WO2014161191A1 - 探测调制方法、误差反馈方法及相应设备和系统 - Google Patents

探测调制方法、误差反馈方法及相应设备和系统 Download PDF

Info

Publication number
WO2014161191A1
WO2014161191A1 PCT/CN2013/073744 CN2013073744W WO2014161191A1 WO 2014161191 A1 WO2014161191 A1 WO 2014161191A1 CN 2013073744 W CN2013073744 W CN 2013073744W WO 2014161191 A1 WO2014161191 A1 WO 2014161191A1
Authority
WO
WIPO (PCT)
Prior art keywords
side device
detection
superframes
unit
network side
Prior art date
Application number
PCT/CN2013/073744
Other languages
English (en)
French (fr)
Inventor
王祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/073744 priority Critical patent/WO2014161191A1/zh
Priority to CN201380002193.8A priority patent/CN104247358B/zh
Priority to PCT/CN2013/074783 priority patent/WO2014161211A1/zh
Publication of WO2014161191A1 publication Critical patent/WO2014161191A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating

Definitions

  • the present invention relates to the field of communications, and relates to a DSLAM (DSL Access Multiplexer) system for providing multi-channel xDSL (Digital Subscriber Line) access, and particularly relates to a method for eliminating a DSLAM system.
  • DSLAM DSL Access Multiplexer
  • xDSL is a technology for transmitting data at high speed on Unshielded Twist Pair (UTP).
  • DSL Unshielded Twist Pair
  • the passband transmission xDSL adopts frequency division multiplexing technology and POTS.
  • POTS Pullain Old Telephone Service, traditional telephone service
  • xDSL occupies a high frequency band
  • POTS occupies a baseband portion below 4 kHz
  • POTS signals and xDSL signals are separated by a splitter.
  • xDSL for passband transmission uses DMT (Discrete Multi-Tone, Discrete Multi-tone Modulation).
  • Figure 1 shows the structure of a DMT superframe. As shown in FIG. 1, one DMT superframe includes 256 data frames and one probe symbol hide where the probe symbols are mainly used for sounding channels, corresponding to standards G.993.2 and G.993.5. Synchronization frame (sync frame).
  • FIG. 2 shows the system reference model of the DSLAM, where: xTU represents the xDSL transceiver unit; xTU-0 represents the xTU on the ONU (Optical Network Unit), ie the operator side of the loop, which can be the center Network side equipment such as office, switch, and machine rejection; xTU-R indicates the xTU of the remote end, that is, the user end of the loop, which can be used for home modems. User side equipment such as demodulator) and wireless router.
  • xTU represents the xDSL transceiver unit
  • xTU-0 represents the xTU on the ONU (Optical Network Unit), ie the operator side of the loop, which can be the center Network side equipment such as office, switch, and machine rejection
  • xTU-R indicates the xTU of the remote end, that is, the user end of the loop, which can be used for home modems.
  • User side equipment such as demodulator
  • wireless router such as Wi-Fi
  • Crosstalk interference occurs between multiple signals connected to the DSLAM.
  • Crosstalk interference includes Near End Cross-Talk (NEXT) as shown in Figure 3a and Far End Cross-Talk (FEXT) as shown in Figure 3b.
  • NXT Near End Cross-Talk
  • FXT Far End Cross-Talk
  • near-end crosstalk usually does not cause too much harm to system performance.
  • far-end crosstalk is increasingly affecting the transmission performance of the line and reducing the channel rate. For example, when multiple users in a bundle of cables are required to open xDSL services, the far-end crosstalk will cause some line rates to be low, performance is unstable, or even impossible to open, which ultimately results in a lower DSLAM outgoing rate.
  • the shared channel H shown in Figures 4a and 4b can be represented as a matrix on the kth subcarrier of the frequency domain:
  • [08] is the transfer equation from line pair to line pair ''.
  • the number of channels equal to each other and equal to the mutual crosstalk relationship in the shared channel H is set to M here, and then H is a channel transmission matrix of ⁇ ⁇ .
  • X be an M x l channel input vector
  • y be a M x l channel output vector
  • n is a M x l noise vector.
  • the signal received by the xTU-R terminal is:
  • the vectorization technique can eliminate far-end crosstalk.
  • the industry in order to be able to eliminate far-end crosstalk using vectorization techniques, the industry generally adopts the following method to obtain crosstalk cancellation coefficients.
  • the VCE (Vectoring Control Entity) of the DSLAM side first assigns a probe sequence to each xTU-0 port according to certain rules.
  • the probe sequence is used to modulate the probe symbol, consisting of a series of 0, 1 bits, where each a bit constitutes a probe element, and the probe element will be modulated on a probe symbol, when a is equal to At 1 o'clock each bit constitutes a probe element.
  • the sounding sequence is a Pilot Sequence
  • the sounding symbol is a Sync Symbol
  • a is equal to 1, that is, each bit is modulated by all the detectors of one synchronization symbol.
  • On the carrier Probe Tone).
  • each xTU-0 port sequentially and cyclically modulates each of the sounding elements in the sounding sequence on the sounding symbols in the DMT superframe as shown in FIG. 1, and transmits a DMT superframe containing the modulated sounding symbols.
  • the xTU-R measures the modulated probe symbols received over the channel relative to the desired result (eg, via an ideal distortion-free channel)
  • the error of the result of the input, and the measured error is expressed as error data in a predetermined format and fed back to VCE via xTU-0.
  • the VCE calculates a crosstalk cancellation coefficient based on the received error data.
  • each xTU-0 port sequentially modulates each of the sounding elements in the sounding sequence on the sounding symbols. This makes it impossible for the error feedback to follow the operational timing of the probing modulation if the amount of error data required to represent the error measured on one of the detected symbols exceeds the amount of the upstream message data of one superframe.
  • the xTU-R discard a portion of the error measured for the probe symbols received during the uplink feedback error data, so that the error feedback can follow the probe modulation; or choose to increase the xTU-R
  • the buffer is used to store all the error data that needs uplink feedback and send it gradually. Obviously, the former option will reduce the error accuracy, while the latter option will increase the resource consumption. Summary of the invention
  • the technical problem to be solved by the present invention is how to perform the detection modulation and the error feedback in an orderly manner, so as to be able to economically and accurately utilize the vectorization technique to eliminate the far-end crosstalk of the channel.
  • a probe modulation method is provided, which is applicable to a system including a network side device and a user side device, and includes: the network side device receiving a sounding sequence; The network side device modulates each of the sounding elements in the sounding sequence, and each of the sounding elements is modulated on a downlink sounding symbol of consecutive M superframes.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, a is an integer greater than or equal to 1, and M is an integer greater than or equal to N, where N represents the user side.
  • the device uplinks the number of superframes required to measure the error measured on one downlink sounding symbol.
  • the network side device modulates each of the sounding elements in the sounding sequence, and each of the sounding elements is modulated in consecutive M superframes. The operation on the downlink probe symbol is repeated at least once.
  • the network side device modulates each of the sounding elements in the sounding sequence, and each of the sounding elements is modulated in consecutive M superframes.
  • the superframe modulated by the network side device is the same as the superframe modulated by other network side devices in the DSLAM system at the same time.
  • the network side device further includes: a downlink fixed symbol of the kth superframe in each of the consecutive M superframes has a structure fixed manner.
  • k is an integer greater than or equal to 1 and less than or equal to M.
  • the network side device receives the value of the M sent by the vectorization control entity VCE, and notifies the user of the value of the M. Side equipment.
  • a network side device which is applicable to a system including the network side device and a user side device, and includes: a communication interface, The user side device communicates through a superframe; a memory for storing programs and/or data; and a processor, connected to the communication interface and the memory, for running the program, so that the network side device The above detection modulation method is performed.
  • a network side device which is applicable to a system including the network side device and a user side device, and includes: 10 units for receiving detection a modulation unit coupled to the 10 unit and the communication unit for modulating each of the sounding elements in the sounding sequence, and each of the sounding elements being modulated in consecutive M superframes And a communication unit configured to communicate with the user side device by using a superframe.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, a is an integer greater than or equal to 1, and M is an integer greater than or equal to N, where N represents the user side.
  • the device uplinks the number of superframes required to measure the error measured on one downlink sounding symbol.
  • the network side device further includes a loop unit connected to the modulation unit, where the loop unit is configured to cause the modulation unit to repeat each probe element in the sounding sequence Modulation is performed, and each of the sounding elements modulates the operation on the downlink sounding symbols of successive M superframes at least once.
  • the network side device further includes a synchronization unit connected to the modulation unit, where the synchronization unit is configured to perform, on the detection unit, each detection element in the detection sequence. Modulation, and each of the sounding elements are modulated in the operation of the downlink sounding symbols of successive M superframes, such that the superframe modulated by the modulation unit is identical to the superframe modulated by other network side devices at the same time.
  • the network side device further includes a marking unit connected to the modulating unit, where the marking unit is configured to make a kth superframe of each of the consecutive M superframes
  • the downlink sounding symbols have a structurally fixed pattern.
  • k is an integer greater than or equal to 1 and less than or equal to M.
  • the 10 unit is further configured to receive a value of the M sent by the VCE, and the communication unit is further configured to notify the value of the M User side device.
  • a network side device which is applicable to a system including the network side device and a user side device, and includes: a communication interface, The user side device communicates through a superframe; the 10 interface is configured to receive a sounding sequence; and the processor is connected to the 10 interface, configured to modulate each of the sounding elements in the sounding sequence, and each The detection elements are all modulated on the downlink detection symbols of successive M superframes.
  • the probe sequence includes a string of 0, 1 bits, and each a bit constitutes one probe element, a is an integer greater than or equal to 1; M is an integer greater than or equal to N; N indicates that the user side device uplink feedback is The number of superframes required for the error measured on one downlink sounding symbol.
  • the processor is further configured to repeatedly modulate each of the sounding elements in the sounding sequence, and each of the detecting elements is modulated in consecutive M
  • the operation on the downlink probe symbol of the superframe is at least once.
  • the processor is further configured to modulate each of the detecting elements in the sounding sequence, and each of the detecting elements is modulated in consecutive M
  • the superframe modulated by the processor is made the same as the superframe modulated by other network side devices at the same time.
  • the processor is further configured to enable a downlink detection symbol of the kth superframe in each of the consecutive M superframes to have a fixed structure.
  • k is an integer greater than or equal to 1 and less than or equal to M.
  • the 10 interface is further configured to receive a value of the M sent by the VCE, and the communication interface is further configured to notify the value of the M User side device.
  • an error feedback method is provided, which is applicable to a system including a network side device and a user side device, and includes: the user side device calculates in a continuous M a statistical average of the errors measured on the downlink sounding symbols of the L superframes in the superframes; and the user side equipment using the uplink symbol feedback of the uplink time duration of the consecutive C superframes to represent the statistical average error data .
  • the downlink sounding symbols of the consecutive M superframes are modulated by the network side device with the same detecting element in the sounding sequence; the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes 1 Probe elements, a is greater than or An integer equal to 1; L is an integer greater than or equal to 1 and less than or equal to M; C is an integer greater than or equal to N and less than or equal to M; M is an integer greater than or equal to N, and N is the uplink of the user equipment The number of superframes required to feed back the error measured on one downlink sounding symbol.
  • the method further includes: the user side device positioning the consecutive M superframes according to a superframe in which the downlink sounding symbol has a fixed structure.
  • the method further includes: the user side device receiving the value of the M notified by the network side device, and determining, according to the value of the M and the value of the N itself Or update the value of C and/or L.
  • the value of the self N refers to a value of N calculated by the user side device based on a superframe structure parameter and an error feedback parameter of a channel accessed by the user side device.
  • a user side device which is applicable to a system including a network side device and the user side device, and includes: a communication interface, The network side device communicates through a superframe; a memory for storing programs and/or data; and a processor, connected to the communication interface and the memory, for running the program, so that the user side device Perform the above error feedback method.
  • a user side device which is applicable to a system including a network side device and the user side device, and includes: a communication unit, The network side device communicates through a superframe; the computing unit is connected to the communication unit, and is configured to calculate a statistical average of errors measured on downlink detection symbols of L superframes in consecutive M superframes; And carrying the unit, connected to the computing unit and the communication unit, for carrying the error data representing the statistical average by using an uplink symbol that occupies a maximum uplink duration of consecutive C superframes.
  • the downlink sounding symbols of the consecutive M superframes are modulated by the network side device with the same detecting element in the sounding sequence;
  • the sounding sequence includes a string of 0, 1 a bit, and each a bit constitutes one probe element, a is an integer greater than or equal to 1;
  • L is an integer greater than or equal to 1 and less than or equal to M;
  • C is an integer greater than or equal to N and less than or equal to M;
  • M is an integer greater than or equal to N, where N represents the number of superframes required by the user side device to feed back the error measured on one downlink sounding symbol.
  • the method further includes a positioning unit connected to the communication unit and the computing unit, where the positioning unit is configured to have a structure-fixed superframe according to the downlink detection symbol. To locate the consecutive M superframes.
  • the method further includes a setting unit connected to the communication unit, the calculating unit, and the offloading unit, where the communication unit is further configured to receive the network.
  • the value of the M notified by the side device, and the setting unit is configured to determine or update the value of the C and/or the L based on the value of the M and the value of the self N.
  • the value of the self N is a value of N calculated by the setting unit based on a superframe structure parameter and an error feedback parameter of a channel accessed by the user side device itself.
  • a user side device which is applicable to a system including a network side device and the user side device, and includes: a communication interface, for The network side device communicates through a superframe; and a processor, connected to the communication interface, configured to calculate a statistical average of errors measured on downlink detection symbols of L superframes in consecutive M superframes, and utilize Uplink symbols occupying at most the uplink duration of consecutive C superframes carry error data representing the statistical average.
  • the downlink sounding symbols of the consecutive M superframes are modulated by the network side device with the same detecting element in the sounding sequence;
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes 1 a detection element, a is an integer greater than or equal to 1;
  • L is an integer greater than or equal to 1 and less than or equal to M;
  • C is an integer greater than or equal to N and less than or equal to M;
  • M is an integer greater than or equal to N, N means said
  • the user side device uplinks the number of superframes required for the error measured on one downlink sounding symbol.
  • the processor is further configured to locate the consecutive M superframes according to a superframe in which the downlink sounding symbols have a fixed structure.
  • the communication interface is further configured to receive a value of the M notified by the network side device, and the processor is further configured to use a value based on the M
  • the value of C and/or L is determined or updated with the value of N itself.
  • the value of the self N is a value of N calculated by the processor based on a superframe structure parameter and an error feedback parameter of a channel accessed by the user side device itself.
  • a crosstalk cancellation coefficient acquisition method is provided, which is applicable to a DSLAM system including a VCE, a network side device, and a user side device, and includes: the VCE Allocating a sounding sequence to the network side device; the VCE calculates a value of N based on a superframe structure parameter and an error feedback parameter of each channel in the DSLAM system, and determines a value of M based on the value of the N, and The value of M is notified to the network side device; and the VCE receives, from the network side device, error data that is up to the uplink symbol of the continuous C frames by the uplink time length, and The error data of the uplink symbol feedback of the superframe uplink duration is combined into error data corresponding to one downlink sounding symbol, and the crosstalk cancellation coefficient is calculated based on the combined error data.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, a is an integer greater than or equal to 1; C is an integer greater than or equal to N and less than or equal to M;
  • the user side device uplinks the number of super frames required for the error measured on the downlink sounding symbols of one super frame; M indicates that the downlink sounding symbol is detected by the network side device in the same detection sequence.
  • the superframe structure parameters include: The number of frames included in the superframe, the number of uplink symbols included in each of the frames, and the number of bits of message data that each of the uplink symbols can carry.
  • the superframe structure parameters include: The number of symbols included in the superframe, and the number of bits of data that can be carried by each of the symbols.
  • the error feedback parameter includes: a desired number of bits required for message encapsulation of the uplink feedback error data, and each of the downlink detections; The number of vectorized frequency bands required by the symbol that require feedback error; the number of subcarriers required for each of the vectorized frequency bands that require feedback error; and the measurement is performed on each of the subcarriers that require feedback error The number of bits required for the error.
  • the method further includes: the VCE monitoring a change of a channel in the DSLAM system, and detecting, when detecting or deleting a channel in the DSLAM system, Recalculating the value of the N based on the superframe structure parameters and the error feedback parameters of the current channels in the DSLAM system, and redetermining the value of the M based on the value of the N.
  • a VCE is provided, which is applicable to a DSLAM system including the VCE, a network side device, and a user side device, and includes: 10 interfaces, for The network side device is connected; a memory for storing programs and/or data; and a processor, connected to the 10 interface and the memory, for running the program, so that the VCE performs the above crosstalk cancellation Coefficient acquisition method.
  • a VCE which is applicable to a DSLAM system including the VCE, a network side device, and a user side device, and includes: 10 units connected to the network side device; and an allocation unit connected to the 10 unit for allocation Detecting a sequence, and connecting the allocated probe units 10, for calculating a value of N based on a superframe structure parameter and an error feedback parameter of each channel in the DSLAM system, and determining a value of M based on the value of the N, And notifying the value of the M to the network side device via the 10 unit; and calculating a unit connected to the 10 unit for receiving the most received from the network side device via the 10 unit
  • the error data of the uplink symbol feedback occupying the uplink duration of the C superframes is combined into error data corresponding to one downlink sounding symbol, and the crosstalk canceling coefficient is calculated based on the combined error data.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, a is an integer greater than or equal to 1; C is an integer greater than or equal to N and less than or equal to M;
  • the user side device uplinks the number of super frames required for the error measured on the downlink sounding symbols of one super frame; M indicates that the downlink sounding symbol is detected by the network side device in the same detection sequence.
  • the number of consecutive superframes modulated by the element, M being an integer greater than or equal to N.
  • the VCE further includes a monitoring unit connected to the setting unit, where the monitoring unit is configured to monitor a change of a channel in the DSLAM system; and the setting unit further And when the monitoring unit detects that a new channel is deleted or deleted in the DSLAM system, calculating a value of the N based on a superframe structure parameter and an error feedback parameter of each channel in the DSLAM system, and based on the The value of N re-determines the value of the M.
  • a VCE is provided, which is applicable to a DSLAM system including the VCE, a network side device, and a user side device, and includes: a processor, configured to The network side device allocates a sounding sequence, based on superframe structure parameters and errors of each channel in the DSLAM system
  • the feedback parameter calculates a value of N, and determines a value of M based on the value of the N; and a 10 interface, connected to the processor, to notify the network side device of the sounding sequence and the value of the M And receiving, from the network side device, error data that is fed back by up to a maximum of C consecutive frames of uplink time.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, and a is an integer greater than or equal to 1.
  • the processor is further configured to pass the maximum of C consecutive
  • the error data of the uplink symbol feedback of the superframe uplink duration is combined into error data corresponding to one downlink sounding symbol, and the crosstalk cancellation coefficient is calculated based on the combined error data;
  • C is greater than or equal to N and less than or equal to M
  • An integer of N represents the number of superframes required by the user side device to feed back the error measured on the downlink sounding symbols of one superframe;
  • M represents that the downlink sounding symbol is used by the network side device to the sounding sequence.
  • the number of consecutive superframes modulated by the same probe element, M is an integer greater than or equal to N.
  • the processor is further configured to monitor a change of a channel in the DSLAM system, and when detecting a new channel in the DSLAM system, The superframe structure parameters and error feedback parameters of the current channels in the DSLAM system calculate the value of the N, and the value of the M is re-determined based on the value of the N.
  • the superframe structure parameter includes: each of the superframes included The number of frames, the number of uplink symbols included in each of the frames, and the number of bits of message data that each of the uplink symbols can carry.
  • the superframe structure parameter includes: each of the superframes The number of symbols included, and the number of bits of data that can be carried by each of the symbols.
  • the error feedback parameter The method includes: a desired number of bits of message overhead required for message encapsulation of the uplink feedback error data; a number of vectorized frequency bands that each of the downlink sounding symbols includes a feedback error; each of the vectorized frequency bands includes The number of subcarriers that require feedback error; and the number of bits required to represent the error measured on each of the subcarriers that require feedback error.
  • a DSLAM system including: the foregoing VCE, at least two network side devices; and at least two user side devices; wherein the VCE The probe sequence is sent to the network side device, and the value of M is sent to the network side device and the user side device.
  • the error feedback it is also possible to cause the error feedback to follow the probe modulation in an orderly manner and to completely feed back the error on the probe symbol corresponding to the entire sounding sequence without increasing the buffer area.
  • FIG. 1 is a schematic structural diagram of a DMT superframe
