensor 123 are controlled to acquire a flow rate value and a pressure value. Further, when an abnormality that requires blood supply to be stopped is detected based on output signals from the bubble sensor 114, the flow sensor 115, and the pressure sensor 123, the clamp 122 is closed.
  • the controller 110 controls the execution of the priming operation.
  • a circulation circuit that does not pass through the body of the subject 130 is constructed by the branch line 118 as shown in 1B of FIG.
  • the priming liquid supply source 121 is connected to the branch line 118, and the priming liquid is supplied from the priming liquid supply source 121 into the circulation circuit.
  • the circulation circuit is filled with the priming liquid.
  • the centrifugal pump 112 is driven by the control of the controller 110, and the priming liquid circulates in the circulation circuit a plurality of times. Bubbles in the circulation circuit are discharged from the bubble discharge port or the like with this circulation. At this time, bubbles in the circulation circuit are detected by the bubble sensor 114, and the controller 110 determines whether or not there are bubbles contained in the circulation circuit and the size of the bubbles based on the detection result of the bubble sensor 114. .
  • the controller 110 when the result of the determination satisfies a predetermined standard, the priming operation is terminated. At the end of this, the controller 110 notifies the user that the priming operation has ended using a display (not shown), a speaker (not shown), or the like. The user who receives the notification of the end of the priming operation switches the branch line 118 and constructs a circulation circuit that passes through the body of the subject 130 as shown in 1A of FIG. Thereby, the blood of the subject 130 is circulated extracorporeally.
  • blood that has been removed from the catheter (vein side) 119 enters the oxygenator 113 via the centrifugal pump 112.
  • gas exchange that is, processing such as oxygen addition and carbon dioxide removal is performed.
  • the filtered blood is sent from the catheter (arterial side) 120 into the body of the subject 130 through the blood filter 116 and the like. This process from blood removal to blood transfer is repeated, and the blood of the subject 130 is circulated extracorporeally.
  • the controller 110 includes a display unit 203, an operation unit 202, a storage unit 201, an I / F unit 206, a timer unit 204, a communication unit 207, and a control unit (computer) 205 as functional configurations. .
  • the display unit 203 is realized by, for example, a display such as a monitor (including an output unit that outputs an alarm sound), and displays various types of information to the user.
  • the operation unit 202 is realized by various buttons, for example, and inputs an instruction from a medical worker. Part or all of the display unit 203 and the operation unit 202 may be realized as a touch panel with an audio speaker, for example.
  • the storage unit 201 is realized by, for example, a storage medium such as a hard disk and stores various types of information. Further, a program for executing the processing according to the present invention is stored.
  • the I / F unit 206 exchanges various signals with an external device. Note that output signals from the bubble sensor 114, the flow sensor 115, and the pressure sensor 123 are taken into the controller 110 via the I / F unit 206.
  • the timer unit 204 measures various times.
  • the communication unit 207 communicates with the communication unit 211 attached to the medical staff.
  • the communication between the communication unit 207 and the communication unit 211 may be short-range wireless communication such as Bluetooth (registered trademark) or wireless communication using a wireless LAN such as Wi-Fi.
  • the control unit 205 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and realizes the above-described cardiopulmonary assist operation and the emergency transport determination process described below. It is assumed that a program for storing the information is stored (the description is omitted here).
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the functional configuration of the controller 110 is merely an example, and a new configuration may be added, or unnecessary configuration may be omitted as appropriate.
  • the storage unit 201 (such as a hard disk) is not necessarily provided and may be omitted.
  • the extracorporeal circulation apparatus 100 can operate by switching between a normal mode that operates without reducing power consumption and an emergency conveyance mode that operates while reducing power consumption during emergency conveyance.
  • FIG. 6 is a diagram illustrating an example of a switching condition between the normal mode and the emergency transport mode.
  • Reference numeral 601 denotes a control object
  • reference numeral 602 denotes control contents in the normal mode
  • reference numeral 603 denotes control contents in the emergency transport mode.
  • the controller 110 receives power from the power cable and controls to charge until the battery reaches 100%.
  • the battery is not charged, or the minimum predetermined amount required for transporting the patient from the emergency vehicle to a hospital bed (15-20 minutes operable state, battery capacity) However, it is controlled to charge only up to 30%, for example.
  • the extracorporeal circulation device 100 can perform pulsation drive.
  • the pulsation drive is a drive in which the controller 110 controls the drive motor 111 to periodically increase or decrease the number of rotations so that blood can easily reach the periphery. A pulsation occurs as the rotational speed periodically increases and decreases.
  • the controller 110 performs control so that the pulsation drive can be selected in the normal mode. On the other hand, in the emergency transport mode, control is performed so that selection is not possible because power is consumed.
  • the controller 110 controls the extracorporeal circulation device 100 so as to be selectable even if it is a function that consumes other power but is not essential for life support.
  • the emergency transport mode since power is consumed, control is performed so that the function cannot be selected.
  • the extracorporeal circulation device 100 can operate by switching between the normal mode and the emergency transport mode depending on whether or not the emergency transport is being performed. Detailed processing for this switching will be described with reference to FIG.
  • FIG. 3 is a flowchart illustrating a procedure of emergency conveyance determination processing performed by the extracorporeal circulation device 100 according to the present embodiment.
  • step S301 the controller 110 controls the extracorporeal circulation device 100 to operate in the normal mode.
  • step S302 the controller 110 detects that the extracorporeal circulation device 100 is connected to a power source and AC power feeding is started.
  • the process proceeds to step S303.
  • the power connection is not detected (S302; No)
  • step S303 the controller 110 determines whether or not the power supply state of the AC power supply from the external power source is unstable.
  • the stability of the power supply state is determined based on the change in the AC power supply voltage from the external power supply. For example, when the AC power supply voltage is equal to or lower than the threshold value, it is determined that the power supply state is unstable. Further, it may be determined that the power supply is unstable when AC power supply is repeatedly turned ON / OFF a predetermined number of times within a predetermined time.
  • the process proceeds to step S304.
  • step S308 the process proceeds to step S308.
  • step S304 the controller 110 determines that the subject 130 is in the emergency transport mode, and confirms with the user whether or not the normal mode can be switched to the emergency transport mode. For example, a display asking whether switching is possible is displayed on the display unit 203, and the input of whether the switching is possible is accepted via the operation unit 202.
  • step S305 the controller 110 determines whether switching is permitted by the user. When it is determined that switching is permitted (S305; Yes), the process proceeds to step S306. On the other hand, when it is determined that switching is not permitted (S305; No), the process proceeds to step S308.
  • step S306 the controller 110 switches the extracorporeal circulation device 100 to the emergency transport mode.
  • control such as prohibition of battery charging or impossibility of selection of pulsation drive is performed, and priority is given to power supply to other devices and functions necessary for life support.
  • step S307 the controller 110 notifies the user that the extracorporeal circulation apparatus 100 has been switched to the emergency transport mode (currently operating in the emergency transport mode) by displaying on the display unit 203.
  • the notification method is not necessarily limited to the display on the display unit 203, but voice and sound from a speaker (not shown), light from an LED (not shown) (for example, red when in the emergency transport mode) The LED may be controlled to emit light), or a combination thereof may be used.
  • step S308 the controller 110 operates the extracorporeal circulation device 100 in the normal mode because the power supply state is stable or switching is not permitted by the user. Thus, each process of the flowchart of FIG. 3 is completed.
  • the normal mode and the emergency transport mode are switched according to the stability of the power supply state from the external power source. Therefore, the limited electric power supply during emergency conveyance can be utilized effectively.
  • the configuration in which attention is paid to the power supply state of the AC power supply has been described in order to determine whether or not emergency transport is being performed.
  • the condition for determining whether or not emergency transport is in progress is not limited to the first embodiment.
  • an example will be described in which the normal mode and the emergency transport mode are switched according to the vibration of the extracorporeal circulation device. If the extracorporeal circulation device vibrates, it can be determined that there is a possibility that the extracorporeal circulation device is being used in an emergency vehicle during emergency transport (for example, moving on a road).
  • FIG. 4 is a flowchart illustrating a procedure of emergency conveyance determination processing performed by the extracorporeal circulation device 100 according to the present embodiment.
