WO2014162331A1 - Bridge, network system, air-conditioner outdoor unit, and air-conditioning network system - Google Patents

Bridge, network system, air-conditioner outdoor unit, and air-conditioning network system Download PDF

Info

Publication number
WO2014162331A1
WO2014162331A1 PCT/JP2013/002224 JP2013002224W WO2014162331A1 WO 2014162331 A1 WO2014162331 A1 WO 2014162331A1 JP 2013002224 W JP2013002224 W JP 2013002224W WO 2014162331 A1 WO2014162331 A1 WO 2014162331A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
master station
database
frame
air
Prior art date
Application number
PCT/JP2013/002224
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 飯塚
北市 隆一
克佳 高橋
和樹 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/002224 priority Critical patent/WO2014162331A1/en
Publication of WO2014162331A1 publication Critical patent/WO2014162331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node

Definitions

  • This invention relates to a network system in which a bridge exists between a master station and a slave station.
  • a bus is divided by installing a bridge between the master station and the slave station.
  • the bridge determines an output destination port to be relayed based on data link layer information, and performs relaying.
  • a bridge it is possible to transmit a frame only to a network in which a device that needs to receive the frame is present among the divided bus shared networks.
  • the bridge when the bridge relays the frame, it learns the transmission source address and reception port of the frame. Thereafter, when a frame is received, it relays to the corresponding port based on the previously learned content. If it is a relay frame to an unlearned port, the bridge relays to all ports (flooding).
  • flooding has a problem that the consumption of the communication band is large, and there are the following methods for reducing the consumption of the communication band by suppressing the flooding.
  • correspondence information storage means that stores correspondence information between nodes and ports
  • flooding suppression port storage means that stores information that can identify ports that suppress flooding of frames
  • information stored in the flooding suppression port storage means Based on the above, there is disclosed a relay device having relay means for limiting a port to which a frame whose destination is a node not stored in the correspondence information storage means is flooded (see Patent Document 1).
  • the learning table A transmission device determines a port to which the received packet is transmitted using the transferred learning content (see Patent Document 2).
  • the source address or port of the frame is learned in the bridge, and the relay and flooding of the frame is performed based on the learned information.
  • the flooding increases. Increased communication bandwidth consumption.
  • no learning is performed at the time of system startup, the above phenomenon often occurs.
  • the present invention has been made in view of such a situation, and an object of the present invention is to realize a configuration that suppresses flooding and communication bandwidth consumption even when a bridge does not learn a frame source address or port. To do.
  • the present invention relays between a master station and a slave station, performs snooping on a frame relayed at the time of initial setting, and is addressed to the master station or from the master station. Frames other than frames are discarded, and when relaying to the master station, a relay unit that transmits to all nodes connected to the master station side, a database for identifying an initial sequence, and a snooping frame And a sequence determination unit that determines completion of initial setting based on a database.
  • the bridge according to the present invention relays only with the master station until the bridge learns the transmission source address or port of the frame, it has the effect of suppressing flooding and communication bandwidth consumption.
  • FIG. 1 is a conceptual diagram of a network system in Embodiment 1.
  • FIG. 1 is a configuration diagram of a bridge 100 according to Embodiment 1.
  • FIG. 3 is a flowchart until the bridge 100 according to the first embodiment starts relaying other than a frame with the master station 101.
  • FIG. 6 is a configuration diagram of a bridge 100 according to the second embodiment.
  • FIG. 5 is a conceptual diagram of a network system in a third embodiment.
  • FIG. 10 is a flowchart until the bridge 100 according to the third embodiment starts relaying other than a frame with the master station 101.
  • FIG. 1 is a conceptual diagram of a network system according to the first embodiment.
  • This embodiment includes a bridge 100, a master station 101, and a slave station 102.
  • the bridge 100 is located between the master station 101 and the slave station 102.
  • Each of the master station 101, the slave station 102, and the bridge 100 may be composed of one or more.
  • the master station 101 manages and controls the slave station 102 via the bridge 100. Further, the master station 101 confirms the existence of all the slave stations 102 via the bridge 100 as an initialization sequence. For example, it is assumed that there is a slave station 102 that has confirmed the presence of all slave stations 102 in the network and has returned a response, and that there is no slave station 102 that has not responded.
  • the bridge 100 relays a transmission frame from the master station 101 to the slave station 102 and relays a response frame from the slave station 102 to the master station 101. Further, relaying between the slave stations 102 is also performed. A detailed configuration of the bridge 100 will be described later.
  • the slave station 102 transmits a response frame via the bridge 100 to the frame transmitted from the master station 101 during the initialization sequence.
  • the slave station 102 starts communication with the other master stations 101 and slave stations 102 after completing all initialization sequences.
  • Ethernet registered trademark
  • dedicated protocol a dedicated protocol
  • the address system of the dedicated protocol is not an IP address used for Ethernet (registered trademark), but assigns an address dedicated to the dedicated protocol.
  • FIG. 2 is a configuration diagram of the bridge 100 according to the first embodiment.
  • the bridge 100 in the present embodiment includes a relay unit 201, a sequence determination unit 202, and a database 203.
  • the relay unit 201 includes a frame discard processing unit 201a and a snooping processing unit 201b in addition to the functions provided in a general bridge device.
  • the database 203 and the sequence determination unit 202 are described separately, but may be combined into one for implementation.
  • the relay unit 201 relays frames of the slave station 102 and the slave station 102 between the master station 101 and the slave station 102 or via a plurality of bridges 100.
  • a port connected to the master station 101 of the relay unit 201 is a master station side port, and a port connected to the slave station 102 is a slave station side port.
  • the snooping processing unit 201b performs frame snooping when relaying inter-application communication (for example, an initial sequence).
  • the sequence determination unit 202 receives the frame snooped by the snooping processing unit 201b, analyzes it based on the database 203, and determines whether initialization is complete.
  • the database 203 holds an application initialization sequence.
  • the sequence is information for identifying an initialization sequence in which the master station 101 confirms the existence of all the slave stations 102. As an example, the number of connected slave stations 102, message type information, and a conditional expression for determining completion of initial setting are held.
  • the sequence determination unit 202 determines the number of responses of existence confirmation from the slave station 102 using the sequence stored in the database 203, for example, the number information of the slave stations 102 and the message type information (whether it is a response confirmation frame). When the number of frames that match the conditions matches the number of slave stations 102, the initial setting is completed.
  • the frame discard processing unit 201a prevents the bridge 100 from relaying frames other than the frame related to the master station 101 (the frame addressed to the master station or the frame whose transmission source is the master station) until the initial setting is completed. Therefore, the frame is discarded.
  • the reason why only the frame with the master station 101 is relayed is that the master station confirms the existence of all slave stations and the slave station 102 needs to return a response.
  • FIG. 3 is a flowchart until the bridge 100 according to the first embodiment starts relaying other than a frame with the master station 101.
  • the relay unit 201 of the bridge 100 checks the existence of the master station 101 or all the slave stations 102 in the network from the master station 101 at the start of communication.
  • the snooping processing unit 201b performs snooping on the received frame.
  • the sequence determination unit 202 of the bridge 100 performs analysis based on the database 203 held by itself using the snooping frame and determines completion of initial setting.
  • the database 203 holds the number information of the connected slave stations 102, message type information, and a conditional expression for determining completion of initial setting.
  • the sequence determination unit 202 determines the number of responses of presence confirmation from the slave station 102 using the number information of the slave stations 102 and the message type information (whether it is a response confirmation frame) stored in the database 203, and the condition When the number of frames that match the number of slave stations 102 matches, the initial setting is completed.
  • step S103 when the bridge 100 can search for all addresses in a network to which the slave station 102 is connected, such as a limited address range, the database 203
  • the sequence determination unit 202 confirms that there is no device having the address by referring to the database 203, or initializes the device having the address. It may be determined that the initial setting is completed when one of the confirmation of completion of the sequence has confirmed the range for all addresses.
  • the sequence determination unit 202 may apply the same processing as in the previous paragraph to the address range.
  • the relay unit 201 starts relaying all frames in S108.
  • the relay unit 201 determines whether or not the “transmission source is a master station” or “destination is a master station”. Determine.
  • the relay unit 201 relays the frame in S106, and the “transmission source is the master station 101” or “ If the “destination is not the master station 101”, the frame discard processing unit 201a discards other frames in S107. The above processing is performed every time a new frame is received until it is determined that the initial setting has been completed.
  • the bridge 100 When the master station 101 confirms the existence of all devices in the network, in S106, the bridge 100 directly connects to the bridge 100 itself when relaying the “presence confirmation response frame” from the slave station 102.