  • Figure 2 shows a schematic diagram of a system reference model of a DSLAM
  • Figure 3a shows a schematic diagram of the principle of generating near-end crosstalk between multiple signals accessed by the DSLAM
  • FIG. 3b is a schematic diagram showing the principle of generating far-end crosstalk between multiple signals accessed by the DSLAM;
  • Figure 4a shows a schematic diagram of a system architecture for joint reception at the DSLAM end to eliminate far-end crosstalk
  • Figure 4b shows a schematic diagram of a system architecture for joint transmission at the DSLAM end to eliminate far-end crosstalk
  • FIG. 5 is a flowchart showing a sounding modulation method, an error feedback method, and a method for acquiring a crosstalk cancellation coefficient according to an embodiment of the present invention
  • 6 a to 6 c show schematic diagrams of super-frame streams in which error feedback can follow the detection modulation in an orderly manner by the probe modulation method, the error feedback method, and the crosstalk cancellation coefficient acquisition method according to an embodiment of the present invention
  • FIG. 7 is a flowchart showing a sounding modulation method, an error feedback method, and a method for acquiring a crosstalk cancellation coefficient according to another embodiment of the present invention
  • FIG. 8 is a block diagram showing the structure of a network side device according to an embodiment of the present invention
  • FIG. 9 is a block diagram showing the structure of a network side device according to another embodiment of the present invention
  • FIG. 10 is a block diagram showing a network according to another embodiment of the present invention.
  • FIG. 11 is a block diagram showing the structure of a user side device according to an embodiment of the present invention
  • FIG. 12 is a block diagram showing the structure of a user side device according to another embodiment of the present invention
  • FIG. 14 is a block diagram showing the structure of a VCE according to an embodiment of the present invention;
  • FIG. 15 is a block diagram showing the structure of a VCE according to another embodiment of the present invention.
  • FIG. 16 is a block diagram showing the structure of a VCE according to still another embodiment of the present invention.
  • FIG. Figure 17 is a diagram showing packet sounding modulation according to an embodiment of the present invention.
  • Figure 18 is a diagram showing packet sounding modulation according to another embodiment of the present invention.
  • the method according to this embodiment of the present invention is applicable to a DSLAM system including a VCE, a network side device, and a user side device, and includes:
  • the VCE calculates a value of N based on a superframe structure parameter and an error feedback parameter of each channel in the DSLAM system, and determines a value of M based on the value of the N (S511) And then notifying the value of the M to the network side device.
  • the N indicates the number of superframes required by the user side device to feed back the error measured on the downlink sounding symbols of one super frame.
  • M represents the number of consecutive superframes in which the downlink sounding symbols are modulated by the network side device using the same sounding element in the sounding sequence, and M is an integer greater than or equal to N.
  • the sounding sequence includes a string of 0, 1 bit, and each a bit constitutes one probe element, and a is an integer greater than or equal to 1.
  • the network side device records the value of the M (S521), and notifies the user side device of the value of the M.
  • the user side device determines the values of C and L based on the received value of the M and the value of its own N (S531).
  • the value of the self N is a value of N calculated by the user equipment based on a superframe structure parameter and an error feedback parameter of a channel to which the user equipment is connected.
  • C is an integer greater than or equal to N and less than or equal to M
  • L is an integer greater than or equal to 1 and less than or equal to M.
  • the VCE allocates a sounding sequence to the network side device (S512), and sends the allocated sounding sequence to the network side device.
  • the network side device After receiving the sounding sequence allocated by the VCE, the network side device modulates each detecting element in the sounding sequence, and each of the detecting elements is modulated in consecutive M
  • the downlink detection symbol of the superframe is on (S522), and the modulated superframe is sent to the user side device.
  • the downlink detection symbols of the M superframes in which the different detection elements are modulated are different.
  • the network side device performs each detection element in the detection sequence.
  • the user side device calculates a statistical average of errors measured on downlink detection symbols of L superframes in the consecutive M superframes (S532), and utilizes at most C consecutive super
  • the uplink symbol feedback of the frame uplink duration indicates the statistical average error data (S533).
  • L when L is equal to 1, the L superframes may be any one of the M superframes. In the case where L is greater than or equal to 2, the L The superframe may be a plurality of superframes that are consecutive or intermittent in the M superframes.
  • the uplink symbol that occupies at most the uplink duration of consecutive C superframes may be an uplink symbol of consecutive multiple superframes from the head of a certain superframe, or may be continuous from any intermediate part of a certain superframe.
  • the upstream symbol of multiple superframes may be an uplink symbol of consecutive multiple superframes from the head of a certain superframe, or may be continuous from any intermediate part of a certain superframe.
  • the VCE may pass the maximum C consecutive superframes.
  • the error data of the uplink symbol feedback of the uplink duration is combined into error data corresponding to one downlink probe symbol (S513), and the crosstalk cancellation coefficient (S 514 ) is calculated based on the combined error data.
  • the user side device will terminate the feedback error data and enter the feedback of the next measurement error.
  • Figures 6a-6c show schematic diagrams of superframe flow for probing modulation and error feedback by the method of Figure 5. It can be clearly seen that the error is measured on one downlink detection symbol by using the same detection element to modulate consecutive M superframes on the network side device and using the uplink symbol feedback of the uplink time of the continuous C superframes on the user side device. Data, the foregoing method according to an embodiment of the present invention enables the error feedback of the user side device to follow the detection modulation of the network side device in an orderly manner, even if it is required to use multiple super frames for uplink feedback to be measured on one downlink detection symbol. In the case of errors, the crosstalk cancellation coefficient of the DSLAM system can also be calculated economically and accurately.
  • step S511 is illustrated in FIG. 5 as being performed before step S512, the present invention is not limited thereto, and those skilled in the art should understand that step S511 may also be after step S512 or with step S512. At the same time.
  • each detection element in the detection sequence Modulation is performed to ensure that the user side device feeds back at least an error on all detected symbols corresponding to a complete sounding sequence.
  • the network side device is in the detection sequence
  • the operation of each of the sounding elements is modulated, and each of the sounding elements is modulated on the downlink sounding symbols of successive M superframes (S522) at least once.
  • the superframe structure parameter may include: each of the super The number of TTD frames included in the frame, the number b of uplink symbols included in each of the frames, and the number of bits c of data that can be carried by each of the uplink symbols.
  • the error feedback parameter may include: a desired number of bits z of message overhead required for message encapsulation of the uplink feedback error data; a number of Vectored Bands required for each of the downlink sounding symbols to be required for feedback error
  • the first vectorization band contains the number of subcarriers t k that require feedback error; and the number of bits required to represent the error measured on each of the subcarriers requiring the feedback error in the first vectorization band) and
  • the VCE may calculate the value of the N by using Equation 6 below, where w represents an upward integer of G.
  • a typical superframe contains 8 TDD frames, each TDD frame contains 35 symbols and two guard slots (guard time for separate uplink and downlink, which The duration of the two guard times is 1 symbol. It is assumed that there are 7 uplink symbols in each TDD frame, and each uplink symbol can carry 286 bits of message data.
  • G.fast has nearly 2048 subcarriers per probe symbol when using a 106 MHz profile, assuming an error of 2000 subcarriers on one probe symbol, and assuming 16 bits per error for each subcarrier.
  • the expected message overhead required for each uplink feedback error data is 8 bits. In this case, the VCE will calculate N is equal to 2.
  • the superframe structure parameter may include: The number b of symbols included in the superframe, and the number of bits c of uplink message data that each of the symbols can carry.
  • the error feedback parameter may include: a desired number of bits z of message overhead required for message encapsulation of the uplink feedback error data; a number of Vectored Bands required for each of the downlink sounding symbols to be required for feedback error
  • the first vectorization band contains the number of subcarriers t k that require feedback error; and the number of bits required to represent the error measured on each of the subcarriers requiring the feedback error in the first vectorization band) and
  • the VCE may calculate the value of the N by using Equation 7 below, where " ⁇ " indicates that the integer is taken up.
  • the VCE calculates the value of N by using Equation 6 or Equation 7 above
  • the N value calculated for the channel is used as the entire DSLAM system.
  • N value if the DSLAM system includes multiple channels, the N value will be calculated for each channel, and the maximum N value is preferably used as the N value of the entire DSLAM system to ensure error feedback for all user side devices.
  • the detection modulation of the network side device is followed sequentially.
  • the expected number of bits z of the message overhead required for message encapsulation of the uplink feedback error data refers to canceling the uplink feedback error data, and the encapsulation is an expected value of the message overhead. In some package formats, the expected value is actual.
  • the cost value may be different. For example, in an HDLC-like encapsulation format, the overhead required for different payloads is different due to octet transparency. In some cases, this expected value can be set to zero.
  • each of the detecting elements in the sounding device is modulated by the network side device, and each of the detecting elements is modulated in In the operation on the downlink sounding symbols of the consecutive M superframes (S522), the superframe modulated by the network side device is the same as the superframe modulated by the other network side devices in the DSLAM system at the same time.
  • the superframe modulated by the network side device is the same as the superframe modulated by the other network side devices in the DSLAM system at the same time.
  • the network side device modulates each of the sounding elements in the sounding sequence, and each of the sounding elements is modulated in a downlink of consecutive M superframes.
  • the network side device may cause each of the consecutive M superframes in a predetermined manner, for example, a mode for marking a synchronization symbol in G.993.5
  • the downlink sounding symbols of the kth superframe have a structure fixed pattern. Where k is an integer greater than or equal to 1 and less than or equal to M.
  • the network side device has a structure in which the downlink sounding symbols of a superframe of each of the consecutive M superframes have a fixed structure, so that the user equipment can be configured according to whether the downlink sounding symbols have a fixed structure.
  • FIG. 7 shows a flow chart of a sounding modulation method, an error feedback method, and a crosstalk cancellation coefficient acquisition method according to another embodiment of the present invention.
  • the components in Fig. 7 having the same reference numerals as those in Fig. 5 have the same functions, and the description of these components will be omitted.
  • the main difference of the method shown in FIG. 7 is that the values of the N, the M, the C, and the L are not static as compared with the method shown in FIG. , but dynamically changed.
  • the so-called static invariant means that, for example, when the DSLAM system is started, the VCE calculates the value of the N according to the superframe structure parameter and the error feedback parameter of each channel and sets the value of the M, and the user side device is based on The value of M sets the values of C and L, and the M, C, and L that are set will be used thereafter The value of the probe modulation, error feedback, and crosstalk cancellation factor acquisition until
  • the DSLAM system is shut down or restarted.
  • dynamic change means that the values of N, M, C and L will vary following the changes in the channel in the DSLAM system.
  • the VCE monitors a change of a channel in the DSLAM system (S711), and when detecting a new channel in the DSLAM system or deleting a channel, re-based on the current in the DSLAM system.
  • the superframe structure parameter and the error feedback parameter of each channel calculate the value of the N, and the value of the M is re-determined based on the value of the N (S712).
  • the network side device records the value of the M (S521) and notifies the user side device of the value of the M when receiving the value of the M notified by the VCE;
  • the user side device determines or updates the value of the C and/or the L based on the value of the M and the value of the N when receiving the value of the M notified by the network side device ( S731).
  • the value of the self N is a value of N calculated by the user side device based on a superframe structure parameter and an error feedback parameter of a channel to which the user side device is connected.
  • FIG. 8 is a block diagram showing the structure of a network side device according to an embodiment of the present invention.
  • the network side device 800 is applicable to a DSLAM system including a VCE, a network side device, and a user side device, and includes 10 units 810, a modulation unit 820, and a communication unit 830.
  • the 10 unit 810 is connected to the VCE and the modulation unit 820, and is mainly used.
  • the probe sequence allocated by the VCE is received and sent to the modulation unit 820.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, and a is an integer greater than or equal to 1.
  • Modulation unit 820 is connected to unit 10 810 and communication unit 830, and is mainly used for modulating each of the sounding elements in the sounding sequence, and each of the detecting elements is modulated in the downlink of consecutive M superframes. On the probe symbol.
  • M is an integer greater than or equal to N
  • N represents the number of superframes required by the user side device to feed back the error measured on one downlink sounding symbol.
  • the communication unit 830 is connected to the user side device and the modulation unit 820, and is mainly used for communicating with the user side device by using a superframe, for example, the downlink detection symbol is modulated by the modulation unit 820 by using the detection element to send the super frame to the user side. device.
  • the network side device 800 since the modulating unit 820 modulates the downlink sounding symbols of the consecutive M superframes by the same detecting element, the network side device 800 according to the embodiment of the present invention enables the user side device to utilize up to a total of C supers.
  • the uplink symbol of the uplink time of the frame feeds back the error measured on one probe symbol, thereby ensuring that the error feedback of the user side device follows the sounding modulation of the network side device 800 in an orderly manner, even when multiple super frames are needed for uplink feedback.
  • the crosstalk cancellation coefficient of the DSLAM system can also be calculated economically and accurately.
  • the network side device 800 may further include a loop unit 840.
  • the looping unit 840 is connected to the modulating unit 820, and is mainly used for causing the modulating unit 820 to repeatedly modulate each detecting element in the sounding sequence, and each of the detecting elements modulates a downlink detecting symbol of consecutive M superframes. The operation on at least once.
  • the crosstalk canceling coefficients can be continuously calculated or updated using the error feedback obtained multiple times, thereby further improving the accuracy of the crosstalk canceling coefficients.
  • the network side device 800 may further include a synchronization unit 850.
  • the synchronization unit 850 is connected to the modulation unit 820, and is mainly used for Modulating unit 820 modulates each of the sounding elements in the sounding sequence and modulates each of the sounding elements on a downlink sounding symbol of successive M superframes
  • the frame is the same as the superframe modulated by other network side devices in the DSLAM system at the same time. In this way, since all the lines use the detection elements of the respective sounding sequences to repeatedly modulate the M downlink sounding symbols at the same time, which makes the crosstalk caused by the lines on the M downlink sounding symbols equivalent, thereby ensuring the crosstalk canceling coefficient. Accuracy.
  • the network side device 800 may further include a marking unit 860.
  • the marking unit 860 is connected to the modulating unit 820, and is mainly used to make the kth super in each of the consecutive M superframes in a predetermined manner, for example, a mode for marking a synchronization symbol in G.993.5.
  • the downlink sounding symbols of the frame have a structurally fixed pattern. Where k is an integer greater than or equal to 1 and less than or equal to M.
  • the marking unit 860 has a structure in which the downlink sounding symbols of one of the consecutive M superframes have a fixed structure, the user side device can accurately determine whether the downlink sounding symbol has a structurally fixed pattern.
  • the M superframes continuously modulated by the same detecting element are located, thereby further facilitating the error feedback of the user side device to follow the sounding modulation of the network side device 800 in an orderly manner.
  • the 10th unit further receives the value of the M notified by the VCE, and notifies the modulation unit 820 of the value of the M, and also passes the value of the M to the communication unit. 830 notifies the user side device.
  • the network side device 800 can dynamically update the value of the M according to the notification of the VCE and notify the user side device via the communication unit 830, even if channel creation or elimination occurs in the DSLAM system, it can be ensured.
  • the error feedback of the user side device sequentially follows the sounding modulation of the network side device 800, thereby further improving the accuracy of the crosstalk cancellation coefficient.
  • FIG. 9 is a block diagram showing the structure of a network side device according to another embodiment of the present invention.
  • the network side device 900 is applicable to include a VCE, a network side device, and a user.
  • the DSLAM system of the side device and includes a 10 interface 910, a processor 920, and a communication interface 930.
  • the interface 10 is connected to the VCE and the processor 920, and is mainly used for communicating with the VCE, for example, receiving a probe sequence allocated by the VCE to the network side device 900, and The received sounding sequence is sent to the processor 920.
  • the communication interface 930 is connected to the user side device and the processor 920, and is mainly used for communicating with the user side device through a superframe.
  • the processor 920 is connected to the 10 interface 910 and the communication interface 930, and is mainly configured to modulate each of the sounding elements in the sounding sequence, and each of the detecting elements is modulated in a downlink of consecutive M superframes.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, and a is an integer greater than or equal to 1.
  • M is an integer greater than or equal to N, and N represents the number of superframes required by the user side device to feed back the error measured on one downlink sounding symbol.
  • the network side device 900 since the processor 920 modulates the downlink sounding symbols of the consecutive M superframes by using the same sounding element, the network side device 900 according to the embodiment of the present invention enables the user side device to utilize up to a continuous C super
  • the uplink symbol of the uplink time of the frame feeds back the error measured on one probe symbol, thereby ensuring that the error feedback of the user side device follows the sounding modulation of the network side device 900 in an orderly manner, even when multiple super frames are needed for uplink feedback.
  • the crosstalk cancellation coefficient of the DSLAM system can also be calculated economically and accurately.
  • the processor 920 is further configured to repeatedly modulate each of the sounding elements in the sounding sequence, and each of the sounding elements is modulated in a downlink of consecutive M superframes.
  • the operation on the probe symbol is at least once.
  • the processor 920 can also be used to Each of the sounding elements in the sequence is modulated, and each of the sounding elements is modulated in a downlink detection symbol of successive M superframes, causing the superframe modulated by processor 920 to be said at the same time
  • the superframes modulated by other network side devices in the DSLAM system are the same. In this way, since all the lines use the detection elements of the respective sounding sequences to repeatedly modulate the M downlink sounding symbols at the same time, which makes the crosstalk caused by the lines on the M downlink sounding symbols equivalent, thereby ensuring the crosstalk canceling coefficient. Accuracy.
  • the processor 920 is further configured to cause each of the consecutive M supers by a predetermined manner, for example, a mode for marking a synchronization symbol in G.993.5.
  • the downlink sounding symbols of the kth superframe in the frame have a structure fixed pattern. Where k is an integer greater than or equal to 1 and less than or equal to M.
  • the processor 920 has a structure in which the downlink sounding symbols of one of the consecutive M superframes have a fixed structure, so that the user side device can accurately determine whether the downlink sounding symbols have a fixed structure.
  • the M superframes continuously modulated by the same detecting element are located, thereby further facilitating the error feedback of the user side device to follow the detection modulation of the network side device 900 in an orderly manner.
  • the processor 920 is further configured to: when the 10 interface 910 receives the value of the M of the VCE notification, send the value of the M to the User side device.
  • the network side device 900 can dynamically update the value of the M according to the notification of the VCE and notify the user side device via the communication interface 930, even if a channel new or eliminated occurs in the DSLAM system, It is ensured that the error feedback of the user side device follows the sounding modulation of the network side device 900 in an orderly manner, thereby further improving the accuracy of the crosstalk cancellation coefficient.
  • FIG. 10 is a structural block diagram of a network side device according to still another embodiment of the present invention.
  • the network side device 1000 may be a host server having a computing capability, a personal computer PC, or a portable computer or terminal that can be carried.
  • a host server having a computing capability
  • a personal computer PC or a portable computer or terminal that can be carried.
  • Detailed implementation of the present invention The example does not limit the specific implementation of the compute node.
  • the network side device 1000 includes a processor 1010, a communication interface 1020, 10 (Input and Output) interface 1030, a memory 1040, and a bus 1050.
  • the processor 1010, the communication interface 1020, the 10 interface 1030, and the memory 1040 complete communication with each other through the bus 1050.
  • the communication interface 1020 is for communicating with user side devices in the DSLAM system.
  • [67] 10 interface 1030 is used to communicate with the VCE in the DSLAM system.
  • the memory 1040 is for storing programs and/or data, and the program may be program code including computer operating instructions.
  • the memory 1040 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • Memory 1040 can also be a memory array.
  • the memory 1040 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • the processor 1010 is for a program.
  • the processor 1010 may be a central processor
  • Circuit or one or more integrated circuits configured to implement embodiments of the present invention.
  • the processor 1010 by executing the program stored in the memory 1040, causes the network side device 1000 to perform the following operations: the network side device receives the probe sequence allocated by the VCE; Wherein the sounding sequence is sent by a VCE; and the network side device modulates each of the sounding elements in the sounding sequence, and each of the sounding elements modulates a downlink sounding of consecutive M superframes On the symbol.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, a is an integer greater than or equal to 1; and, M is an integer greater than or equal to N, and N represents the user.
  • the side device uplinks the number of superframes required to measure the error measured on one downlink sounding symbol.
  • the user side device 1100 is applicable to a DSLAM system including a VCE, a network side device, and a user side device, and includes a communication unit 1110, a computing unit 1120, and a load sharing unit 1130.
  • the communication unit 1110 is connected to the network side device, the computing unit 1120, and the load sharing unit 1130, and is mainly used to communicate with the network side device through a superframe, for example, continuous receiving downlink.
  • the probe symbols have been M superframes modulated by the network side device with the same probe element in the sounding sequence.
  • the detection sequence includes a string of 0, 1 bits, and each a bit constitutes one detection element, and a is an integer greater than or equal to 1.
  • M is an integer greater than or equal to N, and N represents the number of superframes required by the user side device to feed back the error measured on one downlink sounding symbol.
  • the computing unit 1120 is coupled to the communication unit 1110 and the load sharing unit 1130 and is mainly used to calculate a statistical average of the errors measured on the downlink sounding symbols of the L superframes in successive M superframes.
  • L is an integer greater than or equal to 1 and less than or equal to M.
  • the L superframes may be any one of the M superframes.
  • the L superframes may be consecutive or intermittent superframes in the M superframes.
  • the offloading unit 1130 is connected to the computing unit 1120 and the communication unit 1110, and is mainly used for uplinking the error data indicating the statistical average calculated by the calculating unit 1120 to an uplink symbol that is up to the uplink time of consecutive C superframes. And transmitting the C superframes to the network side device via the communication unit 1110.
  • C is an integer greater than or equal to N and less than or equal to M.
  • the offloading unit 1130 is adapted to the network side device modulating successive M superframes by using the same detecting element, the uplink symbol feedback of up to C consecutive superframe uplink durations is used to measure on one detecting symbol.
  • the error can effectively ensure that the error feedback of the user side device 1100 follows the sounding modulation of the network side device in an orderly manner, even when multiple super frames are needed to uplink feedback the error measured on one downlink sounding symbol.
  • the cost of the DSLAM system can also be calculated economically and accurately. Tone cancellation factor.
  • the user side device 1100 may further include a positioning unit 1140.
  • the positioning unit 1140 is connected to the communication unit 1110 and the computing unit 1120, and is mainly configured to locate the consecutive M superframes according to whether the downlink detection symbols in the superframe received by the communication unit 1110 have a fixed structure, and locate the positioning. The result is communicated to the computing unit 1120.
  • the positioning unit 1140 can accurately locate the M superframes continuously modulated by the same detecting element according to whether the downlink detecting symbols have a fixed structure, it is more helpful to ensure that the error feedback of the user side device 1100 follows the order in an orderly manner. Probing modulation of network side devices.
  • the user side device 1100 may further include a rating unit 1150.
  • the setting unit 1150 is connected to the communication unit 1110, the computing unit 1120, and the offloading unit 1130, and is mainly used to calculate the value of the M when the communication unit 1110 receives the value of the M notified by the network side device.
  • the value of the C and/or L is determined or updated with the value of the own N, and the values of the ⁇ 1, the C, and the L are notified to the computing unit 1120 and the offloading unit 1130.
  • the value of the self N is a value of the N calculated by the specified value unit 1150 based on the superframe structure parameter and the error feedback parameter of the channel accessed by the user side device 1100 itself.
  • the user side device 1100 can dynamically adjust the C and/or the L to an appropriate value according to the value of the M notified by the network side device through the setting unit 1150, even if the DSLAM system The channel is newly created or eliminated, and the error feedback of the user side device 1100 can be ensured to follow the detection modulation of the network side device in an orderly manner, thereby further improving the accuracy of the crosstalk cancellation coefficient.
  • FIG. 12 is a block diagram showing the structure of a user side device according to another embodiment of the present invention.
  • the user side device 1200 is applicable to a D S L A M system including a VCE, a network side device, and a user side device, and includes a communication interface 1210 and a processor 1220.
  • the device 1220 is connected to communicate with the network side device by using a superframe, for example, continuously receiving M superframes whose downlink sounding symbols have been modulated by the network side device with the same detecting element in the sounding sequence.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, and a is an integer greater than or equal to 1.
  • M is an integer greater than or equal to N, and N represents the number of superframes required by the user side device to feed back the error measured on one downlink sounding symbol.
  • the processor 1220 is connected to the communication interface 1210, and is mainly used for calculating a statistical average of errors measured on downlink detection symbols of L superframes in the consecutive M superframes, and using up to C consecutive
  • the uplink symbol of the superframe uplink duration carries error data representing the statistical average.
  • L is an integer greater than or equal to 1 and less than or equal to M
  • C is an integer greater than or equal to N and less than or equal to M.
  • L superframes may be any one of the M superframes.
  • the L superframes may be consecutive or intermittent superframes in the M superframes.
  • the processor 1220 is adapted to the network side device to use the same sounding element to modulate consecutive M superframes, and the uplink symbol feedback that occupies the uplink time of the consecutive C superframes is measured on one detected symbol.
  • the error can effectively ensure that the error feedback of the user side device 1200 follows the sounding modulation of the network side device in an orderly manner, even if multiple super frames are needed to uplink feedback the error measured on one downlink detection symbol.
  • the crosstalk cancellation coefficient of the DSLAM system can also be calculated economically and accurately.
  • the processor 1220 is further configured to locate the consecutive M superframes according to whether a downlink sounding symbol in a superframe received by the communication interface 1210 has a structure fixed manner, and The positioning result is notified to the computing unit 1120. In this way, since the processor 1220 can accurately locate the M superframes continuously modulated by the same detecting element according to whether the downlink detecting symbols have a fixed structure, it is more helpful to ensure that the error feedback of the user side device 1200 follows the order in an orderly manner.
  • Network side device detection Modulation may be used to determine the M superframes according to whether a downlink sounding symbol in a superframe received by the communication interface 1210 has a structure fixed manner.
  • the processor 1220 is further configured to: based on the value of the M and the self N, when the communication interface 1210 receives the value of the M notified by the network side device.
  • the value of the value determines or updates the value of C and/or L.
  • the value of the N is the value of the N calculated by the processor 1220 based on the superframe structure parameter and the error feedback parameter of the channel accessed by the user side device 1200 itself.
  • the user side device 1200 can dynamically adjust the C and/or the L to an appropriate value according to the value of the M notified by the network side device by the processor 1220, even within the DSLAM system.
  • the channel creation or elimination occurs, and the error feedback of the user side device 1200 can be ensured to follow the detection modulation of the network side device in an orderly manner, thereby further improving the accuracy of the crosstalk cancellation coefficient.
  • FIG. 13 is a block diagram showing the structure of a user side device according to still another embodiment of the present invention.
  • the user side device 1300 may be a host server having a computing capability, a personal computer PC, or a portable computer or terminal that can be carried.
  • the specific embodiment of the present invention does not limit the specific implementation of the computing node.
  • the user side device 1300 includes a processor 1310, a communication interface 1320, a memory 1330, and a bus 1340.
  • the processor 1310, the communication interface 1320, and the memory 1330 complete communication with each other through the bus 1340.
  • the communication interface 1320 is used to communicate with network side devices in the DSLAM system.
  • the memory 1330 is used to store programs and/or data, and the program may be program code including computer operating instructions.
  • the memory 1330 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • Memory 1330 can also be a memory array.
  • the memory 1330 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • the processor 1310 is for a program.
  • the processor 1310 may be a central processing unit CPU or an application specific integrated circuit ASIC (Application Specific Integrated) Circuit), or one or more integrated circuits configured to implement embodiments of the present invention.
  • ASIC Application Specific Integrated
  • the processor 1310 causes the user side device 1300 to perform the following operations by executing a program stored in the memory 1330: the user side device calculates in consecutive M super frames. A statistical average of the errors measured on the downlink sounding symbols of the L superframes; and the user side equipment uses the uplink symbol feedback that occupies at most the uplink time length of the consecutive C superframes to represent the statistical average error data.
  • the downlink sounding symbols of the consecutive M superframes are modulated by the network side device with the same detecting element in the sounding sequence;
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes 1 a detection element, a is an integer greater than or equal to 1;
  • L is an integer greater than or equal to 1 and less than or equal to M;
  • C is an integer greater than or equal to N and less than or equal to M, and M is greater than or equal to N
  • An integer, N indicates the number of superframes required by the user side device to feed back the error measured on one downlink sounding symbol.
  • FIG. 14 is a block diagram showing the structure of a VCE according to an embodiment of the present invention.
  • the vectoring control entity VCE 1400 is applicable to a DSLAM system including the VCE, the network side device, and the user side device, and includes a 10 unit 1410, an allocating unit 1420, a setting unit 1430, and a calculating unit 1440.
  • the 10 unit 1410 is connected to the network side device and the distribution unit 1420, the setting unit 1430, and the computing unit 1440, and is mainly used for communicating with the network side device.
  • the allocating unit 1420 is connected to the 10 unit 1410, and is mainly used for allocating the sounding sequence, and transmitting the allocated sounding sequence to the network side device via the 10 unit 1410.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, and a is an integer greater than or equal to 1.
  • the setting unit 1430 is connected to the 10 unit 1410, and is mainly used based on the DSLAM.
  • the superframe structure parameter and the error feedback parameter of each channel in the system calculate the value of N, determine the value of the M based on the value of the N, and notify the value of the M to the network side device via the 10 unit 1410. .
  • the N indicates the number of superframes required by the user side device to feed back the error measured on the downlink sounding symbols of one super frame.
  • M represents the number of consecutive superframes in which the downlink sounding symbols are modulated by the network side device to the same sounding element in the sounding sequence, and M is an integer greater than or equal to N.
  • the superframe structure parameter may include: a TTD frame included in each of the superframes The number b of uplink symbols included in each of the frames, and the number of bits c of message data that each of the uplink symbols can carry.
  • the error feedback parameter may include: a desired number of message overheads required for message encapsulation of the uplink feedback error, and a number of vectored bands each requiring the feedback error included in the downlink sounding symbols ⁇ : The number of subcarriers required for the feedback error included in the first vectorization band and the number of bits required to represent the error measured on each of the subcarriers requiring the feedback error in the first vectorization band)
  • the setting unit 1430 can calculate the value of the N using Equation 6 above.
  • the superframe structure parameter may include: each of the superframes included The number b of symbols, and the number of bits of data that can be carried by each of the symbols; c.
  • the error feedback parameter may include: canceling an uplink feedback error
  • the encapsulation of the uplink feedback error data is required for message encapsulation.
  • the expected number of bits Z of the message overhead means that message encapsulation of the uplink feedback error data is an expected value of the message overhead, which may be different from the actual cost value in some encapsulation formats. For example, in an HDLC-like encapsulation format, the overhead required for different payloads is different due to octet transparency. In some cases, this expected value can be set to zero.
  • the calculating unit 1440 is connected to the 10 unit 1410, and is configured to combine the error data received by the 10th unit 1410 from the network side device by the uplink symbol feedback of the uplink time of the continuous C superframes to be combined with one
  • the error data corresponding to the downlink detection symbol is used, and the crosstalk cancellation coefficient is calculated based on the combined error data.
  • C is an integer greater than or equal to N and less than or equal to M.
  • the VCE 1400 can also include a monitoring unit 1450.
  • the monitoring unit 1450 is connected to the setting unit 1430, and is mainly used for monitoring a change of a channel in the DSLAM system, and when the channel is newly created or deleted in the DSLAM system, the setting unit 1430 is re-based on the DSLAM system.
  • the superframe structure parameters and the error feedback parameters of the current channels in each of the channels calculate the value of the N, and the value of the M is re-determined based on the value of the N.
  • the VCE 1400 can cause the setting unit 1430 to dynamically adjust the M to an appropriate value according to the change of the channel in the DSLAM system through the monitoring unit 1450, so that even if a channel is newly created in the DSLAM system or Eliminating, and ensuring that the user side device and the network side device perform detection modulation and error feedback based on the values of the M, the C, and the L, that is, ensuring that the error feedback of the user side device is The detection modulation of the network side device is sequentially followed, thereby further improving the accuracy of the crosstalk cancellation coefficient.
  • FIG. 15 is a block diagram showing the structure of a VCE according to another embodiment of the present invention.
  • the VCE 1500 is applicable to a DSLAM system including the VCE, the network side device, and the user side device, and includes a 10 interface 1510 and a processor 1520.
  • the processor 1520 is connected to the 10 interface 1510 and is mainly used to:
  • the 10 interface 1510 notifies the network side device.
  • the detection sequence includes a string
  • each a bit constitutes one probe element, and a is an integer greater than or equal to 1.
  • N is the number of superframes required by the user side device to feed back the error measured on the downlink sounding symbols of one super frame.
  • [104] Combine the error data received by the network side device via the 10th interface 1510 by the uplink symbol feedback of the uplink time of the continuous C superframes into the error data corresponding to the one downlink detection symbol, and The crosstalk cancellation coefficient is calculated based on the combined error data.
  • C is an integer greater than or equal to N and less than or equal to M
  • M is an integer greater than or equal to N, indicating that the downlink sounding symbol is continuously superposed by the network side device to the same detecting element in the sounding sequence The number of frames.
  • the superframe structure parameter may include: each of the super The number of TTD frames included in the frame, the number b of uplink symbols included in each of the frames, and the number of bits of data that can be carried by each of the uplink symbols.
  • the error feedback parameter may include: a desired number of bits z of message overhead required for message encapsulation of the uplink feedback error; a vectored band number of each of the downlink probe symbols that requires feedback error
  • the vectorization band contains the number of subcarriers t k that require feedback error; and the number of bits y k required to represent the error measured on each of the subcarriers requiring feedback error in the first vectorization band.
  • the processor 1520 can calculate the value of the N using Equation 6 above.
  • the transceiver in the DSLAM system In the case that the duplex mode is Frequency Division Duplex (FDD), the superframe structure parameter may include: a number b of symbols included in each of the superframes, and each of the symbols can carry The number of bits of the upstream message data.
  • FDD Frequency Division Duplex
  • the error feedback parameter may include: canceling the uplink feedback error, encapsulating the required number of bits required for the cancellation, and the required number z of the overhead; each of the downlink detection symbols includes a vectored band that requires feedback error a number of sub-carriers need to feedback errors vectored band including a number t k; and the number of bits required is measured on subcarriers of each of the vectoring bands required error feedback error) ⁇
  • the processor 1520 can calculate the value of the N using Equation 7 above.
  • the processor 1520 is further configured to monitor a change of a channel in the DSLAM system, and re-based the DSLAM when detecting or deleting a channel in the DSLAM system.
  • the superframe structure parameters and error feedback parameters of the current channels in the system calculate the value of the N, and the value of the M is re-determined based on the value of the N.
  • the VCE 1500 can dynamically adjust the M to an appropriate value according to the change of the channel in the DSLAM system by the processor 1520, even if a channel new or eliminated occurs in the DSLAM system, the The user side device and the network side device perform probe modulation and error feedback based on the values of the ⁇ 1, the C, and the L, that is, ensuring that the error feedback of the user side device follows the network in an orderly manner.
  • the detection of the side device is modulated to further improve the accuracy of the crosstalk cancellation factor.
  • VCE 1600 is a block diagram showing the structure of a VCE according to still another embodiment of the present invention.
  • the VCE 1600 may be a host computer having computing power, a personal computer PC, or a portable computer or terminal that can be carried.
  • the specific embodiment of the present invention does not limit the specific implementation of the computing node.
  • the VCE 1600 includes a processor 1610, a 10 interface 1620, a memory 1630, and a bus 1640.
  • the processor 1610, the 10 interface 1620, and the memory 1630 pass through the bus 1640. Complete communication with each other.
  • the 10 interface 1620 is for communicating with a network side device in the DSLAM system.
  • the memory 1630 is for storing programs and/or data, and the program may be program code including computer operating instructions.
  • the memory 1630 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • Memory 1630 can also be a memory array.
  • the memory 1630 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • the processor 1610 is used for a program.
  • the processor 1610 may be a central processor
  • Circuit or one or more integrated circuits configured to implement embodiments of the present invention.
  • the processor 1610 causes the VCE 1600 to perform the following operations by executing a program stored in the memory 1330: the VCE allocates a sounding sequence to the network side device; The VCE calculates a value of N based on a superframe structure parameter and an error feedback parameter of each channel in the DSL AM system, determines a value of the M based on the value of the N, and notifies the network of the value of the M And the VCE receives the error data of the uplink symbol feedback that is up to the uplink time of the consecutive C superframes from the network side device, and the uplink symbol feedback that takes up the uplink uplink time of the consecutive C superframes
  • the error data constitutes error data corresponding to one downlink detection symbol, and the crosstalk cancellation coefficient is calculated based on the combined error data.
  • the sounding sequence includes a string of 0, 1 bits, and each a bit constitutes one detecting element, a is an integer greater than or equal to 1; C is an integer greater than or equal to N and less than or equal to M;
  • the user side device uplinks the number of super frames required for the error measured on the downlink sounding symbols of one super frame; and M indicates that the downlink sounding symbols are the same in the sounding device by the network side device.
  • the number of consecutive superframes modulated by a probe element, M being an integer greater than or equal to N.
  • a DSLAM system comprising one VCE 1400/1500/1600, at least two network side devices 800/900/1000 and at least two of the foregoing The user side device 1100/1200/1300; wherein the VCE 1400/1500/1600 sends a sounding sequence to the network side device 800/900/1000, and sends the value of M to the network side device 800/900/1000 and the user.
  • the pilot sequence consists of a sequence of 0, 1 sequences which are sequentially and cyclically modulated on the synchronization symbols.
  • the bit When the bit is 0, all probe subnes of the current synchronization symbol modulate the constellation point 00 in the 4-QAM constellation (corresponding to 1 + li); when the bit is 1, all the probes of the current synchronization symbol
  • the constellation point 11 (corresponding to - l - li) in the carrier-modulated 4-QAM constellation.
  • [1 18] in the case of modulating downlink detection symbols of consecutive M (M is greater than or equal to 2) superframes by using the same sounding element, it may be considered to group the subcarriers of the downlink sounding symbols, and When one of the sounding elements in the sounding sequence is modulated on the downlink sounding symbols of consecutive M superframes, the subcarriers in the downlink sounding symbols are modulated in a group by rotation.
  • the subcarriers of the sounding symbols may be divided into two groups, and the two sets of subcarriers are used alternately as the sounding subcarriers and the labeled subcarriers.
  • PS denotes a probe subcarrier
  • SF denotes a marker subcarrier.
  • the VCE needs to notify the user side device to the network side device and through the network side device to the corresponding format of the probe subcarrier and the labeled subcarrier on the probe symbol.
  • the subcarriers of the sounding symbols may also be divided into multiple groups, and the subcarrier groups are labeled in a first manner using, for example, a sounding carrier carrier group.
  • the format of the second mode correlation or the like alternates the subcarriers on the sounding symbols in groups.
  • the detection subcarrier group internally modulates the same detection element
  • the labeled subcarrier group internally modulates the opposite constellation points, so that the VCE only needs to notify the network side device and pass the network side device.
  • a pair of subcarrier groups modulating the same sounding element are probe subcarriers
  • a pair of subcarrier groups modulating mutually opposite constellation points are labeled subcarriers
  • group 1 and group 2 constitute a pair of subcarriers Pairs
  • Groups 3 and 4 simultaneously form a pair of subcarrier pairs.
  • V C E can obtain complete error information of all subcarriers corresponding to the sounding symbols, so that the channels on all the subcarriers can be completely estimated.
  • the subcarriers in the sounding symbols are not only used for detecting modulation, but also for at least two other types of uses such as mark modulation, that is, subcarriers in the sounding symbols have u use. (u is greater than or equal to 3).
  • the subcarriers of the sounding symbols can be divided into groups of u, and the subcarriers of the u group are alternately used as the u class.
  • the VCE needs to notify the user side device to the network side device and the user side device to notify the corresponding form of the subcarrier group of the u-type use on the probe symbol.
  • the subcarriers in the sounding symbols have a u-type use (u is greater than or equal to 3).
  • the set of u subcarrier groups on the sounding symbol is modulated in turn.
  • V C E can obtain complete error information of all subcarriers corresponding to the sounding symbols, so that the channels on all the subcarriers can be completely estimated.
  • the probe modulation method, the error feedback method, the crosstalk cancellation coefficient acquisition method, and the corresponding network side device, the user side device, the vectorization control entity, and the DSLAM system are provided by the network side device according to the embodiment of the present invention.
  • the same detecting element modulates the continuous M superframes, and the error data measured on the one downlink detecting symbol is fed back by the user side device with the uplink symbol of the uplink time of the continuous C superframes, according to an embodiment of the present invention.
  • the method enables the error feedback of the user side device to follow the detection modulation of the network side device in an orderly manner, and can be economically and accurately even if multiple super frames are needed to uplink feedback the error measured on one downlink detection symbol. Calculate the crosstalk cancellation factor of the DSLAM system.
  • the computer software product is typically stored in a computer readable storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及提供多路xDSL接入的DSLAM系统,公开了一种用于消除DSLAM系统中的信道的远端串音的探测调制方法、误差反馈方法、串音抵消系数获取方法以及相应的网络侧设备、用户侧设备、矢量化控制实体和DSLAM系统,包括:根据DSLAM系统的超帧结构参数和误差反馈参数计算上行反馈在一个下行探测符号上测量出的误差所需的超帧个数N,基于所计算出的N将探测序列的每个探测元素调制在各连续M个超帧的下行探测符号上,并利用最多占连续C个超帧上行时长的上行符号反馈在一个下行探测符号上测量出的误差,能够使误差反馈有序地跟随探测调制并完整反馈整个探测序列所对应的探测符号上的误差。

Description

探测调制方法、 误差反馈方法及相应设备和系统
技术领域
[01] 本发明属于通信领域, 涉及提供多路 xDSL (Digital Subscriber Line , 数字用户线路)接入的 DSLAM (DSL Access Multiplexer, DSL 接入复用器)系统, 具体涉及一种用于消除 DSLAM系统中的信道的 远端串音的探测调制方法、 误差反馈方法以及相应的网络侧设备、 用户侧设备、 矢量化控制实体和 DSLAM系统。 背景技术
[02] xDSL是在无屏蔽双绞线(Unshielded Twist Pair, UTP)上高速 传输数据的技术。 除了 SHDSL (Symmetric High bit rate DSL, 对称 高速 DSL)和 IDSL (Integrated Service Digital Network DSL, 基于综 合业务数字网的 DSL)等基带传输的 DSL外, 通带传输的 xDSL通过 频分复用技术与 POTS (Plain Old Telephone Service , 传统电话业务) 共存于同一对双绞线上, 其中 xDSL占据高频段, POTS占用 4KHz 以下基带部分, POTS信号与 xDSL信号通过分离器分离。
[03] 通带传输的 xDSL采用 DMT (Discrete Multi-Tone , 离散多音频 调制)。 图 1示出了 DMT超帧(Superframe)的结构。 如图 1所示, 1个 DMT超帧 包括 256个数据帧(data frame)和 1个探测符号(probe symbol)„ 其中, 探测符号主要用于探测信道, 对应于标准 G.993.2 和 G.993.5中的同步帧(sync frame)。
[04] 提供多路 xDSL接入的 系统叫做 DSLAM系统。 图 2示出 DSLAM的系统参考模型, 其中: xTU表示 xDSL收发信机单元; xTU-0表示在 ONU (Optical Network Unit, 光网络单元)上的 xTU , 即环路的运营商端, 可为中心局、 交换机、 机拒等网络侧设备; xTU-R表示远端的 xTU , 即环路的用户端, 可为家庭用 Modem (调制 解调器)、 无线路由器等用户侧设备。
[05] 由于电磁感应原理, DSLAM接入的多路信号之间会相互产生 所谓的串音(Crosstalk)干扰。 串音干扰包括如图 3a所示的近端串音 (Near End Cross-Talk , NEXT)和如图 3b所示的远端串音(Far End Cross-Talk , FEXT)。 其中, 由于 xDSL上下行信道采用频分复用或 者时分复用,近端串音通常不会对系统性能产生太大的危害。但是, 随着 xDSL使用的频段越来越宽, 远端串音愈发严重地影响线路的 传输性能、 降低信道速率。 例如, 当一捆电缆内有多路用户都要求 开通 xDSL业务时, 远端串音会使一些线路速率低、 性能不稳定、 甚至不能开通等, 最终导致 DSLAM的出线率比较低。
[06] 目前业界提出了矢量化(Vectoring)技术, 其主要是通过如图 4a和图 4b所示在 DSLAM端进行联合收发并使用信号处理方法来消 除每一路信号中的远端串音。
[07] 具体而言, 图 4a和图 4b所示的共享信道 H在频率域第 k个子载 波上可以表示为矩阵形式:
Figure imgf000004_0001
[08] 是从线对 到线对''的传输方程。 在实际情况中, 与 相等 且都等于共享信道 H中相互具有串音关系的信道个数, 在这里设为 M , 于是 H为一个 Μ χ Μ的信道传输矩阵。 又分别设 X是一个 M x l的 信道输入矢量, y是一个 M x l的信道输出矢量, n是一个 M x l的噪声 矢量。 最终, 共享信道 H的传输方程表达为:
y = Hx + n (公式 2)
[09] 如图 4a所示, 对于上行, 在 DSLAM端进行信号的联合接收处 理并引入一个串音抵消器 W , 使得在 DSLAM端接收到的信号为: y = Wy = WHx + Wn (公式 3)
[10] 显然, 当 WH为对角矩阵时, 串音可得到消除。
[1 1] 另一方面, 如图 4b所示, 对于下行, 在 DSLAM端进行信号的 联合发送处理并引入一个矢量预编码器 P ,使得在 DSLAM端发送出 去的信号为:
= Ρχ (公式 4)
[12] 相应地, xTU-R端接收到的信号为:
y = Hx + n = HPx + n (公式 5)
[13] 显然, 当 HP为对角矩阵时, 串音可得到消除。
[14] 通过在 DSLAM端对上下行信号进行联合处理, 矢量化技术能 够消除远端串音。 并且, 为了能够使用矢量化技术消除远端串音, 业界一般采用如下方法来获取串音抵消系数。
[15] 在线路的初始化阶段, 首先由 DSLAM端的 VCE (Vectoring Control Entity , 矢量化控制实体)按照一定规则给各 xTU-0端口分配 一个探测序列(Probe Sequence)。 探测序列被用于调制探测符号 (Probe Symbol) , 由一串 0、 1比特(bit)构成, 其中每 a个 bit构成一个 探测元素, 该探测元素将对应调制在一个探测符号上, 当 a等于 1 时每个 bit就构成一个探测元素。 在 G.993.5标准中, 该探测序列即 为导频序列(Pilot Sequence) , 该探测符号即为 同步符号(Sync Symbol) , 并且 a等于 1 , 即每个 bit调制在一个同步符号的所有探测 子载波(Probe Tone)上。
[16] 下面以每个 bit构成一个探测元素为例继续说明获取串音抵 消系数的方法。 各 xTU-0端口在如图 1所示的 DMT超帧中的探测符 号上依次并循环地调制探测序列中的各探测元素, 并发送包含调制 后的探测符号的 DMT超帧。 然后, xTU-R测量通过信道所接收到的 调制后探测符号相对于期望结果(例如, 经由理想的无失真信道传 输的结果)的误差, 并将所测量出的误差以预定格式表达成误差数 据后经由 xTU-0反馈至 VCE。 最后, VCE基于所接收到的误差数据 计算出串音抵消系数。
[17] 在上述串音抵消系数获取方法中, 各 xTU-0端口将探测序列 中的每个探测元素依次调制在探测符号上。这使得如果表示在一个 探测符号上测量出的误差所需的误差数据量超出了一个超帧的上 行消息数据承载量, 则误差反馈将无法跟随探测调制的操作时序。 在这种情况下, 要么选择使 xTU-R丟弃一部分针对在上行反馈误差 数据过程中接收到的探测符号所测量出的误差, 以使得误差反馈能 够跟随探测调制; 要么选择增加 xTU-R的緩存器, 以将所有需要上 行反馈的误差数据存储下来逐步发送。 显然, 前一种选择将降低误 差精度, 而后一种选择又将增加资源消耗。 发明内容
技术问题
[18] 有鉴于此, 本发明要解决的技术问题是, 如何有序地进行探 测调制和误差反馈, 以能够经济准确地利用矢量化技术来消除信道 的远端串音。
解决方案
为了解决上述技术问题, 根据本发明的实施例, 提供了一种探 测调制方法, 其可应用于包括网络侧设备以及用户侧设备的系统, 并且包括: 所述网络侧设备接收探测序列; 以及所述网络侧设备对 所述探测序列中的每个探测元素进行调制、并且每个所述探测元素 均调制在连续 M个超帧的下行探测符号上。 其中, 所述探测序列包 括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等 于 1的整数, 以及 M为大于或等于 N的整数, N表示所述用户侧设备 上行反馈在 1个下行探测符号上测量出的误差所需的超帧个数。 对于上述探测调制方法, 在一种可能的实现方式中, 所述网络 侧设备对所述探测序列中的每个探测元素进行调制、并且每个所述 探测元素均调制在连续 M个超帧的下行探测符号上的操作至少重 复一次。
对于上述探测调制方法, 在一种可能的实现方式中, 在所述网 络侧设备对所述探测序列中的每个探测元素进行调制、并且每个所 述探测元素均调制在连续 M个超帧的下行探测符号上的操作中,被 所述网络侧设备调制的超帧与同一时刻被所述 DSLAM系统中的其 它网络侧设备调制的超帧相同。
对于上述探测调制方法, 在一种可能的实现方式中, 还包括: 所述网络侧设备使各所述连续 M个超帧中的第 k个超帧的下行探测 符号具有结构固定的模式。 其中, k为大于或等于 1并且小于或等于 M的整数。
对于上述探测调制方法, 在一种可能的实现方式中, 还包括: 所述网络侧设备接收矢量化控制实体 VCE发送过来的所述 M的值, 并将所述 M的值通知给所述用户侧设备。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种网络侧设备,其可应用于包括所述网络侧设备以及用户侧设备的 系统, 并且包括: 通信接口, 用于与所述用户侧设备通过超帧进行 通信; 存储器, 用于存储程序和 /或数据; 以及处理器, 与所述通 信接口以及所述存储器连接, 用于运行所述程序, 以使得所述网络 侧设备执行上述探测调制方法。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种网络侧设备,其可应用于包括所述网络侧设备以及用户侧设备的 系统, 并且包括: 10单元, 用于接收探测序列; 调制单元, 与所 述 10单元和所述通信单元连接, 用于对所述探测序列中的每个探 测元素进行调制、并且每个所述探测元素均调制在连续 M个超帧的 下行探测符号上; 以及通信单元, 用于与所述用户侧设备通过超帧 进行通信。 其中, 所述探测序列包括一串 0、 1比特, 并且每 a个比 特构成 1个探测元素, a为大于或等于 1的整数, 以及 M为大于或等 于 N的整数, N表示所述用户侧设备上行反馈在 1个下行探测符号上 测量出的误差所需的超帧个数。
对于上述网络侧设备, 在一种可能的实现方式中, 还包括与所 述调制单元连接的循环单元,所述循环单元用于使所述调制单元重 复对所述探测序列中的每个探测元素进行调制、并且每个所述探测 元素均调制在连续 M个超帧的下行探测符号上的操作至少一次。
对于上述网络侧设备, 在一种可能的实现方式中, 还包括与所 述调制单元连接的同步单元,所述同步单元用于在所述调制单元对 所述探测序列中的每个探测元素进行调制、并且每个所述探测元素 均调制在连续 M个超帧的下行探测符号上的操作中,使被所述调制 单元调制的超帧与同一时刻被其它网络侧设备调制的超帧相同。
对于上述网络侧设备, 在一种可能的实现方式中, 还包括与所 述调制单元连接的标记单元,所述标记单元用于使各所述连续 M个 超帧中的第 k个超帧的下行探测符号具有结构固定的模式。 其中, k 为大于或等于 1并且小于或等于 M的整数。
对于上述网络侧设备, 在一种可能的实现方式中, 所述 10单 元还用于接收 VCE发送过来的所述 M的值, 以及所述通信单元还用 于将所述 M的值通知给所述用户侧设备。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种网络侧设备,其可应用于包括所述网络侧设备以及用户侧设备的 系统, 并且包括: 通信接口, 用于与所述用户侧设备通过超帧进行 通信; 10接口, 用于接收探测序列; 以及处理器, 与所述 10接口 连接, 用于对所述探测序列中的每个探测元素进行调制、 并且每个 所述探测元素均调制在连续 M个超帧的下行探测符号上。 其中, 所 述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整数; M为大于或等于 N的整数; N表示所述用 户侧设备上行反馈在 1个下行探测符号上测量出的误差所需的超帧 个数。
对于上述网络侧设备, 在一种可能的实现方式中, 所述处理器 还用于重复对所述探测序列中的每个探测元素进行调制、并且每个 所述探测元素均调制在连续 M个超帧的下行探测符号上的操作至 少一次。
对于上述网络侧设备, 在一种可能的实现方式中, 所述处理器 还用于在对所述探测序列中的每个探测元素进行调制、并且每个所 述探测元素均调制在连续 M个超帧的下行探测符号上的操作中,使 被所述处理器调制的超帧与同一时刻被其它网络侧设备调制的超 帧相同。
对于上述网络侧设备, 在一种可能的实现方式中, 所述处理器 还用于使各所述连续 M个超帧中的第 k个超帧的下行探测符号具有 结构固定的模式。其中, k为大于或等于 1并且小于或等于 M的整数。
对于上述网络侧设备, 在一种可能的实现方式中, 所述 10接 口还用于接收 VCE发送过来的所述 M的值, 以及所述通信接口还用 于将所述 M的值通知给所述用户侧设备。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种误差反馈方法,其可应用于包括网络侧设备以及用户侧设备的系 统, 并且包括: 所述用户侧设备计算在连续 M个超帧中的 L个超帧 的下行探测符号上测量出的误差的统计平均;以及所述用户侧设备 利用最多 占连续 C个超帧上行时长的上行符号反馈表示所述统计 平均的误差数据。 其中, 所述连续 M个超帧的下行探测符号已被所 述网络侧设备用探测序列中的同一个探测元素调制;所述探测序列 包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或 等于 1的整数; L为大于或等于 1并且小于或等于 M的整数; C为大 于或等于 N并且小于或等于 M的整数; M为大于或等于 N的整数, N 表示所述用户侧设备上行反馈在 1个下行探测符号上测量出的误差 所需的超帧个数。
对于上述误差反馈方法, 在一种可能的实现方式中, 还包括: 所述用户侧设备根据下行探测符号具有结构固定的模式的超帧来 定位所述连续 M个超帧。
对于上述误差反馈方法, 在一种可能的实现方式中, 还包括: 所述用户侧设备接收所述网络侧设备通知的所述 M的值,并基于所 述 M的值和自身 N的值确定或更新所述 C和 /或所述 L的值。 其中, 所述自身 N的值是指所述用户侧设备基于自身所接入的信道的超 帧结构参数和误差反馈参数计算出的 N的值。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种用户侧设备,其可应用于包括网络侧设备以及所述用户侧设备的 系统, 并且包括: 通信接口, 用于与所述网络侧设备通过超帧进行 通信; 存储器, 用于存储程序和 /或数据; 以及处理器, 与所述通 信接口以及所述存储器连接, 用于运行所述程序, 以使得所述用户 侧设备执行上述误差反馈方法。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种用户侧设备,其可应用于包括网络侧设备以及所述用户侧设备的 系统, 并且包括: 通信单元, 用于与所述网络侧设备通过超帧进行 通信; 计算单元, 与所述通信单元连接, 用于计算在连续 M个超帧 中的 L个超帧的下行探测符号上测量出的误差的统计平均; 以及分 载单元, 与所述计算单元和所述通信单元连接, 用于利用最多占连 续 C个超帧上行时长的上行符号承载表示所述统计平均的误差数 据。 其中, 所述连续 M个超帧的下行探测符号已被所述网络侧设备 用探测序列中的同一个探测元素调制; 所述探测序列包括一串 0、 1 比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整数; L为大于或等于 1并且小于或等于 M的整数; C为大于或等于 N并且 小于或等于 M的整数; 以及 M为大于或等于 N的整数, N表示所述 用户侧设备上行反馈在 1个下行探测符号上测量出的误差所需的超 帧个数。
对于上述用户侧设备, 在一种可能的实现方式中, 还包括与所 述通信单元以及所述计算单元连接的定位单元,所述定位单元用于 根据下行探测符号具有结构固定的模式的超帧来定位所述连续 M 个超帧。
对于上述用户侧设备, 在一种可能的实现方式中, 还包括与所 述通信单元、 所述计算单元以及所述分载单元连接的定值单元, 所 述通信单元还用于接收所述网络侧设备通知的所述 M的值, 以及所 述定值单元用于基于所述 M的值和自身 N的值确定或更新所述 C和 / 或所述 L的值。 其中, 所述自身 N的值是指所述定值单元基于所述 用户侧设备自身所接入的信道的超帧结构参数和误差反馈参数计 算出的 N的值。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种用户侧设备,其可应用于包括网络侧设备以及所述用户侧设备的 系统,并且包括: 通信接口,用于与所述网络侧设备通过超帧通信; 以及处理器, 与所述通信接口连接, 用于计算在连续 M个超帧中的 L个超帧的下行探测符号上测量出的误差的统计平均, 并利用最多 占连续 C个超帧上行时长的上行符号承载表示所述统计平均的误 差数据。 其中, 所述连续 M个超帧的下行探测符号已被所述网络侧 设备用探测序列中的同一个探测元素调制;所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整 数; L为大于或等于 1并且小于或等于 M的整数; C为大于或等于 N 并且小于或等于 M的整数; M为大于或等于 N的整数, N表示所述 用户侧设备上行反馈在 1个下行探测符号上测量出的误差所需的超 帧个数。
对于上述用户侧设备, 在一种可能的实现方式中, 所述处理器 还用于根据下行探测符号具有结构固定的模式的超帧来定位所述 连续 M个超帧。
对于上述用户侧设备, 在一种可能的实现方式中, 所述通信接 口还用于接收所述网络侧设备通知的所述 M的值, 以及所述处理器 还用于基于所述 M的值和自身 N的值确定或更新所述 C和 /或所述 L 的值。 其中, 所述自身 N的值是指所述处理器基于所述用户侧设备 自身所接入的信道的超帧结构参数和误差反馈参数计算出的 N的 值。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种串音抵消系数获取方法, 其可应用于包括 VCE、 网络侧设备以及 用户侧设备的 DSLAM系统, 并且包括: 所述 VCE给所述网络侧设 备分配探测序列; 所述 VCE基于所述 DSLAM系统中的各信道的超 帧结构参数和误差反馈参数计算 N的值, 基于所述 N的值确定 M的 值, 并将所述 M的值通知给所述网络侧设备; 以及所述 VCE从所述 网络侧设备接收通过最多 占连续 C个超帧上行时长的上行符号反 馈的误差数据, 将通过所述最多占连续 C个超帧上行时长的上行符 号反馈的误差数据组合成与 1个下行探测符号对应的误差数据, 并 基于所组合而成的误差数据计算串音抵消系数。 其中, 所述探测序 列包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于 或等于 1的整数; C为大于或等于 N并且小于或等于 M的整数; N表 示所述用户侧设备上行反馈在 1个超帧的下行探测符号上测量出的 误差所需的超帧个数; M表示下行探测符号被所述网络侧设备对所 述探测序列中的同一个探测元素调制的连续超帧的个数, M为大于 对于上述串音抵消系数获取方法, 在一种可能的实现方式中, 在所述 DSLAM系统中的收发机的双工模式为时分双工的情况下, 所述超帧结构参数包括: 每个所述超帧所包含的帧的个数, 每个所 述帧所包含的上行符号的个数,以及每个所述上行符号所能够承载 的消息数据的比特数。
对于上述串音抵消系数获取方法, 在一种可能的实现方式中, 在所述 DSLAM系统中的收发机的双工模式为频分双工的情况下, 所述超帧结构参数包括: 每个所述超帧所包含的符号的个数, 以及 每个所述符号所能够承载的上行消 , 数据的比特数。
对于上述串音抵消系数获取方法, 在一种可能的实现方式中, 所述误差反馈参数包括:对上行反馈误差数据进行消息封装所需的 消 , 开销的期望比特数;每个所述下行探测符号所包含的需要反馈 误差的矢量化频带的个数;每个所述矢量化频带所包含的需要反馈 误差的子载波的个数;以及表示在每个需要反馈误差的所述子载波 上测量出的误差所需的比特数。
对于上述串音抵消系数获取方法, 在一种可能的实现方式中, 还包括: 所述 VCE监测所述 DSLAM系统中的信道的变化, 并在检 测到所述 DSLAM系统中新建或者删除信道时, 重新基于所述 D S L A M系统中当前的各信道的超帧结构参数和误差反馈参数计算 所述 N的值, 并基于所述 N的值重新确定所述 M的值。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种 VCE , 其可应用于包括所述 VCE、 网络侧设备以及用户侧设备的 DSLAM系统, 并且包括: 10接口, 用于与所述网络侧设备连接; 存储器, 用于存储程序和 /或数据; 以及处理器, 与所述 10接口以 及所述存储器连接, 用于运行所述程序, 以使得所述 VCE执行上述 串音抵消系数获取方法。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种 VCE , 其可应用于包括所述 VCE、 网络侧设备以及用户侧设备的 DSLAM系统, 并且包括: 10单元, 与所述网络侧设备连接; 分配 单元, 与所述 10单元连接, 用于分配探测序列, 并将所分配的探 述 10单元连接, 用于基于所述 DSLAM系统中的各信道的超帧结构 参数和误差反馈参数计算 N的值, 基于所述 N的值确定 M的值, 并 将所述 M的值经由所述 10单元通知给所述网络侧设备; 以及计算单 元, 与所述 10单元连接, 用于将经由所述 10单元从所述网络侧设 备接收到的通过最多 占连续 C个超帧上行时长的上行符号反馈的 误差数据组合成与 1个下行探测符号对应的误差数据, 并基于所组 合而成的误差数据计算串音抵消系数。 其中, 所述探测序列包括一 串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1 的整数; C为大于或等于 N并且小于或等于 M的整数; N表示所述用 户侧设备上行反馈在 1个超帧的下行探测符号上测量出的误差所需 的超帧个数; M表示下行探测符号被所述网络侧设备对所述探测序 列中的同一个探测元素调制的连续超帧的个数, M为大于或等于 N 的整数。