  • steps S401 to S402 and S406 to S410 the same processes as steps S301 to S302 and S304 to S308 of FIG.
  • step S403 the controller 110 detects the vibration of the extracorporeal circulation device 100.
  • the extracorporeal circulation device 100 is vibrated due to vibrations when an ambulance such as an ambulance or a doctor helicopter moves.
  • the extracorporeal circulation device 100 includes an acceleration sensor (not shown) and detects vibration by the acceleration sensor.
  • step S404 the controller 110 determines whether or not the detected vibration amplitude is greater than or equal to a threshold value. As this threshold value, vibration during movement of the vehicle is measured, and an appropriate value is set in advance.
  • step S404 If it is determined that the amplitude is greater than or equal to the threshold (S404; Yes), the process proceeds to step S405. On the other hand, when it determines with an amplitude being less than a threshold value (S404; No), it progresses to step S410 and operates the extracorporeal circulation apparatus 100 with a normal mode.
  • step S405 the controller 110 determines whether or not the timer unit 204 has continued to vibrate with an amplitude greater than or equal to the threshold value for a predetermined time or more. When it determines with having continued more than predetermined time (S405; Yes), it progresses to step S406 and performs control which switches to emergency conveyance mode. On the other hand, when it determines with having not continued more than predetermined time (S405; No), it progresses to step S410 and operates the extracorporeal circulation apparatus 100 with a normal mode. Thus, the processes in the flowchart of FIG. 4 are completed.
  • the normal mode and the emergency transport mode are switched according to the vibration of the apparatus.
  • the limited electric power supply during emergency conveyance can be utilized effectively.
  • first embodiment and the second embodiment may be combined.
  • switch to the emergency transport mode when both conditions are satisfied AC power supply is unstable and vibration with an amplitude exceeding the threshold continues for a predetermined time. Also good. This makes it possible to determine that the emergency transport is being performed with higher accuracy.
  • the conditions for determining whether or not emergency transport is in progress are not limited to the first and second embodiments.
  • an example will be described in which sound output from an emergency vehicle such as a siren is detected and the normal mode and the emergency transport mode are switched in accordance with the detection.
  • FIG. 5 is a flowchart illustrating a procedure of emergency conveyance determination processing performed by the extracorporeal circulation device 100 according to the present embodiment.
  • steps S501 to S502 and S504 to S508 the same processes as steps S301 to S302 and S304 to S308 in FIG.
  • step S503 the controller 110 determines whether or not a sound output from a rescue vehicle such as a siren is detected. For example, it is determined that the sound output of the siren has been detected when a predetermined overlap condition is satisfied as compared with information of a frequency band specific to the siren held in advance.
  • the process proceeds to step S504, and the extracorporeal circulation device 100 is switched from the normal mode to the emergency transport mode.
  • step S508 the extracorporeal circulation device 100 is operated in the normal mode.
  • the normal mode and the emergency transport mode are switched according to the detection of the sound output of the emergency vehicle.
  • the limited electric power supply during emergency conveyance can be utilized effectively.
  • the first embodiment and the third embodiment may be combined.
  • both the stability of the power supply state and the detection of the sound output are used as the determination criteria, and when both conditions are satisfied (AC power supply is unstable and the sound output of the emergency vehicle is detected), the emergency transport mode may be switched. . This makes it possible to determine that the emergency transport is being performed with higher accuracy.
  • all the determination conditions of the first to third embodiments may be combined. That is, when all the conditions are satisfied (AC power feeding is unstable, vibration detection and sound output from the emergency vehicle are detected), the emergency transport mode may be switched. This makes it possible to determine that the emergency transport is being performed with higher accuracy.
  • the process of automatically determining whether or not the extracorporeal circulation device itself is in emergency transport and switching between the normal mode and the emergency transport mode has been described.
  • the user may manually switch the operation mode of the extracorporeal circulation device.
  • a user such as an ambulance crew directly operates the operation unit 202 (for example, a hard switch) shown in FIG. 2 to switch to the emergency transport mode.
  • switching is performed by a touch operation on the display unit 203.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

An extracorporeal circulation device for circulating the blood of a patient outside the body is equipped with a determination unit for determining the stability of the status of the power supply from an external power source to the extracorporeal circulation device, and a control unit for determining that emergency transport is in progress when the determination unit determines that the power-supply status is unstable, and switching from a normal mode for operating without reducing power consumption to an emergency transport mode for operating by reducing power consumption.

Description

体外循環装置、体外循環装置の制御方法及び記憶媒体Extracorporeal circulation device, control method for external circulation device, and storage medium
 本発明は、体外循環装置、体外循環装置の制御方法及び記憶媒体に関するものである。 The present invention relates to an extracorporeal circulation device, a control method for the extracorporeal circulation device, and a storage medium.
 従来、医療の分野では体外循環や補助循環等を行う体外循環装置が利用されており、特許文献1では循環状態を自動調節する体外循環装置が開示されている。体外循環装置は、主に病院内で心臓手術等の際に使用されるが、救急車両内にも備えられており緊急時に患者への送血を行う。 Conventionally, in the medical field, an extracorporeal circulation device that performs extracorporeal circulation, auxiliary circulation, or the like has been used, and Patent Literature 1 discloses an extracorporeal circulation device that automatically adjusts the circulation state. The extracorporeal circulation device is mainly used for cardiac surgery or the like in a hospital, but is also provided in an ambulance vehicle to send blood to a patient in an emergency.
 体外循環装置は、通常は病院等の室内においてAC電源に接続されているため、バッテリ充電を行いつつ動作しているが、電力供給量に限りがあり供給が不安定となる救急搬送時においては、最低限の電力消費で運用を行う必要がある。 The extracorporeal circulation device is normally connected to an AC power source in a room such as a hospital, and thus operates while charging the battery. However, during emergency transport when the power supply is limited and the supply becomes unstable. It is necessary to operate with minimum power consumption.
特開2000-000299号公報JP 2000-000299 A
 しかしながら、特許文献1に記載の装置では、救急搬送中かどうかを判断する仕組みがないために、救急搬送中にも関わらず、限られた電力供給がバッテリ充電へ回ってしまい、他の生命維持に必要な装置等の駆動へ影響を及ぼす恐れがある。 However, in the apparatus described in Patent Document 1, since there is no mechanism for determining whether or not the emergency transport is in progress, the limited power supply is turned to the battery charging in spite of the emergency transport, and other life support is performed. There is a risk of affecting the drive of the necessary equipment.
 上記の課題に鑑み、本発明は、救急搬送中の限られた電力供給を有効に活用する体外循環装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an extracorporeal circulation device that effectively utilizes a limited power supply during emergency transport.
 上記の目的を達成する本発明に係る体外循環装置は、
 被検者の血液を体外で循環させる体外循環装置であって、
 外部電源から前記体外循環装置への給電状態の安定性を判定する判定手段と、
 前記判定手段により前記給電状態が不安定であると判定された場合に救急搬送中であると判断し、電力消費を低減せずに動作する通常モードから、前記電力消費を低減して動作する救急搬送モードへ切り替える制御手段と、
 を備えることを特徴とする。
An extracorporeal circulation apparatus according to the present invention that achieves the above object is as follows.
An extracorporeal circulation device for circulating the blood of a subject outside the body,
Determination means for determining the stability of a power supply state from an external power source to the extracorporeal circulation device;
When the power supply state is determined to be unstable by the determination means, it is determined that the emergency transport is being performed, and the emergency operation that operates while reducing the power consumption from the normal mode that operates without reducing the power consumption. Control means for switching to the transport mode;
It is characterized by providing.