  • the slave station 102 learns the address at the slave station 102 side port of the bridge 100. Further, the bridge 100 transmits only the “existence confirmation response frame” from the slave station 102 to all the master stations 101 connected to the master station 100 or other bridges 100. Therefore, the “existence confirmation response frame” transmitted from the slave station 102 via the bridge 100 is also learned at the master station side port of another bridge 100.
  • each slave station 102 always transmits an existence confirmation response frame in the initialization sequence, so that information on all slave stations 102 is learned by the relay unit 201 of each bridge 101 at the time of completion of the initialization sequence.
  • the Accordingly, flooding after the completion of the initialization sequence does not occur except for reasons such as deletion, device failure, and device addition due to aging of learned information.
  • the bridge 100 relays between the master station 101 and the slave station 102, performs snooping on the frame relayed at the time of initial setting, and discards frames other than the frame addressed to or from the master station 101.
  • a relay unit that transmits to all stations connected to the master station 100 or other bridge 100 (all nodes), a database 203 for identifying an initial sequence, and snooping
  • the sequence determination unit 202 that determines completion of initial setting based on the frame and the database 203 is suppressed, so that flooding that occurs in a situation where learning is insufficient at the time of initialization is suppressed, and bandwidth consumption is reduced. It becomes possible to do.
  • the present invention is particularly effective in narrowband communication.
  • bandwidth consumption due to flooding temporarily increases and congestion is caused when there are very many devices in the network. It is effective in terms of deterrence.
  • the master station 101 side port and slave station 102 side port of the bridge 100 may be manually set by the user, or the port that first receives the “existence confirmation frame” may be automatically set to the master station 101. Alternatively, other methods may be used.
  • Embodiment 2 a configuration in which all the configurations and operations of the first embodiment are provided and the database 203 of the bridge 100 is changed will be described.
  • FIG. 4 is a configuration diagram of the bridge 100 according to the second embodiment.
  • the bridge 100 that realizes the present embodiment has a function of exchanging information registered in the database 203 in the bridge 100 with information provided from the external server 103.
  • the external server 103 does not necessarily need to be an independent dedicated device, and may be configured such that devices such as the master station 101 and the slave station 102 have functions equivalent to the external server 103.
  • the internal data registered in the database 203 is information related to the initialization sequence.
  • the internal data registered in the database 203 can be registered even with sequence information other than the initialization sequence.
  • update information on information related to the initialization sequence may be used. For example, when there is a change in the number of connection devices in the network and the external server database 104 of the external server 103 holds the changed number information, the bridge 100 can exchange the number information registered in the database 203.
  • the bridge 100 relays between the master station 101 and the slave station 102, performs snooping on the frames relayed at the initial setting, and frames other than the frames addressed to the master station 101 or from the master station 102 In the case of discarding and relaying to the master station 101, all stations connected to the master station 100 or the relay unit transmitting to the other bridge 100, the database 203 for identifying the initial sequence, and snooping are performed. And a sequence determination unit 202 that determines completion of initial setting based on the frame 203 and the database 203, and the database 203 can be exchanged with external sequence information, so that the bridge 100 supports a plurality of sequences. Can be realized. As a result, when a new device is introduced into the network, it is only necessary to exchange the information registered in the database 203 without exchanging the bridge 100 itself, and the network system can be easily changed and the necessary cost can be reduced. It becomes possible to do.
  • FIG. 5 is a conceptual diagram of the network system in the third embodiment.
  • the configuration of the bridge 100 is the same as that of the first embodiment, but the operation of the sequence determination unit 202 and the data held in the database 203 are different.
  • the configuration of slave station 102 is the same as that of the first embodiment, and the configuration of master station 101 is different from that of the first embodiment.
  • the master station 101 includes an initial setting completion determination unit 204 that determines the number of slave stations 102 connected to the bridge 100 and determines completion of initial setting. The operation will be described.
  • FIG. 6 is a flowchart until the bridge 100 according to the third embodiment starts relaying other than a frame with the master station 101.
  • the relay unit 201 of the bridge 100 performs the master station 101 or slave station at the start of communication when confirming the existence from the master station 101 to all devices in the network.
  • the snooping processing unit 201b performs snooping on the received frame.
  • the sequence determination unit 202 of the bridge 100 performs analysis based on the database 203 held by itself using the snooping frame, and determines completion of initial setting.
  • the database 203 holds a conditional expression for determining message type information, that is, whether it is an initial setting completion notification frame.
  • the sequence determination unit 202 uses the message type information indicating the initial setting completion notification frame stored in the database 203, and when the initial setting completion determination unit 204 determines that the initial setting has been completed, the master station 101 communicates with the bridge 100. When the “initial setting completion notification frame” to be transmitted is received, the initial setting is completed.
  • the relay unit 201 starts relaying all frames in S208. If the sequence determination unit 202 determines in S205 that the initial setting has not been completed, the relay unit 201 determines in S205 whether or not the “transmission source is a master station” or “destination is a master station”. Determine. In S205, if the “source of the frame is the master station 101” or “the destination is the master station 101”, in S206, the relay unit 201 relays the frame, and the “source of the frame is the master station 101” or “ If the “destination is not the master station 101”, in step S207, the frame discard processing unit 201a discards the other frames. The above processing is performed every time a new frame is received until it is determined that the initial setting has been completed.
  • the bridge 100 When the master station 101 confirms the presence of all devices in the network, in S206, the bridge 100 directly connects to the bridge 100 itself when relaying the “presence confirmation response frame” from the slave station 102.
  • the slave station 102 learns the address at the slave station 102 side port of the bridge 100. Further, the bridge 100 transmits only the “existence confirmation response frame” from the slave station 102 to the entire segment on the master station 100 side. Therefore, the “existence confirmation response frame” transmitted from the slave station 102 via the bridge 100 is also learned at the master station side port of another bridge 100.
  • the bridge 100 relays between the master station 101 and the slave station 102, performs snooping on the frames relayed at the initial setting, and frames other than the frames addressed to the master station 101 or from the master station 102 In the case of discarding and relaying to the master station 101, a database 203 for identifying all stations connected to the master station 100 side or transmitting to the other bridge 100 and reception of the initial setting completion notification frame And a sequence determination unit 202 that determines completion of initialization based on the snooping frame and the database 203, so that flooding that occurs in a situation where learning is insufficient at the time of initialization is suppressed, Not only can consumption be reduced, but the database 2 Information to be registered in 3 can be realized by the conditional expression only, the processing load reduction of the bridge 100, it is possible to realize a low-performance and low-cost of parts constituting.
  • end of the initial sequence can be more reliably determined by combining the method described in the third embodiment and the method described in the first or second embodiment.
  • the database 203 holds information for determining an initialization sequence, such as message type information and a conditional expression for determining completion of initial setting.
  • the server 103 can change the information.
  • the address information of the slave station 102 is stored in the database 203 or can be registered from the external server 103, and the initial setting is completed at the time of snooping, so that the initial setting is not completed and an error is output.
  • an erroneous connection can be detected.
  • the sequence determination unit 202 confirms the address information in the database 203 by snooping even during the normal sequence. An erroneous connection can be detected by detecting an unregistered slave station and outputting an error.
  • Embodiment 5 FIG.
  • a case where the present invention is applied to an air conditioner network will be described as an application application example having the configuration described in the first to fourth embodiments.
  • description will be made assuming that all the configurations and operations described in the first to fourth embodiments are provided.
  • the master station 101 in FIG. 1 corresponds to an air conditioning management control device
  • the slave station 102 corresponds to an air conditioning outdoor unit or an air conditioning indoor unit.
  • the air conditioning management control device corresponding to the master station 101 performs management and control for a plurality of air conditioning outdoor units and a plurality of air conditioning indoor units.
  • the bridge 100 is a single device or is physically mounted on a slave station 102 (air conditioner outdoor unit) closest to the bridge 100. Further, by using the other slave station 102 connected to the bridge 100 as an air conditioning indoor unit, a layout that is not different from the conventional air conditioning system can be obtained. Also, with this layout, control information required only for the same refrigerant system can be transmitted only from the bridge 100 to the slave station 102 side.
  • the traffic suppression effect can be obtained for the entire network.
  • the slave station 102 other than the slave station 102 (air conditioning outdoor unit) closest to the bridge 100 than the bridge 100 is an air conditioning indoor unit.
  • the slave station may be a plurality of air conditioning outdoor units. You may make it comprise as several air-conditioning indoor unit connected to each.