对于上述 VCE , 在一种可能的实现方式中, 还包括与所述定值 单元连接的监测单元, 所述监测单元用于监测所述 DSLAM系统中 的信道的变化;以及所述定值单元还用于在所述监测单元检测到所 述 DSLAM系统中新建或者删除信道时, 重新基于所述 DSLAM系统 中当前的各信道的超帧结构参数和误差反馈参数计算所述 N的值, 并基于所述 N的值重新确定所述 M的值。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种 VCE , 其可应用于包括所述 VCE、 网络侧设备以及用户侧设备的 DSLAM系统, 并且包括: 处理器, 用于给所述网络侧设备分配探 测序列, 基于所述 D S L A M系统中的各信道的超帧结构参数和误差 反馈参数计算 N的值, 并基于所述 N的值确定 M的值; 以及 10接口, 与所述处理器连接,用于将所述探测序列以及所述 M的值通知给所 述网络侧设备, 并且从所述网络侧设备接收通过最多占连续 C个超 帧上行时长的上行符号反馈的误差数据。 其中, 所述探测序列包括 一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1 的整数; 所述处理器还用于将通过所述最多占连续 C个超帧上行时 长的上行符号反馈的误差数据组合成与 1个下行探测符号对应的误 差数据, 并基于所组合而成的误差数据计算串音抵消系数; C为大 于或等于 N并且小于或等于 M的整数; N表示所述用户侧设备上行 反馈在 1个超帧的下行探测符号上测量出的误差所需的超帧个数; M表示下行探测符号被所述网络侧设备对所述探测序列中的同一 个探测元素调制的连续超帧的个数, M为大于或等于 N的整数。
对于上述 VCE , 在一种可能的实现方式中, 所述处理器还用于 监测所述 DSLAM系统中的信道的变化, 并在检测到所述 DSLAM系 统中新建或者删除信道时, 重新基于所述 DSLAM系统中当前的各 信道的超帧结构参数和误差反馈参数计算所述 N的值, 并基于所述 N的值重新确定所述 M的值。
对于上述 VCE , 在一种可能的实现方式中, 在所述 DSLAM系 统中的收发机的双工模式为时分双工的情况下,所述超帧结构参数 包括: 每个所述超帧所包含的帧的个数, 每个所述帧所包含的上行 符号的个数,以及每个所述上行符号所能够承载的消息数据的比特 数。
对于上述 VCE , 在一种可能的实现方式中, 在所述 DSLAM系 统中的收发机的双工模式为频分双工的情况下,所述超帧结构参数 包括: 每个所述超帧所包含的符号的个数, 以及每个所述符号所能 够承载的上行消 , 数据的比特数。
对于上述 VCE , 在一种可能的实现方式中, 所述误差反馈参数 包括:对上行反馈误差数据进行消息封装所需的消息开销的期望比 特数;每个所述下行探测符号所包含的需要反馈误差的矢量化频带 的个数;每个所述矢量化频带所包含的需要反馈误差的子载波的个 数;以及表示在每个需要反馈误差的所述子载波上测量出的误差所 需的比特数。
为了解决上述技术问题, 根据本发明的另一实施例, 提供了一 种 DSLAM系统, 其包括: 上述 VCE , 至少两个上述网络侧设备; 以及至少两个上述用户侧设备; 其中所述 VCE将探测序列发送给所 述网络侧设备, 并将 M的值发送给所述网络侧设备和用户侧设备。
发明有益效果
[19] 通过根据 D S L A M系统的超帧结构参数和误差反馈参数计算 上行反馈在一个下行探测符号上测量出的误差所需的超帧个数 N , 基于所计算出的 N将探测序列的每个探测元素调制在各连续 M个超 帧的下行探测符号上, 并利用最多占连续 C个超帧上行时长的上行 符号反馈在一个下行探测符号上测量出的误差,根据本发明实施例 所提供的探测调制方法、 误差反馈方法、 串音抵消系数获取方法以 及相应的网络侧设备、 用户侧设备、 矢量化控制实体和 DSLAM系 统, 即使在需要使用多个超帧来上行反馈在一个下行探测符号上测 量出的误差的情况下,也能够使误差反馈有序地跟随探测调制并完 整反馈整个探测序列所对应的探测符号上的误差, 而无需增加緩存 区。
[20] 根据下面参考附图对示例性实施例的详细说明, 本发明的其 它特征及方面将变得清楚。 附图说明
[21] 包含在说明书中并且构成说明书的一部分的附图与说明书一 起示出了本发明的示例性实施例、 特征和方面, 并且用于解释本发 明的原理。
图 1示出 DMT超帧的结构示意图;
图 2示出 DSLAM的系统参考模型的示意图;
图 3a示出 DSLAM接入的多路信号之间的近端串音的产生原理 示意图;
图 3b示出 DSLAM接入的多路信号之间的远端串音的产生原理 示意图;
图 4a示出在 DSLAM端进行联合接收以消除远端串音的系统架 构示意图;
图 4b示出在 DSLAM端进行联合发送以消除远端串音的系统架 构示意图;
图 5示出根据本发明一实施例的探测调制方法、 误差反馈方法 以及串音抵消系数获取方法的流程图;
图 6 a ~ 6 c示出通过根据本发明一实施例的探测调制方法、 误差 反馈方法以及串音抵消系数获取方法使得误差反馈能够有序地跟 随探测调制的超帧流示意图;
图 7示出根据本发明另一实施例的探测调制方法、 误差反馈方 法以及串音抵消系数获取方法的流程图;
图 8示出根据本发明一实施例的网络侧设备的结构框图; 图 9示出根据本发明另一实施例的网络侧设备的结构框图; 图 10示出根据本发明又一实施例的网络侧设备的结构框图; 图 11示出根据本发明一实施例的用户侧设备的结构框图; 图 12示出根据本发明另一实施例的用户侧设备的结构框图; 图 13示出根据本发明又一实施例的用户侧设备的结构框图; 图 14示出根据本发明一实施例的 VCE的结构框图;
图 15示出根据本发明另一实施例的 VCE的结构框图;
图 16示出根据本发明又一实施例的 VCE的结构框图; 图 17示出根据本发明一实施例的分组探测调制的示意图; 以及 图 18示出根据本发明另一实施例的分组探测调制的示意图。 具体实施方式
[22] 以下将参考附图详细说明本发明的各种示例性实施例、 特征 和方面。 附图中相同的附图标记表示功能相同或相似的元件。 尽管 在附图中示出了实施例的各种方面, 但是除非特别指出, 不必按比 例绘制附图。
[23] 在这里专用的词"示例性 "意为 "用作例子、 实施例或说明性"。 这里作为"示例性 "所说明的任何实施例不必解释为优于或好于其 它实施例。
[24] 另外, 为了更好的说明本发明, 在下文的具体实施方式中给 出了众多的具体细节。 本领域技术人员应当理解, 没有这些具体细 节, 本发明同样可以实施。 在另外一些实例中, 对于大家熟知的方 法、 手段、 元件和电路未作详细描述, 以便于凸显本发明的主旨。
实施例 1
[25] 图 5示出根据本发明一实施例的探测调制方法、误差反馈方法 以及串音抵消系数获取方法的流程图。 如图 5所示, 根据本发明该 实施例的方法可应用于包括 VCE、 网络侧设备以及用户侧设备的 DSLAM系统, 并包括:
[26] 在 DSLAM系统内 的线路初始化时, 所述 VCE基于所述 DSLAM系统中的各信道的超帧结构参数和误差反馈参数计算 N的 值并基于所述 N的值确定 M的值(S511) ,然后将所述 M的值通知给所 述网络侧设备。 其中, N表示所述用户侧设备上行反馈在 1个超帧的 下行探测符号上测量出的误差所需的超帧个数。 M表示下行探测符 号被所述网络侧设备利用探测序列中的同一个探测元素调制的连 续超帧的个数, M为大于或等于 N的整数。所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整数。
[27] 基于此, 所述网络侧设备记录所述 M的值(S521) , 并将所述 M 的值通知给所述用户侧设备。
[28] 相应地,所述用户侧设备基于所接收到的所述 M的值和自身 N 的值确定 C和 L的值(S531 )。 其中, 所述自身 N的值是指所述用户侧 设备基于自身所连接的信道的超帧结构参数和误差反馈参数所计 算出的 N的值。 C为大于或等于 N并且小于或等于 M的整数, L为大 于或等于 1并且小于或等于 M的整数。
[29] 另一方面, 所述 VCE给所述网络侧设备分配探测序列(S512) , 并将所分配的探测序列发送给所述网络侧设备。
[30] 基于此, 所述网络侧设备在接收到所述 VCE分配的探测序列 之后, 对所述探测序列中的每个探测元素进行调制、 并且每个所述 探测元素均调制在连续 M个超帧的下行探测符号上(S522) , 并将调 制后的超帧发送给所述用户侧设备。 其中, 不同的探测元素被调制 在的 M个超帧的下行探测符号是不同的; 另外在一种可能的实现方 式中,在所述网络侧设备对所述探测序列中的每个探测元素进行调 制、 并且每个所述探测元素均调制在连续 M个超帧的下行探测符号 上的操作(S522)中, 被所述网络侧设备调制的超帧与同一时刻被所 述 DSLAM系统中的其它网络侧设备调制的超帧相同。 这样, 由于 所有线路分别使用各自探测序列的探测元素对相同时刻的 M个下 行探测符号进行重复调制, 这使得 M个下行探测符号上因线路造成 的串音等价, 从而能够确保串音抵消系数的准确度。
[31] 相应地,所述用户侧设备计算在所述连续 M个超帧中的 L个超 帧的下行探测符号上测量出的误差的统计平均(S532) , 并利用最多 占连续 C个超帧上行时长的上行符号反馈表示所述统计平均的误差 数据(S533)。 其中, 在 L等于 1的情况下, 所述 L个超帧可以是所述 M个超帧中的任意一个超帧。 在 L大于或等于 2的情况下, 所述 L个 超帧可以是所述 M个超帧中连续或者断续的多个超帧。 所述最多占 连续 C个超帧上行时长的上行符号可以是从某个超帧的头部开始的 连续多个超帧的上行符号,也可以是从某个超帧的任意中间部开始 的连续多个超帧的上行符号。
[32] 这样, 所述 VCE在经由所述网络侧设备接收到通过所述最多 占连续 C个超帧上行时长的上行符号反馈的误差数据后, 可将通过 所述最多占连续 C个超帧上行时长的上行符号反馈的误差数据组合 成与 1个下行探测符号对应的误差数据(S513) , 并基于所组合而成 的误差数据计算串音抵消系数( S 514 )。 在一些因消息开销超过预期 而导致的 C大于 M的情况下, 用户侧设备将终止本次反馈误差数据, 而进入下一次测量误差的反馈。
[33] 图 6a~6c示出通过图 5所示方法进行探测调制和误差反馈的超 帧流示意图。 明显可见, 通过在网络侧设备利用同一个探测元素调 制连续 M个超帧、 并在用户侧设备利用最多占连续 C个超帧上行时 长的上行符号反馈在 1个下行探测符号上测量出的误差数据, 根据 本发明一实施例的上述方法能够使得用户侧设备的误差反馈有序 地跟随网络侧设备的探测调制, 即使在需要使用多个超帧来上行反 馈在一个下行探测符号上测量出的误差的情况下,也能够经济准确 地计算出 DSLAM系统的串音抵消系数。
[34] 需要说明的,尽管图 5中将步骤 S511示出为在步骤 S512之前进 行, 但本发明不限于此, 本领域技术人员应能理解, 步骤 S511也可 在步骤 S512之后或者与步骤 S512同时进行。
[35] 此外,尽管图 5中为了筒化图示仅示出了一个探测元素的探测 调制和误差反馈, 但本领域技术人员应能理解, 在实际实施中, 探 测序列中的每个探测元素都要进行调制, 以确保所述用户侧设备至 少反馈一个完整的探测序列所对应的所有探测符号上的误差。 并 且, 在一种可能的实现方式中, 所述网络侧设备对所述探测序列中 的每个探测元素进行调制、 并且每个所述探测元素均调制在连续 M 个超帧的下行探测符号上的操作(S522)至少重复一次。 这样, 通过 利用同一个探测序列进行多次探测调制, 可利用多次获得的误差反 馈不断地计算或更新串音抵消系数,从而进一步提高串音抵消系数 的准确度。
[36] 在一种可能的实现方式中,在所述 DSLAM系统中的收发机的 双工模式为时分双工(TDD)的情况下, 所述超帧结构参数可包括: 每个所述超帧所包含的 TTD帧的个数 每个所述帧所包含的上行 符号的个数 b , 以及每个所述上行符号所能够承载的消 , 数据的比 特数 c。 所述误差反馈参数可包括: 对上行反馈误差数据进行消息 封装所需的消息开销的期望比特数 z; 每个所述下行探测符号所包 含的需要反馈误差的矢量化频带(Vectored Band)个数 第 个矢量 化频带包含的需要反馈误差的子载波的个数 tk ;以及表示在第 个矢 量化频带每个所述需要反馈误差的子载波上测量出的误差所需的 比特数)^ 并且, 所述 VCE可利用如下的公式 6计算所述 N的值, 其 中 w表示 G向上取整数。
N (公式 6)
Figure imgf000021_0001
[37] 例如, 对于 TDD的 G.fast系统, 一个典型的超帧包含 8个 TDD 帧, 每个 TDD帧包含 35个符号和两个保护时隙(guard time , 用于分 开上行和下行, 这两个 guard time的时长共 1个符号), 假设每个 TDD 帧内有 7个上行符号, 每个上行符号可承载 286个 bit的消息数据。 G.fast在使用 106MHz profile (模板)时每个探测符号具有近 2048个 子载波, 假设测量一个探测符号上 2000个子载波的误差, 并且假设 每个子载波的误差使用 16个 bit。 同时, 假设每次上行反馈误差数据 需要的期望消息开销为 8个 bit。 在这种情况下, 所述 VCE将计算出 N等于 2。
[38] 在另一种可能的实现方式中,在所述 DSLAM系统中的收发机 的双工模式为频分双工(FDD)的情况下,所述超帧结构参数可包括: 每个所述超帧所包含的符号的个数 b , 以及每个所述符号所能够承 载的上行消息数据的比特数 c。 所述误差反馈参数可包括: 对上行 反馈误差数据进行消息封装所需的消息开销的期望比特数 z; 每个 所述下行探测符号所包含的需要反馈误差的矢量化频带(Vectored Band)个数 第 个矢量化频带包含的需要反馈误差的子载波的个 数 tk;以及表示在第 个矢量化频带每个所述需要反馈误差的子载波 上测量出的误差所需的比特数)^ 并且, 所述 VCE可利用如下的公 式 7计算所述 N的值, 其中「α]表示 向上取整数。
Κ
N
bx
[39] 需要注意的是, 在 VCE利用上述公式 6或公式 7计算所述 N的 值时, 在 DSLAM系统包括 1个信道的情况下, 将针对该信道计算出 的 N值作为整个 DSLAM系统的 N值;而在 DSLAM系统包括多个信道 的情况下, 则将针对各个信道计算 N值, 并优选将最大的 N值作为 整个 DSLAM系统的 N值,以确保所有用户侧设备的误差反馈均有序 地跟随网络侧设备的探测调制。 此外, 所述对上行反馈误差数据进 行消息封装所需的消息开销的期望比特数 z是指对上行反馈误差数 据进行消 , 封装是消息开销的一个期望值,在一些封装格式中这个 期望值与实际的开销值可能不一样。 比如, 在类似于 HDLC的封装 格式中, 由于透明字节处理(octet transparency) , 不同净荷(payload) 所需的开销不一样。 在某些情况下, 这个期望值可以设定为 0。
[40] 在又一种可能的实现方式中, 在所述网络侧设备对所述探测 序列中的每个探测元素进行调制、并且每个所述探测元素均调制在 连续 M个超帧的下行探测符号上的操作(S522)中, 被所述网络侧设 备调制的超帧与同一时刻被所述 D S L A M系统中的其它网络侧设备 调制的超帧相同。 这样, 由于所有线路分别使用各自探测序列的探 测元素对相同时刻的 M个下行探测符号进行重复调制, 这使得 M个 下行探测符号上因线路造成的串音等价,从而能够确保串音抵消系 数的准确度。
[41] 在又一种可能的实现方式中, 在所述网络侧设备对所述探测 序列中的每个探测元素进行调制、并且每个所述探测元素均调制在 连续 M个超帧的下行探测符号上的操作(S522)中, 所述网络侧设备 可通过预定的方式, 例如 G.993.5中用于标记同步符号的模式 ( Pattern)的方式, 使各所述连续 M个超帧中的第 k个超帧的下行探 测符号具有结构固定的模式。 其中, k为大于或等于 1并且小于或等 于 M的整数。 这样, 由于所述网络侧设备使各所述连续 M个超帧中 的某个超帧的下行探测符号具有结构固定的模式,使得所述用户侧 设备能够根据下行探测符号是否具有结构固定的模式来准确定位 连续被同一个探测元素调制的 M个超帧, 从而更有助于所述用户侧 设备的误差反馈有序地跟随所述网络侧设备的探测调制。
实施例 2
[42] 图 7示出根据本发明另一实施例的探测调制方法、误差反馈方 法以及串音抵消系数获取方法的流程图。 图 7中标号与图 5相同的组 件具有相同的功能, 并省略对这些组件的说明。
[43] 如图 7所示, 与图 5所示的方法相比, 图 7所示方法的主要区别 在于, 所述 N、 所述 M、 所述 C和所述 L的值不是静态不变的, 而是 动态改变的。 其中, 所谓的静态不变是指例如, 在 DSLAM系统启 动时, V C E根据各信道的超帧结构参数和误差反馈参数计算出所述 N的值并设定所述 M的值,用户侧设备基于所述 M的值设定所述 C和 所述 L的值, 并且此后将一直使用所设定的所述 M、 所述 C和所述 L 的值进行探测调制、 误差反馈以及串音抵消系数获取, 直至该
DSLAM系统关闭或者重新启动。 然而, 所谓的动态改变是指, 所 述N、 所述 M、 所述 C和所述 L的值将跟随 DSLAM系统中信道的变化 而变化。
[44] 参照图 7具体而言, 所述 VCE监测所述 DSLAM系统中的信道 的变化(S711) , 并在检测到所述 DSLAM系统中新建或者删除信道 时, 重新基于所述 DSLAM系统中当前的各信道的超帧结构参数和 误差反馈参数计算所述 N的值, 并基于所述 N的值重新确定所述 M 的值(S712)。 相应地, 所述网络侧设备在接收到所述 VCE通知的所 述 M的值的情况下, 记录所述 M的值(S521)并将所述 M的值通知给 所述用户侧设备; 而所述用户侧设备在接收到所述网络侧设备通知 的所述 M的值的情况下, 基于所述 M的值和自身 N的值确定或更新 所述 C和 /或所述 L的值(S731)。 其中, 所述自身 N的值是指所述用户 侧设备基于自身所连接的信道的超帧结构参数和误差反馈参数计 算出的 N的值。
[45] 这样, 由于可动态地根据所述 DSLAM系统中信道的变化及时 将所述 N、所述 M、所述 C和所述 L调整为适当的值,即使所述 DSLAM 系统内出现了信道新建或消除,也能够确保所述用户侧设备的误差 反馈有序地跟随所述网络侧设备的探测调制, 图 7所示的探测调制 方法、误差反馈方法以及串音抵消系数获取方法能够进一步提高串 音抵消系数的准确度。
实施例 3
[46] 图 8示出根据本发明一实施例的网络侧设备的结构框图。如图 8所示, 网络侧设备 800可应用于包括 VCE、 网络侧设备以及用户侧 设备的 DSLAM系统, 并包括 10单元 810、 调制单元 820以及通信单 元 830。
[47] 如图 8所示, 10单元 810与 VCE以及调制单元 820连接, 主要用 于与 VCE通信, 例如接收所述 VCE分配的探测序列并发送给调制单 元 820。 其中, 所述探测序列包括一串 0、 1比特, 并且每 a个比特构 成 1个探测元素, a为大于或等于 1的整数。
[48] 调制单元 820与 10单元 810和通信单元 830连接,主要用于对所 述探测序列中的每个探测元素进行调制、并且每个所述探测元素均 调制在连续 M个超帧的下行探测符号上。 其中, M为大于或等于 N 的整数, N表示所述用户侧设备上行反馈在 1个下行探测符号上测量 出的误差所需的超帧个数。
[49] 通信单元 830与用户侧设备和调制单元 820连接, 主要用于与 用户侧设备通过超帧进行通信, 例如将下行探测符号被调制单元 820利用探测元素调制后的超帧发送至用户侧设备。
[50] 这样, 由于调制单元 820利用同一个探测元素调制连续 M个超 帧的下行探测符号, 根据本发明该实施例的网络侧设备 800使得所 述用户侧设备能够利用最多占连续 C个超帧上行时长的上行符号反 馈在 1个探测符号上测量出的误差, 从而确保了用户侧设备的误差 反馈有序地跟随网络侧设备 800的探测调制, 即使在需要使用多个 超帧来上行反馈在一个下行探测符号上测量出的误差的情况下,也 能够经济准确地计算出所述 DSLAM系统的串音抵消系数。
[51 ] 在一种可能的实现方式中, 如图 8所示, 网络侧设备 800还可 包括循环单元 840。 循环单元 840与调制单元 820连接, 主要用于使 调制单元 820重复对所述探测序列中的每个探测元素进行调制、 并 且每个所述探测元素均调制在连续 M个超帧的下行探测符号上的 操作至少一次。这样,通过利用同一个探测序列进行多次探测调制, 可利用多次获得的误差反馈不断地计算或更新串音抵消系数,从而 进一步提高串音抵消系数的准确度。