 本発明によれば、救急搬送中の限られた電力供給を有効に活用することができる。 According to the present invention, it is possible to effectively utilize the limited power supply during emergency transport.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付している。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一実施形態に係る体外循環装置の全体構成を示す図である。 本発明の一実施形態に係る体外循環装置のコントローラの機能構成の一例を示す図である。 第1の実施形態に係る体外循環装置が実施する救急搬送判定処理の手順を示すフローチャートである。 第2の実施形態に係る体外循環装置が実施する救急搬送判定処理の手順を示すフローチャートである。 第3の実施形態に係る体外循環装置が実施する救急搬送判定処理の手順を示すフローチャートである。 本発明の一実施形態に係る通常モードと救急搬送モードとの切替条件の一例を示す図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
It is a figure which shows the whole structure of the extracorporeal circulation apparatus which concerns on one Embodiment of this invention. It is a figure which shows an example of a function structure of the controller of the extracorporeal circulation apparatus which concerns on one Embodiment of this invention. It is a flowchart which shows the procedure of the emergency conveyance determination process which the extracorporeal circulation apparatus which concerns on 1st Embodiment implements. It is a flowchart which shows the procedure of the emergency conveyance determination process which the extracorporeal circulation apparatus which concerns on 2nd Embodiment implements. It is a flowchart which shows the procedure of the emergency conveyance determination process which the extracorporeal circulation apparatus which concerns on 3rd Embodiment implements. It is a figure which shows an example of the switching conditions of the normal mode and emergency transport mode which concern on one Embodiment of this invention.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are preferred specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description of the effect, it is not restricted to these aspects.
 [第1の実施形態]
 <1.体外循環装置の全体構成>
 図1の1Aは、本発明の第1の実施形態に係る体外循環装置100の全体構成の一例を示す図である。
[First Embodiment]
<1. Overall configuration of extracorporeal circulation device>
1A of FIG. 1 is a diagram illustrating an example of the overall configuration of the extracorporeal circulation device 100 according to the first embodiment of the present invention.
 体外循環装置100は、心臓手術などの体外循環だけでなく、PCPS(percutaneous cardiopulmonary support)やECMO(extracorporeal membrane oxygenation)等の補助循環手技に用いられ、心肺補助動作(体外循環動作、プライミング動作)を行う。体外循環装置100は、図中矢印で示す血液体外循環回路(以下、循環回路と呼ぶ)を有している。体外循環装置100では、プライミング動作を行った後、この循環回路を用いて被検者130の血液を体外循環させる。 The extracorporeal circulation device 100 is used not only for extracorporeal circulation such as cardiac surgery but also for auxiliary circulation procedures such as PCPS (percutaneous cardiopulmonary support) and ECMO (extracorporeal membrane oxygenation), and performs cardiopulmonary assist operations (extracorporeal circulation operation, priming operation). Do. The extracorporeal circulation apparatus 100 has a blood extracorporeal circuit (hereinafter referred to as a circulation circuit) indicated by an arrow in the figure. In the extracorporeal circulation apparatus 100, after performing the priming operation, the blood of the subject 130 is circulated extracorporeally using this circulation circuit.
 ここで、プライミング動作とは、プライミング液(例えば、生理食塩水)で循環回路を十分に満たした状態で、循環回路内でプライミング液を循環させ、当該回路内の気泡を除去する動作をいう。 Here, the priming operation refers to an operation of removing the bubbles in the circuit by circulating the priming solution in the circulation circuit in a state where the circulation circuit is sufficiently filled with the priming solution (for example, physiological saline).
 体外循環装置100は、制御装置として機能するコントローラ110と、ドライブモータ111と、遠心ポンプ112と、人工肺113と、酸素供給源117と、カテーテル(静脈側)119と、カテーテル(動脈側)120と、気泡センサ114と、流量センサ115と、血液フィルタ116と、分岐ライン118と、クランプ122と、圧力センサ123とを備える。なお、これら各構成の間は、柔軟性を有するチューブ等によって接続されており、当該チューブの内腔が血液またはプライミング液の流路を構成している。 The extracorporeal circulation device 100 includes a controller 110 that functions as a control device, a drive motor 111, a centrifugal pump 112, an oxygenator 113, an oxygen supply source 117, a catheter (venous side) 119, and a catheter (arterial side) 120. A bubble sensor 114, a flow sensor 115, a blood filter 116, a branch line 118, a clamp 122, and a pressure sensor 123. These components are connected by a flexible tube or the like, and the lumen of the tube forms a flow path for blood or priming liquid.
 カテーテル(動脈側)120は、被検者130の体内に向けて送血し、カテーテル(静脈側)119は、被検者130の体内から脱血を行う。 The catheter (arterial side) 120 pumps blood toward the body of the subject 130, and the catheter (venous side) 119 performs blood removal from the body of the subject 130.
 遠心ポンプ112は、遠心式人工心臓とも呼ばれ、内部に設けられた回転体を駆動させて血液に圧力を与え、循環回路内で血液を循環させる。ドライブモータ111は、遠心ポンプ112の回転体に回転駆動力を与える。なお、遠心ポンプ112による加圧前の循環回路内の圧力は、圧力センサ123により検出される。 The centrifugal pump 112 is also called a centrifugal artificial heart, drives a rotating body provided inside, applies pressure to the blood, and circulates the blood in the circulation circuit. The drive motor 111 gives a rotational driving force to the rotating body of the centrifugal pump 112. The pressure in the circulation circuit before being pressurized by the centrifugal pump 112 is detected by the pressure sensor 123.
 人工肺113は、血液の循環と血液のガス交換(酸素付加、二酸化炭素除去等)とを行う。酸素供給源117は、例えば、酸素ボンベ等で実現され、血液に付加する酸素を供給する。酸素供給源117から供給される酸素は、人工肺113によるガス交換時に使用される。 The artificial lung 113 performs blood circulation and blood gas exchange (oxygen addition, carbon dioxide removal, etc.). The oxygen supply source 117 is realized by, for example, an oxygen cylinder and supplies oxygen to be added to blood. The oxygen supplied from the oxygen supply source 117 is used at the time of gas exchange by the artificial lung 113.
 気泡センサ114は、プライミング動作時(あるいは体外循環動作時)に循環回路内を流れるプライミング液(あるいは血液)に含まれる気泡を所定の検出方法(超音波、光等)により検出する。血液フィルタ116は、血液をろ過したり、血液中の気泡を除去したりする。流量センサ115は、例えば、超音波の送受信器を内蔵して構成され、循環回路内のプライミング液(あるいは血液)の流量を検出する。 The bubble sensor 114 detects bubbles contained in the priming liquid (or blood) flowing in the circulation circuit during the priming operation (or during the extracorporeal circulation operation) by a predetermined detection method (ultrasonic wave, light, etc.). The blood filter 116 filters blood or removes bubbles in the blood. The flow sensor 115 includes, for example, a built-in ultrasonic transceiver, and detects the flow rate of the priming liquid (or blood) in the circulation circuit.
 クランプ122は、体外循環動作時に、被検者130の体内に向けての送血を強制的に停止させるべく、チューブを閉塞させるための部材である。クランプ122は、医療従事者がコントローラ110上で閉塞指示を入力することで閉塞動作を行う手動モードと、気泡センサ114や流量センサ115、圧力センサ123等からの出力信号に基づいて、送血をただちに停止させる異常が発生したと判定した場合に、自動的に閉塞動作を行う自動制御モードと、により動作させることが可能である。 The clamp 122 is a member for closing the tube so as to forcibly stop the blood supply toward the body of the subject 130 during the extracorporeal circulation operation. The clamp 122 performs blood feeding based on a manual mode in which a medical worker performs an occlusion operation by inputting an occlusion instruction on the controller 110 and output signals from the bubble sensor 114, the flow sensor 115, the pressure sensor 123, and the like. When it is determined that an abnormality to stop immediately has occurred, it is possible to operate in the automatic control mode in which the closing operation is automatically performed.
