WO2014161361A1 - 远程设备故障定位方法、系统、设备及计算机存储介质 - Google Patents
远程设备故障定位方法、系统、设备及计算机存储介质 Download PDFInfo
- Publication number
- WO2014161361A1 WO2014161361A1 PCT/CN2013/090477 CN2013090477W WO2014161361A1 WO 2014161361 A1 WO2014161361 A1 WO 2014161361A1 CN 2013090477 W CN2013090477 W CN 2013090477W WO 2014161361 A1 WO2014161361 A1 WO 2014161361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control signal
- remote device
- status information
- information
- board status
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000003287 optical effect Effects 0.000 claims description 80
- 238000012545 processing Methods 0.000 claims description 27
- 230000005540 biological transmission Effects 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000004590 computer program Methods 0.000 claims description 12
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
Definitions
- the present invention relates to communication technologies, and in particular, to a remote device fault location method, system, device, and computer storage medium. Background technique
- Optical fiber transmission can reach a distance of 15 kilometers (km) or more, so it is widely used in the field of communication or other fields where long-distance information transmission is required.
- indoor/local devices such as indoor baseband processing units, etc.
- outdoor/remote remote devices such as radio remote units, core network devices, etc.
- the maintenance personnel arrive at the outdoor or remote remote device to check the transmit and receive power of the optical link, the data rate, and the running status of the internal board.
- the fault is also located in other similar areas that use optical fiber transmission. This method is time consuming and labor intensive, and it takes a high cost to the operator to troubleshoot the fault, and the cost is high. Summary of the invention
- the embodiments of the present invention provide a remote device fault location method, system, device, and computer storage medium, which can quickly locate a remote device fault, save manpower and material resources, and can greatly reduce costs.
- the embodiment of the invention provides a remote device fault location method, including:
- the remote device obtains the status information of the board, converts the board status information into a control signal, and sends the control signal through the TX-Disable interface.
- the method includes: presetting an indication bit of the control signal corresponding to the board status information of the remote device.
- the converting the status information of the board into a control signal comprises: the remote device according to the acquired status information of the board, and according to the status of the board corresponding to the remote device in the preset control signal
- the indication bit of the information converts the board status information into a binary coded control signal corresponding to the fixed indicator bit.
- the board status information includes at least one of the following information: a survival information of the key chip, and a serial port signal of a central processing unit (CPU).
- a survival information of the key chip and a serial port signal of a central processing unit (CPU).
- CPU central processing unit
- the keep-alive information of the key chip includes at least one of the following information: keep-alive information of the CPU, keep-alive information of a digital signal processor (DSP), and a field editable gate array (FPGA, Field) -Programmable Gate Array ) Keep-alive information, keep-alive information for Erasable Programmable Logic Device (EPLD).
- keep-alive information of the CPU keeps-alive information of a digital signal processor (DSP), and a field editable gate array (FPGA, Field) -Programmable Gate Array )
- FPGA Field editable gate array
- EPLD Erasable Programmable Logic Device
- the board status information further includes at least one of the following information: an optical module transceiver power, an optical module current transmission rate, an optical module receiving 8b/10b error information, and logic chip pre-emphasis/equalization information.
- the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a computer program, and the computer program is used to execute the remote device fault location method in the remote device according to the embodiment of the invention.
- the embodiment of the present invention further provides a remote device fault location method, where the method includes: the local device receives a control signal through a LOS (Loss of Signal indication) interface, and determines the remote device according to the control signal. The location of the fault.
- LOS Local Area Network
- the method further includes: An indication bit of the control signal corresponding to the board status information of the remote device is preset.
- the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a computer program, and the computer program is used to execute the remote device fault location method according to the embodiment of the invention in the local device.
- the present invention further provides a remote device, the remote device comprising: a first central processing unit, a first signal conversion unit, and a first optical module transceiver unit;
- the first central processing unit is configured to acquire the board status information of the remote device, and send the board status information to the first signal conversion unit;
- the first signal conversion unit is configured to convert the board status information sent by the central processing unit into a control signal, and send the control signal to the first optical module transceiver unit;
- the first optical module transceiver unit is configured to send the control signal to the local device through a TX-Disable interface.
- the remote device further includes a first setting unit configured to preset an indication bit of the control signal corresponding to the board status information of the remote device.
- the first signal conversion unit is configured to be based on the self-board status information acquired by the first central processing unit, and the control signal preset according to the first setting unit corresponds to the remote
- the indicator bit of the board status information of the device converts the board status information into a binary coded control signal corresponding to the fixed indicator bit.
- the embodiment of the present invention further provides a local device, where the local device includes: a second optical module transceiver unit and a second central processing unit;
- the second optical module transceiver unit is configured to receive the control signal through the LOS interface, and send the control signal to the second central processing unit;
- the second central processing unit is configured to determine a fault location of the remote device based on the control signal.
- the local device further includes a second setting unit configured to preset an indication bit of status information of the remote device in the control signal.
- the embodiment of the present invention further provides a remote device fault locating system, and the system includes the remote device according to the embodiment of the present invention and the local device according to the embodiment of the present invention.
- the embodiment of the invention provides a method, system, device and computer storage medium for remote device fault location based on optical fiber transmission.
- the remote device obtains the status information of the board and converts the status information of the board into a control signal.
- the Disable interface sends the control signal to the local device; the local device signals the missing LOS interface to receive the control signal, and determines the fault location of the remote device according to the control signal.
- the technical solution of the embodiment of the invention realizes the rapid positioning of the remote device fault, greatly shortens the cycle of the fault location of the remote device, and does not require the engineering maintenance personnel to reach the outdoor or remote remote device to perform the inspection and reception of the optical link one by one. Power, saving manpower and material resources, and greatly reducing costs.
- FIG. 1 is a schematic flowchart of a remote device fault location method according to Embodiment 1 of the present invention
- FIG. 2 is a schematic structural diagram of a remote device fault location system according to Embodiment 1 of the present invention
- the optical power on the optical link when the optical link is normally communicating, the optical power on the optical link must be greater than -14.4 dBm, otherwise an error occurs on the optical link, resulting in failure to communicate normally;
- the TX-Disable interface and the LOS interface of the local device can transmit the control signal normally as long as the optical power on the optical link is not less than -30 dBm.
