WO2014160470A2 - Methods of integrating led chips with heat sinks, and led-based lighting assemblies made thereby - Google Patents

Methods of integrating led chips with heat sinks, and led-based lighting assemblies made thereby Download PDF

Info

Publication number
WO2014160470A2
WO2014160470A2 PCT/US2014/026746 US2014026746W WO2014160470A2 WO 2014160470 A2 WO2014160470 A2 WO 2014160470A2 US 2014026746 W US2014026746 W US 2014026746W WO 2014160470 A2 WO2014160470 A2 WO 2014160470A2
Authority
WO
WIPO (PCT)
Prior art keywords
led chips
pcb
led
heat sink
lighting assembly
Prior art date
Application number
PCT/US2014/026746
Other languages
French (fr)
Other versions
WO2014160470A3 (en
Inventor
Ming KONG
John Powell
Jeffrey Bisberg
Original Assignee
Albeo Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/802,444 external-priority patent/US9076951B2/en
Priority claimed from US13/802,401 external-priority patent/US8981629B2/en
Application filed by Albeo Technologies, Inc. filed Critical Albeo Technologies, Inc.
Publication of WO2014160470A2 publication Critical patent/WO2014160470A2/en
Publication of WO2014160470A3 publication Critical patent/WO2014160470A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09054Raised area or protrusion of metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • LEDs packaged light- emitting diodes
  • PCBs printed circuit boards
  • epoxy glass typically a fiberglass mesh encapsulated in an epoxy binder.
  • epoxy glass substrates have thermal conductivities in the range of about 0.25 to 0.6 W/(m°K), such that they are not particularly good thermal conductors.
  • the low thermal conductivity of PCBs can make removal of heat generated by the LEDs problematic.
  • a light emitting diode (LED)-based lighting assembly includes: a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink; a printed circuit board (PCB) forming an aperture therein corresponding to the pedestal, the PCB including electrical conductors on an upper surface thereof, the PCB being attached to the lower planar surface such that the upper planar surface extends into the aperture; and one or more LED chips attached directly to the upper planar surface and electrically connected to the conductors such that light from the one or more LED chips emits upwardly from the upper planar surface.
  • PCB printed circuit board
  • a light emitting diode (LED)-based lighting assembly includes: a heat sink configured with an extruded ridge that extends vertically from a planar surface of the heat sink; a printed circuit board (PCB) that includes electrical conductors on an upper surface thereof, the PCB being attached to the planar surface; and one or more LED chips, each of the LED chips being (a) attached directly to the ridge and (b) electrically connected to the conductors. Docket No. 555909
  • a method of integrating a light emitting diodes (LEDs) with a heat sink includes mounting a printed circuit board (PCB) to a planar surface of the heat sink, mounting one or more LED chips to a raised surface of the heat sink that is not covered by the PCB, and electrically connecting the LED chips to conductors on the PCB.
  • PCB printed circuit board
  • a light emitting diode (LED)-based lighting assembly includes: a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink; a dielectric layer forming an aperture therein corresponding to the pedestal, the dielectric layer being attached to the lower planar surface such that the upper planar surface extends into the aperture; at least one electrical conductor formed on an upper surface of the dielectric layer; and one or more LED chips attached directly to the upper planar surface and connected to the electrical conductor such that light from the one or more LED chips emits upwardly from the upper planar surface.
  • a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink; a dielectric layer forming an aperture therein corresponding to the pedestal, the dielectric layer being attached to the lower planar surface such that the
  • a light emitting diode (LED)-based lighting product includes: a panel having a first surface and a second surface counterfacing the first surface, at least part of the second surface forming an external surface of the lighting product; a dielectric layer that covers a portion of the first surface, the dielectric layer forming apertures therein such that the first surface is exposed within the apertures; at least one electrical conductor formed on an upper surface of the dielectric layer; and one or more LED chips attached to the first surface and electrically connected with the at least one electrical conductor.
  • FIG. 1 schematically illustrates an LED assembly that includes LED chips integrated with a heat sink, in an embodiment.
  • FIG. 2 is a cross-sectional illustration of the LED assembly along line
  • FIG. 3 is a cross-sectional illustration of the LED assembly along line
  • FIG. 4 schematically illustrates an LED assembly that includes LED chips integrated with a heat sink, in an embodiment.
  • FIG. 5 is a cross-sectional illustration of the LED assembly along line
  • FIG. 6 is a cross-sectional illustration of the LED assembly along line
  • FIG. 7 schematically illustrates an LED assembly that connects several groups of LED chips in series, with separate power routing for each of the groups, in an embodiment.
  • FIG. 8 schematically illustrates an LED assembly that includes LED chips integrated with a heat sink, in an embodiment.
  • FIG. 9 is a cross-sectional illustration of the LED assembly along line
  • FIG. 10 is a cross-sectional illustration of the LED assembly along line
  • FIG. 11 is a flowchart illustrating a method for making an LED assembly, in an embodiment.
  • FIG. 12 further illustrates geometric relationships among portions of the LED assembly of FIG. 1.
  • FIG. 13 is a cross-sectional view illustrating a light emitting diode (LED) assembly having features to improve light extraction, in an embodiment.
  • LED light emitting diode
  • FIG. 14 is a cross-sectional view illustrating a light emitting diode (LED) assembly having features to improve light extraction, in an embodiment.
  • LED light emitting diode
  • FIGS. 15 A, 15B and 15C are cross-sectional views of an LED chip- based lighting product, in an embodiment.
  • FIGS. 1 , 2 and 3 schematically illustrate one embodiment of a light emitting diode (LED) assembly.
  • LED assembly 100 includes LED chips 1 10 mounted upon a heat sink 120.
  • a "heat sink” is defined as a monolithic structure formed of a good or excellent thermal conductor that includes a base portion that includes a
  • a "good thermal conductor” is defined herein as a material having a bulk thermal conductivity of at least 15 W/(m°K), and an “excellent thermal conductor” is defined herein as a material having a bulk thermal conductivity of at least 100 W/(m°K).
  • fins are defined herein as parts of the heat sink that are formed monolithically with, but extend from, the base portion, and have an aspect ratio in at least one dimension of at least 2:1 , with a major dimension of each fin extending away from the base portion. The relationships among the base portion, mounting area, and fins are discussed further below in connection with FIG. 12.
  • FIG. 1 is a plan view of LED assembly 100, while FIGS. 2 and 3 are cross-sectional views taken at lines 2-2' and 3-3' respectively, in FIG. 1.
  • Heat sink 120 is formed of a good or excellent thermal conductor, and includes three integrally formed fins 121 extending downwardly from a base portion of the heat sink, as shown in FIGS. 2 and 3. A major dimension of each fin 121 is in a vertical direction, and an aspect ratio of each fin 121 is about 2.6:1.
  • Heat sink 120 includes pedestals 122 integrally formed on the base portion, upon which LED chips 110 mount utilizing adhesive 111 (visible in the cross sectional view of FIG. 2, but obscured by LED chips 110 in FIG. 1).
  • heat sink 120 when heat sink 120 is formed of an electrically conductive material (e.g., a metal), adhesive 111 may be conductive (e.g., electrically conductive epoxy, such as silver filled epoxy) to electrically connect LED chips 110 with heat sink 120.
  • adhesive 111 when heat sink 120 is formed of a nonconductive material that is still a good or excellent thermal conductor (e.g., a ceramic such as alumina), adhesive 111 may be either electrically conductive or electrically nonconductive (e.g., nonconductive epoxy).
  • LED assembly 100 also includes a printed circuit board (PCB) 130 that forms apertures 132 therethrough, corresponding to each pedestal 122.
  • PCB 130 is generally a dielectric or insulator (such as epoxy fiberglass, sometimes described with the trade name FR4, or a polymer) and may be a conventional circuit board or simply an insulating layer on planar surface 124.
  • PCB 130 typically has a thickness within a range of 0.1mm to 3mm (the lower end of this range corresponds to cases wherein PCB 130 is a simple dielectric layer).
  • PCB 130 attaches to planar surface 124 with adhesives, or mechanically (e.g., with screws) (planar surface 124 is obscured by PCB 130 in FIG. 1,
  • PCB 130 also includes electrical conductors 134 on an upper surface thereof, to which LED chips 1 10 connect with bond wires 112.
  • Bond wires 112 may be formed, for example, of aluminum, gold and/or alloys thereof; in particular, aluminum bond wires 112 are compatible with room temperature processing (e.g., of encapsulation material 140, discussed below).
  • Pedestals 122 may be raised or offset in the vertical direction with respect to a planar surface 124 of heat sink 120, such that a combined height of pedestal 122, LED 110 and adhesive 111 approximately matches a thickness of PCB 130, so that bond wires 112 need not span a large height differential.
  • an overall height of pedestals 122, adhesive 1 1 1 and LED chips 110 is less than a thickness of PCBs 130 to facilitate application of an encapsulation material, as described below.
  • dimensions of apertures 132 may be advantageous for dimensions of apertures 132 to closely match dimensions of pedestals 122, to minimize lengths of bond wires 112.
  • inner dimension 133 of aperture 132 is matched to outer dimension 123 of pedestal 122 such that PCB 130 is within one millimeter of pedestal 122 on all sides thereof.
  • LED chips 110 may be so-called “face up” LED chips having both anode and cathode connections on top sides thereof, and formed on insulating substrates (e.g., alumina, silicon carbide, aluminum nitride). Thus, LED chips 110 are electrically isolated from heat sink 120. The electrical isolation of LED chips 110 from heat sink 120 also enables use of low cost adhesive 1 1 1 for mounting LED chips 110 to pedestals 122.
  • adhesive 111 may be a nonconductive epoxy.
  • a first, optional, encapsulation material 140 may be utilized to protect LED chips 1 10.
  • the cross hatching used to illustrate encapsulation material 140 in FIG. 2 is not shown in FIG. 1 for clarity of illustration, but material 140 would extend across each aperture 132, including on top of LEDs 110.
  • Material 140 may be dispensed in liquid form, and dried or cured to form a solid or semisolid. Drying or curing materials like encapsulation material 140, whether through heating, application of radiation such as ultraviolet light, or simply by the passage of time shall be referred to herein as "curing.”
  • Material 140 may be, for example, silicone, epoxy or acrylic.
  • the height of pedestals 122 and the thickness of LED chips 1 10 and PCB 130 can be arranged so that a top surface of PCB 130 is higher than a top surface of LED chips 110.
  • the vertical heights of components in FIG. 2 are not drawn to scale; in particular, LEDs 110 may be thinner than shown, the height of LED
  • PCB 130 acts as a dam to contain encapsulation material 140 during operations such as dispense and curing, after which material 140 is dimensionally stable.
  • the ability of PCB 130 to act as a dam is especially advantageous when apertures 132 form closed shapes extending through PCB 130, as shown in FIG. 1. It is also possible to dispense a measured amount of material 140 upon LED chips 110 such that material 140 is held in place by surface tension until cured.
  • Material 140 may be admixed with a phosphor to provide a useful and/or aesthetically pleasing light color (e.g., low wavelength light emitted by LED chips 110 may excite the phosphor, which then emits some of the energy therein as longer wavelength light, to provide an approximation of white light).
  • a height of pedestals 122 may be jointly defined with thicknesses of PCBs 130 and LEDs 110 such that aperture 132 can contain a thickness of material 140 that is adequate to protect LEDs 110 and to provide enough phosphor to provide a desired amount of longer wavelength light.