 分岐ライン118は、循環回路の流路を切り替える。具体的には、被検者130の血液を体外循環させる場合には、図1の1Aに示すように、被検者130の体内を通る循環回路を構築し、被検者130の体外で血液を循環させる。プライミング動作時には、図1の1Bに示すように、分岐ライン118によって被検者130の体内への循環回路の経路を遮断して被検者130の体外のみを通る循環回路(言い換えれば、被検者130の体内を通らない循環回路)を構築し、プライミング液で循環回路内を満たして(被検者の体内を通らずに)プライミング液を循環させる。循環回路上には、気泡を排出するための1又は複数の気泡排出ポート(不図示)が設けられており、循環回路内でプライミング液を複数周循環させることにより、循環回路内の気泡が当該気泡排出ポートから排出されることになる。 The branch line 118 switches the flow path of the circulation circuit. Specifically, when the blood of the subject 130 is circulated extracorporeally, a circulation circuit passing through the body of the subject 130 is constructed as shown in 1A of FIG. Circulate. During the priming operation, as shown in 1B of FIG. 1, the circuit of the circulation circuit to the inside of the body of the subject 130 is blocked by the branch line 118 (in other words, the circulation circuit that passes only the outside of the subject 130 (in other words, the subject A circulation circuit that does not pass through the body of the person 130 is constructed, and the circulation circuit is filled with the priming liquid (without passing through the body of the subject) to circulate the priming liquid. On the circulation circuit, one or a plurality of bubble discharge ports (not shown) for discharging bubbles are provided. By circulating a plurality of priming liquids in the circulation circuit, the bubbles in the circulation circuit are circulated. It will be discharged from the bubble discharge port.
 コントローラ110は、体外循環装置100における体外循環動作及びプライミング動作を統括制御する。コントローラ110においては、例えば、ドライブモータ111を制御して遠心ポンプ112を駆動させたり、人工肺113を制御してガス交換動作を行わせたりする。また、気泡センサ114を制御して気泡センサ114からの出力信号を取得したり、流量センサ115や圧力センサ123を制御して流量値や圧力値を取得したりする。更に、気泡センサ114や流量センサ115、圧力センサ123からの出力信号に基づいて、送血を停止させる必要がある異常を検出した場合には、クランプ122を閉塞させる。 The controller 110 comprehensively controls the extracorporeal circulation operation and the priming operation in the extracorporeal circulation device 100. In the controller 110, for example, the centrifugal motor 112 is driven by controlling the drive motor 111, or the gas exchange operation is performed by controlling the artificial lung 113. Further, the bubble sensor 114 is controlled to acquire an output signal from the bubble sensor 114, and the flow rate sensor 115 and the pressure sensor 123 are controlled to acquire a flow rate value and a pressure value. Further, when an abnormality that requires blood supply to be stopped is detected based on output signals from the bubble sensor 114, the flow sensor 115, and the pressure sensor 123, the clamp 122 is closed.
 次に、図1の1A及び1Bに示す体外循環装置100を用いて心肺補助動作(体外循環動作、プライミング動作)を行う際の処理の流れについて簡単に説明する。 Next, the flow of processing when performing cardiopulmonary assist operation (extracorporeal circulation operation, priming operation) using the extracorporeal circulation device 100 shown in FIGS. 1A and 1B will be briefly described.
 心肺補助動作が開始されると、コントローラ110は、プライミング動作の実行を制御する。プライミング動作時には、図1の1Bに示すように、分岐ライン118によって被検者130の体内を通らない循環回路が構築される。また、このとき、プライミング液供給源121が分岐ライン118に接続され、当該プライミング液供給源121から循環回路内にプライミング液が供給される。これにより、循環回路内は、プライミング液で満たされることになる。 When the cardiopulmonary assist operation is started, the controller 110 controls the execution of the priming operation. During the priming operation, a circulation circuit that does not pass through the body of the subject 130 is constructed by the branch line 118 as shown in 1B of FIG. At this time, the priming liquid supply source 121 is connected to the branch line 118, and the priming liquid is supplied from the priming liquid supply source 121 into the circulation circuit. As a result, the circulation circuit is filled with the priming liquid.
 そして、コントローラ110の制御によって遠心ポンプ112が駆動し、プライミング液が循環回路内を複数周循環する。循環回路内の気泡は、この循環とともに気泡排出ポート等から排出される。このとき、気泡センサ114によって当該循環回路内の気泡が検出され、コントローラ110では、当該気泡センサ114の検出結果に基づいて循環回路内に含まれる気泡の有無や気泡の大きさ等について判定を行う。 Then, the centrifugal pump 112 is driven by the control of the controller 110, and the priming liquid circulates in the circulation circuit a plurality of times. Bubbles in the circulation circuit are discharged from the bubble discharge port or the like with this circulation. At this time, bubbles in the circulation circuit are detected by the bubble sensor 114, and the controller 110 determines whether or not there are bubbles contained in the circulation circuit and the size of the bubbles based on the detection result of the bubble sensor 114. .
 ここで、コントローラ110では、当該判定の結果が、所定の基準を満たす場合には、プライミング動作を終了させる。この終了に際して、コントローラ110は、表示器(不図示)やスピーカ(不図示)等を用いて、ユーザにプライミング動作が終了したことを通知する。プライミング動作の終了の通知を受けたユーザは、分岐ライン118を切り替え、図1の1Aに示すように、被検者130の体内を通る循環回路を構築する。これにより、被検者130の血液が体外循環される。 Here, in the controller 110, when the result of the determination satisfies a predetermined standard, the priming operation is terminated. At the end of this, the controller 110 notifies the user that the priming operation has ended using a display (not shown), a speaker (not shown), or the like. The user who receives the notification of the end of the priming operation switches the branch line 118 and constructs a circulation circuit that passes through the body of the subject 130 as shown in 1A of FIG. Thereby, the blood of the subject 130 is circulated extracorporeally.
 体外循環動作が始まると、カテーテル(静脈側)119から脱血されてくる血液が、遠心ポンプ112を経て人工肺113に入る。人工肺113では、上述した通り、ガス交換、すなわち、酸素付加や二酸化炭素除去等の処理が行われる。その後、血液フィルタ116等を経て、ろ過された血液が、カテーテル(動脈側)120から被検者130の体内に送血される。この脱血~送血までの処理が繰り返し行われ、被検者130の血液が体外循環される。 When the extracorporeal circulation operation starts, blood that has been removed from the catheter (vein side) 119 enters the oxygenator 113 via the centrifugal pump 112. In the artificial lung 113, as described above, gas exchange, that is, processing such as oxygen addition and carbon dioxide removal is performed. Thereafter, the filtered blood is sent from the catheter (arterial side) 120 into the body of the subject 130 through the blood filter 116 and the like. This process from blood removal to blood transfer is repeated, and the blood of the subject 130 is circulated extracorporeally.
 以上が、本実施形態に係る体外循環装置100の全体構成及び心肺補助動作の流れの一例についての説明である。なお、図1の1A及び1Bに示す体外循環装置100の構成は、あくまでも一例にすぎず、その構成は適宜変更されてもよい。 The above is an explanation of an example of the overall configuration of the extracorporeal circulation device 100 according to the present embodiment and the flow of cardiopulmonary assist operation. Note that the configuration of the extracorporeal circulation device 100 shown in FIGS. 1A and 1B is merely an example, and the configuration may be changed as appropriate.
 <2.コントローラの機能構成>
 次に、図2を用いて、図1に示すコントローラ110の機能構成の一例について説明する。
<2. Functional configuration of controller>
Next, an example of a functional configuration of the controller 110 illustrated in FIG. 1 will be described with reference to FIG.
 コントローラ110は、その機能構成として、表示部203と、操作部202と、記憶部201と、I/F部206と、タイマ部204と、通信部207と、制御部(コンピュータ)205とを備える。 The controller 110 includes a display unit 203, an operation unit 202, a storage unit 201, an I / F unit 206, a timer unit 204, a communication unit 207, and a control unit (computer) 205 as functional configurations. .
 表示部203は、例えば、モニタ等の表示器(警報を音声出力する出力部を含む)で実現され、各種情報をユーザに向けて表示する。操作部202は、例えば、各種ボタン等で実現され、医療従事者からの指示を入力する。なお、表示部203及び操作部202の一部又は全部は、例えば、音声スピーカ付のタッチパネルとして実現されてもよい。 The display unit 203 is realized by, for example, a display such as a monitor (including an output unit that outputs an alarm sound), and displays various types of information to the user. The operation unit 202 is realized by various buttons, for example, and inputs an instruction from a medical worker. Part or all of the display unit 203 and the operation unit 202 may be realized as a touch panel with an audio speaker, for example.