Abstract

This bridge is provided with a relay unit (201), a database (203) for identifying an initial sequence, and a sequence determination unit (202). The relay unit (201) is connected to a master station (101) and a slave station (102), and when relaying frames, snoops on said frames. Before initial settings have been completed, the relay unit (201) relays only frames addressed to or coming from the master station, and when relaying to the master-station side, the relay unit (201) transmits to each connected station or other bridge. On the basis of the snooped frames and the database (203), the sequence determination unit (202) determines whether or not the aforementioned initial settings have been completed. This makes it possible to reduce band consumption by preventing flooding, which occurs when learning is insufficient at initialization.

Description

ブリッジ、ネットワークシステム、空調室外機、及び空調ネットワークシステムBridge, network system, air conditioning outdoor unit, and air conditioning network system
 この発明はマスタ局とスレーブ局の間にブリッジが存在するネットワークシステムに関係する。 This invention relates to a network system in which a bridge exists between a master station and a slave station.
 従来、マスタ局とスレーブ局で構成されるネットワークにおいて、各装置間はバス共有型のネットワークにより接続されていた。バス共有型ネットワークにおいては、マスタ局から送信する管理・制御フレームはネットワーク内の全てのスレーブ局に届くため、1台または特定のグループに向けてフレームを送信することができない。 Conventionally, in a network composed of a master station and a slave station, devices are connected by a bus sharing network. In the bus shared network, the management / control frame transmitted from the master station reaches all the slave stations in the network, and therefore cannot transmit the frame toward one or a specific group.
 上記の構成に対して、マスタ局とスレーブ局の間にブリッジを設置することによりバス共有の分割を行う構成がある。ブリッジは、データリンク層の情報を基に中継する出力先ポートを決定し、中継を行う。ブリッジを用いることにより、分割されたバス共有型ネットワークのうち、当該フレームの受信を必要とする装置が存在するネットワークに対してのみフレームを送信することが可能となる。 In addition to the above configuration, there is a configuration in which a bus is divided by installing a bridge between the master station and the slave station. The bridge determines an output destination port to be relayed based on data link layer information, and performs relaying. By using a bridge, it is possible to transmit a frame only to a network in which a device that needs to receive the frame is present among the divided bus shared networks.
 また、ブリッジはフレームを中継する際に、フレームの送信元アドレスおよび受信ポートの学習を行う。以降、フレーム受信時には以前に学習した内容を基に対応するポートへ中継を行う。学習していないポートへの中継フレームだった場合、ブリッジは全ポートへの中継(フラッディング)を行う。
 しかし、フラッディングは通信帯域の消費が大きいという課題があり、フラッディングを抑止することにより通信帯域の消費を軽減する方法として以下がある。
Further, when the bridge relays the frame, it learns the transmission source address and reception port of the frame. Thereafter, when a frame is received, it relays to the corresponding port based on the previously learned content. If it is a relay frame to an unlearned port, the bridge relays to all ports (flooding).
However, flooding has a problem that the consumption of the communication band is large, and there are the following methods for reducing the consumption of the communication band by suppressing the flooding.
 例えば、ノードとポートとの対応情報を記憶した対応情報記憶手段とフレームのフラッディングを抑制するポートを識別可能な情報を記憶したフラッディング抑制ポート記憶手段と、前記フラッディング抑制ポート記憶手段に記憶された情報に基づいて、前記対応情報記憶手段に記憶されていないノードを宛先とするフレームがフラッディングされるポートを限定する中継手段とを有する中継装置が開示されている(特許文献1参照)。 For example, correspondence information storage means that stores correspondence information between nodes and ports, flooding suppression port storage means that stores information that can identify ports that suppress flooding of frames, and information stored in the flooding suppression port storage means Based on the above, there is disclosed a relay device having relay means for limiting a port to which a frame whose destination is a node not stored in the correspondence information storage means is flooded (see Patent Document 1).
 また、複数のポートそれぞれに学習テーブルを有し、各ポートで受信したパケットの送信元アドレス及び送信元アドレスで各ポートの学習テーブルを検索して送出するポートを決定する伝送装置において、学習テーブルに転送した学習内容を用いて前記受信したパケットを送出するポートを決定することを特徴とする伝送装置が開示されている(特許文献2参照)。 Further, in a transmission apparatus that has a learning table for each of a plurality of ports and determines a port to be transmitted by searching the learning table of each port with the source address of the packet received at each port and the source address, the learning table A transmission device is disclosed that determines a port to which the received packet is transmitted using the transferred learning content (see Patent Document 2).
特開2011-024178号公報JP 2011-024178 A 特開2007-266850号公報JP 2007-266850 A
 従来の方式では、ブリッジにフレームの送信元アドレスまたはポートを学習しておき、学習した情報を基にフレームの中継、フラッディングを行うが、学習が十分に行われていない場合はフラッディングが多くなり、通信帯域の消費を大きくしていた。特に、システム立ち上げ時は一切の学習が行われていないため、上記のような現象がしばしば発生していた。 In the conventional method, the source address or port of the frame is learned in the bridge, and the relay and flooding of the frame is performed based on the learned information. However, if the learning is not performed sufficiently, the flooding increases. Increased communication bandwidth consumption. In particular, since no learning is performed at the time of system startup, the above phenomenon often occurs.
 本発明は、このような状況を鑑みたものであり、ブリッジがフレームの送信元アドレスまたはポートを学習していない状態においても、フラッディングを抑え通信帯域の消費を抑える構成を実現することを目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to realize a configuration that suppresses flooding and communication bandwidth consumption even when a bridge does not learn a frame source address or port. To do.
 上述した課題を解決し、目的を達成するために、本発明は、マスタ局とスレーブ局との間を中継し、初期設定時に中継するフレームに対しスヌーピングを行い、マスタ局宛またはマスタ局からのフレーム以外のフレームは破棄するとともに、マスタ局宛へ中継する場合はマスタ局側に接続される全てのノードに送信する中継部と、初期シーケンスを識別するためのデータベースと、スヌーピングがされたフレームとデータベースに基づいて初期設定完了の判定を行うシーケンス判定部とを備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention relays between a master station and a slave station, performs snooping on a frame relayed at the time of initial setting, and is addressed to the master station or from the master station. Frames other than frames are discarded, and when relaying to the master station, a relay unit that transmits to all nodes connected to the master station side, a database for identifying an initial sequence, and a snooping frame And a sequence determination unit that determines completion of initial setting based on a database.
 本発明にかかるブリッジは、ブリッジがフレームの送信元アドレスまたはポートを学習するまで、マスタ局とのみ中継するため、フラッディングを抑え通信帯域の消費を抑えるという効果を奏する。 Since the bridge according to the present invention relays only with the master station until the bridge learns the transmission source address or port of the frame, it has the effect of suppressing flooding and communication bandwidth consumption.
実施の形態1におけるネットワークシステムの概念図。1 is a conceptual diagram of a network system in Embodiment 1. FIG. 実施の形態1におけるブリッジ100の構成図。1 is a configuration diagram of a bridge 100 according to Embodiment 1. FIG. 実施の形態1におけるブリッジ100がマスタ局101とのフレーム以外の中継を開始するまでのフローチャート図。FIG. 3 is a flowchart until the bridge 100 according to the first embodiment starts relaying other than a frame with the master station 101. 実施の形態2におけるブリッジ100の構成図。FIG. 6 is a configuration diagram of a bridge 100 according to the second embodiment. 実施の形態3におけるネットワークシステムの概念図。FIG. 5 is a conceptual diagram of a network system in a third embodiment. 実施の形態3におけるブリッジ100がマスタ局101とのフレーム以外の中継を開始するまでのフローチャート図。FIG. 10 is a flowchart until the bridge 100 according to the third embodiment starts relaying other than a frame with the master station 101.
 以下に、本発明にかかるブリッジ、及びブリッジを用いたネットワークシステムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a bridge according to the present invention and a network system using the bridge will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は実施の形態1におけるネットワークシステムの概念図である。
 本実施の形態はブリッジ100と、マスタ局101と、スレーブ局102からなる。ブリッジ100はマスタ局101とスレーブ局102の間に位置する。マスタ局101、スレーブ局102およびブリッジ100は各々、1つまたは複数で構成されても良い。
Embodiment 1 FIG.
FIG. 1 is a conceptual diagram of a network system according to the first embodiment.
This embodiment includes a bridge 100, a master station 101, and a slave station 102. The bridge 100 is located between the master station 101 and the slave station 102. Each of the master station 101, the slave station 102, and the bridge 100 may be composed of one or more.
 マスタ局101はブリッジ100を介してスレーブ局102の管理および制御を行う。また、マスタ局101は初期化シーケンスとして、ブリッジ100を介して全スレーブ局102の存在確認を実施する。例えば、ネットワーク内の全てのスレーブ局102に対して存在確認行い、応答が返ってきたスレーブ局102は存在するとし、応答がないスレーブ局102については存在しないものとする。
 ブリッジ100は、マスタ局101から送信フレームをスレーブ局102へ中継するとともに、スレーブ局102からの応答フレームをマスタ局101へ中継するものである。また、スレーブ局102同士の中継も行われる。ブリッジ100の詳細構成について後述する。
The master station 101 manages and controls the slave station 102 via the bridge 100. Further, the master station 101 confirms the existence of all the slave stations 102 via the bridge 100 as an initialization sequence. For example, it is assumed that there is a slave station 102 that has confirmed the presence of all slave stations 102 in the network and has returned a response, and that there is no slave station 102 that has not responded.
The bridge 100 relays a transmission frame from the master station 101 to the slave station 102 and relays a response frame from the slave station 102 to the master station 101. Further, relaying between the slave stations 102 is also performed. A detailed configuration of the bridge 100 will be described later.
 スレーブ局102は、初期化シーケンス中にマスタ局101から送信されるフレームに対して、ブリッジ100を介して応答フレームを送信する。
 スレーブ局102はすべての初期化シーケンス完了後、他のマスタ局101およびスレーブ局102との通信を開始する。
The slave station 102 transmits a response frame via the bridge 100 to the frame transmitted from the master station 101 during the initialization sequence.
The slave station 102 starts communication with the other master stations 101 and slave stations 102 after completing all initialization sequences.