  • LEDs 110 are about 0.2mm thick
  • PCBs 130 are within a range of 1 to 3 mm thick
  • pedestals 122 extend about 1mm above planar surface 124.
  • Heat sink 120 is configured for efficient dissipation of heat generated by LED chips 110 to ambient air and/or to other substances or structures.
  • heat sink 120 may couple thermally with a light fixture housing or a liquid cooling system.
  • LED chips 110 benefit from minimal thermal resistance between junctions where heat may be generated, and heat sink 120, since they are bonded directly to one another without any intermediate, low thermal conductivity object (e.g., a PCB) in the thermal dissipation path. That is, the embodiment shown in FIGS. 1-3 has no elements other than adhesive 11 1 between each LED chip 1 10 and heat sink 120.
  • each LED chip 1 10 may include reflective surfaces to help reflect light emitted by the LED chip outwardly instead of being absorbed.
  • edges of PCB 130 that form apertures 132, and pedestal 122 may include reflective surfaces or coatings to reflect light from LED chips 1 10 outwardly.
  • FIGS. 1-3 Certain features illustrated in FIGS. 1-3 are exemplary and will be understood as such by one skilled in the art. These features include, but are not limited to, the number, relative sizes and shapes of apertures 132, pedestals 122 and LED chips 1 10 shown; the layout of PCB 130 on heat sink 120; the routing of conductors 134 upon PCB 130; and the underside structure of heat sink 120.
  • FIGS. 4, 5 and 6 schematically illustrate another embodiment of a light emitting diode (LED) assembly 200.
  • LED assembly 200 includes LED chips 210 integrated with a heat sink 220.
  • FIG. 4 is a plan view of LED assembly 200, while FIGS. 5 and 6 are cross-sectional views taken at lines 5-5' and 6-6' respectively, in FIG. 4.
  • a "heat sink” is defined herein as a monolithic structure formed of a good or excellent thermal conductor, that includes a base portion having a mounting area for components, and at least two fins extending perpendicularly from the base portion in a direction opposite from the mounting area, for dissipating heat generated by the components to ambient air.
  • Heat sink 220 includes two integrally formed fins 221 , as shown in FIGS. 5 and 6; a major dimension of each fin 221 is in a vertical direction, and an aspect ratio of each fin 221 is about 8.9: 1.
  • Heat sink 220 includes an integrally formed ridge 222, upon which LED chips 210 mount directly, utilizing an adhesive 211 ; ridge 222 is raised or offset vertically with respect to a planar surface 224 of heat sink 220.
  • Adhesive 21 1 may be, for example, a nonconductive epoxy.
  • LED assembly 200 also includes PCBs 230, 230' mounted adjacent to ridge 222.
  • PCBs 230 and/or 230' may be positioned against ridge 222, that is, ridge 222 may be utilized as a mechanical stop such that either or both of PCBs 230, 230' abut ridge 222.
  • PCBs 230, 230' may mount to heat sink 220 with adhesives, or mechanically (e.g., with screws).
  • PCBs 230, 230' also include electrical conductors 234 on an upper surface thereof, to which LED chips 210 connect with bond wires 212.
  • Bond wires 212 may be formed, for example, of aluminum, gold and/or alloys thereof; in particular, aluminum bond wires 212 are compatible with room temperature processing.
  • LED chips 210 may also be so-called "face up" LED chips, and may be formed on insulating substrates. Thus, LED chips 210 can be electrically isolated from heat sink 220 so that low cost materials (e.g., a nonconductive epoxy as adhesive 211) can be used to mount LED chips 110 to ridge 222. LED chips 210 benefit from the same advantageous heat dissipation to heat sink 220 as LED chips 110 dissipating heat to heat sink 120, as discussed above. In particular, the embodiment shown in FIGS. 4-6 has no elements other than adhesive 211 between each LED chip 210 and heat sink 220.
  • optional encapsulation material 240 may be utilized to protect LED chips 210.
  • the height of ridge 222 and the thickness of LED chips 210, adhesive 211 and PCBs 230, 230' can be arranged so that a top surface of PCBs 230, 230' is higher than a top surface of LED chips 210.
  • optional dam elements 250, 250' may be installed at ends of assembly 200 atop ridge 222.
  • PCBs 230, 230' and dam elements 250, 250' act as dams to contain material 240 during operations such as dispense and curing, after which material 240 is dimensionally stable.
  • dam elements 250, 250' may be removed after material 240 is cured.
  • material 240 may be admixed with a phosphor to provide a useful and/or aesthetically pleasing light color.
  • FIGS. 1-6 may be adapted to various configurations of LED chips.
  • routing of conductors 234 upon PCB 230 or 230' could be modified to provide two terminals (e.g., power and ground) for each LED on a single PCB instead of utilizing two PCBs, as shown.
  • dam elements 250, 250' could be modified to provide a dam feature enclosing ridge 222 to contain an encapsulant material applied thereto.
  • LED assembly in order to increase the light output of an LED assembly, it may be advantageous to connect multiple LED chips as opposed to simply utilizing larger LED chips. Manufacturing yield, heat dissipation and output efficiency of LED chips are typically better for small LED chips than for large LED chips; however, such efficiencies tend to be diluted somewhat by prior art, individual chip packaging processes.
  • the present LED assembly methods and apparatus are advantageously compatible with the multiple LED chip approach, for several reasons. Pedestals and/or ridges upon which LED chips may be mounted can easily provide space for mounting multiple chips.
  • FIG. 7 schematically illustrates an LED assembly 300 that connects several groups of LED chips 310 in series, with separate power routing for each of the groups.
  • LED assembly 300 integrates LED chips 310 with ridge 222 of heat sink 220.
  • LED assembly 200 also includes PCBs 330, 330' mounted adjacent to ridge 222.
  • PCBs 330, 330' may mount to heat sink 220 with adhesives, or mechanically, and include conductors 334 on an upper surface thereof, to which some of LED chips 310 connect with bond wires 312.
  • LED assembly 300 also includes chip-to-chip bonding, utilizing bond wires 314, as shown.
  • bond wires 312 connect ends of “chains” of LED chips to conductors 334, while at least one bond wire 312 connects LED chips to one another.
  • Bond wires 312 and/or 314 may be formed of aluminum, gold and/or alloys thereof. Bond wires 312 and 314 may be formed of the same material as one another, but this is not required; forming bond wires 312 and 314 of different materials may be desirable so that the respective wirebonding processes (e.g., chip to chip for wirebonds 314, and chip to PCB for wirebonds 312) can be optimized for best performance, reliability and/or cost.
  • Some instances of LED chips 310 and bond wires 314 are not labeled in FIG. 7, for clarity of illustration.
  • LED chips 310 may also be so-called "face up" LED chips, and may be formed on insulating substrates. Thus, LED chips 310 can be electrically isolated from heat sink 220 so that low cost materials can be used to mount LED chips 110 to ridge 222. LED chips 310 benefit from the same advantageous heat dissipation to heat sink 220 as LED chips 110 dissipating heat to heat sink 120, or as LED chips 210 dissipating heat to heat sink 220, discussed above. Also, like optional encapsulation materials 140 and 240, a similar, optional encapsulation material (not shown in FIG. 7, for clarity of illustration) may be utilized to protect LED chips 310.
  • PCBs 330, 330' and optional dam elements 250, 250' act as dams to contain the material during operations such as dispense and curing, after which the material is dimensionally stable. If used, dam elements 250, 250' may be removed after the material is cured. The material may be admixed with a phosphor to provide a useful and/or aesthetically pleasing light color.
  • FIGS. 8, 9 and 10 schematically illustrate another embodiment of a light emitting diode (LED) assembly.
  • LED assembly 100' includes the same elements as
  • LED assembly 100 FIG. 1 , and further includes a second, optional, encapsulation material 150, as shown.
  • Encapsulation material 150 serves to further protect LED assembly 100' as compared to LED assembly 100, especially portions of bond wires 1 12 and conductors 134 that are not encapsulated in LED assembly 100.
  • Encapsulation material 150 may be, for example, epoxy, silicone or acrylic. Providing encapsulation material 150 separately from material 140 provides the advantage that materials 140 and 150 can be optimized differently for cost and performance purposes.
  • material 140 may include a phosphor, which may make material 140 costly on a volume basis, but material 150 may exclude phosphor so as to minimize a combined cost of materials 140 and 150.
  • Encapsulation material 150 can also be chosen to provide more rigorous environmental protection than encapsulation material 140.
  • Encapsulation material 150 may be dispensed and cured over areas of LED assembly 100', as shown, without any particular structure for containing material 150 (e.g., material 150 may be held in place merely by surface tension until it cures).
  • dam elements e.g., like dam elements 250, 250', FIGS. 4-6
  • FIG. 11 is a flowchart illustrating a method 400 for making an LED assembly.
  • Optional steps 410 and 420 fabricate a heat sink and a PCB with conductors thereon, respectively.
  • Step 430 mounts one or more PCBs to a planar surface of the heat sink. Examples of step 430 include mounting PCB 130 to surface 124 of heat sink 120 (FIGS. 1-3), and/or mounting PCB 230 (FIGS. 4-6) or PCB 330 (FIG. 7) to surface 224 of heat sink 220.
  • Step 440 mounts one or more LED chips to a raised surface of the heat sink. Examples of step 440 include mounting LED chips 110 to pedestals 122 of heat sink 120 (FIGS. 1-3), mounting LED chips 210 (FIGS.
  • Step 450 electrically connects the LED chips to conductors on the PCBs. Examples of step 450 include electrically connecting LED chips 110 to conductors 134 of PCB 130 (FIGS. 1-3), electrically connecting LED chips 210 to conductors 234 (FIGS. 4-6) and/or electrically connecting LED chips 310 to conductors 334 (FIG. 7).
  • An optional step 455 electrically connects LED chips to one another. An example of step 455 is connecting LED chips 310 to one another with wirebonds 314, FIG. 7.
  • step 460 of method 400 applies dam elements to a heat sink in order to complete a dam for an encapsulation material that is partially formed by one or more PCBs.
  • step 460 include applying dam elements 250, 250' to heat sink 220 to complete a dam that is partially formed by PCBs 230, 230' (FIGS. 4-6) or by PCBs 330, 330' (FIG. 7).
  • steps 470 and 480 dispense and cure, respectively, an encapsulation material. Examples of steps 470 and 480 are dispensing and curing, respectively, encapsulation material 140 (FIGS. 1-3) or encapsulation material 240 (FIGS. 4-6).
  • step 490 removes dam elements, if any, that were previously applied in step 460.
  • steps 490 include removing dam elements 250, 250' from heat sink 220 (FIGS. 4 and 7).
  • Another optional step 495 includes at least dispensing and curing a second encapsulation material; step 495 may also include forming a dam for the second encapsulation material and may include removing the dam after the second encapsulation material is cured.
  • An example of step 495 is dispensing and curing second encapsulation material 150 (FIGS. 8-10).
  • FIG. 12 further illustrates geometric relationships among portions of LED assembly 100 (also see FIG. 1).
  • LED assembly 100 is shown without bond wires and without certain labels as compared to its depiction in FIG. 1 , for clarity of illustration.
  • a "heat sink” is defined herein as a monolithic structure formed of a good or excellent thermal conductor, that includes a base portion having a mounting area for components, and at least two fins extending perpendicularly from the base portion in a direction opposite from the mounting area, for dissipating heat generated by the components to ambient air.
  • heat sink 120 is shown as having a base portion 170 with three fins 121 extending perpendicularly from base portion 170.
  • Base portion 170 extends across heat sink 120.
  • a mounting area 180 is identified with a heavy line on one side of base portion 170 and includes planar surfaces 124, and upper and outer surfaces of pedestal 122, as identified in FIG. 1.
  • a direction identified as arrow 195 is defined as the direction of the mounting area, and a direction identified as arrow 190 is defined as the direction opposite from the mounting area.
