WO2014159102A1 - Alliages mères contenant du molybdène perméable aux rayons x - Google Patents

Alliages mères contenant du molybdène perméable aux rayons x Download PDF

Info

Publication number
WO2014159102A1
WO2014159102A1 PCT/US2014/021956 US2014021956W WO2014159102A1 WO 2014159102 A1 WO2014159102 A1 WO 2014159102A1 US 2014021956 W US2014021956 W US 2014021956W WO 2014159102 A1 WO2014159102 A1 WO 2014159102A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
master alloy
titanium
density
radiolucent
Prior art date
Application number
PCT/US2014/021956
Other languages
English (en)
Inventor
Charles A. Motchenbacher
Colin G. Mccracken
Ronald C. DEETER Jr.
James W. ROBISON, Jr.
Original Assignee
Reading Alloys, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reading Alloys, Inc. filed Critical Reading Alloys, Inc.
Priority to US14/772,974 priority Critical patent/US20160017461A1/en
Publication of WO2014159102A1 publication Critical patent/WO2014159102A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • Molybdenum (Mo) is a relatively high-density metallic element. It is used for the production of Ti 6A1 2Sn 4Zr 6Mo and other multi-component Mo-containing titanium alloys. Details related to such alloys are found in U.S. Patent Nos. 4,104,059 and 4,119,457, herein incorporated by reference. When added uniformly to these alloys, it conveys the benefit of stabilizing the beta titanium grain structure. This structure improves ductility and oxidation resistance of the alloy when used at high temperatures. These Mo-containing titanium alloys are used in the compressors of jet turbine engines.
  • Mo is present in the titanium alloy as a discrete particle, it can act as a low- cycle fatigue crack initiation site that can result in catastrophic engine failure. Mo is therefore identified as a potential High Density Inclusion (HDI). Every Mo-containing master alloy must be certified to be free from HDIs.
  • HDI High Density Inclusion
  • VAR vacuum arc remelt
  • Each manufacturer consolidates the raw materials (Ti sponge, master alloy and blended elemental) differently prior to melting.
  • Most of the industry can use -20 mesh master alloys.
  • One titanium ingot producer has a compaction process that is unable to use the -20 mesh master alloy.
  • the -20 mesh master alloy creates a compact that is insufficiently strong and prone to breaking. Manufacturers require at least a 1 ⁇ 4" x 20 mesh size in order to produce compacts that are strong enough to melt.
  • Another method of reducing the apparent density of the master alloy is to powder and reagglomerate the powder using aluminum or titanium as a cement. This is a more expensive process and does not provide a strong master alloy particle. In practice, it has been found that HDIs were formed during the sintering process.
  • the accepted inspection method for detecting an HDI is automated fluoroscopic inspection.
  • Mo-containing master alloys are too dense to transmit x-rays and cannot be certified by this method.
  • the present invention describes a lower density Mo-containing master alloy that can be inspected with an automated fluoroscope.
  • Radiolucency is a function of the master alloy density and the thickness or cross- section of the particle being examined.
  • the standard size of master alloy accepted by the titanium melting industry is 1 ⁇ 4" x 20 mesh.
  • the present invention describes successful inspection of 1 ⁇ 4" x 20 mesh particles.
  • the present invention relates to a method for producing a Mo-containing master alloy that is radiolucent.
  • two elements may be used to reduce the density of a Mo-containing master alloy enough to make the master alloy radiolucent, aluminum or titanium.
  • Aluminum is required in the particular titanium alloy in the same weight ratio as Mo and cannot be used to decrease the master alloy density without skewing the ratio. Since the master alloy is being added to a titanium melt, much more titanium can be used to reduce the master alloy density.
  • An important advantage of the present invention is to reduce the risk of HDIs.
  • This single thermite melt process is also the lowest cost production method; further details of this reaction are found in U.S. Patent No. 5,769,922, herein incorporated by reference.
  • the low Mo phases that form during crystallization do not have the opportunity to become enriched during a subsequent master alloy melt.
  • the Mo-containing master alloy is designed to be radiolucent.
  • the addition of titanium may be used to lower the density of any master alloy too dense to inspect by x-ray.
  • the master alloys to which this invention may be applied include at least one high-density element and may also include aluminum (Al), tin (Sn), zirconium (Zr), vanadium (V), iron (Fe), chromium (Cr) and silicon (Si). Aluminothermic reduction of the component oxides is the most efficient method of producing this alloy.
  • a 6-2-4-6 master alloy with 10% titanium added is less radiolucent than an AlMo alloy with 22% Ti, and is radiolucent at 0.20" thick but not at 0.25" thick. It can still be inspected, but at a slightly smaller size.
  • Fig. 1 shows the 0.20" sample and an x-ray calibration "salt.” The salt has been marked by the x-ray as a high density particle and the 0.20" master alloy has not been marked as high density.
  • Fig. 2 is a photograph of the radiolucent AlMo with nominally 22% Ti.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

La présente invention concerne un procédé pour produire un alliage mère contenant Mo qui est perméable aux rayons X. Selon la présente invention, deux éléments peuvent être utilisés pour réduire la masse volumique d'un alliage mère contenant Mo, suffisamment pour rendre l'alliage mère perméable aux rayons X, l'aluminium ou le titane. L'aluminium est requis dans l'alliage de titane particulier dans le même rapport en poids que Mo et ne peut pas être utilisé pour diminuer la masse volumique de l'alliage mère sans modifier le rapport. Étant donné qu'il est ajouté à l'alliage mère une matière fondue de titane, beaucoup plus de titane peut être utilisé pour diminuer la masse volumique de l'alliage mère.
PCT/US2014/021956 2013-03-14 2014-03-07 Alliages mères contenant du molybdène perméable aux rayons x WO2014159102A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/772,974 US20160017461A1 (en) 2013-03-14 2014-03-07 Radiolucent molybdenum-containing master alloys

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361782212P 2013-03-14 2013-03-14
US61/782,212 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014159102A1 true WO2014159102A1 (fr) 2014-10-02

Family

ID=51625108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/021956 WO2014159102A1 (fr) 2013-03-14 2014-03-07 Alliages mères contenant du molybdène perméable aux rayons x

Country Status (2)

Country Link
US (1) US20160017461A1 (fr)
WO (1) WO2014159102A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214533A (zh) * 2021-12-03 2022-03-22 徐州宏阳新材料科技股份有限公司 一种利用跳汰铬铁颗粒制备高碳铬铁合金的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2049291A (en) * 1934-04-18 1936-07-28 Titanium Alloy Mfg Co Method of making copper-titanium alloys
US3387971A (en) * 1966-02-21 1968-06-11 Union Carbide Corp Master alloy consisting essentially of molybdenum-vanadium-aluminum
US3508910A (en) * 1966-02-01 1970-04-28 Crucible Inc Master alloy
US4104059A (en) * 1977-05-27 1978-08-01 Reading Alloys, Inc. Molybdenum-titanium-zirconium-aluminum master alloys
US6172296B1 (en) * 1996-05-17 2001-01-09 Canon Kabushiki Kaisha Photovoltaic cell
US20090018645A1 (en) * 2007-07-13 2009-01-15 Matthew Cambronne Endoprostheses Containing Boride Intermetallic Phases
US7604680B2 (en) * 2004-03-31 2009-10-20 General Electric Company Producing nickel-base, cobalt-base, iron-base, iron-nickel-base, or iron-nickel-cobalt-base alloy articles by reduction of nonmetallic precursor compounds and melting
WO2009145406A1 (fr) * 2008-05-28 2009-12-03 Korea Institute Of Machinery & Materials Alliage de titane bêta avec un faible module d'élasticité

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2049291A (en) * 1934-04-18 1936-07-28 Titanium Alloy Mfg Co Method of making copper-titanium alloys
US3508910A (en) * 1966-02-01 1970-04-28 Crucible Inc Master alloy
US3387971A (en) * 1966-02-21 1968-06-11 Union Carbide Corp Master alloy consisting essentially of molybdenum-vanadium-aluminum
US4104059A (en) * 1977-05-27 1978-08-01 Reading Alloys, Inc. Molybdenum-titanium-zirconium-aluminum master alloys
US6172296B1 (en) * 1996-05-17 2001-01-09 Canon Kabushiki Kaisha Photovoltaic cell
US7604680B2 (en) * 2004-03-31 2009-10-20 General Electric Company Producing nickel-base, cobalt-base, iron-base, iron-nickel-base, or iron-nickel-cobalt-base alloy articles by reduction of nonmetallic precursor compounds and melting
US20090018645A1 (en) * 2007-07-13 2009-01-15 Matthew Cambronne Endoprostheses Containing Boride Intermetallic Phases
WO2009145406A1 (fr) * 2008-05-28 2009-12-03 Korea Institute Of Machinery & Materials Alliage de titane bêta avec un faible module d'élasticité

Also Published As

Publication number Publication date
US20160017461A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
Snead et al. Refractory alloys: vanadium, niobium, molybdenum, tungsten
JP6493561B2 (ja) ハイエントロピー合金部材、該合金部材の製造方法、および該合金部材を用いた製造物
Mokhtari et al. Correlation between microstructure and mechanical properties of Sn–Bi–X solders
Hansen et al. Systems titanium-molybdenum and titanium-columbium
JP5524257B2 (ja) 金属物品を融解せずに製造する方法
Miao et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5 wt.% TaC alloys
Ahmed et al. The effect of ageing on microstructure and mechanical properties of powder Ti–5Al–5Mo–5V–1Cr–1Fe alloy
Liu et al. Effect of hot extrusion and heat treatment on microstructure of nickel-base superalloy
Nathal et al. The influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247
WO2017055332A1 (fr) Matériau en carbure métallique et procédé de production s'y rapportant
Moshokoa et al. Effects of Mo content on the microstructural and mechanical properties of as-cast Ti-Mo alloys
Schuster et al. Heat treatment response and mechanical properties of a Zr-modified AA2618 aluminum alloy fabricated by laser powder bed fusion
US7419528B2 (en) Method for fabricating a superalloy article without any melting
GB2527266A (en) Method of producing metal
WO2014159102A1 (fr) Alliages mères contenant du molybdène perméable aux rayons x
Yin et al. New insights into the accelerated sintering of tungsten with trace nickel addition
EP2295608B1 (fr) Affineur de grain à base d'aluminium
Kaserer et al. Solute-induced grain refinement and defect suppression in boron-modified molybdenum manufactured via laser powder-bed fusion
Haase et al. Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process
Yolton et al. Powder metallurgy processing of gamma titanium aluminide
Nguyen Equiatomic and non-equiatomic Ti-Zr-Nb-Ta refractory medium entropy alloys
Zhang et al. The Effect of Refined Coherent Grain Boundaries on High-Temperature Oxidation Behavior of TiAl-Based Alloys through Cyclic Heat Treatment
Senopati et al. Microstructure and mechanical properties of as-cast Ti-Mo-xCr alloy for biomedical application
Švec et al. The effect of chromium addition and heat treatment on phase composition of cast FeAlSi alloys
WO2019054489A1 (fr) Cible de pulvérisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774128

Country of ref document: EP

Kind code of ref document: A1