[52] 在另一种可能的实现方式中, 如图 8所示, 网络侧设备 800还 可包括同步单元 850。 同步单元 850与调制单元 820连接, 主要用于 在调制单元 820对所述探测序列中的每个探测元素进行调制、 并且 每个所述探测元素均调制在连续 M个超帧的下行探测符号上的操 作中, 使被调制单元 820调制的超帧与同一时刻被所述 DSLAM系统 中的其它网络侧设备调制的超帧相同。 这样, 由于所有线路分别使 用各自探测序列的探测元素对相同时刻的 M个下行探测符号进行 重复调制, 这使得 M个下行探测符号上因线路造成的串音等价, 从 而能够确保串音抵消系数的准确度。
[53] 在另一种可能的实现方式中, 如图 8所示, 网络侧设备 800还 可包括标记单元 860。 标记单元 860与调制单元 820连接, 主要用于 通过预定的方式, 例如 G.993.5中用于标记同步符号的模式(Pattern) 的方式, 使各所述连续 M个超帧中的第 k个超帧的下行探测符号具 有结构固定的模式。 其中, k为大于或等于 1并且小于或等于 M的整 数。 这样, 由于标记单元 860使各所述连续 M个超帧中的某个超帧 的下行探测符号具有结构固定的模式,使得所述用户侧设备能够根 据下行探测符号是否具有结构固定的模式来准确定位连续被同一 个探测元素调制的 M个超帧, 从而更有助于所述用户侧设备的误差 反馈有序地跟随网络侧设备 800的探测调制。
[54] 在另一种可能的实现方式中, 10单元还接收 VCE通知的所述 M的值, 并将所述 M的值通知给调制单元 820 , 同时还将所述 M的值 经由通信单元 830通知给所述用户侧设备。 这样, 由于网络侧设备 800可动态地根据 VCE的通知更新所述 M的值并经由通信单元 830 通知给所述用户侧设备, 即使所述 DSLAM系统内出现了信道新建 或消除,也能够确保所述用户侧设备的误差反馈有序地跟随网络侧 设备 800的探测调制, 从而进一步提高串音抵消系数的准确度。
实施例 4
[55] 图 9示出根据本发明另一实施例的网络侧设备的结构框图。如 图 9所示, 网络侧设备 900可应用于包括 VCE、 网络侧设备以及用户 侧设备的 DSLAM系统, 并包括 10接口 910、 处理器 920以及通信接 口 930。
[56] 其中,如图 9所示, 10接口 910与所示 VCE以及处理器 920连接, 主要用于与所述 VCE通信, 例如接收所述 VCE分配给网络侧设备 900的探测序列, 并将所接收到的探测序列发送给处理器 920。
[57] 通信接口 930与用户侧设备以及处理器 920连接, 主要用于与 所述用户侧设备通过超帧进行通信。
[58] 处理器 920与 10接口 910以及通信接口 930连接,主要用于对所 述探测序列中的每个探测元素进行调制、并且每个所述探测元素均 调制在连续 M个超帧的下行探测符号上。 其中, 所述探测序列包括 一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1 的整数。 M为大于或等于 N的整数, N表示所述用户侧设备上行反 馈在 1个下行探测符号上测量出的误差所需的超帧个数。
[59] 这样, 由于处理器 920利用同一个探测元素调制连续 M个超帧 的下行探测符号, 根据本发明该实施例的网络侧设备 900使得所述 用户侧设备能够利用最多占连续 C个超帧上行时长的上行符号反馈 在 1个探测符号上测量出的误差, 从而确保了用户侧设备的误差反 馈有序地跟随网络侧设备 900的探测调制, 即使在需要使用多个超 帧来上行反馈在一个下行探测符号上测量出的误差的情况下,也能 够经济准确地计算出所述 DSLAM系统的串音抵消系数。
[60] 在一种可能的实现方式中,处理器 920还可用于重复对所述探 测序列中的每个探测元素进行调制、并且每个所述探测元素均调制 在连续 M个超帧的下行探测符号上的操作至少一次。 这样, 通过利 用同一个探测序列进行多次探测调制, 可利用多次获得的误差反馈 不断地计算或更新串音抵消系数,从而进一步提高串音抵消系数的 准确度。
[61] 在另一种可能的实现方式中,处理器 920还可用于在对所述探 测序列中的每个探测元素进行调制、并且每个所述探测元素均调制 在连续 M个超帧的下行探测符号上的操作中, 使被处理器 920调制 的超帧与同一时刻被所述 DSLAM系统中的其它网络侧设备调制的 超帧相同。 这样, 由于所有线路分别使用各自探测序列的探测元素 对相同时刻的 M个下行探测符号进行重复调制, 这使得 M个下行探 测符号上因线路造成的串音等价,从而能够确保串音抵消系数的准 确度。
[62] 在另一种可能的实现方式中,处理器 920还可用于通过预定的 方式, 例如 G.993.5中用于标记同步符号的模式(Pattern)的方式, 使 各所述连续 M个超帧中的第 k个超帧的下行探测符号具有结构固定 的模式。 其中, k为大于或等于 1并且小于或等于 M的整数。 这样, 由于处理器 920使各所述连续 M个超帧中的某个超帧的下行探测符 号具有结构固定的模式,使得所述用户侧设备能够根据下行探测符 号是否具有结构固定的模式来准确定位连续被同一个探测元素调 制的 M个超帧, 从而更有助于所述用户侧设备的误差反馈有序地跟 随网络侧设备 900的探测调制。
[63] 在另一种可能的实现方式中, 处理器 920还可用于在 10接口 910接收到 VCE通知的所述 M的值的情况下,将所述 M的值经由通信 接口 930给所述用户侧设备。 这样, 由于网络侧设备 900可动态地根 据所述 VCE的通知更新所述 M的值并经由通信接口 930通知给所述 用户侧设备, 即使所述 DSLAM系统内出现了信道新建或消除, 也 能够确保所述用户侧设备的误差反馈有序地跟随网络侧设备 900的 探测调制, 从而进一步提高串音抵消系数的准确度。
实施例 5
[64] 图 10示出了本发明又一实施例的一种网络侧设备的结构框 图。 所述网络侧设备 1000可以是具备计算能力的主机服务器、 个人 计算机 PC、 或者可携带的便携式计算机或终端等。 本发明具体实施 例并不对计算节点的具体实现做限定。
[65] 网络侧设备 1000包括处理器 1010、 通信接口 1020、 10 (Input and Output, 输入输出)接口 1030、 存储器 1040和总线 1050。 其中, 处理器 1010、 通信接口 1020、 10接口 1030以及存储器 1040通过总线 1050完成相互间的通信。
[66] 通信接口 1020用于与 DSLAM系统中的用户侧设备通信。
[67] 10接口 1030用于与 DSLAM系统中的 VCE通信。
[68] 存储器 1040用于存放程序和 /或数据, 该程序可为包括计算机 操作指令的程序代码。 存储器 1040可能包含高速 RAM存储器, 也可 能还包括非易失性存储器(non- volatile memory) , 例如至少一个磁 盘存储器。 存储器 1040也可以是存储器阵列。 存储器 1040还可能被 分块, 并且所述块可按一定规则组合成虚拟卷。
[69] 处理器 1010用于程序。 处理器 1010可能是一个中央处理器
CPU , 或者是专用集成电路 ASIC (Application Specific Integrated
Circuit) , 或者是被配置成实施本发明实施例的一个或多个集成电 路。
[70] 在一种可能的实施方式中, 处理器 1010通过执行存储器 1040 所存储的程序, 而使得所述网络侧设备 1000执行以下操作: 所述网 络侧设备接收所述 VCE分配的探测序列; 其中所述探测序列是有 V C E发送过来的; 以及所述网络侧设备对所述探测序列中的每个探 测元素进行调制、 并且每个所述探测元素均调制在连续 M个超帧的 下行探测符号上。 其中, 所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整数; 以及, M为大 于或等于 N的整数, N表示所述用户侧设备上行反馈在 1个下行探测 符号上测量出的误差所需的超帧个数。
实施例 6
[71] 图 11示出根据本发明一实施例的用户侧设备的结构框图。 如 图 11所示, 用户侧设备 1100可应用于包括 VCE、 网络侧设备以及用 户侧设备的 DSLAM系统, 并包括通信单元 1110、 计算单元 1120以 及分载单元 1130。
[72] 其中, 如图 11所示, 通信单元 1110与所述网络侧设备、 计算 单元 1120以及分载单元 1130连接, 主要用于与所述网络侧设备通过 超帧进行通信,例如连续接收下行探测符号已被所述网络侧设备用 探测序列中的同一个探测元素调制的 M个超帧。 其中, 所述探测序 列包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于 或等于 1的整数。 M为大于或等于 N的整数, N表示所述用户侧设备 上行反馈在 1个下行探测符号上测量出的误差所需的超帧个数。
[73] 计算单元 1120与通信单元 1110和分载单元 1130连接, 主要用 于计算在连续 M个超帧中的 L个超帧的下行探测符号上测量出的误 差的统计平均。 其中, L为大于或等于 1并且小于或等于 M的整数。 在 L等于 1的情况下, 所述 L个超帧可以是所述 M个超帧中的任意一 个超帧。 在 L大于或等于 2的情况下, 所述 L个超帧可以是所述 M个 超帧中连续或者断续的多个超帧。
[74] 分载单元 1130与计算单元 1120和通信单元 1110连接, 主要用 于将表示计算单元 1120计算出的所述统计平均的误差数据上行承 载在最多占连续 C个超帧上行时长的上行符号上, 并将所述 C个超 帧经由通信单元 1110上行反馈给所述网络侧设备。 其中, C为大于 或等于 N并且小于或等于 M的整数。
[75] 这样, 由于分载单元 1130适应于所述网络侧设备利用同一个 探测元素调制连续 M个超帧而利用最多占连续 C个超帧上行时长的 上行符号反馈在 1个探测符号上测量出的误差, 能够有效确保用户 侧设备 1100的误差反馈有序地跟随所述网络侧设备的探测调制, 即 使在需要使用多个超帧来上行反馈在一个下行探测符号上测量出 的误差的情况下, 也能够经济准确地计算出所述 DSLAM系统的串 音抵消系数。
[76] 在一种可能的实现方式中, 用户侧设备 1100还可包括定位单 元 1140。 定位单元 1140与通信单元 1110以及计算单元 1120连接, 主 要用于根据通信单元 1110所接收到的超帧中的下行探测符号是否 具有结构固定的模式来定位所述连续 M个超帧, 并将定位结果告知 给计算单元 1120。 这样, 由于定位单元 1140能够根据下行探测符号 是否具有结构固定的模式准确定位连续被同一个探测元素调制的 M个超帧, 更有助于确保用户侧设备 1100的误差反馈有序地跟随所 述网络侧设备的探测调制。
[77] 在另一种可能的实现方式中, 用户侧设备 1100还可包括定值 单元 1150。 定值单元 1150与通信单元 1110、 计算单元 1120以及分载 单元 1130连接, 主要用于在通信单元 1110接收到所述网络侧设备通 知的所述 M的值的情况下, 基于所述 M的值和自身 N的值确定或更 新所述 C和 /或 L的值, 并将所述^1、 所述 C和所述 L的值通知给计算 单元 1120和分载单元 1130。其中,所述自身 N的值是指定值单元 1150 基于用户侧设备 1100自身所接入的信道的超帧结构参数和误差反 馈参数计算出的 N的值。 这样, 由于用户侧设备 1100可通过定值单 元 1150动态地根据所述网络侧设备通知的所述 M的值及时将所述 C 和 /或所述 L调整为适当的值, 即使所述 DSLAM系统内出现了信道 新建或消除, 也能够确保用户侧设备 1100的误差反馈有序地跟随所 述网络侧设备的探测调制, 从而进一步提高串音抵消系数的准确 度。
实施例 7
[78] 图 12示出根据本发明另一实施例的用户侧设备的结构框图。 如图 12所示, 用户侧设备 1200可应用于包括 VCE、 网络侧设备以及 用户侧设备的 D S L A M系统, 并包括通信接口 1210和处理器 1220。
[79] 其中, 如图 12所示, 通信接口 1210与所述网络侧设备和处理 器 1220连接, 主要用于与所述网络侧设备通过超帧进行通信, 例如 连续接收下行探测符号已被所述网络侧设备用探测序列中的同一 个探测元素调制的 M个超帧。 其中, 所述探测序列包括一串 0、 1比 特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整数。 M 为大于或等于 N的整数, N表示所述用户侧设备上行反馈在 1个下行 探测符号上测量出的误差所需的超帧个数。
[80] 处理器 1220与通信接口 1210连接, 主要用于计算在所述连续 M个超帧中的 L个超帧的下行探测符号上测量出的误差的统计平 均, 并利用最多占连续 C个超帧上行时长的上行符号承载表示所述 统计平均的误差数据。 其中, L为大于或等于 1并且小于或等于 M的 整数, C为大于或等于 N并且小于或等于 M的整数。 在 L等于 1的情 况下, 所述 L个超帧可以是所述 M个超帧中的任意一个超帧。 在 L 大于或等于 2的情况下, 所述 L个超帧可以是所述 M个超帧中连续或 者断续的多个超帧。
[81] 这样, 由于处理器 1220适应于所述网络侧设备利用同一个探 测元素调制连续 M个超帧而利用最多占连续 C个超帧上行时长的上 行符号反馈在 1个探测符号上测量出的误差, 能够有效确保用户侧 设备 1200的误差反馈有序地跟随所述网络侧设备的探测调制, 即使 在需要使用多个超帧来上行反馈在一个下行探测符号上测量出的 误差的情况下, 也能够经济准确地计算出所述 DSLAM系统的串音 抵消系数。
[82] 在一种可能的实现方式中, 处理器 1220还可用于根据通信接 口 1210所接收到的超帧中的下行探测符号是否具有结构固定的模 式来定位所述连续 M个超帧, 并将定位结果告知给计算单元 1120。 这样, 由于处理器 1220能够根据下行探测符号是否具有结构固定的 模式准确定位连续被同一个探测元素调制的 M个超帧, 更有助于确 保用户侧设备 1200的误差反馈有序地跟随所述网络侧设备的探测 调制。
[83] 在另一种可能的实现方式中, 处理器 1220还可用于在通信接 口 1210接收到所述网络侧设备通知的所述 M的值的情况下, 基于所 述 M的值和自身 N的值确定或更新所述 C和 /或 L的值。 其中, 所述自 身 N的值是指处理器 1220基于用户侧设备 1200自身所接入的信道的 超帧结构参数和误差反馈参数计算出的 N的值。 这样, 由于用户侧 设备 1200可通过处理器 1220动态地根据所述网络侧设备通知的所 述 M的值及时将所述 C和 /或所述 L调整为适当的值, 即使所述 DSLAM系统内 出现了信道新建或消除, 也能够确保用户侧设备 1200的误差反馈有序地跟随所述网络侧设备的探测调制,从而进一 步提高串音抵消系数的准确度。
实施例 8
[84] 图 13示出根据本发明又一实施例的用户侧设备的结构框图。 所述用户侧设备 1300可以是具备计算能力的主机服务器、个人计算 机 PC、 或者可携带的便携式计算机或终端等。 本发明具体实施例并 不对计算节点的具体实现做限定。
[85] 用户侧设备 1300包括处理器 1310、通信接口 1320、存储器 1330 和总线 1340。 其中, 处理器 1310、 通信接口 1320以及存储器 1330 通过总线 1340完成相互间的通信。
[86] 通信接口 1320用于与 DSLAM系统中的网络侧设备通信。
[87] 存储器 1330用于存放程序和 /或数据, 该程序可为包括计算机 操作指令的程序代码。 存储器 1330可能包含高速 RAM存储器, 也可 能还包括非易失性存储器(non- volatile memory) , 例如至少一个磁 盘存储器。 存储器 1330也可以是存储器阵列。 存储器 1330还可能被 分块, 并且所述块可按一定规则组合成虚拟卷。
[88] 处理器 1310用于程序。 处理器 1310可能是一个中央处理器 CPU , 或者是专用集成电路 ASIC (Application Specific Integrated Circuit) , 或者是被配置成实施本发明实施例的一个或多个集成电 路。
[89] 在一种可能的实施方式中, 处理器 1310通过执行存储器 1330 所存储的程序, 而使得所述用户侧设备 1300执行以下操作: 所述用 户侧设备计算在连续 M个超帧中的 L个超帧的下行探测符号上测量 出的误差的统计平均; 以及, 所述用户侧设备利用最多占连续 C个 超帧上行时长的上行符号反馈表示所述统计平均的误差数据。 其 中, 所述连续 M个超帧的下行探测符号已被所述网络侧设备用探测 序列中的同一个探测元素调制; 所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整数; L为大 于或等于 1并且小于或等于 M的整数; C为大于或等于 N并且小于或 等于 M的整数, 以及, M为大于或等于 N的整数, N表示所述用户侧 设备上行反馈在 1个下行探测符号上测量出的误差所需的超帧个 数。
实施例 9
[90] 图 14示出根据本发明一实施例的 VCE的结构框图。 如图 14所 示, 矢量化控制实体 VCE 1400可应用于包括所述 VCE、 网络侧设备 以及用户侧设备的 DSLAM系统, 并包括 10单元 1410、 分配单元 1420、 定值单元 1430以及计算单元 1440。
[91] 其中, 如图 14所示, 10单元 1410与所述网络侧设备以及分配 单元 1420、 定值单元 1430和计算单元 1440连接, 主要用于与所述网 络侧设备进行通信。
[92] 分配单元 1420与 10单元 1410连接, 主要用于分配探测序列, 并将所分配的探测序列经由 10单元 1410发送给所述网络侧设备。其 中, 所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测 元素, a为大于或等于 1的整数。
[93] 定值单元 1430与 10单元 1410连接,主要用于基于所述 DSLAM 系统中的各信道的超帧结构参数和误差反馈参数计算 N的值, 基于 所述 N的值确定所述 M的值, 并将所述 M的值经由 10单元 1410通知 给所述网络侧设备。 其中, N表示所述用户侧设备上行反馈在 1个超 帧的下行探测符号上测量出的误差所需的超帧个数。 M表示下行探 测符号被所述网络侧设备对所述探测序列中的同一个探测元素调 制的连续超帧的个数, M为大于或等于 N的整数。
[94] 并且,在所述 DSLAM系统中的收发机的双工模式为时分双工 (TDD)的情况下, 所述超帧结构参数可包括: 每个所述超帧所包含 的 TTD帧的个数 每个所述帧所包含的上行符号的个数 b , 以及每 个所述上行符号所能够承载的消息数据的比特数 c。 所述误差反馈 参数可包括: 对上行反馈误差进行消息封装所需的消息开销的期望 比特数 每个所述下行探测符号所包含的需要反馈误差的矢量化 频带(Vectored Band)个数^:, 第 个矢量化频带包含的需要反馈误差 的子载波的个数 以及表示在第 个矢量化频带每个所述需要反馈 误差的子载波上测量出的误差所需的比特数)^ 并且, 在一种可能 的实现方式中, 定值单元 1430可利用如上的公式 6计算所述 N的值。
[95] 另一方面,在所述 DSLAM系统中的收发机的双工模式为频分 双工(FDD)的情况下, 所述超帧结构参数可包括: 每个所述超帧所 包含的符号的个数 b , 以及每个所述符号所能够承载的上行消 , 数 据的比特数; c。 所述误差反馈参数可包括: 对上行反馈误差进行消
, 封装所需的消息开销的期望比特数 z; 每个所述下行探测符号所 包含的需要反馈误差的矢量化频带(Vectored Band)个数^:, 第 个矢 量化频带包含的需要反馈误差的子载波的个数^ ; 以及表示在第 个矢量化频带每个所述需要反馈误差的子载波上测量出的误差所 需的比特数)^ 并且, 在一种可能的实现方式中, 定值单元 1430可 利用如上的公式 7计算所述 N的值。
[96] 需要注意的是, 所述对上行反馈误差数据进行消息封装所需 的消息开销的期望比特数 Z是指对上行反馈误差数据进行消息封装 是消息开销的一个期望值,在一些封装格式中这个期望值与实际的 开销值可能不一样。 比如, 在类似于 HDLC的封装格式中, 由于透 明字节处理(octet transparency) ,不同净荷(payload)所需的开销不一 样。 在某些情况下, 这个期望值可以设定为 0。
[97] 计算单元 1440与 10单元 1410连接, 用于将经由 10单元 1410从 所述网络侧设备接收到的通过最多占连续 C个超帧上行时长的上行 符号反馈的误差数据组合成与 1个下行探测符号对应的误差数据, 并基于所组合而成的误差数据计算串音抵消系数。 其中, C为大于 或等于 N并且小于或等于 M的整数。
[98] 在一种可能的实现方式中, VCE 1400还可包括监测单元 1450。 监测单元 1450与定值单元 1430连接, 主要用于监测所述 DSLAM系统中的信道的变化, 并且在检测到所述 DSLAM系统中新 建或者删除信道时, 使定值单元 1430重新基于所述 DSLAM系统中 当前的各信道的超帧结构参数和误差反馈参数计算所述 N的值, 并 基于所述 N的值重新确定所述 M的值。 这样, 由于 VCE 1400可通过 监测单元 1450使定值单元 1430动态地根据所述 DSLAM系统中信道 的变化及时将所述 M调整为适当的值, 从而使得即使所述 DSLAM 系统内出现了信道新建或消除,也能够确保所述用户侧设备和所述 网络侧设备基于合适的所述 M、所述 C和所述 L的值进行探测调制和 误差反馈, 即确保所述用户侧设备的误差反馈有序地跟随所述网络 侧设备的探测调制, 从而进一步提高串音抵消系数的准确度。
实施例 10
[99] 图 15示出根据本发明另一实施例的 VCE的结构框图。 如图 15 所示, VCE 1500可应用于包括所述 VCE、 网络侧设备以及用户侧设 备的 DSLAM系统, 并包括 10接口 1510和处理器 1520。
[100] 其中, 如图 15所示, 10接口 1510与所述网络侧设备以及处理 器 1520连接, 主要用于与所述网络侧设备进行通信。
[101] 处理器 1520与 10接口 1510连接, 主要用于:
[102] 1、 给所述网络侧设备分配探测序列, 并将所述探测序列经由
10接口 1510通知给所述网络侧设备。 其中, 所述探测序列包括一串
0、 1比特, 并且每 a个比特构成 1个探测元素, a为大于或等于 1的整 数。
[103] 2、 基于所述 DSLAM系统中的各信道的超帧结构参数和误差 反馈参数计算 N的值, 并将所计算出的 N的值经由 10接口 1510通知 给所述网络侧设备。 其中, N表示所述用户侧设备上行反馈在 1个超 帧的下行探测符号上测量出的误差所需的超帧个数。
[104] 3、将经由 10接口 1510从所述网络侧设备接收到的通过最多占 连续 C个超帧上行时长的上行符号反馈的误差数据组合成与 1个下 行探测符号对应的误差数据, 并基于所组合而成的误差数据计算串 音抵消系数。 其中, C为大于或等于 N并且小于或等于 M的整数; M 为大于或等于 N的整数, 表示下行探测符号被所述网络侧设备对所 述探测序列中的同一个探测元素调制的连续超帧的个数。
[105] 在一种可能的实现方式中,在所述 DSLAM系统中的收发机的 双工模式为时分双工(TDD)的情况下, 所述超帧结构参数可包括: 每个所述超帧所包含的 TTD帧的个数 每个所述帧所包含的上行 符号的个数 b , 以及每个所述上行符号所能够承载的消 , 数据的比 特数 。 所述误差反馈参数可包括: 对上行反馈误差进行消息封装 所需的消息开销的期望比特数 z; 每个所述下行探测符号所包含的 需要反馈误差的矢量化频带(Vectored Band)个数 第 个矢量化频 带包含的需要反馈误差的子载波的个数 tk;以及表示在第 个矢量化 频带每个所述需要反馈误差的子载波上测量出的误差所需的比特 数 yk。 并且, 处理器 1520可利用如上的公式 6计算所述 N的值。
[106] 在另一种可能的实现方式中,在所述 DSLAM系统中的收发机 的双工模式为频分双工(FDD)的情况下,所述超帧结构参数可包括: 每个所述超帧所包含的符号的个数 b , 以及每个所述符号所能够承 载的上行消息数据的比特数 。 所述误差反馈参数可包括: 对上行 反馈误差进行消 , 封装所需的消 , 开销的期望比特数 z; 每个所述 下行探测符号所包含的需要反馈误差的矢量化频带(Vectored Band) 个数 第 个矢量化频带包含的需要反馈误差的子载波的个数 tk ; 以及表示在第 个矢量化频带每个所述需要反馈误差的子载波上测 量出的误差所需的比特数)^ 并且, 处理器 1520可利用如上的公式 7计算所述 N的值。
[107] 在又一种可能的实现方式中, 处理器 1520还可用于监测所述 DSLAM系统中的信道的变化, 并在检测到所述 DSLAM系统中新建 或者删除信道时, 重新基于所述 DSLAM系统中当前的各信道的超 帧结构参数和误差反馈参数计算所述 N的值, 并基于所述 N的值重 新确定所述 M的值。 这样, 由于 VCE 1500可通过处理器 1520动态地 根据所述 DSLAM系统中信道的变化及时将所述 M调整为适当的 值, 即使所述 DSLAM系统内出现了信道新建或消除, 也能够确保 所述用户侧设备和所述网络侧设备基于合适的所述^1、 所述 C和所 述 L的值进行探测调制和误差反馈, 即确保所述用户侧设备的误差 反馈有序地跟随所述网络侧设备的探测调制,从而进一步提高串音 抵消系数的准确度。
实施例 11
[108] 图 16示出根据本发明又一实施例的 VCE的结构框图。 所述 VCE 1600可以是具备计算能力的主机服务器、 个人计算机 PC、 或 者可携带的便携式计算机或终端等。本发明具体实施例并不对计算 节点的具体实现做限定。
[109] VCE 1600包括处理器 1610、 10接口 1620、 存储器 1630和总线 1640。其中,处理器 1610、 10接口 1620以及存储器 1630通过总线 1640 完成相互间的通信。
[1 10] 10接口 1620用于与 DSLAM系统中的网络侧设备通信。
[1 11] 存储器 1630用于存放程序和 /或数据, 该程序可为包括计算机 操作指令的程序代码。 存储器 1630可能包含高速 RAM存储器, 也可 能还包括非易失性存储器(non- volatile memory) , 例如至少一个磁 盘存储器。 存储器 1630也可以是存储器阵列。 存储器 1630还可能被 分块, 并且所述块可按一定规则组合成虚拟卷。
[1 12] 处理器 1610用于程序。 处理器 1610可能是一个中央处理器
CPU , 或者是专用集成电路 ASIC (Application Specific Integrated
Circuit) , 或者是被配置成实施本发明实施例的一个或多个集成电 路。
[1 13] 在一种可能的实施方式中, 处理器 1610通过执行存储器 1330 所存储的程序, 而使得所述 VCE 1600执行以下操作: 所述 VCE给所 述网络侧设备分配探测序列; 所述 VCE基于所述 DSL AM系统中的 各信道的超帧结构参数和误差反馈参数计算 N的值, 基于所述 N的 值确定所述 M的值, 并将所述 M的值通知给所述网络侧设备; 以及, 所述 VCE从所述网络侧设备接收通过最多占连续 C个超帧上行时长 的上行符号反馈的误差数据, 将通过所述最多占连续 C个超帧上行 时长的上行符号反馈的误差数据组成与 1个下行探测符号对应的误 差数据, 并基于所组合而成的误差数据计算串音抵消系数。 其中, 所述探测序列包括一串 0、 1比特,并且每 a个比特构成 1个探测元素, a为大于或等于 1的整数; C为大于或等于 N并且小于或等于 M的整 数; N表示所述用户侧设备上行反馈在 1个超帧的下行探测符号上测 量出的误差所需的超帧个数; 以及, M表示下行探测符号被所述网 络侧设备对所述探测序列中的同一个探测元素调制的连续超帧的 个数, M为大于或等于 N的整数。
实施例 12 [1 14] 根据本发明的一实施例, 还提供了一种 DSLAM系统, 该 DSLAM系统包括一个上述 VCE 1400/1500/1600、 至少两个上述网 络 侧 设 备 800/900/1000 以 及 至 少 两 个 上 述 用 户 侧 设 备 1100/1200/1300 ; 其中上述 VCE 1400/1500/1600将探测序列发送给 上述网络侧设备 800/900/1000 , 并将 M的值发送给上述网络侧设备 800/900/1000和用户侧设备 1100/1200/1300。
实施例 13
[1 15] 在 G.993.5中导频序列由一串 0、 1序列构成, 该序列将依次并 循环地调制在同步符号上。 当 bit为 0时, 当前同步符号的所有探测 子载波(probe tones)调制 4-QAM星座图中的星座点 00(对应为 1 + li); 当 bit为 1时, 当前同步符号的所有探测子载波调制 4-QAM星座图中 的星座点 11 (对应为 - l - li)。
[1 16] 然而, 在 G.993.5中, 同步符号上有一部分子载波作为 flag tones (标记子载波)用, 这些子载波上不能调制导频序列, 而只同时 调制 4-QAM 11或者 00。 例如, 当确认对端发来的某一个 OLR (在线 重配置)时, 将当前调制的 11切换为 00或者从 00切换为 11 , 切换后 继续保持, 直至下一次确认另一个 OLR。
[1 17] 由于标记子载波的存在, 将使得无法覆盖同步符号的所有子 载波进行探测调制和误差反馈, 这显然将影响信道估计的准确度。
[1 18] 有鉴于此, 在利用同一个探测元素调制连续 M(M大于或等于 2 )个超帧的下行探测符号的情况下, 可以考虑对所述下行探测符号 的子载波进行分组, 并在将所述探测序列中的一个探测元素调制在 连续 M个超帧的下行探测符号上时, 使所述下行探测符号中的子载 波按组轮流被调制。
[1 19] 在一种可能的实现方式中, 如图 17所示, 可将探测符号的子 载波分为两组, 交替使用这两组的子载波作为探测子载波和标记子 载波。 在图 17中, PS表示探测子载波, SF表示标记子载波。 在这种 情况下, VCE需要向网络侧设备并通过网络侧设备向用户侧设备通 知探测子载波、 标记子载波在探测符号上的对应形式。
[120] 在另一种可能的实现方式中, 如图 18所述, 还可将探测符号 的子载波分为多组, 并且使用例如探测子载波组以第一方式相关、 标记子载波组以第二方式相关等的格式对探测符号上子载波按组 交替进行调制。 具言之, 在分成 4组的情况下, 探测子载波组内部 调制相同的探测元素, 标记子载波组内部调制互为相反数的星座 点, 从而 VCE只需通知网络侧设备并通过网络侧设备通知用户侧设 备调制相同的探测元素的一对子载波组为探测子载波、调制互为相 反数的星座点的一对子载波组为标记子载波, 并且组 1和组 2构成一 对子载波组对, 组 3和组 4同时构成一对子载波组对。
[121 ] 这样, 由于探测符号的所有子载波均有机会被探测调制和误 差反馈, V C E可以获得对应探测符号的所有子载波的完整误差信 息, 从而可以完整地估计所有子载波上的信道。
[122] 另外, 在利用同一个探测元素调制连续 M (M大于或等于 u , u 大于或等于 3)个超帧的下行探测符号的情况下, 可以考虑对所述下 行探测符号的子载波进行分组, 并在将所述探测序列中的一个探测 元素调制在连续 M个超帧的下行探测符号上时, 使所述下行探测符 号中的子载波按组轮流被调制。
[123] 在一种可能的实现方式中, 探测符号中的子载波不仅用于探 测调制, 还需要用于例如标记调制之类的其它至少两类用途, 即探 测符号中的子载波有 u用途(u大于或等于 3) , 鉴于此, 可以将探测 符号的子载波分为 u组, 交替使用这 u组的子载波作为 u类用途。 在 这种情况下, VCE需要向网络侧设备并通过网络侧设备向用户侧设 备通知所述 u类用途的子载波组在探测符号上的对应形式。
[124] 在另一种可能的实现方式中,探测符号中的子载波共有 u类用 途(u大于或等于 3) , 鉴于此, 可以将探测符号的子载波分为 u乘以 V 组, 每 V组作为一个子载波组集合以构成 U个子载波组集合, 所述 U 类用途中第 k类用途(k=l , 2 , … …, u)将使用第 k种相关的格式对 探测符号上 u个子载波组集合轮流进行调制。 从而 VCE只需通知网 络侧设备并通过网络侧设备通知用户侧设备 u个子载波组集合分别 包括的子载波组与子载波以及以第 k种方式相关调制的子载波组集 合用于第 k类用途(k=l , 2 , ……, u)。
[125] 这样, 由于探测符号的所有子载波均有机会被探测调制和误 差反馈, V C E可以获得对应探测符号的所有子载波的完整误差信 息, 从而可以完整地估计所有子载波上的信道。
实用性
[126] 根据本发明实施例所提供的探测调制方法、 误差反馈方法、 串音抵消系数获取方法以及相应的网络侧设备、 用户侧设备、 矢量 化控制实体和 DSLAM系统, 通过在网络侧设备利用同一个探测元 素调制连续 M个超帧、 并在用户侧设备利用最多占连续 C个超帧上 行时长的上行符号反馈在 1个下行探测符号上测量出的误差数据, 根据本发明一实施例的方法能够使得用户侧设备的误差反馈有序 地跟随网络侧设备的探测调制, 即使在需要使用多个超帧来上行反 馈在一个下行探测符号上测量出的误差的情况下,也能够经济准确 地计算出 DSLAM系统的串音抵消系数。
[127] 本领域普通技术人员可以意识到, 本文所描述的实施例中的 各示例性单元及算法步骤, 能够以电子硬件、 或者计算机软件和电 子硬件的结合来实现。 这些功能究竟以硬件还是软件形式来实现, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以针 对特定的应用选择不同的方法来实现所描述的功能,但是这种实现 不应认为超出本发明的范围。
[128] 如果以计算机软件的形式来实现所述功能并作为独立的产品 销售或使用时, 则在一定程度上可认为本发明的技术方案的全部或 部分(例如对现有技术做出贡献的部分)是以计算机软件产品的形 式体现的。该计算机软件产品通常存储在计算机可读取的存储介质 中, 包括若干指令用以使得计算机设备(可以是个人计算机、 服务 器、 或者网络设备等)执行本发明各实施例方法的全部或部分步骤。 而前述的存储介质包括 U盘、 移动硬盘、 只读存储器(ROM , Read-Only Memory)、 随机存取存储器 (RAM , Random Access Memory)、 磁碟或者光盘等各种可以存储程序代码的介质。
[ 129] 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范 围并不局限于此, 也可以考虑将发明应用于 LT E - A的异构网络中, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻 易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种探测调制方法, 应用于包括网络侧设备以及用户侧设 备的系统, 其特征在于, 包括:
所述网络侧设备接收探测序列; 以及
所述网络侧设备对所述探测序列中的每个探测元素进行调制、 并且每个所述探测元素均调制在连续 M个超帧的下行探测符号上, 其中, 所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1 个探测元素, a为大于或等于 1的整数, 以及
M为大于或等于 N的整数, N表示所述用户侧设备上行反馈在 1 个下行探测符号上测量出的误差所需的超帧个数。
2、 根据权利要求 1所述的探测调制方法, 其特征在于, 所述网 络侧设备对所述探测序列中的每个探测元素进行调制、并且每个所 述探测元素均调制在连续 M个超帧的下行探测符号上的操作至少 重复一次。
3、 根据权利要求 1至 2中任一项所述的探测调制方法, 其特征 在于,在所述网络侧设备对所述探测序列中的每个探测元素进行调 制、并且每个所述探测元素均调制在连续 M个超帧的下行探测符号 上的操作中,
被所述网络侧设备调制的超帧与同一时刻被其它网络侧设备 调制的超帧相同。
4、 根据权利要求 1至 3中任一项所述的探测调制方法, 其特征 在于, 还包括:
所述网络侧设备使各所述连续 M个超帧中的第 k个超帧的下行 探测符号具有结构固定的模式,
其中, k为大于或等于 1并且小于或等于 M的整数。
5、 根据权利要求 1至 4中任一项所述的探测调制方法, 其特征 在于, 还包括:
所述网络侧设备接收矢量化控制实体 VCE发送过来的所述 M 的值。
6、 一种网络侧设备, 应用于包括所述网络侧设备以及用户侧 设备的系统, 其特征在于, 包括:
10单元, 用于接收探测序列;
调制单元, 与所述 10单元和所述通信单元连接, 用于对所述 探测序列中的每个探测元素进行调制、并且每个所述探测元素均调 制在连续 M个超帧的下行探测符号上; 以及
通信单元, 用于与所述用户侧设备通过超帧进行通信, 其中, 所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1 个探测元素, a为大于或等于 1的整数, 以及
M为大于或等于 N的整数, N表示所述用户侧设备上行反馈在 1 个下行探测符号上测量出的误差所需的超帧个数。
7、 根据权利要求 6所述的网络侧设备, 其特征在于, 还包括与 所述调制单元连接的循环单元,
所述循环单元用于使所述调制单元重复对所述探测序列中的 每个探测元素进行调制、并且每个所述探测元素均调制在连续 M个 超帧的下行探测符号上的操作至少一次。
8、 根据权利要求 6至 7中任一项所述的网络侧设备, 其特征在 于, 还包括与所述调制单元连接的同步单元,
所述同步单元用于在所述调制单元对所述探测序列中的每个 探测元素进行调制、并且每个所述探测元素均调制在连续 M个超帧 的下行探测符号上的操作中,使被所述调制单元调制的超帧与同一 时刻被其它网络侧设备调制的超帧相同。
9、 根据权利要求 6至 8中任一项所述的网络侧设备, 其特征在 于, 还包括与所述调制单元连接的标记单元,
所述标记单元用于使各所述连续 M个超帧中的第 k个超帧的下 行探测符号具有结构固定的模式, 其中, k为大于或等于 1并且小于或等于 M的整数。
10、根据权利要求 6至 9中任一项所述的网络侧设备, 其特征在 于,
所述 10单元还用于接收 V C E发送过来的所述 M的值。
11、 一种误差反馈方法, 应用于包括网络侧设备以及用户侧设 备的系统, 其特征在于, 包括: 符号上测量出的误差的统计平均; 以及
所述用户侧设备利用最多 占连续 C个超帧上行时长的上行符 号反馈表示所述统计平均的误差数据,
其中,所述连续 M个超帧的下行探测符号已被所述网络侧设备 用探测序列中的同一个探测元素调制,
所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测 元素, a为大于或等于 1的整数,
L为大于或等于 1并且小于或等于 M的整数,
C为大于或等于 N并且小于或等于 M的整数, 以及
M为大于或等于 N的整数, N表示所述用户侧设备上行反馈在 1 个下行探测符号上测量出的误差所需的超帧个数。
12、 根据权利要求 11所述的误差反馈方法, 其特征在于, 还包 括:
所述用户侧设备根据下行探测符号具有结构固定的模式的超 帧来定位所述连续 M个超帧。
13、 根据权利要求 11至 12中任一项所述的误差反馈方法, 其特 征在于, 还包括:
所述用户侧设备接收所述网络侧设备通知的所述 M的值, 并基 于所述 M的值和自身 N的值确定或更新所述 C和 /或所述 L的值, 其 中所述自身 N的值是指所述用户侧设备基于自身所接入的信道的 超帧结构参数和误差反馈参数计算出的 N的值。
14、 一种用户侧设备, 应用于包括网络侧设备以及所述用户侧 设备的系统, 其特征在于, 包括:
通信单元, 用于与所述网络侧设备通过超帧进行通信; 计算单元, 与所述通信单元连接, 用于计算在连续 M个超帧中 的 L个超帧的下行探测符号上测量出的误差的统计平均; 以及
分载单元, 与所述计算单元和所述通信单元连接, 用于利用最 多 占连续 C个超帧上行时长的上行符号承载表示所述统计平均的 误差数据,
其中,所述连续 M个超帧的下行探测符号已被所述网络侧设备 用探测序列中的同一个探测元素调制,
所述探测序列包括一串 0、 1比特, 并且每 a个比特构成 1个探测 元素, a为大于或等于 1的整数,
L为大于或等于 1并且小于或等于 M的整数,
C为大于或等于 N并且小于或等于 M的整数, 以及
M为大于或等于 N的整数, N表示所述用户侧设备上行反馈在 1 个下行探测符号上测量出的误差所需的超帧个数。
15、 根据权利要求 14所述的用户侧设备, 其特征在于, 还包括 与所述通信单元以及所述计算单元连接的定位单元,
所述定位单元用于根据下行探测符号具有结构固定的模式的 超帧来定位所述连续 M个超帧。
16、根据权利要求 14至 15中任一项所述的用户侧设备, 其特征 在于, 还包括与所述通信单元、 所述计算单元以及所述分载单元连 接的定值单元,
所述通信单元还用于接收所述网络侧设备通知的所述 M的值, 以及
所述定值单元用于基于所述 M的值和自身 N的值确定或更新 所述 C和 /或所述 L的值, 其中所述自身 N的值是指所述定值单元基 于所述用户侧设备自身所接入的信道的超帧结构参数和误差反馈 参数计算出的 N的值。
17、 一种数字用户线路复用 DSLAM系统, 其特征在于, 包括: 矢量化控制实体 VCE ,
至少两个根据权利要求 6至 10中任一项所述的网络侧设备; 以 及
至少两个根据权利要求 11至 16中任一项所述的用户侧设备; 发送给所述网络侧设备和用户侧设备; 其中 M表示下行探测符号被 所述网络侧设备利用探测序列中的同一个探测元素调制的连续超 帧的个数。
PCT/CN2013/073744 2013-04-03 2013-04-03 探测调制方法、误差反馈方法及相应设备和系统 WO2014161191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/073744 WO2014161191A1 (zh) 2013-04-03 2013-04-03 探测调制方法、误差反馈方法及相应设备和系统
CN201380002193.8A CN104247358B (zh) 2013-04-03 2013-04-26 探测调制方法、误差反馈方法及相应设备和系统
PCT/CN2013/074783 WO2014161211A1 (zh) 2013-04-03 2013-04-26 探测调制方法、误差反馈方法及相应设备和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/073744 WO2014161191A1 (zh) 2013-04-03 2013-04-03 探测调制方法、误差反馈方法及相应设备和系统