  • Each fin 121 has a length 165 that extends away from base portion 170, and a width 160.
  • An aspect ratio of length 165 to width 160 is greater than 2: 1, with the major dimension of each fin (e.g., length 165) extending away from the base portion.
  • FIGS. 13 and 14 are cross-sectional views illustrating embodiments of light emitting diode (LED) assemblies having features to improve light extraction. It is
  • LED assembly 600 includes LED chips 710 mounted upon a heat sink 620.
  • Heat sink 620 is formed of a good or excellent thermal conductor, and includes five integrally formed fins 621 extending downwardly from a base portion of the heat sink. A major dimension of each fin 621 is in a vertical direction, and an aspect ratio of each fin 621 is about 2.6: 1.
  • Heat sink 620 includes a pedestal 622 integrally formed on the base portion, upon which LED chips 610 mount. Pedestal 622 may be raised or offset in the vertical direction with respect to a planar surface 624 of heat sink 620.
  • LED assembly 600 also includes a printed circuit board (PCB) 630 that forms apertures 632 therethrough, corresponding to each pedestal 622.
  • PCB printed circuit board
  • PCB 630 attaches to planar surface 624 with adliesives, or mechanically.
  • PCB 630 also includes electrical conductors 634 on an upper surface thereof.
  • LED chips 610 are connected to conductors 634, and may be protected with encapsulation materials such as discussed above, but such connections and materials are not shown and/or labeled in FIG. 13 for clarity of illustration.
  • PCB 630 forms reflective surfaces 636 at aperture 632 to reflect light 615 from chip 610 that reaches surfaces 636.
  • Surfaces 636 may form non-vertical slopes, as shown in FIG. 13, such that light 615 reflects upwardly, as shown. The reflectivity and angle of surfaces 636 therefore help extract light 615 as compared with prior art assemblies that may absorb such light, undesirably turning it into heat (which must, in turn, be removed for performance and reliability reasons).
  • LED assembly 700 includes LED chips 710 mounted upon a heat sink 720.
  • Heat sink 720 is formed of a good or excellent thermal conductor, and includes integrally formed fins 721 similar to those shown in FIG. 13.
  • Heat sink 720 includes a pedestal 722 integrally formed on the base portion, upon which LED chips 710 mount.
  • LED assembly 700 also includes a printed circuit board (PCB) 730 that forms apertures 732 therethrough, corresponding to each pedestal 722.
  • PCB 730 attaches to planar surface 724 with adhesives, or mechanically.
  • PCB 730 also includes electrical conductors 734 on an upper surface thereof.
  • LED chips 710 are connected to conductors 734, and may be protected with encapsulation materials such as discussed above, but such connections and materials are not shown and/or labeled in FIG. 14 for clarity of illustration.
  • Pedestal 722 may be raised or offset in the vertical direction with respect to a planar surface 724 of heat sink 720. Pedestal 722 forms non-vertical, reflective surfaces 736, as shown in FIG. 14, such that light 715 reflects upwardly, as shown. The reflectivity and angle of surfaces 736 therefore help extract light 715.
  • non-vertical surfaces of a heat sink may be combined with reflective and/or non-vertical surfaces of a PCB, as shown in FIG. 13, to further increase light extraction from an LED assembly.
  • FIG. 15 A is a cross-sectional view of LED chip-based lighting product 850.
  • Lighting product 850 includes a panel 854 having a first surface 853 and a second surface 852, counterfacing first surface 853.
  • a dielectric layer 858 covers a portion of first surface 853, and forms apertures therethrough.
  • LED chips 810 are shown mounted in the apertures of dielectric layer 858 on first surface 853 of panel 854.
  • LED chips 810 are operatively connected to power supplies through conductors on dielectric layer 858, however for clarity of illustration the power supplies are not shown, and the conductors and connections from LED chips 810 to the conductors are not labeled within FIGS. 15A- 15C.
  • a frame 856 attaches to panel 854 and holds an optional diffuser 860.
  • Second surface 852 of panel 854, counterfacing first surface 853, is an external surface of lighting product 850 and is in thermal communication with ambient air 870.
  • ambient air herein denotes air entirely outside a lighting product, and excludes air within enclosed cavities of the lighting product. In the embodiment of FIG. 15 A, all of second side 852 forms an external surface of lighting product 850; however in other
  • an external surface may be formed by only a portion of a second side of a panel.
  • a region within LED chip-based lighting product 850 is denoted as A and is described in further detail below.
  • FIG. 15B is a detail view of region A shown in FIG. 15 A.
  • a region within region A is denoted as B and is described in further detail below.
  • FIG. 15C is a detail view of region B shown in FIG. 15B and shows LED chip 810 mounted within an aperture formed in dielectric layer 858 formed on first surface 853 of panel 854.
  • An arrow T illustrates an LED-backside direct thermal interface from LED chip 810 that extends perpendicularly through mounting surface 872, conductor 858 and panel 854 to ambient air 870.
  • LED- backside direct thermal interface thus excludes arrangements that require heat transfer in one or more lateral directions (any direction that is not perpendicular to the LED chip's mounting surface) to reach ambient air, and arrangements that transfer heat from an LED to enclosed cavities.
  • LED direct thermal interface denotes a similar arrangement of at most one panel and intervening mounting materials (e.g., solder, epoxy or adhesive) that extends perpendicularly away from a light emitting side of the packaged LED to ambient air.
  • a light emitting diode (LED)-based lighting assembly including: a heat sink having at least one pedestal integrally formed therewith; a printed circuit board (PCB) forming an aperture therein corresponding to the pedestal; and, one or more LED chips attached directly to the upper planar surface and electrically connected to the conductors such that light from the one or more LED chips emits upwardly from the upper planar surface.
  • PCB printed circuit board
  • the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink.
  • (A4) In any of the LED lighting assemblies denoted above as (Al)- (A3) wherein the heat sink includes a base portion that includes the pedestal on an upwardly facing first side thereof, and at least two fins integrally formed with a downwardly facing second side thereof, the fins extending downwardly from the second side.
  • each of the fins having an aspect ratio of at least 2: 1 with a major dimension of each fin extending in the vertical direction.
  • each of the fins having an aspect ratio of at least 5: 1.
  • the heat sink including an outer surface counterfacing the upper planar and lower planar surfaces, the outer surface forming an interface to ambient air for dissipating heat generated by the one or more LED lighting assembly chips.
  • the heat sink including a material having a bulk thermal conductivity of at least 15 W/(m°K).
  • the heat sink includes a material having a bulk thermal conductivity of at least 100 W/(m°K).
  • (Al 1) In any of the LED lighting assemblies denoted above as (Al)- (A10), further including a first encapsulation material that covers each of the pedestals and each of the one or more LED chips.
  • the first encapsulation material including one or more of silicone, epoxy and acrylic.
  • each of the one or more LED chips includes an electrically nonconductive substrate and is attached directly to the pedestal with an electrically nonconductive adhesive.
  • the electrically nonconductive substrate including a ceramic.
  • each of the one or more LED chips is formed on an electrically conductive substrate and is attached directly to the pedestal with an electrically conductive adhesive.
  • the PCB including at least one reflective surface at the aperture, such that light from the one or more LED chips that reaches the reflective surface reflects from the PCB.
  • the reflective surface forming a non- vertical slope such that the light from the one or more LED chips that reaches the reflective surface reflects upwardly.
  • the pedestal further forming a non-vertical surface adjacent to the upper planar surface that slopes upwardly as it extends away from the upper planar surface, such that light from the one or more LED chips that reaches the non-vertical surface reflects upwardly.
  • a light emitting diode (LED)-based lighting assembly including: a heat sink configured with an extruded ridge that extends vertically from a planar surface of the heat sink; a printed circuit board (PCB) that includes electrical conductors on an upper surface thereof, the PCB being attached to the planar surface; and one or more LED chips, each of the LED chips being (a) attached directly to the ridge and (b) electrically connected to the conductors.
  • PCB printed circuit board
  • each of the LED chips is electrically connected to the conductors utilizing bond wires.
  • the one or more LED chips including a plurality of LED chips, wherein at least two bond wires
  • Docket No. 531572 16 Docket No. 555909 connect ones of the plurality of LED chips directly to the conductors, and at least one bond wire connects ones of the plurality of LED chips to one another.
  • (CI) A method of integrating LEDs with a heat sink, the method including: mounting a printed circuit board (PCB) to a planar surface of the heat sink; mounting one or more LED chips to a raised surface of the heat sink that is not covered by the PCB; and electrically connecting the LED chips to conductors on the PCB.
  • PCB printed circuit board
  • (C3) In any of the methods of integrating LEDs denoted above as (Cl)- (C2), further including dispensing a first encapsulation material into the aperture, covering the LED chips therein with the PCB acting as a dam.
  • (C4) In the method of integrating LEDs denoted above as (C3), further including dispensing a second encapsulation material over the LED chips.
  • (C6) In any of the methods of integrating LEDs denoted above as (Cl)- (C5), further including: applying dam elements to the heat sink to complete a dam; and dispensing an encapsulation material into an area bounded by the dam, covering the LED chips therein.
  • (C7) In the method of integrating LEDs denoted above as (C6), further including: curing the encapsulation material; and removing the dam elements.
  • (C8) In any of the methods of integrating LEDs denoted above as (Cl)- (C7), wherein the raised surface is an upper surface of a pedestal that is vertically offset from the planar surface, and mounting the PCB includes aligning the PCB with the pedestal by positioning an edge of the PCB against an edge of the pedestal.
  • a light emitting diode (LED)-based lighting assembly including: a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink; a dielectric layer forming an aperture therein corresponding to the pedestal, the dielectric layer being attached to the lower planar surface such that the upper planar surface extends into the aperture; at least
  • the dielectric layer including one or more of epoxy, fiberglass and a polymer.
  • (D3) In any of the LED-based lighting assemblies denoted above as (D1)-(D2), the dielectric layer having a thickness of 0.1mm to 3mm.
  • a light emitting diode (LED)-based lighting product including: a panel having a first surface and a second surface counterfacing the first surface, at least part of the second surface forming an external surface of the lighting product; a dielectric layer that covers a portion of the first surface, the dielectric layer forming apertures therein such that the first surface is exposed within the apertures; at least one electrical conductor formed on an upper surface of the dielectric layer; and one or more LED chips attached to the first surface and electrically connected with the at least one electrical conductor.
  • LED light emitting diode
  • (E2) In the LED-based lighting product denoted above as (El), further including a first encapsulation material that covers each of the one or more LED chips, wherein the dielectric layer acts as a dam to contain the first encapsulation material during dispense of the encapsulation material.
  • (E4) In any of the LED-based lighting products denoted above as (E2)- (E3), wherein the first encapsulation material is admixed with a phosphor.
  • (E5) In any of the LED-based lighting products denoted above as (E2)- (E4), further including a second encapsulation material that covers bond wires that electrically connect each of the one or more LED chips to the conductors.