 記憶部201は、例えば、ハードディスク等の記憶媒体で実現され、各種情報を格納する。また、本発明に係る処理を実施するプログラムを格納する。I/F部206は、外部装置との間で各種信号の授受を行う。なお、気泡センサ114、流量センサ115、圧力センサ123からの出力信号は、I/F部206を介してコントローラ110に取り込まれる。タイマ部204は、各種時間の計時を行う。 The storage unit 201 is realized by, for example, a storage medium such as a hard disk and stores various types of information. Further, a program for executing the processing according to the present invention is stored. The I / F unit 206 exchanges various signals with an external device. Note that output signals from the bubble sensor 114, the flow sensor 115, and the pressure sensor 123 are taken into the controller 110 via the I / F unit 206. The timer unit 204 measures various times.
 通信部207は、医療従事者に装着された通信部211との間で通信を行う。なお、通信部207と通信部211との間の通信は、Bluetooth(登録商標)等の近距離無線通信であっても、Wi-Fi等の無線LANによる無線通信であってもよい。 The communication unit 207 communicates with the communication unit 211 attached to the medical staff. Note that the communication between the communication unit 207 and the communication unit 211 may be short-range wireless communication such as Bluetooth (registered trademark) or wireless communication using a wireless LAN such as Wi-Fi.
 制御部205は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等で構成され、ROMには、上述した心肺補助動作や後述の救急搬送判定処理を実現するためのプログラムが格納されているものとする(なお、ここでは説明を省略する)。 The control unit 205 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and realizes the above-described cardiopulmonary assist operation and the emergency transport determination process described below. It is assumed that a program for storing the information is stored (the description is omitted here).
 以上が、コントローラ110についての機能構成の一例についての説明である。なお、図2に示す機能構成はあくまでも一例であり、新たな構成が追加されてもよいし、また、不要な構成が適宜省略されても良い。例えば、記憶部201(ハードディスク等)は、必ずしも設けられる必要なく、省略してもよい。 The above is an explanation of an example of the functional configuration of the controller 110. Note that the functional configuration shown in FIG. 2 is merely an example, and a new configuration may be added, or unnecessary configuration may be omitted as appropriate. For example, the storage unit 201 (such as a hard disk) is not necessarily provided and may be omitted.
 <3.救急搬送判定処理の流れ>
 以下、本実施形態に係る体外循環装置100が実施する処理の手順を説明する。体外循環装置100は、電力消費を低減せずに動作する通常モードと、救急搬送中に電力消費を低減して動作する救急搬送モードとを切り替えて動作することができる。
<3. Flow of emergency conveyance judgment process>
Hereinafter, a procedure of processing performed by the extracorporeal circulation device 100 according to the present embodiment will be described. The extracorporeal circulation apparatus 100 can operate by switching between a normal mode that operates without reducing power consumption and an emergency conveyance mode that operates while reducing power consumption during emergency conveyance.
 ここで図6は、通常モードと救急搬送モードとの切替条件の一例を示す図である。601は制御対象を示し、602は通常モードでの制御内容を、603は救急搬送モードでの制御内容をそれぞれ示している。 Here, FIG. 6 is a diagram illustrating an example of a switching condition between the normal mode and the emergency transport mode. Reference numeral 601 denotes a control object, reference numeral 602 denotes control contents in the normal mode, and reference numeral 603 denotes control contents in the emergency transport mode.
 図6に示すように、コントローラ110は、通常モードにおいては、電源ケーブルからの給電を受けて、バッテリが100%になるまで充電を行うように制御する。一方、救急搬送モードにおいては、バッテリ充電を行わないか、救急車両から患者を病院等の病床へ搬送するまでに必要な最低限の所定量(15分~20分動作可能な状態、バッテリ容量にも依存するが、たとえば30%)までしか充電を行わないように制御する。 As shown in FIG. 6, in the normal mode, the controller 110 receives power from the power cable and controls to charge until the battery reaches 100%. On the other hand, in the emergency transport mode, the battery is not charged, or the minimum predetermined amount required for transporting the patient from the emergency vehicle to a hospital bed (15-20 minutes operable state, battery capacity) However, it is controlled to charge only up to 30%, for example.
 また、体外循環装置100は拍動駆動を行うことができる。拍動駆動とは、末梢に血液を行き届きやすくするために、コントローラ110がドライブモータ111を制御し、回転数を周期的に上下させる駆動である。この回転数の周期的な上下に伴って拍動が生じる。コントローラ110は、通常モードにおいては、この拍動駆動を選択できるように制御する。一方、救急搬送モードにおいては、電力を消耗するため選択できないように制御する。 Also, the extracorporeal circulation device 100 can perform pulsation drive. The pulsation drive is a drive in which the controller 110 controls the drive motor 111 to periodically increase or decrease the number of rotations so that blood can easily reach the periphery. A pulsation occurs as the rotational speed periodically increases and decreases. The controller 110 performs control so that the pulsation drive can be selected in the normal mode. On the other hand, in the emergency transport mode, control is performed so that selection is not possible because power is consumed.
 さらには、コントローラ110は、通常モードにおいては、体外循環装置100が有する機能のうち、その他電力を消費する機能で生命維持に必須ではない機能であっても選択可能に制御する。一方、救急搬送モードにおいては、電力を消耗するので当該機能を選択できないように制御する。 Furthermore, in the normal mode, the controller 110 controls the extracorporeal circulation device 100 so as to be selectable even if it is a function that consumes other power but is not essential for life support. On the other hand, in the emergency transport mode, since power is consumed, control is performed so that the function cannot be selected.
 このように体外循環装置100は、救急搬送時か否かによって、通常モードと、救急搬送モードとを切り替えて動作することができる。この切替のための詳細な処理を図3を参照して説明する。 As described above, the extracorporeal circulation device 100 can operate by switching between the normal mode and the emergency transport mode depending on whether or not the emergency transport is being performed. Detailed processing for this switching will be described with reference to FIG.
 図3は、本実施形態に係る体外循環装置100が実施する救急搬送判定処理の手順を示すフローチャートである。 FIG. 3 is a flowchart illustrating a procedure of emergency conveyance determination processing performed by the extracorporeal circulation device 100 according to the present embodiment.
 ステップS301において、コントローラ110は、体外循環装置100を通常モードで動作させるように制御する。 In step S301, the controller 110 controls the extracorporeal circulation device 100 to operate in the normal mode.
 ステップS302において、コントローラ110は、体外循環装置100が電源に接続されて、AC給電が開始したことを検出する。電源接続が検出された場合(S302;Yes)、ステップS303へ進む。一方、電源接続が検出されていない場合(S302;No)、待機する。 In step S302, the controller 110 detects that the extracorporeal circulation device 100 is connected to a power source and AC power feeding is started. When the power connection is detected (S302; Yes), the process proceeds to step S303. On the other hand, when the power connection is not detected (S302; No), it waits.
 ステップS303において、コントローラ110は、外部電源からのAC給電の給電状態が不安定か否かを判定する。ここでは、外部電源からのAC給電電圧の変化に基づいて給電状態の安定性を判定する。たとえばAC給電電圧が閾値以下になった場合に給電状態が不安定であると判定する。また、AC給電が所定時間内に規定回数以上ON/OFFを繰り返した場合に電力の供給が不安定であると判定してもよい。給電状態が不安定であると判定された場合(S303;Yes)、ステップS304へ進む。一方、給電状態が不安定ではないと判定された場合(S303;No)、ステップS308へ進む。 In step S303, the controller 110 determines whether or not the power supply state of the AC power supply from the external power source is unstable. Here, the stability of the power supply state is determined based on the change in the AC power supply voltage from the external power supply. For example, when the AC power supply voltage is equal to or lower than the threshold value, it is determined that the power supply state is unstable. Further, it may be determined that the power supply is unstable when AC power supply is repeatedly turned ON / OFF a predetermined number of times within a predetermined time. When it is determined that the power supply state is unstable (S303; Yes), the process proceeds to step S304. On the other hand, when it is determined that the power supply state is not unstable (S303; No), the process proceeds to step S308.
 ステップS304において、コントローラ110は、被検者130を救急搬送中であると判断し、通常モードから救急搬送モードへの切り替えの可否をユーザに確認する。たとえば、表示部203に切り替えの可否を問う表示を行い、操作部202を介して当該可否の入力を受け付ける。 In step S304, the controller 110 determines that the subject 130 is in the emergency transport mode, and confirms with the user whether or not the normal mode can be switched to the emergency transport mode. For example, a display asking whether switching is possible is displayed on the display unit 203, and the input of whether the switching is possible is accepted via the operation unit 202.