- the optical link cannot be properly established.
- the TX-Disable interface and LOS can be used.
- the interface transmits control signals for fault location. And, by setting a fixed indication bit in the control signal to indicate status information of whether each board in the remote device is in normal operation, the control signal received by the LOS interface of the local device may determine that the remote device is position.
- FIG. 1 is a schematic flowchart of a remote device fault location method according to Embodiment 1 of the present invention. As shown in FIG. 1, the method includes the following steps:
- Step 101 The remote device obtains the status information of the board, converts the board status information into a control signal, and sends the control signal through the TX-Disable interface.
- the method before the sending the control signal by using a TX-Disable interface, the method includes:
- An indication bit of the control signal corresponding to the status information of the board of the remote device is preset.
- the converting the board status information into a control signal includes:
- the remote device converts the board status information to a fixed indicator position according to the obtained status information of the board and the indication bit corresponding to the board status information of the remote device in the preset control signal.
- the binary coded control signal is a coded control signal.
- the board status information includes at least one of the following information: keep-alive information of the key chip, and a serial port signal of the CPU.
- the keep-alive information of the key chip includes at least one of the following information: a survival information of the CPU, a keep-alive information of the DSP, a keep-alive information of the FPGA, and a keep-alive information of the EPLD.
- the board status information further includes at least one of the following information: remote device optical module transceiver power, remote device optical module current transmission rate, remote device optical module receiving 8b/10b error information, remote device logic chip pre-emphasis /balance information.
- the remote device in the embodiment of the present invention is generally a device that is far away from the city and is inconvenient for the engineering maintenance personnel to arrive and maintain; correspondingly, the local device is a convenient engineering maintenance person.
- the equipment that the member arrives and maintains may be various gateways, base stations in the city, and the like.
- the remote device and the local device both include two interfaces: a TX-Disable interface and a LOS interface; the remote device and the local device can serve as a transmitting end or a receiving end, wherein one device acts as a transmitting end, and corresponding , another device acts as the receiving end.
- the device as the transmitting end Before transmitting the control signal, the device as the transmitting end sends a synchronization signal to the receiving end to notify the receiving end that the transmitting end sends the control signal after transmitting the synchronization signal; the transmitting end sends the control signal to the receiving through the TX-Disable interface.
- the device as the receiving end receives the control signal through the LOS interface.
- Table 1 is a schematic diagram of control signal definition and function according to Embodiment 1 of the present invention. As shown in Table 1, if the remote device acts as the transmitting end and the local device acts as the receiving end, the transmitting end sends the control signal to the Logic through the TX-Disable interface. 0", indicating that the laser in the optical module of the transmitting end is working normally. If the optical module at the receiving end is not abnormal, the receiving end can receive the control signal Logic "0" through the LOS interface, indicating the optical module of the transmitting end.
- the optical power is not abnormal; on the contrary, if the transmitting end sends the control signal to Logic "1" through the TX-Disable interface, the laser in the optical module of the transmitting end is turned off, and the receiving end can receive the control signal through the LOS interface.
- the Logic "1" indicates that the optical power of the optical module on the transmitting end is abnormal. Therefore, when the transmitting end sends the control signal to Logic "0" through the TX-Disable interface, the receiving end can receive the control signal as Logic "0" through the LOS interface; the transmitting end sends the control signal to the Logic "1" through the TX-Disable interface. At the receiving end, the receiving end can receive the control signal as Logic "1" through the LOS interface. Thereby, an information transmission channel between the transmitting end and the receiving end is established.
- the length of the control signal can be set to 8 bits or 16 bits or other lengths. Degree. For example, if the control signal is 8 bits, and if "0" is normal "1" is abnormal, then the control signal sent by the remote device through the TX-Disable interface indicating that all modules of the remote device are normal is Logic "00000000"; Correspondingly, the control signal received by the local device through the LOS interface is Logic "00000000".
- an indication bit of the board status information of the remote device may be preset in the control signal.
- the control signals are all 8 bits, and the first bit is defined as whether the optical module transmitter is normal, the second bit is whether the CPU serial port signal is normal, the third bit is whether the CPU chip is normal, etc. If the CPU chip of the remote device is abnormal, the remaining units are normal, and the control signal sent by the remote device through the TX-Disable interface is Logic "00100000". Correspondingly, the control signal received by the local device through the LOS interface is Logic. "00100000".
- the board status information of the remote device may be preset in the indication bit of the control signal, and the status information of the board includes: the optical module sending and receiving power, the current transmission rate of the optical module, and the optical module receiving the 8b/10b error code. Information, logic chip pre-emphasis/equalization information, and more.
- the control signal is 16 bits
- the second to fourth bits of the control signal represent the transmit and receive power of the remote device optical module
- the fifth to seventh bits represent the current transmission rate of the remote device optical module. , and many more.
- Step 102 The local device receives the control signal through the LOS interface, and determines a fault location of the remote device according to the control signal.
- the local device may determine a fault location of the remote device in a bit of the control signal according to state information of the remote device set in advance.
- the control signal received by the local device through the LOS interface is Logic "00100100"
- the third bit is preset to be whether the CPU chip is normal
- the sixth bit is whether the FPGA chip is normal
- the control signal is expressed as An abnormality occurred in the CPU and FPGA chip of the remote device.
- the local device is configured according to the preset board status information of the remote device.
- the indicator status of the control signal, the board status information includes: the optical module transceiver power, the current transmission rate of the optical module, the optical module receiving 8b/10b error information, the logic chip pre-emphasis/equalization information, etc., can be controlled Obtaining more detailed board status information of the remote device in the signal, for example, the second to fourth bits in the control signal represent transmit and receive power of the remote device optical module, and the fifth to seventh bits represent the The current transmission rate of the remote device optical module, the local device may learn the transmit and receive power of the remote device optical module and the current transmission rate according to a preset control signal coding rule, so as to further determine the remote device according to the obtained specific parameter. The location of the fault.
- the data transmitted between the remote device and the local device may use a serial port protocol such as RS232 or RS485 in addition to a preset control signal encoding rule.
- the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a computer program, and the computer program is used to execute the remote device fault location method in the remote device according to the embodiment of the invention.