Publications (1)

Publication Number Publication Date
WO2014161191A1 true WO2014161191A1 (zh) 2014-10-09

Family

ID=51657438

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/073744 WO2014161191A1 (zh) 2013-04-03 2013-04-03 探测调制方法、误差反馈方法及相应设备和系统
PCT/CN2013/074783 WO2014161211A1 (zh) 2013-04-03 2013-04-26 探测调制方法、误差反馈方法及相应设备和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074783 WO2014161211A1 (zh) 2013-04-03 2013-04-26 探测调制方法、误差反馈方法及相应设备和系统

Country Status (1)

Country Link
WO (2) WO2014161191A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301612A (zh) * 2009-01-30 2011-12-28 兰蒂克德国有限责任公司 矢量传输中的串扰系数更新
CN102318209A (zh) * 2009-02-12 2012-01-11 阿尔卡特朗讯 使用公共探测序列进行多个信道系数的同时估计
CN102396160A (zh) * 2009-07-10 2012-03-28 华为技术有限公司 用于评估串扰信道的强度的方法
US20120147932A1 (en) * 2010-12-02 2012-06-14 John Wilkes Apparatuses and methods for enabling crosstalk vectoring in expandable communication systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248677B2 (ja) * 2008-07-01 2013-07-31 イカノス テクノロジー リミテッド メモリ削減されたベクトル化されたdsl
WO2012109856A1 (zh) * 2011-07-29 2012-08-23 华为技术有限公司 信号处理方法、设备及系统
WO2012149791A1 (zh) * 2011-09-30 2012-11-08 华为技术有限公司 一种串扰信道估计方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301612A (zh) * 2009-01-30 2011-12-28 兰蒂克德国有限责任公司 矢量传输中的串扰系数更新
CN102318209A (zh) * 2009-02-12 2012-01-11 阿尔卡特朗讯 使用公共探测序列进行多个信道系数的同时估计
CN102396160A (zh) * 2009-07-10 2012-03-28 华为技术有限公司 用于评估串扰信道的强度的方法
US20120147932A1 (en) * 2010-12-02 2012-06-14 John Wilkes Apparatuses and methods for enabling crosstalk vectoring in expandable communication systems

Also Published As

Publication number Publication date
WO2014161211A1 (zh) 2014-10-09

Similar Documents

Publication Publication Date Title
US10938427B2 (en) Dynamic digital communication system control
JP6657316B2 (ja) ディストリビューションポイントからのデータ伝送のための低電力モード
Oksman et al. The ITU-T's new G. vector standard proliferates 100 Mb/s DSL
US8270524B2 (en) Method and apparatus for interference post-compensation using a bandwidth-adaptive postcoder interface
US10615845B2 (en) Line synchronization method in OSD system, system, and vectoring control entity
US8031760B2 (en) Fast modem reconfiguration
WO2014032260A1 (zh) 一种兼容vdsl2传统用户端设备的方法、装置及系统
WO2007098674A1 (fr) Procédé et dispositif d'obtention d'informations sur la diaphonie
WO2012149791A1 (zh) 一种串扰信道估计方法、装置及系统
KR101403590B1 (ko) G.hn 기술을 엑세스 네트워크에 적용하기 위한 방법
WO2012126411A2 (zh) 数字用户线的信号处理方法、装置及数字用户线系统
Zafaruddin et al. Signal processing for gigabit-rate wireline communications: An overview of the state of the art and research challenges
WO2014100991A1 (zh) 一种线路的初始化方法及设备
EP1926272B1 (en) Dynamic power spectrum management method, spectrum optimization system and client device
WO2014201662A1 (zh) 线路初始化方法、设备及系统
WO2014161191A1 (zh) 探测调制方法、误差反馈方法及相应设备和系统
WO2008040249A1 (fr) Procédé et système de sélection d'un mode de marche
WO2014153726A1 (zh) 上行导频序列同步的方法、设备及系统
US20150365131A1 (en) Crosstalk Management For OFDM Communication Systems In Power Efficient Transmission Mode
CN104247358B (zh) 探测调制方法、误差反馈方法及相应设备和系统
US20130121435A1 (en) Crosstalk Management For OFDM Communication System In Power Efficient Transmission Mode
CN116418918A (zh) 最佳化可达速率的系统及适于数字用户线通信系统的方法
Wong et al. High-speed wireline communication systems
WO2008017274A1 (fr) Procédé et dispositif pour contrôler la qualité de communication en ligne
US20140269957A1 (en) Dynamic Bandwidth Allocation in OFDM Communication Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880901

Country of ref document: EP

Kind code of ref document: A1