 ステップS305において、コントローラ110は、ユーザにより切替が許可されたか否かを判定する。切替が許可されたと判定された場合(S305;Yes)、ステップS306へ進む。一方、切替が許可されないと判定された場合(S305;No)、ステップS308へ進む。 In step S305, the controller 110 determines whether switching is permitted by the user. When it is determined that switching is permitted (S305; Yes), the process proceeds to step S306. On the other hand, when it is determined that switching is not permitted (S305; No), the process proceeds to step S308.
 ステップS306において、コントローラ110は、体外循環装置100を救急搬送モードへ切り替える。上述したように、バッテリ充電の禁止または拍動駆動の選択不可等の制御を行い、生命維持に必要な他の装置や機能への給電を優先させる。 In step S306, the controller 110 switches the extracorporeal circulation device 100 to the emergency transport mode. As described above, control such as prohibition of battery charging or impossibility of selection of pulsation drive is performed, and priority is given to power supply to other devices and functions necessary for life support.
 ステップS307において、コントローラ110は、体外循環装置100が救急搬送モードへ切り替えられたこと(現在救急搬送モードで動作中であること)を、表示部203への表示によりユーザへ報知する。なお、報知の方法は必ずしも表示部203への表示に限定されるものではなく、スピーカ(不図示)からの音声や音、LED(不図示)からの光(たとえば、救急搬送モードであるときには赤色のLEDを発光させるように制御する)、あるいはこれらの組み合わせによって報知してもよい。 In step S307, the controller 110 notifies the user that the extracorporeal circulation apparatus 100 has been switched to the emergency transport mode (currently operating in the emergency transport mode) by displaying on the display unit 203. Note that the notification method is not necessarily limited to the display on the display unit 203, but voice and sound from a speaker (not shown), light from an LED (not shown) (for example, red when in the emergency transport mode) The LED may be controlled to emit light), or a combination thereof may be used.
 ステップS308において、コントローラ110は、給電状態が安定している、あるいはユーザにより切替が許可されなかったので体外循環装置100を通常モードのまま動作させる。以上で図3のフローチャートの各処理が終了する。 In step S308, the controller 110 operates the extracorporeal circulation device 100 in the normal mode because the power supply state is stable or switching is not permitted by the user. Thus, each process of the flowchart of FIG. 3 is completed.
 以上説明したように、本実施形態では、外部電源からの給電状態の安定性に応じて通常モードと救急搬送モードとを切り替える。これにより、救急搬送中の限られた電力供給を有効に活用することができる。 As described above, in the present embodiment, the normal mode and the emergency transport mode are switched according to the stability of the power supply state from the external power source. Thereby, the limited electric power supply during emergency conveyance can be utilized effectively.
 [第2の実施形態]
 第1の実施形態では、救急搬送中か否かを判定するために、AC電源の給電状態に着目する構成を説明した。しかしながら、救急搬送中か否かを判定するための条件は第1の実施形態に限定されるものではない。本実施形態では、体外循環装置の振動に応じて通常モードと救急搬送モードとを切り替える例を説明する。体外循環装置が振動しているということは、救急搬送中(たとえば道路を移動中)の救急車両内で使用されている可能性があると判断できる。
[Second Embodiment]
In the first embodiment, the configuration in which attention is paid to the power supply state of the AC power supply has been described in order to determine whether or not emergency transport is being performed. However, the condition for determining whether or not emergency transport is in progress is not limited to the first embodiment. In the present embodiment, an example will be described in which the normal mode and the emergency transport mode are switched according to the vibration of the extracorporeal circulation device. If the extracorporeal circulation device vibrates, it can be determined that there is a possibility that the extracorporeal circulation device is being used in an emergency vehicle during emergency transport (for example, moving on a road).
 以下、本実施形態に係る体外循環装置100が実施する処理の手順を説明する。なお体外循環装置100の構成は第1の実施形態と同様であるため、詳細な説明は省略する。 Hereinafter, a procedure of processing performed by the extracorporeal circulation device 100 according to the present embodiment will be described. Since the configuration of the extracorporeal circulation device 100 is the same as that of the first embodiment, detailed description thereof is omitted.
 図4は、本実施形態に係る体外循環装置100が実施する救急搬送判定処理の手順を示すフローチャートである。 FIG. 4 is a flowchart illustrating a procedure of emergency conveyance determination processing performed by the extracorporeal circulation device 100 according to the present embodiment.
 ここでステップS401-S402、S406-S410では、それぞれ図3のステップS301-S302、S304-S308と同様の処理を行うため、差異点を説明していく。 Here, in steps S401 to S402 and S406 to S410, the same processes as steps S301 to S302 and S304 to S308 of FIG.
 ステップS403において、コントローラ110は、体外循環装置100の振動を検知する。体外循環装置100は、救急車やドクターヘリ等の救急車両が移動する際の振動に起因して振動が生じる。たとえば体外循環装置100は加速度センサ(不図示)を備え、当該加速度センサにより振動検知する。 In step S403, the controller 110 detects the vibration of the extracorporeal circulation device 100. The extracorporeal circulation device 100 is vibrated due to vibrations when an ambulance such as an ambulance or a doctor helicopter moves. For example, the extracorporeal circulation device 100 includes an acceleration sensor (not shown) and detects vibration by the acceleration sensor.
 ステップS404において、コントローラ110は、検知された振動の振幅が閾値以上であるか否かを判定する。この閾値は、車両の移動中の振動を計測しておき、予め適切な値を設定しておくものとする。 In step S404, the controller 110 determines whether or not the detected vibration amplitude is greater than or equal to a threshold value. As this threshold value, vibration during movement of the vehicle is measured, and an appropriate value is set in advance.
 振幅が閾値以上であると判定された場合(S404;Yes)、ステップS405へ進む。一方、振幅が閾値未満であると判定された場合(S404;No)、ステップS410へ進み、体外循環装置100を通常モードのまま動作させる。 If it is determined that the amplitude is greater than or equal to the threshold (S404; Yes), the process proceeds to step S405. On the other hand, when it determines with an amplitude being less than a threshold value (S404; No), it progresses to step S410 and operates the extracorporeal circulation apparatus 100 with a normal mode.
 ステップS405において、コントローラ110は、タイマ部204により閾値以上の振幅の振動が所定時間以上継続したか否かを判定する。所定時間以上継続したと判定された場合(S405;Yes)、ステップS406へ進み、救急搬送モードへ切り替える制御を行う。一方、所定時間以上継続しなかったと判定された場合(S405;No)、ステップS410へ進み、体外循環装置100を通常モードのまま動作させる。以上で図4のフローチャートの各処理が終了する。 In step S405, the controller 110 determines whether or not the timer unit 204 has continued to vibrate with an amplitude greater than or equal to the threshold value for a predetermined time or more. When it determines with having continued more than predetermined time (S405; Yes), it progresses to step S406 and performs control which switches to emergency conveyance mode. On the other hand, when it determines with having not continued more than predetermined time (S405; No), it progresses to step S410 and operates the extracorporeal circulation apparatus 100 with a normal mode. Thus, the processes in the flowchart of FIG. 4 are completed.
 以上説明したように、本実施形態では、装置の振動に応じて通常モードと救急搬送モードとを切り替える。これにより、救急搬送中の限られた電力供給を有効に活用することができる。 As described above, in this embodiment, the normal mode and the emergency transport mode are switched according to the vibration of the apparatus. Thereby, the limited electric power supply during emergency conveyance can be utilized effectively.
 また、第1の実施形態と第2の実施形態とを組み合わせてもよい。すなわち、給電状態の安定性及び装置の振動の両方を判断基準に用いて、両条件を満足する場合(AC給電不安定かつ閾値以上の振幅の振動が所定時間継続)に救急搬送モードへ切り替えてもよい。これにより、より高精度に救急搬送中であることを判定できるようになる。 Also, the first embodiment and the second embodiment may be combined. In other words, using both the stability of the power supply state and the vibration of the device as criteria, switch to the emergency transport mode when both conditions are satisfied (AC power supply is unstable and vibration with an amplitude exceeding the threshold continues for a predetermined time). Also good. This makes it possible to determine that the emergency transport is being performed with higher accuracy.