- the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a computer program, and the computer program is used to execute the remote device fault location method according to the embodiment of the invention in the local device.
- FIG. 2 is a schematic structural diagram of a remote device fault location system system according to Embodiment 1 of the present invention.
- the system includes: a remote device 21 and a local device 22; wherein the remote device 21 is configured to acquire The status information of the board is converted into a control signal by the board status information, and the control signal is sent through the TX-Disable interface;
- the local device 22 is configured to receive the control signal through the LOS interface, and determine a fault location of the remote device 21 according to the control signal.
- the embodiment of the present invention further provides a remote device.
- the remote device 21 includes: a first central processing unit 211, a first signal conversion unit 212, and a first optical module transceiver unit 213;
- the first central processing unit 211 is configured to acquire the board status information of the remote device 21, and send the board status information to the first signal conversion unit 212;
- the first signal conversion unit 212 is configured to convert the board status information sent by the central processing unit 211 into a control signal, and send the control signal to the first optical module transceiver unit 213;
- the first optical module transceiver unit 213 is configured to send the control signal through a TX-Disable interface.
- the remote device 21 further includes a first setting unit 214 configured to preset an indication bit of the control signal corresponding to the board status information of the remote device 21.
- the first signal conversion unit 212 is configured to be based on the self-board status information acquired by the first central processing unit 211, and the control signal preset according to the first setting unit 214 corresponds to the remote
- the indicator bit of the board status information of the device 21 converts the board status information into a binary coded control signal corresponding to the fixed indicator bit.
- the remote device 21 may be implemented by a base station device that is far away from the urban area; the first central processing unit 211, the first signal conversion unit 212, and the first setting unit 214 in the remote device 21 are
- the first optical module transceiver unit 213 in the remote device 21 can be implemented by a CPU or a digital signal processing (H) in the device, or an FPGA.
- Optical module transceiver implementation can be implemented by a CPU or a digital signal processing (H) in the device, or an FPGA.
- the embodiment of the present invention further provides a local device.
- the local device 22 includes: a second optical module transceiver unit 221 and a second central processing unit 222;
- the second optical module transceiver unit 221 is configured to receive a control signal through the L0S interface, and send the control signal to the second central processing unit 222;
- the second central processing unit 222 is configured to determine a fault location of the remote device based on the control signal.
- the local device 22 further includes a second setting unit 223 configured to be in the control signal An indication bit of the status information of the remote device 21 is set in advance.
- the local device 22 may be implemented by a base station device located in an urban area or closer to the urban area; the second central processing unit 222 and the second setting unit 223 in the local device 22 are in actual applications.
- the second optical module transceiver unit 221 in the local device 22 can be implemented by the optical module transceiver in the device.
- FIG. 3 is a schematic structural diagram of a remote device fault location system according to Embodiment 2 of the present invention. As shown in FIG. 3, the system includes: a remote remote device 31 and a local device 32;
- the remote remote device 31 includes: a first optical module 311, a first EPLD/FPGA chip 312, and a first CPU 313;
- the local device 32 includes: a second optical module 321, a second EPLD/FPGA chip 322, and a second CPU 323.
- Link 1 is an optical link signal path that local device 32 sends to remote remote device 31
- link 2 is an optical link signal path that remote remote device 31 sends to local device 32
- Link 3 and link 4 are not actual optical link signal channels, but are based on control signals of the optical link that are implemented by the state of the optical signal; wherein signal 3 is based on the local device 32 being sent to the remote remote device 31.
- the control signal of the optical link; the signal 4 is an optical link-based control signal sent by the remote remote device 31 to the local device 32.
- the remote device fault location method of the embodiment includes the following steps: Step 1: The remote remote device 31 and the local device 32 preset the status information of the remote device in the indication bit of the control signal.
- Step 2 The remote remote device 31 periodically detects the running status of each board, and finds that the detection causes the optical link with the local device 32 to fail to establish a link.
- the remote device 31 first sends a synchronization signal to the local device 32 to notify the local device 32 that the remote remote device 31 transmits a control signal after transmitting the synchronization signal; the first CPU 313 of the remote remote device 31 acquires itself
- the fault information of the board is converted into the control signal by the first EPLD/FPGA chip 312, and the first optical module 311 passes the signal through the link with the signal 4 through the TX-Disable interface. 4 is sent to the second optical module 321 of the local device 32.
- Step 3 The second optical module 321 of the local device 32 receives the control signal through the LOS interface, converts the control signal to the second EPLD/FPGA chip 322, and sends the control signal to the second CPU 323, where the second The CPU 323 determines the fault location of the remote device at the indication bit of the control signal according to the state information of the remote device set in advance.
- Step 4 After detecting the fault information and performing analysis, the second CPU 323 of the local device 32 may convert the fault repair control information into a control signal by using the second EPLD/FPGA chip 322, and the second optical module 321 passes the TX- The Disable interface sends the signal to the first optical module 311 of the remote remote device 31 via the link 3 via the signal 3.
- Step 5 The first optical module 311 of the remote remote device 31 receives the control signal through the LOS interface, converts the control signal to the first EPLD/FPGA chip 312, and sends the control signal to the first CPU 313.
- a CPU 313 performs fault clearing on a unit whose board is abnormally operated according to a preset control signal encoding rule.
- the remote serial device CPU serial port signal baud rate 38400; the optical module is produced by IN O LIGHT, model TR-PX13C-V00, according to the above remote device fault location method and After the system is tested, the interaction between the remote remote device and the local device is implemented through the TX-Disable interface and the LOS interface, thereby ensuring the feasibility of quickly locating the remote remote device by using the method of the embodiment of the present invention.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
- the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
- the invention is not limited to any specific combination of hardware and software.
- the state information indicating whether the boards in the remote device are normally operated is determined by setting a fixed indicator bit in the control signal, and the local device determines the fault location of the remote device according to the received control signal. It realizes the rapid positioning of remote equipment faults, greatly shortens the period of fault location of remote equipments, and eliminates the need for engineering maintenance personnel to reach the outdoor or remote remote equipment to check the transmission and transmission power of the optical link one by one, saving manpower and material resources, and greatly Reduced costs.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本发明实施例公开了一种远程设备故障定位方法、系统、设备及计算机存储介质,所述方法包括:远程设备获取自身单板状态信息,将所述单板状态信息转换为控制信号,通过TX-Disable接口发送所述控制信号;本地设备通过LOS接口接收到控制信号,根据所述控制信号判定所述远程设备的故障位置。
Description
远程设备故障定位方法、 系统、 设备及计算积存储介庸 技术领域
本发明涉及通信技术, 具体涉及一种远程设备故障定位方法、 系统、 设备及计算机存储介质。 背景技术
光纤传输的传输距离可以达到 15千米(km )或者更远, 因此, 在通信 领域或者需要进行远距离信息传输的其它领域使用较为广泛。 在通信领域 中, 应用较广泛的是室内 /本地设备(例如室内基带处理单元等), 以及通过 光纤链接的室外 /远程拉远设备(例如射频拉远单元、 核心网设备等)。 当光 链路无法正常建链导致通信链路存在异常时, 由于室内 /本地设备和室外 / 远程拉远设备之间相距较远, 且相互之间并无其他信息交互手段, 此时就 需要工程维护人员到达室外或远程拉远设备处进行逐个排查光链路的收发 功率、 数据速率以及设备内部单板运行状态等信息进行故障定位, 其他使 用光纤传输的类似领域也存在此问题。 此种方式耗时耗力, 并且登塔排查 故障需要向运营商支付高额费用, 成本很高。 发明内容
为解决现有存在的技术问题, 本发明实施例提供一种远程设备故障定 位方法、 系统、 设备及计算机存储介质, 能够实现远程设备故障的快速定 位, 节省人力物力, 并且能够大大降低成本。
本发明实施例提供了一种远程设备故障定位方法, 包括:
远程设备获取自身单板状态信息, 将所述单板状态信息转换为控制信 号, 通过 TX-Disable接口发送所述控制信号。
优选地, 所述通过 TX-Disable接口发送所述控制信号之前, 所述方法 包括: 预先设置所述控制信号中对应于所述远程设备的单板状态信息的指 示位。
优选地, 所述将所述单板状态信息转换为控制信号, 包括: 远程设备 根据获取的自身单板状态信息, 并根据预先设置的所述控制信号中对应于 所述远程设备的单板状态信息的指示位, 将所述单板状态信息转换为对应 于固定指示位的二进制编码的控制信号。
优选地, 所述单板状态信息包括以下信息的至少一种: 关键芯片的保 活信息、 中央处理器( CPU, Central Processing Unit ) 的串口信号。
优选地, 所述关键芯片的保活信息包括以下信息的至少一种: CPU的 保活信息、 数字信号处理器(DSP, Digital Signal Processor ) 的保活信息、 现场可编辑门阵列 (FPGA, Field-Programmable Gate Array ) 的保活信息、 可擦除可编辑逻辑器( EPLD, Erasable Programmable Logic Device )的保活 信息。
优选地, 所述单板状态信息还包括以下信息的至少一种: 光模块收发 功率、 光模块当前传输速率、 光模块接收 8b/10b误码信息、 逻辑芯片预加 重 /均衡信息。
本发明实施例还提供了一种计算机存储介质, 所述计算机存储介质中 存储有计算机程序, 所述计算机程序用于执行远程设备中本发明实施例所 述的远程设备故障定位方法。
本发明实施例还提供了一种远程设备故障定位方法, 所述方法包括: 本地设备通过信号指示缺失(LOS, Loss of Signal indication )接口接收到 控制信号, 根据所述控制信号判定所述远程设备的故障位置。
优选地, 所述本地设备通过 LOS接口接收到控制信号之前, 所述方法 还包括:
预先设置所述控制信号中对应于所述远程设备的单板状态信息的指示 位。
本发明实施例还提供了一种计算机存储介质, 所述计算机存储介质中 存储有计算机程序, 所述计算机程序用于执行本地设备中本发明实施例所 述的远程设备故障定位方法。
本发明还提供了一种远程设备, 所述远程设备包括: 第一中央处理单 元、 第一信号转换单元和第一光模块收发单元; 其中,
所述第一中央处理单元, 配置为获取远程设备的单板状态信息, 将所 述单板状态信息发送给所述第一信号转换单元;
所述第一信号转换单元, 配置为将所述中央处理单元发送的单板状态 信息转换为控制信号, 将所述控制信号发送给第一光模块收发单元;
所述第一光模块收发单元, 配置为通过 TX-Disable接口将所述控制信 号发送给本地设备。
优选地, 所述远程设备还包括第一设置单元, 配置为预先设置所述控 制信号中对应于所述远程设备的单板状态信息的指示位。
优选地, 所述第一信号转换单元, 配置为根据所述第一中央处理单元 获取的自身单板状态信息, 并根据所述第一设置单元预先设置的所述控制 信号中对应于所述远程设备的单板状态信息的指示位, 将所述单板状态信 息转换为对应于固定指示位的二进制编码的控制信号。
本发明实施例还提供了一种本地设备, 所述本地设备包括: 第二光模 块收发单元和第二中央处理单元; 其中,
所述第二光模块收发单元, 配置为通过 LOS接口接收所述控制信号, 将所述控制信号发送给所述第二中央处理单元;
所述第二中央处理单元, 配置为根据所述控制信号判定所述远程设备 的故障位置。
优选地, 所述本地设备还包括第二设置单元, 配置为在所述控制信号 中预先设置所述远程设备的状态信息的指示位。
本发明实施例还提供了一种远程设备故障定位系统, 所述系统包括本 发明实施例所述的远程设备和本发明实施例所述的本地设备。
本发明实施例提供了一种基于光纤传输的远程设备故障定位方法、 系 统、 设备及计算机存储介质, 远程设备获取自身单板状态信息, 将所述单 板状态信息转换为控制信号, 通过 TX-Disable接口向本地设备发送所述控 制信号; 本地设备通过信号指示缺失 LOS接口接收到所述控制信号, 根据 所述控制信号判定所述远程设备的故障位置。 采用本发明实施例的技术方 案, 实现了远程设备故障的快速定位, 大大缩短了远程设备的故障定位的 周期, 并且无需工程维护人员到达室外或远程拉远设备处进行逐个排查光 链路的收发功率, 节省了人力物力, 并且大大降低了成本。 附图说明
图 1为本发明实施例一的远程设备故障定位方法的流程示意图; 图 2为本发明实施例一的远程设备故障定位系统的组成结构示意图; 图 3为本发明实施例二的远程设备故障定位系统的组成示意图。 具体实施方式
在本发明的各种实施例中, 光链路正常通信时, 光链路上的光功率必 须大于 -14.4dBm, 否则会在光链路上出现误码导致无法正常通信; 而对于 远程设备的 TX-Disable接口和本地设备的 LOS接口而言, 光链路上的光功 率只要不小于 -30dBm, 就可以正常传输控制信号。
除此之外, 由于光链路中预加重、 均衡参数设置不合适、 速率不匹配 等因素导致光链路无法正常建链时, 只要光功率大于 -30dBm, 就可以使用 TX-Disable接口和 LOS接口传输控制信号进行故障定位。
并且, 通过预先在所述控制信号中设置固定的指示位表示所述远程设 备中各单板是否正常运行的状态信息, 则通过本地设备的 LOS接口接收到 的控制信号可判定所述远程设备的位置。
下面结合附图及具体实施例对本发明作进一步详细的说明。
图 1为本发明实施例一的远程设备故障定位方法的流程示意图,如图 1 所示, 包括以下步骤:
步骤 101 : 远程设备获取自身单板状态信息, 将所述单板状态信息转换 为控制信号, 通过 TX-Disable接口发送所述控制信号。
这里, 所述通过 TX-Disable接口发送所述控制信号之前, 所述方法包 括:
预先设置所述控制信号中对应于所述远程设备的单板状态信息的指示 位。
所述将所述单板状态信息转换为控制信号, 包括:
远程设备根据获取的自身单板状态信息, 并根据预先设置的所述控制 信号中对应于所述远程设备的单板状态信息的指示位, 将所述单板状态信 息转换为对应于固定指示位的二进制编码的控制信号。
其中, 所述单板状态信息包括以下信息至少一种: 关键芯片的保活信 息、 CPU的串口信号。
其中, 所述关键芯片的保活信息包括以下信息的至少一种: CPU的保 活信息、 DSP的保活信息、 FPGA的保活信息、 EPLD的保活信息。
其中, 所述单板状态信息还包括以下信息的至少一种: 远程设备光模 块收发功率、 远程设备光模块当前传输速率、 远程设备光模块接收 8b/10b 误码信息、 远程设备逻辑芯片预加重 /均衡信息。
本发明实施例所述的远程设备通常为距离城市较远的、 不方便工程维 护人员到达并进行维护的设备; 相应的, 所述本地设备为方便工程维护人
员到达并进行维护的设备, 具体可以是各种网关, 城市里的基站等设备。 所述远程设备和所述本地设备都包括两个接口: TX-Disable接口和 LOS 接口; 所述远程设备和所述本地设备都可以作为发送端或接收端, 其中一 个设备作为发送端, 相应的, 另一个设备作为接收端。 作为发送端的设备 在发送控制信号之前, 向接收端发送一个同步信号, 以通知接收端所述发 送端发送所述同步信号之后, 发送控制信号; 发送端通过 TX-Disable接口 将控制信号发送给接收端;作为接收端的设备通过 LOS接口接收控制信号。
表 1为本发明实施例一的控制信号定义及功能示意表, 如表 1所示, 假如远程设备作为发送端, 本地设备作为接收端; 发送端如果通过 TX-Disable接口发送控制信号为 Logic "0", 说明此时发送端的光模块中的 激光器是正常工作的, 若接收端的光模块无异常的话, 在接收端就可以通 过 LOS接口接收到控制信号为 Logic "0", 说明发送端的光模块的光功率 无异常;反之,发送端如果通过 TX-Disable接口发送控制信号为 Logic "1" , 说明此时发送端的光模块中的激光器是关闭的, 在接收端可以通过 LOS接 口接收到控制信号为 Logic "1 " , 说明发送端的光模块的光功率异常。 由此 发送端通过 TX-Disable接口发送控制信号为 Logic "0" 时, 接收端可以通 过 LOS接口接收到控制信号为 Logic "0"; 发送端通过 TX-Disable接口发 送控制信号为 Logic "1" 时, 接收端可以通过 LOS接口接收到控制信号为 Logic " 1"。 从而建立了发送端和接收端之间的信息传输通道。
表 1
具体的, 所述控制信号的长度可设置为 8比特(bit )或 16bit或其他长
度。 例如, 所述控制信号均为 8 bit, 定义 "0" 为正常 " 1" 为异常的话, 则所述远程设备通过 TX-Disable接口发送的表示所述远程设备的各模块全 部正常的控制信号为 Logic "00000000"; 相应的, 本地设备通过 LOS接口 接收到的控制信号为 Logic "00000000"。
并且, 可在所述控制信号中预先设置所述远程设备的单板状态信息的 指示位。 例如, 所述控制信号均为 8 bit, 定义第一 bit位为光模块发射器是 否正常, 第二 bit位为 CPU串口信号是否正常, 第三 bit位为 CPU芯片是 否正常, 等等, 若所述远程设备的 CPU芯片发生异常其余单元均正常, 则 远程设备通过 TX-Disable接口发送的所述控制信号为 Logic "00100000", 相应的, 本地设备通过 LOS 接口接收到的所述控制信号为 Logic "00100000"。
并且, 可预先设置所述远程设备的单板状态信息在所述控制信号的指 示位, 所述单板状态信息包括: 光模块收发功率、 光模块当前传输速率、 光模块接收 8b/10b误码信息、 逻辑芯片预加重 /均衡信息等等。 例如, 所述 控制信号为 16 bit, 所述控制信号的第二至第四比特位表示所述远程设备光 模块的收发功率, 第五至第七比特位表示所述远程设备光模块当前传输速 率, 等等。
步骤 102: 本地设备通过 LOS接口接收到所述控制信号, 根据所述控 制信号判定所述远程设备的故障位置。
这里, 所述本地设备可根据预先设置的所述远程设备的状态信息在所 述控制信号的比特位判定所述远程设备的故障位置。 例如, 本地设备通过 LOS接口接收到的所述控制信号为 Logic "00100100", 预先设置第三 bit 位为 CPU芯片是否正常, 第六 bit位为 FPGA芯片是否正常, 则所述控制 信号表示为所述远程设备的 CPU和 FPGA芯片发生异常。
或者, 所述本地设备根据预先设置的所述远程设备的单板状态信息在
所述控制信号的指示位, 所述单板状态信息包括: 光模块收发功率、 光模 块当前传输速率、 光模块接收 8b/10b误码信息、 逻辑芯片预加重 /均衡信息 等等, 能够在控制信号中获取所述远程设备更为详细的单板状态信息, 例 如所述控制信号中第二至第四比特位表示所述远程设备光模块的收发功 率, 第五至第七比特位表示所述远程设备光模块当前传输速率, 则所述本 地设备可根据预先设定的控制信号编码规则获知所述远程设备光模块收发 功率和当前传输速率, 从而根据获得的具体参数进一步的判定所述远程设 备的故障位置。
其中, 所述远程设备和所述本地设备之间传输数据除了预先设定的控 制信号编码规则外, 还可以使用 RS232或 RS485等串口协议。
本发明实施例还提供了一种计算机存储介质, 所述计算机存储介质中 存储有计算机程序, 所述计算机程序用于执行远程设备中本发明实施例所 述的远程设备故障定位方法。
本发明实施例还提供了一种计算机存储介质, 所述计算机存储介质中 存储有计算机程序, 所述计算机程序用于执行本地设备中本发明实施例所 述的远程设备故障定位方法。
图 2 为本发明实施例一的远程设备故障定位系统系统的组成结构示意 图, 如图 2所示, 所述系统包括: 远程设备 21和本地设备 22; 其中, 所述远程设备 21, 配置为获取自身单板状态信息, 将所述单板状态信 息转换为控制信号, 通过 TX-Disable接口发送所述控制信号;
所述本地设备 22, 配置为通过 LOS接口接收到所述控制信号, 根据所 述控制信号判定所述远程设备 21的故障位置。
本发明实施例还提供一种远程设备, 如图 2所示, 所述远程设备 21包 括: 第一中央处理单元 211、 第一信号转换单元 212和第一光模块收发单元 213; 其中,
所述第一中央处理单元 211,配置为获取远程设备 21的单板状态信息, 将所述单板状态信息发送给所述第一信号转换单元 212;
所述第一信号转换单元 212,配置为将所述中央处理单元 211发送的单 板状态信息转换为控制信号, 将所述控制信号发送给第一光模块收发单元 213;
所述第一光模块收发单元 213, 配置为通过 TX-Disable接口发送所述 控制信号。
所述远程设备 21还包括第一设置单元 214, 配置为预先设置所述控制 信号中对应于所述远程设备 21的单板状态信息的指示位。
所述第一信号转换单元 212,配置为根据所述第一中央处理单元 211获 取的自身单板状态信息, 并根据所述第一设置单元 214预先设置的所述控 制信号中对应于所述远程设备 21的单板状态信息的指示位, 将所述单板状 态信息转换为对应于固定指示位的二进制编码的控制信号。
其中, 所述远程设备 21在实际应用中, 可由距离市区较远的基站设备 实现;所述远程设备 21中的第一中央处理单元 211、第一信号转换单元 212 和第一设置单元 214在实际应用中, 均可由设备中的 CPU或数字信号处理 H ( DSP, Digital Signal Processor ), 或 FPGA实现; 所述远程设备 21中的 第一光模块收发单元 213在实际应用中, 可由设备中的光模块收发器实现。
本发明实施例还提供了一种本地设备, 如图 2所示, 所述本地设备 22 包括: 第二光模块收发单元 221和第二中央处理单元 222; 其中,
所述第二光模块收发单元 221, 配置为通过 L0S接口接收控制信号, 将所述控制信号发送给所述第二中央处理单元 222;
所述第二中央处理单元 222,配置为根据所述控制信号判定所述远程设 备的故障位置。
所述本地设备 22还包括第二设置单元 223, 配置为在所述控制信号中
预先设置所述远程设备 21的状态信息的指示位。
其中, 所述本地设备 22在实际应用中, 可由位于市区或距离市区较近 的基站设备实现; 所述本地设备 22中的第二中央处理单元 222和第二设置 单元 223在实际应用中, 均可由设备中的 CPU或 DSP、 或 FPGA实现; 所 述本地设备 22中的第二光模块收发单元 221, 可由设备中的光模块收发器 实现。
图 3为本发明实施例二的远程设备故障定位系统的组成示意图,如图 3 所示, 所述系统包括: 远程拉远设备 31和本地设备 32; 其中:
所述远程拉远设备 31 包括: 第一光模块 311、 第一 EPLD/FPGA芯片 312、 第一 CPU 313;
所述本地设备 32包括: 第二光模块 321、 第二 EPLD/FPGA芯片 322、 第二 CPU 323。
所述远程拉远设备 31和所述本地设备 32之间通过所述远程拉远设备 31的第一光模块 311与所述本地设备 32的第二光模块 321进行正常的光链 路数据传输。 在图 3中, 链路 1为本地设备 32发往远程拉远设备 31的光 链路信号通道; 链路 2为远程拉远设备 31发往本地设备 32的光链路信号 通道。 链路 3和链路 4并非实际的光链路信号通道, 而是基于光链路的通 过光信号的状态实现的控制信号; 其中, 信号 3为本地设备 32发往远程拉 远设备 31的基于光链路的控制信号; 信号 4为远程拉远设备 31发往本地 设备 32的基于光链路的控制信号。
基于上述系统, 本实施例的远程设备故障定位方法包括如下步骤: 步骤一: 远程拉远设备 31和本地设备 32预先设置所述远程设备的状 态信息在控制信号的指示位。
步骤二: 远程拉远设备 31定时检测自身各单板的运行状态, 发现检测 导致与本地设备 32的光链路无法建立链接时, 远程
拉远设备 31首先向本地设备 32发送一个同步信号, 以通知本地设备 32所 述远程拉远设备 31在发送所述同步信号之后, 发送控制信号; 远程拉远设 备 31的第一 CPU 313获取自身单板的故障信息,并将所述单板的故障信息 通过第一 EPLD/FPGA芯片 312转换为控制信号,所述第一光模块 311通过 TX-Disable接口将所述信号以信号 4通过链路 4发送给本地设备 32的第二 光模块 321。
步骤三:本地设备 32的第二光模块 321通过 LOS接口接收到所述控制 信号,将所述控制信号通过第二 EPLD/FPGA芯片 322进行转换, 并发送给 第二 CPU 323, 所述第二 CPU 323根据预先设置的所述远程设备的状态信 息在所述控制信号的指示位判定所述远程设备的故障位置。
步骤四:本地设备 32的第二 CPU 323在检测到故障信息并进行分析后, 可以通过第二 EPLD/FPGA芯片 322将故障修复控制信息转换为控制信号, 所述第二光模块 321通过 TX-Disable接口将所述信号以信号 3通过链路 3 发给远程拉远设备 31的第一光模块 311。
步骤五:远程拉远设备 31的第一光模块 311通过 LOS接口接收到所述 控制信号,将所述控制信号通过第一 EPLD/FPGA芯片 312进行转换,并发 送给第一 CPU313 ,所述第一 CPU313根据预先设定的控制信号编码规则对 单板运行异常的单元进行故障清除。
具体的, 所述远程拉远设备 CPU 串口信号波特率: 38400; 所述光模 块为旭创科技 ( IN O LIGHT )生产的、 型号为 TR-PX13C-V00, 按上述远 程设备故障定位方法及系统进行测试后, 实现了通过 TX-Disable接口和 LOS接口在远程拉远设备和本地设备间的交互, 从而保证了采用本发明实 施例的方法快速定位远程拉远设备故障的可行性。
本领域技术人员应当理解, 图 2和图 3 中所示的远程设备故障定位系 统及其子模块的实现功能可参照前述远程设备故障定位方法的相关描述而
理解。 本领域技术人员应当理解, 图 2和图 3所示的远程设备故障定位系 统及其子模块的功能可通过运行于处理器上的程序而实现, 也可通过具体 的逻辑电路而实现。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤 可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者 分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来 执行, 并且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的 步骤, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模 块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特 定的硬件和软件结合。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 凡在本发明的精神和范围之内所作的任何修改、 等同替换和改进 等, 均包含在本发明的保护范围之内。 工业实用性
本发明实施例通过预先在所述控制信号中设置固定的指示位表示所述 远程设备中各单板是否正常运行的状态信息, 本地设备根据接收到的控制 信号判定远程设备的故障位置, 如此, 实现了远程设备故障的快速定位, 大大缩短了远程设备的故障定位的周期, 并且无需工程维护人员到达室外 或远程拉远设备处进行逐个排查光链路的收发功率, 节省了人力物力, 并 且大大降低了成本。
Claims
1、 一种远程设备故障定位方法, 所述方法包括:
远程设备获取自身单板状态信息, 将所述单板状态信息转换为控制信 号, 通过 TX-Disable接口发送所述控制信号。
2、 根据权利要求 1 所述的方法, 其中, 所述通过 TX-Disable接口发 送所述控制信号之前, 所述方法包括:
预先设置所述控制信号中对应于所述远程设备的单板状态信息的指示 位。
3、 根据权利要求 1或 2所述的方法, 其中, 所述将所述单板状态信息 转换为控制信号, 包括:
远程设备根据获取的自身单板状态信息, 并根据预先设置的所述控制 信号中对应于所述远程设备的单板状态信息的指示位, 将所述单板状态信 息转换为对应于固定指示位的二进制编码的控制信号。
4、 根据权利要求 1所述的方法, 其中, 所述单板状态信息包括以下信 息的至少一种: 关键芯片的保活信息、 中央处理器 CPU的串口信号。
5、 根据权利要求 4所述的方法, 其中, 所述关键芯片的保活信息包括 以下信息的至少一种: CPU的保活信息、数字信号处理器 DSP的保活信息、 现场可编辑门阵列 FPGA的保活信息、 可擦除可编辑逻辑器 EPLD的保活 信息。
6、 根据权利要求 1所述的方法, 其中, 所述单板状态信息还包括以下 信息的至少一种: 光模块收发功率、 光模块当前传输速率、 光模块接收 8b/10b误码信息、 逻辑芯片预加重 /均衡信息。
7、 一种计算机存储介质, 所述计算机存储介质中存储有计算机程序, 所述计算机程序用于执行权利要求 1至 6任一项所述的远程设备故障定位 方法。
8、 一种远程设备故障定位方法, 所述方法包括:
本地设备通过信号指示缺失 LOS接口接收到控制信号, 根据所述控制 信号判定所述远程设备的故障位置。
9、根据权利要求 8所述的方法, 其中, 所述本地设备通过 LOS接口接 收到控制信号之前, 所述方法还包括:
预先设置所述控制信号中对应于所述远程设备的单板状态信息的指示 位。
10、 一种计算机存储介质, 所述计算机存储介质中存储有计算机程序, 所述计算机程序用于执行权利要求 8或 9所述的远程设备故障定位方法。
11、 一种远程设备, 所述远程设备包括: 第一中央处理单元、 第一信 号转换单元和第一光模块收发单元; 其中,
所述第一中央处理单元, 配置为获取远程设备的单板状态信息, 将所 述单板状态信息发送给所述第一信号转换单元;
所述第一信号转换单元, 配置为将所述中央处理单元发送的单板状态 信息转换为控制信号, 将所述控制信号发送给第一光模块收发单元;
所述第一光模块收发单元, 配置为通过 TX-Disable接口发送所述控制 信号。
12、 根据权利要求 11所述的远程设备, 其中, 所述远程设备还包括第 一设置单元, 配置为预先设置所述控制信号中对应于所述远程设备的单板 状态信息的指示位。
13、根据权利要求 11所述的远程设备, 其中, 所述第一信号转换单元, 配置为根据所述第一中央处理单元获取的自身单板状态信息, 并根据所述 第一设置单元预先设置的所述控制信号中对应于所述远程设备的单板状态 信息的指示位, 将所述单板状态信息转换为对应于固定指示位的二进制编 码的控制信号。
14、 一种本地设备, 所述本地设备包括: 第二光模块收发单元和第二 中央处理单元; 其中,
所述第二光模块收发单元, 配置为通过信号指示缺失 LOS接口接收控 制信号, 将所述控制信号发送给所述第二中央处理单元;
所述第二中央处理单元, 配置为根据所述控制信号判定所述远程设备 的故障位置。
15、 根据权利要求 14所述的本地设备, 所述本地设备还包括第二设置 单元, 配置为在所述控制信号中预先设置所述远程设备的状态信息的指示 位。
16、 一种远程设备故障定位系统, 所述系统包括: 权利要求 11 至 13 任一项所述的远程设备和权利要求 14或 15所述的本地设备。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310375747.0 | 2013-08-26 | ||
CN201310375747.0A CN104426605B (zh) | 2013-08-26 | 2013-08-26 | 基于光纤传输的远程设备故障定位方法、系统及相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014161361A1 true WO2014161361A1 (zh) | 2014-10-09 |
Family
ID=51657542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/090477 WO2014161361A1 (zh) | 2013-08-26 | 2013-12-25 | 远程设备故障定位方法、系统、设备及计算机存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104426605B (zh) |
WO (1) | WO2014161361A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104836617B (zh) * | 2015-05-29 | 2017-08-11 | 新华三技术有限公司 | 故障定位方法和装置 |
CN109309528A (zh) * | 2017-07-27 | 2019-02-05 | 阿里巴巴集团控股有限公司 | 光模块的状态指示方法、装置及光模块和测试系统 |
CN109936699B (zh) * | 2017-12-19 | 2020-08-21 | 陕西外号信息技术有限公司 | 光标签安全判定方法和系统 |
CN109560868A (zh) * | 2018-11-22 | 2019-04-02 | 国网河南省电力公司信息通信公司 | 通信故障排查方法、系统和一种近端设备、远端设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040081196A1 (en) * | 2002-10-29 | 2004-04-29 | Elliott Stephen J. | Protocol independent hub |
CN101127590A (zh) * | 2007-09-27 | 2008-02-20 | 中兴通讯股份有限公司 | 一种对单板运行状态进行数据备份的方法及其装置 |
CN101141317A (zh) * | 2007-04-12 | 2008-03-12 | 中兴通讯股份有限公司 | 用于多jtag链的自动测试装置及方法 |
CN101150451A (zh) * | 2006-09-18 | 2008-03-26 | 中兴通讯股份有限公司 | 一种网络设备单板状态监测系统及其监测方法 |
CN101174907A (zh) * | 2006-11-01 | 2008-05-07 | 中兴通讯股份有限公司 | 一种射频单板的测试装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101667864B (zh) * | 2009-09-28 | 2012-05-23 | 中兴通讯股份有限公司 | 一种下行物理链路故障诊断的方法、系统及装置 |
-
2013
- 2013-08-26 CN CN201310375747.0A patent/CN104426605B/zh active Active
- 2013-12-25 WO PCT/CN2013/090477 patent/WO2014161361A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040081196A1 (en) * | 2002-10-29 | 2004-04-29 | Elliott Stephen J. | Protocol independent hub |
CN101150451A (zh) * | 2006-09-18 | 2008-03-26 | 中兴通讯股份有限公司 | 一种网络设备单板状态监测系统及其监测方法 |
CN101174907A (zh) * | 2006-11-01 | 2008-05-07 | 中兴通讯股份有限公司 | 一种射频单板的测试装置 |
CN101141317A (zh) * | 2007-04-12 | 2008-03-12 | 中兴通讯股份有限公司 | 用于多jtag链的自动测试装置及方法 |
CN101127590A (zh) * | 2007-09-27 | 2008-02-20 | 中兴通讯股份有限公司 | 一种对单板运行状态进行数据备份的方法及其装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104426605A (zh) | 2015-03-18 |
CN104426605B (zh) | 2019-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103684580B (zh) | 射频拉远单元及其上报链路故障的方法、无线通信系统 | |
CN101931982A (zh) | 一种网络故障定位方法及装置 | |
NO20090800L (no) | Kvittering med gjentakelse i ortogonale systemer | |
WO2014161361A1 (zh) | 远程设备故障定位方法、系统、设备及计算机存储介质 | |
JP5541754B2 (ja) | カスケード装置のアラーム報告方法、カスケード装置のアラーム報告システム及び無線装置 | |
JP2008541641A5 (zh) | ||
WO2016082569A1 (zh) | 一种实现光口链路辅助通讯的装置和方法 | |
WO2007109998A1 (fr) | Procédé et système permettant de détecter une panne dans un dispositif de transmission de données et d'en rendre compte | |
EP2472793A1 (en) | Method, device and system for transmitting e1 bidirectional looped network data | |
CN103491555A (zh) | 一种基于业务信息定位ip链路故障的方法、设备和系统 | |
US20090003226A1 (en) | Network intermediary device with connection test packets | |
CN107078949B (zh) | 探测前传拓扑的方法和装置 | |
CN114025319A (zh) | 一种提供平台化服务的卫星物联网系统 | |
WO2012009926A1 (zh) | 一种cpri链路误码监测方法、系统和装置 | |
CN103780302B (zh) | 双纤传输系统中控制链路切换方法、装置及rru设备 | |
CN104935581A (zh) | 以太网oam和bfd双栈处理引擎的实现方法及装置 | |
CN102638392B (zh) | 数据传输方法及设备、系统 | |
CN104243319A (zh) | 一种邻居发现的方法及装置 | |
CN201374821Y (zh) | 基站传输设备监控系统 | |
RU2013127652A (ru) | Способ мобильной связи, сервер управления абонентами и узел управления мобильностью | |
CN111148067A (zh) | 基于车联网的车辆状况监测方法、系统及计算机存储介质 | |
JP6721958B2 (ja) | 集中監視システム | |
CN105610595B (zh) | 一种故障数据获取系统和远程设备控制系统及其对应方法 | |
CN100452727C (zh) | 检测弹性分组环接口上外部环回的方法及装置 | |
CN105185088A (zh) | 计量仪表的无线快速抄表方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13880880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13880880 Country of ref document: EP Kind code of ref document: A1 |