Abstract

An LED-based lighting assembly includes a heat sink having at least one pedestal with an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink. A PCB forms an aperture corresponding to the pedestal, includes electrical conductors on an upper surface thereof, and is attached to the lower planar surface. The upper planar surface extends into the aperture, and one or more LED chips attach directly to the upper planar surface and connect to the conductors such that light emits upwardly. A method of integrating LEDs with a heat sink includes mounting a PCB to a planar surface of the heat sink, mounting one or more LED chips to a raised surface of the heat sink that is not covered by the PCB, and electrically connecting the LED chips to conductors on the PCB.

Description

Docket No. 555909
METHODS OF INTEGRATING LED CHIPS WITH HEAT SINKS, AND LED- BASED LIGHTING ASSEMBLIES MADE THEREBY
RELATED APPLICATIONS
[0001] This application claims priority to U.S. Patent Application Serial No. 13/802,401, filed March 13, 2013, and which is incorporated by reference in its entirety herein.
BACKGROUND
[0002] Present day lighting apparatus typically mounts packaged light- emitting diodes (LEDs) to printed circuit boards (PCBs) that are sometimes fabricated of so-called epoxy glass, typically a fiberglass mesh encapsulated in an epoxy binder.
However, epoxy glass substrates have thermal conductivities in the range of about 0.25 to 0.6 W/(m°K), such that they are not particularly good thermal conductors. The low thermal conductivity of PCBs can make removal of heat generated by the LEDs problematic.
SUMMARY
[0003] In an embodiment, a light emitting diode (LED)-based lighting assembly includes: a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink; a printed circuit board (PCB) forming an aperture therein corresponding to the pedestal, the PCB including electrical conductors on an upper surface thereof, the PCB being attached to the lower planar surface such that the upper planar surface extends into the aperture; and one or more LED chips attached directly to the upper planar surface and electrically connected to the conductors such that light from the one or more LED chips emits upwardly from the upper planar surface.
[0004] In an embodiment, a light emitting diode (LED)-based lighting assembly includes: a heat sink configured with an extruded ridge that extends vertically from a planar surface of the heat sink; a printed circuit board (PCB) that includes electrical conductors on an upper surface thereof, the PCB being attached to the planar surface; and one or more LED chips, each of the LED chips being (a) attached directly to the ridge and (b) electrically connected to the conductors. Docket No. 555909
[0005] In an embodiment, a method of integrating a light emitting diodes (LEDs) with a heat sink includes mounting a printed circuit board (PCB) to a planar surface of the heat sink, mounting one or more LED chips to a raised surface of the heat sink that is not covered by the PCB, and electrically connecting the LED chips to conductors on the PCB.
[0006] In an embodiment, a light emitting diode (LED)-based lighting assembly includes: a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink; a dielectric layer forming an aperture therein corresponding to the pedestal, the dielectric layer being attached to the lower planar surface such that the upper planar surface extends into the aperture; at least one electrical conductor formed on an upper surface of the dielectric layer; and one or more LED chips attached directly to the upper planar surface and connected to the electrical conductor such that light from the one or more LED chips emits upwardly from the upper planar surface.
[0007] In an embodiment, a light emitting diode (LED)-based lighting product includes: a panel having a first surface and a second surface counterfacing the first surface, at least part of the second surface forming an external surface of the lighting product; a dielectric layer that covers a portion of the first surface, the dielectric layer forming apertures therein such that the first surface is exposed within the apertures; at least one electrical conductor formed on an upper surface of the dielectric layer; and one or more LED chips attached to the first surface and electrically connected with the at least one electrical conductor.
BRIEF DESCRIPTION OF DRAWINGS
[0008] FIG. 1 schematically illustrates an LED assembly that includes LED chips integrated with a heat sink, in an embodiment.
[0009] FIG. 2 is a cross-sectional illustration of the LED assembly along line
2- 2' shown in FIG. 1.
[0010] FIG. 3 is a cross-sectional illustration of the LED assembly along line
3- 3' shown in FIG. 1.
[0011] FIG. 4 schematically illustrates an LED assembly that includes LED chips integrated with a heat sink, in an embodiment.
Docket No. 531572 2 Docket No. 555909
[0012] FIG. 5 is a cross-sectional illustration of the LED assembly along line
5- 5' shown in FIG. 4.
[0013] FIG. 6 is a cross-sectional illustration of the LED assembly along line
6- 6' shown in FIG. 4.
[0014] FIG. 7 schematically illustrates an LED assembly that connects several groups of LED chips in series, with separate power routing for each of the groups, in an embodiment.
[0015] FIG. 8 schematically illustrates an LED assembly that includes LED chips integrated with a heat sink, in an embodiment.
[0016] FIG. 9 is a cross-sectional illustration of the LED assembly along line
9- 9' shown in FIG. 8.
[0017] FIG. 10 is a cross-sectional illustration of the LED assembly along line
10- 10' shown in FIG. 8.
[0018] FIG. 11 is a flowchart illustrating a method for making an LED assembly, in an embodiment.
[0019] FIG. 12 further illustrates geometric relationships among portions of the LED assembly of FIG. 1.
[0020] FIG. 13 is a cross-sectional view illustrating a light emitting diode (LED) assembly having features to improve light extraction, in an embodiment.
[0021] FIG. 14 is a cross-sectional view illustrating a light emitting diode (LED) assembly having features to improve light extraction, in an embodiment.
[0022] FIGS. 15 A, 15B and 15C are cross-sectional views of an LED chip- based lighting product, in an embodiment.
DETAILED DESCRIPTION OF DRAWINGS
[0023] The present disclosure may be understood by reference to the following detailed description taken in conjunction with the drawings briefly described below. It is noted that, for purposes of illustrative clarity, certain elements in the drawings may not be drawn to scale.
[0024] FIGS. 1 , 2 and 3 schematically illustrate one embodiment of a light emitting diode (LED) assembly. LED assembly 100 includes LED chips 1 10 mounted upon a heat sink 120. Herein, a "heat sink" is defined as a monolithic structure formed of a good or excellent thermal conductor that includes a base portion that includes a
Docket No. 531572 3 Docket No. 555909 mounting area for components, and at least two fins extending perpendicularly from the base portion in a direction opposite from the mounting area, for dissipating heat generated by the components. A "good thermal conductor" is defined herein as a material having a bulk thermal conductivity of at least 15 W/(m°K), and an "excellent thermal conductor" is defined herein as a material having a bulk thermal conductivity of at least 100 W/(m°K). Also, "fins" are defined herein as parts of the heat sink that are formed monolithically with, but extend from, the base portion, and have an aspect ratio in at least one dimension of at least 2:1 , with a major dimension of each fin extending away from the base portion. The relationships among the base portion, mounting area, and fins are discussed further below in connection with FIG. 12.
[0025] FIG. 1 is a plan view of LED assembly 100, while FIGS. 2 and 3 are cross-sectional views taken at lines 2-2' and 3-3' respectively, in FIG. 1. Heat sink 120 is formed of a good or excellent thermal conductor, and includes three integrally formed fins 121 extending downwardly from a base portion of the heat sink, as shown in FIGS. 2 and 3. A major dimension of each fin 121 is in a vertical direction, and an aspect ratio of each fin 121 is about 2.6:1. Heat sink 120 includes pedestals 122 integrally formed on the base portion, upon which LED chips 110 mount utilizing adhesive 111 (visible in the cross sectional view of FIG. 2, but obscured by LED chips 110 in FIG. 1). In certain embodiments, when heat sink 120 is formed of an electrically conductive material (e.g., a metal), adhesive 111 may be conductive (e.g., electrically conductive epoxy, such as silver filled epoxy) to electrically connect LED chips 110 with heat sink 120. In other embodiments, when heat sink 120 is formed of a nonconductive material that is still a good or excellent thermal conductor (e.g., a ceramic such as alumina), adhesive 111 may be either electrically conductive or electrically nonconductive (e.g., nonconductive epoxy).
[0026] LED assembly 100 also includes a printed circuit board (PCB) 130 that forms apertures 132 therethrough, corresponding to each pedestal 122. PCB 130 is generally a dielectric or insulator (such as epoxy fiberglass, sometimes described with the trade name FR4, or a polymer) and may be a conventional circuit board or simply an insulating layer on planar surface 124. PCB 130 typically has a thickness within a range of 0.1mm to 3mm (the lower end of this range corresponds to cases wherein PCB 130 is a simple dielectric layer). PCB 130 attaches to planar surface 124 with adhesives, or mechanically (e.g., with screws) (planar surface 124 is obscured by PCB 130 in FIG. 1,
Docket No. 531572 4 Docket No. 555909 but is indicated in FIGS. 2 and 3). PCB 130 also includes electrical conductors 134 on an upper surface thereof, to which LED chips 1 10 connect with bond wires 112. Bond wires 112 may be formed, for example, of aluminum, gold and/or alloys thereof; in particular, aluminum bond wires 112 are compatible with room temperature processing (e.g., of encapsulation material 140, discussed below). Pedestals 122 may be raised or offset in the vertical direction with respect to a planar surface 124 of heat sink 120, such that a combined height of pedestal 122, LED 110 and adhesive 111 approximately matches a thickness of PCB 130, so that bond wires 112 need not span a large height differential. However, in embodiments an overall height of pedestals 122, adhesive 1 1 1 and LED chips 110 is less than a thickness of PCBs 130 to facilitate application of an encapsulation material, as described below. Also, it may be advantageous for dimensions of apertures 132 to closely match dimensions of pedestals 122, to minimize lengths of bond wires 112. In an embodiment, inner dimension 133 of aperture 132 is matched to outer dimension 123 of pedestal 122 such that PCB 130 is within one millimeter of pedestal 122 on all sides thereof.
[0027] LED chips 110 may be so-called "face up" LED chips having both anode and cathode connections on top sides thereof, and formed on insulating substrates (e.g., alumina, silicon carbide, aluminum nitride). Thus, LED chips 110 are electrically isolated from heat sink 120. The electrical isolation of LED chips 110 from heat sink 120 also enables use of low cost adhesive 1 1 1 for mounting LED chips 110 to pedestals 122. For example, adhesive 111 may be a nonconductive epoxy.
[0028] A first, optional, encapsulation material 140 may be utilized to protect LED chips 1 10. (The cross hatching used to illustrate encapsulation material 140 in FIG. 2 is not shown in FIG. 1 for clarity of illustration, but material 140 would extend across each aperture 132, including on top of LEDs 110.) Material 140 may be dispensed in liquid form, and dried or cured to form a solid or semisolid. Drying or curing materials like encapsulation material 140, whether through heating, application of radiation such as ultraviolet light, or simply by the passage of time shall be referred to herein as "curing." Material 140 may be, for example, silicone, epoxy or acrylic.
[0029] As shown in FIG. 2, the height of pedestals 122 and the thickness of LED chips 1 10 and PCB 130 can be arranged so that a top surface of PCB 130 is higher than a top surface of LED chips 110. The vertical heights of components in FIG. 2 are not drawn to scale; in particular, LEDs 110 may be thinner than shown, the height of LED
Docket No. 531572 5 Docket No. 555909
1 10 is exaggerated for clarity of illustration. Thus arranged, PCB 130 acts as a dam to contain encapsulation material 140 during operations such as dispense and curing, after which material 140 is dimensionally stable. The ability of PCB 130 to act as a dam is especially advantageous when apertures 132 form closed shapes extending through PCB 130, as shown in FIG. 1. It is also possible to dispense a measured amount of material 140 upon LED chips 110 such that material 140 is held in place by surface tension until cured. Material 140 may be admixed with a phosphor to provide a useful and/or aesthetically pleasing light color (e.g., low wavelength light emitted by LED chips 110 may excite the phosphor, which then emits some of the energy therein as longer wavelength light, to provide an approximation of white light). A height of pedestals 122 may be jointly defined with thicknesses of PCBs 130 and LEDs 110 such that aperture 132 can contain a thickness of material 140 that is adequate to protect LEDs 110 and to provide enough phosphor to provide a desired amount of longer wavelength light. In an embodiment, LEDs 110 are about 0.2mm thick, PCBs 130 are within a range of 1 to 3 mm thick, and pedestals 122 extend about 1mm above planar surface 124.
[0030] Heat sink 120 is configured for efficient dissipation of heat generated by LED chips 110 to ambient air and/or to other substances or structures. For example, in addition to fins (discussed in connection with FIG. 12), heat sink 120 may couple thermally with a light fixture housing or a liquid cooling system. LED chips 110 benefit from minimal thermal resistance between junctions where heat may be generated, and heat sink 120, since they are bonded directly to one another without any intermediate, low thermal conductivity object (e.g., a PCB) in the thermal dissipation path. That is, the embodiment shown in FIGS. 1-3 has no elements other than adhesive 11 1 between each LED chip 1 10 and heat sink 120.
[0031] Features in the vicinity of each LED chip 1 10 may include reflective surfaces to help reflect light emitted by the LED chip outwardly instead of being absorbed. For example, edges of PCB 130 that form apertures 132, and pedestal 122 may include reflective surfaces or coatings to reflect light from LED chips 1 10 outwardly.
[0032] Certain features illustrated in FIGS. 1-3 are exemplary and will be understood as such by one skilled in the art. These features include, but are not limited to, the number, relative sizes and shapes of apertures 132, pedestals 122 and LED chips 1 10 shown; the layout of PCB 130 on heat sink 120; the routing of conductors 134 upon PCB 130; and the underside structure of heat sink 120.
Docket No. 531572 6 Docket No. 555909
[0033] FIGS. 4, 5 and 6 schematically illustrate another embodiment of a light emitting diode (LED) assembly 200. LED assembly 200 includes LED chips 210 integrated with a heat sink 220. FIG. 4 is a plan view of LED assembly 200, while FIGS. 5 and 6 are cross-sectional views taken at lines 5-5' and 6-6' respectively, in FIG. 4. As noted above, a "heat sink" is defined herein as a monolithic structure formed of a good or excellent thermal conductor, that includes a base portion having a mounting area for components, and at least two fins extending perpendicularly from the base portion in a direction opposite from the mounting area, for dissipating heat generated by the components to ambient air. Heat sink 220 includes two integrally formed fins 221 , as shown in FIGS. 5 and 6; a major dimension of each fin 221 is in a vertical direction, and an aspect ratio of each fin 221 is about 8.9: 1. Heat sink 220 includes an integrally formed ridge 222, upon which LED chips 210 mount directly, utilizing an adhesive 211 ; ridge 222 is raised or offset vertically with respect to a planar surface 224 of heat sink 220. Adhesive 21 1 may be, for example, a nonconductive epoxy. Because ridge 222 and fins 221 are both profiles formed only in two dimensions, heat sink 220 may be formed by extrusion, resulting in a lower manufacturing cost (as compared to heat sink 120 which may be cast or milled to form pedestals 122). LED assembly 200 also includes PCBs 230, 230' mounted adjacent to ridge 222. During manufacturing of assembly 200, PCBs 230 and/or 230' may be positioned against ridge 222, that is, ridge 222 may be utilized as a mechanical stop such that either or both of PCBs 230, 230' abut ridge 222. PCBs 230, 230' may mount to heat sink 220 with adhesives, or mechanically (e.g., with screws). PCBs 230, 230' also include electrical conductors 234 on an upper surface thereof, to which LED chips 210 connect with bond wires 212. Bond wires 212 may be formed, for example, of aluminum, gold and/or alloys thereof; in particular, aluminum bond wires 212 are compatible with room temperature processing.
[0034] Like LED chips 1 10, LED chips 210 may also be so-called "face up" LED chips, and may be formed on insulating substrates. Thus, LED chips 210 can be electrically isolated from heat sink 220 so that low cost materials (e.g., a nonconductive epoxy as adhesive 211) can be used to mount LED chips 110 to ridge 222. LED chips 210 benefit from the same advantageous heat dissipation to heat sink 220 as LED chips 110 dissipating heat to heat sink 120, as discussed above. In particular, the embodiment shown in FIGS. 4-6 has no elements other than adhesive 211 between each LED chip 210 and heat sink 220.
Docket No. 531572 7 Docket No. 555909
[0035] Like optional encapsulation material 140 (FIGS. 1 -3), a similar, optional encapsulation material 240 may be utilized to protect LED chips 210. As shown in FIG. 5, the height of ridge 222 and the thickness of LED chips 210, adhesive 211 and PCBs 230, 230' can be arranged so that a top surface of PCBs 230, 230' is higher than a top surface of LED chips 210. Also, optional dam elements 250, 250' may be installed at ends of assembly 200 atop ridge 222. Thus arranged, PCBs 230, 230' and dam elements 250, 250' act as dams to contain material 240 during operations such as dispense and curing, after which material 240 is dimensionally stable. (The cross hatching used to illustrate material 440 in FIGS. 5 and 6 is not shown in FIG. 4 for clarity of illustration, but material 140 would fill the area between PCBs 230, 230' and dam elements 250, 250', including on top of LEDs 210.) If used, dam elements 250, 250' may be removed after material 240 is cured. Like optional encapsulation material 140, it is also possible to utilize a measured amount of material 240 dispensed upon LED chips 210 such that material 240 is held in place by surface tension until cured. Material 240 may be admixed with a phosphor to provide a useful and/or aesthetically pleasing light color.
[0036] It should be clear to one skilled in the art that the construction modalities illustrated in FIGS. 1-6 may be adapted to various configurations of LED chips. For example, it is contemplated that routing of conductors 234 upon PCB 230 or 230' could be modified to provide two terminals (e.g., power and ground) for each LED on a single PCB instead of utilizing two PCBs, as shown. In such a case, dam elements 250, 250' could be modified to provide a dam feature enclosing ridge 222 to contain an encapsulant material applied thereto.
[0037] Also, in order to increase the light output of an LED assembly, it may be advantageous to connect multiple LED chips as opposed to simply utilizing larger LED chips. Manufacturing yield, heat dissipation and output efficiency of LED chips are typically better for small LED chips than for large LED chips; however, such efficiencies tend to be diluted somewhat by prior art, individual chip packaging processes. The present LED assembly methods and apparatus are advantageously compatible with the multiple LED chip approach, for several reasons. Pedestals and/or ridges upon which LED chips may be mounted can easily provide space for mounting multiple chips.
Multiple LED chips connected in series in a light fixture will tend to provide uniform light output for each LED chip as opposed to the case when such chips are connected in parallel. To facilitate this, the present methods provide for certain bond wires of such
Docket No. 531572 8 Docket No. 555909 chips to be arranged chip-to-chip, reducing the total number of connections required, as compared to bonding two terminals of each LED chip out to PCB conductors.
[0038] FIG. 7 schematically illustrates an LED assembly 300 that connects several groups of LED chips 310 in series, with separate power routing for each of the groups. LED assembly 300 integrates LED chips 310 with ridge 222 of heat sink 220. LED assembly 200 also includes PCBs 330, 330' mounted adjacent to ridge 222. PCBs 330, 330' may mount to heat sink 220 with adhesives, or mechanically, and include conductors 334 on an upper surface thereof, to which some of LED chips 310 connect with bond wires 312. LED assembly 300 also includes chip-to-chip bonding, utilizing bond wires 314, as shown. In this "daisy chain" configuration, at least two bond wires 312 connect ends of "chains" of LED chips to conductors 334, while at least one bond wire 312 connects LED chips to one another. Bond wires 312 and/or 314 may be formed of aluminum, gold and/or alloys thereof. Bond wires 312 and 314 may be formed of the same material as one another, but this is not required; forming bond wires 312 and 314 of different materials may be desirable so that the respective wirebonding processes (e.g., chip to chip for wirebonds 314, and chip to PCB for wirebonds 312) can be optimized for best performance, reliability and/or cost. Some instances of LED chips 310 and bond wires 314 are not labeled in FIG. 7, for clarity of illustration.
[0039] Like LED chips 110 and 210, LED chips 310 may also be so-called "face up" LED chips, and may be formed on insulating substrates. Thus, LED chips 310 can be electrically isolated from heat sink 220 so that low cost materials can be used to mount LED chips 110 to ridge 222. LED chips 310 benefit from the same advantageous heat dissipation to heat sink 220 as LED chips 110 dissipating heat to heat sink 120, or as LED chips 210 dissipating heat to heat sink 220, discussed above. Also, like optional encapsulation materials 140 and 240, a similar, optional encapsulation material (not shown in FIG. 7, for clarity of illustration) may be utilized to protect LED chips 310. PCBs 330, 330' and optional dam elements 250, 250' act as dams to contain the material during operations such as dispense and curing, after which the material is dimensionally stable. If used, dam elements 250, 250' may be removed after the material is cured. The material may be admixed with a phosphor to provide a useful and/or aesthetically pleasing light color.
[0040] FIGS. 8, 9 and 10 schematically illustrate another embodiment of a light emitting diode (LED) assembly. LED assembly 100' includes the same elements as
Docket No. 531572 9 Docket No. 555909
LED assembly 100, FIG. 1 , and further includes a second, optional, encapsulation material 150, as shown. Encapsulation material 150 serves to further protect LED assembly 100' as compared to LED assembly 100, especially portions of bond wires 1 12 and conductors 134 that are not encapsulated in LED assembly 100. Encapsulation material 150 may be, for example, epoxy, silicone or acrylic. Providing encapsulation material 150 separately from material 140 provides the advantage that materials 140 and 150 can be optimized differently for cost and performance purposes. In particular, material 140 may include a phosphor, which may make material 140 costly on a volume basis, but material 150 may exclude phosphor so as to minimize a combined cost of materials 140 and 150. Encapsulation material 150 can also be chosen to provide more rigorous environmental protection than encapsulation material 140. Encapsulation material 150 may be dispensed and cured over areas of LED assembly 100', as shown, without any particular structure for containing material 150 (e.g., material 150 may be held in place merely by surface tension until it cures). Alternatively, dam elements (e.g., like dam elements 250, 250', FIGS. 4-6) may be used temporarily to contain material 150 until it cures, or may remain permanently.
[0041] FIG. 11 is a flowchart illustrating a method 400 for making an LED assembly. Optional steps 410 and 420 fabricate a heat sink and a PCB with conductors thereon, respectively. Step 430 mounts one or more PCBs to a planar surface of the heat sink. Examples of step 430 include mounting PCB 130 to surface 124 of heat sink 120 (FIGS. 1-3), and/or mounting PCB 230 (FIGS. 4-6) or PCB 330 (FIG. 7) to surface 224 of heat sink 220. Step 440 mounts one or more LED chips to a raised surface of the heat sink. Examples of step 440 include mounting LED chips 110 to pedestals 122 of heat sink 120 (FIGS. 1-3), mounting LED chips 210 (FIGS. 4-6) or and/or LED chips 310 (FIG. 7) to ridge 222 of heat sink 220. It is contemplated that steps 430 and 440 could be reversed within method 400, that is, the LED chip(s) could be mounted first and the PCB(s) could be mounted afterward. Step 450 electrically connects the LED chips to conductors on the PCBs. Examples of step 450 include electrically connecting LED chips 110 to conductors 134 of PCB 130 (FIGS. 1-3), electrically connecting LED chips 210 to conductors 234 (FIGS. 4-6) and/or electrically connecting LED chips 310 to conductors 334 (FIG. 7). An optional step 455 electrically connects LED chips to one another. An example of step 455 is connecting LED chips 310 to one another with wirebonds 314, FIG. 7.
Docket No. 531572 10 Docket No. 555909
[0042] Another optional step 460 of method 400 applies dam elements to a heat sink in order to complete a dam for an encapsulation material that is partially formed by one or more PCBs. Examples of step 460 include applying dam elements 250, 250' to heat sink 220 to complete a dam that is partially formed by PCBs 230, 230' (FIGS. 4-6) or by PCBs 330, 330' (FIG. 7). Further optional steps 470 and 480 dispense and cure, respectively, an encapsulation material. Examples of steps 470 and 480 are dispensing and curing, respectively, encapsulation material 140 (FIGS. 1-3) or encapsulation material 240 (FIGS. 4-6). Still another optional step 490 removes dam elements, if any, that were previously applied in step 460. Examples of step 490 include removing dam elements 250, 250' from heat sink 220 (FIGS. 4 and 7). Another optional step 495 includes at least dispensing and curing a second encapsulation material; step 495 may also include forming a dam for the second encapsulation material and may include removing the dam after the second encapsulation material is cured. An example of step 495 is dispensing and curing second encapsulation material 150 (FIGS. 8-10).
[0043] FIG. 12 further illustrates geometric relationships among portions of LED assembly 100 (also see FIG. 1). In FIG. 12, LED assembly 100 is shown without bond wires and without certain labels as compared to its depiction in FIG. 1 , for clarity of illustration. As noted above, a "heat sink" is defined herein as a monolithic structure formed of a good or excellent thermal conductor, that includes a base portion having a mounting area for components, and at least two fins extending perpendicularly from the base portion in a direction opposite from the mounting area, for dissipating heat generated by the components to ambient air. In FIG. 12, heat sink 120 is shown as having a base portion 170 with three fins 121 extending perpendicularly from base portion 170. Base portion 170 extends across heat sink 120. A mounting area 180 is identified with a heavy line on one side of base portion 170 and includes planar surfaces 124, and upper and outer surfaces of pedestal 122, as identified in FIG. 1. A direction identified as arrow 195 is defined as the direction of the mounting area, and a direction identified as arrow 190 is defined as the direction opposite from the mounting area. Each fin 121 has a length 165 that extends away from base portion 170, and a width 160. An aspect ratio of length 165 to width 160 is greater than 2: 1, with the major dimension of each fin (e.g., length 165) extending away from the base portion.
[0044] FIGS. 13 and 14 are cross-sectional views illustrating embodiments of light emitting diode (LED) assemblies having features to improve light extraction. It is
Docket No. 531572 11 Docket No. 555909 known that LEDs may emit light in various directions; the features discussed below improve the net light output of an LED assembly as compared to prior art assemblies that may absorb a portion of the emitted light.
[0045] In FIG. 13, LED assembly 600 includes LED chips 710 mounted upon a heat sink 620. Heat sink 620 is formed of a good or excellent thermal conductor, and includes five integrally formed fins 621 extending downwardly from a base portion of the heat sink. A major dimension of each fin 621 is in a vertical direction, and an aspect ratio of each fin 621 is about 2.6: 1. Heat sink 620 includes a pedestal 622 integrally formed on the base portion, upon which LED chips 610 mount. Pedestal 622 may be raised or offset in the vertical direction with respect to a planar surface 624 of heat sink 620. LED assembly 600 also includes a printed circuit board (PCB) 630 that forms apertures 632 therethrough, corresponding to each pedestal 622. PCB 630 attaches to planar surface 624 with adliesives, or mechanically. PCB 630 also includes electrical conductors 634 on an upper surface thereof. LED chips 610 are connected to conductors 634, and may be protected with encapsulation materials such as discussed above, but such connections and materials are not shown and/or labeled in FIG. 13 for clarity of illustration.
[0046] PCB 630 forms reflective surfaces 636 at aperture 632 to reflect light 615 from chip 610 that reaches surfaces 636. Surfaces 636 may form non-vertical slopes, as shown in FIG. 13, such that light 615 reflects upwardly, as shown. The reflectivity and angle of surfaces 636 therefore help extract light 615 as compared with prior art assemblies that may absorb such light, undesirably turning it into heat (which must, in turn, be removed for performance and reliability reasons).
[0047] In FIG. 14, LED assembly 700 includes LED chips 710 mounted upon a heat sink 720. Heat sink 720 is formed of a good or excellent thermal conductor, and includes integrally formed fins 721 similar to those shown in FIG. 13. Heat sink 720 includes a pedestal 722 integrally formed on the base portion, upon which LED chips 710 mount. LED assembly 700 also includes a printed circuit board (PCB) 730 that forms apertures 732 therethrough, corresponding to each pedestal 722. PCB 730 attaches to planar surface 724 with adhesives, or mechanically. PCB 730 also includes electrical conductors 734 on an upper surface thereof. LED chips 710 are connected to conductors 734, and may be protected with encapsulation materials such as discussed above, but such connections and materials are not shown and/or labeled in FIG. 14 for clarity of illustration.
Docket No. 531572 12 Docket No. 555909
[0048] Pedestal 722 may be raised or offset in the vertical direction with respect to a planar surface 724 of heat sink 720. Pedestal 722 forms non-vertical, reflective surfaces 736, as shown in FIG. 14, such that light 715 reflects upwardly, as shown. The reflectivity and angle of surfaces 736 therefore help extract light 715.
[0049] In embodiments, non-vertical surfaces of a heat sink, as shown in FIG. 14, may be combined with reflective and/or non-vertical surfaces of a PCB, as shown in FIG. 13, to further increase light extraction from an LED assembly.
[0050] FIG. 15 A is a cross-sectional view of LED chip-based lighting product 850. Lighting product 850 includes a panel 854 having a first surface 853 and a second surface 852, counterfacing first surface 853. A dielectric layer 858 covers a portion of first surface 853, and forms apertures therethrough. LED chips 810 are shown mounted in the apertures of dielectric layer 858 on first surface 853 of panel 854. LED chips 810 are operatively connected to power supplies through conductors on dielectric layer 858, however for clarity of illustration the power supplies are not shown, and the conductors and connections from LED chips 810 to the conductors are not labeled within FIGS. 15A- 15C. A frame 856 attaches to panel 854 and holds an optional diffuser 860. Second surface 852 of panel 854, counterfacing first surface 853, is an external surface of lighting product 850 and is in thermal communication with ambient air 870. The term "ambient air" herein denotes air entirely outside a lighting product, and excludes air within enclosed cavities of the lighting product. In the embodiment of FIG. 15 A, all of second side 852 forms an external surface of lighting product 850; however in other
embodiments an external surface may be formed by only a portion of a second side of a panel. A region within LED chip-based lighting product 850 is denoted as A and is described in further detail below.
[0051] FIG. 15B is a detail view of region A shown in FIG. 15 A. A region within region A is denoted as B and is described in further detail below.
[0052] FIG. 15C is a detail view of region B shown in FIG. 15B and shows LED chip 810 mounted within an aperture formed in dielectric layer 858 formed on first surface 853 of panel 854. An arrow T illustrates an LED-backside direct thermal interface from LED chip 810 that extends perpendicularly through mounting surface 872, conductor 858 and panel 854 to ambient air 870. The term "LED-backside direct thermal interface" herein, when used in connection with an LED chip, denotes an arrangement of at most one panel and intervening mounting materials (e.g., solder, epoxy or adhesive)
Docket No. 531572 13 Docket No. 555909 that extends perpendicularly from a backside of the LED chip to ambient air. An LED- backside direct thermal interface thus excludes arrangements that require heat transfer in one or more lateral directions (any direction that is not perpendicular to the LED chip's mounting surface) to reach ambient air, and arrangements that transfer heat from an LED to enclosed cavities. Used in connection with a packaged LED, the term "LED direct thermal interface" denotes a similar arrangement of at most one panel and intervening mounting materials (e.g., solder, epoxy or adhesive) that extends perpendicularly away from a light emitting side of the packaged LED to ambient air.
Combination of Features:
[0053] Features described above as well as those claimed below may be combined in various ways without departing from the scope hereof. The following examples illustrate some possible combinations:
[0054] (Al) A light emitting diode (LED)-based lighting assembly, including: a heat sink having at least one pedestal integrally formed therewith; a printed circuit board (PCB) forming an aperture therein corresponding to the pedestal; and, one or more LED chips attached directly to the upper planar surface and electrically connected to the conductors such that light from the one or more LED chips emits upwardly from the upper planar surface.
[0055] (A2) In the LED lighting assembly of (Al), the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink.
[0056] (A3) In either of the LED lighting assemblies of (Al) - (A2), , the PCB including electrical conductors on an upper surface thereof, the PCB being attached to the lower planar surface such that the upper planar surface extends into the aperture.
[0057] (A4) In any of the LED lighting assemblies denoted above as (Al)- (A3) wherein the heat sink includes a base portion that includes the pedestal on an upwardly facing first side thereof, and at least two fins integrally formed with a downwardly facing second side thereof, the fins extending downwardly from the second side.
[0058] (A5) In the LED lighting assembly denoted above as (A4), each of the fins having an aspect ratio of at least 2: 1 with a major dimension of each fin extending in the vertical direction.
Docket No. 531572 14 Docket No. 555909
[0059] (A6) In any of the LED lighting assemblies denoted above as (A4) - (A5), each of the fins having an aspect ratio of at least 5: 1.
[0060] (A7) In any of the LED lighting assemblies denoted above as (A4)- (A6), the pedestal and the fins being integrally formed with the base member as an extrusion.
[0061] (A8) In any of the LED lighting assemblies denoted above as (Al)- (A7), the heat sink including an outer surface counterfacing the upper planar and lower planar surfaces, the outer surface forming an interface to ambient air for dissipating heat generated by the one or more LED lighting assembly chips.
[0062] (A9) In any of the LED lighting assemblies denoted above as (Al)- (A8), the heat sink including a material having a bulk thermal conductivity of at least 15 W/(m°K).
[0063] (A10) In any of the LED lighting assemblies denoted above as (Al)- (A9), the heat sink includes a material having a bulk thermal conductivity of at least 100 W/(m°K).
[0064] (Al 1) In any of the LED lighting assemblies denoted above as (Al)- (A10), further including a first encapsulation material that covers each of the pedestals and each of the one or more LED chips.
[0065] (A12) In the LED lighting assembly denoted above as (Al 1), wherein the PCB acts as a dam to contain the first encapsulation material during dispense of the encapsulation material.
[0066] (A13) In the LED lighting assembly denoted above as (A 12), the first encapsulation material including one or more of silicone, epoxy and acrylic.
[0067] (A14) In the LED lighting assembly denoted above as (A12), the first encapsulation material being admixed with a phosphor.
[0068] (A15) In any of the LED lighting assebmlies denoted above as (Al 1)- (A14), further including a second encapsulation material that covers bond wires that electrically connect each of the one or more LED chips to the conductors.
[0069] (A16) In any of the LED lighting assemblies denoted above as (Al)- (A15), wherein each of the one or more LED chips includes an electrically nonconductive substrate and is attached directly to the pedestal with an electrically nonconductive adhesive.
Docket No. 531572 15 Docket No. 555909
[0070] (A17) In the LED lighting assembly denoted above as (A16), the electrically nonconductive substrate including a ceramic.
[0071] (Al 8) In any of the LED lighting assembly denoted above as (Al 6)- (A17), the electrically nonconductive substrate including alumina.
[0072] (A19) In any of the LED lighting assemblies denoted above as (Al)- (A18), wherein each of the one or more LED chips is formed on an electrically conductive substrate and is attached directly to the pedestal with an electrically conductive adhesive.
[0073] (A20) In any of the LED lighting assemblies denoted above as (Al)- (A19), the PCB including at least one reflective surface at the aperture, such that light from the one or more LED chips that reaches the reflective surface reflects from the PCB.
[0074] (A21 ) In the LED lighting assembly denoted above as (A20), the reflective surface forming a non- vertical slope such that the light from the one or more LED chips that reaches the reflective surface reflects upwardly.
[0075] (A22) In any of the LED lighting assemblies denoted above as (Al)- (A21), the pedestal further forming a non-vertical surface adjacent to the upper planar surface that slopes upwardly as it extends away from the upper planar surface, such that light from the one or more LED chips that reaches the non-vertical surface reflects upwardly.
[0076] (A23) In any of the LED lighting assemblies denoted above as (Al)- (A22), the aperture and pedestal being closely matched in dimensions such that the PCB is within one millimeter of the pedestal on all sides.
[0077] (B 1 ) A light emitting diode (LED)-based lighting assembly, including: a heat sink configured with an extruded ridge that extends vertically from a planar surface of the heat sink; a printed circuit board (PCB) that includes electrical conductors on an upper surface thereof, the PCB being attached to the planar surface; and one or more LED chips, each of the LED chips being (a) attached directly to the ridge and (b) electrically connected to the conductors.
[0078] (B2) In the LED lighting assembly denoted above as (B 1 ), wherein each of the LED chips is electrically connected to the conductors utilizing bond wires.
[0079] (B3) In the LED lighting assembly denoted above as (B2), the one or more LED chips including a plurality of LED chips, wherein at least two bond wires
Docket No. 531572 16 Docket No. 555909 connect ones of the plurality of LED chips directly to the conductors, and at least one bond wire connects ones of the plurality of LED chips to one another.
[0080] (B4) In any of the LED lighting assemblies denoted above as (B2)- (B3), the PCB forming an edge that abuts the extruded ridge of the heat sink.
[0081] (CI) A method of integrating LEDs with a heat sink, the method including: mounting a printed circuit board (PCB) to a planar surface of the heat sink; mounting one or more LED chips to a raised surface of the heat sink that is not covered by the PCB; and electrically connecting the LED chips to conductors on the PCB.
[0082] (C2) In the method of integrating LEDs denoted above as (CI), wherein the raised surface corresponds to an aperture through the PCB.
[0083] (C3) In any of the methods of integrating LEDs denoted above as (Cl)- (C2), further including dispensing a first encapsulation material into the aperture, covering the LED chips therein with the PCB acting as a dam.
[0084] (C4) In the method of integrating LEDs denoted above as (C3), further including dispensing a second encapsulation material over the LED chips.
[0085] (C5) In any of the methods of integrating LEDs denoted above as (CI )- (C4), wherein the PCB forms a partial dam.
[0086] (C6) In any of the methods of integrating LEDs denoted above as (Cl)- (C5), further including: applying dam elements to the heat sink to complete a dam; and dispensing an encapsulation material into an area bounded by the dam, covering the LED chips therein.
[0087] (C7) In the method of integrating LEDs denoted above as (C6), further including: curing the encapsulation material; and removing the dam elements.
[0088] (C8) In any of the methods of integrating LEDs denoted above as (Cl)- (C7), wherein the raised surface is an upper surface of a pedestal that is vertically offset from the planar surface, and mounting the PCB includes aligning the PCB with the pedestal by positioning an edge of the PCB against an edge of the pedestal.
[0089] (Dl) A light emitting diode (LED)-based lighting assembly, including: a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink; a dielectric layer forming an aperture therein corresponding to the pedestal, the dielectric layer being attached to the lower planar surface such that the upper planar surface extends into the aperture; at least
Docket No. 531572 17 Docket No. 555909 one electrical conductor formed on an upper surface of the dielectric layer; and one or more LED chips attached directly to the upper planar surface and connected to the electrical conductor such that light from the one or more LED chips emits upwardly from the upper planar surface.
[0090] (D2) In the LED-based lighting assembly denoted above as (Dl), the dielectric layer including one or more of epoxy, fiberglass and a polymer.
[0091] (D3) In any of the LED-based lighting assemblies denoted above as (D1)-(D2), the dielectric layer having a thickness of 0.1mm to 3mm.
[0092] (El) A light emitting diode (LED)-based lighting product, including: a panel having a first surface and a second surface counterfacing the first surface, at least part of the second surface forming an external surface of the lighting product; a dielectric layer that covers a portion of the first surface, the dielectric layer forming apertures therein such that the first surface is exposed within the apertures; at least one electrical conductor formed on an upper surface of the dielectric layer; and one or more LED chips attached to the first surface and electrically connected with the at least one electrical conductor.
[0093] (E2) In the LED-based lighting product denoted above as (El), further including a first encapsulation material that covers each of the one or more LED chips, wherein the dielectric layer acts as a dam to contain the first encapsulation material during dispense of the encapsulation material.
[0094] (E3) In the LED-based lighting product denoted above as (E2), wherein the first encapsulation material includes one or more of silicone, epoxy and acrylic.
[0095] (E4) In any of the LED-based lighting products denoted above as (E2)- (E3), wherein the first encapsulation material is admixed with a phosphor.
[0096] (E5) In any of the LED-based lighting products denoted above as (E2)- (E4), further including a second encapsulation material that covers bond wires that electrically connect each of the one or more LED chips to the conductors.
[0097] (E6) In any of the LED-based lighting products denoted above as (El)- (E5), the panel forming an LED-backside direct thermal interface for the one or more LED chips.
[0098] The changes described above, and others, may be made in the LED assemblies, lighting products and methods described herein without departing from the
Docket No. 531572 18 Docket No. 555909 scope hereof. It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall there between.
Docket No. 531572 19

Claims

Docket No. 555909 CLAIMS What is claimed is:
1. A light emitting diode (LED)-based lighting assembly, comprising:
a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink;
a printed circuit board (PCB) forming an aperture therein corresponding to the pedestal, the PCB including electrical conductors on an upper surface thereof, the PCB being attached to the lower planar surface such that the upper planar surface extends into the aperture; and
one or more LED chips attached directly to the upper planar surface and
electrically connected to the conductors such that light from the one or more LED chips emits upwardly from the upper planar surface.
2. The lighting assembly of claim 1, wherein the heat sink comprises a base portion that includes the pedestal on an upwardly facing first side thereof, and at least two fins integrally formed with a downwardly facing second side thereof, the fins extending downwardly from the second side.
3. The lighting assembly of claim 2, each of the fins having an aspect ratio of at least 2: 1 with a major dimension of each fin extending in the vertical direction.
4. The lighting assembly of claim 3, each of the fins having an aspect ratio of at least 5: 1.
5. The lighting assembly of claim 2, the pedestal and the fins being integrally formed with the base member as an extrusion.
6. The lighting assembly of claim 1 , wherein the heat sink comprises an outer surface counterfacing the upper planar and lower planar surfaces, the outer surface forming an interface to ambient air for dissipating heat generated by the one or more LED chips.
Docket No. 531572 20 Docket No. 555909
7. The lighting assembly of claim 1, wherein the heat sink comprises a material having a bulk thermal conductivity of at least 15 W/(m°K).
8. The lighting assembly of claim 1, wherein the heat sink comprises a material having a bulk thermal conductivity of at least 100 W/(m°K).
9. The lighting assembly of claim 1, further comprising a first encapsulation material that covers each of the pedestals and each of the one or more LED chips.
10. The lighting assembly of claim 9, wherein the PCB acts as a dam to contain the first encapsulation material during dispense of the encapsulation material.
11. The lighting assembly of claim 10, wherein the first encapsulation material comprises one or more of silicone, epoxy and acrylic.
12. The lighting assembly of claim 10, wherein the first encapsulation material is admixed with a phosphor.
13. The lighting assembly of claim 9, further comprising a second
encapsulation material that covers bond wires that electrically connect each of the one or more LED chips to the conductors.
14. The lighting assembly of claim 1, wherein each of the one or more LED chips comprises an electrically nonconductive substrate and is attached directly to the pedestal with an electrically nonconductive adhesive.
15. The lighting assembly of claim 14, the electrically nonconductive substrate comprising a ceramic.
16. The lighting assembly of claim 14, the electrically nonconductive substrate comprising alumina.
17. The lighting assembly of claim 1 , wherein each of the one or more LED chips is formed on an electrically conductive substrate and is attached directly to the pedestal with an electrically conductive adhesive.
Docket No. 531572 21 Docket No. 555909
18. The lighting assembly of claim 1 , the PCB comprising at least one reflective surface at the aperture, such that light from the one or more LED chips that reaches the reflective surface reflects from the PCB.
19. The lighting assembly of claim 18, the reflective surface forming a non- vertical slope such that the light from the one or more LED chips that reaches the reflective surface reflects upwardly.
20. The lighting assembly of claim 1 , the pedestal further forming a non- vertical surface adjacent to the upper planar surface that slopes upwardly as it extends away from the upper planar surface, such that light from the one or more LED chips that reaches the non-vertical surface reflects upwardly.
21. The lighting assembly of claim 1 , the aperture and pedestal being closely matched in dimensions such that the PCB is within one millimeter of the pedestal on all sides.
22. A light emitting diode (LED)-based lighting assembly, comprising:
a heat sink configured with an extruded ridge that extends vertically from a planar surface of the heat sink;
a printed circuit board (PCB) that includes electrical conductors on an upper surface thereof, the PCB being attached to the planar surface; and one or more LED chips, each of the LED chips being (a) attached directly to the ridge and (b) electrically connected to the conductors.
23. The lighting assembly of claim 22, wherein each of the LED chips is electrically connected to the conductors utilizing bond wires.
24. The lighting assembly of claim 23, the one or more LED chips comprising a plurality of LED chips, wherein at least two bond wires connect ones of the plurality of LED chips directly to the conductors, and at least one bond wire connects ones of the plurality of LED chips to one another.
25. The lighting assembly of claim 22, the PCB forming an edge that abuts the extruded ridge of the heat sink.
Docket No. 531572 22 Docket No. 555909
26. A method of integrating light emitting diodes (LEDs) with a heat sink, comprising:
mounting a printed circuit board (PCB) to a planar surface of the heat sink;
mounting one or more LED chips to a raised surface of the heat sink that is not covered by the PCB; and
electrically connecting the LED chips to conductors on the PCB.
27. The method of claim 26, wherein the raised surface corresponds to an aperture through the PCB, and further comprising dispensing a first encapsulation material into the aperture, covering the LED chips therein with the PCB acting as a dam.
28. The method of claim 27, further comprising dispensing a second encapsulation material over the LED chips.
29. The method of claim 26, wherein the PCB forms a partial dam, and further comprising
applying dam elements to the heat sink to complete a dam; and
dispensing an encapsulation material into an area bounded by the dam, covering the LED chips therein.
30. The method of claim 29, further comprising
curing the encapsulation material; and
removing the dam elements.
31. The method of claim 26, wherein the raised surface is an upper surface of a pedestal that is vertically offset from the planar surface, and mounting the PCB comprises aligning the PCB with the pedestal by positioning an edge of the PCB against an edge of the pedestal.
32. A light emitting diode (LED)-based lighting assembly, comprising:
a heat sink having at least one pedestal integrally formed therewith, the pedestal including an upwardly facing, upper planar surface that is raised in a vertical direction relative to an upwardly facing, lower planar surface of the heat sink;
Docket No. 531572 23 Docket No. 555909 a dielectric layer forming an aperture therein corresponding to the pedestal, the dielectric layer being attached to the lower planar surface such that the upper planar surface extends into the aperture;
at least one electrical conductor formed on an upper surface of the dielectric layer; and
one or more LED chips attached directly to the upper planar surface and
connected to the electrical conductor such that light from the one or more LED chips emits upwardly from the upper planar surface.
33. The lighting assembly of claim 32, the dielectric layer comprising one or more of epoxy, fiberglass and a polymer.
34. The lighting assembly of claim 32, the dielectric layer having a thickness of 0.1mm to 3mm.
35. A light emitting diode (LED)-based lighting product, comprising:
a panel having a first surface and a second surface counterfacing the first surface, at least part of the second surface forming an external surface of the lighting product;
a dielectric layer that covers a portion of the first surface, the dielectric layer forming apertures therein such that the first surface is exposed within the apertures;
at least one electrical conductor formed on an upper surface of the dielectric layer; and
one or more LED chips attached to the first surface and electrically connected with the at least one electrical conductor.
36. The lighting product of claim 35, further comprising a first encapsulation material that covers each of the one or more LED chips, wherein the dielectric layer acts as a dam to contain the first encapsulation material during dispense of the encapsulation material.
37. The lighting product of claim 36, wherein the first encapsulation material comprises one or more of silicone, epoxy and acrylic.
Docket No. 531572 24 Docket No. 555909
38. The lighting product of claim 36, wherein the first encapsulation material is admixed with a phosphor.
39. The lighting product of claim 36, further comprising a second
encapsulation material that covers bond wires that electrically connect each of the one or more LED chips to the conductors.
40. The lighting product of claim 35, the panel forming an LED-backside direct thermal interface for the one or more LED chips.
Docket No. 531572 25
PCT/US2014/026746 2013-03-13 2014-03-13 Methods of integrating led chips with heat sinks, and led-based lighting assemblies made thereby WO2014160470A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/802,444 US9076951B2 (en) 2008-08-26 2013-03-13 Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
US13/802,401 US8981629B2 (en) 2008-08-26 2013-03-13 Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
US13/802,444 2013-03-13
US13/802,401 2013-03-13

Publications (2)

Publication Number Publication Date
WO2014160470A2 true WO2014160470A2 (en) 2014-10-02
WO2014160470A3 WO2014160470A3 (en) 2015-02-19

Family

ID=51625648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/026746 WO2014160470A2 (en) 2013-03-13 2014-03-13 Methods of integrating led chips with heat sinks, and led-based lighting assemblies made thereby

Country Status (1)

Country Link
WO (1) WO2014160470A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3349259A1 (en) * 2017-01-16 2018-07-18 Lumileds Holding B.V. Light emitting device
CN111276589A (en) * 2018-12-05 2020-06-12 陈冠宇 Package carrier and light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264195A1 (en) * 2003-06-25 2004-12-30 Chia-Fu Chang Led light source having a heat sink
US6999318B2 (en) * 2003-07-28 2006-02-14 Honeywell International Inc. Heatsinking electronic devices
US20060097385A1 (en) * 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
TWM313759U (en) * 2007-01-12 2007-06-11 Tai Sol Electronics Co Ltd Combined assembly of LED and heat dissipation fins
CN102130268A (en) * 2010-01-19 2011-07-20 富士迈半导体精密工业(上海)有限公司 Solid-state light-emitting component and light source module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3349259A1 (en) * 2017-01-16 2018-07-18 Lumileds Holding B.V. Light emitting device
CN111276589A (en) * 2018-12-05 2020-06-12 陈冠宇 Package carrier and light emitting device
CN111276589B (en) * 2018-12-05 2021-06-22 陈冠宇 Package carrier and light emitting device

Also Published As

Publication number Publication date
WO2014160470A3 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
US9076951B2 (en) Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
US8981629B2 (en) Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
US9502620B2 (en) Composite substrate for light emitting diodes
KR101386846B1 (en) Power surface mount light emitting die package
EP1928030B1 (en) Led lighting fixture
KR101082235B1 (en) Power surface mount light emitting die package
KR101114197B1 (en) Light emitting device and lighing system
US7679099B2 (en) Low thermal resistance high power LED
KR20160073934A (en) Led lead frame array for general illumination
SG182434A1 (en) Led light module
US20110084612A1 (en) Hybrid chip-on-heatsink device and methods
EP3078063B1 (en) Mounting assembly and lighting device
US20100044727A1 (en) Led package structure
KR101163901B1 (en) Light emitting device and lighing system
WO2014160470A2 (en) Methods of integrating led chips with heat sinks, and led-based lighting assemblies made thereby
KR101125437B1 (en) Light emitting device and lighing system
KR101154671B1 (en) Light emitting device and lighing system
US20120025217A1 (en) Led lighting module
KR20130069211A (en) Light emitting device package and light unit having the same
KR101123241B1 (en) Led module having high heat radiation property and method for manufacturing the same
KR101433734B1 (en) LED Package
KR20130027274A (en) Light emitting device

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 14774815

Country of ref document: EP

Kind code of ref document: A2