 [第3の実施形態]
 救急搬送中か否かを判定するための条件は第1及び第2の実施形態に限定されるものではない。本実施形態では、救急車両のサイレン等の音出力を検知し、当該検知に応じて通常モードと救急搬送モードとを切り替える例を説明する。
[Third Embodiment]
The conditions for determining whether or not emergency transport is in progress are not limited to the first and second embodiments. In the present embodiment, an example will be described in which sound output from an emergency vehicle such as a siren is detected and the normal mode and the emergency transport mode are switched in accordance with the detection.
 以下、本実施形態に係る体外循環装置100が実施する処理の手順を説明する。体外循環装置100の構成は第1の実施形態と同様であるため詳細な説明は省略する。 Hereinafter, a procedure of processing performed by the extracorporeal circulation device 100 according to the present embodiment will be described. Since the configuration of the extracorporeal circulation device 100 is the same as that of the first embodiment, detailed description thereof is omitted.
 図5は、本実施形態に係る体外循環装置100が実施する救急搬送判定処理の手順を示すフローチャートである。 FIG. 5 is a flowchart illustrating a procedure of emergency conveyance determination processing performed by the extracorporeal circulation device 100 according to the present embodiment.
 ここでステップS501-S502、S504-S508では、それぞれ図3のステップS301-S302、S304-S308と同様の処理を行うため、差異点を説明する。 Here, in steps S501 to S502 and S504 to S508, the same processes as steps S301 to S302 and S304 to S308 in FIG.
 ステップS503において、コントローラ110は、救急車両から発せられるサイレン等の音出力を検知したか否かを判定する。たとえば予め保持したサイレンに特有の周波数帯域の情報と比較して所定の重複条件を満たした場合に、サイレンの音出力を検知したと判定する。音出力を検知したと判定された場合(S503;Yes)、ステップS504へ進み、体外循環装置100を通常モードから救急搬送モードへ切り替える。一方、音出力を検知していないと判定された場合(S503;No)、ステップS508へ進み、体外循環装置100を通常モードのまま動作させる。 In step S503, the controller 110 determines whether or not a sound output from a rescue vehicle such as a siren is detected. For example, it is determined that the sound output of the siren has been detected when a predetermined overlap condition is satisfied as compared with information of a frequency band specific to the siren held in advance. When it is determined that sound output has been detected (S503; Yes), the process proceeds to step S504, and the extracorporeal circulation device 100 is switched from the normal mode to the emergency transport mode. On the other hand, when it is determined that no sound output is detected (S503; No), the process proceeds to step S508, and the extracorporeal circulation device 100 is operated in the normal mode.
 以上説明したように、本実施形態では、救急車両の音出力の検知に応じて通常モードと救急搬送モードとを切り替える。これにより、救急搬送中の限られた電力供給を有効に活用することができる。 As described above, in this embodiment, the normal mode and the emergency transport mode are switched according to the detection of the sound output of the emergency vehicle. Thereby, the limited electric power supply during emergency conveyance can be utilized effectively.
 また、第1の実施形態と第3の実施形態とを組み合わせてもよい。すなわち、給電状態の安定性及び音出力の検知の両方を判断基準に用いて、両条件を満足する場合(AC給電不安定かつ救急車両の音出力を検知)に救急搬送モードへ切り替えてもよい。これにより、より高精度に救急搬送中であることを判定できるようになる。 Further, the first embodiment and the third embodiment may be combined. In other words, both the stability of the power supply state and the detection of the sound output are used as the determination criteria, and when both conditions are satisfied (AC power supply is unstable and the sound output of the emergency vehicle is detected), the emergency transport mode may be switched. . This makes it possible to determine that the emergency transport is being performed with higher accuracy.
 さらには、第1乃至第3の実施形態の各判定条件をすべて組み合わせてもよい。すなわち、すべての条件を満足する場合(AC給電不安定かつ振動検知かつ救急車両の音出力を検知)に救急搬送モードへ切り替えるようにしてもよい。これにより、さらに高精度に救急搬送中であることを判定できるようになる。 Furthermore, all the determination conditions of the first to third embodiments may be combined. That is, when all the conditions are satisfied (AC power feeding is unstable, vibration detection and sound output from the emergency vehicle are detected), the emergency transport mode may be switched. This makes it possible to determine that the emergency transport is being performed with higher accuracy.
 第1乃至第3の実施形態では、体外循環装置自体が救急搬送中か否かを自動的に判定して通常モードと救急搬送モードとを切り替える処理について説明した。これに対し、ユーザが手動で体外循環装置の動作モードを切り替えてもよい。その場合、救急隊員等のユーザは、救急車両内で体外循環装置100を使用する場合に、図2に示す操作部202(たとえばハードスイッチ)を直接操作して救急搬送モードへの切替を行う。あるいは、表示部203のタッチ操作により切替を行う。 In the first to third embodiments, the process of automatically determining whether or not the extracorporeal circulation device itself is in emergency transport and switching between the normal mode and the emergency transport mode has been described. On the other hand, the user may manually switch the operation mode of the extracorporeal circulation device. In that case, when using the extracorporeal circulation device 100 in an emergency vehicle, a user such as an ambulance crew directly operates the operation unit 202 (for example, a hard switch) shown in FIG. 2 to switch to the emergency transport mode. Alternatively, switching is performed by a touch operation on the display unit 203.
 これにより、何らかの原因で救急搬送モードへの切替がなされていない場合に、手動で切替措置を取ることができるので、救急搬送中の限られた電力供給を有効に活用することができる。 This makes it possible to take manual switching measures when the switch to the emergency transport mode has not been made for some reason, so that the limited power supply during the emergency transport can be effectively utilized.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

Claims (13)

  1.  被検者の血液を体外で循環させる体外循環装置であって、
     外部電源から前記体外循環装置への給電状態の安定性を判定する判定手段と、
     前記判定手段により前記給電状態が不安定であると判定された場合に救急搬送中であると判断し、電力消費を低減せずに動作する通常モードから、前記電力消費を低減して動作する救急搬送モードへ切り替える制御手段と、
     を備えることを特徴とする体外循環装置。
    An extracorporeal circulation device for circulating the blood of a subject outside the body,
    Determination means for determining the stability of a power supply state from an external power source to the extracorporeal circulation device;
    When the power supply state is determined to be unstable by the determination means, it is determined that the emergency transport is being performed, and the emergency operation that operates while reducing the power consumption from the normal mode that operates without reducing the power consumption. Control means for switching to the transport mode;
    An extracorporeal circulation device comprising:
  2.  前記判定手段は、前記外部電源からのAC給電電圧の変化に基づいて前記給電状態の安定性を判定することを特徴とする請求項1に記載の体外循環装置。 2. The extracorporeal circulation apparatus according to claim 1, wherein the determination unit determines the stability of the power supply state based on a change in an AC power supply voltage from the external power source.
  3.  前記判定手段は、前記AC給電電圧が閾値以下になった場合に前記給電状態が不安定であると判定することを特徴とする請求項2に記載の体外循環装置。 3. The extracorporeal circulation apparatus according to claim 2, wherein the determination unit determines that the power supply state is unstable when the AC power supply voltage becomes a threshold value or less.
  4.  前記判定手段は、前記外部電源からのAC給電が所定時間内に規定回数以上ON/OFFを繰り返した場合に電力の供給が不安定であると判定することを特徴とする請求項1に記載の体外循環装置。 2. The determination unit according to claim 1, wherein the determination unit determines that the power supply is unstable when the AC power supply from the external power source is repeatedly turned ON / OFF a predetermined number of times within a predetermined time. Extracorporeal circulation device.
  5.  前記救急搬送中であると判断された場合における前記通常モードから前記救急搬送モードへの切り替えの可否をユーザに確認する確認手段をさらに備え、
     前記制御手段は、前記ユーザによって前記切り替えが許可された場合に前記救急搬送モードへの切り替えを行うことを特徴とする請求項1乃至4の何れか1項に記載の体外循環装置。
    Further comprising confirmation means for confirming to the user whether or not switching from the normal mode to the emergency transport mode when it is determined that the emergency transport is in progress;
    5. The extracorporeal circulation apparatus according to claim 1, wherein the control unit performs switching to the emergency transport mode when the switching is permitted by the user. 6.