 マスタ局101からブリッジ100までの間、及びブリッジ100からスレーブ102までの間の通信伝送路は、Ethernet(登録商標)または専用プロトコルまたはそれら両方を用いたものとする。例えば、マスタ局101とブリッジ100との間はEthernet(登録商標)とし、スレーブ局102とブリッジ100との間は、専用プロトコルとする。専用プロトコルのアドレス体系はEthernet(登録商標)に用いられるIPアドレスではなく、専用プロトコル専用のアドレスを割り当てる。 It is assumed that the communication transmission path between the master station 101 and the bridge 100 and between the bridge 100 and the slave 102 uses Ethernet (registered trademark), a dedicated protocol, or both. For example, Ethernet (registered trademark) is used between the master station 101 and the bridge 100, and a dedicated protocol is used between the slave station 102 and the bridge 100. The address system of the dedicated protocol is not an IP address used for Ethernet (registered trademark), but assigns an address dedicated to the dedicated protocol.
 図2は、実施の形態1におけるブリッジ100の構成図である。
 本実施の形態におけるブリッジ100は中継部201、シーケンス判定部202、及びデータベース203を有する。また、中継部201には一般的なブリッジ装置に具備されている機能に加えてフレーム廃棄処理部201aとスヌーピング処理部201bを具備する。なお、図2では、データベース203とシーケンス判定部202を分けて記載しているが、実装上は1つにまとめても良い。
FIG. 2 is a configuration diagram of the bridge 100 according to the first embodiment.
The bridge 100 in the present embodiment includes a relay unit 201, a sequence determination unit 202, and a database 203. The relay unit 201 includes a frame discard processing unit 201a and a snooping processing unit 201b in addition to the functions provided in a general bridge device. In FIG. 2, the database 203 and the sequence determination unit 202 are described separately, but may be combined into one for implementation.
 中継部201は、マスタ局101とスレーブ局102との間、または複数のブリッジ100を介してスレーブ局102とスレーブ局102のフレームの中継を行う。
 中継部201のマスタ局101と接続される側のポートをマスタ局側ポート、スレーブ局102と接続される側のポートをスレーブ局側ポートとする。
 中継部201のうち、スヌーピング処理部201bは、アプリケーション間通信(たとえば初期シーケンス)を中継する際に、フレームのスヌーピングを行う。
 シーケンス判定部202は、スヌーピング処理部201bにおいてスヌーピングされたフレームを受け取り、データベース203を基に解析を行い、初期設定完了の判定を行う。
The relay unit 201 relays frames of the slave station 102 and the slave station 102 between the master station 101 and the slave station 102 or via a plurality of bridges 100.
A port connected to the master station 101 of the relay unit 201 is a master station side port, and a port connected to the slave station 102 is a slave station side port.
Of the relay unit 201, the snooping processing unit 201b performs frame snooping when relaying inter-application communication (for example, an initial sequence).
The sequence determination unit 202 receives the frame snooped by the snooping processing unit 201b, analyzes it based on the database 203, and determines whether initialization is complete.
 データベース203はアプリケーションの初期化シーケンスを保持する。シーケンスは、マスタ局101が全スレーブ局102の存在確認を実施する初期化シーケンスを識別するための情報である。一例としては接続されているスレーブ局102の台数情報、メッセージ種別情報および初期設定完了を判定する条件式を保持している。 The database 203 holds an application initialization sequence. The sequence is information for identifying an initialization sequence in which the master station 101 confirms the existence of all the slave stations 102. As an example, the number of connected slave stations 102, message type information, and a conditional expression for determining completion of initial setting are held.
 シーケンス判定部202は、データベース203に記憶されているシーケンス、例えばスレーブ局102の台数情報、メッセージ種別情報(応答確認フレームか否か)を用いて、スレーブ局102からの存在確認の応答数を判定し、条件に合致したフレーム数とスレーブ局102の台数とが一致した場合に初期設定完了とする。 The sequence determination unit 202 determines the number of responses of existence confirmation from the slave station 102 using the sequence stored in the database 203, for example, the number information of the slave stations 102 and the message type information (whether it is a response confirmation frame). When the number of frames that match the conditions matches the number of slave stations 102, the initial setting is completed.
 フレーム廃棄処理部201aは、ブリッジ100は初期設定完了前までは、マスタ局101に関係するフレーム(マスタ局宛のフレーム、または送信元がマスタ局のフレーム)以外の中継を行わせないようにするため、フレームを廃棄する。マスタ局101とのフレームのみ中継を行う理由としては、マスタ局が全スレーブ局の存在確認を行い、スレーブ局102は応答を返す必要があるためである。 The frame discard processing unit 201a prevents the bridge 100 from relaying frames other than the frame related to the master station 101 (the frame addressed to the master station or the frame whose transmission source is the master station) until the initial setting is completed. Therefore, the frame is discarded. The reason why only the frame with the master station 101 is relayed is that the master station confirms the existence of all slave stations and the slave station 102 needs to return a response.
 図3は、実施の形態1におけるブリッジ100がマスタ局101とのフレーム以外の中継を開始するまでのフローチャート図である。 FIG. 3 is a flowchart until the bridge 100 according to the first embodiment starts relaying other than a frame with the master station 101.
 S101において、初期設定を行う初期化シーケンスを開始すると、ブリッジ100の中継部201は、マスタ局101からネットワーク内の全てのスレーブ局102に対して存在確認を行う際、通信開始時にマスタ局101またはスレーブ局102からフレームを受信したら、S102において、スヌーピング処理部201bは、受信したフレームのスヌーピング行う。
 S103において、ブリッジ100のシーケンス判定部202は、スヌーピングしたフレームを用いて自身が保持するデータベース203を基に解析し、初期設定完了の判定を行う。
 具体的には、データベース203は、接続されているスレーブ局102の台数情報、メッセージ種別情報および初期設定完了を判定する条件式を保持している。シーケンス判定部202は、データベース203にされている、スレーブ局102の台数情報、メッセージ種別情報(応答確認フレームか否か)を用いて、スレーブ局102からの存在確認の応答数を判定し、条件に合致したフレーム数とスレーブ局102の台数とが一致した場合に初期設定完了とする。
In S101, when the initialization sequence for performing the initial setting is started, the relay unit 201 of the bridge 100 checks the existence of the master station 101 or all the slave stations 102 in the network from the master station 101 at the start of communication. When a frame is received from the slave station 102, in S102, the snooping processing unit 201b performs snooping on the received frame.
In step S <b> 103, the sequence determination unit 202 of the bridge 100 performs analysis based on the database 203 held by itself using the snooping frame and determines completion of initial setting.
Specifically, the database 203 holds the number information of the connected slave stations 102, message type information, and a conditional expression for determining completion of initial setting. The sequence determination unit 202 determines the number of responses of presence confirmation from the slave station 102 using the number information of the slave stations 102 and the message type information (whether it is a response confirmation frame) stored in the database 203, and the condition When the number of frames that match the number of slave stations 102 matches, the initial setting is completed.
 なお、ステップS103の他の動作例として、スレーブ局102が接続されたネットワークにおいて、そのアドレス範囲が限定されたものであるなど、ブリッジ100が全アドレスについて探索が可能である場合には、データベース203に台数情報を保持せず、全アドレス情報を保持しておき、シーケンス判定部202がデータベース203を参照して当該アドレスを持つ装置が存在しないことを確認する、又は当該アドレスを持つ装置の初期化シーケンス完了したこと確認する、のいずれかが全アドレスに範囲について確認できたことを以って初期設定完了と判断することとしても良い。 As another operation example of step S103, when the bridge 100 can search for all addresses in a network to which the slave station 102 is connected, such as a limited address range, the database 203 The sequence determination unit 202 confirms that there is no device having the address by referring to the database 203, or initializes the device having the address. It may be determined that the initial setting is completed when one of the confirmation of completion of the sequence has confirmed the range for all addresses.
 また、アドレス範囲自体は広いものの、スレーブ局102に対して設定される可能性があるアドレス範囲が限定されている場合など、限定されたアドレス範囲に対して全探索が可能である場合には、シーケンス判定部202がそのアドレス範囲に対して前段落と同様の処理を適用するとしても良い。 In addition, although the address range itself is wide, when a full search is possible for the limited address range, such as when the address range that may be set for the slave station 102 is limited, The sequence determination unit 202 may apply the same processing as in the previous paragraph to the address range.
 S104においてシーケンス判定部202は、初期設定が完了したと判定した場合、S108において中継部201は全てのフレームの中継を開始する。
 S104においてシーケンス判定部202は、初期設定が完了していないと判定した場合、S105において、中継部201は、フレームの「送信元がマスタ局」または「宛先がマスタ局」であるか否かを判別しする。
 S105において、フレームの「送信元がマスタ局101」または「宛先がマスタ局101」である場合は、S106において、中継部201は、フレームを中継し、フレームの「送信元がマスタ局101」または「宛先がマスタ局101」でない場合は、S107において、フレーム廃棄処理部201aは、その他のフレームは廃棄する。以上の処理は、初期設定が完了したと判定するまでは、新たなフレームを受信する毎に行う。
If the sequence determination unit 202 determines in S104 that the initial setting has been completed, the relay unit 201 starts relaying all frames in S108.
When the sequence determination unit 202 determines in S104 that the initial setting has not been completed, in S105, the relay unit 201 determines whether or not the “transmission source is a master station” or “destination is a master station”. Determine.
In S105, when the “transmission source is the master station 101” or the “destination is the master station 101” in S105, the relay unit 201 relays the frame in S106, and the “transmission source is the master station 101” or “ If the “destination is not the master station 101”, the frame discard processing unit 201a discards other frames in S107. The above processing is performed every time a new frame is received until it is determined that the initial setting has been completed.
 尚、マスタ局101からネットワーク内の全ての装置に対して存在確認を行う際、S106において、ブリッジ100は、スレーブ局102からの「存在確認応答フレーム」を中継する場合、ブリッジ100自身と直接つながっているスレーブ局102のアドレスをブリッジ100のスレーブ局102側ポートでアドレスを学習する。また、ブリッジ100は、スレーブ局102からの「存在確認応答フレーム」に限り、マスタ局100側へは接続される全てのマスタ局101または他のブリッジ100にも送信する。よって、ブリッジ100を経由して送信されたスレーブ局102からの「存在確認応答フレーム」は、他のブリッジ100のマスタ局側ポートでも学習される。 When the master station 101 confirms the existence of all devices in the network, in S106, the bridge 100 directly connects to the bridge 100 itself when relaying the “presence confirmation response frame” from the slave station 102. The slave station 102 learns the address at the slave station 102 side port of the bridge 100. Further, the bridge 100 transmits only the “existence confirmation response frame” from the slave station 102 to all the master stations 101 connected to the master station 100 or other bridges 100. Therefore, the “existence confirmation response frame” transmitted from the slave station 102 via the bridge 100 is also learned at the master station side port of another bridge 100.
 したがって、各スレーブ局102は初期化シーケンスの中で必ず存在確認応答フレームを送信するため、これにより、初期化シーケンス完了時点では全スレーブ局102についての情報が各ブリッジ101の中継部201に学習される。
 従って、初期化シーケンス完了後のフラッディングは、学習した情報のエージング等により削除や装置故障、装置追加などの事由によるものを除き発生しない。
Therefore, each slave station 102 always transmits an existence confirmation response frame in the initialization sequence, so that information on all slave stations 102 is learned by the relay unit 201 of each bridge 101 at the time of completion of the initialization sequence. The
Accordingly, flooding after the completion of the initialization sequence does not occur except for reasons such as deletion, device failure, and device addition due to aging of learned information.
 本実施の形態を実施することにより、初期シーケンスで行われる全スレーブ局の存在確認の際に発生する不要なフラッディングを抑制し、帯域の消費を削減することが可能となる。 By implementing this embodiment, it is possible to suppress unnecessary flooding that occurs at the time of confirming the existence of all slave stations performed in the initial sequence, and to reduce bandwidth consumption.
 したがって、ブリッジ100は、マスタ局101とスレーブ局102との間を中継し、初期設定時に中継するフレームに対しスヌーピングを行い、マスタ局101宛またはマスタ局102からのフレーム以外のフレームは破棄するとともに、マスタ局101宛へ中継する場合はマスタ局100側に接続される全ての局または他ブリッジ100宛(全てのノード)に送信する中継部と、初期シーケンスを識別するためのデータベース203と、スヌーピングがされたフレームとデータベース203に基づいて初期設定完了の判定を行うシーケンス判定部202とを備えたので、初期化時において学習が不十分な状況において発生するフラッディングを抑制し、帯域の消費を削減することが可能となる。 Therefore, the bridge 100 relays between the master station 101 and the slave station 102, performs snooping on the frame relayed at the time of initial setting, and discards frames other than the frame addressed to or from the master station 101. When relaying to the master station 101, a relay unit that transmits to all stations connected to the master station 100 or other bridge 100 (all nodes), a database 203 for identifying an initial sequence, and snooping The sequence determination unit 202 that determines completion of initial setting based on the frame and the database 203 is suppressed, so that flooding that occurs in a situation where learning is insufficient at the time of initialization is suppressed, and bandwidth consumption is reduced. It becomes possible to do.
 本発明は狭帯域の通信において特に有効であるが、広帯域の通信においてもネットワーク内の装置が非常に多い場合など一時的にフラッディングによる帯域消費が増加して輻輳を引き起こす可能性があり、そういった現象の抑止という点で有効である。 The present invention is particularly effective in narrowband communication. However, even in broadband communication, there is a possibility that bandwidth consumption due to flooding temporarily increases and congestion is caused when there are very many devices in the network. It is effective in terms of deterrence.
 また上記に加え、本発明を実施することによりブリッジ100が複数あり、一つのブリッジ100と複数のスレーブ局102にて一つのグループが形成される場合、無関係なグループにフレームが送られることを抑止し、セキュリティを高める効果が得られる。例えば、複数の企業がネットワークを共有している状況下でお互いの情報を知られたくない場合に有効である。 In addition to the above, when the present invention is implemented and there are a plurality of bridges 100 and one group is formed by one bridge 100 and a plurality of slave stations 102, it is possible to prevent frames from being sent to unrelated groups. And the effect of improving security is obtained. For example, it is effective when it is not desired to know each other's information in a situation where a plurality of companies share a network.
 尚、ブリッジ100のマスタ局101側ポートとスレーブ局102側ポートの設定はユーザーが手動設定しても良く、初めに「存在確認フレーム」を受信したポートをマスタ局101に自動設定しても良く、またはその他の方法を用いても良い。 Note that the master station 101 side port and slave station 102 side port of the bridge 100 may be manually set by the user, or the port that first receives the “existence confirmation frame” may be automatically set to the master station 101. Alternatively, other methods may be used.
 実施の形態2.
 実施の形態2では実施の形態1の構成、動作をすべて備え、さらにブリッジ100のデータベース203を変更する構成について説明する。
Embodiment 2. FIG.
In the second embodiment, a configuration in which all the configurations and operations of the first embodiment are provided and the database 203 of the bridge 100 is changed will be described.
 図4は、実施の形態2におけるブリッジ100の構成図である。
 本実施の形態を実現したブリッジ100では、実施の形態1で示した機能に加えて、ブリッジ100内部のデータベース203に登録している情報を外部サーバ103から提供される情報に交換する機能を有する。
 外部サーバ103は必ずしも独立した専用機器である必要はなく、マスタ局101、スレーブ局102などの装置に外部サーバ103相当の機能を持たせる構成としても良い。
FIG. 4 is a configuration diagram of the bridge 100 according to the second embodiment.
In addition to the functions described in the first embodiment, the bridge 100 that realizes the present embodiment has a function of exchanging information registered in the database 203 in the bridge 100 with information provided from the external server 103. .
The external server 103 does not necessarily need to be an independent dedicated device, and may be configured such that devices such as the master station 101 and the slave station 102 have functions equivalent to the external server 103.
 実施の形態1において、データベース203に登録する内部データは初期化シーケンスに関する情報であった。本実施の形態においてはデータベース203に登録する内部データは初期化シーケンス以外のシーケンス情報でも登録可能とする。また、初期化シーケンスに関する情報の更新情報でも良い。
 例えば、ネットワーク内の接続装置の台数に変更があり、変更後の台数情報を外部サーバ103の外部サーバデータベース104が保持する場合、ブリッジ100はデータベース203に登録した台数情報を交換することができる。
In the first embodiment, the internal data registered in the database 203 is information related to the initialization sequence. In the present embodiment, the internal data registered in the database 203 can be registered even with sequence information other than the initialization sequence. Also, update information on information related to the initialization sequence may be used.
For example, when there is a change in the number of connection devices in the network and the external server database 104 of the external server 103 holds the changed number information, the bridge 100 can exchange the number information registered in the database 203.
 したがって、ブリッジは、ブリッジ100は、マスタ局101とスレーブ局102との間を中継し、初期設定時に中継するフレームに対しスヌーピングを行い、マスタ局101宛またはマスタ局102からのフレーム以外のフレームは破棄するとともに、マスタ局101宛へ中継する場合はマスタ局100側に接続される全ての局または他ブリッジ100宛に送信する中継部と、初期シーケンスを識別するためのデータベース203と、スヌーピングがされたフレームとデータベース203に基づいて初期設定完了の判定を行うシーケンス判定部202とを備え、さらにデータベース203は、外部のシーケンス情報と交換可能としたことで、ブリッジ100が複数のシーケンスに対応することを実現できる。これにより、ネットワーク内に新たな装置が導入された場合、ブリッジ100自体を交換することなく、データベース203に登録した情報の交換のみで済み、ネットワークシステムの変更が容易かつ必要な費用の削減を実現することが可能となる。 Therefore, the bridge 100 relays between the master station 101 and the slave station 102, performs snooping on the frames relayed at the initial setting, and frames other than the frames addressed to the master station 101 or from the master station 102 In the case of discarding and relaying to the master station 101, all stations connected to the master station 100 or the relay unit transmitting to the other bridge 100, the database 203 for identifying the initial sequence, and snooping are performed. And a sequence determination unit 202 that determines completion of initial setting based on the frame 203 and the database 203, and the database 203 can be exchanged with external sequence information, so that the bridge 100 supports a plurality of sequences. Can be realized. As a result, when a new device is introduced into the network, it is only necessary to exchange the information registered in the database 203 without exchanging the bridge 100 itself, and the network system can be easily changed and the necessary cost can be reduced. It becomes possible to do.
 実施の形態3.
 実施の形態3では実施の形態1の構成でブリッジが判断していた初期設定の完了について、マスタ局101が判断する構成について説明する。
 図5は、実施の形態3におけるネットワークシステムの概念図である。ブリッジ100の構成は、実施の形態1と同じであるものの、シーケンス判定部202の動作とデータべ-ス203が保持するデータが異なる。スレーブ局102の構成は実施の形態1と同じであり、マスタ局101の構成が実施の形態1とは異なる。
Embodiment 3 FIG.
In the third embodiment, a configuration in which the master station 101 determines the completion of the initial setting that the bridge has determined in the configuration of the first embodiment will be described.
FIG. 5 is a conceptual diagram of the network system in the third embodiment. The configuration of the bridge 100 is the same as that of the first embodiment, but the operation of the sequence determination unit 202 and the data held in the database 203 are different. The configuration of slave station 102 is the same as that of the first embodiment, and the configuration of master station 101 is different from that of the first embodiment.
 実施の形態1はブリッジ100が保持するデータベース203が持つスレーブ局102の数に基づいて、スヌーピングしたフレームシーケンス判定部202でスレーブ局102の数を解析・判定し、初期設定完了を判定していた。
 本実施の形態では、マスタ局101がブリッジ100と接続されるスレーブ局102の数を判定して初期設定完了を判定する初期設定完了判定部204を備える。
 動作について説明する。
In the first embodiment, based on the number of slave stations 102 included in the database 203 held by the bridge 100, the number of slave stations 102 is analyzed and determined by the snooping frame sequence determination unit 202, and the initial setting completion is determined. .
In the present embodiment, the master station 101 includes an initial setting completion determination unit 204 that determines the number of slave stations 102 connected to the bridge 100 and determines completion of initial setting.
The operation will be described.
 図6は、実施の形態3におけるブリッジ100がマスタ局101とのフレーム以外の中継を開始するまでのフローチャート図である。 FIG. 6 is a flowchart until the bridge 100 according to the third embodiment starts relaying other than a frame with the master station 101.
 S201において、初期設定を行う初期化シーケンスを開始すると、ブリッジ100の中継部201は、マスタ局101からネットワーク内の全ての装置に対して存在確認を行う際、通信開始時にマスタ局101またはスレーブ局102からフレームを受信したら、S202において、スヌーピング処理部201bは、受信したフレームのスヌーピング行う。
 S203において、ブリッジ100のシーケンス判定部202は、スヌーピングしたフレームを用いて自身が保持するデータベース203を基に解析し、初期設定完了の判定を行う。
 具体的には、データベース203は、メッセージ種別情報を判定する条件式、すなわち、初期設定完了通知フレームか否か、を保持している。シーケンス判定部202は、データベース203にされている初期設定完了通知フレームを示すメッセージ種別情報を用いて、初期設定完了判定部204が初期設定完了の判定をした際に、マスタ局101がブリッジ100に対して送信する「初期設定完了通知フレーム」を受信したら初期設定完了とする。
In S201, when the initialization sequence for performing the initial setting is started, the relay unit 201 of the bridge 100 performs the master station 101 or slave station at the start of communication when confirming the existence from the master station 101 to all devices in the network. When a frame is received from 102, in S202, the snooping processing unit 201b performs snooping on the received frame.
In S203, the sequence determination unit 202 of the bridge 100 performs analysis based on the database 203 held by itself using the snooping frame, and determines completion of initial setting.
Specifically, the database 203 holds a conditional expression for determining message type information, that is, whether it is an initial setting completion notification frame. The sequence determination unit 202 uses the message type information indicating the initial setting completion notification frame stored in the database 203, and when the initial setting completion determination unit 204 determines that the initial setting has been completed, the master station 101 communicates with the bridge 100. When the “initial setting completion notification frame” to be transmitted is received, the initial setting is completed.
 S204においてシーケンス判定部202は、初期設定が完了したと判定した場合、S208において中継部201は全てのフレームの中継を開始する。
 S205においてシーケンス判定部202は、初期設定が完了していないと判定した場合、S205において、中継部201は、フレームの「送信元がマスタ局」または「宛先がマスタ局」であるか否かを判別しする。
 S205において、フレームの「送信元がマスタ局101」または「宛先がマスタ局101」である場合は、S206において、中継部201は、フレームを中継し、フレームの「送信元がマスタ局101」または「宛先がマスタ局101」でない場合は、S207において、フレーム廃棄処理部201aは、その他のフレームは廃棄する。以上の処理は、初期設定が完了したと判定するまでは、新たなフレームを受信する毎に行う。
If the sequence determination unit 202 determines in S204 that the initial setting has been completed, the relay unit 201 starts relaying all frames in S208.
If the sequence determination unit 202 determines in S205 that the initial setting has not been completed, the relay unit 201 determines in S205 whether or not the “transmission source is a master station” or “destination is a master station”. Determine.
In S205, if the “source of the frame is the master station 101” or “the destination is the master station 101”, in S206, the relay unit 201 relays the frame, and the “source of the frame is the master station 101” or “ If the “destination is not the master station 101”, in step S207, the frame discard processing unit 201a discards the other frames. The above processing is performed every time a new frame is received until it is determined that the initial setting has been completed.
 尚、マスタ局101からネットワーク内の全ての装置に対して存在確認を行う際、S206において、ブリッジ100は、スレーブ局102からの「存在確認応答フレーム」を中継する場合、ブリッジ100自身と直接つながっているスレーブ局102のアドレスをブリッジ100のスレーブ局102側ポートでアドレスを学習する。また、ブリッジ100は、スレーブ局102からの「存在確認応答フレーム」に限り、マスタ局100側のセグメント全体にも送信する。よって、ブリッジ100を経由して送信されたスレーブ局102からの「存在確認応答フレーム」は、他のブリッジ100のマスタ局側ポートでも学習される。 When the master station 101 confirms the presence of all devices in the network, in S206, the bridge 100 directly connects to the bridge 100 itself when relaying the “presence confirmation response frame” from the slave station 102. The slave station 102 learns the address at the slave station 102 side port of the bridge 100. Further, the bridge 100 transmits only the “existence confirmation response frame” from the slave station 102 to the entire segment on the master station 100 side. Therefore, the “existence confirmation response frame” transmitted from the slave station 102 via the bridge 100 is also learned at the master station side port of another bridge 100.
 したがって、ブリッジは、ブリッジ100は、マスタ局101とスレーブ局102との間を中継し、初期設定時に中継するフレームに対しスヌーピングを行い、マスタ局101宛またはマスタ局102からのフレーム以外のフレームは破棄するとともに、マスタ局101宛へ中継する場合はマスタ局100側に接続される全ての局または他ブリッジ100宛に送信する中継部と、初期設定完了通知フレームの受信を識別するためのデータベース203と、スヌーピングがされたフレームとデータベース203に基づいて初期設定完了の判定を行うシーケンス判定部202とを備えたので、初期化時において学習が不十分な状況において発生するフラッディングを抑制し、帯域の消費を削減することが可能となるだけでなく、データベース203に登録する情報を条件式のみで実現することができ、ブリッジ100の処理負荷低減、構成する部品の低性能・廉価化を実現することが可能となる。 Therefore, the bridge 100 relays between the master station 101 and the slave station 102, performs snooping on the frames relayed at the initial setting, and frames other than the frames addressed to the master station 101 or from the master station 102 In the case of discarding and relaying to the master station 101, a database 203 for identifying all stations connected to the master station 100 side or transmitting to the other bridge 100 and reception of the initial setting completion notification frame And a sequence determination unit 202 that determines completion of initialization based on the snooping frame and the database 203, so that flooding that occurs in a situation where learning is insufficient at the time of initialization is suppressed, Not only can consumption be reduced, but the database 2 Information to be registered in 3 can be realized by the conditional expression only, the processing load reduction of the bridge 100, it is possible to realize a low-performance and low-cost of parts constituting.
 尚、実施の形態3に記載の方法と本実施の形態1または2に記載の方法をあわせることで、より確実に初期シーケンスの終了を判別することができる。 Note that the end of the initial sequence can be more reliably determined by combining the method described in the third embodiment and the method described in the first or second embodiment.
 実施の形態4.
 実施の形態1または2においては、データベース203には、メッセージ種別情報および初期設定完了を判定する条件式など初期化シーケンスを判別する情報を保持しているとしており、実施の形態2においては、外部サーバ103によってそれら情報の変更が可能としていた。しかし、スレーブ局102の特性や仕様に合わせてネットワークを構成する際に、ネットワークの誤接続を検出することはできない。そこで、スレーブ局102のアドレス情報をデータベース203に記憶させ、または外部サーバ103から登録可能とし、スヌーピング時での初期設定完了の条件とすることで、初期設定が完了せず、エラー出力をすることで、誤接続を検出することができる。
 また、一度接続が完了して正常動作後に、一部のスレーブ局102のみを入れ替えなどを行った際に通常シーケンス時においてもスヌーピングしてシーケンス判定部202がアドレス情報を確認することでデータベース203に登録されていないスレーブ局を検出し、エラー出力をすることで、誤接続を検出することができる。
Embodiment 4 FIG.
In the first or second embodiment, the database 203 holds information for determining an initialization sequence, such as message type information and a conditional expression for determining completion of initial setting. The server 103 can change the information. However, when configuring a network in accordance with the characteristics and specifications of the slave station 102, it is not possible to detect an erroneous network connection. Therefore, the address information of the slave station 102 is stored in the database 203 or can be registered from the external server 103, and the initial setting is completed at the time of snooping, so that the initial setting is not completed and an error is output. Thus, an erroneous connection can be detected.
In addition, after the connection is completed and the normal operation is performed, when only a part of the slave stations 102 is replaced, the sequence determination unit 202 confirms the address information in the database 203 by snooping even during the normal sequence. An erroneous connection can be detected by detecting an unregistered slave station and outputting an error.
 実施の形態5.
 本実施の形態では実施の形態1から4に記載された構成のアプリケーション適用例として空調機のネットワークに適用した場合について説明する。
 尚、実施の形態5においては、実施の形態1から4に記載された構成、動作を全て備えたものとして説明する。
Embodiment 5 FIG.
In the present embodiment, a case where the present invention is applied to an air conditioner network will be described as an application application example having the configuration described in the first to fourth embodiments.
In the fifth embodiment, description will be made assuming that all the configurations and operations described in the first to fourth embodiments are provided.
 まず図1におけるマスタ局101は空調管理制御装置、スレーブ局102は空調室外機または空調室内機に相当する。
 マスタ局101に相当する空調管理制御装置は、複数の空調室外機と複数の空調室内機について管理と制御を行う。尚、実施の形態1から3においてはマスタ局101は複数あってもよいと記載したが、空調管理制御装置に適用する場合はマスタ局としては1つで構成される。
First, the master station 101 in FIG. 1 corresponds to an air conditioning management control device, and the slave station 102 corresponds to an air conditioning outdoor unit or an air conditioning indoor unit.
The air conditioning management control device corresponding to the master station 101 performs management and control for a plurality of air conditioning outdoor units and a plurality of air conditioning indoor units. In Embodiments 1 to 3, it is described that there may be a plurality of master stations 101. However, when applied to an air conditioning management control apparatus, one master station is configured.
 図1において、ブリッジ100は単独の装置とするか、もしくはブリッジ100に最も近いスレーブ局102(空調室外機)に物理的に搭載される。また、そのブリッジ100に接続される他スレーブ局102を空調室内機とすることで、従来の空調システムとなんら変わりのないレイアウトを得ることができる。また、このレイアウトによって、同一冷媒系でのみ必要な制御情報はブリッジ100からスレーブ局102側のみの伝達で済む。さらに、複数冷媒系となるの複数の空調室外機にまたがる制御情報のみブリッジ100を介して伝達されるため、ブリッジ100からマスタ側(空調管理制御装置側)101のトラフィック抑制効果だけではなく、他のブリッジ100からスレーブ局102(空調室内・室外機)側の制御情報が伝達されることがなくなるため、ネットワーク全体としてトラフィック抑制効果が得られる。 In FIG. 1, the bridge 100 is a single device or is physically mounted on a slave station 102 (air conditioner outdoor unit) closest to the bridge 100. Further, by using the other slave station 102 connected to the bridge 100 as an air conditioning indoor unit, a layout that is not different from the conventional air conditioning system can be obtained. Also, with this layout, control information required only for the same refrigerant system can be transmitted only from the bridge 100 to the slave station 102 side. Furthermore, since only the control information across a plurality of air conditioning outdoor units that are a plurality of refrigerant systems is transmitted via the bridge 100, not only the traffic suppression effect on the master side (air conditioning management control device side) 101 from the bridge 100 but also other Since no control information on the slave station 102 (air conditioner indoor / outdoor unit) side is transmitted from the bridge 100, the traffic suppression effect can be obtained for the entire network.
 上記において、ブリッジ100よりブリッジ100に最も近いスレーブ局102(空調室外機)以外の他スレーブ局102を空調室内機としたが、ネットワークや空調システムの構成によってはスレーブ局を複数の空調室外機とそれぞれに接続される複数の空調室内機として構成させてもよい。 In the above, the slave station 102 other than the slave station 102 (air conditioning outdoor unit) closest to the bridge 100 than the bridge 100 is an air conditioning indoor unit. However, depending on the configuration of the network and the air conditioning system, the slave station may be a plurality of air conditioning outdoor units. You may make it comprise as several air-conditioning indoor unit connected to each.
 100 ブリッジ
 101 マスタ局
 102 スレーブ局
 103 外部サーバ
 104 外部サーバデータベース
 201 中継部
 201a フレーム廃棄処理部
 201b スヌーピング処理部
 202 シーケンス判定部
 203 データベース
 204 初期設定完了判定部
DESCRIPTION OF SYMBOLS 100 Bridge 101 Master station 102 Slave station 103 External server 104 External server database 201 Relay part 201a Frame discard process part 201b Snooping process part 202 Sequence determination part 203 Database 204 Initialization completion determination part

Claims (8)

  1.  マスタ局とスレーブ局との間を中継し、初期設定時に中継するフレームに対しスヌーピングを行い、前記マスタ局宛または前記マスタ局からのフレーム以外のフレームは破棄するとともに、前記マスタ局宛へ中継する場合は前記マスタ局側に接続される全てのノードに送信する中継部と、
     初期シーケンスを識別するためのデータベースと、
     スヌーピングがされた前記フレームと前記データベースに基づいて初期設定完了の判定を行うシーケンス判定部と
     を備えることを特徴とするブリッジ。
    Relay between master station and slave station, snooping on frames relayed at initial setting, discard frames other than frames addressed to or from the master station, and relay to the master station In the case, a relay unit that transmits to all nodes connected to the master station side,
    A database for identifying the initial sequence;
    A bridge comprising: the snooping frame; and a sequence determination unit that determines completion of initial setting based on the database.
  2.  前記データベースは、スレーブ局側へ接続されるスレーブ局の台数と、初期設定時のスレーブ局側からの応答フレームを識別するメッセージ種別情報とを保持し、
     前記シーケンス判定部は、前記応答フレームの数と前記データベースに保持されたスレーブ局側へ接続される台数とから初期設定完了の判定を行うこと
    を特徴とする請求項1に記載のブリッジ。
    The database holds the number of slave stations connected to the slave station side and message type information for identifying a response frame from the slave station side at the time of initial setting,
    2. The bridge according to claim 1, wherein the sequence determination unit determines completion of initial setting from the number of response frames and the number of slave frames connected to the slave station held in the database.
  3.  前記データベースは、外部からの入力によって初期完了判定シーケンスの変更を可能とすること
    を特徴とする請求項1または2に記載のブリッジ。
    The bridge according to claim 1, wherein the database allows an initial completion determination sequence to be changed by an external input.
  4.  前記データベースは、前記マスタ局から送信される初期設定完了フレームを識別するメッセージ種別情報を保持し、
     前記シーケンス判定部は、スヌーピングされたフレームが前記データベースに保持された前記マスタ局から送信される初期設定完了フレームと合致するか否かで初期設定完了の判定を行うこと
    を特徴とする請求項1から3のいずれかに記載のブリッジ。
    The database holds message type information for identifying an initialization completion frame transmitted from the master station,
    The sequence determination unit determines whether the initial setting is completed based on whether or not the snooping frame matches an initial setting completion frame transmitted from the master station held in the database. 4. The bridge according to any one of 3.
  5.  前記データベースは、スレーブ局側へ接続される前記スレーブ局のアドレス情報も保持し、
     前記シーケンス判定部は、スヌーピングがされた前記フレームまたは通常動作時のフレームから得られるアドレス情報と前記データベースに記憶されている前記アドレス情報を照合し、照合できない場合はエラーを出力すること
    を特徴とする請求項2から4のいずれかに記載のブリッジ。
    The database also holds address information of the slave station connected to the slave station side,
    The sequence determination unit compares the address information obtained from the snooping frame or a frame during normal operation with the address information stored in the database, and outputs an error if the verification cannot be performed. The bridge according to any one of claims 2 to 4.
  6.  請求項1から5のいずれかに記載のブリッジが搭載されることを特徴とする空調室外機。 An air-conditioning outdoor unit equipped with the bridge according to any one of claims 1 to 5.
  7.  マスタ局と、スレーブ局と、
     請求項1から5のいずれかに記載のブリッジと、
     を備えることを特徴とするネットワークシステム。
    Master station, slave station,
    A bridge according to any one of claims 1 to 5;
    A network system comprising:
  8.  前記スレーブ局は、請求項6に記載の空調室外機、または空調室内機であって
     前記マスタ局は、複数の前記空調室外機と複数の前記空調室内機について管理と制御を行う空調管理制御装置であって、
     1台の前記空調管理制御装置、1台の請求項6に記載の前記空調室外機、及び複数の前記空調室内機の順に接続されて構成されること
    を特徴とする空調ネットワークシステム。
    The said slave station is an air-conditioning outdoor unit of Claim 6, or an air-conditioning indoor unit, The said master station is an air-conditioning management control apparatus which manages and controls the said several air-conditioning outdoor unit and several said air-conditioning indoor unit Because
    An air conditioning network system comprising: one air conditioning management control device, one air conditioning outdoor unit according to claim 6, and a plurality of air conditioning indoor units connected in this order.
PCT/JP2013/002224 2013-04-01 2013-04-01 Bridge, network system, air-conditioner outdoor unit, and air-conditioning network system WO2014162331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002224 WO2014162331A1 (en) 2013-04-01 2013-04-01 Bridge, network system, air-conditioner outdoor unit, and air-conditioning network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002224 WO2014162331A1 (en) 2013-04-01 2013-04-01 Bridge, network system, air-conditioner outdoor unit, and air-conditioning network system

Publications (1)

Publication Number Publication Date
WO2014162331A1 true WO2014162331A1 (en) 2014-10-09

Family

ID=51657667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002224 WO2014162331A1 (en) 2013-04-01 2013-04-01 Bridge, network system, air-conditioner outdoor unit, and air-conditioning network system

Country Status (1)

Country Link
WO (1) WO2014162331A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189974A1 (en) * 2015-05-28 2016-12-01 三菱電機株式会社 Air conditioning system
JP2019511800A (en) * 2016-03-29 2019-04-25 ロケーティー アーゲー APPARATUS, SYSTEM AND METHOD FOR MONITORING USE OF A FUNCTIONAL FACILITY
US11893147B2 (en) 2016-03-11 2024-02-06 Limbic Life Ag Occupant support device and system for controlling objects

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004407A1 (en) * 2003-07-07 2005-01-13 Yazaki Corporation Transmission capacity assignment method, communication network, and network resource management device
JP2005217715A (en) * 2004-01-29 2005-08-11 Fujitsu Access Ltd Layer 2 switch having vlan inter segment transfer function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004407A1 (en) * 2003-07-07 2005-01-13 Yazaki Corporation Transmission capacity assignment method, communication network, and network resource management device
JP2005217715A (en) * 2004-01-29 2005-08-11 Fujitsu Access Ltd Layer 2 switch having vlan inter segment transfer function

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189974A1 (en) * 2015-05-28 2016-12-01 三菱電機株式会社 Air conditioning system
WO2016189737A1 (en) * 2015-05-28 2016-12-01 三菱電機株式会社 Air conditioning system
JPWO2016189974A1 (en) * 2015-05-28 2017-08-17 三菱電機株式会社 Air conditioning system
US11893147B2 (en) 2016-03-11 2024-02-06 Limbic Life Ag Occupant support device and system for controlling objects
JP2019511800A (en) * 2016-03-29 2019-04-25 ロケーティー アーゲー APPARATUS, SYSTEM AND METHOD FOR MONITORING USE OF A FUNCTIONAL FACILITY
US10600013B2 (en) 2016-03-29 2020-03-24 Locatee Ag Device, system and method for monitoring usage of functional facilities
JP2020194549A (en) * 2016-03-29 2020-12-03 ロケーティー アーゲー Device, system, and method for monitoring usage of functional facility
US11386372B2 (en) 2016-03-29 2022-07-12 Locatee Ag Device, system and method for monitoring usage of functional facilities
JP7150353B2 (en) 2016-03-29 2022-10-11 ロケーティー アーゲー Devices, systems and methods for monitoring the use of functional facilities

Similar Documents

Publication Publication Date Title
JP6079426B2 (en) Information processing system, method, apparatus, and program
US20080019265A1 (en) Systems and methods for configuring a network to include redundant upstream connections using an upstream control protocol
CN108259635B (en) ARP (Address resolution protocol) table item learning method and DR (digital radiography) equipment
US10862703B2 (en) In-vehicle communication system, switch device, and communication control method
US20110149969A1 (en) Method of Controlling Data Propagation Within a Network
CN110098988B (en) Method and system for processing internet protocol packets
JP2006262193A (en) Controller, packet transferring method, and packet processor
WO2015127643A1 (en) Method and communication node for learning mac address in a layer-2 communication network
US20160006684A1 (en) Communication system, control apparatus, communication method, and program
JPWO2008111128A1 (en) Edge switch and forwarding table rewriting method
US10476774B2 (en) Selective transmission of bidirectional forwarding detection (BFD) messages for verifying multicast connectivity
WO2014162331A1 (en) Bridge, network system, air-conditioner outdoor unit, and air-conditioning network system
US9984036B2 (en) Communication system, control apparatus, communication method, and program
US10063675B2 (en) Performing duplicate address detection for an integrated routing and bridging device
US20160380790A1 (en) Relaying apparatus
US10587488B2 (en) Performance monitoring support for CFM over EVPN
US8064456B2 (en) Frame relay apparatus and route learning method
EP2978177B1 (en) Gateway device
CN111654558B (en) ARP interaction and intranet flow forwarding method, device and equipment
JP5698854B2 (en) Communication method and switching hub device
US9680741B2 (en) Method of operating a switch or access node in a network and a processing apparatus configured to implement the same
JP2007158512A (en) Ip network system
US20130159549A1 (en) Device communications over unnumbered interfaces
WO2016197728A1 (en) Packet processing method and device
JP2014230089A (en) Network system, l2sw device and network management device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP