WO2014162031A1 - Recombinant vectors based on the modified vaccinia ankara virus (mva) as preventive and therapeutic vaccines against hepatitis c - Google Patents

Recombinant vectors based on the modified vaccinia ankara virus (mva) as preventive and therapeutic vaccines against hepatitis c Download PDF

Info

Publication number
WO2014162031A1
WO2014162031A1 PCT/ES2014/070246 ES2014070246W WO2014162031A1 WO 2014162031 A1 WO2014162031 A1 WO 2014162031A1 ES 2014070246 W ES2014070246 W ES 2014070246W WO 2014162031 A1 WO2014162031 A1 WO 2014162031A1
Authority
WO
WIPO (PCT)
Prior art keywords
hcv
mva
cells
virus
cell
Prior art date
Application number
PCT/ES2014/070246
Other languages
Spanish (es)
French (fr)
Inventor
Mariano Esteban Rodriguez
Carmen Elena Gómez Rodríguez
Beatriz PERDIGUERO DE LA TORRE
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2014162031A1 publication Critical patent/WO2014162031A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention is limited to the biomedicine sector and, more specifically, relates to recombinant viruses based on the modified Ankara vaccinia virus (MVA). More specifically, the invention relates to MVA-derived recombinant viruses that act as HCV virus protein expression systems and their use in hepatitis C vaccination.
  • MVA modified Ankara vaccinia virus
  • HCV Hepatitis C virus
  • these vaccines need to generate a potent, broad and functional T-cell response as well as a humoral response against a wide range of HCV antigens.
  • they must be directed against relatively conserved viral regions to cope with the great genetic diversity of the HCV virus both between hosts and within the same host.
  • they must eradicate HCV from the liver without inducing any liver immunopathology so that they can be considered safe vaccines.
  • DNA vaccines with additional techniques that favor their release and the generated immunogenicity, have shown some promising results and have been described as being able to reduce the viral load in some chronically infected patients (Halliday, Klenerman et al. 201 1, Torresi , Johnson et al. 201 1, Ip, Nijman et al. 2012).
  • the most promising observations derive from the use of vaccines based on viral vectors such as replication-defective adenoviruses or vaccinia virus.
  • this strategy does not allow the full HCV genome to be used, given the toxicity of the binding of both molecules (Gómez, Vandermeeren et al. 2005).
  • the vaccine candidates based on the MVA virus currently under test are directed against a limited group of structural and non-structural HCV proteins and have already demonstrated their ability to generate high quality T-cell immune responses in both preclinical studies (Abraham, Himoudi et al. 2004, Rollier, Depla et al. 2004, Fournillier, Gerossier et al. 2007, El-Gogo, Staib et al. 2008) as clinicians (Habersetzer, Honnet et al. 201 1).
  • the most advanced therapeutic studies using MVA have been carried out with the candidate TG4040. It is a recombinant MVA-based T-cell antigenic vaccine that encodes HCV NS3, NS4 and NS5B proteins.
  • HCV-specific T-cell responses were detected in all patients one week after the first vaccination and these responses were maintained during the 6-month follow-up. Vaccination reduced viral loads to 1.5 Iog10 and stronger specific T cell responses were observed in those patients who had the highest levels of viral load reduction (Habersetzer, Honnet et al. 201 1).
  • a randomized phase II study is currently underway involving 153 patients divided into three treatment groups. Preliminary data published on the Transgene website show a reduction in viral load in the pre-vaccinated group with TG4040 prior to the start of the trial one week after the start of the trial. This reduction in viral load occurs more rapidly than in the other groups that had received treatment alone or in combination with TG4040 within the same treatment program (Clinical-Trials.gov, NCT01055821).
  • a first object of the invention is the polynucleotide of the invention comprising the nucleotide sequence corresponding to the MVA virus that acts as an expression vector for HCV genes regulating the transcription, translation and post-translational processing of said HCV genes in most body tissues (MVA-HCV polynucleotide).
  • a particular embodiment of the invention corresponds to the MVA-HCV polynucleotide in which the HCV virus sequence corresponds to the almost complete genome of genotype 1 a and which comprises the structural (Core, E1, E2 and p7) and non-structural ( NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids in the N-terminal region of NS5B) and whose sequence is SEQ ID No 1.
  • An object of the invention is the process for obtaining the polynucleotide of the invention, which comprises the following steps: (a) Generation of the transfer plasmid pCyA-HCV 7 9 , (b) Construction of the MVA-HCV recombinant virus, (c ) Selection of stable MVA-HCV viruses through successive passes in cell cultures.
  • a particular embodiment of the invention is the method of obtaining the polynucleotide of the invention where the HCV virus sequence corresponds to the almost complete genome of genotype 1 a, with sequence SEQ ID No. 1.
  • Another object of the invention is the recombinant vector MVA-HCV encoded by the polynucleotide of the invention that causes the expression of the viral particle itself and that of the HCV virus proteins to infect the cells.
  • a particular embodiment of the invention is the recombinant vector in which the HCV viral proteins are with SEQ ID No 1.
  • Another object of the invention is the cell containing the polynucleotide of the invention MVA-HCV.
  • a particular embodiment of the invention is the cell containing the MVA-HCV polynucleotide, in which the HCV viral proteins correspond to the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3) protein sequences. , NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 to SEQ ID No 1.
  • Another preferred object of the invention is the use of the cell containing the polynucleotide of the invention for obtaining the recombinant vector of the invention.
  • a particular embodiment of the invention is the use of the cell containing the polynucleotide of the invention for obtaining the recombinant vector of the invention, in which the HCV viral proteins correspond to the sequences of the structural proteins (Core, E1 , E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of genotype 1 to HCV with SEQ ID No 1.
  • Another object of the invention is the pharmaceutical composition containing the recombinant vector of the invention MVA-HCV, useful as a vaccination mechanism against hepatitis C.
  • a particular embodiment of the invention is the pharmaceutical composition of the invention MVA-HCV useful as a hepatitis C vaccination mechanism containing the recombinant vector of the invention, in which the HCV viral proteins correspond to the structural protein sequences. (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 to SEQ ID No 1.
  • Another preferred object of the invention is the use of the pharmaceutical composition containing the recombinant vector of the invention MVA-HCV to prevent or treat HCV infection.
  • a particular embodiment of the invention is the use of the pharmaceutical composition of the invention MVA-HCV containing the polynucleotide of the invention for obtaining the recombinant vector of the invention, in which the HCV viral proteins correspond to the sequences of structural (Core, E1, E2 and p7) and non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 to SEQ ID No 1.
  • the authors of the present invention decided to develop a new vaccine candidate based on the attenuated strain MVA constitutively expressing the almost complete genome of the genotype 1 a of HCV.
  • This open reading guideline (ORF) of HCV had previously been used for the generation of the recombinant vaccinia virus vT7-HCV7.9 based on the virulent strain WR, in which the HCV genome is efficiently transcribed resulting in a polyprotein that is correctly processed generating the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A plus the 201 amino acids of the N-terminal region of NS5B) mature (Gómez, Vandermeeren et al. 2005 ).
  • HCV genome expression by the WR strain had to be regulated in a controlled manner by the lac I repressor of E.
  • This invention describes the generation, characterization and preclinical evaluation of the MVA-HCV virus constitutively expressing all HCV proteins (except the C-terminal region of NS5B). And more specifically addressing the study of the amplitude, phenotype, polyfunctionality and duration of the generated immune responses. Neither the obtaining of the MVA-HCV vector nor the immune response results were predictable, since a recombinant virus that expressed the entire HCV genome had not previously been achieved due to the toxicity of the viral antigens, nor was it defined in The context of joint expression of all HCV antigens by a viral vector type of immune response induced. Therefore, it has been unexpected to have achieved the recombinant MVA-HCV with the described functionalities.
  • a first object of the invention relates to a polynucleotide, hereinafter polynucleotide of the invention, comprising: i) A transcription regulatory nucleotide sequence corresponding to the MVA virus (sequence deposited in the GenBank with the number of access U94848; http://www.ncbi.nlm.nih.gov/nuccore/U94848) that acts as an expression vector for HCV genes by regulating the transcription, translation and post-translational processing of said HCV genes in most of body tissues, and
  • a particular embodiment of the invention corresponds to the MVA-HCV polynucleotide in which the HCV virus sequence ii) corresponds to the almost complete genome of genotype 1 a and which comprises the structural proteins (Core, E1, E2 and p7) and not Structural (NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids of the N-terminal region of NS5B), inserted into the thymidine kinase locus (TK) of the MVA genome and whose sequence is SEQ ID No 1.
  • TK thymidine kinase locus
  • polynucleotide refers to a polymer composed of a multiplicity of nucleotide units (deoxyribonucleotides or ribonucleotides or related structural variants or synthetic analogs thereof) linked through phosphodiester bonds (or related structural variants). in synthetic analogues thereof).
  • the term polynucleotide includes genomic DNA or double or single stranded coding DNA, RNA, any synthetic and genetically manipulated polynucleotide and both both the coding chain and the antisense (although only the coding chain is highlighted herein). This includes single and double stranded molecules, such as DNA-DNA, DNA-RNA and RNA-RNA hybrids.
  • the polynucleotide comprises a nucleotide sequence of the MVA virus that regulates the expression of the almost complete genome of genotype 1 to HCV under the transcriptional control of the early / late synthetic viral promoter and operably linked to said HCV nucleotide sequence.
  • a transcription regulatory sequence refers to a sequence that controls and regulates transcription and, where appropriate, the translation of the HCV polynucleotide.
  • a transcription regulatory sequence includes promoter sequences, sequences encoding transcriptional regulators, ribosome binding sequences (RBS) and / or transcription terminator sequences.
  • Variants according to the present invention include amino acid sequences that are at least 60%, 70%, 80%, 90%, 95% or 96% similar or identical to the recombinant vector sequence and that includes both the corresponding amino acid sequences.
  • the MVA virus as to the amino acid sequences of the HCV virus, in particular structural proteins (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids of the NS5B N-terminal region of HCV genotype 1 to) (SEQ ID No 1).
  • structural proteins Core, E1, E2 and p7
  • non-structural NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids of the NS5B N-terminal region of HCV genotype 1 to
  • SEQ ID No 1 the amino acid sequences of the HCV virus
  • variants or fragments can be generated using conventional techniques, such as mutagenesis, including the creation of discrete point mutation (s), or by truncation.
  • the mutation can give rise to variants that retain substantially the same, or simply a subset, of the biological activity of a polypeptide from which it is derived.
  • vector refers to a nucleic acid molecule that is capable of transferring nucleic acid sequences contained therein to the cell it infects and that is produced by means of techniques. of molecular biology.
  • Some examples of recombinant vectors are linear DNA, plasmid DNA, modified viruses, adenoviruses / adeno-associated viruses, retroviral and viral vectors, etc .; all of them widely described in the literature and that can be used following standard molecular biology techniques or purchased from suppliers.
  • a typical recombinant vector is selected from the group consisting of a lentiviral vector, an adenoviral vector and / or an adeno-associated virus vector.
  • recombinant vector is defined as a vector produced by the binding of different nucleic acid fragments from different sources and whose expression gives rise to a viral particle with compound infective capacity. characteristically of protein capsid, viral genome and proteins associated with the viral genome.
  • a recombinant vector according to the invention can therefore be used both as a biotechnological tool to multiply the virus and be used in pharmaceutical compositions such as vaccines.
  • operably linked means that the nucleotide sequence encoding a polypeptide comprising the genome of the HCV virus, in particular the almost complete genome of genotype 1 to HCV with SEQ ID No.
  • Another object of the invention is a process for obtaining the polynucleotide of the invention, hereinafter the method of the invention, wherein said method generally comprises the following steps: (a) Generation of the transfer plasmid.
  • a DNA fragment of a variable length containing the structural and non-structural proteins of a given HCV genotype would be cleaved from the initial plasmid where it was inserted (pHCV) using the corresponding restriction enzymes and inserted into the plasmid pCyA-20 described below. and previously digested with the same digestion enzymes to generate the corresponding transfer plasmid (pCyA-HCV);
  • HCV is classified into 1 1 genotypes (designated 1 ⁇ 1 1), numerous subtypes (designated a, b, c, ...) and about 100 different strains (numbered 1, 2, 3,).
  • a virus is considered “stable” if it loses less than 50% of infectivity in, for example, a plaque formation assay (PFU), which measures the change in the amount of PFU / ml_ between two anterior and posterior temporal points. .
  • PFU plaque formation assay
  • a particular embodiment of the invention is a method of obtaining the polynucleotide of the invention, where the HCV virus sequence corresponds to SEQ ID No. 1 and comprises the structural (Core, E1, E2 and p7) and non-structural (NS2) proteins. , NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a.
  • Said method generally comprises the following steps:
  • Plasmid pCyA-20 was generated by inserting a synthetic band containing the early / late viral promoter and a multiple cloning site in the plasmid pLZAWL This synthetic band, obtained by hybridization of two complementary oligonucleotides containing targets for restriction enzymes AscI and Swal, it was digested with Ascl and Swal and inserted into plasmid pLZAWl previously digested with the same restriction enzymes to generate plasmid pCyA-20.
  • HCV genotype 1 a A fragment of 7.9 Kpb DNA containing the proteins Structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a was cleaved with EcoRI from plasmid pHCVI a (assigned by Charles M. Rice, New York) that contained the complete HCV genome.
  • This DNA fragment was treated with Klenow DNA polymerase to generate blunt ends and inserted into plasmid pCyA-20 previously digested with Pmel and dephosphorylated by incubation with alkaline prawn phosphatase to generate transfer plasmid pCyA-HCV 7 9 (SEQ ID No 2).
  • the plate designated as MVA-HCV-1 .6.1.1 .9.3.2 (stock P1) was grown to generate a crude viral preparation (stock P2: 9.8 x 10 8 PFU / ml) from which a stock was prepared P3 of purified virus from infected BHK-21 cells at a multiplicity of infection of 0.05 PFU / cell through two 36% sucrose mattresses. This P3 stock was the one that was finally selected.
  • a P-2 stock of MVA-HCV was also isolated from the initial P1 after three consecutive passes of plaques obtained in chicken embryonic cells (CEF) and confirmation of protein expression and sterility.
  • CEF chicken embryonic cells
  • plasmids obtained as intermediates in the method of the invention can also be used to obtain variants or derivatives of the polynucleotide of the invention. This will also protect the plasmid pCyA-HCV 7 9 whose sequence corresponds to SEQ ID No 2.
  • the polynucleotide of the invention encodes the structures necessary to generate a viral MVA-HCV particle in CEF and BHK-21 cells and can be used as a recombinant vector to infect and transform those cell cultures into which it is introduced and with this, to produce the expression of viral proteins characteristic of HCV.
  • another object of the invention is the recombinant vector MVA-HCV, or viral particle, which comprises the polynucleotide of the invention.
  • the viral particle or recombinant vector causes cells that are infected by the expression of the viral particle itself and of the HCV virus proteins.
  • the recombinant vector of the invention expresses the HCV virus sequence that corresponds to the sequence SEQ ID No. 1 and that encodes the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A) proteins. , NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a.
  • a culture of host cells encompasses the processes of maintaining and growing said host cells.
  • Cell cultures need controlled conditions of temperature, pH, percentages of gases such as carbon dioxide and oxygen, as well as the presence of adequate nutrients to allow viability and cell division.
  • Cell cultures can be grown on solid substrates such as agar or in a liquid medium, allowing large numbers of suspended cells to be cultured.
  • Viral cultures require host cells that provide the cellular and metabolic machinery they lack. This allows the virus not only to be maintained but also to multiply so that the expression of the polynucleotide of the invention in said cell culture can be used to propagate the recombinant vector of the invention.
  • another object of the invention is the cell containing the polynucleotide of the invention MVA-HCV, hereafter referred to as the host cell of the invention.
  • a particular embodiment of the invention relates to the host cell of the invention containing the polynucleotide of the invention MVA-HCV, where the HCV virus sequence corresponds to the sequence SEQ ID No. 1 encoding the structural proteins (Core, E1 , E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a.
  • another object of the invention relates to the use of the host cell of the invention to reproduce and maintain the MVA-HCV virus and to obtain the recombinant vector of the invention.
  • the host cell of the invention is a mammalian cell, more preferably of avian origin and more preferably even chicken embryonic fibroblasts.
  • a particular embodiment of the invention relates to the use of the host cell of the invention to reproduce and maintain the MVA-HCV virus and to obtain the recombinant vector of the invention.
  • the recombinant vector of the invention can transfer the HCV sequence to a cell under the transcriptional control of the early / late synthetic viral promoter of the MVA virus fragment and induce its expression therein.
  • the viral polyprotein generated is processed giving rise to the HCV proteins, particulate to the sequence of the structural proteins, Core, E1, E2 and p7, and non-structural, NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids from the NS5B N-terminal region, mature of genotype 1 a of the HCV virus.
  • This recombinant vector can, therefore, be used to express HCV genes in an organism and thus induce immune responses against HCV viral proteins in those organisms to which said vector is administered.
  • another object of the invention also relates to a pharmaceutical composition useful for generating a lasting immune response against the HCV virus, hereinafter "pharmaceutical composition of the invention", comprising the vector of the invention and a pharmaceutically carrier. acceptable.
  • said composition may comprise another active and / or adjuvant principle.
  • a particular embodiment of the invention relates to the pharmaceutical composition of the invention in which the vector of the invention contains the sequence SEQ ID No 1 that corresponds to the sequence of the structural proteins, Core, E1, E2 and p7 and not Structural, NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids in the N-terminal region of NS5B, mature of genotype 1 a of the HCV virus.
  • Another preferred object of the invention relates to the use of the pharmaceutical composition of the invention to generate a lasting and prophylactic immune response for the treatment and prevention of HCV infection.
  • the generation of that protective response can be achieved by administering only the recombinant vector of the invention, in a single dose or in doses administered over time, or as part of an immunization protocol with different vectors expressing HCV antigens, forming part of the recombinant vectors of the invention from the initial dose that triggers the response and / or from one or more subsequent doses intended to enhance the previously generated response.
  • Another particular embodiment of the invention relates to the use of the pharmaceutical composition of the invention to generate a lasting and prophylactic immune response for the treatment and prevention of HCV genotype 1 to infection.
  • the term "medicament or pharmaceutical composition” refers to any substance used for prevention, relief, treatment or cure of diseases in man and / or animals.
  • the pharmaceutical composition or medicament of the invention further comprises a pharmaceutically acceptable carrier or excipient.
  • the pharmaceutical composition or medicament of the invention further comprises an adjuvant.
  • the pharmaceutical composition or medicament of the invention further comprises another active ingredient (additional active ingredient).
  • excipient refers to a substance that helps the absorption of the elements of the composition of the invention, stabilizes said elements and activates or aids the preparation of the composition in the sense of giving it consistency or providing flavors that make it nicer.
  • the excipients could have the function of keeping the ingredients together, such as, for example, starches, sugars or cellulose, the sweetening function, the function as a dye, the protective function of the composition, for example, to isolate it from air and / or moisture, the filling function of a tablet, capsule or any other form of presentation, such as, for example, is the case of dibasic calcium phosphate, the disintegrating function to facilitate the dissolution of the components and its absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
  • vehicle like the excipient, refers to a substance that is used in the pharmaceutical composition or medicament to dilute any of the components of the present invention comprised therein to a certain volume or weight.
  • pharmaceutically acceptable carrier is an inert substance or action analogous to any of the elements of the present invention.
  • the function of the vehicle is to facilitate the incorporation of other elements, allow a better dosage and administration or give consistency and form to the composition.
  • the pharmacologically acceptable carrier is the diluent.
  • adjuvant refers to an agent that increases the formation of antibodies against a certain antigen when it is delivered jointly to it or as part of the same treatment protocol.
  • FIG. 1 Scheme of the construction of the transfer plasmid pCyA-HCV 7 .9.
  • Plasmid pCyA-20 was generated by inserting a synthetic band containing the early / late viral promoter and a multiple cloning site in plasmid pLZAWl. This synthetic band, obtained by hybridizing two complementary oligonucleotides containing targets for the AscI and Swal restriction enzymes, was digested with Ascl and Swal and inserted into the plasmid pLZAWl previously digested with the same restriction enzymes to generate the plasmid pCyA- twenty.
  • a 7.9 kbp DNA fragment containing the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a was EcoRI cleaved from plasmid pHCVI a (assigned by Charles M. Rice, New York) containing the complete HCV genome. This DNA fragment was treated with Klenow DNA polymerase to generate blunt ends and inserted into plasmid pCyA-20 previously digested with Pmel and dephosphorylated by incubation with shrimp alkaline phosphatase to generate transfer plasmid pCyA-HCV 7 .9.
  • FIG. 1 In vitro characterization and genetic stability of the MVA-HCV recombinant virus.
  • A Scheme of the organization of the HCV genome in the TK locus of MVA.
  • B Confirmation of HCV genome insertion by PCR analysis. Viral DNA was extracted from BHK-21 cells infected with MVA-WT or MVA-HCV at a multiplicity of infection of 5 PFU / cell. The TK-L and TK-R oligonucleotides that hybridize in the flanking sequences of the locus TK were used for PCR analysis of the TK locus. In the parental MVA virus an 873 bp fragment is obtained while in the recombinant virus a single product of 8393 bp is observed.
  • BHK-21 cells were uninfected or infected with MVA-WT or MVA-HCV at 5 PFU / cell. At 24 hours post-infection, the cells were lysed in the presence of Laemmli buffer, the cell extracts were separated in gels for 12% SDS-PAGE and analyzed by Western-blot using mouse monoclonal antibodies against Core, E1 proteins. , E2, NS4A, NS4B and NS5A.
  • D Analysis of the stability of MVA-HCV along different passages in BHK-21 cells.
  • HCV protein expression was visualized by Western-blot from samples of uninfected or infected BHK-21 cells at 5 PFU / cell with MVA-WT or with the different MVA-HCV passages (from P8 to P1 1 ) using a human serum positive for antibodies to HCV.
  • FIG. 3 (A) Analysis of the growth of the MVA-HCV virus in BHK-21 cells. Monolayers of BHK-21 cells were infected with MVA-WT or MVA-HCV at 0.01 PFU / cell. At different post-infection times (0, 24, 48 and 72 hours), the cells were collected and the presence of infectious viruses was determined by immunostaining of the infected cell foci.
  • C Formation of membranous structures during infection (5 PFU / cell) of HeLa cells by MVA-HCV at 16 h. by electron microscopy.
  • Human dendritic cells were uninfected or infected with MVA-WT or MVA-HCV at 0.3 or 1 PFU / cell for 6 hours.
  • the mRNA levels of IFN-a, IFIT1, IFIT2, RIG-I, MDA-5 and IP-10 were quantified by RT-PCR.
  • MRNA levels are expressed as the ratio between the levels of the gene of interest and the levels of Hprt. UA: arbitrary units. * p ⁇ 0.05, ** p ⁇ 0.005, *** p ⁇ 0.001 for all conditions comparing MVA-HCV with MVA-WT at the same multiplicity of infection (MDI).
  • HCV-specific CD8 T cells were measured 10 days after the last immunization by intracellular multiparametric cytokine tracing after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides.
  • the total value in each group represents the sum of the percentages of CD8 + T cells that secrete CD107a and / or IFN- ⁇ and / or IL-2 and / or TNF- ⁇ against all HCV peptide mixtures.
  • the diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD8 + response in the different immunization groups. The background obtained in the unstimulated samples was subtracted in all cases.
  • FIG. 6 Immune response of HCV-specific T-cells generated by the MVA-HCV recombinant virus in the spleen of C57BL / 6 mice immunized in homologous and heterologous vaccination protocols.
  • A Magnitude of the response of CD4 + or CD8 + T cells.
  • HCV-specific CD4 or CD8 T cells were measured 53 days after the last immunization by intracellular mating of multiparametric cytokines after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides.
  • the total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN- ⁇ and / or IL-2 and / or TNF-a (CD4) or CD107a and / or IFN- ⁇ and / or IL-2 and / or TNF-a (CD8) vs. all mixtures of HCV peptides.
  • the diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD4 + or CD8 + response in the different immunization groups.
  • the background obtained in the unstimulated samples was subtracted in all cases. *** p ⁇ 0.001.
  • the p-value indicates significantly higher responses with respect to CD4 + T cell responses or between CD8 + T cell responses obtained in the DNA-HCV / MVA-HCV group compared to those observed in the MVA-HCV / MVA group - HCV.
  • B Functional profile of the memory response of HCV-specific CD8 T cells in the different immunization groups. All possible combinations of the responses are shown on the x-axis while the percentages of the different functional populations within the total population of CD8 T cells are represented on the y-axis. The answers are grouped based on the number of functions. ** p ⁇ 0.005; *** p ⁇ 0.001.
  • C Phenotypic profile of memory CD8 T cells specific for HCV.
  • the upper graphs represent the total percentage of HCV-specific CD8 T cells that have a central memory phenotype (TCM; CD127 + CD62L + ), memory effector (TEM; CD127 + CD62L “ ) or effector (TE; CD127 D62L “ ) .
  • the lower diagrams correspond to representative flow cytometry graphs showing the percentage of specific CD8 T cells versus HCV peptide mixtures p7 + NS2 (left) or NS3 (right) with central memory phenotype, memory effector or effector. ** p ⁇ 0.005.
  • FIG. 7 Immune response of HCV-specific T cells generated by the recombinant MVA-HCV virus in the spleen and in the liver of C57BL / 6 mice immunized in homologous and heterologous vaccination protocols.
  • Flow cytometry profiles showing the response of specific CD8 T cells against mixtures of p7 + NS2 or NS3 peptides in splenocytes and intrahepatic immune cells.
  • FIG. 8 Immune response of HCV-specific T-cells generated by the MVA-HCV recombinant virus in the liver of C57BL / 6 mice immunized in homologous and heterologous vaccination protocols.
  • A Magnitude of the response of CD4 + or CD8 + T cells. HCV-specific CD4 or CD8 T cells were measured in the liver 53 days after the last immunization by intracellular multiparameter cytokine tightening after stimulation of intrahepatic immune cells derived from mice immunized with the different HCV peptide mixtures.
  • the total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN- ⁇ and / or IL-2 and / or TNF- ⁇ (CD4) or CD107a and / or IFN- ⁇ and / or IL-2 and / or TNF-a (CD8) against all mixtures of HCV peptides.
  • the diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD4 + or CD8 + response in the different immunization groups.
  • the background obtained in the unstimulated samples was subtracted in all cases. *** p ⁇ 0.001.
  • the p value indicates significantly higher responses with respect to CD4 + T cell responses in different immunization groups.
  • the lower diagrams correspond to representative flow cytometry graphs showing the percentage of specific CD8 T cells versus HCV peptide mixtures p7 + NS2 (left) or NS3 (right) with central memory phenotype, memory effector or effector. ** p ⁇ 0.005.
  • FIG. 9 Adaptive immune response of HCV-specific T cells generated by the MVA-HCV recombinant virus in the spleen of HLA-A2 transgenic mice in a heterologous vaccination protocol.
  • A Magnitude of the response of CD4 + or CD8 + T cells.
  • HCV-specific CD4 or CD8 T cells were measured 10 days after the last immunization by intracellular multiparameter cytokine marking after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides.
  • the total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN- ⁇ and / or IL-2 and / or TNF-a (CD4) or CD107a and / or IFN- ⁇ and / or IL-2 and / or TNF-a (CD8) against all mixtures of HCV peptides.
  • the diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD4 + or CD8 + response.
  • the background obtained in the unstimulated samples was subtracted in all cases. *** p ⁇ 0.001. The p value indicates a significantly higher response with respect to the CD4 + T cell response.
  • (B) Flow cytometry profiles showing the response of specific CD4 or CD8 T cells against mixtures of E (CD4) or NS3 (CD8) peptides.
  • FIG. 10 Memory immune response of HCV-specific T cells generated by the recombinant MVA-HCV virus in the spleen of HLA-A2 transgenic mice in a heterologous vaccination protocol.
  • A Magnitude of the response of CD4 + or CD8 + T cells.
  • HCV-specific CD4 or CD8 T cells were measured 53 days after the last immunization by intracellular mating of multiparametric cytokines after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides.
  • the total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN- ⁇ and / or IL-2 and / or TNF-a (CD4) or CD107a and / or IFN- ⁇ and / or IL-2 and / or TNF-a (CD8) against all mixtures of HCV peptides.
  • the diagram on the right represents the specific contribution of the different mixtures of HCV peptides to the total CD8 + response.
  • the background obtained in the unstimulated samples was subtracted in all cases. *** p ⁇ 0.001. The p value indicates a significantly higher response with respect to the CD4 + T cell response.
  • the graph on the left represents the total percentage of HCV-specific CD8 T cells that have a central memory phenotype (TCM; CD127 + CD62L + ), memory effector (TEM; CD127 + CD62L “ ) or effector (TE; CD127 D62L " ).
  • TCM central memory phenotype
  • TEM memory effector
  • TE effector
  • CD127 D62L effector
  • the diagram on the right shows a representative flow cytometry graph indicating the percentage of specific CD8 T cells versus the mixture of HCV p7 + NS2 peptides with central memory phenotype, memory effector or effector. * p ⁇ 0.05.
  • Example 1 Generation and in vitro characterization of a recombinant MVA virus constitutively expressing the almost complete genome of hepatitis C virus (HCV) of genotype 1 a (MVA-HCV). Purity, expression and genetic stability of HCV proteins expressed by the MVA-HCV recombinant virus
  • the inventors have generated the MVA-HCV virus, a recombinant virus based on the attenuated strain of MVA poxvirus that has the same DNA fragment included in the vT7-HCV 7 9 virus inserted into the TK locus but under the transcriptional control of the viral promoter Synthetic early / late. This promoter therefore directs the constitutive expression of structural and non-structural HCV proteins.
  • a scheme with the different cloning steps carried out for the construction of the transfer plasmid pCyA-HCV 7 9 used for the generation of the MVA-HCV virus and the organization of the HCV genome in the TK locus is shown in Fig. 1A of said recombinant virus is represented in Fig. 2A.
  • the PCR product obtained in cells infected with MVA-HCV is approximately 8 kbp in size, indicating that the HCV genome has been correctly inserted into the TK locus of the MVA virus and not there is contamination with the parental virus in the preparation of the recombinant virus MVA-HCV.
  • the MVA-HCV virus was passed successively in BHK-21 cells from pass 7 (P2 stock) to pass 1 1 (P8 ⁇ P1 1).
  • the expression of HCV proteins in the different countries was analyzed by Western-blot using a human serum positive for antibodies to HCV. As shown in Fig. 2D, the MVA-HCV virus efficiently expresses HCV proteins after 1 1 passes.
  • MVA-HCV infection blocks the innate immune response
  • MVA-HCV administered in homologous combination induces in mice of strain C57BL / 6 a high, broad VHC-specific T cell response , multifunctional and long lasting.
  • mice of strain C57BL / 6 the response of HCV-specific T cells induced using homologous (MVA-HCV / MVA-HCV) or heterologous (DNA-HCV / MVA) immunization protocols -HCV).
  • C57BL / 6 mice (4 in each group) were immunized following the protocol described below.
  • the adaptive immune response was evaluated 10 days after the last dose using a multiparameter cytokine intracellular tick test.
  • Splenocytes isolated from immunized animals were stimulated "ex vivo" for 6 hours with a panel of 457 peptides (from 13 to 19-m overlapping in 1 or 12 amino acids) grouped into 6 mixtures of peptides: Core (28 peptides), E (83 peptides), p7 + NS2 (40 peptides), NS3 (98 peptides), NS4 (47 peptides) and NS5 (161 peptides) and incubated with specific antibodies to identify T-cell lineage (CD3, CD4 and CD8), degranulation (CD107a) and responding cells (IL-2, IFN- ⁇ and TNF- ⁇ ).
  • Animals that received a first dose with parental MVA (MVA-WT) or empty DNA (--DNA
  • the percentages of T cells producing IFN- ⁇ and / or IL-2 and / or TNF-a determined the total response of CD4 + T cells while the percentages of T cells producing CD107a and / or IFN- ⁇ and / or IL-2 and / or TNF- ⁇ determined the total response of CD8 + T cells.
  • the magnitude of the response of CD8 + HCV-specific T cells was significantly higher in animals immunized with the protocols MVA-HCV / MVA-HCV or ADN- HCV / MVA-HCV than in their respective control groups where antigen-specific responses were very low (p ⁇ 0.005) (Fig. 5A). In both groups the immune response induced by vaccination was mediated by CD8 cells while no specific response mediated by CD4 cells was detected (Fig. 5A).
  • the response of CD8 + HCV-specific T cells was significantly higher in animals that received HCV / MVA-HCV DNA compared to those that received M VA-HCV / MVA-HCV (p ⁇ 0.005).
  • 90% of the CD8 + T cell response was directed against the mixture of p7 + NS2 peptides while in animals that received HCV / MVA-HCV DNA 97% of The CD8 + T cell response was directed against the mixture of NS3 peptides (Fig. 5A and B).
  • the quality of the T-cell response can be characterized in part by the cytokine secretion pattern and by its cytotoxic potential.
  • the greater magnitude of the antigen-specific response obtained in the DNA-HCV / MVA-HCV group compared to the MVA-HCV / MVA-HCV group was mainly due to a significant increase in the absolute frequencies of the CD8 T cell populations + which expressed on the surface CD107a, which co-expressed CD107a + TNF-a or the triple producers of CD107a + IL2 + TNF-a.
  • T-cell response induced by immunization. Because of that, We decided to analyze the phenotype of the immune response of MVA-HCV-induced T-cell memory in both the spleen and in the liver of the immunized animals 53 days after the last immunization by intracellular marking of multiparameter cytokines. At this time, splenocytes and intrahepatic immune cells (IHIC) isolated from the spleen and liver, respectively, were stimulated "ex vivo" for 6 hours with the different mixtures of HCV peptides and incubated with specific antibodies to identify cell lineage. T (CD3, CD4 and CD8), degranulation (CD107a), responding cells (IL-2, IFN- ⁇ and TNF- ⁇ ) and memory phenotype (CD127 and CD62L).
  • IHIC intrahepatic immune cells
  • the magnitude of the response of memory-specific CD4 + and CD8 + HCV-T cells was significantly greater in the groups of animals immunized with the MVA-HCV / MVA-HCV or DNA-HCV / MVA-HCV protocols than in their respective control groups, where antigen-specific responses were very low or absent (p ⁇ 0.005).
  • the immune response of memory induced by vaccination in both groups was mainly mediated by CD8 cells.
  • CD8 cells only in the MVA-HCV / MVA-HCV group could a similarly low response of CD4 + T cells be detected against peptide mixtures representing the Core (47%) and E (53% ).
  • the magnitude of the memory response of CD8 + T cells was high in both groups although significantly higher in the DNA-HCV / MVA-HCV group (p ⁇ 0.005).
  • 91% of the CD8 + T cell response detected was directed against the mixture of p7 + NS2 peptides and the rest of the response was distributed against the mixtures of NS3 (7%) and E (2%) peptides.
  • the detected CD8 + T cell response was mainly directed against the mixtures of NS3 (70%) and p7 + NS2 (19%) peptides while the rest of the response It was distributed against the combinations of NS4 (9%) and E (2%) (Fig. 6A and Fig. 7A).
  • CD8 + T cells The memory response of CD8 + T cells induced by both protocols was highly polyfunctional, with more than 90% of cells secreting Simultaneous two, three or four cytokines (Fig. 6B).
  • Fig. 6B The memory response of CD8 + T cells induced by both protocols was highly polyfunctional, with more than 90% of cells secreting Simultaneous two, three or four cytokines (Fig. 6B).
  • Fig. 6B The memory response of CD8 + T cells induced by both protocols was highly polyfunctional, with more than 90% of cells secreting Simultaneous two, three or four cytokines (Fig. 6B).
  • Fig. 6B The memory response of CD8 + T cells induced by both protocols was highly polyfunctional, with more than 90% of cells secreting Simultaneous two, three or four cytokines.
  • Fig. 6B The memory response of CD8 + T cells induced by both protocols was highly polyfunctional, with more than 90% of cells secreting Simultaneous two
  • CD8 + T cells The magnitude of the memory response of CD8 + T cells was high in both groups and very similar. As was the case with splenocytes, the CD8 + T cell response detected in intrahepatic immune cells from the animals of the MVA-HCV / MVA-HCV group was mainly directed against the mixture of p7 + NS2 peptides (97%) while in the animals of the DNA-HCV / MVA-HCV group the response was directed mainly against the peptide mixtures that NS3 (72%) and p7 + NS2 (24%) (Fig. 8A and Fig. 7B).
  • Example 3 The DNA-HCV / MVA-HCV combination induces a high, polyfunctional and long-lasting HCV-specific T cell response in HLA-A2 transgenic mice.
  • mice Because the heterologous DNA-HCV / MVA-HCV immunization protocol induced a greater magnitude of the HCV-specific response in C57BL / 6 mice (Example 2), we decided to evaluate this same approach in the HLA-A2 transgenic mice. These transgenic mice express a chimeric form of the HLA-A2.1 molecule and have previously been shown to enhance a repertoire of HCV-specific responses similar to those detected in the infected human population (23). The adaptive immune response was evaluated 10 days after the last dose using a multiparameter cytokine intracellular tick test.
  • Splenocytes isolated from immunized animals were stimulated "ex vivo" for 6 hours with a panel of 457 peptides (from 13 to 19-m overlapping in 1 or 12 amino acids) grouped into 6 mixtures of peptides: Core (28 peptides), E (83 peptides), p7 + NS2 (40 peptides), NS3 (98 peptides), NS4 (47 peptides) and NS5 (161 peptides) and incubated with specific antibodies to identify T-cell lineage (CD3, CD4 and CD8), degranulation (CD107a) and responding cells (IL-2, IFN- ⁇ and TNF- ⁇ ). Animals that received a first dose with empty DNA (--DNA) followed by a second dose with MVA-WT were used as controls.
  • CD8 T cells In the same way as was observed in mice of strain C57BL / 6, the immune response induced by splenocyte vaccination of transgenic mice was mediated by CD8 T cells (Fig. 9A).
  • the CD4 + T cell response detected had a low magnitude although directed against multiple combinations of peptides representing the different viral proteins, with mixtures of E (80%) and Core (1 1%) peptides being the most recognized.
  • the response of detected CD8 + T cells had a high magnitude and was mainly directed against the mixtures of NS3 (75%) and p7 + NS2 (19%) peptides (Fig. 9A and B). Both responses (CD4 and CD8) were highly polyfunctional with more than 50% of the cells simultaneously secreting two, three or four cytokines (Fig. 9C).
  • Activated CD4 + T cells co-produced mostly IL2 + IFN-y + TNF-a while CD8 + T cells had an enhanced cytotoxic profile represented by a high frequency of activated cells expressing CD107a on their surface.
  • the memory immune response was evaluated 53 days after the last immunization using a multiparameter cytokine intracellular marking test.
  • splenocytes isolated from the spleen of immunized animals were stimulated "ex vivo" for 6 hours with the different combinations of HCV peptides and incubated with specific antibodies to identify T-cell lineage (CD3, CD4 and CD8), degranulation (CD107a), responding cells (IL-2, IFN- ⁇ and TNF- ⁇ ) and memory phenotype (CD127 and CD62L).
  • the immune memory response induced by vaccination was mediated exclusively by CD8 T cells and was primarily directed against the combinations of p7 + NS2 (72%) and NS3 (28%) peptides (Fig. 10A and B).
  • the response of memory-specific CD8 + HCV-specific T cells was highly polyfunctional, with high frequencies of cells expressing simultaneously CD107a + IL2 + IFN-y + TNF-a (Fig. 10C) and with memory effector (TEM, 54%) or central memory (TCM, 34%) phenotypes (Fig. 10D).
  • the BHK-21 cell lines (golden hamster kidney fibroblastoid line, ATCC, Cat. No. CCL-10) and DF-1 (immortalized chicken embryonic fibroblast line, ATCC, Cat. No. CRL-12203) were cultured in minimal essential medium of Eagle modified by Dulbecco (DMEM) (Gibco BRL) supplemented with penicillin (100 U / ml; Sigma), streptomycin (100 ⁇ g / ml; Sigma), fungizone (0.5 U / ml; Gibco), glutamine (2 mM; Merck) and non-essential amino acids (Sigma) (complete DMEM) and 10% (v / v) fetal calf serum (FCS; Sigma).
  • DMEM minimal essential medium of Eagle modified by Dulbecco
  • penicillin 100 U / ml
  • streptomycin 100 ⁇ g / ml
  • fungizone 0.5 U / ml; Gibco
  • HepG2 human hepatocellular carcinoma cells were cultured in complete DMEM medium supplemented with 20 mM N-2- hydroxyethylpiperacin-N ' -2-ethanesulfonic acid buffer, pH 7.4 (HEPES) and 10% (v / v) of FCS).
  • Dendritic cells derived from human monocytes were obtained from peripheral blood lymphocytes (PBMC) previously obtained by Ficoll gradient separation (GE Healthcare) from the buffy coat of a healthy blood donor recruited by the Community Transfusion Center of Madrid.
  • CD14 + monocytes were purified by depletion using the Dynabeads ® Untouched TM human monocyte kit (Invitrogen) following the manufacturer's instructions.
  • the monocytes obtained were cultured for 7 days in 6-well culture plates (3 ⁇ 10 6 cells / well at 1 x 10 6 cells / ml) in complete RPMI 1640 medium supplemented with 50 ng / ml GMCSF, 20 ng / ml of IL-4 (both from Gibco-Life Technologies) and 10% (v / v) of FCS. All cell lines were maintained in an incubator at a temperature of 37 ° C (or 39 ° C for DF-1 cells) and a C0 2 percentage of 5%.
  • Viral infections were performed in the respective media supplemented with 2% (v / v) FCS.
  • the attenuated strain MVA obtained from the Ankara strain after 586 serial passes in chicken embryo fibroblasts (derived from clone F6 of pass 585 and provided by Dr. G. Sutter of the Institute of Molecular Virology in Kunststoff, Germany). Both viruses were grown on BHK-21 cells, purified through two 36% (w / v) sucrose mattresses and titrated by immunostaining according to the methodology previously described (39). The degree was made at least three times. Construction of the transfer plasmid pCyA-HCV 79
  • the transfer plasmid pCyA-HCV 7 9 was constructed for the generation of the MVA-HCV recombinant virus that expresses the structural (Core, E1, E2 and p7) and non-structural (NS3, NS4A, NS4B, NS5A and 201 amino acids of the N-terminal region of NS5B) of the H77 isolate of the HCV virus belonging to genotype 1 a.
  • Plasmid pCyA-HCV 7 9 is derived from plasmid pUC, designed for the selection of blue / white plates.
  • TK-R right and left (TK-L) flanking sequences of the thymidine kinase (TK) viral gene
  • E3L promoter directing the expression of the ⁇ -galactosidase ( ⁇ -Gal) selection marker and the gene of ampicillin resistance (AP).
  • AP ampicillin resistance
  • pE / L early / late synthetic promoter
  • This plasmid was ceded by Linong Zhang, of the Aventis group, Canada. It is a plasmid derived from pUC that contains a left arm of the TK gene, a multiple cloning site for the insertion of exogenous genes, a short repetition of the left arm of the TK gene, the E3L promoter directing the expression of the ⁇ -gal gene, a right arm of the TK gene and the ampicillin resistance gene.
  • - pCyA-20 It was constructed by the inventors from plasmid pLZAWl as depicted in Figure 1A. For this purpose, an 88 bp synthetic DNA band was generated that contained the early / late synthetic promoter sequence followed by a multiple cloning site and at each end contained restriction targets for the AscI enzymes (5 ' end) and Swal (end 3 ' ). Both the synthetic band and the pLZAWl vector were digested with the AscI and Swal enzymes, subsequently ligation being carried out using the enzyme T4 DNA ligase, finally generating the transfer vector pCyA-20.
  • plasmid pCyA-HCV 7 9 from the previously described plasmids is depicted in Figure 1A.
  • the DNA fragment containing 7.9 Kpb of the open reading pattern (ORF) of the genome of HCV virus belonging to genotype 1 a was cleaved by digestion with the EcoRI enzyme of plasmid pHCVI b, treated with Klenow DNA polymerase for generate blunt ends and inserted into the vector pCyA-20 previously digested with the restriction endonuclease Pmel and dephosphorylated by incubation with the enzyme alkaline phosphatase, thereby generating the transfer plasmid pCyA-HCV7.9.
  • the generated plasmid directs the insertion of the genes of interest into the TK locus of the genome of the attenuated MVA virus.
  • BHK-21 cells (3 x 10 6 ) were infected with the attenuated MVA-WT virus at a multiplicity of infection of 0.05 PFU / cell and subsequently transfected with 10 ⁇ g of plasmid pCyA-HCV / .g using lipofectamine (Invitrogen) as agent transfectant and following the manufacturer's instructions. At 72 hours post-infection, the cells were collected, frozen / thawed, sonicated and used for the selection of recombinant viruses.
  • lipofectamine Invitrogen
  • Recombinant MVAs containing HCV genes and transiently expressing the ⁇ -gal marker gene were selected during consecutive plaque purification passes on BHK-21 cells stained with 5- Bromo-4- chloro-3-indolyl-p-galactoside (X-Gal) (300 ⁇ g / ml).
  • Recombinant MVAs that contained the HCV genes and that had lost the marker gene were selected as viral stains not stained in BHK-21 cells in the presence of X-Gal.
  • TK-L and TK-R oligonucleotides which hybridize in the flanking sequences of the TK gene, in a reaction mixture containing 0.3 mM dNTPs, 2 mM MgCl 2 and 2.5 U of the enzyme Platinum Taq polymerase (Invitrogen).
  • the program includes an initial cycle of denaturation at 95 ° C for 7 minutes; 30 cycles of denaturation at 95 ° C for 1 minute, hybridization at 62 ° C for 30 seconds and extension at 72 ° C for 4 minutes and a final extension at 72 ° C for 7 minutes.
  • the PCR products were analyzed on a 0.7% agarose gel.
  • BHK-21 cell monolayers were infected with MVA-HCV or MVA-WT at 5 PFU / cell.
  • the cells were lysed in Laemmli buffer and fractionated cell extracts in 12% polyacrylamide denaturing gels (SDS-PAGE), transferred to nitrocellulose membranes and analyzed by Western-blot using polyclonal antibodies against Core (provided by Dr.
  • a stability test was performed by performing several successive passes of the MVA-HCV recombinant virus in BHK-21 cells. Monolayers of BHK-21 cells grown on P100 plates were successively infected at a multiplicity of 0.01 PFU / cell, starting from the P2 stock of the MVA-HCV (pass 7) to pass 1 1 (P1 1). Extracts of BHK-21 cells infected with passes 8, 9, 10 and 1 1 were analyzed by Western-blot.
  • the stability of the recombinant MVA-HCV was also evaluated by the analysis of individual plates. Monolayers of BHK-21 cells grown in 6-well plates were infected with serial dilutions of the lysate obtained in step 1 1. At 48 hours post-infection, the cells were stained with 0.01% neutral red (SIGMA) and 30 individual lysis plates were chopped which were resuspended in 0.5 ml of complete DMEM, frozen / thawed 3 times, sonicated and used (0.2 ml) for the infection of new BHK-21 cells grown in 12-well plates.
  • SIGMA neutral red
  • the cells were lysed in Laemmli buffer and fractionated cell extracts in 12% polyacrylamide denaturing gels (SDS-PAGE), transferred to nitrocellulose membranes and analyzed by Western-blot using a human polyclonal serum anti-HCV (courtesy of Dr. Rafael Fernández of the Ramón y Cajal Hospital, Madrid, diluted 1: 500).
  • a polyclonal antibody generated in goat against total human IgG conjugated to peroxidase (SIGMA) was used as a secondary antibody (diluted 1: 1000).
  • the detection of the protein bands recognized by the corresponding antibodies was carried out by means of the Luminol ECL ® system (GE Healthcare) exposing an X-OMAT autoradiographic film (Kodak). Viral Growth Analysis
  • MVA-HCV monolayers of BHK-21 cells grown in 12-well plates were infected at a multiplicity of 0.01 PFU / cell with MVA-WT or MVA-HCV. After an adsorption of 60 min. at 37 ° C, the inoculum was removed and the cells were incubated at 37 ° C and in a 5% C0 2 atmosphere with fresh DMEM medium enriched with 2% FCS. At different post-infection times (0, 24, 48 and 72 hours), the cells were collected by scraping and subjected to three cycles of freezing / thawing and sonication.
  • the viral titer in the different cell lysates was determined by immunostaining in DF-1 cells using the polyclonal anti-vaccinia antibody (National Biotechnology Center; diluted 1: 1000) followed by an anti-lgG rabbit-peroxidase conjugate (SIGMA; diluted 1: 1000).
  • SIGMA anti-lgG rabbit-peroxidase conjugate
  • HCV proteins To define the expression kinetics of HCV proteins, monolayers of BHK-21 or HepG2 cells grown in 12-well plates were infected at 5 PFU / cell with MVA-HCV or MVA-WT. At different post-infection times, the cells were collected and the cell precipitates fractionated in polyacrylamide denaturing gels (SDS-PAGE), transferred to nitrocellulose membranes and analyzed by Western-blot using a human anti-HCV polyclonal serum (assigned by the Dr. Rafael Fernández of the Ramón y Cajal Hospital, Madrid, diluted 1: 500). A polyclonal antibody generated in goat against total human IgG conjugated to peroxidase (SIGMA) was used as a secondary antibody (1: 1000 dilution).
  • SIGMA polyclonal antibody generated in goat against total human IgG conjugated to peroxidase
  • HeLa cells grown at full confluence with the MVA-HCV virus were infected at a multiplicity of infection of 5 PFU / cell.
  • the culture medium was removed and the cells were fixed for 2 h. to room temperature in a fixation solution containing 2% giufaraidehyde and 1% tannic acid in HEPES buffer.
  • the cells were collected in the presence of the fixative, centrifuged and the pelief was resuspended in 1 ml of HEPES buffer and processed by a conventional inclusion of cells for electron microscopy in the epoxy-resin EML-812 (Taab Laboratories, Adermaston, Berkshire, UK).
  • the pellet was cut with an ultra-microtome in the form of 70 nm thick eitraphine sections that were collected on copper gratings. Sections of cells infected with the MVA-HCV virus were analyzed in a transmission electron microscope model JEOL 101 1.
  • RNA was isolated using the RNeasy Mini kit (Qiagen) from dendritic cells derived from human monocytes infected at 0.3 or 1 PFU / cell with MVA-HCV or MVA-WT for 6 hours.
  • the reverse-transcription of 500 ng of total RNA was performed using the QuantiTect Reverse Transcription kit (Qiagen).
  • Quantitative PCR was carried out using the 7500 Real-Time PCR system (Applied Biosystems) and the Power SYBR Green PCR master mix (Applied Biosystems) as previously described (8).
  • RNAs of the IFN- ⁇ , IFIT1, IFIT2, RIG-I, MDA-5, IP-10 and Hprt genes were determined by RT-PCR using specific oligonucleotides. The expression of each of the genes was referred to relative to the expression of the Hprt gene in arbitrary units (U.A.). The samples were tested in duplicate and two different experiments were performed.
  • the pcDNA-Core, pcDNA-E1, pcDNA-E2 and pcDNA-NS3 plasmid DNAs encoding the Core, E1, E2 and NS3 viral proteins of the H77 isolate, genotype 1 a, were yielded by Dr. Ilkka Julkunen (Health Institute National Public of Finland).
  • the DNAs were purified using the Mega-Prep Endo-Free kit (Qiagen) resuspended in pyrogen-free double-distilled water.
  • peptides obtained through BEI Resources, NIAID, NIH representing the viral proteins Core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A were used and NS5B of isolate J4 (genotype 1b; GenPept: AAC15722).
  • the peptides which were between 13 and 19 meters, overlapped in 1 or 12 amino acids and were grouped together to form combinations containing 28 to 53 peptides, depending on the case.
  • the Core protein was represented by the peptide mixture called Core (28 peptides).
  • E The combination of peptides called E represented the proteins E1 (28 peptides) and E2 (55 peptides).
  • the p7 and NS2 proteins were represented by the peptide mixture called p7 + NS2 (40 peptides).
  • the combination of peptides called NS3 represented the NS3 protein and consisted of the mixture NS3-1 (49 peptides) and NS3-2 (49 peptides).
  • the peptide mixture called NS4 represented the NS4A and NS4B proteins (47 peptides).
  • the NS5A and NS5B proteins were represented in the combination of peptides called NS5 and was formed by the mixture NS5-1 (55 peptides), NS5-2 (53 peptides) and NS5-3 (53 peptides).
  • Isolate J4 of genotype 1 b shares 85.7% homology with isolate H77 of genotype 1 a.
  • mice of strain C57BL / 6 were obtained from Jackson laboratories and were between 6 and 8 weeks old when the procedure began.
  • groups of 8 animals were inoculated with a dose of 10 7 PFU / mouse of MVA-WT or MVA-HCV by intraperitoneal route (ip). Two weeks later they received the same dose of the respective virus.
  • mice were inoculated with a dose of 200 ⁇ g of HCV-DNA (50 ⁇ g of pcDNA-Core + 50 ⁇ g of pcDNA-E1 + 50 ⁇ g of pcDNA-E2 + 50 ⁇ g of pcDNA- NS3) or 200 ⁇ g of empty DNA (200 ⁇ g of pcDNA) by intramuscular route (im).
  • a dose of 10 7 PFU / mouse of MVA-HCV or MVA-WT intraperitoneally The animals were sacrificed 10 days after the second dose (day 25) to characterize the adaptive immune response or 53 days after the second dose (day 67) to analyze the immune response of memory.
  • mice of strain C57BL / 6-Tg (HLA-A2.1) 1 Enge / J were obtained from Jackson laboratories and were between 6 and 8 weeks old when the procedure began.
  • This mouse model, transgenic for Tg (HLA-A2.1) 1 Enge expresses significant amounts of the HLA-A2.1 human MHC class I antigen in spleen, bone marrow and thymus cells.
  • Groups of 8 animals were inoculated with a dose of 200 ⁇ g of HCV-DNA (50 ⁇ g of pcDNA-Core + 50 ⁇ g of pcDNA-E1 + 50 ⁇ g of pcDNA-E2 + 50 ⁇ g of pcDNA-NS3) or 200 ⁇ g of DNA vacuum (200 ⁇ g of pcDNA) by intramuscular route (im).
  • the animals were inoculated with a dose of 10 7 PFU / mouse of MVA-HCV or MVA-WT by intraperitoneal route (ip).
  • the animals were sacrificed 10 days after the second dose (day 25) to characterize the adaptive immune response or 53 days after the second dose (day 67) to analyze the memory immune response.
  • Intracellular multiparameter cytokine marking 50 ⁇ g of HCV-DNA (50 ⁇ g of pcDNA-Core + 50 ⁇ g of pcDNA-E1 + 50 ⁇ g of pcDNA-E2 + 50 ⁇
  • the cells were washed, incubated with the different antibodies for surface molecules, fixed and permeabilized using the Cytofix / Cytoperm kit (BD Biosciences) and incubated with the different antibodies specific for molecules intracellular Dead cells were excluded using the Violet LIVE / DEAD stain kit (Invitrogen).
  • the following conjugated antibodies were used to determine cell lineage and cytokine expression: CD3-PE-CF594, CD4-APC-Cy7 or -Alexa 700, CD8-V500, IFN-and-PE-Cy7 or -PerCP-Cy5.5, IL-2-APC and TNF- ⁇ - ⁇ (all from BD Biosciences).
  • CD62L-Alexa 700 or -APC BD Biosciences
  • CD127-PerCP-Cy5.5 eBioscience
  • Cells were acquired using a GALLIOS flow cytometer (Beckman Coulter). Data analysis was performed with the FlowJo program version 8.5.3 (Tree Star, Ashland, OR).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The recombinant viruses of the invention contain sequences which are inserted at the same site of insertion as that of MVA and allow the simultaneous expression of various antigens of the HCV, concretely the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A plus the 201 amino acids of the N-terminal region of NS5B) mature proteins. In this way, stable recombinant viruses are obtained, which allow an immune response to be triggered against a large variety of antigens of the HCV, suitable for being used as preventive and therapeutic vaccines against hepatitis C.

Description

VECTORES RECOMBINANTES BASADOS EN EL VIRUS MODIFICADO DE ANKARA (MVA) COMO VACUNAS PREVENTIVAS Y TERAPEUTICAS CONTRA LA HEPATITIS C SECTOR Y OBJETO DE LA INVENCIÓN  RECOMBINANT VECTORS BASED ON THE MODIFIED ANKARA VIRUS (MVA) AS PREVENTIVE AND THERAPEUTIC VACCINES AGAINST HEPATITIS C SECTOR AND OBJECT OF THE INVENTION
La presente invención se circunscribe al sector de la biomedicina y, más concretamente, se refiere a virus recombinantes basados en el virus vaccinia modificado de Ankara (MVA). Más concretamente, la invención se refiere a virus recombinantes derivados del MVA que actúan como sistemas de expresión de las proteínas del virus VHC y a su uso en la vacunación frente a la hepatitis C. The present invention is limited to the biomedicine sector and, more specifically, relates to recombinant viruses based on the modified Ankara vaccinia virus (MVA). More specifically, the invention relates to MVA-derived recombinant viruses that act as HCV virus protein expression systems and their use in hepatitis C vaccination.
ESTADO DE LA TÉCNICA El virus de la hepatitis C (VHC) infecta a más de 170 millones de personas en todo el mundo con 3 millones de nuevas infecciones cada año (Shepard, Finelli et al. 2005). Tras la fase aguda de la infección, el 20% de las personas infectadas erradican el virus al cabo de semanas o meses y son a menudo asintomáticos. El 80% restante desarrollará una enfermedad crónica de los cuales aproximadamente el 20% desarrollará finalmente cirrosis hepática y del 1 al 5% cáncer hepático (Lauer and Walker 2001 , Afdhal 2004). STATE OF THE TECHNIQUE Hepatitis C virus (HCV) infects more than 170 million people worldwide with 3 million new infections every year (Shepard, Finelli et al. 2005). After the acute phase of the infection, 20% of infected people eradicate the virus after weeks or months and are often asymptomatic. The remaining 80% will develop a chronic disease of which approximately 20% will eventually develop liver cirrhosis and 1 to 5% liver cancer (Lauer and Walker 2001, Afdhal 2004).
El protocolo actual de tratamiento para los pacientes infectados con VHC es una combinación de interferón-α pegilado y ribavirina. Sin embargo, este tratamiento es prolongado en el tiempo, presenta un amplio espectro de efectos secundarios, falla con frecuencia y resulta prohibitivamente caro para los países en vías de desarrollo (Grieve, Roberts et al. 2006). Debido a ello, se ha realizado un gran esfuerzo dirigido al desarrollo de nuevos agentes antivirales (Pawlotsky 2012). Sin embargo, debido al coste, los efectos secundarios y la complejidad del tratamiento así como al desarrollo de mutantes de VHC resistentes y a la heterogeneidad viral, la terapia antiviral no es la solución para erradicar la infección por VHC. Por lo tanto, existe una necesidad urgente de desarrollar una vacuna profiláctica que resulte eficaz y reduzca la incidencia global de la enfermedad. La generación de vacunas contra el VHC ha demostrado ser compleja. El hecho de que una proporción significativa de pacientes infectados durante la fase aguda erradiquen espontáneamente la infección junto con una potente inmunidad antiviral sugiere que el desarrollo de una vacuna profiláctica es un objetivo alcanzable. The current treatment protocol for patients infected with HCV is a combination of pegylated interferon-α and ribavirin. However, this treatment is prolonged over time, has a wide spectrum of side effects, fails frequently and is prohibitively expensive for developing countries (Grieve, Roberts et al. 2006). Because of this, a great effort has been made aimed at the development of new antiviral agents (Pawlotsky 2012). However, due to the cost, side effects and complexity of the treatment as well as the development of resistant HCV mutants and viral heterogeneity, antiviral therapy is not the solution to eradicate HCV infection. Therefore, there is an urgent need to develop a prophylactic vaccine that is effective and reduces the overall incidence of the disease. The generation of vaccines against HCV has proven to be complex. The fact that a significant proportion of patients infected during the acute phase spontaneously eradicate the infection together with a potent antiviral immunity suggests that the development of a prophylactic vaccine is an attainable goal.
El papel de la respuesta de células T específicas para VHC en el resultado de la infección primaria por VHC ha sido estudiado ampliamente y aunque no se ha identificado ningún parámetro que se correlacione con protección, se sabe que este brazo de la respuesta inmune es determinante en la eliminación del virus. Estudios comparativos en humanos han demostrado que respuestas CD4+ y CD8+ potentes frente a múltiples regiones de VHC y mantenidas en el tiempo son claves ya que se asocian con la eliminación espontánea del virus (Thimme, Oldach et al. 2001 , Afdhal 2004, Schulze zur Wiesch, Lauer et al. 2005). The role of the HCV-specific T-cell response in the outcome of primary HCV infection has been extensively studied and although no parameter has been identified that correlates with protection, it is known that this arm of the immune response is decisive in Virus removal Comparative studies in humans have shown that potent CD4 + and CD8 + responses against multiple HCV regions and maintained over time are key since they are associated with spontaneous elimination of the virus (Thimme, Oldach et al. 2001, Afdhal 2004, Schulze zur Wiesch, Lauer et al. 2005).
Así, basándonos en las interacciones virus-hospedador durante la infección por VHC, existen probablemente tres características que deben ser compartidas tanto por las aproximaciones vacunales profilácticas como por las terapéuticas para que resulten exitosas. En primer lugar, estas vacunas necesitan generar una respuesta de células T potente, amplia y funcional así como una respuesta humoral frente a un amplio abanico de antígenos de VHC. En segundo lugar, deben ir dirigidas frente a regiones virales relativamente conservadas para hacer frente a la gran diversidad genética del virus VHC tanto entre hospedadores como dentro del mismo hospedador. En tercer lugar, deben erradicar el VHC del hígado sin inducir ningún tipo de inmunopatología hepática para que puedan ser consideradas vacunas seguras. Thus, based on virus-host interactions during HCV infection, there are probably three characteristics that must be shared by both prophylactic and therapeutic vaccine approaches to be successful. First, these vaccines need to generate a potent, broad and functional T-cell response as well as a humoral response against a wide range of HCV antigens. Second, they must be directed against relatively conserved viral regions to cope with the great genetic diversity of the HCV virus both between hosts and within the same host. Third, they must eradicate HCV from the liver without inducing any liver immunopathology so that they can be considered safe vaccines.
Actualmente, se están ensayando diversos candidatos vacunales frente al VHC dirigidos frente a un número limitado de antígenos virales, como péptidos, proteínas recombinantes, ADN y vacunas basadas en diferentes vectores con distintos niveles de éxito. Las vacunas basadas en proteínas recombinantes que inducen respuestas humorales específicas frente a la envuelta difícilmente proporcionarán inmunidad esterilizante debido a la variabilidad genética de la envuelta de VHC pero podrían tener un papel en la atenuación del curso de la infección primaria o servir como adyuvante para una vacuna basada en células T. Las vacunas de células T basadas en proteínas y péptidos han inducido respuestas de células T débiles por lo que esta aproximación probablemente sólo pueda progresar con el desarrollo de nuevos adyuvantes. Las vacunas de ADN, con técnicas adicionales que favorezcan su liberación y la inmunogenicidad generada, han mostrado algunos resultados prometedores y se ha descrito que son capaces de reducir la carga viral en algunos pacientes infectados crónicamente (Halliday, Klenerman et al. 201 1 , Torresi, Johnson et al. 201 1 , Ip, Nijman et al. 2012). Las observaciones más prometedoras derivan del uso de vacunas basadas en vectores virales como adenovirus defectivos en replicación o el virus vaccinia. Sin embargo, esta estrategia no permite hasta ahora utilizar el genoma completo de VHC dada la toxicidad que presenta la unión de ambas moléculas (Gómez, Vandermeeren et al. 2005). Los candidatos vacunales basados en el virus MVA actualmente bajo ensayo están dirigidos frente a un grupo limitado de proteínas estructurales y no estructurales de VHC y ya han demostrado su capacidad para generar respuestas inmunes de células T de alta calidad tanto en estudios preclínicos (Abraham, Himoudi et al. 2004, Rollier, Depla et al. 2004, Fournillier, Gerossier et al. 2007, El-Gogo, Staib et al. 2008) como clínicos (Habersetzer, Honnet et al. 201 1 ). Los estudios terapéuticos más avanzados utilizando MVA se han llevado a cabo con el candidato TG4040. Se trata de una vacuna poli- antigénica recombinante de células T basada en MVA que codifica las proteínas NS3, NS4 y NS5B de VHC. Se detectaron respuestas de células T específicas para VHC en todos los pacientes una semana después de la primera vacunación y dichas respuestas se mantuvieron durante los 6 meses de seguimiento. La vacunación redujo las cargas virales hasta 1 .5 Iog10 y las respuestas de células T específicas más fuertes se observaron en aquellos pacientes que presentaban los mayores niveles de reducción de la carga viral (Habersetzer, Honnet et al. 201 1 ). Actualmente se encuentra en marcha un estudio randomizado en fase II en el que participaron 153 pacientes divididos en tres grupos de tratamiento. Datos preliminares publicados en la página web de Transgene muestran una reducción de la carga viral en el grupo pre-vacunado con TG4040 previamente al inicio del ensayo una semana después del inicio del mismo. Dicha reducción en la carga viral se produce de una manera más rápida que en los otros grupos que habían recibido el tratamiento solo o en combinación con el TG4040 dentro del mismo programa de tratamiento (Clinical-Trials.gov, NCT01055821 ). Currently, various vaccine candidates are being tested against HCV directed against a limited number of viral antigens, such as peptides, recombinant proteins, DNA and vaccines based on different vectors with different levels of success. Vaccines based on recombinant proteins that induce specific humoral responses to the envelope will hardly provide sterilizing immunity due to the genetic variability of the HCV envelope but may have a role in attenuating the course of the primary infection or serve as an adjuvant for a T-cell-based vaccine. Protein and peptide-based T-cell vaccines have induced weak T-cell responses, so this approach can probably only progress with the development of new adjuvants. DNA vaccines, with additional techniques that favor their release and the generated immunogenicity, have shown some promising results and have been described as being able to reduce the viral load in some chronically infected patients (Halliday, Klenerman et al. 201 1, Torresi , Johnson et al. 201 1, Ip, Nijman et al. 2012). The most promising observations derive from the use of vaccines based on viral vectors such as replication-defective adenoviruses or vaccinia virus. However, this strategy does not allow the full HCV genome to be used, given the toxicity of the binding of both molecules (Gómez, Vandermeeren et al. 2005). The vaccine candidates based on the MVA virus currently under test are directed against a limited group of structural and non-structural HCV proteins and have already demonstrated their ability to generate high quality T-cell immune responses in both preclinical studies (Abraham, Himoudi et al. 2004, Rollier, Depla et al. 2004, Fournillier, Gerossier et al. 2007, El-Gogo, Staib et al. 2008) as clinicians (Habersetzer, Honnet et al. 201 1). The most advanced therapeutic studies using MVA have been carried out with the candidate TG4040. It is a recombinant MVA-based T-cell antigenic vaccine that encodes HCV NS3, NS4 and NS5B proteins. HCV-specific T-cell responses were detected in all patients one week after the first vaccination and these responses were maintained during the 6-month follow-up. Vaccination reduced viral loads to 1.5 Iog10 and stronger specific T cell responses were observed in those patients who had the highest levels of viral load reduction (Habersetzer, Honnet et al. 201 1). A randomized phase II study is currently underway involving 153 patients divided into three treatment groups. Preliminary data published on the Transgene website show a reduction in viral load in the pre-vaccinated group with TG4040 prior to the start of the trial one week after the start of the trial. This reduction in viral load occurs more rapidly than in the other groups that had received treatment alone or in combination with TG4040 within the same treatment program (Clinical-Trials.gov, NCT01055821).
Estos ensayos demuestran la viabilidad de una vacuna contra el VHC que produzca respuestas específicas de memoria en el sistema inmune. Sin embargo, están limitadas por el uso de una parte del genoma del virus, lo que en caso del desarrollo de mutaciones por parte del virus limitaría su alcance. Son pues necesarios candidatos vacunales que amplíen la intensidad y diversidad de la respuesta inmune generada frente a múltiples regiones de VHC. These trials demonstrate the viability of an HCV vaccine that produces specific memory responses in the immune system. However, they are limited by the use of a part of the virus genome, which in case of the development of mutations by the virus would limit its scope. Vaccine candidates that expand the intensity and diversity of the immune response generated against multiple regions of HCV are therefore necessary.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
DESCRIPCIÓN BREVE DE LA INVENCIÓN Un primer objeto de la invención lo constituye el polinucleótido de la invención que comprende la secuencia de nucleótidos correspondiente al virus MVA que actúa como vector de expresión de los genes del VHC regulando la transcripción, traducción y procesamiento post-traduccional de dichos genes del VHC en la mayoría de tejidos del organismo (polinucleótido MVA-HCV). BRIEF DESCRIPTION OF THE INVENTION A first object of the invention is the polynucleotide of the invention comprising the nucleotide sequence corresponding to the MVA virus that acts as an expression vector for HCV genes regulating the transcription, translation and post-translational processing of said HCV genes in most body tissues (MVA-HCV polynucleotide).
Una realización particular de la invención se corresponde al polinucleótido MVA-HCV en el que la secuencia del virus VHC se corresponde con el genoma casi completo del genotipo 1 a y que comprende las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B) y cuya secuencia es SEQ ID No 1 . A particular embodiment of the invention corresponds to the MVA-HCV polynucleotide in which the HCV virus sequence corresponds to the almost complete genome of genotype 1 a and which comprises the structural (Core, E1, E2 and p7) and non-structural ( NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids in the N-terminal region of NS5B) and whose sequence is SEQ ID No 1.
Un objeto de la invención lo constituye el procedimiento de obtención del polinucleótido de la invención, que comprende las siguientes etapas: (a) Generación del plásmido de transferencia pCyA-HCV7 9, (b) Construcción del virus recombinante MVA-HCV, (c) Selección de los virus MVA-HCV estables mediante pases sucesivos en cultivos celulares. Una realización particular de la invención es el procedimiento de obtención del polinucleótido de la invención donde la secuencia del virus VHC se corresponde con el genoma casi completo del genotipo 1 a, con secuencia SEQ ID No 1. Otro objeto de la invención es el vector recombinante MVA-HCV codificado por el polinucleótido de la invención que provoca en las células a las que infecta la expresión de la propia partícula viral y la de las proteínas del virus VHC. An object of the invention is the process for obtaining the polynucleotide of the invention, which comprises the following steps: (a) Generation of the transfer plasmid pCyA-HCV 7 9 , (b) Construction of the MVA-HCV recombinant virus, (c ) Selection of stable MVA-HCV viruses through successive passes in cell cultures. A particular embodiment of the invention is the method of obtaining the polynucleotide of the invention where the HCV virus sequence corresponds to the almost complete genome of genotype 1 a, with sequence SEQ ID No. 1. Another object of the invention is the recombinant vector MVA-HCV encoded by the polynucleotide of the invention that causes the expression of the viral particle itself and that of the HCV virus proteins to infect the cells.
Una realización particular de la invención es el vector recombinante en el que las proteínas virales del VHC se con la SEQ ID No 1. A particular embodiment of the invention is the recombinant vector in which the HCV viral proteins are with SEQ ID No 1.
Otro objeto de la invención es la célula que contiene el polinucleótido de la invención MVA-HCV. Una realización particular de la invención es la célula que contiene el polinucleótido MVA-HCV, en el que las proteínas virales del VHC se corresponden con las secuencias de las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a del VHC con SEQ ID No 1 . Another object of the invention is the cell containing the polynucleotide of the invention MVA-HCV. A particular embodiment of the invention is the cell containing the MVA-HCV polynucleotide, in which the HCV viral proteins correspond to the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3) protein sequences. , NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 to SEQ ID No 1.
Otro objeto preferente de la invención es el uso de la célula que contiene el polinucléotido de la invención para la obtención del vector recombinante de la invención. Una realización particular de la invención es el uso de la célula que contiene el polinucleótido de la invención para la obtención del vector recombinante de la invención, en el que las proteínas virales del VHC se corresponden con las secuencias de las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a del VHC con SEQ ID No 1. Another preferred object of the invention is the use of the cell containing the polynucleotide of the invention for obtaining the recombinant vector of the invention. A particular embodiment of the invention is the use of the cell containing the polynucleotide of the invention for obtaining the recombinant vector of the invention, in which the HCV viral proteins correspond to the sequences of the structural proteins (Core, E1 , E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of genotype 1 to HCV with SEQ ID No 1.
Otro objeto de la invención es la composición farmacéutica que contiene el vector recombinante de la invención MVA-HCV, útil como mecanismo de vacunación contra la hepatitis C. Una realización particular de la invención es la composición farmacéutica de la invención MVA-HCV útil como mecanismo de vacunación contra la hepatitis C que contiene el vector recombinante de la invención, en el que las proteínas virales del VHC se corresponden con las secuencias las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a del VHC con SEQ ID No 1 . Another object of the invention is the pharmaceutical composition containing the recombinant vector of the invention MVA-HCV, useful as a vaccination mechanism against hepatitis C. A particular embodiment of the invention is the pharmaceutical composition of the invention MVA-HCV useful as a hepatitis C vaccination mechanism containing the recombinant vector of the invention, in which the HCV viral proteins correspond to the structural protein sequences. (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 to SEQ ID No 1.
Otro objeto preferente de la invención es el uso de la composición farmacéutica que contiene el vector recombinante de la invención MVA-HCV para prevenir o tratar la infección por VHC. Another preferred object of the invention is the use of the pharmaceutical composition containing the recombinant vector of the invention MVA-HCV to prevent or treat HCV infection.
Una realización particular de la invención es el uso de la composición farmacéutica de la invención MVA-HCV que contiene el polinucleótido de la invención para la obtención del vector recombinante de la invención, en el que las proteínas virales del VHC se corresponden con las secuencias las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a del VHC con SEQ ID No 1 . A particular embodiment of the invention is the use of the pharmaceutical composition of the invention MVA-HCV containing the polynucleotide of the invention for obtaining the recombinant vector of the invention, in which the HCV viral proteins correspond to the sequences of structural (Core, E1, E2 and p7) and non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 to SEQ ID No 1.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Debido al hecho de que los actuales candidatos vacunales frente al VHC están dirigidos frente a un número limitado de antígenos virales, los autores de la presente invención decidieron desarrollar un nuevo candidato vacunal basado en la cepa atenuada MVA que expresa constitutivamente el genoma casi completo del genotipo 1 a del VHC. Esta pauta de lectura abierta (ORF) del VHC había sido utilizada previamente para la generación del virus vaccinia recombinante vT7- HCV7.9 basado en la cepa virulenta WR, en el que el genoma de VHC es eficientemente transcrito dando lugar a una poliproteína que es procesada correctamente generando las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B) maduras (Gómez, Vandermeeren et al. 2005). Sin embargo, la expresión del genoma del VHC por la cepa WR tuvo que ser regulada de forma controlada por el represor lac I de E. coli, pues al producirse las proteínas del VHC por adición a los cultivos celulares de IPTG (que inhibe al represor lac I), las células morían por apoptosis e inhibición de la síntesis de proteínas, con lo que se abortaba la replicación viral (Gómez, Vandermeeren et al. 2005). Dicho procedimiento no se podía trasladar a un organismo por la imposibilidad de poder administrar IPTG de forma continua debido a su rápida eliminación. Due to the fact that the current vaccine candidates against HCV are directed against a limited number of viral antigens, the authors of the present invention decided to develop a new vaccine candidate based on the attenuated strain MVA constitutively expressing the almost complete genome of the genotype 1 a of HCV. This open reading guideline (ORF) of HCV had previously been used for the generation of the recombinant vaccinia virus vT7-HCV7.9 based on the virulent strain WR, in which the HCV genome is efficiently transcribed resulting in a polyprotein that is correctly processed generating the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A plus the 201 amino acids of the N-terminal region of NS5B) mature (Gómez, Vandermeeren et al. 2005 ). However, HCV genome expression by the WR strain had to be regulated in a controlled manner by the lac I repressor of E. coli, because when HCV proteins were produced by addition to IPTG cell cultures (which inhibits the repressor lac I), the cells they died by apoptosis and inhibition of protein synthesis, thereby aborting viral replication (Gómez, Vandermeeren et al. 2005). This procedure could not be transferred to an organism due to the impossibility of being able to administer IPTG continuously due to its rapid elimination.
En esta invención se describe la generación, caracterización y evaluación preclínica del virus MVA-HCV que expresa de manera constitutiva todas las proteínas del VHC (excepto la región C-terminal de NS5B). Y más específicamente abordando el estudio de la amplitud, fenotipo, polifuncionalidad y duración de las respuestas inmunes generadas. Ni la obtención del vector MVA-HCV ni los resultados de respuesta inmune eran predecibles, ya que no se había conseguido con anterioridad un virus recombinante que expresara todo el genoma del VHC debido a la toxicidad de los antígenos virales, ni tampoco se había definido en el contexto de expresión conjunta de todos los antígenos del VHC por un vector viral el tipo de respuesta inmune inducida. Por ello, ha sido inesperado el haber conseguido el recombinante MVA-HCV con las funcionalidades descritas. En virtud de su comportamiento en células y su inmunogenicidad en un organismo, se propone que MVA-HCV puede ser un buen candidato vacunal frente al VHC. Así, un primer objeto de la invención se refiere a un polinucleótido, de aquí en adelante polinucleótido de la invención, que comprende: i) Una secuencia de nucleótidos reguladora de la transcripción correspondiente al virus MVA (secuencia depositada en el GenBank con el número de acceso U94848; http://www.ncbi.nlm.nih.gov/nuccore/U94848) que actúa como vector de expresión de los genes del VHC regulando la transcripción, traducción y procesamiento post-traduccional de dichos genes del VHC en la mayoría de tejidos del organismo, y This invention describes the generation, characterization and preclinical evaluation of the MVA-HCV virus constitutively expressing all HCV proteins (except the C-terminal region of NS5B). And more specifically addressing the study of the amplitude, phenotype, polyfunctionality and duration of the generated immune responses. Neither the obtaining of the MVA-HCV vector nor the immune response results were predictable, since a recombinant virus that expressed the entire HCV genome had not previously been achieved due to the toxicity of the viral antigens, nor was it defined in The context of joint expression of all HCV antigens by a viral vector type of immune response induced. Therefore, it has been unexpected to have achieved the recombinant MVA-HCV with the described functionalities. Due to its behavior in cells and its immunogenicity in an organism, it is proposed that MVA-HCV can be a good vaccine candidate against HCV. Thus, a first object of the invention relates to a polynucleotide, hereinafter polynucleotide of the invention, comprising: i) A transcription regulatory nucleotide sequence corresponding to the MVA virus (sequence deposited in the GenBank with the number of access U94848; http://www.ncbi.nlm.nih.gov/nuccore/U94848) that acts as an expression vector for HCV genes by regulating the transcription, translation and post-translational processing of said HCV genes in most of body tissues, and
ii) Una secuencia de nucleótidos correspondiente al genoma del VHC, insertada en el locus timidín quinasa (TK) del genoma de MVA, y con secuencia SEQ ID No 1 ; y  ii) A nucleotide sequence corresponding to the HCV genome, inserted into the thymidine kinase (TK) locus of the MVA genome, and with sequence SEQ ID No 1; Y
donde la secuencia de MVA que regula la expresión (i) está operativamente unida a la secuencia de nucleótidos del VHC (ii). Una realización particular de la invención se corresponde al polinucleótido MVA-HCV en el que la secuencia del virus VHC ii) se corresponde con el genoma casi completo del genotipo 1 a y que comprende las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B), insertada en el locus timidín quinasa (TK) del genoma de MVA y cuya secuencia es SEQ ID No 1 . where the MVA sequence that regulates expression (i) is operatively linked to the HCV nucleotide sequence (ii). A particular embodiment of the invention corresponds to the MVA-HCV polynucleotide in which the HCV virus sequence ii) corresponds to the almost complete genome of genotype 1 a and which comprises the structural proteins (Core, E1, E2 and p7) and not Structural (NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids of the N-terminal region of NS5B), inserted into the thymidine kinase locus (TK) of the MVA genome and whose sequence is SEQ ID No 1.
Tal como se utiliza aquí, el término "polinucleótido" se refiere a un polímero compuesto de una multiplicidad de unidades de nucleótidos (desoxirribonucleótidos o ribonucleótidos o variantes estructurales relacionadas o análogos sintéticos de los mismos) enlazados a través de enlaces fosfodiéster (o variantes estructurales relacionadas en análogos sintéticos de la misma). El término polinucleótido incluye ADN genómico o ADN codificante de cadena doble o sencilla, ARN, cualquier polinucleótido sintético y manipulado genéticamente y ambos tanto la cadena codificante como la antisentido (aunque sólo se destaca la cadena codificante en la presente memoria). Esto incluye moléculas de cadena sencilla y de doble cadena, como por ejemplo, híbridos de ADN-ADN, ADN-ARN y ARN-ARN. En la presente invención, el polinucleótido comprende una secuencia de nucleótidos del virus MVA que regula la expresión del genoma casi completo del genotipo 1 a del VHC bajo el control transcripcional del promotor viral sintético temprano/tardío y operativamente unido a dicha secuencia de nucleótidos del VHC. As used herein, the term "polynucleotide" refers to a polymer composed of a multiplicity of nucleotide units (deoxyribonucleotides or ribonucleotides or related structural variants or synthetic analogs thereof) linked through phosphodiester bonds (or related structural variants). in synthetic analogues thereof). The term polynucleotide includes genomic DNA or double or single stranded coding DNA, RNA, any synthetic and genetically manipulated polynucleotide and both both the coding chain and the antisense (although only the coding chain is highlighted herein). This includes single and double stranded molecules, such as DNA-DNA, DNA-RNA and RNA-RNA hybrids. In the present invention, the polynucleotide comprises a nucleotide sequence of the MVA virus that regulates the expression of the almost complete genome of genotype 1 to HCV under the transcriptional control of the early / late synthetic viral promoter and operably linked to said HCV nucleotide sequence. .
Tal y como se usa en la presente memoria, la expresión "una secuencia reguladora de la transcripción" se refiere a una secuencia que controla y regula la transcripción y, en su caso, la traducción del polinucleótido del VHC. Una secuencia reguladora de la transcripción incluye secuencias promotoras, secuencias que codifican reguladores transcripcionales, secuencias de unión al ribosoma (RBS) y / o secuencias terminadoras de la transcripción. Las variantes de acuerdo con la presente invención incluyen secuencias de aminoácidos que son al menos 60%, 70%, 80%, 90%, 95% ó 96% similares o idénticas a la secuencia del vector recombinante y que incluye tanto las secuencias aminoacídicas correspondientes al virus MVA como a las secuencias de aminoácidos del virus VHC, en particular de las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B del genotipo 1 a del VHC) (SEQ ID No 1 ). Como se conoce en el estado de la técnica, la "similitud" entre dos proteínas se determina comparando la secuencia de aminoácidos y sus sustitutos aminoácidos conservados de una proteína a una secuencia de una proteína segundos. El grado de identidad entre dos proteínas se determina usando algoritmos informáticos y métodos que son ampliamente conocidos por las personas expertas en la técnica. La identidad entre dos secuencias de aminoácidos se determina preferiblemente mediante el algoritmo BLASTP (Altschul, Gish et al. 1990). Como los expertos en la técnica apreciarán, las variantes o fragmentos se pueden generar usando técnicas convencionales, tales como mutagénesis, incluyendo la creación de mutación de punto discreto (s), o por truncamiento. Por ejemplo, la mutación puede dar lugar a variantes que conservan sustancialmente la misma, o simplemente un subconjunto, de la actividad biológica de un polipéptido del que se deriva. As used herein, the term "a transcription regulatory sequence" refers to a sequence that controls and regulates transcription and, where appropriate, the translation of the HCV polynucleotide. A transcription regulatory sequence includes promoter sequences, sequences encoding transcriptional regulators, ribosome binding sequences (RBS) and / or transcription terminator sequences. Variants according to the present invention include amino acid sequences that are at least 60%, 70%, 80%, 90%, 95% or 96% similar or identical to the recombinant vector sequence and that includes both the corresponding amino acid sequences. to the MVA virus as to the amino acid sequences of the HCV virus, in particular structural proteins (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids of the NS5B N-terminal region of HCV genotype 1 to) (SEQ ID No 1). As is known in the state of the art, the "similarity" between two proteins is determined by comparing the amino acid sequence and its conserved amino acid substitutes of a protein to a sequence of a second protein. The degree of identity between two proteins is determined using computer algorithms and methods that are widely known to those skilled in the art. The identity between two amino acid sequences is preferably determined by the BLASTP algorithm (Altschul, Gish et al. 1990). As those skilled in the art will appreciate, variants or fragments can be generated using conventional techniques, such as mutagenesis, including the creation of discrete point mutation (s), or by truncation. For example, the mutation can give rise to variants that retain substantially the same, or simply a subset, of the biological activity of a polypeptide from which it is derived.
El término "vector", tal y como se emplea en la presente memoria, se refiere a una molécula de ácido nucleico que es capaz de transferir secuencias de ácidos nucleicos contenidas en la misma a la célula que infecta y que se produce por medio de técnicas de biología molecular. Algunos ejemplos de vectores recombinantes son ADN lineal, ADN plasmídico, virus modificados, adenovirus/virus adenoasociados, vectores retrovirales y virales, etc.; todos ellos ampliamente descritos en la literatura y que pueden ser empleados siguiendo técnicas estándar de biología molecular o comprados a proveedores. Un vector recombinante típico se selecciona del grupo que consiste en un vector lentiviral, un vector adenoviral y/o un vector de virus adenoasociados. The term "vector", as used herein, refers to a nucleic acid molecule that is capable of transferring nucleic acid sequences contained therein to the cell it infects and that is produced by means of techniques. of molecular biology. Some examples of recombinant vectors are linear DNA, plasmid DNA, modified viruses, adenoviruses / adeno-associated viruses, retroviral and viral vectors, etc .; all of them widely described in the literature and that can be used following standard molecular biology techniques or purchased from suppliers. A typical recombinant vector is selected from the group consisting of a lentiviral vector, an adenoviral vector and / or an adeno-associated virus vector.
El término "vector recombinante", tal y como se usa en la presente invención, se define como un vector producido por la unión de diferentes fragmentos de ácidos nucleicos a partir de diferentes fuentes y cuya expresión da lugar a una partícula viral con capacidad infectiva compuesta característicamente de cápside proteica, genoma viral y proteínas asociadas al genoma viral. Un vector recombinante según la invención puede, por tanto, emplearse tanto como herramienta biotecnológica para multiplicar el virus como emplearse en composiciones farmacéuticas como las vacunas. Tal y como se utiliza en esta descripción, la expresión "unida operativamente" significa que la secuencia de nucleótidos que codifica un polipéptido que comprende el genoma del virus VHC, en particular el genoma casi completo del genotipo 1 a del VHC con SEQ ID No 1 (las proteínas estructurales, Core, E1 , E2 y p7, y no estructurales, NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B) está covalentemente unida a la secuencia de nucleótidos del virus MVA y que ambas están dispuestas de modo que la expresión de la secuencia de nucleótidos del VHC se produce bajo el control de la secuencia del virus MVA reguladora de la transcripción. The term "recombinant vector", as used in the present invention, is defined as a vector produced by the binding of different nucleic acid fragments from different sources and whose expression gives rise to a viral particle with compound infective capacity. characteristically of protein capsid, viral genome and proteins associated with the viral genome. A recombinant vector according to the invention can therefore be used both as a biotechnological tool to multiply the virus and be used in pharmaceutical compositions such as vaccines. As used in this description, the term "operably linked" means that the nucleotide sequence encoding a polypeptide comprising the genome of the HCV virus, in particular the almost complete genome of genotype 1 to HCV with SEQ ID No. 1 (Structural proteins, Core, E1, E2 and p7, and non-structural proteins, NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids in the N-terminal region of NS5B) are covalently linked to the nucleotide sequence of the MVA virus and that both are arranged so that the expression of the HCV nucleotide sequence occurs under the control of the transcription regulatory MVA virus sequence.
Otro objeto de la invención lo constituye un procedimiento de obtención del polinucleótido de la invención, en adelante procedimiento de la invención, donde dicho método comprende de forma general las siguientes etapas: (a) Generación del plásmido de transferencia. Un fragmento de ADN de una longitud variable conteniendo las proteínas estructurales y no estructurales de un determinado genotipo de VHC sería escindido del plásmido inicial donde se encontrara insertado (pHCV) utilizando las enzimas de restricción correspondientes e insertado en el plásmido pCyA-20 descrito más adelante y previamente digerido con las mismas enzimas de digestión para generar el plásmido de transferencia correspondiente (pCyA-HCV); Another object of the invention is a process for obtaining the polynucleotide of the invention, hereinafter the method of the invention, wherein said method generally comprises the following steps: (a) Generation of the transfer plasmid. A DNA fragment of a variable length containing the structural and non-structural proteins of a given HCV genotype would be cleaved from the initial plasmid where it was inserted (pHCV) using the corresponding restriction enzymes and inserted into the plasmid pCyA-20 described below. and previously digested with the same digestion enzymes to generate the corresponding transfer plasmid (pCyA-HCV);
(b) Construcción del virus recombinante MVA-HCV. Células BHK-21 serían infectadas con el virus atenuado MVA-WT y posteriormente transfectadas con el plásmido pCyA-HCV obtenido en el apartado anterior utilizando un agente transfectante según las especificaciones del fabricante. A las 72 horas post-infección, las células serían recogidas, congeladas/descongeladas, sonicadas y utilizadas para la selección de los virus recombinantes; (b) Construction of the MVA-HCV recombinant virus. BHK-21 cells would be infected with the attenuated MVA-WT virus and subsequently transfected with the plasmid pCyA-HCV obtained in the previous section using a transfectant agent according to the manufacturer's specifications. At 72 hours post-infection, the cells would be collected, frozen / thawed, sonicated and used for the selection of recombinant viruses;
(c) Selección de los virus MVA-HCV estables mediante pases sucesivos en cultivos celulares. Los virus MVA recombinantes que contuvieran los genes de VHC de un genotipo determinado y que expresaran de forma transitoria el gen marcador β-gal (MVA-HCV (X-Gal+)) serían seleccionados durante pases consecutivos de purificación de placas en células BHK-21 teñidas con 5-bromo-4-cloro-3-indolil-p-galactósido (X-Gal). Tras una serie de pases consecutivos de purificación se aislarían un número de placas recombinantes que expresaran eficientemente las proteínas de VHC de un genotipo determinado y que hubieran perdido el gen marcador. La placa final seleccionada (designada como MVA-HCV stock P1 ) sería crecida para generar una preparación viral cruda (stock P2) a partir de la cual se prepararía un stock P3 de virus purificado según el protocolo descrito más adelante. (c) Selection of stable MVA-HCV viruses by successive passes in cell cultures. Recombinant MVA viruses containing the HCV genes of a given genotype and transiently expressing the β-gal marker gene (MVA-HCV (X-Gal + )) would be selected during Consecutive plate purification passes on BHK-21 cells stained with 5-bromo-4-chloro-3-indolyl-p-galactoside (X-Gal). After a series of consecutive purification passes, a number of recombinant plaques that efficiently express the HCV proteins of a given genotype and that would have lost the marker gene would be isolated. The selected end plate (designated as MVA-HCV stock P1) would be grown to generate a crude viral preparation (stock P2) from which a purified P3 stock of virus would be prepared according to the protocol described below.
Según la heterogeneidad de la secuencia genómica, el VHC se clasifica en 1 1 genotipos (designados 1→1 1 ), numerosos subtipos (designados a, b, c,...) y alrededor de 100 cepas diferentes (numeradas 1 , 2, 3,...). Un virus se considera "estable" si pierde menos del 50% de la infectividad en, por ejemplo, un ensayo de formación de placas (PFU), que mide el cambio en la cantidad de PFU / ml_ entre dos puntos de temporales anterior y posterior. Depending on the heterogeneity of the genomic sequence, HCV is classified into 1 1 genotypes (designated 1 → 1 1), numerous subtypes (designated a, b, c, ...) and about 100 different strains (numbered 1, 2, 3,...). A virus is considered "stable" if it loses less than 50% of infectivity in, for example, a plaque formation assay (PFU), which measures the change in the amount of PFU / ml_ between two anterior and posterior temporal points. .
Una realización particular de la invención es un procedimiento de obtención del polinucleótido de la invención, donde la secuencia del virus VHC se corresponde con la SEQ ID No 1 y comprende las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N- terminal de NS5B) del genotipo 1 a de VHC. Dicho método comprende de forma general las siguientes etapas: A particular embodiment of the invention is a method of obtaining the polynucleotide of the invention, where the HCV virus sequence corresponds to SEQ ID No. 1 and comprises the structural (Core, E1, E2 and p7) and non-structural (NS2) proteins. , NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a. Said method generally comprises the following steps:
(a) Generación del plásmido de transferencia PCVA-HCVT P. El plásmido pCyA-20 fue generado mediante la inserción de una banda sintética que contenía el promotor viral temprano/tardío y un sitio múltiple de clonaje en el plásmido pLZAWL Esta banda sintética, obtenida mediante la hibridación de dos oligonucleótidos complementarios que contenían dianas para las enzimas de restricción AscI y Swal, fue digerida con Ascl y Swal e insertada en el plásmido pLZAWl previamente digerido con las mismas enzimas de restricción para generar el plásmido pCyA- 20. Un fragmento de ADN de 7.9 Kpb que contenía las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a de VHC fue escindido con EcoRI del plásmido pHCVI a (cedido por Charles M. Rice, New York) que contenía el genoma completo de VHC. Este fragmento de ADN fue tratado con la ADN polimerasa Klenow para generar extremos romos e insertado en el plásmido pCyA-20 previamente digerido con Pmel y desfosforilado mediante la incubación con fosfatasa alcalina de gamba para generar el plásmido de transferencia pCyA-HCV7 9 (SEQ ID No 2). (a) Generation of the transfer plasmid PCVA-HCVT P. Plasmid pCyA-20 was generated by inserting a synthetic band containing the early / late viral promoter and a multiple cloning site in the plasmid pLZAWL This synthetic band, obtained by hybridization of two complementary oligonucleotides containing targets for restriction enzymes AscI and Swal, it was digested with Ascl and Swal and inserted into plasmid pLZAWl previously digested with the same restriction enzymes to generate plasmid pCyA-20. A fragment of 7.9 Kpb DNA containing the proteins Structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a was cleaved with EcoRI from plasmid pHCVI a (assigned by Charles M. Rice, New York) that contained the complete HCV genome. This DNA fragment was treated with Klenow DNA polymerase to generate blunt ends and inserted into plasmid pCyA-20 previously digested with Pmel and dephosphorylated by incubation with alkaline prawn phosphatase to generate transfer plasmid pCyA-HCV 7 9 (SEQ ID No 2).
(b) Construcción del virus recombinante MVA-HCV. Células BHK-21 fueron infectadas con el virus atenuado MVA-WT y posteriormente transfectadas con el plásmido pCyA-HCV7 9 utilizando lipofectamina (Invitrogen) como agente transfectante. A las 72 horas post-infección, las células fueron recogidas, congeladas/descongeladas, sonicadas y utilizadas para la selección de los virus recombinantes. (b) Construction of the MVA-HCV recombinant virus. BHK-21 cells were infected with the attenuated MVA-WT virus and subsequently transfected with the plasmid pCyA-HCV 7 9 using lipofectamine (Invitrogen) as a transfecting agent. At 72 hours post-infection, the cells were collected, frozen / thawed, sonicated and used for the selection of recombinant viruses.
(c) Selección de los virus MVA-HCV estables mediante pases sucesivos en cultivos celulares. Los virus MVA recombinantes que contenían los genes de VHC y que expresaban de forma transitoria el gen marcador β- gal (MVA-HCV (X-Gal+)) fueron seleccionados durante pases consecutivos de purificación de placas en células BHK-21 teñidas con 5- bromo-4-cloro-3-indolil-p-galactósido (X-Gal). Tras 7 pases consecutivos de purificación se aislaron 12 placas recombinantes que expresaban eficientemente las proteínas de VHC y que habían perdido el gen marcador. La placa designada como MVA-HCV-1 .6.1.1 .9.3.2 (stock P1 ) fue crecida para generar una preparación viral cruda (stock P2: 9.8 x 108 UFP/ml) a partir de la cual se preparó un stock P3 de virus purificado a partir de células BHK-21 infectadas a una multiplicidad de infección de 0.05 UFP/célula a través de dos colchones de sacarosa al 36%. Este stock P3 fue el que finalmente se seleccionó. También se aisló un stock P-2 de MVA-HCV a partir del P1 inicial después de tres pases consecutivos de placas obtenidas en células embrionarias de pollo (CEF) y confirmación de expresión de proteínas y esterilidad. Como es conocido para un experto en la técnica, los plásmidos obtenidos como intermediarios en el método de la invención también pueden ser empleados para obtener variantes o derivados del polinucleótido de la invención. Así también será objeto de protección el plásmido pCyA-HCV7 9 cuya secuencia se corresponde con SEQ ID No 2. (c) Selection of stable MVA-HCV viruses by successive passes in cell cultures. Recombinant MVA viruses containing HCV genes and transiently expressing the β-gal marker gene (MVA-HCV (X-Gal + )) were selected during consecutive plate purification passes on BHK-21 cells stained with 5 - Bromo-4-chloro-3-indolyl-p-galactoside (X-Gal). After 7 consecutive purification passes, 12 recombinant plaques were isolated that efficiently expressed HCV proteins and had lost the marker gene. The plate designated as MVA-HCV-1 .6.1.1 .9.3.2 (stock P1) was grown to generate a crude viral preparation (stock P2: 9.8 x 10 8 PFU / ml) from which a stock was prepared P3 of purified virus from infected BHK-21 cells at a multiplicity of infection of 0.05 PFU / cell through two 36% sucrose mattresses. This P3 stock was the one that was finally selected. A P-2 stock of MVA-HCV was also isolated from the initial P1 after three consecutive passes of plaques obtained in chicken embryonic cells (CEF) and confirmation of protein expression and sterility. As is known to one skilled in the art, plasmids obtained as intermediates in the method of the invention can also be used to obtain variants or derivatives of the polynucleotide of the invention. This will also protect the plasmid pCyA-HCV 7 9 whose sequence corresponds to SEQ ID No 2.
En la presente invención, el polinucleótido de la invención codifica las estructuras necesarias para generar una partícula viral de MVA-HCV en células CEF y BHK-21 y puede ser empleado como vector recombinante para infectar y transformar aquellos cultivos celulares en los que se introduzca y con ello producir la expresión de las proteínas virales propias del VHC. In the present invention, the polynucleotide of the invention encodes the structures necessary to generate a viral MVA-HCV particle in CEF and BHK-21 cells and can be used as a recombinant vector to infect and transform those cell cultures into which it is introduced and with this, to produce the expression of viral proteins characteristic of HCV.
Así, otro objeto de la invención es el vector recombinante MVA-HCV, o partícula viral, que comprende el polinucleótido de la invención. La partícula viral o vector recombinante provoca en las células a las que infecta la expresión de la propia partícula viral y de las proteínas del virus VHC. Thus, another object of the invention is the recombinant vector MVA-HCV, or viral particle, which comprises the polynucleotide of the invention. The viral particle or recombinant vector causes cells that are infected by the expression of the viral particle itself and of the HCV virus proteins.
En una realización particular el vector recombinante de la invención expresa la secuencia del virus VHC que se corresponde con la secuencia SEQ ID No 1 y que codifica las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a de VHC. In a particular embodiment, the recombinant vector of the invention expresses the HCV virus sequence that corresponds to the sequence SEQ ID No. 1 and that encodes the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A) proteins. , NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a.
Un cultivo de células hospedadoras engloba los procesos de mantener y crecer dichas células hospedadoras. Los cultivos celulares necesitan condiciones controladas de temperatura, pH, porcentajes de gases como el dióxido de carbono y el oxígeno, así como la presencia de los nutrientes adecuados para permitir la viabilidad y la división celular. Los cultivos celulares pueden desarrollarse en sustratos sólidos como el agar o en medio líquido, lo que permite cultivar grandes cantidades de células en suspensión. Los cultivos virales precisan de células hospedadoras que aporten la maquinaria celular y metabólica de la que carecen. Esto permite que el virus pueda no sólo mantenerse sino también multiplicarse por lo que la expresión del polinucleótido de la invención en dicho cultivo celular puede utilizarse para propagar el vector recombinante de la invención. De esta manera, otro objeto de la invención es la célula que contiene el polinucleótido de la invención MVA-HCV, de ahora en adelante célula hospedadora de la invención. Una realización particular de la invención se refiere a la célula hospedadora de la invención que contiene el polinucleótido de la invención MVA-HCV, donde la secuencia del virus VHC se corresponde con la secuencia SEQ ID No 1 que codifica las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a del VHC. A culture of host cells encompasses the processes of maintaining and growing said host cells. Cell cultures need controlled conditions of temperature, pH, percentages of gases such as carbon dioxide and oxygen, as well as the presence of adequate nutrients to allow viability and cell division. Cell cultures can be grown on solid substrates such as agar or in a liquid medium, allowing large numbers of suspended cells to be cultured. Viral cultures require host cells that provide the cellular and metabolic machinery they lack. This allows the virus not only to be maintained but also to multiply so that the expression of the polynucleotide of the invention in said cell culture can be used to propagate the recombinant vector of the invention. Thus, another object of the invention is the cell containing the polynucleotide of the invention MVA-HCV, hereafter referred to as the host cell of the invention. A particular embodiment of the invention relates to the host cell of the invention containing the polynucleotide of the invention MVA-HCV, where the HCV virus sequence corresponds to the sequence SEQ ID No. 1 encoding the structural proteins (Core, E1 , E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a.
Así, otro objeto de la invención se refiere al uso de la célula hospedadora de la invención para reproducir y mantener el virus MVA-HCV y para obtener el vector recombinante de la invención. Preferentemente, la célula hospedadora de la invención es una célula de mamífero, más preferentemente de origen aviar y más preferentemente aún fibroblastos embrionarios de pollo. Thus, another object of the invention relates to the use of the host cell of the invention to reproduce and maintain the MVA-HCV virus and to obtain the recombinant vector of the invention. Preferably, the host cell of the invention is a mammalian cell, more preferably of avian origin and more preferably even chicken embryonic fibroblasts.
Una realización particular de la invención se refiere al uso de la célula hospedadora de la invención para reproducir y mantener el virus MVA-HCV y para la obtener el vector recombinante de la invención. Así pues, el vector recombinante de la invención puede transferir la secuencia del VHC a una célula bajo el control transcripcional del promotor viral sintético temprano/tardío del fragmento del virus MVA e inducir su expresión en la misma. La poliproteína viral generada es procesada dando lugar a las proteínas propias del VHC, en partículas a la secuencia de las proteínas estructurales, Core, E1 , E2 y p7, y no estructurales, NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B, maduras del genotipo 1 a del virus VHC. Este vector recombinante puede, por tanto, ser empleado para expresar los genes del VHC en un organismo y de este modo inducir respuestas inmunes frente a las proteínas virales del VHC en aquellos organismos a los que se les administre dicho vector. A particular embodiment of the invention relates to the use of the host cell of the invention to reproduce and maintain the MVA-HCV virus and to obtain the recombinant vector of the invention. Thus, the recombinant vector of the invention can transfer the HCV sequence to a cell under the transcriptional control of the early / late synthetic viral promoter of the MVA virus fragment and induce its expression therein. The viral polyprotein generated is processed giving rise to the HCV proteins, particulate to the sequence of the structural proteins, Core, E1, E2 and p7, and non-structural, NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids from the NS5B N-terminal region, mature of genotype 1 a of the HCV virus. This recombinant vector can, therefore, be used to express HCV genes in an organism and thus induce immune responses against HCV viral proteins in those organisms to which said vector is administered.
Así pues, otro objeto de la invención se refiere también a una composición farmacéutica útil para generar una respuesta inmunológica duradera frente al virus VHC, de aquí en adelante "composición farmacéutica de la invención", que comprenden el vector de la invención y un vehículo farmacéuticamente aceptable. Opcionalmente, dicha composición puede comprender otro principio activo y/o adyuvante. Thus, another object of the invention also relates to a pharmaceutical composition useful for generating a lasting immune response against the HCV virus, hereinafter "pharmaceutical composition of the invention", comprising the vector of the invention and a pharmaceutically carrier. acceptable. Optionally, said composition may comprise another active and / or adjuvant principle.
Una realización particular de la invención se refiere a la composición farmacéutica de la invención en la que el vector de la invención contiene la secuencia SEQ ID No 1 que se corresponde con la secuencia de las proteínas estructurales, Core, E1 , E2 y p7 y no estructurales, NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B, maduras del genotipo 1 a del virus VHC. A particular embodiment of the invention relates to the pharmaceutical composition of the invention in which the vector of the invention contains the sequence SEQ ID No 1 that corresponds to the sequence of the structural proteins, Core, E1, E2 and p7 and not Structural, NS2, NS3, NS4A, NS4B, NS5A plus 201 amino acids in the N-terminal region of NS5B, mature of genotype 1 a of the HCV virus.
Otro objeto preferente de la invención se refiere al uso de la composición farmacéutica de la invención para generar una respuesta inmunológica duradera y profiláctica para el tratamiento y prevención de la infección por VHC. La generación de esa respuesta protectora se puede conseguir mediante la administración únicamente del vector recombinante de la invención, en una única dosis o en dosis administradas en el tiempo, o como parte de un protocolo de inmunización con vectores diferentes que expresan antígenos del VHC, formando parte los vectores recombinantes de la invención de la dosis inicial que desencadena la respuesta y/o de una o más dosis posteriores destinadas a potenciar la respuesta previamente generada. Another preferred object of the invention relates to the use of the pharmaceutical composition of the invention to generate a lasting and prophylactic immune response for the treatment and prevention of HCV infection. The generation of that protective response can be achieved by administering only the recombinant vector of the invention, in a single dose or in doses administered over time, or as part of an immunization protocol with different vectors expressing HCV antigens, forming part of the recombinant vectors of the invention from the initial dose that triggers the response and / or from one or more subsequent doses intended to enhance the previously generated response.
Otra realización particular de la invención se refiere al uso de la composición farmacéutica de la invención para generar una respuesta inmunológica duradera y profiláctica para el tratamiento y prevención de la infección por el genotipo 1 a del VHC. Another particular embodiment of the invention relates to the use of the pharmaceutical composition of the invention to generate a lasting and prophylactic immune response for the treatment and prevention of HCV genotype 1 to infection.
En la presente invención, el término "medicamento o composición farmacéutica" hace referencia a cualquier sustancia usada para prevención, alivio, tratamiento o curación de enfermedades en el hombre y/o los animales. In the present invention, the term "medicament or pharmaceutical composition" refers to any substance used for prevention, relief, treatment or cure of diseases in man and / or animals.
En una realización preferida además, la composición farmacéutica o medicamento de la invención además comprende un vehículo o excipiente farmacéuticamente aceptable. En una realización más preferida, la composición farmacéutica o medicamento de la invención además comprende un adyuvante. En una realización aún más preferida, la composición farmacéutica o medicamento de la invención además comprende otro principio activo (principio activo adicional). In a further preferred embodiment, the pharmaceutical composition or medicament of the invention further comprises a pharmaceutically acceptable carrier or excipient. In a more preferred embodiment, the pharmaceutical composition or medicament of the invention further comprises an adjuvant. In an even more preferred embodiment, the pharmaceutical composition or medicament of the invention further comprises another active ingredient (additional active ingredient).
El término "excipiente" hace referencia a una sustancia que ayuda a la absorción de los elementos de la composición de la invención, estabiliza dichos elementos y activa o ayuda a la preparación de la composición en el sentido de darle consistencia o aportar sabores que la hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos, como por ejemplo es el caso de almidones, azúcares o celulosas, la función de endulzar, la función como colorante, la función de protección de la composición, como por ejemplo, para aislarla del aire y/o la humedad, la función de relleno de una pastilla, cápsula o cualquier otra forma de presentación, como por ejemplo, es el caso del fosfato de calcio dibásico, la función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo. The term "excipient" refers to a substance that helps the absorption of the elements of the composition of the invention, stabilizes said elements and activates or aids the preparation of the composition in the sense of giving it consistency or providing flavors that make it nicer. Thus, the excipients could have the function of keeping the ingredients together, such as, for example, starches, sugars or cellulose, the sweetening function, the function as a dye, the protective function of the composition, for example, to isolate it from air and / or moisture, the filling function of a tablet, capsule or any other form of presentation, such as, for example, is the case of dibasic calcium phosphate, the disintegrating function to facilitate the dissolution of the components and its absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
El término "vehículo", al igual que el excipiente, hace referencia a una sustancia que se emplea en la composición farmacéutica o medicamento para diluir cualquiera de los componentes de la presente invención comprendidos en ella hasta un volumen o peso determinado. El "vehículo farmacológicamente aceptable" es una sustancia inerte o de acción análoga a cualquiera de los elementos de la presente invención. La función del vehículo es facilitar la incorporación de otros elementos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición. Cuando la forma de presentación es líquida, el vehículo farmacológicamente aceptable es el diluyente. The term "vehicle", like the excipient, refers to a substance that is used in the pharmaceutical composition or medicament to dilute any of the components of the present invention comprised therein to a certain volume or weight. The "pharmacologically acceptable carrier" is an inert substance or action analogous to any of the elements of the present invention. The function of the vehicle is to facilitate the incorporation of other elements, allow a better dosage and administration or give consistency and form to the composition. When the form of presentation is liquid, the pharmacologically acceptable carrier is the diluent.
En esta memoria, el término "adyuvante" se refiere a un agente que aumenta la formación de anticuerpos contra un determinado antígeno cuando es suministrado de forma conjunta a éste o bien formando parte de un mismo protocolo de tratamiento. Here, the term "adjuvant" refers to an agent that increases the formation of antibodies against a certain antigen when it is delivered jointly to it or as part of the same treatment protocol.
A lo largo de la descripción y las reivindicaciones, la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For experts in the field, other objects, advantages and Characteristics of the invention will be apparent in part from the description and in part from the practice of the invention. The following figures and examples are provided by way of illustration and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1.- (A) Esquema de la construcción del plásmido de transferencia pCyA- HCV7.9. El plásmido pCyA-20 fue generado mediante la inserción de una banda sintética que contenía el promotor viral temprano/tardío y un sitio múltiple de clonaje en el plásmido pLZAWl . Esta banda sintética, obtenida mediante la hibridación de dos oligonucleótidos complementarios que contenían dianas para las enzimas de restricción AscI y Swal, fue digerida con Ascl y Swal e insertada en el plásmido pLZAWl previamente digerido con las mismas enzimas de restricción para generar el plásmido pCyA-20. Un fragmento de ADN de 7.9 Kpb que contenía las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1 a de VHC fue escindido con EcoRI del plásmido pHCVI a (cedido por Charles M. Rice, New York) que contenía el genoma completo de VHC. Este fragmento de ADN fue tratado con la ADN polimerasa Klenow para generar extremos romos e insertado en el plásmido pCyA- 20 previamente digerido con Pmel y desfosforilado mediante la incubación con fosfatasa alcalina de gamba para generar el plásmido de transferencia pCyA- HCV7.9. (B) Análisis de la estabilidad de las proteínas de VHC expresadas por MVA- HCV. Treinta placas individuales aisladas de células infectadas con MVA-HCV tras 1 1 pases fueron crecidas en células BHK-21 , las células infectadas lisadas y las proteínas separadas en geles para SDS-PAGE al 12% y analizadas por Western- blot utilizando un suero humano positivo para anticuerpos frente a VHC. Figure 1.- (A) Scheme of the construction of the transfer plasmid pCyA-HCV 7 .9. Plasmid pCyA-20 was generated by inserting a synthetic band containing the early / late viral promoter and a multiple cloning site in plasmid pLZAWl. This synthetic band, obtained by hybridizing two complementary oligonucleotides containing targets for the AscI and Swal restriction enzymes, was digested with Ascl and Swal and inserted into the plasmid pLZAWl previously digested with the same restriction enzymes to generate the plasmid pCyA- twenty. A 7.9 kbp DNA fragment containing the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A and the N-terminal region of NS5B) of HCV genotype 1 a was EcoRI cleaved from plasmid pHCVI a (assigned by Charles M. Rice, New York) containing the complete HCV genome. This DNA fragment was treated with Klenow DNA polymerase to generate blunt ends and inserted into plasmid pCyA-20 previously digested with Pmel and dephosphorylated by incubation with shrimp alkaline phosphatase to generate transfer plasmid pCyA-HCV 7 .9. (B) Analysis of the stability of HCV proteins expressed by MVA-HCV. Thirty individual plates isolated from MVA-HCV infected cells after 1 1 passes were grown in BHK-21 cells, infected lysed cells and proteins separated in gels for 12% SDS-PAGE and analyzed by Western blot using a human serum positive for antibodies to HCV.
Figura 2.- Caracterización in vitro y estabilidad genética del virus recombinante MVA-HCV. (A) Esquema de la organización del genoma de VHC en el locus TK de MVA. (B) Confirmación de la inserción del genoma de VHC mediante análisis por PCR. El ADN viral fue extraído de células BHK-21 infectadas con MVA- WT o MVA-HCV a una multiplicidad de infección de 5 UFP/célula. Los oligonucleótidos TK-L y TK-R que hibridan en las secuencias flanqueantes del locus TK fueron utilizados para el análisis por PCR del locus TK. En el virus MVA parental se obtiene un fragmento de 873 pb mientras que en el virus recombinante se observa un único producto de 8393 pb. (C) Expresión de las proteínas de VHC mediante análisis por Western-blot. Células BHK-21 fueron no infectadas o infectadas con MVA-WT o MVA-HCV a 5 UFP/célula. A las 24 horas post-infección, las células fueron lisadas en presencia de tampón Laemmli, los extractos celulares fueron separados en geles para SDS-PAGE al 12% y analizados mediante Western-blot utilizando anticuerpos monoclonales de ratón frente a las proteínas Core, E1 , E2, NS4A, NS4B y NS5A. (D) Análisis de la estabilidad de MVA-HCV a lo largo de diferentes pases en células BHK-21 . La expresión de las proteínas de VHC fue visualizada mediante Western-blot a partir de muestras de células BHK-21 no infectadas o infectadas a 5 UFP/célula con MVA-WT o con los diferentes pases de MVA-HCV (desde P8 hasta P1 1 ) utilizando un suero humano positivo para anticuerpos frente a VHC. Figure 2.- In vitro characterization and genetic stability of the MVA-HCV recombinant virus. (A) Scheme of the organization of the HCV genome in the TK locus of MVA. (B) Confirmation of HCV genome insertion by PCR analysis. Viral DNA was extracted from BHK-21 cells infected with MVA-WT or MVA-HCV at a multiplicity of infection of 5 PFU / cell. The TK-L and TK-R oligonucleotides that hybridize in the flanking sequences of the locus TK were used for PCR analysis of the TK locus. In the parental MVA virus an 873 bp fragment is obtained while in the recombinant virus a single product of 8393 bp is observed. (C) HCV protein expression by Western blot analysis. BHK-21 cells were uninfected or infected with MVA-WT or MVA-HCV at 5 PFU / cell. At 24 hours post-infection, the cells were lysed in the presence of Laemmli buffer, the cell extracts were separated in gels for 12% SDS-PAGE and analyzed by Western-blot using mouse monoclonal antibodies against Core, E1 proteins. , E2, NS4A, NS4B and NS5A. (D) Analysis of the stability of MVA-HCV along different passages in BHK-21 cells. HCV protein expression was visualized by Western-blot from samples of uninfected or infected BHK-21 cells at 5 PFU / cell with MVA-WT or with the different MVA-HCV passages (from P8 to P1 1 ) using a human serum positive for antibodies to HCV.
Figura 3.- (A) Análisis del crecimiento del virus MVA-HCV en células BHK-21 . Monocapas de células BHK-21 fueron infectadas con MVA-WT o MVA-HCV a 0.01 UFP/célula. A diferentes tiempos post-infección (0, 24, 48 y 72 horas), las células fueron recogidas y la presencia de virus infecciosos fue determinada mediante inmunotinción de los focos de células infectadas. (B) Cinética de expresión de las proteínas de VHC en células BHK-21 y HepG2. La expresión de las proteínas de VHC a los diferentes tiempos post-infección indicados fue determinada mediante Western-blot a partir de muestras no infectadas o infectadas con MVA-WT o MVA- HCV a 5 UFP/célula utilizando un suero humano positivo para anticuerpos frente a VHC. (C) Formación de estructuras membranosas durante la infección (5 UFP/célula) de células HeLa por MVA-HCV a las 16 h. por microscopía electrónica. Figure 3.- (A) Analysis of the growth of the MVA-HCV virus in BHK-21 cells. Monolayers of BHK-21 cells were infected with MVA-WT or MVA-HCV at 0.01 PFU / cell. At different post-infection times (0, 24, 48 and 72 hours), the cells were collected and the presence of infectious viruses was determined by immunostaining of the infected cell foci. (B) Kinetics of HCV protein expression in BHK-21 and HepG2 cells. The expression of HCV proteins at the different post-infection times indicated was determined by Western-blot from samples not infected or infected with MVA-WT or MVA-HCV at 5 PFU / cell using a human serum positive for antibodies against to HCV. (C) Formation of membranous structures during infection (5 PFU / cell) of HeLa cells by MVA-HCV at 16 h. by electron microscopy.
Figura 4.- La infección por MVA-HCV bloquea la respuesta inmune innata.Figure 4.- MVA-HCV infection blocks the innate immune response.
Células dendríticas humanas fueron no infectadas o infectadas con MVA-WT o MVA-HCV a 0.3 o 1 UFP/célula durante 6 horas. Los niveles de ARNm de IFN-a, IFIT1 , IFIT2, RIG-I, MDA-5 y IP-10 fueron cuantificados mediante RT-PCR. Los niveles de ARNm se expresan como el ratio entre los niveles del gen de interés y los niveles de Hprt. U.A.: unidades arbitrarias. * p<0.05, ** p<0.005, *** p<0.001 para todas las condiciones comparando MVA-HCV con MVA-WT a la misma multiplicidad de infección (MDI). Human dendritic cells were uninfected or infected with MVA-WT or MVA-HCV at 0.3 or 1 PFU / cell for 6 hours. The mRNA levels of IFN-a, IFIT1, IFIT2, RIG-I, MDA-5 and IP-10 were quantified by RT-PCR. MRNA levels are expressed as the ratio between the levels of the gene of interest and the levels of Hprt. UA: arbitrary units. * p <0.05, ** p <0.005, *** p <0.001 for all conditions comparing MVA-HCV with MVA-WT at the same multiplicity of infection (MDI).
Figura 5.- Respuesta inmune adaptativa de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación. (A)Figure 5.- Adaptive immune response of HCV-specific T cells generated by the MVA-HCV recombinant virus in the spleen of C57BL / 6 mice immunized in homologous and heterologous vaccination protocols. (TO)
Magnitud de la respuesta de células T CD8+. Las células T CD8 específicas para VHC fueron medidas 10 días después de la última inmunización mediante mareaje intracelular de citoquinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD8+ que secretan CD107a y/o IFN-γ y/o IL-2 y/o TNF-α frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD8+ total en los diferentes grupos de inmunización. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001 . El valor p indica respuestas significativamente mayores con respecto a los grupos parentales o entre los grupos de inmunización ADN-HCV/MVA-HCV y MVA-HCV/MVA-HCV. (B) Perfiles de citometría de flujo mostrando la respuesta de células T CD8 específicas frente a las mezclas de péptidos p7+NS2 o NS3. (C) Perfil funcional de la respuesta adaptativa de células T CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. *** p<0.001. Magnitude of the response of CD8 + T cells. HCV-specific CD8 T cells were measured 10 days after the last immunization by intracellular multiparametric cytokine tracing after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides. The total value in each group represents the sum of the percentages of CD8 + T cells that secrete CD107a and / or IFN-γ and / or IL-2 and / or TNF-α against all HCV peptide mixtures. The diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD8 + response in the different immunization groups. The background obtained in the unstimulated samples was subtracted in all cases. *** p <0.001. The p-value indicates significantly higher responses with respect to the parental groups or between the DNA-HCV / MVA-HCV and MVA-HCV / MVA-HCV immunization groups. (B) Flow cytometry profiles showing the response of specific CD8 T cells against mixtures of p7 + NS2 or NS3 peptides. (C) Functional profile of the adaptive response of HCV-specific CD8 T cells in the different immunization groups. All possible combinations of the responses are shown on the x-axis while the percentages of the different functional populations within the total population of CD8 T cells are represented on the y-axis. The answers are grouped based on the number of functions. *** p <0.001.
Figura 6.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación. (A) Magnitud de la respuesta de células T CD4+ o CD8+. Las células T CD4 o CD8 específicas para VHC fueron medidas 53 días después de la última inmunización mediante mareaje intracelular de citoquinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD4+ o CD8+ que secretan IFN-γ y/o IL-2 y/o TNF-a (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-a (CD8) frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD4+ o CD8+ total en los diferentes grupos de inmunización. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001 . El valor p indica respuestas significativamente mayores con respecto a las respuestas de células T CD4+ o entre las respuestas de células T CD8+ obtenidas en el grupo ADN- HCV/MVA-HCV en comparación con las observadas en el grupo MVA-HCV/MVA- HCV. (B) Perfil funcional de la respuesta de memoria de células T CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. ** p<0.005; *** p<0.001 . (C) Perfil fenotípico de las células T CD8 de memoria específicas para VHC. Los gráficos superiores representan el porcentaje total de células T CD8 específicas para VHC que presentan un fenotipo central de memoria (TCM; CD127+CD62L+), efector de memoria (TEM; CD127+CD62L") o efector (TE; CD127 D62L"). Los diagramas inferiores corresponden a gráficos representativos de citometría de flujo mostrando el porcentaje de células T CD8 específicas frente a las mezclas de péptidos de VHC p7+NS2 (izquierda) o NS3 (derecha) con fenotipo central de memoria, efector de memoria o efector. ** p<0.005. Figura 7.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo y en el hígado de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación. Perfiles de citometría de flujo mostrando la respuesta de células T CD8 específicas frente a las mezclas de péptidos p7+NS2 o NS3 en esplenocitos y células inmunes intrahepáticas. Figure 6.- Immune response of HCV-specific T-cells generated by the MVA-HCV recombinant virus in the spleen of C57BL / 6 mice immunized in homologous and heterologous vaccination protocols. (A) Magnitude of the response of CD4 + or CD8 + T cells. HCV-specific CD4 or CD8 T cells were measured 53 days after the last immunization by intracellular mating of multiparametric cytokines after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides. The total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN-γ and / or IL-2 and / or TNF-a (CD4) or CD107a and / or IFN-γ and / or IL-2 and / or TNF-a (CD8) vs. all mixtures of HCV peptides. The diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD4 + or CD8 + response in the different immunization groups. The background obtained in the unstimulated samples was subtracted in all cases. *** p <0.001. The p-value indicates significantly higher responses with respect to CD4 + T cell responses or between CD8 + T cell responses obtained in the DNA-HCV / MVA-HCV group compared to those observed in the MVA-HCV / MVA group - HCV. (B) Functional profile of the memory response of HCV-specific CD8 T cells in the different immunization groups. All possible combinations of the responses are shown on the x-axis while the percentages of the different functional populations within the total population of CD8 T cells are represented on the y-axis. The answers are grouped based on the number of functions. ** p <0.005; *** p <0.001. (C) Phenotypic profile of memory CD8 T cells specific for HCV. The upper graphs represent the total percentage of HCV-specific CD8 T cells that have a central memory phenotype (TCM; CD127 + CD62L + ), memory effector (TEM; CD127 + CD62L " ) or effector (TE; CD127 D62L " ) . The lower diagrams correspond to representative flow cytometry graphs showing the percentage of specific CD8 T cells versus HCV peptide mixtures p7 + NS2 (left) or NS3 (right) with central memory phenotype, memory effector or effector. ** p <0.005. Figure 7.- Immune response of HCV-specific T cells generated by the recombinant MVA-HCV virus in the spleen and in the liver of C57BL / 6 mice immunized in homologous and heterologous vaccination protocols. Flow cytometry profiles showing the response of specific CD8 T cells against mixtures of p7 + NS2 or NS3 peptides in splenocytes and intrahepatic immune cells.
Figura 8.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el hígado de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación. (A) Magnitud de la respuesta de células T CD4+ o CD8+. Las células T CD4 o CD8 específicas para VHC fueron medidas en el hígado 53 días después de la última inmunización mediante mareaje intracelular de citoquinas multiparamétrico tras la estimulación de las células inmunes intrahepáticas derivadas de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD4+ o CD8+ que secretan IFN-γ y/o IL-2 y/o TNF-α (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-a (CD8) frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD4+ o CD8+ total en los diferentes grupos de inmunización. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001 . El valor p indica respuestas significativamente mayores con respecto a las respuestas de células T CD4+ en los diferentes grupos de inmunización. (B) Perfil funcional de la respuesta de memoria de células T CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. *** p<0.001. (C) Perfil fenotípico de las células T CD8 de memoria específicas para VHC. Los gráficos superiores representan el porcentaje total de células T CD8 específicas para VHC que presentan un fenotipo central de memoria (TCM; CD127+CD62L+), efector de memoria (TEM; CD127+CD62L) o efector (TE; CD127 D62L"). Los diagramas inferiores corresponden a gráficos representativos de citometría de flujo mostrando el porcentaje de células T CD8 específicas frente a las mezclas de péptidos de VHC p7+NS2 (izquierda) o NS3 (derecha) con fenotipo central de memoria, efector de memoria o efector. ** p<0.005. Figure 8.- Immune response of HCV-specific T-cells generated by the MVA-HCV recombinant virus in the liver of C57BL / 6 mice immunized in homologous and heterologous vaccination protocols. (A) Magnitude of the response of CD4 + or CD8 + T cells. HCV-specific CD4 or CD8 T cells were measured in the liver 53 days after the last immunization by intracellular multiparameter cytokine tightening after stimulation of intrahepatic immune cells derived from mice immunized with the different HCV peptide mixtures. The total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN-γ and / or IL-2 and / or TNF-α (CD4) or CD107a and / or IFN-γ and / or IL-2 and / or TNF-a (CD8) against all mixtures of HCV peptides. The diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD4 + or CD8 + response in the different immunization groups. The background obtained in the unstimulated samples was subtracted in all cases. *** p <0.001. The p value indicates significantly higher responses with respect to CD4 + T cell responses in different immunization groups. (B) Functional profile of the memory response of HCV-specific CD8 T cells in the different immunization groups. All possible combinations of the responses are shown on the x-axis while the percentages of the different functional populations within the total population of CD8 T cells are represented on the y-axis. The answers are grouped based on the number of functions. *** p <0.001. (C) Phenotypic profile of memory CD8 T cells specific for HCV. The upper graphs represent the total percentage of HCV-specific CD8 T cells that have a central memory phenotype (TCM; CD127 + CD62L + ), memory effector (TEM; CD127 + CD62L) or effector (TE; CD127 D62L " ). The lower diagrams correspond to representative flow cytometry graphs showing the percentage of specific CD8 T cells versus HCV peptide mixtures p7 + NS2 (left) or NS3 (right) with central memory phenotype, memory effector or effector. ** p <0.005.
Figura 9.- Respuesta inmune adaptativa de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones transgénicos HLA-A2 en un protocolo heterólogo de vacunación. (A) Magnitud de la respuesta de células T CD4+ o CD8+. Las células T CD4 o CD8 específicas para VHC fueron medidas 10 días después de la última inmunización mediante mareaje intracelular de citoquinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD4+ o CD8+ que secretan IFN-γ y/o IL-2 y/o TNF-a (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-a (CD8) frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD4+ o CD8+ total. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001 . El valor p indica una respuesta significativamente mayor con respecto a la respuesta de células T CD4+. (B) Perfiles de citometría de flujo mostrando la respuesta de células T CD4 o CD8 específicas frente a las mezclas de péptidos E (CD4) o NS3 (CD8). (C) Perfil funcional de la respuesta adaptativa de células T CD4 o CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD4 o CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. ** p<0.005; *** p<0.001 . Figure 9.- Adaptive immune response of HCV-specific T cells generated by the MVA-HCV recombinant virus in the spleen of HLA-A2 transgenic mice in a heterologous vaccination protocol. (A) Magnitude of the response of CD4 + or CD8 + T cells. HCV-specific CD4 or CD8 T cells were measured 10 days after the last immunization by intracellular multiparameter cytokine marking after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides. The total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN-γ and / or IL-2 and / or TNF-a (CD4) or CD107a and / or IFN-γ and / or IL-2 and / or TNF-a (CD8) against all mixtures of HCV peptides. The diagrams on the right represent the specific contribution of the different mixtures of HCV peptides to the total CD4 + or CD8 + response. The background obtained in the unstimulated samples was subtracted in all cases. *** p <0.001. The p value indicates a significantly higher response with respect to the CD4 + T cell response. (B) Flow cytometry profiles showing the response of specific CD4 or CD8 T cells against mixtures of E (CD4) or NS3 (CD8) peptides. (C) Functional profile of the adaptive response of HCV-specific CD4 or CD8 T cells in the different immunization groups. All possible combinations of the responses are shown on the x-axis while the percentages of the different functional populations within the total population of CD4 or CD8 T cells are represented on the y-axis. The answers are grouped based on the number of functions. ** p <0.005; *** p <0.001.
Figura 10.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones transgénicos HLA-A2 en un protocolo heterólogo de vacunación. (A) Magnitud de la respuesta de células T CD4+ o CD8+. Las células T CD4 o CD8 específicas para VHC fueron medidas 53 días después de la última inmunización mediante mareaje intracelular de citoquinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD4+ o CD8+ que secretan IFN-γ y/o IL-2 y/o TNF-a (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-a (CD8) frente a todas las mezclas de péptidos de VHC. El diagrama de la derecha representa la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD8+ total. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001 . El valor p indica una respuesta significativamente mayor con respecto a la respuesta de células T CD4+. (B) Perfiles de citometría de flujo mostrando la respuesta de células T CD8 específicas frente a las mezclas de péptidos p7+NS2 o NS3. (C) Perfil funcional de la respuesta de memoria de células T CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. ** p<0.005; *** p<0.001 . (D) Perfil fenotípico de las células T CD8 de memoria específicas para VHC. El gráfico de la izquierda representa el porcentaje total de células T CD8 específicas para VHC que presentan un fenotipo central de memoria (TCM; CD127+CD62L+), efector de memoria (TEM; CD127+CD62L") o efector (TE; CD127 D62L"). El diagrama de la derecha muestra un gráfico representativo de citometría de flujo en el que se indica el porcentaje de células T CD8 específicas frente a la mezcla de péptidos de VHC p7+NS2 con fenotipo central de memoria, efector de memoria o efector. * p<0.05. Figure 10.- Memory immune response of HCV-specific T cells generated by the recombinant MVA-HCV virus in the spleen of HLA-A2 transgenic mice in a heterologous vaccination protocol. (A) Magnitude of the response of CD4 + or CD8 + T cells. HCV-specific CD4 or CD8 T cells were measured 53 days after the last immunization by intracellular mating of multiparametric cytokines after stimulation of splenocytes derived from mice immunized with the different mixtures of HCV peptides. The total value in each group represents the sum of the percentages of CD4 + or CD8 + T cells that secrete IFN-γ and / or IL-2 and / or TNF-a (CD4) or CD107a and / or IFN-γ and / or IL-2 and / or TNF-a (CD8) against all mixtures of HCV peptides. The diagram on the right represents the specific contribution of the different mixtures of HCV peptides to the total CD8 + response. The background obtained in the unstimulated samples was subtracted in all cases. *** p <0.001. The p value indicates a significantly higher response with respect to the CD4 + T cell response. (B) Flow cytometry profiles showing the response of specific CD8 T cells against mixtures of p7 + NS2 or NS3 peptides. (C) Functional profile of the memory response of specific CD8 T cells for HCV in different immunization groups. All possible combinations of the responses are shown on the x-axis while the percentages of the different functional populations within the total population of CD8 T cells are represented on the y-axis. The answers are grouped based on the number of functions. ** p <0.005; *** p <0.001. (D) Phenotypic profile of memory CD8 T cells specific for HCV. The graph on the left represents the total percentage of HCV-specific CD8 T cells that have a central memory phenotype (TCM; CD127 + CD62L + ), memory effector (TEM; CD127 + CD62L " ) or effector (TE; CD127 D62L " ). The diagram on the right shows a representative flow cytometry graph indicating the percentage of specific CD8 T cells versus the mixture of HCV p7 + NS2 peptides with central memory phenotype, memory effector or effector. * p <0.05.
MODO DE REALIZACIÓN DE LA INVENCIÓN EMBODIMENT OF THE INVENTION
Ejemplo 1. Generación y caracterización in vitro de un virus MVA recombinante que expresa constitutivamente el genoma casi completo del virus de la hepatitis C (VHC) del genotipo 1 a (MVA-HCV). Pureza, expresión y estabilidad genética de las proteínas de VHC expresadas por el virus recombinante MVA-HCV Example 1. Generation and in vitro characterization of a recombinant MVA virus constitutively expressing the almost complete genome of hepatitis C virus (HCV) of genotype 1 a (MVA-HCV). Purity, expression and genetic stability of HCV proteins expressed by the MVA-HCV recombinant virus
Los inventores han generado el virus MVA-HCV, un virus recombinante basado en la cepa atenuada de poxvirus MVA que tiene insertado en el locus TK el mismo fragmento de ADN incluido en el virus vT7-HCV7 9 pero bajo el control transcripcional del promotor viral sintético temprano/tardío. Este promotor dirige, por lo tanto, la expresión constitutiva de las proteínas estructurales y no estructurales de VHC. En la Fig. 1A se muestra un esquema con los diferentes pasos de clonaje llevados a cabo para la construcción del plásmido de transferencia pCyA-HCV7 9 utilizado para la generación del virus MVA-HCV y la organización del genoma de VHC en el locus TK de dicho virus recombinante aparece representada en la Fig. 2A. The inventors have generated the MVA-HCV virus, a recombinant virus based on the attenuated strain of MVA poxvirus that has the same DNA fragment included in the vT7-HCV 7 9 virus inserted into the TK locus but under the transcriptional control of the viral promoter Synthetic early / late. This promoter therefore directs the constitutive expression of structural and non-structural HCV proteins. A scheme with the different cloning steps carried out for the construction of the transfer plasmid pCyA-HCV 7 9 used for the generation of the MVA-HCV virus and the organization of the HCV genome in the TK locus is shown in Fig. 1A of said recombinant virus is represented in Fig. 2A.
La correcta inserción del genoma de VHC en el locus TK de MVA y la pureza del virus recombinante MVA-HCV fue confirmada mediante PCR y secuenciación. El ADN viral extraído de células BHK-21 infectadas con MVA-HCV fue amplificado utilizando una pareja de oligonucleótidos que hibridan en las regiones flanqueantes del locus TK. El tamaño del producto de PCR esperado se muestra en la Fig. 2A. El ADN extraído de células infectadas con el virus MVA-WT fue utilizado como control. Como puede observarse en la Fig. 2B, el producto de PCR obtenido en las células infectadas con MVA-HCV tiene un tamaño aproximado de 8 kpb, indicando que el genoma de VHC ha sido correctamente insertado en el locus TK del virus MVA y que no existe contaminación con el virus parental en la preparación del virus recombinante MVA-HCV. The correct insertion of the HCV genome into the MK TK locus and the purity of the MVA-HCV recombinant virus was confirmed by PCR and sequencing Viral DNA extracted from BHK-21 cells infected with MVA-HCV was amplified using a pair of oligonucleotides that hybridize to the flanking regions of the TK locus. The expected PCR product size is shown in Fig. 2A. DNA extracted from cells infected with the MVA-WT virus was used as a control. As can be seen in Fig. 2B, the PCR product obtained in cells infected with MVA-HCV is approximately 8 kbp in size, indicating that the HCV genome has been correctly inserted into the TK locus of the MVA virus and not there is contamination with the parental virus in the preparation of the recombinant virus MVA-HCV.
El análisis por Western-blot de células BHK-21 infectadas con MVA-HCV confirmó que el genoma de VHC se transcribe eficientemente durante la infección produciendo una poliproteína viral que es correctamente procesada dando lugar a las proteínas maduras estructurales (Core, E1 y E2) y no estructurales (NS4A, NS4B y NS5A) de VHC (Fig. 2C). Western blot analysis of BHK-21 cells infected with MVA-HCV confirmed that the HCV genome is efficiently transcribed during infection producing a viral polyprotein that is properly processed giving rise to mature structural proteins (Core, E1 and E2) and non-structural (NS4A, NS4B and NS5A) of HCV (Fig. 2C).
Para confirmar que el virus recombinante MVA-HCV puede ser mantenido en células en cultivo sin perder el fragmento de VHC insertado se realizó un análisis de su estabilidad. El virus MVA-HCV fue pasado sucesivamente en células BHK-21 desde el pase 7 (P2 stock) hasta el pase 1 1 (P8→P1 1 ). La expresión de las proteínas de VHC en los diferentes pases fue analizada por Western-blot utilizando un suero humano positivo para anticuerpos frente a VHC. Como se muestra en la Fig. 2D, el virus MVA-HCV expresa eficientemente las proteínas de VHC después de 1 1 pases. Además, un extracto de células infectadas con el pase 1 1 de MVA- HCV fue utilizado para una nueva ronda de purificación de placa en células BHK-21 y se analizó la expresión de las proteínas de VHC en treinta placas aisladas de MVA-HCV mediante Western-blot. Como puede observarse en la Fig. 1 B, todas las placas (100%) expresan las proteínas de VHC, indicando que el virus recombinante MVA-HCV es genéticamente estable. To confirm that the MVA-HCV recombinant virus can be maintained in cultured cells without losing the inserted HCV fragment an analysis of its stability was performed. The MVA-HCV virus was passed successively in BHK-21 cells from pass 7 (P2 stock) to pass 1 1 (P8 → P1 1). The expression of HCV proteins in the different countries was analyzed by Western-blot using a human serum positive for antibodies to HCV. As shown in Fig. 2D, the MVA-HCV virus efficiently expresses HCV proteins after 1 1 passes. In addition, an extract of cells infected with the 1 1 pass of MVA-HCV was used for a new round of plaque purification in BHK-21 cells and the expression of HCV proteins in thirty isolated MVA-HCV plates was analyzed by Western blot. As can be seen in Fig. 1 B, all plaques (100%) express HCV proteins, indicating that the MVA-HCV recombinant virus is genetically stable.
Análisis del crecimiento viral y de la cinética de expresión de MVA-HCV Analysis of viral growth and expression kinetics of MVA-HCV
Con el objetivo de establecer si la expresión de las proteínas de VHC afectaba a la replicación viral en células en cultivo, analizamos el crecimiento de los virus MVA-HCV y MVA-WT en células BHK-21 . Como se muestra en la Fig. 3A, la cinética de crecimiento de ambos virus fue similar. In order to establish whether the expression of HCV proteins affected viral replication in cultured cells, we analyzed the growth of MVA-HCV and MVA-WT virus in BHK-21 cells. As shown in Fig. 3A, the growth kinetics of both viruses was similar.
Además, llevamos a cabo una cinética de expresión de las proteínas de VHC expresadas por el virus MVA-HCV en células BHK-21 y en la línea hepática HepG2. El análisis mediante Western-blot utilizando un anticuerpo policlonal humano reveló que la poliproteína de VHC es procesada y detectada a las 2-4 horas post-infección en forma de productos de menor tamaño en ambas líneas celulares (Fig. 3B). In addition, we carried out an expression kinetics of HCV proteins expressed by the MVA-HCV virus in BHK-21 cells and in the HepG2 liver line. Western blot analysis using a human polyclonal antibody revealed that HCV polyprotein is processed and detected at 2-4 hours post-infection in the form of smaller products in both cell lines (Fig. 3B).
Análisis por microscopía electrónica de células HeLa infectadas por MVA-HCV Electron microscopy analysis of HeLa cells infected by MVA-HCV
A continuación, quisimos determinar mediante microscopía electrónica el efecto de la expresión de la poliproteína de VHC en el contexto de una infección por MVA. Para ello, infectamos células HeLa con el virus MVA-HCV a 5 UFP/célula y a ¡as 16 horas post-infección las células fueron fijadas y procesadas. Como puede observarse en la Fig. 3C, en el citoplasma de las células infectadas por MVA-HCV se aprecian claramente estructuras membranosas en el citoplasma y región perinuclear. Next, we wanted to determine by electron microscopy the effect of HCV polyprotein expression in the context of an MVA infection. To do this, we infected HeLa cells with the MVA-HCV virus at 5 PFU / cell and at 16 hours post-infection the cells were fixed and processed. As can be seen in Fig. 3C, in the cytoplasm of MVA-HCV infected cells, membranous structures are clearly seen in the cytoplasm and perinuclear region.
La infección por MVA-HCV bloquea la respuesta inmune innata MVA-HCV infection blocks the innate immune response
Debido a que está ampliamente aceptado que en la infección natural por VHC algunas proteínas virales bloquean la respuesta inmune innata frente al virus, decidimos evaluar el efecto de la expresión de las proteínas de VHC por el virus MVA-HCV en células dendríticas humanas. Como puede observarse en la Fig. 4, mediante PCR a tiempo real de células dendríticas humanas infectadas durante 6 horas, los niveles de expresión de IFN-β, de genes inducidos por IFN-β (IFIT1 , IFIT2) y de la quimioquina IP-10 fueron menores que los obtenidos con el virus parental. La expresión de los receptores RLR citosólicos RIG-I y MDA-5 fue también menor en las células infectadas con MVA-HCV en comparación con los niveles observados con el virus parental. Estos resultados indican que, al igual que ocurre en la infección natural, la expresión de las proteínas de VHC desde el virus MVA- HCV bloquea significativamente la respuesta inmune innata. Ejemplo 2. MVA-HCV administrado en combinación homologa (MVA- HCV/MVA-HCV) o heteróloga (ADN-HCV/MVA-HCV) induce en ratones de la cepa C57BL/6 una respuesta de células T VHC-específica alta, amplia, polifuncional y de larga duración. Because it is widely accepted that in natural HCV infection some viral proteins block the innate immune response against the virus, we decided to evaluate the effect of HCV protein expression by the MVA-HCV virus on human dendritic cells. As can be seen in Fig. 4, by real time PCR of infected human dendritic cells for 6 hours, IFN-β expression levels, IFN-β-induced genes (IFIT1, IFIT2) and IP-chemokine 10 were lower than those obtained with the parental virus. The expression of RIG-I and MDA-5 cytosolic RLR receptors was also lower in cells infected with MVA-HCV compared to levels observed with the parental virus. These results indicate that, as occurs in natural infection, the expression of HCV proteins from the MVA-HCV virus significantly blocks the innate immune response. Example 2. MVA-HCV administered in homologous combination (MVA-HCV / MVA-HCV) or heterologous (DNA-HCV / MVA-HCV) induces in mice of strain C57BL / 6 a high, broad VHC-specific T cell response , multifunctional and long lasting.
Respuesta inmune adaptativa Adaptive immune response
Para caracterizar la inmunogenicidad del vector MVA-HCV, evaluamos en ratones de la cepa C57BL/6 la respuesta de células T VHC-específicas inducida usando protocolos de inmunización homólogos (MVA-HCV/MVA-HCV) o heterólogos (ADN-HCV/MVA-HCV). To characterize the immunogenicity of the MVA-HCV vector, we evaluated in mice of strain C57BL / 6 the response of HCV-specific T cells induced using homologous (MVA-HCV / MVA-HCV) or heterologous (DNA-HCV / MVA) immunization protocols -HCV).
Para ello, ratones C57BL/6 (4 en cada grupo) fueron inmunizados siguiendo el protocolo descrito más adelante. La respuesta inmune adaptativa se evaluó 10 días después de la última dosis empleando un ensayo de mareaje intracelular de citoquinas multiparamétrico. Los esplenocitos aislados de los animales inmunizados fueron estimulados "ex vivo" durante 6 horas con un panel de 457 péptidos (de 13 a 19-mers solapantes en 1 1 ó 12 aminoácidos) agrupados en 6 mezclas de péptidos: Core (28 péptidos), E (83 péptidos), p7+NS2 (40 péptidos), NS3 (98 péptidos), NS4 (47 péptidos) y NS5 (161 péptidos) e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a) y células respondedoras (IL-2, IFN-γ y TNF-α). Animales que recibieron una primera dosis con MVA parental (MVA-WT) o ADN vacío (ADN-φ) seguido de una segunda dosis con MVA-WT fueron utilizados como controles. For this, C57BL / 6 mice (4 in each group) were immunized following the protocol described below. The adaptive immune response was evaluated 10 days after the last dose using a multiparameter cytokine intracellular tick test. Splenocytes isolated from immunized animals were stimulated "ex vivo" for 6 hours with a panel of 457 peptides (from 13 to 19-m overlapping in 1 or 12 amino acids) grouped into 6 mixtures of peptides: Core (28 peptides), E (83 peptides), p7 + NS2 (40 peptides), NS3 (98 peptides), NS4 (47 peptides) and NS5 (161 peptides) and incubated with specific antibodies to identify T-cell lineage (CD3, CD4 and CD8), degranulation (CD107a) and responding cells (IL-2, IFN-γ and TNF-α). Animals that received a first dose with parental MVA (MVA-WT) or empty DNA (--DNA) followed by a second dose with MVA-WT were used as controls.
Los porcentajes de células T que producían IFN-γ y/o IL-2 y/o TNF-a determinaron la respuesta total de células T CD4+ mientras que los porcentajes de células T que producían CD107a y/o IFN-γ y/o IL-2 y/o TNF-α determinaron la respuesta total de células T CD8+. The percentages of T cells producing IFN-γ and / or IL-2 and / or TNF-a determined the total response of CD4 + T cells while the percentages of T cells producing CD107a and / or IFN-γ and / or IL-2 and / or TNF-α determined the total response of CD8 + T cells.
La magnitud de la respuesta de células T CD8+ VHC-específicas, determinada como la suma de las respuestas individuales obtenidas frente a las mezclas de péptidos Core, E, p7+NS2, NS3, NS4 y NS5, fue significativamente mayor en animales inmunizados con los protocolos MVA-HCV/MVA-HCV o ADN- HCV/MVA-HCV que en sus respectivos grupos controles donde las respuestas antígeno-específicas fueron muy bajas (p<0.005) (Fig. 5A). En ambos grupos la respuesta inmune inducida por la vacunación estuvo mediada por las células CD8 mientras que no se detectó respuesta específica mediada por células CD4 (Fig. 5A). The magnitude of the response of CD8 + HCV-specific T cells, determined as the sum of the individual responses obtained against the mixtures of Core, E, p7 + NS2, NS3, NS4 and NS5 peptides, was significantly higher in animals immunized with the protocols MVA-HCV / MVA-HCV or ADN- HCV / MVA-HCV than in their respective control groups where antigen-specific responses were very low (p <0.005) (Fig. 5A). In both groups the immune response induced by vaccination was mediated by CD8 cells while no specific response mediated by CD4 cells was detected (Fig. 5A).
La respuesta de células T CD8+ VHC-específicas fue significativamente mayor en animales que recibieron ADN- HCV/MVA-HCV en comparación con los que recibieron M VA- HCV/MVA-HCV (p<0.005). En el grupo MVA-HCV/MVA-HCV el 90% de la respuesta de células T CD8+ estuvo dirigida frente a la mezcla de péptidos p7+NS2 mientras que en los animales que recibieron ADN-HCV/MVA-HCV el 97% de la respuesta de células T CD8+ estuvo dirigida frente a la mezcla de péptidos NS3 (Fig. 5A y B). La calidad de la respuesta de las células T puede ser caracterizada en parte por el patrón de secreción de citoquinas y por su potencial citotóxico. Sobre la base del análisis de la secreción de IFN-γ, IL-2 y TNF-α, así como la determinación de la expresión de CD107a sobre la superficie de las células T activadas como un marcador indirecto de citotoxicidad, es posible identificar 16 poblaciones diferentes de células T CD8+ antígeno-específicas (Fig. 5C). Para cada población fue sustraído el valor de fondo detectado en las muestras controles no estimuladas. La respuesta de células T CD8+ VHC-específicas inducida por ambos protocolos de inmunización fue altamente polifuncional, con más de un 60% de las células secretando de forma simultánea dos, tres o cuatro citoquinas. La mayor magnitud de la respuesta antígeno-específica obtenida en el grupo ADN-HCV/MVA-HCV en comparación con el grupo MVA-HCV/MVA-HCV fue debida principalmente a un aumento significativo en las frecuencias absolutas de las poblaciones de células T CD8+ que expresaban en superficie CD107a, que coexpresaban CD107a+TNF-a o las triples productoras de CD107a+IL2+TNF-a. The response of CD8 + HCV-specific T cells was significantly higher in animals that received HCV / MVA-HCV DNA compared to those that received M VA-HCV / MVA-HCV (p <0.005). In the MVA-HCV / MVA-HCV group, 90% of the CD8 + T cell response was directed against the mixture of p7 + NS2 peptides while in animals that received HCV / MVA-HCV DNA 97% of The CD8 + T cell response was directed against the mixture of NS3 peptides (Fig. 5A and B). The quality of the T-cell response can be characterized in part by the cytokine secretion pattern and by its cytotoxic potential. Based on the analysis of the secretion of IFN-γ, IL-2 and TNF-α, as well as the determination of the expression of CD107a on the surface of activated T cells as an indirect cytotoxicity marker, it is possible to identify 16 populations different from antigen-specific CD8 + T cells (Fig. 5C). The background value detected in the unstimulated control samples was subtracted for each population. The response of CD8 + HCV-specific T cells induced by both immunization protocols was highly polyfunctional, with more than 60% of the cells simultaneously secreting two, three or four cytokines. The greater magnitude of the antigen-specific response obtained in the DNA-HCV / MVA-HCV group compared to the MVA-HCV / MVA-HCV group was mainly due to a significant increase in the absolute frequencies of the CD8 T cell populations + which expressed on the surface CD107a, which co-expressed CD107a + TNF-a or the triple producers of CD107a + IL2 + TNF-a.
Respuesta inmune de memoria Memory immune response
Un requerimiento importante para la vacunación profiláctica lo constituye la durabilidad de la respuesta de células T inducida por la inmunización. Debido a ello, decidimos analizar el fenotipo de la respuesta inmune de memoria de células T inducida por MVA-HCV tanto en el bazo como en el hígado de los animales inmunizados 53 días después de la última inmunización mediante el mareaje intracelular de citoquinas multiparamétrico. A este tiempo, los esplenocitos y las células inmunes intrahepáticas (IHIC) aisladas del bazo y del hígado, respectivamente, fueron estimuladas "ex vivo" durante 6 horas con las diferentes mezclas de péptidos de VHC e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a), células respondedoras (IL-2, IFN-γ y TNF-α) y fenotipo de memoria (CD127 y CD62L). An important requirement for prophylactic vaccination is the durability of the T-cell response induced by immunization. Because of that, We decided to analyze the phenotype of the immune response of MVA-HCV-induced T-cell memory in both the spleen and in the liver of the immunized animals 53 days after the last immunization by intracellular marking of multiparameter cytokines. At this time, splenocytes and intrahepatic immune cells (IHIC) isolated from the spleen and liver, respectively, were stimulated "ex vivo" for 6 hours with the different mixtures of HCV peptides and incubated with specific antibodies to identify cell lineage. T (CD3, CD4 and CD8), degranulation (CD107a), responding cells (IL-2, IFN-γ and TNF-α) and memory phenotype (CD127 and CD62L).
En bazo, la magnitud de la respuesta de células T CD4+ y CD8+ VHC- específicas de memoria fue significativamente mayor en los grupos de animales inmunizados con los protocolos MVA-HCV/MVA-HCV o ADN-HCV/MVA-HCV que en sus respectivos grupos controles, donde las respuestas antígeno-específicas fueron muy bajas o ausentes (p<0.005). Como se observa en la Fig. 6A, la respuesta inmune de memoria inducida por la vacunación en ambos grupos estuvo mediada principalmente por las células CD8. A este tiempo, sólo en el grupo MVA- HCV/MVA-HCV se pudo detectar una respuesta baja de células T CD4+ dirigida de forma similar frente a las mezclas de péptidos que representan las proteínas Core (47%) y E (53%). In spleen, the magnitude of the response of memory-specific CD4 + and CD8 + HCV-T cells was significantly greater in the groups of animals immunized with the MVA-HCV / MVA-HCV or DNA-HCV / MVA-HCV protocols than in their respective control groups, where antigen-specific responses were very low or absent (p <0.005). As seen in Fig. 6A, the immune response of memory induced by vaccination in both groups was mainly mediated by CD8 cells. At this time, only in the MVA-HCV / MVA-HCV group could a similarly low response of CD4 + T cells be detected against peptide mixtures representing the Core (47%) and E (53% ).
La magnitud de la respuesta de memoria de las células T CD8+ fue alta en ambos grupos aunque significativamente superior en el grupo ADN-HCV/MVA-HCV (p<0.005). En los esplenocitos de los animales del grupo MVA-HCV/MVA-HCV, el 91 % de la respuesta de células T CD8+ detectada estuvo dirigida frente a la mezcla de péptidos p7+NS2 y el resto de la respuesta se distribuyó frente a las mezclas de péptidos NS3 (7%) y E (2%). En los animales del grupo ADN-HCV/MVA-HCV, la respuesta de células T CD8+ detectada estuvo dirigida fundamentalmente frente a las mezclas de péptidos NS3 (70%) y p7+NS2 (19%) mientras que el resto de la respuesta se distribuyó frente a las combinaciones de NS4 (9%) y E (2%) (Fig. 6A y Fig. 7A). The magnitude of the memory response of CD8 + T cells was high in both groups although significantly higher in the DNA-HCV / MVA-HCV group (p <0.005). In the splenocytes of the animals of the MVA-HCV / MVA-HCV group, 91% of the CD8 + T cell response detected was directed against the mixture of p7 + NS2 peptides and the rest of the response was distributed against the mixtures of NS3 (7%) and E (2%) peptides. In the animals of the ADN-HCV / MVA-HCV group, the detected CD8 + T cell response was mainly directed against the mixtures of NS3 (70%) and p7 + NS2 (19%) peptides while the rest of the response It was distributed against the combinations of NS4 (9%) and E (2%) (Fig. 6A and Fig. 7A).
La respuesta de memoria de células T CD8+ inducida por ambos protocolos fue altamente polifuncional, con más de un 90% de las células secretando de forma simultánea dos, tres o cuatro citoquinas (Fig. 6B). Las poblaciones de células T CD8+ antígeno-específicas activadas tras la inmunización co-producían predominantemente CD107a+IFN-y+TNF-a o CD107a+IL2+IFN-y+TNF-a. Estudios previos han demostrado que los marcadores CD127 y CD62L definen poblaciones funcionalmente distintas de células T de memoria antígeno- específicas (4). Debido a ello, hemos caracterizado las distintas etapas de diferenciación de las células T CD8+ activadas según los niveles de expresión de CD127 y CD62L en poblaciones centrales de memoria (TCM; CD127+CD62L+), efectoras de memoria (TEM; CD127+CD62L") o efectoras (TE; CD127 D62L"). En los esplenocitos de los animales inmunizados con ambos protocolos (ADN- HCV/MVA-HCV o MVA-HCV/MVA-HCV), el 70% de las células T CD8+ VHC- específicas activadas tenían un fenotipo efector de memoria (TEM) (Fig. 6C). Como el rendimiento obtenido de células inmunes intrahepáticas (IHIC) a partir de los hígados de los animales inmunizados fue bajos, decidimos analizar la respuesta de memoria de células T inducida por MVA-HCV utilizando únicamente 4 estímulos: p7+NS2, NS3, mix (Core+E+NS4+NS5) y RPMI. El patrón de la respuesta de memoria de células T fue muy similar al obtenido en bazo. En ambos grupos la respuesta inmune de memoria inducida por la vacunación estuvo mediada principalmente por las células T CD8. Sólo en el grupo ADN-HCV/MVA-HCV se pudo detectar una baja respuesta de células T CD4+ dirigida frente a las mezclas de péptidos que representan las proteínas Core+E+NS4+NS5 (66%) y p7+NS2 (34%). The memory response of CD8 + T cells induced by both protocols was highly polyfunctional, with more than 90% of cells secreting Simultaneous two, three or four cytokines (Fig. 6B). Populations of antigen-specific CD8 + T cells activated after immunization predominantly co-produced CD107a + IFN-y + TNF-a or CD107a + IL2 + IFN-y + TNF-a. Previous studies have shown that the CD127 and CD62L markers define functionally distinct populations of antigen-specific memory T cells (4). Because of this, we have characterized the different stages of differentiation of activated CD8 + T cells according to the expression levels of CD127 and CD62L in central memory populations (TCM; CD127 + CD62L + ), memory effectors (TEM; CD127 + CD62L " ) or effectors (TE; CD127 D62L " ). In the splenocytes of animals immunized with both protocols (DNA-HCV / MVA-HCV or MVA-HCV / MVA-HCV), 70% of the activated CD8 + HCV-specific T cells had a memory effector phenotype (TEM) (Fig. 6C). Since the yield obtained from intrahepatic immune cells (IHIC) from the livers of immunized animals was low, we decided to analyze the memory response of T cells induced by MVA-HCV using only 4 stimuli: p7 + NS2, NS3, mix ( Core + E + NS4 + NS5) and RPMI. The pattern of the T-cell memory response was very similar to that obtained in the spleen. In both groups, the immune memory response induced by vaccination was mediated primarily by CD8 T cells. Only in the DNA-HCV / MVA-HCV group was it possible to detect a low CD4 + T cell response directed against peptide mixtures representing the Core + E + NS4 + NS5 (66%) and p7 + NS2 (34 %).
La magnitud de la respuesta de memoria de células T CD8+ fue alta en ambos grupos y muy similares. Al igual que ocurría en los esplenocitos, la respuesta de células T CD8+ detectada en las células inmunes intrahepáticas procedentes de los animales del grupo MVA-HCV/MVA-HCV estuvo dirigida principalmente frente a la mezcla de péptidos p7+NS2 (97%) mientras que en los animales del grupo ADN-HCV/MVA-HCV la respuesta estuvo dirigida fundamentalmente frente a las mezclas de péptidos que NS3 (72%) y p7+NS2 (24%) (Fig. 8A y Fig. 7B). En hígado, la respuesta de memoria de células T CD8+ inducida por ambos protocolos fue altamente polifuncional, con más de un 80% de las células secretando de forma simultánea dos, tres o cuatro citoquinas (Fig. 8B). La población de células T CD8+ antígeno-específicas activadas tras la inmunización co-producían predominantemente CD107a+IFN-y+TNF-a y tenían un fenotipo efector de memoria (TEM) (Fig. 8C). The magnitude of the memory response of CD8 + T cells was high in both groups and very similar. As was the case with splenocytes, the CD8 + T cell response detected in intrahepatic immune cells from the animals of the MVA-HCV / MVA-HCV group was mainly directed against the mixture of p7 + NS2 peptides (97%) while in the animals of the DNA-HCV / MVA-HCV group the response was directed mainly against the peptide mixtures that NS3 (72%) and p7 + NS2 (24%) (Fig. 8A and Fig. 7B). In liver, the memory response of CD8 + T cells induced by both protocols was highly polyfunctional, with more than 80% of the cells simultaneously secreting two, three or four cytokines (Fig. 8B). The population of antigen-specific CD8 + T cells activated after immunization predominantly co-produced CD107a + IFN-y + TNF-a and had a memory effector phenotype (TEM) (Fig. 8C).
Ejemplo 3. La combinación ADN-HCV/MVA-HCV induce en ratones transgénicos HLA-A2 una respuesta de células T VHC-específicas alta, polifuncional y duradera. Example 3. The DNA-HCV / MVA-HCV combination induces a high, polyfunctional and long-lasting HCV-specific T cell response in HLA-A2 transgenic mice.
Debido a que el protocolo de inmunización heterólogo ADN-HCV/MVA-HCV indujo una magnitud mayor de la respuesta VHC-específica en ratones C57BL/6 (Ejemplo 2), decidimos evaluar esta misma aproximación en los ratones transgénicos HLA-A2. Estos ratones transgénicos expresan una forma quimérica de la molécula HLA-A2.1 y se ha demostrado con anterioridad que potencian un repertorio de respuestas VHC-específicas similares a las detectadas en la población humana infectada (23). La respuesta inmune adaptativa se evaluó 10 días después de la última dosis empleando un ensayo de mareaje intracelular de citoquinas multiparamétrico. Los esplenocitos aislados de los animales inmunizados fueron estimulados "ex vivo" durante 6 horas con un panel de 457 péptidos (de 13 a 19-mers solapantes en 1 1 o 12 aminoácidos) agrupados en 6 mezclas de péptidos: Core (28 péptidos), E (83 péptidos), p7+NS2 (40 péptidos), NS3 (98 péptidos), NS4 (47 péptidos) y NS5 (161 péptidos) e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a) y células respondedoras (IL-2, IFN-γ y TNF-α). Animales que recibieron una primera dosis con ADN vacío (ADN-φ) seguido de una segunda dosis con MVA-WT fueron utilizados como controles. Because the heterologous DNA-HCV / MVA-HCV immunization protocol induced a greater magnitude of the HCV-specific response in C57BL / 6 mice (Example 2), we decided to evaluate this same approach in the HLA-A2 transgenic mice. These transgenic mice express a chimeric form of the HLA-A2.1 molecule and have previously been shown to enhance a repertoire of HCV-specific responses similar to those detected in the infected human population (23). The adaptive immune response was evaluated 10 days after the last dose using a multiparameter cytokine intracellular tick test. Splenocytes isolated from immunized animals were stimulated "ex vivo" for 6 hours with a panel of 457 peptides (from 13 to 19-m overlapping in 1 or 12 amino acids) grouped into 6 mixtures of peptides: Core (28 peptides), E (83 peptides), p7 + NS2 (40 peptides), NS3 (98 peptides), NS4 (47 peptides) and NS5 (161 peptides) and incubated with specific antibodies to identify T-cell lineage (CD3, CD4 and CD8), degranulation (CD107a) and responding cells (IL-2, IFN-γ and TNF-α). Animals that received a first dose with empty DNA (--DNA) followed by a second dose with MVA-WT were used as controls.
Del mismo modo que se observó en los ratones de la cepa C57BL/6, la respuesta inmune inducida por la vacunación en los esplenocitos de los ratones transgénicos estuvo mediada por las células T CD8 (Fig. 9A). La respuesta de células T CD4+ detectada tenía una magnitud baja aunque dirigida frente a múltiples combinaciones de péptidos que representaban las diferentes proteínas virales, siendo las mezclas de péptidos E (80%) y Core (1 1 %) las más reconocidas. Por su parte, la respuesta de células T CD8+ detectada tenía una magnitud alta y estaba dirigida fundamentalmente frente a las mezclas de péptidos NS3 (75%) y p7+NS2 (19%) (Fig. 9A y B). Ambas respuestas (CD4 y CD8) fueron altamente polifuncionales con más del 50% de las células secretando de forma simultánea dos, tres o cuatro citoquinas (Fig. 9C). Las células T CD4+ activadas co-producían mayoritariamente IL2+IFN-y+TNF-a mientras que las células T CD8+ tenían un perfil citotóxico potenciado representado por una alta frecuencia de células activadas que expresaban CD107a en su superficie. In the same way as was observed in mice of strain C57BL / 6, the immune response induced by splenocyte vaccination of transgenic mice was mediated by CD8 T cells (Fig. 9A). The CD4 + T cell response detected had a low magnitude although directed against multiple combinations of peptides representing the different viral proteins, with mixtures of E (80%) and Core (1 1%) peptides being the most recognized. On the other hand, the response of detected CD8 + T cells had a high magnitude and was mainly directed against the mixtures of NS3 (75%) and p7 + NS2 (19%) peptides (Fig. 9A and B). Both responses (CD4 and CD8) were highly polyfunctional with more than 50% of the cells simultaneously secreting two, three or four cytokines (Fig. 9C). Activated CD4 + T cells co-produced mostly IL2 + IFN-y + TNF-a while CD8 + T cells had an enhanced cytotoxic profile represented by a high frequency of activated cells expressing CD107a on their surface.
La respuesta inmune de memoria fue evaluada 53 días después de la última inmunización empleando un ensayo de mareaje intracelular de citoquinas multiparamétrico. A este tiempo, los esplenocitos aislados del bazo de los animales inmunizados fueron estimulados "ex vivo" durante 6 horas con las diferentes combinaciones de péptidos de VHC e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a), células respondedoras (IL-2, IFN-γ y TNF-α) y fenotipo de memoria (CD127 y CD62L). The memory immune response was evaluated 53 days after the last immunization using a multiparameter cytokine intracellular marking test. At this time, splenocytes isolated from the spleen of immunized animals were stimulated "ex vivo" for 6 hours with the different combinations of HCV peptides and incubated with specific antibodies to identify T-cell lineage (CD3, CD4 and CD8), degranulation (CD107a), responding cells (IL-2, IFN-γ and TNF-α) and memory phenotype (CD127 and CD62L).
La respuesta inmune de memoria inducida por la vacunación estuvo mediada exclusivamente por las células T CD8 y estuvo dirigida fundamentalmente frente a las combinaciones de péptidos p7+NS2 (72%) y NS3 (28%) (Fig. 10A y B). Al igual que ocurría durante la fase adaptativa, la respuesta de células T CD8+ VHC-específicas de memoria fue altamente polifuncional, con frecuencias elevadas de células que expresaban simultáneamente CD107a+IL2+IFN-y+TNF-a (Fig. 10C) y con fenotipos efector de memoria (TEM, 54%) o central de memoria (TCM, 34%) (Fig. 10D). Materiales y Métodos The immune memory response induced by vaccination was mediated exclusively by CD8 T cells and was primarily directed against the combinations of p7 + NS2 (72%) and NS3 (28%) peptides (Fig. 10A and B). As with the adaptive phase, the response of memory-specific CD8 + HCV-specific T cells was highly polyfunctional, with high frequencies of cells expressing simultaneously CD107a + IL2 + IFN-y + TNF-a (Fig. 10C) and with memory effector (TEM, 54%) or central memory (TCM, 34%) phenotypes (Fig. 10D). Materials and methods
Requerimientos éticos Los estudios con animales fueron aprobados por el Comité Ético de Experimentación Animal (CEEA-CNB) del Centro Nacional de Biotecnología (CNB- CSIC, Madrid) de acuerdo con las normativas nacionales e inteARNcionales y con el Real Decreto (RD 1201/2005) (Número de permiso: 1 1048). Ethical requirements Animal studies were approved by the Ethical Committee for Animal Experimentation (CEEA-CNB) of the National Center for Biotechnology (CNB-CSIC, Madrid) in accordance with national and international regulations and the Royal Decree (RD 1201/2005) ( Permit number: 1 1048).
Células y virus Cells and viruses
Las líneas celulares BHK-21 (línea fibroblastoide de riñon de hámster dorado, ATCC, Cat. No. CCL-10) y DF-1 (línea de fibroblastos embrionarios de pollo inmortalizados, ATCC, Cat. No. CRL-12203) se cultivaron en medio esencial mínimo de Eagle modificado por Dulbecco (DMEM) (Gibco BRL) suplementado con penicilina (100 U/ml; Sigma), estreptomicina (100 μg/ml; Sigma), fungizona (0,5 U/ml; Gibco), glutamina (2 mM; Merck) y aminoácidos no esenciales (Sigma) (DMEM completo) y 10% (v/v) de suero fetal de ternera (FCS; Sigma). Las células de carcinoma hepatocelular humano HepG2 (ATCC, Cat. No. HB-8065) se cultivaron en medio DMEM completo suplementado con 20 mM del tampón N-2- hydroxietilpiperacina-N'-2-ácido etanosulfónico, pH 7.4 (HEPES) y 10% (v/v) de FCS). Las células dendríticas derivadas de monocitos humanos (moDCs) se obtuvieron a partir de linfocitos de sangre periférica (PBMC) previamente obtenidos mediante separación por gradiente de Ficoll (GE Healthcare) a partir de la capa leucoplaquetaria (buffy coat) de un donante de sangre sano reclutado por el Centro de Transfusión de la Comunidad de Madrid. Los monocitos CD14+ se purificaron por depleción empleando el kit Dynabeads® Untouched™ human monocyte (Invitrogen) siguiendo las indicaciones del fabricante. Los monocitos obtenidos se cultivaron durante 7 días en placas de cultivos de 6 pocilios (3 χ 106 células/pocilio a 1 x 106 células/ml) en medio RPMI 1640 completo suplementado con 50 ng/ml de GMCSF, 20 ng/ml de IL-4 (ambos de Gibco-Life Technologies) y 10% (v/v) de FCS. Todas las líneas celulares se mantuvieron en un incubador a una temperatura de 37°C (o 39°C para las células DF-1 ) y un porcentaje de C02 del 5%. The BHK-21 cell lines (golden hamster kidney fibroblastoid line, ATCC, Cat. No. CCL-10) and DF-1 (immortalized chicken embryonic fibroblast line, ATCC, Cat. No. CRL-12203) were cultured in minimal essential medium of Eagle modified by Dulbecco (DMEM) (Gibco BRL) supplemented with penicillin (100 U / ml; Sigma), streptomycin (100 μg / ml; Sigma), fungizone (0.5 U / ml; Gibco), glutamine (2 mM; Merck) and non-essential amino acids (Sigma) (complete DMEM) and 10% (v / v) fetal calf serum (FCS; Sigma). HepG2 human hepatocellular carcinoma cells (ATCC, Cat. No. HB-8065) were cultured in complete DMEM medium supplemented with 20 mM N-2- hydroxyethylpiperacin-N ' -2-ethanesulfonic acid buffer, pH 7.4 (HEPES) and 10% (v / v) of FCS). Dendritic cells derived from human monocytes (moDCs) were obtained from peripheral blood lymphocytes (PBMC) previously obtained by Ficoll gradient separation (GE Healthcare) from the buffy coat of a healthy blood donor recruited by the Community Transfusion Center of Madrid. CD14 + monocytes were purified by depletion using the Dynabeads ® Untouched ™ human monocyte kit (Invitrogen) following the manufacturer's instructions. The monocytes obtained were cultured for 7 days in 6-well culture plates (3 χ 10 6 cells / well at 1 x 10 6 cells / ml) in complete RPMI 1640 medium supplemented with 50 ng / ml GMCSF, 20 ng / ml of IL-4 (both from Gibco-Life Technologies) and 10% (v / v) of FCS. All cell lines were maintained in an incubator at a temperature of 37 ° C (or 39 ° C for DF-1 cells) and a C0 2 percentage of 5%.
Las infecciones virales se realizaron en los medios respectivos suplementados con 2% (v/v) de FCS. Para la generación del virus recombinante MVA-HCV se empleó como virus parental la cepa atenuada MVA (Antoine, Scheiflinger et al. 1998) obtenida a partir de la cepa Ankara tras 586 pases seriados en fibroblastos de embrión de pollo (derivado del clon F6 de pase 585 y cedido por el Dr. G. Sutter del Instituto de Virología Molecular de Munich, Alemania). Ambos virus fueron crecidos en células BHK-21 , purificados a través de dos colchones de sacarosa al 36% (p/v) y titulados por inmunotinción según la metodología descrita previamente (39). La titulación se realizó al menos tres veces. Construcción del plásmido de transferencia pCyA-HCV79 Viral infections were performed in the respective media supplemented with 2% (v / v) FCS. For the generation of the recombinant MVA-HCV virus, the attenuated strain MVA (Antoine, Scheiflinger et al. 1998) obtained from the Ankara strain after 586 serial passes in chicken embryo fibroblasts (derived from clone F6 of pass 585 and provided by Dr. G. Sutter of the Institute of Molecular Virology in Munich, Germany). Both viruses were grown on BHK-21 cells, purified through two 36% (w / v) sucrose mattresses and titrated by immunostaining according to the methodology previously described (39). The degree was made at least three times. Construction of the transfer plasmid pCyA-HCV 79
El plásmido de transferencia pCyA-HCV7 9 fue construido para la generación del virus recombinante MVA-HCV que expresa las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS3, NS4A, NS4B, NS5A y los 201 aminoácidos de la región N-terminal de NS5B) del aislado H77 del virus VHC perteneciente al genotipo 1 a. El plásmido pCyA-HCV7 9 deriva del plásmido pUC, diseñado para la selección de placas azules/blancas. Contiene las secuencias flanqueantes derecha (TK-R) e izquierda (TK-L) del gen viral de la timidina quinasa (TK), el promotor de E3L dirigiendo la expresión del marcador de selección β-galactosidasa (β-Gal) y el gen de resistencia a ampicilina (AP). Entre las dos secuencias flanqueantes se encuentra el promotor sintético temprano/tardío (pE/L) dirigiendo la expresión de los genes de VHC. La posición de cada uno de los componentes incluidos en el plásmido se describe a continuación en la Tabla 1 y su secuencia aparece detallada en el SEQ ID No 2. The transfer plasmid pCyA-HCV 7 9 was constructed for the generation of the MVA-HCV recombinant virus that expresses the structural (Core, E1, E2 and p7) and non-structural (NS3, NS4A, NS4B, NS5A and 201 amino acids of the N-terminal region of NS5B) of the H77 isolate of the HCV virus belonging to genotype 1 a. Plasmid pCyA-HCV 7 9 is derived from plasmid pUC, designed for the selection of blue / white plates. It contains the right (TK-R) and left (TK-L) flanking sequences of the thymidine kinase (TK) viral gene, the E3L promoter directing the expression of the β-galactosidase (β-Gal) selection marker and the gene of ampicillin resistance (AP). Between the two flanking sequences is the early / late synthetic promoter (pE / L) directing the expression of HCV genes. The position of each of the components included in the plasmid is described in Table 1 below and its sequence is detailed in SEQ ID No 2.
Tabla 1.- Componentes del plásmido pCyA-HCV7 9 Table 1.- Components of plasmid pCyA-HCV 7 9
Componente Posición Hebra  Thread Position Component
Flanco TK-izquierdo (TK-L) 410-908 complementario Flank TK-left (TK-L) 410-908 complementary
Señal T5NT para β-gal 929-935 complementario β-gal ATG-TAA (936-4079) complementarioT5NT signal for complementary β-gal 929-935 complementary β-gal ATG-TAA (936-4079) complementary
Promotor E3L 4080-4140 complementarioComplementary E3L 4080-4140 Promoter
Repetición de flanco TK-TK- flank repeat
4151 -4498 complementario izquierdo (TK-L) Promotor sintético E/L 4515-4554 4151 -4498 complementary left (TK-L) Synthetic promoter E / L 4515-4554
Región codificante VHC 7.9 ATG-TGA (4578-12470)  VHC coding region 7.9 ATG-TGA (4578-12470)
Señal T5NT 12480-12486  T5NT signal 12480-12486
Flanco TK-derecho (TK-R) 12494-13239 complementario Flank TK-right (TK-R) 12494-13239 complementary
Ampicilina ATG-TAA (14410-15270) complementario Supplemental ATG-TAA ampicillin (14410-15270)
Para la construcción de este plásmido se utilizaron los siguientes plásmidos: For the construction of this plasmid the following plasmids were used:
- pLZAWl : Este plásmido fue cedido por Linong Zhang, del grupo Aventis, Canadá. Es un plásmido derivado del pUC que contiene un brazo izquierdo del gen TK, un sitio múltiple de clonaje para la inserción de genes exógenos, una repetición corta del brazo izquierdo del gen TK, el promotor E3L dirigiendo la expresión del gen β-gal, un brazo derecho del gen TK y el gen de resistencia a ampicilina. - pLZAWl: This plasmid was ceded by Linong Zhang, of the Aventis group, Canada. It is a plasmid derived from pUC that contains a left arm of the TK gene, a multiple cloning site for the insertion of exogenous genes, a short repetition of the left arm of the TK gene, the E3L promoter directing the expression of the β-gal gene, a right arm of the TK gene and the ampicillin resistance gene.
- pCyA-20: Fue construido por los inventores a partir del plásmido pLZAWl como se representa en la Figura 1A. Para ello se generó una banda de ADN sintética de 88 pb que contenía la secuencia del promotor sintético temprano/tardío seguido de un sitio múltiple de clonaje y en cada extremo contenía dianas de restricción para las enzimas AscI (extremo 5') y Swal (extremo 3'). Tanto la banda sintética como el vector pLZAWl fueron digeridos con las enzimas AscI y Swal, procediéndose posteriormente a su ligación mediante el empleo de la enzima T4 ADN ligasa, generándose finalmente el vector de transferencia pCyA-20. - pCyA-20: It was constructed by the inventors from plasmid pLZAWl as depicted in Figure 1A. For this purpose, an 88 bp synthetic DNA band was generated that contained the early / late synthetic promoter sequence followed by a multiple cloning site and at each end contained restriction targets for the AscI enzymes (5 ' end) and Swal (end 3 ' ). Both the synthetic band and the pLZAWl vector were digested with the AscI and Swal enzymes, subsequently ligation being carried out using the enzyme T4 DNA ligase, finally generating the transfer vector pCyA-20.
- pHCVI a: Este plásmido fue cedido por Charles M. Rice, New York - pHCVI a: This plasmid was ceded by Charles M. Rice, New York
(Kolykhalov, Agapov et al. 1997).  (Kolykhalov, Agapov et al. 1997).
Contiene el genoma completo que codifica para las proteínas estructurales (Core, E1 , E2 y p7) y no estructurales (NS3, NS4A, NS4B, NS5A y NS5B) del aislado H77 del virus VHC pertenecientes al genotipo 1 a con SEQ ID No 1.  It contains the complete genome that codes for structural (Core, E1, E2 and p7) and non-structural (NS3, NS4A, NS4B, NS5A and NS5B) proteins of HCV virus H77 isolate belonging to genotype 1 a with SEQ ID No 1.
La construcción del plásmido pCyA-HCV7 9 a partir de los plásmidos previamente descritos se representa en la Figura 1A. Brevemente, el fragmento de ADN que contiene 7.9 Kpb de la pauta de lectura abierta (ORF) del genoma del virus VHC perteneciente al genotipo 1 a fue escindido mediante digestión con la enzima EcoRI del plásmido pHCVI b, tratado con la ADN polimerasa Klenow para generar extremos romos e insertado en el vector pCyA-20 previamente digerido con la endonucleasa de restricción Pmel y desfosforilado por incubación con la enzima fosfatasa alcalina, generándose de esta forma el plásmido de transferencia pCyA- HCV7.9. El plásmido generado dirige la inserción de los genes de interés en el locus TK del genoma del virus atenuado MVA. The construction of plasmid pCyA-HCV 7 9 from the previously described plasmids is depicted in Figure 1A. Briefly, the DNA fragment containing 7.9 Kpb of the open reading pattern (ORF) of the genome of HCV virus belonging to genotype 1 a was cleaved by digestion with the EcoRI enzyme of plasmid pHCVI b, treated with Klenow DNA polymerase for generate blunt ends and inserted into the vector pCyA-20 previously digested with the restriction endonuclease Pmel and dephosphorylated by incubation with the enzyme alkaline phosphatase, thereby generating the transfer plasmid pCyA-HCV7.9. The generated plasmid directs the insertion of the genes of interest into the TK locus of the genome of the attenuated MVA virus.
Construcción del virus recombinante MVA-HCV Construction of the MVA-HCV recombinant virus
Células BHK-21 (3 x 106) fueron infectadas con el virus atenuado MVA-WT a una multiplicidad de infección de 0.05 UFP/célula y posteriormente transfectadas con 10 μg del plásmido pCyA-HCV/.g utilizando lipofectamina (Invitrogen) como agente transfectante y siguiendo las instrucciones del fabricante. A las 72 horas post-infección, las células fueron recogidas, congeladas/descongeladas, sonicadas y utilizadas para la selección de los virus recombinantes. Los MVA recombinantes que contenían los genes de VHC y que expresaban de forma transitoria el gen marcador β-gal (MVA-HCV (X-Gal+)) fueron seleccionados durante pases consecutivos de purificación de placas en células BHK-21 teñidas con 5-bromo-4- cloro-3-indolil-p-galactósido (X-Gal) (300 μg/ml). Los MVA recombinantes que contenían los genes de VHC y que habían perdido el gen marcador (MVA-HCV (X- Gal")) fueron seleccionados como focos virales no teñidos en células BHK-21 en presencia de X-Gal. En cada pase de purificación las placas aisladas fueron expandidas en BHK-21 durante 3 días y el extracto viral crudo obtenido era utilizado para el siguiente paso de purificación de placas. Tras 7 pases consecutivos de purificación se aislaron 12 placas recombinantes que expresaban eficientemente las proteínas de VHC y que habían perdido el gen marcador. La placa designada como MVA-HCV-1.6.1 .1.9.3.2 (stock P1 ) fue crecida para generar una preparación viral cruda (stock P2: 9.8 x 108 UFP/ml) a partir de la cual se preparó un stock P3 de virus purificado a partir de células BHK-21 infectadas a una multiplicidad de infección de 0.05 UFP/célula a través de dos colchones de sacarosa al 36%. Este stock P3, con un título de 4.75 x 109 UFP/ml, fue el que se utilizó en los diferentes protocolos de inmunización. La secuencia del inserto localizada en el locus de la timidina quinasa de este recombinante aparece detallada en la SEQ ID No 3. La localización de los diferentes elementos que componen el inserto se indica a continuación en la Tabla 2. BHK-21 cells (3 x 10 6 ) were infected with the attenuated MVA-WT virus at a multiplicity of infection of 0.05 PFU / cell and subsequently transfected with 10 μg of plasmid pCyA-HCV / .g using lipofectamine (Invitrogen) as agent transfectant and following the manufacturer's instructions. At 72 hours post-infection, the cells were collected, frozen / thawed, sonicated and used for the selection of recombinant viruses. Recombinant MVAs containing HCV genes and transiently expressing the β-gal marker gene (MVA-HCV (X-Gal + )) were selected during consecutive plaque purification passes on BHK-21 cells stained with 5- Bromo-4- chloro-3-indolyl-p-galactoside (X-Gal) (300 μg / ml). Recombinant MVAs that contained the HCV genes and that had lost the marker gene (MVA-HCV (X-Gal " )) were selected as viral stains not stained in BHK-21 cells in the presence of X-Gal. Purification The isolated plates were expanded in BHK-21 for 3 days and the crude viral extract obtained was used for the next plate purification step.After 7 consecutive purification passes 12 recombinant plates were isolated that efficiently expressed HCV proteins and that they had lost the marker gene.The plate designated as MVA-HCV-1.6.1 .1.9.3.2 (stock P1) was grown to generate a crude viral preparation (stock P2: 9.8 x 10 8 PFU / ml) from which A P3 stock of purified virus was prepared from infected BHK-21 cells at a multiplicity of infection of 0.05 PFU / cell through two 36% sucrose mattresses.This P3 stock, with a titer of 4.75 x 10 9 PFU / ml, was the one used in s different immunization protocols. The sequence of the insert located in the thymidine kinase locus of this recombinant is detailed in SEQ ID No 3. The location of the different elements that make up the insert is indicated in Table 2 below.
Tabla 2.- Componentes principales del inserto VHC en el vector MVA-HCV Table 2.- Main components of the HCV insert in the MVA-HCV vector
Figure imgf000038_0001
Figure imgf000038_0001
Análisis por PCR del virus recombinante MVA-HCV PCR analysis of the MVA-HCV recombinant virus
Para confirmar la homogeneidad genética del virus MVA-HCV generado y la integridad de los genes insertados se realizó un análisis por PCR del ADN viral extraído de células BHK-21 infectadas a una multiplicidad de 5 UFP/célula, empleando para ello oligonucleótidos que hibridan en las regiones TK flanqueantes del inserto. La secuencia de los oligonucleótidos utilizados como cebadores y la posición donde hibridan en el locus TK del virus MVA-HCV7.9 se detallan en la Tabla 3 y el tamaño estimado del fragmento de PCR generado se muestra en la Figura 2A. Tabla 3.- Oligonucleótidos utilizados para la caracterización del virus MVA-To confirm the genetic homogeneity of the generated MVA-HCV virus and the integrity of the inserted genes, a PCR analysis of the viral DNA extracted from infected BHK-21 cells at a multiplicity of 5 PFU / cell was performed, using oligonucleotides that hybridize in the flanking TK regions of the insert. The sequence of the oligonucleotides used as primers and the position where they hybridize in the TK locus of the MVA-HCV7.9 virus are detailed in Table 3 and the estimated size of the generated PCR fragment is shown in Figure 2A. Table 3.- Oligonucleotides used for the characterization of the MVA virus-
HCV mediante PCR HCV by PCR
Oligonucleótido Secuencia Posición TK-L 5'-TGATTAGTTTGATGCGATTC-3 339-358Oligonucleotide Sequence Position TK-L 5 ' -TGATTAGTTTGATGCGATTC-3 339-358
TK-R 5'-TGTCCTTGATACGGCAG-3' 8716-8732 TK-R 5 ' -TGTCCTTGATACGGCAG-3 ' 8716-8732
Para el análisis por PCR, 100 ng de ADN viral extraído de células BHK-21 infectadas a una multiplicidad de 5 UFP/célula con los virus MVA-HCV (stock P3) o MVA-WT fueron utilizados como molde empleando como cebadores 100 ng de los oligonucleótidos TK-L y TK-R, que hibridan en las secuencias flanqueantes del gen TK, en una mezcla de reacción que contenía 0.3 mM de dNTPs, 2 mM de MgCI2 y 2.5 U de la enzima polimerasa Platinum Taq (Invitrogen). El programa incluye un ciclo inicial de desnaturalización a 95°C durante 7 minutos; 30 ciclos de desnaturalización a 95°C durante 1 minuto, hibridación a 62°C durante 30 segundos y extensión a 72°C durante 4 minutos y una extensión final a 72°C durante 7 minutos. Los productos de PCR fueron analizados en un gel de agarosa al 0.7%. For PCR analysis, 100 ng of viral DNA extracted from BHK-21 cells infected at a multiplicity of 5 PFU / cell with the MVA-HCV (stock P3) or MVA-WT viruses were used as a template using 100 ng of primers as primers. the TK-L and TK-R oligonucleotides, which hybridize in the flanking sequences of the TK gene, in a reaction mixture containing 0.3 mM dNTPs, 2 mM MgCl 2 and 2.5 U of the enzyme Platinum Taq polymerase (Invitrogen). The program includes an initial cycle of denaturation at 95 ° C for 7 minutes; 30 cycles of denaturation at 95 ° C for 1 minute, hybridization at 62 ° C for 30 seconds and extension at 72 ° C for 4 minutes and a final extension at 72 ° C for 7 minutes. The PCR products were analyzed on a 0.7% agarose gel.
Expresión de las proteínas de VHC a partir del MVA-HCV Expression of HCV proteins from MVA-HCV
Para determinar la correcta expresión de las proteínas de VHC a partir del virus MVA-HCV, monocapas de células BHK-21 fueron infectadas con MVA-HCV o MVA-WT a 5 UFP/célula. A las 24 horas post-infección, las células fueron lisadas en tampón Laemmli y los extractos celulares fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE) al 12%, transferidos a membranas de nitrocelulosa y analizados por Western-blot utilizando anticuerpos policlonales frente a Core (cedido por el Dr. Ilkka Julkunen, Instituto de Salud Público Nacional de Finlandia, diluido 1 :1000), anticuerpos monoclonales frente a E1 (Acris Antibodies, diluido 1 :1000), E2 (GenWay Biotech, diluido 1 :500), NS4A, NS4B y NS5A (todos de GenWay Biotech, diluidos 1 :1000). Los anticuerpos policlonales generados en cabra frente a IgG total de conejo o ratón conjugados con peroxidasa (SIGMA) se emplearon como anticuerpos secundarios. La detección de las bandas de proteína reconocidas por los anticuerpos específicos se efectuó mediante el sistema Luminol ECL® (GE Healthcare) exponiendo una película autorradiográfica X-OMAT (Kodak). To determine the correct expression of HCV proteins from the MVA-HCV virus, BHK-21 cell monolayers were infected with MVA-HCV or MVA-WT at 5 PFU / cell. At 24 hours post-infection, the cells were lysed in Laemmli buffer and fractionated cell extracts in 12% polyacrylamide denaturing gels (SDS-PAGE), transferred to nitrocellulose membranes and analyzed by Western-blot using polyclonal antibodies against Core (provided by Dr. Ilkka Julkunen, National Public Health Institute of Finland, diluted 1: 1000), monoclonal antibodies against E1 (Acris Antibodies, diluted 1: 1000), E2 (GenWay Biotech, diluted 1: 500), NS4A, NS4B and NS5A (all from GenWay Biotech, diluted 1: 1000). The polyclonal antibodies generated in goat against total rabbit or mouse IgG conjugated with peroxidase (SIGMA) were used as secondary antibodies. The detection of the protein bands recognized by the specific antibodies was carried out by means of the Luminol ECL ® system (GE Healthcare) exposing an X-OMAT autoradiographic film (Kodak).
Estabilidad genética del virus recombinante MVA-HCV Genetic stability of the MVA-HCV recombinant virus
Para verificar que el virus recombinante MVA-HCV podía ser pasado sucesivamente sin perder la expresión de los genes insertados, se realizó un ensayo de estabilidad efectuando varios pases sucesivos del virus recombinante MVA-HCV en células BHK-21 . Monocapas de células BHK-21 crecidas en placas P100 fueron infectadas de forma sucesiva a una multiplicidad de 0.01 UFP/célula, partiendo del stock P2 del MVA-HCV (pase 7) hasta el pase 1 1 (P1 1 ). Los extractos de células BHK-21 infectadas con los pases 8, 9, 10 y 1 1 fueron analizados por Western-blot. Para realizar estos ensayos, monocapas de células BHK-21 crecidas en placas de 12 pocilios fueron infectadas con 5 UFP/célula de los diferentes extractos virales obtenidos en los pases 8, 9, 10 y 1 1 (P8→P1 1 ) del virus recombinante MVA-HCV. Los extractos fueron recogidos a las 24 horas postinfección, fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa y analizados por Western-blot empleando un suero policlonal humano anti-VHC (cedido por el Dr. Rafael Fernández del Hospital Ramón y Cajal, Madrid, diluido 1 :500). Un anticuerpo policlonal generado en cabra frente a IgG total humana conjugado con peroxidasa (SIGMA) fue utilizado como anticuerpo secundario. La detección de las bandas de proteína reconocidas por los anticuerpos específicos se efectuó mediante el sistema Luminol ECL® (GE Healthcare) exponiendo una película autorradiográfica X-OMAT (Kodak). To verify that the MVA-HCV recombinant virus could be passed successively without losing the expression of the inserted genes, a stability test was performed by performing several successive passes of the MVA-HCV recombinant virus in BHK-21 cells. Monolayers of BHK-21 cells grown on P100 plates were successively infected at a multiplicity of 0.01 PFU / cell, starting from the P2 stock of the MVA-HCV (pass 7) to pass 1 1 (P1 1). Extracts of BHK-21 cells infected with passes 8, 9, 10 and 1 1 were analyzed by Western-blot. To perform these tests, monolayers of BHK-21 cells grown in 12-well plates were infected with 5 PFU / cell of the different viral extracts obtained in passes 8, 9, 10 and 1 1 (P8 → P1 1) of the recombinant virus MVA-HCV. The extracts were collected at 24 hours post-infection, fractionated into denaturing polyacrylamide gels (SDS-PAGE), transferred to nitrocellulose membranes and analyzed by Western-blot using a human anti-HCV polyclonal serum (provided by Dr. Rafael Fernández del Ramón y Cajal Hospital, Madrid, diluted 1: 500). A polyclonal antibody generated in goat against total human IgG conjugated to peroxidase (SIGMA) was used as a secondary antibody. The detection of the protein bands recognized by the specific antibodies was carried out by means of the Luminol ECL ® system (GE Healthcare) exposing an X-OMAT autoradiographic film (Kodak).
La estabilidad del recombinante MVA-HCV también se evaluó mediante el análisis de placas individuales. Monocapas de células BHK-21 crecidas en placas de 6 pocilios fueron infectadas con diluciones seriadas del lisado de células obtenidas en el pase 1 1. A las 48 horas post-infección, las células se tiñeron con rojo neutro al 0.01 % (SIGMA) y se picaron 30 placas de lisis individuales que fueron resuspendidas en 0.5 mi de DMEM completo, congeladas/descongeladas 3 veces, sonicadas y utilizadas (0.2 mi) para la infección de nuevas células BHK-21 crecidas en placas de 12 pocilios. A las 72 horas post-infección, las células fueron lisadas en tampón Laemmli y los extractos celulares fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE) al 12%, transferidos a membranas de nitrocelulosa y analizados por Western-blot empleando un suero policlonal humano anti-VHC (cedido por el Dr. Rafael Fernández del Hospital Ramón y Cajal, Madrid, diluido 1 :500). Un anticuerpo policlonal generado en cabra frente a IgG total humana conjugado con peroxidasa (SIGMA) fue empleado como anticuerpo secundario (diluido 1 :1000). La detección de las bandas de proteína reconocidas por los anticuerpos correspondientes se efectuó mediante el sistema Luminol ECL® (GE Healthcare) exponiendo una película autorradiográfica X-OMAT (Kodak). Análisis del crecimiento viral The stability of the recombinant MVA-HCV was also evaluated by the analysis of individual plates. Monolayers of BHK-21 cells grown in 6-well plates were infected with serial dilutions of the lysate obtained in step 1 1. At 48 hours post-infection, the cells were stained with 0.01% neutral red (SIGMA) and 30 individual lysis plates were chopped which were resuspended in 0.5 ml of complete DMEM, frozen / thawed 3 times, sonicated and used (0.2 ml) for the infection of new BHK-21 cells grown in 12-well plates. At 72 hours post-infection, the cells were lysed in Laemmli buffer and fractionated cell extracts in 12% polyacrylamide denaturing gels (SDS-PAGE), transferred to nitrocellulose membranes and analyzed by Western-blot using a human polyclonal serum anti-HCV (courtesy of Dr. Rafael Fernández of the Ramón y Cajal Hospital, Madrid, diluted 1: 500). A polyclonal antibody generated in goat against total human IgG conjugated to peroxidase (SIGMA) was used as a secondary antibody (diluted 1: 1000). The detection of the protein bands recognized by the corresponding antibodies was carried out by means of the Luminol ECL ® system (GE Healthcare) exposing an X-OMAT autoradiographic film (Kodak). Viral Growth Analysis
Para analizar el perfil de crecimiento de MVA-HCV, monocapas de células BHK-21 crecidas en placas de 12 pocilios fueron infectadas a una multiplicidad de 0.01 UFP/célula con MVA-WT o MVA-HCV. Tras una adsorción de 60 min. a 37°C, se retiró el inoculo y las células se incubaron a 37°C y en atmósfera de 5% C02 con medio DMEM fresco enriquecido con FCS al 2%. A distintos tiempos post-infección (0, 24, 48 y 72 horas), se recogieron las células por raspado y se sometieron a tres ciclos de congelación/descongelación y sonicación. El título viral en los diferentes lisados celulares se determinó mediante inmunotinción en células DF-1 empleando el anticuerpo policlonal anti-vaccinia (Centro Nacional de Biotecnología; diluido 1 :1000) seguido de un conjugado anti-lgG de conejo-peroxidasa (SIGMA; diluido 1 :1000). Cinética de expresión de las proteínas de HCV a partir del MVA-HCV To analyze the growth profile of MVA-HCV, monolayers of BHK-21 cells grown in 12-well plates were infected at a multiplicity of 0.01 PFU / cell with MVA-WT or MVA-HCV. After an adsorption of 60 min. at 37 ° C, the inoculum was removed and the cells were incubated at 37 ° C and in a 5% C0 2 atmosphere with fresh DMEM medium enriched with 2% FCS. At different post-infection times (0, 24, 48 and 72 hours), the cells were collected by scraping and subjected to three cycles of freezing / thawing and sonication. The viral titer in the different cell lysates was determined by immunostaining in DF-1 cells using the polyclonal anti-vaccinia antibody (National Biotechnology Center; diluted 1: 1000) followed by an anti-lgG rabbit-peroxidase conjugate (SIGMA; diluted 1: 1000). Expression kinetics of HCV proteins from MVA-HCV
Para definir la cinética de expresión de las proteínas de VHC, monocapas de células BHK-21 o HepG2 crecidas en placas de 12 pocilios fueron infectadas a 5 UFP/célula con MVA-HCV o MVA-WT. A diferentes tiempos post-infección, las células fueron recogidas y los precipitados celulares fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa y analizados por Western-blot empleando un suero policlonal humano anti-VHC (cedido por el Dr. Rafael Fernández del Hospital Ramón y Cajal, Madrid, diluido 1 :500). Un anticuerpo policlonal generado en cabra frente a IgG total humana conjugado con peroxidasa (SIGMA) fue empleado como anticuerpo secundario (dilución 1 :1000). La detección de las bandas de proteína reconocidas por los anticuerpos correspondientes se efectuó mediante el sistema Luminol ECL® (GE Healthcare) exponiendo una película autorradiográfica X-OMAT (Kodak). Análisis por microscopía electrónica de células HeLa infectadas por MVA-HCV To define the expression kinetics of HCV proteins, monolayers of BHK-21 or HepG2 cells grown in 12-well plates were infected at 5 PFU / cell with MVA-HCV or MVA-WT. At different post-infection times, the cells were collected and the cell precipitates fractionated in polyacrylamide denaturing gels (SDS-PAGE), transferred to nitrocellulose membranes and analyzed by Western-blot using a human anti-HCV polyclonal serum (assigned by the Dr. Rafael Fernández of the Ramón y Cajal Hospital, Madrid, diluted 1: 500). A polyclonal antibody generated in goat against total human IgG conjugated to peroxidase (SIGMA) was used as a secondary antibody (1: 1000 dilution). The detection of the protein bands recognized by the corresponding antibodies was carried out by means of the Luminol ECL ® system (GE Healthcare) exposing an X-OMAT autoradiographic film (Kodak). Electron microscopy analysis of HeLa cells infected by MVA-HCV
Se infectaron células HeLa crecidas a confluencia completa con el virus MVA-HCV a una multiplicidad de infección de 5 UFP/célula. A las 16 horas post- infección, se retiró el medio de cultivo y las células fueron fijadas durante 2 h. a temperatura ambiente en una solución de fijación que contenía giufaraidehido al 2% y ácido tánico al 1 % en tampón HEPES. Transcurrido el tiempo de fijación, las células se recogieron en presencia del fijador, se centrifugaron y el pelief se resuspendió en 1 ml de tampón HEPES y se procesó mediante una inclusión convencional de células para microscopía electrónica en la epoxi-resina EML-812 (Taab Laboratories, Adermaston, Berkshire, UK). A continuación, el pellet fue cortado con un ultra-microtomo en forma de secciones uitrafinas de 70 nm de grosor que se recogieron en rejillas de cobre. Los cortes de células infectadas con el virus MVA-HCV fueron analizadas en un microscopio electrónico de transmisión modelo JEOL 101 1 . HeLa cells grown at full confluence with the MVA-HCV virus were infected at a multiplicity of infection of 5 PFU / cell. At 16 hours post-infection, the culture medium was removed and the cells were fixed for 2 h. to room temperature in a fixation solution containing 2% giufaraidehyde and 1% tannic acid in HEPES buffer. After the fixation time, the cells were collected in the presence of the fixative, centrifuged and the pelief was resuspended in 1 ml of HEPES buffer and processed by a conventional inclusion of cells for electron microscopy in the epoxy-resin EML-812 (Taab Laboratories, Adermaston, Berkshire, UK). Next, the pellet was cut with an ultra-microtome in the form of 70 nm thick eitraphine sections that were collected on copper gratings. Sections of cells infected with the MVA-HCV virus were analyzed in a transmission electron microscope model JEOL 101 1.
Análisis de la expresión de ARN por RT-PCR cuantitativa Analysis of RNA expression by quantitative RT-PCR
El ARN total fue aislado utilizando el RNeasy Mini kit (Qiagen) a partir de células dendríticas derivadas de monocitos humanos infectadas a 0.3 o 1 UFP/célula con MVA-HCV o MVA-WT durante 6 horas. La reverso-transcripción de 500 ng de ARN total se realizó empleando el kit QuantiTect Reverse Transcription (Qiagen). La PCR cuantitativa se llevó a cabo empleando el sistema 7500 Real- Time PCR (Applied Biosystems) y la mezcla maestra de PCR Power SYBR Green (Applied Biosystems) como se decribió previamente (8). Los niveles de expresión de los ARNs de los genes IFN-β, IFIT1, IFIT2, RIG-I, MDA-5, IP-10 y Hprt se determinaron por RT-PCR empleando oligonucleótidos específicos. La expresión de cada uno de los genes fue referida relativa a la expresión del gen Hprt en unidades arbitrarias (U.A.). Las muestras fueron ensayadas en duplicado y se realizaron dos experimentos diferentes. Total RNA was isolated using the RNeasy Mini kit (Qiagen) from dendritic cells derived from human monocytes infected at 0.3 or 1 PFU / cell with MVA-HCV or MVA-WT for 6 hours. The reverse-transcription of 500 ng of total RNA was performed using the QuantiTect Reverse Transcription kit (Qiagen). Quantitative PCR was carried out using the 7500 Real-Time PCR system (Applied Biosystems) and the Power SYBR Green PCR master mix (Applied Biosystems) as previously described (8). The expression levels of the RNAs of the IFN-β, IFIT1, IFIT2, RIG-I, MDA-5, IP-10 and Hprt genes were determined by RT-PCR using specific oligonucleotides. The expression of each of the genes was referred to relative to the expression of the Hprt gene in arbitrary units (U.A.). The samples were tested in duplicate and two different experiments were performed.
Vectores de ADN DNA vectors
Los ADN plasmídicos pcADN-Core, pcADN-E1 , pcADN-E2 y pcADN-NS3 que codifican las proteínas virales Core, E1 , E2 y NS3 del aislado H77, genotipo 1 a, fueron cedidos por el Dr. Ilkka Julkunen (Instituto de Salud Público Nacional de Finlandia). Los ADNs fueron purificados empleando el kit Mega-Prep Endo-Free (Qiagen) resuspendiéndose en agua bidestilada libre de pirógenos. Péptidos The pcDNA-Core, pcDNA-E1, pcDNA-E2 and pcDNA-NS3 plasmid DNAs encoding the Core, E1, E2 and NS3 viral proteins of the H77 isolate, genotype 1 a, were yielded by Dr. Ilkka Julkunen (Health Institute National Public of Finland). The DNAs were purified using the Mega-Prep Endo-Free kit (Qiagen) resuspended in pyrogen-free double-distilled water. Peptides
Para la evaluación de la respuesta inmune generada por MVA-HCV se emplearon mezclas de péptidos obtenidas a través de BEI Resources, NIAID, NIH, que representaban las proteínas virales Core, E1 , E2, p7, NS2, NS3, NS4A, NS4B, NS5A y NS5B del aislado J4 (genotipo 1 b; GenPept: AAC15722). Los péptidos, que tenían entre 13 y 19 mers, solapaban en 1 1 ó 12 aminoácidos y fueron agrupados formando combinaciones que contenían de 28 a 53 péptidos según el caso. La proteína del Core estaba representada por la mezcla de péptidos denominada Core (28 péptidos). La combinación de péptidos denominada E representaba a las proteínas E1 (28 péptidos) y E2 (55 péptidos). Las proteínas p7 y NS2 estaban representadas por la mezcla de péptidos denominada p7+NS2 (40 péptidos). La combinación de péptidos denominada NS3 representaba a la proteína NS3 y estaba constituida por la mezcla NS3-1 (49 péptidos) y NS3-2 (49 péptidos). La mezcla de péptidos denominada NS4 representaba a las proteínas NS4A y NS4B (47 péptidos). Las proteínas NS5A y NS5B estaban representadas en la combinación de péptidos denominada NS5 y estaba formada por la mezcla NS5-1 (55 péptidos), NS5-2 (53 péptidos) y NS5-3 (53 péptidos). El aislado J4 del genotipo 1 b comparte un 85.7% de homología con el aislado H77 del genotipo 1 a. For the evaluation of the immune response generated by MVA-HCV, mixtures of peptides obtained through BEI Resources, NIAID, NIH, representing the viral proteins Core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A were used and NS5B of isolate J4 (genotype 1b; GenPept: AAC15722). The peptides, which were between 13 and 19 meters, overlapped in 1 or 12 amino acids and were grouped together to form combinations containing 28 to 53 peptides, depending on the case. The Core protein was represented by the peptide mixture called Core (28 peptides). The combination of peptides called E represented the proteins E1 (28 peptides) and E2 (55 peptides). The p7 and NS2 proteins were represented by the peptide mixture called p7 + NS2 (40 peptides). The combination of peptides called NS3 represented the NS3 protein and consisted of the mixture NS3-1 (49 peptides) and NS3-2 (49 peptides). The peptide mixture called NS4 represented the NS4A and NS4B proteins (47 peptides). The NS5A and NS5B proteins were represented in the combination of peptides called NS5 and was formed by the mixture NS5-1 (55 peptides), NS5-2 (53 peptides) and NS5-3 (53 peptides). Isolate J4 of genotype 1 b shares 85.7% homology with isolate H77 of genotype 1 a.
Esquema de inmunización en ratones de la cepa C57BU6 Immunization scheme in mice of strain C57BU6
Los ratones de la cepa C57BL/6 fueron obtenidos de los laboratorios Jackson y tenían entre 6 y 8 semanas de edad cuando se comenzó el procedimiento. En el protocolo homólogo de inmunización grupos de 8 animales fueron inoculados con una dosis de 107 UFP/ratón de MVA-WT o MVA-HCV por ruta intraperitoneal (i.p.). Dos semanas después recibieron la misma dosis de los respectivos virus. En el protocolo heterólogo de inmunización, grupos de 8 animales fueron inoculados con una dosis de 200 μg de ADN-HCV (50 μg de pcADN-Core + 50 μg de pcADN-E1 + 50 μg de pcADN-E2 + 50 μg de pcADN-NS3) o 200 μg de ADN vacío (200 μg de pcADN) por ruta intramuscular (i.m.). Dos semanas después los animales fueron inoculados con una dosis de 107 UFP/ratón de MVA-HCV o MVA-WT por ruta intraperitoneal. Los animales fueron sacrificados 10 días después de la segunda dosis (día 25) para caracterizar la respuesta inmune adaptativa o 53 días después de la segunda dosis (día 67) para analizar la respuesta inmune de memoria. The mice of strain C57BL / 6 were obtained from Jackson laboratories and were between 6 and 8 weeks old when the procedure began. In the homologous immunization protocol groups of 8 animals were inoculated with a dose of 10 7 PFU / mouse of MVA-WT or MVA-HCV by intraperitoneal route (ip). Two weeks later they received the same dose of the respective virus. In the heterologous immunization protocol, groups of 8 animals were inoculated with a dose of 200 μg of HCV-DNA (50 μg of pcDNA-Core + 50 μg of pcDNA-E1 + 50 μg of pcDNA-E2 + 50 μg of pcDNA- NS3) or 200 μg of empty DNA (200 μg of pcDNA) by intramuscular route (im). Two weeks later the animals were inoculated with a dose of 10 7 PFU / mouse of MVA-HCV or MVA-WT intraperitoneally. The animals were sacrificed 10 days after the second dose (day 25) to characterize the adaptive immune response or 53 days after the second dose (day 67) to analyze the immune response of memory.
Esquema de inmunización en ratones transgénicos HLA-A2 Immunization scheme in HLA-A2 transgenic mice
Los ratones de la cepa C57BL/6-Tg(HLA-A2.1 )1 Enge/J fueron obtenidos de los laboratorios Jackson y tenían entre 6 y 8 semanas de edad cuando se comenzó el procedimiento. Este modelo de ratón, transgénico para Tg(HLA-A2.1 )1 Enge, expresa cantidades significativas del antígeno de MHC clase I humano HLA-A2.1 en células de bazo, médula ósea y timo. Grupos de 8 animales fueron inoculados con una dosis de 200 μg de ADN-HCV (50 μg de pcADN-Core + 50 μg de pcADN- E1 + 50 μg de pcADN-E2 + 50 μg de pcADN-NS3) o 200 μg de ADN vacío (200 μg de pcADN) por ruta intramuscular (i.m.). Dos semanas después los animales fueron inoculados con una dosis de 107 UFP/ratón de MVA-HCV o MVA-WT por ruta intraperitoneal (i.p.). Los animales fueron sacrificados 10 días después de la segunda dosis (día 25) para caracterizar la respuesta inmune adaptativa o 53 días después de la segunda dosis (día 67) para analizar la respuesta inmune de memoria. Mareaje intracelular de citoquinas multiparamétrico The mice of strain C57BL / 6-Tg (HLA-A2.1) 1 Enge / J were obtained from Jackson laboratories and were between 6 and 8 weeks old when the procedure began. This mouse model, transgenic for Tg (HLA-A2.1) 1 Enge, expresses significant amounts of the HLA-A2.1 human MHC class I antigen in spleen, bone marrow and thymus cells. Groups of 8 animals were inoculated with a dose of 200 μg of HCV-DNA (50 μg of pcDNA-Core + 50 μg of pcDNA-E1 + 50 μg of pcDNA-E2 + 50 μg of pcDNA-NS3) or 200 μg of DNA vacuum (200 μg of pcDNA) by intramuscular route (im). Two weeks later the animals were inoculated with a dose of 10 7 PFU / mouse of MVA-HCV or MVA-WT by intraperitoneal route (ip). The animals were sacrificed 10 days after the second dose (day 25) to characterize the adaptive immune response or 53 days after the second dose (day 67) to analyze the memory immune response. Intracellular multiparameter cytokine marking
Para determinar la magnitud, polifuncionalidad y fenotipo de la respuesta de células T antígeno-específicas se empleó un ensayo de mareaje intracelular multiparamétrico. Después de ser aislados, tanto los esplenocitos como las células inmunes intrahepáticas se dejaron en reposo durante toda la noche en medio RPMI 1640 completo suplementado con 10% de FCS. Al día siguiente, se sembraron en una placa de 96 pocilios de fondo cónico (4 x 106 células/condición) y se estimularon durante 6 horas empleando una mezcla de RPMI 1640 completo suplementado con 10% de FCS que contenía 1 μΙ/ml del reactivo GolgiPlug (BD Biosciences), monesina, anti-CD107a-Alexa 488 (BD Biosciences) y 1 μg/ml de las diferentes mezclas de péptidos de VHC. Al final del período de estimulación, las células fueron lavadas, incubadas con los diferentes anticuerpos para moléculas de superficie, fijadas y permeabilizadas empleando el kit Cytofix/Cytoperm (BD Biosciences) e incubadas con los diferentes anticuerpos específicos para moléculas intracelulares. Las células muertas fueron excluidas utilizando el kit Violet LIVE/DEAD stain (Invitrogen). Para determinar linaje celular y expresión de citoquinas se emplearon los siguientes anticuerpos conjugados: CD3-PE-CF594, CD4-APC-Cy7 o -Alexa 700, CD8-V500, IFN-y-PE-Cy7 o -PerCP-Cy5.5, IL-2-APC y TNF-α-ΡΕ (todos de BD Biosciences). Para el análisis del fenotipo de la respuesta de memoria se incluyeron los siguientes anticuerpos conjugados: CD62L-Alexa 700 o -APC (BD Biosciences) y CD127-PerCP-Cy5.5 (eBioscience). Las células se adquirieron utilizando un citómetro de flujo GALLIOS (Beckman Coulter). El análisis de los datos se realizó con el programa FlowJo versión 8.5.3 (Tree Star, Ashland, OR). To determine the magnitude, polyfunctionality and phenotype of the antigen-specific T-cell response, a multiparameter intracellular marking test was used. After being isolated, both splenocytes and intrahepatic immune cells were allowed to stand overnight in complete RPMI 1640 medium supplemented with 10% FCS. The next day, they were seeded in a 96-well conical bottom plate (4 x 10 6 cells / condition) and stimulated for 6 hours using a mixture of complete RPMI 1640 supplemented with 10% FCS containing 1 μΙ / ml of the GolgiPlug reagent (BD Biosciences), monesin, anti-CD107a-Alexa 488 (BD Biosciences) and 1 μg / ml of the different mixtures of HCV peptides. At the end of the stimulation period, the cells were washed, incubated with the different antibodies for surface molecules, fixed and permeabilized using the Cytofix / Cytoperm kit (BD Biosciences) and incubated with the different antibodies specific for molecules intracellular Dead cells were excluded using the Violet LIVE / DEAD stain kit (Invitrogen). The following conjugated antibodies were used to determine cell lineage and cytokine expression: CD3-PE-CF594, CD4-APC-Cy7 or -Alexa 700, CD8-V500, IFN-and-PE-Cy7 or -PerCP-Cy5.5, IL-2-APC and TNF-α-ΡΕ (all from BD Biosciences). The following conjugated antibodies were included for the analysis of the memory response phenotype: CD62L-Alexa 700 or -APC (BD Biosciences) and CD127-PerCP-Cy5.5 (eBioscience). Cells were acquired using a GALLIOS flow cytometer (Beckman Coulter). Data analysis was performed with the FlowJo program version 8.5.3 (Tree Star, Ashland, OR).
Análisis estadístico Statistic analysis
Para el análisis estadístico de los datos de citometría utilizamos una aproximación descrita con anterioridad que corrige la respuesta obtenida en el grupo control de estimulación (RPMI) y al mismo tiempo permite el cálculo de intervalos de confianza y p valores de las distintas hipótesis (14, 34). Sólo aparecen representados valores significativamente mayores que el control RPMI. Los valores de fondo para las diferentes citoquinas intracelulares en los controles no estimulados nunca excedió el 0.05%. El análisis y presentación de la distribución de las diferentes subpoblaciones funcionales se realizó utilizando el programa SPICE versión 5.1 , descargado desde l itpj/exon.r-lai i. niH. ov (Roederer, Nozzi et al. 201 1 ). Se consideraron significativos valores de p menores de 0,05: * p<0,05; ** p<0,01 ; *** p<0,005. For the statistical analysis of the cytometry data we use an approach described above that corrects the response obtained in the stimulation control group (RPMI) and at the same time allows the calculation of confidence intervals and p values of the different hypotheses (14, 34 ). Only values significantly higher than the RPMI control are represented. The background values for the different intracellular cytokines in the non-stimulated controls never exceeded 0.05%. The analysis and presentation of the distribution of the different functional subpopulations was carried out using the SPICE program version 5.1, downloaded from itpj / exon.r-lai i. niH. ov (Roederer, Nozzi et al. 201 1). Significant p values of less than 0.05 were considered: * p <0.05; ** p <0.01; *** p <0.005.
Abraham, J. D., N. Himoudi, F. Kien, J. L. Berland, A. Codran, B. Bartosch, T. Baumert, G. Paranhos-Baccala, C. Schuster, G. Inchauspe and M. P. Kieny (2004). "Comparative immunogenicity analysis of modified vaccinia Ankara vectors expressing native or modified forms of hepatitis C virus E1 and E2 glycoproteins." Vaccine 22(29-30): 3917-3928. Abraham, J. D., N. Himoudi, F. Kien, J. L. Berland, A. Codran, B. Bartosch, T. Baumert, G. Paranhos-Baccala, C. Schuster, G. Inchauspe and M. P. Kieny (2004). "Comparative immunogenicity analysis of modified vaccinia Ankara vectors expressing native or modified forms of hepatitis C virus E1 and E2 glycoproteins." Vaccine 22 (29-30): 3917-3928.
Afdhal, N. H. (2004). "The natural history of hepatitis C." Semin Liver Dis 24 Suppl 2: 3-8. Afdhal, N. H. (2004). "The natural history of hepatitis C." Semin Liver Dis 24 Suppl 2: 3-8.
Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). "Basic local alignment search tool." J Mol Biol 215(3): 403-410.  Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). "Basic local alignment search tool." J Mol Biol 215 (3): 403-410.
Antoine, G., F. Scheiflinger, F. Dorner and F. G. Falkner (1998). "The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses." Virology 244(2): 365-396. Antoine, G., F. Scheiflinger, F. Dorner and F. G. Falkner (1998). "The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses." Virology 244 (2): 365-396.
El-Gogo, S., C. Staib, J. J. Lasarte, G. Sutter and H. Adler (2008). "Protective vaccination with hepatitis C virus NS3 but not core antigen in a novel mouse challenge model." J Gene Med 10(2): 177-186. El-Gogo, S., C. Staib, J. J. Lasarte, G. Sutter and H. Adler (2008). "Protective vaccination with hepatitis C virus NS3 but not core antigen in a novel mouse challenge model." J Gene Med 10 (2): 177-186.
Fournillier, A., E. Gerossier, A. Evlashev, D. Schmitt, B. Simón, L. Chatel, P. Martin, N. Silvestre, J. M. Balloul, R. Barry and G. Inchauspe (2007). "An accelerated vaccine schedule with a poly-antigenic hepatitis C virus MVA- based candidate vaccine induces potent, long lasting and in vivo cross- reactive T cell responses." Vaccine 25(42): 7339-7353. Fournillier, A., E. Gerossier, A. Evlashev, D. Schmitt, B. Simón, L. Chatel, P. Martin, N. Silvestre, J. M. Balloul, R. Barry and G. Inchauspe (2007). "An accelerated vaccine schedule with a poly-antigenic hepatitis C virus MVA- based candidate vaccine induces potent, long lasting and in vivo cross-reactive T cell responses." Vaccine 25 (42): 7339-7353.
Gómez, C. E., A. M. Vandermeeren, M. A. García, E. Domingo-Gil and M. Esteban (2005). "Involvement of PKR and RNase L in translational control and induction of apoptosis after Hepatitis C polyprotein expression from a vaccinia virus recombinant." Virol J 2: 81. Gómez, C. E., A. M. Vandermeeren, M. A. García, E. Domingo-Gil and M. Esteban (2005). "Involvement of PKR and RNase L in translational control and induction of apoptosis after Hepatitis C polyprotein expression from a vaccinia virus recombinant." Virol J 2: 81.
Grieve, R., J. Roberts, M. Wright, M. Sweeting, D. DeAngelis, W. Rosenberg, M. Bassendine, J. Main and H. Thomas (2006). "Cost effectiveness of interferon alpha or peginterferon alpha with ribavirin for histologically mild chronic hepatitis C." Gut 55(9): 1332-1338.  Grieve, R., J. Roberts, M. Wright, M. Sweeting, D. DeAngelis, W. Rosenberg, M. Bassendine, J. Main and H. Thomas (2006). "Cost effectiveness of interferon alpha or peginterferon alpha with ribavirin for histologically mild chronic hepatitis C." Gut 55 (9): 1332-1338.
Habersetzer, F., G. Honnet, C. Bain, M. Maynard-Muet, V. Leroy, J. P. Zarski, C. Feray, T. F. Baumert, J. P. Bronowicki, M. Doffoel, C. Trepo, D. Agathon, M. L. Toh, M. Baudin, J. Y. Bonnefoy, J. M. Limacher and G. Inchauspe (201 1 ). "A poxvirus vaccine is safe, induces T-cell responses, and decreases viral load in patients with chronic hepatitis C." Gastroenterology 141 (3): 890-899 e891-894. Habersetzer, F., G. Honnet, C. Bain, M. Maynard-Muet, V. Leroy, JP Zarski, C. Feray, TF Baumert, JP Bronowicki, M. Doffoel, C. Trepo, D. Agathon, ML Toh , M. Baudin, JY Bonnefoy, JM Limacher and G. Inchauspe (201 1). "A poxvirus vaccine is safe, induces T-cell responses, and decreases viral load in patients with chronic hepatitis C. "Gastroenterology 141 (3): 890-899 e891-894.
Halliday, J., P. Klenerman and E. Barnes (201 1 ). "Vaccination for hepatitis C virus: closing in on an evasive target." Expert Rev Vaccines 10(5): 659-672. Ip, P. P., H. W. Nijman, J. Wilschut and T. Daemen (2012). "Therapeutic vaccination against chronic hepatitis C virus infection." Antiviral Res 96(1 ): 36-50.  Halliday, J., P. Klenerman and E. Barnes (201 1). "Vaccination for hepatitis C virus: closing in on an evasive target." Expert Rev Vaccines 10 (5): 659-672. Ip, P. P., H. W. Nijman, J. Wilschut and T. Daemen (2012). "Therapeutic vaccination against chronic hepatitis C virus infection." Antiviral Res 96 (1): 36-50.
Kolykhalov, A. A., E. V. Agapov, K. J. Blight, K. Mihalik, S. M. Feinstone and C. M. Rice (1997). "Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA." Science 277(5325): 570-574.  Kolykhalov, A. A., E. V. Agapov, K. J. Blight, K. Mihalik, S. M. Feinstone and C. M. Rice (1997). "Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA." Science 277 (5325): 570-574.
Lauer, G. M. and B. D. Walker (2001 ). "Hepatitis C virus infection." N Engl J Med 345(1 ): 41-52.  Lauer, G. M. and B. D. Walker (2001). "Hepatitis C virus infection." N Engl J Med 345 (1): 41-52.
Pawlotsky, J. M. (2012). "New antiviral agents for hepatitis C." F1000 Biol Rep 4: 5.  Pawlotsky, J. M. (2012). "New antiviral agents for hepatitis C." F1000 Biol Rep 4: 5.
Roederer, M., J. L. Nozzi and M. C. Nason (201 1 ). "SPICE: exploration and analysis of post-cytometric complex multivariate datasets." Cytometry A 79(2): 167-174.  Roederer, M., J. L. Nozzi and M. C. Nason (201 1). "SPICE: exploration and analysis of post-cytometric complex multivariate datasets." Cytometry A 79 (2): 167-174.
Rollier, C, E. Depla, J. A. Drexhage, E. J. Verschoor, B. E. Verstrepen, A. Fatmi, C. Brinster, A. Fournillier, J. A. Whelan, M. Whelan, D. Jacobs, G. Maertens, G. Inchauspe and J. L. Heeney (2004). "Control of heterologous hepatitis C virus infection in chimpanzees is associated with the quality of vaccine-induced peripheral T-helper immune response." J Virol 78(1 ): 187- 196.  Rollier, C, E. Depla, JA Drexhage, EJ Verschoor, BE Verstrepen, A. Fatmi, C. Brinster, A. Fournillier, JA Whelan, M. Whelan, D. Jacobs, G. Maertens, G. Inchauspe and JL Heeney (2004). "Control of heterologous hepatitis C virus infection in chimpanzees is associated with the quality of vaccine-induced peripheral T-helper immune response." J Virol 78 (1): 187-196.
Schulze zur Wiesch, J., G. M. Lauer, C. L. Day, A. Y. Kim, K. Ouchi, J. E. Schulze zur Wiesch, J., G. M. Lauer, C. L. Day, A. Y. Kim, K. Ouchi, J. E.
Duncan, A. G. Wurcel, J. Timm, A. M. Jones, B. Mothe, T. M. Alien, B.Duncan, A. G. Wurcel, J. Timm, A. M. Jones, B. Mothe, T. M. Alien, B.
McGovern, L. Lewis-Ximenez, J. Sidney, A. Sette, R. T. Chung and B. D.McGovern, L. Lewis-Ximenez, J. Sidney, A. Sette, R. T. Chung and B. D.
Walker (2005). "Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes." J Immunol 175(6): 3603-3613. Walker (2005). "Broad repertoire of the CD4 + Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes." J Immunol 175 (6): 3603-3613.
Shepard, C. W., L. Finelli and M. J. Alter (2005). "Global epidemiology of hepatitis C virus infection." Lancet Infect Dis 5(9): 558-567.  Shepard, C. W., L. Finelli and M. J. Alter (2005). "Global epidemiology of hepatitis C virus infection." Lancet Infect Dis 5 (9): 558-567.
Thimme, R., D. Oldach, K. M. Chang, C. Steiger, S. C. Ray and F. V. Chisari Thimme, R., D. Oldach, K. M. Chang, C. Steiger, S. C. Ray and F. V. Chisari
(2001 ). "Determinants of viral clearance and persistence during acute hepatitis C virus infection." J Exp Med 194(10): 1395-1406. Torresi, J., D. Johnson and H. Wedemeyer (201 1 ). "Progress development of preventive and therapeutic vaccines for hepatitis C vi Hepatol 54(6): 1273-1285. (2001). "Determinants of viral clearance and persistence during acute hepatitis C virus infection." J Exp Med 194 (10): 1395-1406. Torresi, J., D. Johnson and H. Wedemeyer (201 1). "Progress development of preventive and therapeutic vaccines for hepatitis C vi Hepatol 54 (6): 1273-1285.

Claims

REIVINDICACIONES
1. - Un polinucleótido caracterizado por que comprende: 1. - A polynucleotide characterized by comprising:
i. una secuencia de nucleótidos correspondiente al virus MVA que actúa como vector de expresión de los genes de VHC regulando la transcripción, traducción y procesamiento post-traduccional de dichos genes de VHC en la mayoría de tejidos del organismo, y ¡i. una secuencia de nucleótidos correspondiente al genoma del VHC, insertada en el locus timidín quinasa (TK) del genoma de MVA; y donde la secuencia de MVA que regula la expresión (i) está operativamente ligada a la secuencia de nucleótidos de VHC (ii).  i. a nucleotide sequence corresponding to the MVA virus that acts as an expression vector for HCV genes by regulating the transcription, translation and post-translational processing of said HCV genes in most tissues of the body, and i. a nucleotide sequence corresponding to the HCV genome, inserted into the thymidine kinase (TK) locus of the MVA genome; and where the MVA sequence that regulates expression (i) is operably linked to the HCV nucleotide sequence (ii).
2. - Un polinucleótido según la reivindicación 1 caracterizado porque la secuencia del virus VHC ii) se corresponde con la SEQ ID No 1. 2. - A polynucleotide according to claim 1 characterized in that the HCV virus sequence ii) corresponds to SEQ ID No. 1.
3. - Un procedimiento de obtención del polinucleótido según las reivindicaciones 1 y 2 caracterizado por que comprende de forma general las siguientes etapas: 3. - A process for obtaining the polynucleotide according to claims 1 and 2 characterized in that it generally comprises the following steps:
a. Generar el plásmido de transferencia pCyA-HCV,  to. Generate the transfer plasmid pCyA-HCV,
b. Construir el virus recombinante MVA-HCV, y  b. Build the MVA-HCV recombinant virus, and
c. Seleccionar los virus MVA-HCV estables mediante pases sucesivos en cultivos celulares.  C. Select stable MVA-HCV viruses by successive passes in cell cultures.
4. - Un procedimiento de obtención del polinucleótido según la reivindicación 3, caracterizado por que el plásmido de transferencia de a) es el plásmido pCyA- HCV7.9 cuya secuencia se corresponde con la SEQ ID No 2 y el virus recombinante MVA-HCV de b) es el virus recombinante MVA-HCV genotipo 1 a que contiene la SEQ ID No 1 . 4. - A method of obtaining the polynucleotide according to claim 3, characterized in that the transfer plasmid of a) is the plasmid pCyA-HCV7.9 whose sequence corresponds to SEQ ID No 2 and the recombinant virus MVA-HCV of b) is the MVA-HCV genotype 1 recombinant virus that contains SEQ ID No 1.
5. - Plásmido pCyA-HCV7 9 útil para la obtención de variantes del polinucleótido de la invención según la reivindicación 4 caracterizado por que su secuencia se corresponde con la SEQ ID No 2. 5. - Plasmid pCyA-HCV 7 9 useful for obtaining variants of the polynucleotide of the invention according to claim 4 characterized in that its sequence corresponds to SEQ ID No 2.
6.- Un vector recombinante MVA-HCV, caracterizado por que comprende el polinucleótido según las reivindicaciones 1 y 2. 6. A MVA-HCV recombinant vector, characterized in that it comprises the polynucleotide according to claims 1 and 2.
7. Célula hospedadora caracterizada por que contiene el polinucleótido de la invención según las reivindicaciones 1 y 2. 7. Host cell characterized in that it contains the polynucleotide of the invention according to claims 1 and 2.
8. - Célula hospedadora según la reivindicación 7 caracterizada por ser una célula perteneciente al siguiente grupo: célula de mamífero, célula de origen aviar. 8. - Host cell according to claim 7 characterized in that it is a cell belonging to the following group: mammalian cell, cell of avian origin.
9. - Célula hospedadora según la reivindicación 10 caracterizada por que la célula de origen aviar consiste en un fibroblasto embrionario de pollo. 9. - Host cell according to claim 10 characterized in that the cell of avian origin consists of a chicken embryonic fibroblast.
10.- Uso de la célula hospedadora para obtener el vector recombinante según la reivindicación 6. 10. Use of the host cell to obtain the recombinant vector according to claim 6.
1 1 . - Composición farmacéutica caracterizada por que comprende el vector recombinante según la reivindicación 6. eleven . - Pharmaceutical composition characterized in that it comprises the recombinant vector according to claim 6.
12. - Composición farmacéutica según la reivindicación 1 1 caracterizada por que comprende un vehículo o excipiente farmacéuticamente aceptable. 12. - Pharmaceutical composition according to claim 1 characterized in that it comprises a pharmaceutically acceptable carrier or excipient.
13. - Composición farmacéutica según las reivindicaciones 1 1 y 12 caracterizada por comprender un adyuvante. 13. - Pharmaceutical composition according to claims 1 1 and 12 characterized by comprising an adjuvant.
14. - Composición farmacéutica según las reivindicaciones 1 1 a 13 caracterizada por comprender otro principio activo. 14. - Pharmaceutical composition according to claims 1 to 13 characterized by comprising another active ingredient.
15. Uso del vector recombinante según la reivindicación 5 o de la composición farmacéutica según cualquiera de las reivindicaciones 1 1 a 14 para la elaboración de un medicamento. 15. Use of the recombinant vector according to claim 5 or the pharmaceutical composition according to any of claims 1 to 14 for the preparation of a medicament.
16. Uso del vector recombinante según la reivindicación 5 o de la composición farmacéutica según cualquiera de las reivindicaciones 1 1 a 14 para la elaboración de un medicamento para la prevención y/o tratamiento de una infección por el VHC. 16. Use of the recombinant vector according to claim 5 or of the pharmaceutical composition according to any one of claims 1 to 14 for the preparation of a medicament for the prevention and / or treatment of an HCV infection.
17. Uso según cualquiera de las reivindicaciones 15 o 16 donde el medicamento es una vacuna. 17. Use according to any of claims 15 or 16 wherein the medicament is a vaccine.
PCT/ES2014/070246 2013-04-02 2014-03-31 Recombinant vectors based on the modified vaccinia ankara virus (mva) as preventive and therapeutic vaccines against hepatitis c WO2014162031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201330467 2013-04-02
ES201330467 2013-04-02

Publications (1)

Publication Number Publication Date
WO2014162031A1 true WO2014162031A1 (en) 2014-10-09

Family

ID=51657633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070246 WO2014162031A1 (en) 2013-04-02 2014-03-31 Recombinant vectors based on the modified vaccinia ankara virus (mva) as preventive and therapeutic vaccines against hepatitis c

Country Status (1)

Country Link
WO (1) WO2014162031A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3928789A1 (en) 2020-06-24 2021-12-29 Consejo Superior de Investigaciones Científicas (CSIC) Mva-based vaccine against covid-19 expressing sars-cov-2 antigens
WO2021260065A1 (en) 2020-06-24 2021-12-30 Consejo Superior De Investigaciones Científicas (Csic) Mva-based vaccine against covid-19 expressing sars-cov-2 antigens
EP4108257A1 (en) 2021-06-23 2022-12-28 Consejo Superior De Investigaciones Científicas Mva-based vaccine against covid-19 expressing a prefusion-stabilized sars-cov-2 s protein
WO2022269003A1 (en) 2021-06-23 2022-12-29 Consejo Superior De Investigaciones Cientificas MVA-BASED VACCINE EXPRESSING A PREFUSION-STABILIZED SARS-CoV-2 S PROTEIN

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267120A1 (en) * 2008-03-07 2010-12-29 Tokyo Metropolitan Organization for Medical Research Recombinant vaccinia virus having hepatitis c virus gene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267120A1 (en) * 2008-03-07 2010-12-29 Tokyo Metropolitan Organization for Medical Research Recombinant vaccinia virus having hepatitis c virus gene

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GOMEZ, C. E. ET AL.: "High, broad, polyfunctional, and durable T cell immune responses induced in mice by a novel hepatitis C virus (HCV) vaccine candidate (MVA-HCV) based on modified vaccinia virus ankara expressing the nearly full-length HCV genome.", JOURNAL OF VIROLOGY., vol. 87, no. 13, July 2013 (2013-07-01), pages 7282 - 7300. *
GOMEZ, C. E. ET AL.: "Involvement of PKR and RNase L in translational control and induction of apoptosis after Hepatitis C polyprotein expression from a Vaccinia virus recombinant.", VIROLOGY JOURNAL., vol. 2, September 2005 (2005-09-01) *
PANCHOLI, P. ET AL.: "DNA immunization with hepatitis C virus (HCV) polycistronic genes or immunization by HCV DNA priming-recombinant canarypox virus boosting induces immune responses and protection from recombinant HCV-vaccinia virus infection in HLA-A2.1-transgenic mice.", JOURNAL OF VIROLOGY., vol. 77, no. 1, January 2003 (2003-01-01), pages 382 - 390. *
ROLLIER, C. S. ET AL.: "Vaccine-induced early control of hepatitis C virus infection in chimpanzees fails to impact on hepatic PD-1 and chronicity.", HEPATOLOGY., vol. 45, no. 3, March 2007 (2007-03-01), pages 602 - 613. *
VANDERMEEREN, A. M. ET AL.: "Subcellular forms and biochemical events triggered in human cells by HCV polyprotein expression from a viral vector.", VIROLOGY JOURNAL., vol. 5, September 2008 (2008-09-01) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3928789A1 (en) 2020-06-24 2021-12-29 Consejo Superior de Investigaciones Científicas (CSIC) Mva-based vaccine against covid-19 expressing sars-cov-2 antigens
WO2021260065A1 (en) 2020-06-24 2021-12-30 Consejo Superior De Investigaciones Científicas (Csic) Mva-based vaccine against covid-19 expressing sars-cov-2 antigens
EP4108257A1 (en) 2021-06-23 2022-12-28 Consejo Superior De Investigaciones Científicas Mva-based vaccine against covid-19 expressing a prefusion-stabilized sars-cov-2 s protein
WO2022269003A1 (en) 2021-06-23 2022-12-29 Consejo Superior De Investigaciones Cientificas MVA-BASED VACCINE EXPRESSING A PREFUSION-STABILIZED SARS-CoV-2 S PROTEIN

Similar Documents

Publication Publication Date Title
Volz et al. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development
ES2327643T3 (en) VACCINES AGAINST CITOMEGALOVIRUS BASED ON ALFAVIRUS.
US8541004B2 (en) Composition comprising the polyprotein NS3/NS4 and the polypeptide NS5B of HCV, expression vectors including the corresponding nucleic sequences and their therapeutic use
Arribillaga et al. Vaccination with an adenoviral vector encoding hepatitis C virus (HCV) NS3 protein protects against infection with HCV-recombinant vaccinia virus
ES2387141T3 (en) Composition comprising proliprotein NS3 / NS4 and NS5B polypeptide of HCV, expression vectors that include the corresponding nucleic sequences and their therapeutic use
Gómez et al. High, broad, polyfunctional, and durable T cell immune responses induced in mice by a novel hepatitis C virus (HCV) vaccine candidate (MVA-HCV) based on modified vaccinia virus Ankara expressing the nearly full-length HCV genome
US9057048B2 (en) Infectious hepatitis C virus—high producing HCV variants and use thereof
Schäfer et al. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever
WO2014162031A1 (en) Recombinant vectors based on the modified vaccinia ankara virus (mva) as preventive and therapeutic vaccines against hepatitis c
Xue et al. Therapeutic vaccines against hepatitis C virus
WO2016086980A1 (en) Vaccine composition
JP5584407B2 (en) Recombinant vaccinia virus with hepatitis C virus gene
El‐Gogo et al. Protective vaccination with hepatitis C virus NS3 but not core antigen in a novel mouse challenge model
Zhang et al. Immunogenicity of an influenza virus-vectored vaccine carrying the hepatitis C virus protein epitopes in mice
Zheng et al. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins
US10160979B2 (en) Pharmaceutical composition for treatment and/or prevention of hepatitis C
JP2002501737A (en) Genetic immunization with nonstructural proteins of hepatitis C virus
WO2006013815A1 (en) RECOMBINANT VACCINIA VIRUS DIs STRAIN HOLDING DNA ENCODING HCV VIRUS PROTEIN AND UTILIZATION OF THE SAME
CN105101993A (en) Single high dose of MVA induces a protective immune response in neonates and infants
KR20070040814A (en) Recombinant live fowlpox virus vectors and their use in pharmaceuticals compositions against hepatitis c virus
NZ741950A (en) Vaccines against hepatitis b virus
US20120027795A1 (en) Simple vaccines from dna launched suicidal flaviviruses
JP2008508890A6 (en) Recombinant live fowlpox virus vectors and their use in pharmaceutical compositions against hepatitis C virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778419

Country of ref document: EP

Kind code of ref document: A1