  6.  前記制御手段により前記通常モードから前記救急搬送モードへ切り替えられたことをユーザへ報知する報知手段をさらに備えることを特徴とする請求項1乃至5の何れか1項に記載の体外循環装置。 The extracorporeal circulation device according to any one of claims 1 to 5, further comprising notification means for notifying a user that the control means has switched the normal mode to the emergency transport mode.
  7.  前記体外循環装置の振動を検知する振動検知手段をさらに備え、
     前記制御手段は、前記判定手段により前記給電状態が不安定であると判定された場合であって前記振動検知手段により検知された前記振動について閾値以上の振幅の振動が所定時間以上継続した場合に、前記通常モードから前記救急搬送モードへ切り替えることを特徴とする請求項1乃至6の何れか1項に記載の体外循環装置。
    It further comprises vibration detection means for detecting vibration of the extracorporeal circulation device,
    When the determination unit determines that the power supply state is unstable and the vibration detected by the vibration detection unit continues to vibrate with an amplitude greater than or equal to a threshold value for a predetermined time or more. The extracorporeal circulation device according to any one of claims 1 to 6, wherein the normal mode is switched to the emergency transport mode.
  8.  前記救急搬送中であることを示す音出力を検知する検知手段をさらに備え、
     前記制御手段は、前記判定手段により前記給電状態が不安定であると判定された場合であって前記検知手段により音出力が検知された場合に、前記通常モードから前記救急搬送モードへ切り替えることを特徴とする請求項1乃至7の何れか1項に記載の体外循環装置。
    It further comprises detection means for detecting a sound output indicating that the emergency transport is in progress,
    The control unit switches from the normal mode to the emergency transport mode when the determination unit determines that the power supply state is unstable and the detection unit detects a sound output. The extracorporeal circulation device according to any one of claims 1 to 7, wherein the extracorporeal circulation device is characterized by the following.
  9.  前記救急搬送モードでは、前記体外循環装置のバッテリへの充電を実行しないことを特徴とする請求項1乃至8の何れか1項に記載の体外循環装置。 The extracorporeal circulation apparatus according to any one of claims 1 to 8, wherein the battery of the extracorporeal circulation apparatus is not charged in the emergency transport mode.
  10.  前記救急搬送モードでは、前記体外循環装置のバッテリへの充電を所定量までしか実行しないことを特徴とする請求項1乃至8の何れか1項に記載の体外循環装置。 The extracorporeal circulation apparatus according to any one of claims 1 to 8, wherein in the emergency transfer mode, charging of the battery of the extracorporeal circulation apparatus is performed only up to a predetermined amount.
  11.  前記救急搬送モードでは、前記体外循環装置の拍動駆動を禁止することを特徴とする請求項1乃至10の何れか1項に記載の体外循環装置。 The extracorporeal circulation apparatus according to any one of claims 1 to 10, wherein in the emergency transport mode, pulsatile driving of the extracorporeal circulation apparatus is prohibited.
  12.  判定手段と、制御手段とを備えており、被検者の血液を体外で循環させる体外循環装置の制御方法であって、
     前記判定手段が、外部電源から前記体外循環装置への給電状態の安定性を判定する判定工程と、
     前記制御手段が、前記判定工程により前記給電状態が不安定であると判定された場合に救急搬送中であると判断し、電力消費を低減せずに動作する通常モードから、前記電力消費を低減して動作する救急搬送モードへ切り替える制御工程と、
     を有することを特徴とする体外循環装置の制御方法。
    A method for controlling an extracorporeal circulation device comprising a determination means and a control means for circulating the blood of a subject outside the body,
    A determination step in which the determination means determines the stability of a power supply state from an external power source to the extracorporeal circulation device;
    When the control means determines that the power supply state is unstable in the determination step, the control means determines that emergency transport is in progress and reduces the power consumption from the normal mode that operates without reducing power consumption. Control process to switch to the emergency transport mode that operates as
    A method for controlling an extracorporeal circulation apparatus, comprising:
  13.  請求項12に記載の体外循環装置の制御方法の各工程をコンピュータに実行させるためのプログラムが記憶された記憶媒体。 A storage medium storing a program for causing a computer to execute each step of the control method for the extracorporeal circulation device according to claim 12.
PCT/JP2013/002373 2013-04-05 2013-04-05 Extracorporeal circulation device, and control method and storage medium for extracorporeal circulation device WO2014162359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002373 WO2014162359A1 (en) 2013-04-05 2013-04-05 Extracorporeal circulation device, and control method and storage medium for extracorporeal circulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002373 WO2014162359A1 (en) 2013-04-05 2013-04-05 Extracorporeal circulation device, and control method and storage medium for extracorporeal circulation device

Publications (1)

Publication Number Publication Date
WO2014162359A1 true WO2014162359A1 (en) 2014-10-09

Family

ID=51657694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002373 WO2014162359A1 (en) 2013-04-05 2013-04-05 Extracorporeal circulation device, and control method and storage medium for extracorporeal circulation device

Country Status (1)

Country Link
WO (1) WO2014162359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509974A (en) * 2015-03-03 2018-04-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Adaptive clinical use profile for advanced defibrillators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249655A (en) * 1986-03-31 1987-10-30 アイシン精機株式会社 Auxiliary recirculation machinery driving apparatus
JPS63294865A (en) * 1987-02-27 1988-12-01 ヴァスコー インコーポレイテッド Bio-compatible ventricle aid and arrhythmia control apparatus
JPH11161344A (en) * 1997-12-01 1999-06-18 Shadan Aiseikai Equipment control unit
JP2005518503A (en) * 2002-02-21 2005-06-23 テルモ カーディオバスキュラー システムズ コーポレイション Method and apparatus for controlling a liquid pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249655A (en) * 1986-03-31 1987-10-30 アイシン精機株式会社 Auxiliary recirculation machinery driving apparatus
JPS63294865A (en) * 1987-02-27 1988-12-01 ヴァスコー インコーポレイテッド Bio-compatible ventricle aid and arrhythmia control apparatus
JPH11161344A (en) * 1997-12-01 1999-06-18 Shadan Aiseikai Equipment control unit
JP2005518503A (en) * 2002-02-21 2005-06-23 テルモ カーディオバスキュラー システムズ コーポレイション Method and apparatus for controlling a liquid pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509974A (en) * 2015-03-03 2018-04-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Adaptive clinical use profile for advanced defibrillators

Similar Documents

Publication Publication Date Title
JP6005844B2 (en) Circulation device and control method thereof
RU2261118C2 (en) Artificial circulation of the blood mobile apparatus
JP5851616B2 (en) Control device, circulation device and control method
JP5997368B2 (en) Circulation device and control method thereof
WO2014162359A1 (en) Extracorporeal circulation device, and control method and storage medium for extracorporeal circulation device
JP2014532462A (en) Device for storing and filtering fluids and venting gas and hematoma aspirator based on devices that store and filter fluids and vent gas
KR102342717B1 (en) Extracorporeal blood circulatory system for education
JP6170603B2 (en) Circulation device and control method thereof
WO2015141622A1 (en) Alarm device, extracorporeal circulation device, and alarm-device control method
JP5869684B2 (en) Controller for life support apparatus and control method thereof
WO2014162358A1 (en) Extracorporeal circulation device
JP5947450B2 (en) Circulation device, control device and information processing method
JP5852248B2 (en) Extracorporeal circulation device, control device and control method thereof
EP3915602A1 (en) A mobile negative pressure wound therapy device
JP5913598B2 (en) Extracorporeal circulation device and operating method thereof
WO2014162328A1 (en) External circulatory device and control method
JP5918364B2 (en) Extracorporeal circulation device and priming method
WO2014128763A1 (en) Circulation device, control device, and information processing method
JP2023527167A (en) Mobile Negative Pressure Wound Therapy Device
WO2014128764A1 (en) Circulation device, control device, and information processing method
JP2016214274A (en) Blood purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP