WO2014157987A1 - Electrode assembly for secondary battery and secondary battery using same - Google Patents

Electrode assembly for secondary battery and secondary battery using same Download PDF

Info

Publication number
WO2014157987A1
WO2014157987A1 PCT/KR2014/002664 KR2014002664W WO2014157987A1 WO 2014157987 A1 WO2014157987 A1 WO 2014157987A1 KR 2014002664 W KR2014002664 W KR 2014002664W WO 2014157987 A1 WO2014157987 A1 WO 2014157987A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
negative electrode
conductive metal
positive electrode
Prior art date
Application number
PCT/KR2014/002664
Other languages
French (fr)
Korean (ko)
Inventor
최원길
노승윤
장주희
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority claimed from KR1020140036627A external-priority patent/KR101592353B1/en
Publication of WO2014157987A1 publication Critical patent/WO2014157987A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery electrode assembly and a secondary battery using the same to form a porous conductive metal layer on the surface of the particles of the active material to improve the electrical conductivity and ion conductivity.
  • Lithium secondary batteries generate electrical energy by oxidation and reduction reactions when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • a lithium secondary battery is prepared by using a material capable of reversibly intercalating / deintercalating lithium ions as an active material of a positive electrode and a negative electrode, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium secondary battery is composed of an electrode assembly in which a negative electrode plate and a positive electrode plate are wound or stacked in a predetermined form with a separator (separation membrane) interposed therebetween, and a case in which the electrode assembly and the electrolyte solution are stored.
  • the basic function of the separator of the lithium secondary battery is to prevent the short circuit by separating the positive electrode and the negative electrode, and furthermore, it is important to suck the electrolyte required for the battery reaction and maintain high ion conductivity.
  • an additional function is required to prevent the movement of substances that inhibit battery reaction or to secure safety when an abnormality occurs.
  • Lithium-ion secondary batteries with high energy density and large capacity, secondary batteries including lithium-ion polymer batteries should have a relatively high operating temperature range, and the temperature rises when they are continuously used in high rate charge / discharge states. Separators are required to have higher heat resistance and thermal stability than those required by ordinary separators. In addition, it should have excellent battery characteristics such as high ion conductivity that can cope with rapid charging and discharging and low temperature.
  • the separator is located between the anode and the cathode of the battery to insulate it, maintains the electrolyte to provide a path for ion conduction, and when the temperature of the battery becomes too high, a part of the separator melts to block pores in order to block the current.
  • the separator When the temperature rises further and the separator melts, a large hole is formed, which causes a short circuit between the anode and the cathode. This temperature is called SHORT CIRCUIT TEMPERATURE. In general, the separator should have a low shutdown temperature and a higher short circuit temperature.
  • the electrode part when an abnormal heat generation of the battery occurs, the electrode part may be contracted at 150 ° C. or more, resulting in a short circuit. Therefore, it is very important to have both the closing function and the heat resistance for high energy density and large sized secondary battery. That is, a separator having excellent heat resistance, low thermal shrinkage, and excellent cycle performance according to high ion conductivity is required.
  • polyolefin-based microporous polymer membranes such as polypropylene and polyethylene or multiple membranes thereof are usually used.
  • the porous membrane layer is in the form of a sheet or a film, there is a drawback that the sheet-like separator shrinks together with the pore blocking of the porous membrane due to heat generation due to internal short circuit or overcharge. Therefore, when the sheet-like separator collapses due to the internal heat generation of the battery, the separator is reduced and the missing part is directly in contact with the positive electrode and the negative electrode, which leads to ignition, rupture, and explosion.
  • LiCoO 2 is a material with excellent thermal stability and stable charge and discharge characteristics and high electron conductivity. Recently, however, there is a need for a cathode active material for a lithium secondary battery having a high voltage and a large capacity. When LiCoO 2 is continuously charged and discharged at 4.3 V or higher, the cathode active material reacts with the electrolyte due to lattice deformation or destruction of crystal structure. By doing so, life characteristics and safety are lowered. In addition, Co, which is the starting material of the positive electrode active material, has a tendency to continuously increase in price due to the small reserves, and further development of alternative positive electrode active material is needed due to the toxicity and environmental pollution problem to the human body.
  • LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , and Li (NixCoyMnz) O 2 may be mentioned as positive electrode active materials for lithium secondary batteries that are actively researched and developed.
  • LiNiO 2 is not only difficult to synthesize, but also difficult to commercialize due to problems of thermal stability, while LiMn 2 O 4 has been commercialized in low-priced products, but due to Jahn-Teller distortion due to Mn3 + The property is not good.
  • LiFePO 4 has a low price and excellent safety and is currently being studied for HEV, but due to low conductivity it is difficult to apply to other fields.
  • Li (NixCoyMnz) O 2 is the most recently attracting attention as an alternative cathode active material for LiCoO 2 .
  • This material is cheaper than LiCoO 2 and has the advantage of being able to be used for high capacity and high voltage, but has disadvantages of poor rate characteristics and long life at high temperatures.
  • lithium in manufacturing a lithium secondary battery, lithium can be distributed evenly in the positive electrode active material and maximize the doping effect to improve the structural stability and electrochemical properties to prevent degradation of the battery performance as described above
  • cathode active materials for secondary batteries There is a need for research on cathode active materials for secondary batteries.
  • Korean Patent Application Publication No. 10-2010-56106 proposes a cathode active material for a lithium secondary battery having excellent structural stability and electrochemical properties by maximizing the doping effect of an additive element.
  • Electron conduction networks alone have limitations in ion conductivity.
  • An object of the present invention is to form a porous conductive metal layer on the particle surface of the electrode active material layer to form a metal network by the porous conductive metal layer in addition to the electron conductive network by the conductive material mixed with the active material inside the electrode to improve the ion conductivity accordingly It is to provide a secondary battery electrode assembly and a secondary battery using the same that can improve the performance of the battery.
  • Another object of the present invention is to improve the electrical conductivity of the electrode surface by adding a metal network in addition to the electron conductive network to increase the movement speed of the lithium ion, the electrode assembly for a secondary battery that can achieve high power and high capacity characteristics and It is to provide a secondary battery using the same.
  • the secondary battery electrode assembly of the present invention includes a negative electrode having a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector; A positive electrode having a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector; A porous separator formed between the cathode and the anode; And a porous conductive metal layer formed on at least one surface of the negative electrode active material layer and the positive electrode active material layer and having a plurality of pores to allow the movement of lithium ions.
  • Each of the negative electrode and the positive electrode includes an electron conductive network by a conductive agent mixed with an active material and a metal network by the porous conductive metal layer, respectively, and as a result, the electrical conductivity, the ion conductivity, and the capacity of the battery can be improved.
  • the conductive metal layer is deposited on the surface of the particles of the negative electrode active material layer or the positive electrode active material layer in the form of a plurality of point particles are interconnected to form a metal network, it is preferable that pores for moving lithium ions are formed between the particles and the particles.
  • the conductive metal layer formed on the cathode active material layer of the present invention may be formed of Al or Ni, and the conductive metal layer formed on the anode active material layer may be formed of Cu or Ni.
  • the conductive metal layer is preferably set to a thickness of 30 to 400 kPa, preferably formed by a vacuum deposition method.
  • the conductive metal layer formed on the negative electrode active material layer is set in the range of 30 ⁇ 300 ⁇
  • the conductive metal layer formed on the positive electrode active material layer is preferably set in the range of 110 ⁇ 400 ⁇ .
  • the electrode assembly according to the present invention is assembled in a case and filled with an electrolyte to constitute a secondary battery.
  • the electrolyte solution comprises an organic electrolyte containing a non-aqueous organic solvent, a solute of lithium salt, a monomer for forming a gel polymer, and a polymerization initiator, and the electrolyte solution is impregnated into the porous separator and then polymerizes the gel polymer forming monomer. As a result, a gel polymer electrolyte is formed, and the porous separator serves as an electrolyte matrix in the gel polymer electrolyte.
  • the electrolyte solution may be an organic electrolyte solution containing a solute of a non-aqueous organic solvent and a lithium salt.
  • the electrode assembly according to the present invention can be applied to a secondary battery such as a lithium ion battery or a lithium polymer battery.
  • the electrode assembly for secondary batteries of the present invention forms a porous conductive metal layer on the surface of the particles of the negative electrode active material layer and / or the positive electrode active material layer by a deposition method, and thus conducts electrons by the conductive agent mixed with the active material in the electrode.
  • a metal network may be formed by the porous conductive metal layer, thereby improving electrical conductivity, ion conductivity, and battery capacity.
  • FIG. 1 is a cross-sectional view illustrating an electrode assembly for a secondary battery according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an electrode assembly for a secondary battery according to a second embodiment of the present invention.
  • FIG 3 is an enlarged view conceptually illustrating a state in which an electrically conductive metal layer is deposited on the surface of an active material layer of the present invention.
  • FIG. 4A is a SEM photograph taken at 2000 times magnification of a negative electrode sample of Comparative Example 1.
  • FIG. 4A is a SEM photograph taken at 2000 times magnification of a negative electrode sample of Comparative Example 1.
  • FIG. 4B to 4E are SEM images taken at 2000 times magnification of the negative electrode samples of Examples 2 to 5.
  • FIG. 4B to 4E are SEM images taken at 2000 times magnification of the negative electrode samples of Examples 2 to 5.
  • 5A is a SEM photograph taken at 2000 times magnification of the positive electrode sample of Comparative Example 2.
  • 5B to 5C are SEM images taken at 2000 times magnification of the positive electrode samples of Examples 8 to 10.
  • FIG. 1 is SEM images taken at 2000 times magnification of the positive electrode samples of Examples 8 to 10.
  • FIG. 1 is a cross-sectional view showing an electrode assembly according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view of an electrode assembly according to a second embodiment of the present invention.
  • the electrode assembly 10 for a secondary battery according to the present invention largely includes a negative electrode 1 and a positive electrode 2.
  • the negative electrode 1 is disposed to face the positive electrode 2 and includes a pair of negative electrode active material layers 13a and 13b formed on both sides of the negative electrode current collector 11 to form a bicell.
  • the negative electrode 1 may have a structure in which a negative electrode active material layer is provided on one surface of the negative electrode current collector 11.
  • the positive electrode 2 includes positive electrode active material layers 23a and 23b formed on both surfaces of the positive electrode current collector 21 to form a bicell.
  • the cathode 2 may have a structure in which a cathode active material layer is formed on one surface of the cathode current collector 21.
  • the cathode active material layers 23a and 23b include a cathode active material capable of reversibly intercalating and deintercalating lithium ions.
  • Representative examples of the cathode active material include LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiFeO 4 , and the like.
  • the positive electrode active material is largely divided into five types such as lithium cobalt-based (LCO), lithium nickel cobalt manganese (NCM), lithium nickel cobalt aluminum (NCA), lithium manganese (LMO) and lithium iron phosphate (LFP) Are distinguished.
  • LCO lithium cobalt-based
  • NCM lithium nickel cobalt manganese
  • NCA lithium nickel cobalt aluminum
  • LMO lithium manganese
  • LFP lithium iron phosphate
  • the negative electrode active material layers 13 and 13a include a negative electrode active material capable of intercalating and deintercalating lithium ions, and the negative electrode active material includes a carbon-based negative electrode of crystalline or amorphous carbon, carbon fiber, or carbon composite material. It can be selected from the group consisting of an active material, tin oxide, lithiated thereof, lithium, lithium alloys and mixtures thereof.
  • the negative electrode 1 and the positive electrode 2 are prepared by mixing an appropriate amount of an active material, a conductive agent, a binder, and an organic solvent to prepare a slurry, and then, as the negative electrode and the positive electrode current collectors 11 and 21, on both sides of a copper or aluminum sheet or the like.
  • the resulting slurry can be obtained by casting, drying and rolling.
  • Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, metal fiber, carbon fluoride, aluminum, nickel powder, zinc oxide and potassium titanate. At least one selected from titanium oxide and polyphenylene derivatives may be used.
  • the positive electrode is used by casting a slurry composed of LiCoO 2 , super-P carbon, PVdF as an active material, a conductive agent, a binder on an aluminum foil, and the negative electrode is MCMB (mesocarbon microbeads), super-P carbon, PVdF
  • MCMB mesocarbon microbeads
  • the constructed slurry can be cast and used in aluminum foil.
  • the porous separators 3a and 3b formed in the multilayer structure on the surface of the negative electrode 1 each include a first polymer made of a polymer that swells in the electrolyte so as to cover the negative electrode active material layers 13a and 13b and is capable of conducting electrolyte ions.
  • the inorganic-porous polymer film layers 31a and 31b, and the inorganic-containing porous polymer web layers 33a and 33b made of ultrafine fibrous forms of a mixture of heat resistant polymer or heat resistant polymer and swellable polymer and inorganic particles.
  • separators 3a and 3b may be separately formed without directly forming the cathode 1, and then inserted and encapsulated between the cathode and the anode when assembling the anode and the cathode.
  • a metal network is formed in addition to the electron conductive network by carbon black or other conductive agent contained in the negative electrode active material layer and the positive electrode active material layer.
  • Porous conductive metal layers 50 and 60 may be formed to improve performance.
  • the porous conductive metal layers 50 and 60 are formed of the porous first conductive metal layer 50 formed on the surface of the negative electrode active material layer 13a and the porous second conductive metal layer 60 formed on the surface of the positive electrode active material layer 23a. Include.
  • the thicknesses of the first and second conductive metal layers 50 and 60 are preferably set to 30 to 400 kPa, respectively. More preferably, the first conductive metal layer 50 is set in the range of 30 to 300 kPa, and the second conductive metal layer 60 is set in the range of 110 to 400 kPa.
  • the thicknesses of the first and second conductive metal layers 50 and 60 are respectively less than 30 ⁇ s, the resistance increases, and the improvement of the electrical conductivity is insignificant. Rather, it adversely affects battery characteristics.
  • the first conductive metal layer 50 formed on the surface of the negative electrode active material layer 13a increases in resistance as the thickness increases or decreases, and the second conductive metal layer 60 formed on the surface of the positive electrode active material layer 23a As the thickness increases or decreases, the resistance value and the electrical conductivity tend to increase.
  • the first conductive metal layer 50 may be formed of Cu or Ni
  • the second conductive metal layer 60 may be formed of Al or Ni.
  • a plurality of pores 70 are formed in the porous conductive metal layers 50 and 60 to allow lithium ions to pass therethrough. That is, when the conductive metal layers 50 and 60 completely cover the particle surfaces of the active material layers 13a and 23a, the movement of lithium ions is suppressed and the performance is reduced, thereby securing pores 70 through which lithium ions can be sufficiently transferred. It is formed in one form.
  • the conductive metal layers 50 and 60 are formed by a deposition method, for example, thermal evaporation or electron-beam evaporation, and the like.
  • the deposition conditions are appropriately adjusted so that the conductive metal layers 50 and 60 are deposited in the form of point particles 80 so as to be partially interconnected, thereby depositing the particles 80 and 80. While forming a metal network of a three-dimensional structure between the) to partially secure the pores (70) to allow sufficient lithium ions to pass through.
  • a method for forming the conductive metal layer a method such as sputtering, chemical vapor deposition (CVD), and physical vapor deposition (PVD) may be applied in addition to the thermal evaporation described above.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the conductive metal layers 50 and 60 on the surface of the particles of the negative electrode active material layer and the positive electrode active material layer, a three-dimensional metal network having pores 70 which are passages through which lithium ions pass is formed.
  • the electrical conductivity and the ion conductivity can be improved, thereby improving the performance of the electrode.
  • the ion conductivity is low, and the conductive metal layer is formed on the surface of the particles of the negative electrode active material layer and the positive electrode active material layer of the present embodiment in the form of dot particles to form a metal between the deposited particles 80 and the particles 80.
  • the pores 70 may be partially secured to improve electrical conductivity and ion conductivity, thereby improving battery performance.
  • a porous conductive metal layer is formed on the surface of the negative electrode active material layer and the positive electrode active material layer of the present embodiment to improve the electrical conductivity and the ion conductivity, thereby improving the performance of the battery.
  • a porous polymer web obtained by electrospinning the swellable polymer instead of the first inorganic porous polymer film layers 31a and 31b may be used.
  • the porous polymer web may be formed by dissolving a swellable polymer in a solvent to form a spinning solution, and then electrospinning the spinning solution on a negative electrode active material layer to form a porous polymer web made of ultra-fine fibers.
  • PVDF is obtained by calendering the porous polymer web at a temperature lower than the melting point of PVDF).
  • the first inorganic porous polymer film layers 31a and 31b formed to cover the negative electrode active material layers 13a and 13b in the negative electrode 1 are swelled in the electrolyte and are capable of conducting electrolyte ions, for example, PVDF. (Polyvinylidene fluoride), PEO (Poly-Ethylen Oxide), PMMA (polymethyl methacrylate), TPU (Thermoplastic Poly Urethane) can be used.
  • the first inorganic porous polymer film layers 31a and 31b form a spinning solution by dissolving the polymer in a solvent, and then electrospinning the spinning solution on the anode active material layer to form a porous polymer web made of ultra-fine fibrous fibers. By heat-treating or calendering the porous polymer web at a temperature lower than the melting point of the polymer, the polymer film layers 31a and 31b of the inorganic pores are obtained.
  • the heat treatment temperature may be performed at a temperature slightly lower than the melting point of the polymer because the solvent remains in the polymer web, and also to form the inorganic porous film while preventing the polymer web from completely melting by the heat treatment. to be.
  • the inorganic porous polymer film layers 31a and 31b made of a material capable of conducting electrolyte ions swelling in the electrolyte solution are directly electrospun onto the surfaces of the negative electrode active material layers 13a and 13b.
  • swelling is performed by the electrolyte solution while maintaining conduction of lithium ions while blocking the formation of spaces between the negative electrode active material layers 13a and 13b and the film to prevent lithium ions from accumulating and depositing into lithium metal. can do.
  • dendrite formation can be suppressed on the surface of the cathode 1 and safety can be improved.
  • the inorganic-containing porous polymer web layers 33a and 33b formed on the first inorganic porous film layers 31a and 31b are formed by dissolving a mixture of a heat resistant polymer or a heat resistant polymer and a swellable polymer and an inorganic particle in a solvent to form a spinning solution. Thereafter, the spinning solution is electrospun on the first non-porous polymer film layers 31a and 31b to form a porous polymer web made of ultra-fine fibrous, and the obtained porous polymer web is formed by calendering at a temperature below the melting point of the polymer.
  • the inorganic particles are Al 2 O 3 , TiO 2 , BaTiO 3 , Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, Li 2 CO 3 , CaCO 3 , LiAlO 2 , SiO 2 , SiO, SnO, SnO 2 , PbO 2 , ZnO, P 2 O 5 , CuO, MoO, V 2 O 5 , B 2 O 3 , Si 3 N 4 , CeO 2 , Mn 3 O 4 , Sn 2 P 2 O 7 , Sn 2 B At least one selected from 2 O 5 , Sn 2 BPO 6, and mixtures thereof can be used.
  • the content of the inorganic particles is preferably contained in the range of 10 to 25% by weight based on the total mixture when the size of the inorganic particles is between 10 and 100 nm. More preferably, the inorganic particles are contained in the range of 10 to 20% by weight, and the size is in the range of 15 to 25 nm.
  • the heat resistant polymer and the swellable polymer are preferably mixed in a weight ratio of 5: 5 to 7: 3, and more preferably 6: 4.
  • the swellable polymer is added as a binder to help bond between the fibers.
  • the mixing ratio of the heat resistant polymer and the swellable polymer is less than 5: 5 by weight, the heat resistance is poor and does not have the required high temperature characteristics.
  • the mixing ratio is larger than 7: 3 by weight, the strength drops and the radiation trouble occurs.
  • the heat resistant polymer resin usable in the present invention is a resin that can be dissolved in an organic solvent for electrospinning and has a melting point of 180 ° C. or higher, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, Aromatic polyesters such as poly (meth-phenylene isophthalamide), polysulfones, polyetherketones, polyethylene terephthalates, polytrimethylene terephthalates, polyethylene naphthalates, and the like, polytetrafluoroethylene, polydiphenoxyphosphazenes Polyphosphazenes, such as poly ⁇ bis [2- (2-methoxyethoxy) phosphazene] ⁇ , polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate pros Cypionate and the like can be used.
  • PAN polyacrylonitrile
  • Polyamide polyimi
  • the swellable polymer resin usable in the present invention is a resin that swells in an electrolyte and can be formed into ultrafine fibers by electrospinning.
  • PVDF polyvinylidene fluoride
  • poly (vinylidene fluoride-co-hexa) Fluoropropylene) perfuluropolymer
  • poly (oxymethylene-oligo- Oxyethylene) polyoxides including polyethylene oxide and polypropylene oxide
  • polyvinylacetate poly (vinylpyrrolidone-vinylacetate)
  • polystyrene and polystyrene acrylonitrile copolymers polyacrylonitrile methyl methacrylate copolymers
  • Polyacrylic containing Casting reel can be given to the copolymer, polymethyl me
  • the separators 3a and 3b having a multi-layer structure are formed on the surface of the cathode 1.
  • the separators 3a and 3b may be formed on the surface of the anode 2 instead of the cathode 1.
  • the inorganic-containing porous polymer web layers 33: 33a and 33b are first formed on the surface of the anode 2, and the first inorganic porous polymer film layers 31: 31a and 31b are formed of the porous polymer web layer 33. It is formed on the surfaces of 33a and 33b to be in close contact with the cathode 1 during assembly.
  • the two-layer structure separation membranes 3a and 3b are formed on either the negative electrode 1 or the positive electrode 2, but the separation membrane 3 is the first as shown in the second embodiment shown in FIG. It is composed of the inorganic porous polymer film layers 31: 31a and 31b and the inorganic-containing porous polymer web layers 33: 33a and 33b, and may be formed separately from the cathode 1 and the anode 2.
  • the first non-porous polymer film layers 31: 31a and 31b are formed on the negative electrode 1 to cover the negative electrode active material layers 13a and 13b, and the inorganic material to cover the positive electrode active material layers 23a and 23b. It is also possible that the porous polymeric web layers 33: 33a and 33b are formed on the anode 2.
  • the second inorganic porous polymer film layer on the surfaces of the inorganic material-containing porous polymeric web layers 33a and 33b of the anode 2 in the same manner as the first inorganic porous polymer film layers 31a and 31b.
  • the first inorganic porous polymer film layers 31a and 31b and the second inorganic porous polymer film layer are bonded to each other.
  • the thickness of the inorganic-containing porous polymer web layers 33a and 33b is set in a range of 5 to 50um, and the thickness of the first inorganic porous polymer film layers 31a and 31b is set in a range of 5 to 14um.
  • the function of the separator is that the inorganic-containing porous polymer web layers 33a and 33b have a higher porosity than the first inorganic-porous polymer film layers 31a and 31b, so that the first inorganic rather than the inorganic-containing porous polymer web layers 33a and 33b.
  • the thickness of the first inorganic porous polymer film layers 31a and 31b is less than 5 ⁇ m, a micro short circuit occurs.
  • the thickness of the first inorganic porous polymer film layers 31a and 31b is greater than 14 ⁇ m, it is too thick to prevent the movement of Li ions, thereby preventing charge and discharge.
  • the thickness of the first inorganic porous polymer film layers 31a and 31b is preferably adjusted in consideration of the ion conductivity and energy density of the film layer.
  • the first inorganic porous polymer film layers 31a and 31b and the inorganic porous polymer web layers 33a and 33b serving as separators may be formed of the cathode 1 or the anode 2 as shown in FIG. 1. It encloses with a sealing structure, or surrounds the cathode 1 and the anode 2 simultaneously with the sealing structure like FIG.
  • the electrode assemblies 10 and 10a of the present invention may form a unit cell by simply stacking the cathode 1 and the anode 2, for example, a large capacity for an electric vehicle.
  • the present invention has a high assembly productivity compared to the prior art that goes through the process of folding a plurality of bi-cell with a separate membrane film.
  • the negative electrode 1 and the positive electrode 2 are provided with a negative electrode and a positive electrode terminal formed to protrude portions of the negative electrode and the positive electrode current collectors 11 and 21.
  • the electrode assemblies 10 and 10a of the present invention are laminated and assembled with a plurality of negative electrodes 1 and positive electrodes 2, the negative electrode terminal 11a of the negative electrode 1 and the positive electrode terminal 21a of the positive electrode 2 as shown in FIG. 3. ) Are stacked so that they face in opposite directions.
  • porous polymer web layers 33a and 33b contain an inorganic material and thus retain their shape without shrinking or melting even when heat-treated at 500 ° C.
  • the electrode of the present invention maintains a constant voltage between 5V and 6V and a battery temperature of less than 100 ° C by continuously consuming overcharge current by causing a very small short-circuit rather than a hard short during overcharge. Overcharge stability can also be improved.
  • the electrode assembly according to the present invention may constitute a lithium ion battery or a lithium polymer battery as a secondary battery.
  • the electrode assembly according to the present invention constitutes a lithium ion battery (LIB), as shown in FIGS. 1 and 2, separators 3a, 3b; 3 are formed on the negative electrode 1 and the positive electrode 2, and the assembly is compressed.
  • One electrode assembly 10, 10a contains an electrolyte solution.
  • the electrolyte solution includes an organic electrolyte solution containing a non-aqueous organic solvent and a solute of a lithium salt, and the lithium salt serves as a source of lithium ions in the battery to enable operation of a basic lithium battery.
  • the electrode assembly according to the present invention constitutes a lithium polymer battery (LPB)
  • the lithium polymer battery includes a negative electrode (1), a positive electrode (2) and a polymer electrolyte inserted between the negative electrode and the positive electrode, the polymer electrolyte It consists of a porous membrane and a gel polymer that serves as an electrolyte matrix.
  • the lithium polymer battery is formed by integrally forming a porous separator on one of the negative electrode 1 and the positive electrode 2, preferably on the surface of the negative electrode 1, or by inserting it between the negative electrode 1 and the positive electrode 2 and pressing-assembled. Including an electrolyte in the electrode assembly.
  • the porous membrane may serve as an electrolyte matrix, and a composite porous membrane in which a single layer porous polymer web made of nanofibers, a porous polymer web or an inorganic porous polymer film, and a porous nonwoven fabric are stacked.
  • the electrolyte solution includes a non-aqueous organic solvent and a solute of a lithium salt, a monomer for forming a gel polymer, and a polymerization initiator.
  • the electrolyte When the electrolyte is charged while the electrode assembly is assembled to the case, the electrolyte is impregnated into the porous separator. After the gelation heat treatment, the gel polymer in the gel state is synthesized by the polymerization reaction of the monomer for forming the gel polymer. An electrolyte is formed.
  • the porous separator serves to separate the negative electrode 1 and the positive electrode 2 while serving as an electrolyte matrix in the gel polymer electrolyte.
  • the negative electrode is a mixture of graphite, conductive material (CB) and binder (PVdF) of 9g, 0.5g and 0.5g, respectively, dissolved in NMP (N-Methyl pyrrolidone), which is used as a solvent, and then cast into a copper foil.
  • NMP N-Methyl pyrrolidone
  • the negative electrode sample of Comparative Example 1 was prepared in 2Ah size without metal deposition, and a SEM photograph taken at 2000 times magnification of the negative electrode sample of Comparative Example 1 is shown in FIG. 4A.
  • a negative electrode of Comparative Example 1 was prepared in a size of 2 Ah, a negative electrode sample of 2 Ah size was mounted on a ceramic substrate jig of a thermal evaporator, and a jig was mounted on a rotary holder of the thermal evaporator. Cu metal was weighed in proportion to the thickness to be deposited and set in a tungsten boat.
  • Cu metal was deposited on the negative electrode sample by setting the thermal evaporator to 3.5 V, 120 A, and 3 min to deposit copper (Cu) at a thickness of 30 mV, 105 mV, 120 mV, 135 mV, 150 mV, and 300 mV for the negative electrode sample, respectively. Samples of 1 to 6 were prepared.
  • Example 2 half-cell tests for Example 2 and Example 5 were conducted to obtain battery capacity at the time of discharge, and are shown in Table 2 below.
  • Example 1 Sample Thickness Resistance value (m ⁇ cm) Electrical Conductivity (S / cm) Comparative Example 1 0 12.64 7.91 ⁇ 10 Example 1 30 8.001 1.04 ⁇ 10 2 Example 2 105 2.607 3.83 ⁇ 10 2 Example 3 120 2.648 3.77 ⁇ 10 2 Example 4 135 5.961 1.67 ⁇ 10 2 Example 5 150 6.460 1.54 ⁇ 10 2 Example 6 300 10.12 1.00 ⁇ 10 2
  • the samples of Examples 1 to 6 in which copper is deposited on the surface of the cathode according to the present invention have a resistance value and an electric conductivity characteristic compared to Comparative Example 1 in which copper is not deposited. It was found to be excellent, and the thinner the thickness of the deposited copper, the better the properties were. However, when the thickness of the deposited copper was too thin as in Example 1 or thickened as in Example 6, the resistance value increased and the electrical conductivity decreased.
  • Example 2 in which the thickness of copper was formed to 105 kW, showed the best resistance value, electrical conductivity, and capacity.
  • the positive electrode was mixed with 8 g, 1.5 g, and 0.5 g of a hybrid type active material, a conductive material (CB), and a binder (CMC, SBR), respectively, in which lithium nickel cobalt manganese (NCM) oxide and lithium manganese (LMO) oxide were mixed.
  • NCM nickel cobalt manganese
  • LMO lithium manganese
  • a positive electrode sample of Comparative Example 2 was prepared in 2Ah size without metal deposition, and a SEM photograph taken at 2000 times magnification of the positive electrode sample of Comparative Example 2 is shown in FIG. 5A.
  • a positive electrode of Comparative Example 2 was prepared in a size of 2 Ah, a positive electrode sample having a size of 2 Ah was mounted on a ceramic substrate jig of a thermal evaporator, and a jig was mounted on a rotary holder of the thermal evaporator. Al metal was weighed in proportion to the thickness to be deposited and set in a tungsten boat.
  • FIGS. 5B to 5D SEM pictures taken at 2000 times magnification of the samples of the obtained Examples 8 to 10 are shown in FIGS. 5B to 5D.
  • Example 8 the resistance value, the electrical conductivity, the ion conductivity, and the capacity were all superior to those of Comparative Example 2.
  • Example 7 when the thickness of the deposited aluminum was too thin as in Example 7, or thickened as in Example 11, the resistance value increased and the electrical conductivity decreased, and the ion conductivity and the capacity of the battery also decreased. If the thickness is too thin or too thick, the properties were found to be inferior.
  • the electrode assembly for secondary batteries of the present invention forms a porous conductive metal layer on the surface of the particles of the negative electrode active material layer and / or the positive electrode active material layer by a deposition method, and thus conducts electrons by the conductive agent mixed with the active material in the electrode.
  • a metal network may be formed by the porous conductive metal layer, thereby improving electrical conductivity, ion conductivity, and battery capacity.
  • a porous conductive metal layer having a plurality of pores of three-dimensional structure is formed on the surface of the negative electrode active material layer and the positive electrode active material layer of the present embodiment to improve electrical conductivity and ion conductivity. By improving, the performance of the battery can be improved.
  • the present invention partially forms a conductive metal layer on the particle surface of the electrode active material layer to form a metal network by the porous conductive metal layer in addition to the electronic conductive network by the conductive agent mixed with the active material in the electrode, thereby forming the electrical conductivity, ion conductivity and As a technique capable of improving the capacity, it can be applied to a secondary battery such as a lithium ion battery or a lithium polymer battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to an electrode assembly for a secondary battery and a secondary battery using the same, in which a porous conductive metal layer is formed on particle surfaces of an anode active material layer and/or a cathode active material layer by a deposition method, thereby forming a metallic network formed by a porous conductive metal layer as well as an electronic conduction network formed by a conductive agent mixed with an active material inside the electrode, so that the electrode assembly can improve electrical conductivity, ion conductivity, and the capacity of the battery. The electrode assembly for the secondary battery of the present invention includes: an anode having an anode current collector and an anode active material layer formed on at least one surface of the anode current collector; a cathode having a cathode current collector and a cathode active material layer formed on at least one surface of the cathode current collector; a porous separation film formed between the cathode and the anode; and a porous conductive metal layer formed on at least one surface of the cathode active material layer and the anode active material layer, the porous conductive metal layer having a plurality of pores to allow the movement of lithium ions.

Description

이차전지용 전극 조립체 및 이를 이용한 이차전지Electrode assembly for secondary battery and secondary battery using same
본 발명은 활물질층의 입자 표면에 다공성 전도성 금속층을 형성하여 전기전도도 및 이온전도도를 향상시킬 수 있는 이차전지용 전극 조립체 및 이를 이용한 이차전지에 관한 것이다. The present invention relates to a secondary battery electrode assembly and a secondary battery using the same to form a porous conductive metal layer on the surface of the particles of the active material to improve the electrical conductivity and ion conductivity.
리튬 이차 전지는 리튬 이온이 양극 및 음극에서 인터칼레이션(intercalation)/디인터칼레이션(deintercalation) 될 때의 산화, 환원 반응에 의하여 전기 에너지를 생성한다. 리튬 이차 전지는 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질을 양극과 음극의 활물질로 사용하고, 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다. Lithium secondary batteries generate electrical energy by oxidation and reduction reactions when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode. A lithium secondary battery is prepared by using a material capable of reversibly intercalating / deintercalating lithium ions as an active material of a positive electrode and a negative electrode, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
리튬 이차 전지는 음극판과 양극판이 세퍼레이터(분리막)를 사이에 두고 일정 형태로 감기거나 적층되는 전극조립체와, 이 전극조립체와 전해액이 수납되는 케이스로 구성된다. A lithium secondary battery is composed of an electrode assembly in which a negative electrode plate and a positive electrode plate are wound or stacked in a predetermined form with a separator (separation membrane) interposed therebetween, and a case in which the electrode assembly and the electrolyte solution are stored.
리튬 이차 전지의 세퍼레이터의 기본적인 기능은 양극과 음극을 분리하여 단락을 방지하는 것이며, 나아가 전지반응에 필요한 전해액을 흡입하여 높은 이온전도도를 유지하는 것이 중요하다. 특히, 리튬 이차 전지의 경우에는 전지반응을 저해하는 물질의 이동을 방지하거나 이상이 발생할 때에 안전성을 확보할 수 있는 부가적인 기능이 요구된다. The basic function of the separator of the lithium secondary battery is to prevent the short circuit by separating the positive electrode and the negative electrode, and furthermore, it is important to suck the electrolyte required for the battery reaction and maintain high ion conductivity. In particular, in the case of a lithium secondary battery, an additional function is required to prevent the movement of substances that inhibit battery reaction or to secure safety when an abnormality occurs.
고에너지 밀도 및 대용량의 리튬이온 이차전지, 리튬이온 고분자 전지를 포함하는 이차전지는 상대적으로 높은 작동온도범위를 지녀야 하며, 지속적으로 고율 충방전 상태로 사용될 때 온도가 상승되므로, 이들 전지에 사용되는 세퍼레이터는 보통의 세퍼레이터에서 요구되는 것보다도 높은 내열성과 열 안정성이 요구되고 있다. 또한, 급속 충방전 및 저온에 대응할 수 있는 높은 이온전도도 등 우수한 전지특성을 지녀야 한다. Lithium-ion secondary batteries with high energy density and large capacity, secondary batteries including lithium-ion polymer batteries should have a relatively high operating temperature range, and the temperature rises when they are continuously used in high rate charge / discharge states. Separators are required to have higher heat resistance and thermal stability than those required by ordinary separators. In addition, it should have excellent battery characteristics such as high ion conductivity that can cope with rapid charging and discharging and low temperature.
세퍼레이터는 전지의 양극과 음극 사이에 위치하여 절연시키며, 전해액을 유지시켜 이온전도의 통로를 제공하며, 전지의 온도가 지나치게 높아지면 전류를 차단하기 위하여 세퍼레이터의 일부가 용융되어 기공을 막는 폐쇄기능을 갖고 있다.The separator is located between the anode and the cathode of the battery to insulate it, maintains the electrolyte to provide a path for ion conduction, and when the temperature of the battery becomes too high, a part of the separator melts to block pores in order to block the current. Have
온도가 더 올라가 분리막이 용융되면 큰 홀이 생겨 양극과 음극 사이에 단락이 발생된다. 이 온도를 단락온도(SHORT CIRCUIT TEMPERATURE)라 하는데, 일반적으로 세퍼레이터는 낮은 폐쇄(SHUTDOWN) 온도와 보다 높은 단락온도를 가져야 한다. When the temperature rises further and the separator melts, a large hole is formed, which causes a short circuit between the anode and the cathode. This temperature is called SHORT CIRCUIT TEMPERATURE. In general, the separator should have a low shutdown temperature and a higher short circuit temperature.
폴리에틸렌 세퍼레이터의 경우 전지의 이상 발열시 150℃ 이상에서 수축하여 전극 부위가 드러나게 되어 단락이 유발될 가능성이 있다. 그러므로, 고에너지 밀도화, 대형화 이차전지를 위하여 폐쇄기능과 내열성을 모두 갖는 것이 매우 중요하다. 즉, 내열성이 우수하여 열 수축이 작고, 높은 이온전도도에 따른 우수한 싸이클 성능을 갖는 세퍼레이터가 필요하다.In the case of a polyethylene separator, when an abnormal heat generation of the battery occurs, the electrode part may be contracted at 150 ° C. or more, resulting in a short circuit. Therefore, it is very important to have both the closing function and the heat resistance for high energy density and large sized secondary battery. That is, a separator having excellent heat resistance, low thermal shrinkage, and excellent cycle performance according to high ion conductivity is required.
세퍼레이터로의 재질로는 통상 폴리프로필렌, 폴리에틸렌 등의 폴리올레핀계 미다공성 고분자막 또는 이들의 다중막이 사용된다. 기존의 세퍼레이터는 다공막층이 시트(sheet) 또는 필름(film) 형상이므로, 내부 단락이나 과충전에 의한 발열에 의해 다공막의 기공 막힘과 함께 시트상 세퍼레이터도 수축하는 결점을 가진다. 따라서 시트상 세퍼레이터가 전지의 내부 발열에 의해 수축이 일어나서 쪼그라들게 되면 세퍼레이터가 줄어들어서 없어진 부분은 양극과 음극이 직접 닿게 되므로 발화, 파열, 폭발에 이르게 된다.As the material of the separator, polyolefin-based microporous polymer membranes such as polypropylene and polyethylene or multiple membranes thereof are usually used. In the conventional separator, since the porous membrane layer is in the form of a sheet or a film, there is a drawback that the sheet-like separator shrinks together with the pore blocking of the porous membrane due to heat generation due to internal short circuit or overcharge. Therefore, when the sheet-like separator collapses due to the internal heat generation of the battery, the separator is reduced and the missing part is directly in contact with the positive electrode and the negative electrode, which leads to ignition, rupture, and explosion.
현재 상용화되어 있는 리튬 이차전지들은 거의 대부분 양극활물질로서 LiCoO2를 사용하고 있다. LiCoO2는 안정된 충방전 특성, 높은 전자전도성으로 율 특성이 우수하며 열적 안정성이 뛰어난 물질이다. 그러나, 최근 들어 고전압 및 대용량을 가진 리튬 이차전지용 양극활물질의 필요성이 대두되고 있는데 LiCoO2의 경우 4.3 V 이상의 충방전을 지속적으로 하게 되면, 양극활물질에는 격자변형이나 결정구조의 파괴로 인해 전해액과 반응을 하게 됨으로써, 수명 특성 및 안전성이 저하한다. 또한 양극활물질의 시작물질인 Co는 매장량이 적어 계속적으로 가격이 오르는 추세에 있으며, 인체에 대한 독성 및 환경적인 오염문제 때문에 더욱 대체 양극활물질의 개발이 필요한 실정이다.Lithium secondary batteries that are currently commercialized mostly use LiCoO 2 as a cathode active material. LiCoO 2 is a material with excellent thermal stability and stable charge and discharge characteristics and high electron conductivity. Recently, however, there is a need for a cathode active material for a lithium secondary battery having a high voltage and a large capacity. When LiCoO 2 is continuously charged and discharged at 4.3 V or higher, the cathode active material reacts with the electrolyte due to lattice deformation or destruction of crystal structure. By doing so, life characteristics and safety are lowered. In addition, Co, which is the starting material of the positive electrode active material, has a tendency to continuously increase in price due to the small reserves, and further development of alternative positive electrode active material is needed due to the toxicity and environmental pollution problem to the human body.
이에 따라 현재 활발하게 연구 개발되고 있는 리튬 이차전지용 양극활물질로서 LiNiO2, LiMn2O4, LiFePO4, Li(NixCoyMnz)O2를 들 수 있다. 그러나 LiNiO2의 경우는 합성이 어려울 뿐만 아니라, 열적 안정성에 문제가 있어 상품화가 어려우며, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3+로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 HEV용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.Accordingly, LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , and Li (NixCoyMnz) O 2 may be mentioned as positive electrode active materials for lithium secondary batteries that are actively researched and developed. However, LiNiO 2 is not only difficult to synthesize, but also difficult to commercialize due to problems of thermal stability, while LiMn 2 O 4 has been commercialized in low-priced products, but due to Jahn-Teller distortion due to Mn3 + The property is not good. In addition, LiFePO 4 has a low price and excellent safety and is currently being studied for HEV, but due to low conductivity it is difficult to apply to other fields.
따라서, LiCoO2의 대체 양극활물질로 최근 가장 각광받고 있는 물질이 Li(NixCoyMnz)O2이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성 및 고온에서의 수명특성이 안 좋은 단점을 갖고 있다. 이러한 단점을 극복하기 위해 전도성이 좋은 금속을 양극활물질 표면에 코팅(coating)하는 방법, 또는 내부에 Al, Mg, Ti, Zr, Sn, Ca, Ag 및 Zn 등의 물질을 도핑(doping)하는 방법 등으로 연구가 많이 진행되어 왔으며, 코팅의 경우는 습식법을 이용하나 현실적으로 양산에서 가격이 높아지는 큰 문제점을 갖고 있으며, 현재는 상기의 금속을 건식 도핑을 통해서 그 특성을 증가시키는 보고가 증가하고 있는 추세이다.Therefore, Li (NixCoyMnz) O 2 is the most recently attracting attention as an alternative cathode active material for LiCoO 2 . This material is cheaper than LiCoO 2 and has the advantage of being able to be used for high capacity and high voltage, but has disadvantages of poor rate characteristics and long life at high temperatures. In order to overcome these disadvantages, a method of coating a highly conductive metal on the surface of the positive electrode active material, or doping the material, such as Al, Mg, Ti, Zr, Sn, Ca, Ag and Zn therein The research has been conducted a lot, such as the coating method using a wet method, but in reality, the price has a big problem that the price increases in mass production, and now the trend of increasing the characteristics of the above metal through dry doping is a trend that is increasing to be.
특히, 최근 들어 Ti 도핑(doping)을 통하여 리튬 이차전지의 전기화학적 특성을 개선하고자 하는 시도가 계속되고 있으나, 현재까지 많이 사용되는 TiO2를 사용하여 양극활물질 내부로 도핑하기 위해서는 1000 ℃ 이상의 높은 소성 온도와 다량의 소성시간이 필요한 단점이 있다.In particular, in recent years, attempts have been made to improve the electrochemical properties of lithium secondary batteries through Ti doping. However, in order to dope inside the cathode active material using TiO 2 , which is widely used to date, high plasticity of 1000 ° C. or higher is required. There is a disadvantage that a temperature and a large amount of firing time are required.
따라서, 리튬 이차전지를 제조함에 있어서, 상기와 같은 전지 성능의 열화를 방지할 수 있도록, 첨가 원소를 양극활물질에 고루게 분포시키고 도핑 효과를 극대화하여 구조적 안정성 및 전기화학적 특성을 개선할 수 있는 리튬 이차전지용 양극활물질에 대한 연구가 필요하다.Therefore, in manufacturing a lithium secondary battery, lithium can be distributed evenly in the positive electrode active material and maximize the doping effect to improve the structural stability and electrochemical properties to prevent degradation of the battery performance as described above There is a need for research on cathode active materials for secondary batteries.
한국 공개특허 제10-2010-56106호에는 첨가 원소의 도핑 효과를 극대화하여 구조적 안정성 및 전기화학적 특성이 우수한 리튬 이차전지용 양극활물질이 제안되어 있다.Korean Patent Application Publication No. 10-2010-56106 proposes a cathode active material for a lithium secondary battery having excellent structural stability and electrochemical properties by maximizing the doping effect of an additive element.
그러나, 종래의 양극 또는 음극의 전극은 활물질과 도전제 및 바인더로 구성되므로, 대용량 전지인 경우 활물질층에 의한 도전제에 의한 전자전도 네트워크가 형성되어, 특히 겔 폴리머 전해질 배터리의 경우 이온전도도가 떨어지는데 전자전도 네트워크만으로는 이온전도도에 한계가 있다. However, since a conventional positive electrode or negative electrode is composed of an active material, a conductive agent and a binder, an electron conduction network is formed by a conductive agent by an active material layer in the case of a large-capacity battery, and in particular, a gel polymer electrolyte battery has a poor ion conductivity. Electron conduction networks alone have limitations in ion conductivity.
본 발명의 목적은 전극 활물질층의 입자 표면에 다공성 전도성 금속층을 형성하여 전극 내부에 활물질과 혼합된 도전제에 의한 전자전도 네트워크 이외에 다공성 전도성 금속층에 의한 메탈 네트워크를 형성하여 이온전도도를 향상시키고 이에 따라 전지의 성능을 향상시킬 수 있는 이차전지용 전극 조립체 및 이를 이용한 이차전지를 제공하는 데 있다. An object of the present invention is to form a porous conductive metal layer on the particle surface of the electrode active material layer to form a metal network by the porous conductive metal layer in addition to the electron conductive network by the conductive material mixed with the active material inside the electrode to improve the ion conductivity accordingly It is to provide a secondary battery electrode assembly and a secondary battery using the same that can improve the performance of the battery.
본 발명의 다른 목적은 전자전도 네트워크 이외에 메탈 네트워크를 추가함에 의해 전극 표면의 전기전도도의 향상을 도모하여 리튬 이온의 이동 속도를 증가시킴에 따라 고출력 및 고용량 특성을 도모할 수 있는 이차전지용 전극 조립체 및 이를 이용한 이차전지를 제공하는 데 있다. Another object of the present invention is to improve the electrical conductivity of the electrode surface by adding a metal network in addition to the electron conductive network to increase the movement speed of the lithium ion, the electrode assembly for a secondary battery that can achieve high power and high capacity characteristics and It is to provide a secondary battery using the same.
본 발명이 해결하려는 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description. .
상기 목적을 달성하기 위하여, 본 발명의 이차전지용 전극 조립체는 음극 집전체과 상기 음극 집전체의 적어도 일면에 형성된 음극 활물질층을 구비한 음극; 양극 집전체와, 상기 양극 집전체의 적어도 일면에 형성된 양극 활물질층을 구비한 양극; 상기 음극과 양극 사이에 형성되는 다공성 분리막; 및 상기 음극 활물질층과 양극 활물질층 중 적어도 하나의 표면에 형성되며 리튬 이온의 이동이 가능하도록 복수의 기공을 갖는 다공성 전도성 금속층을 포함한다.In order to achieve the above object, the secondary battery electrode assembly of the present invention includes a negative electrode having a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector; A positive electrode having a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector; A porous separator formed between the cathode and the anode; And a porous conductive metal layer formed on at least one surface of the negative electrode active material layer and the positive electrode active material layer and having a plurality of pores to allow the movement of lithium ions.
상기 음극 및 양극은 각각 전극 내부에 활물질과 혼합된 도전제에 의한 전자전도 네트워크와 상기 다공성 전도성 금속층에 의한 메탈 네트워크를 구비하며, 그 결과 전기전도도, 이온전도도 및 전지의 용량을 향상시킬 수 있다. Each of the negative electrode and the positive electrode includes an electron conductive network by a conductive agent mixed with an active material and a metal network by the porous conductive metal layer, respectively, and as a result, the electrical conductivity, the ion conductivity, and the capacity of the battery can be improved.
상기 전도성 금속층은 음극 활물질층 또는 양극 활물질층의 입자 표면에 다수의 점 입자 형태로 증착되어 메탈 네트워크를 형성하도록 상호 연결되며, 입자와 입자 사이에 리튬 이온이 이동되는 기공이 형성되는 것이 바람직하다.The conductive metal layer is deposited on the surface of the particles of the negative electrode active material layer or the positive electrode active material layer in the form of a plurality of point particles are interconnected to form a metal network, it is preferable that pores for moving lithium ions are formed between the particles and the particles.
본 발명의 양극 활물질층에 형성되는 전도성 금속층은 Al 또는 Ni로 형성될 수 있고, 상기 음극 활물질층에 형성되는 전도성 금속층은 Cu 또는 Ni로 형성될 수 있다. The conductive metal layer formed on the cathode active material layer of the present invention may be formed of Al or Ni, and the conductive metal layer formed on the anode active material layer may be formed of Cu or Ni.
상기 전도성 금속층은 30 내지 400Å 두께로 설정되는 것이 바람직하며, 진공증착방법으로 형성되는 것이 바람직하다. 음극 활물질층에 형성되는 전도성 금속층은 30~300Å 범위로 설정되고, 양극 활물질층에 형성되는 전도성 금속층은 110~400Å 범위로 설정되는 것이 좋다. The conductive metal layer is preferably set to a thickness of 30 to 400 kPa, preferably formed by a vacuum deposition method. The conductive metal layer formed on the negative electrode active material layer is set in the range of 30 ~ 300Å, the conductive metal layer formed on the positive electrode active material layer is preferably set in the range of 110 ~ 400Å.
본 발명에 따른 전극 조립체는 케이스 내에 조립되고 전해액이 충전되어 이차전지를 구성한다.The electrode assembly according to the present invention is assembled in a case and filled with an electrolyte to constitute a secondary battery.
상기 전해액은 비수성 유기용매, 리튬염의 용질, 겔 폴리머 형성용 모노머 및 중합 개시제를 포함하는 유기 전해액으로 이루어지며, 상기 전해액은 상기 다공성 분리막에 함침된 후, 상기 겔 폴리머 형성용 모노머를 중합반응시킴에 따라 겔 폴리머 전해질을 형성하고, 상기 다공성 분리막은 상기 겔 폴리머 전해질 내에 전해질 매트릭스 역할을 한다.The electrolyte solution comprises an organic electrolyte containing a non-aqueous organic solvent, a solute of lithium salt, a monomer for forming a gel polymer, and a polymerization initiator, and the electrolyte solution is impregnated into the porous separator and then polymerizes the gel polymer forming monomer. As a result, a gel polymer electrolyte is formed, and the porous separator serves as an electrolyte matrix in the gel polymer electrolyte.
또한, 상기 전해액은 비수성 유기용매와 리튬염의 용질을 포함하는 유기 전해액일 수 있다.In addition, the electrolyte solution may be an organic electrolyte solution containing a solute of a non-aqueous organic solvent and a lithium salt.
본 발명에 따른 전극 조립체는 리튬 이온 배터리 또는 리튬 폴리머 배터리와 같은 이차전지에 적용될 수 있다.The electrode assembly according to the present invention can be applied to a secondary battery such as a lithium ion battery or a lithium polymer battery.
상기한 바와 같이, 본 발명의 이차전지용 전극 조립체는 음극 활물질층 및/또는 양극 활물질층의 입자 표면에 다공성 전도성 금속층을 증착방법에 의해 형성함으로써, 전극 내부에 활물질과 혼합된 도전제에 의한 전자전도 네트워크 이외에 다공성 전도성 금속층에 의한 메탈 네트워크를 형성하여 전기전도도, 이온전도도 및 전지의 용량을 향상시킬 수 있다. As described above, the electrode assembly for secondary batteries of the present invention forms a porous conductive metal layer on the surface of the particles of the negative electrode active material layer and / or the positive electrode active material layer by a deposition method, and thus conducts electrons by the conductive agent mixed with the active material in the electrode. In addition to the network, a metal network may be formed by the porous conductive metal layer, thereby improving electrical conductivity, ion conductivity, and battery capacity.
도 1은 본 발명의 제1실시예에 따른 이차전지용 전극 조립체를 나타내는 단면도이다.1 is a cross-sectional view illustrating an electrode assembly for a secondary battery according to a first embodiment of the present invention.
도 2는 본 발명의 제2실시예에 따른 이차전지용 전극 조립체를 나타내는 단면도이다. 2 is a cross-sectional view illustrating an electrode assembly for a secondary battery according to a second embodiment of the present invention.
도 3은 본 발명의 활물질층의 표면에 전기 전도성 금속층이 증착된 상태를 개념적으로 나타낸 확대도이다.3 is an enlarged view conceptually illustrating a state in which an electrically conductive metal layer is deposited on the surface of an active material layer of the present invention.
도 4a는 비교예 1의 음극 샘플에 대하여 2000배 확대 촬영한 SEM 사진이다.4A is a SEM photograph taken at 2000 times magnification of a negative electrode sample of Comparative Example 1. FIG.
도 4b 내지 도 4e는 실시예 2 내지 실시예 5의 음극 샘플에 대하여 2000배 확대 촬영한 SEM 사진이다.4B to 4E are SEM images taken at 2000 times magnification of the negative electrode samples of Examples 2 to 5. FIG.
도 5a는 비교예 2의 양극 샘플에 대하여 2000배 확대 촬영한 SEM 사진이다.5A is a SEM photograph taken at 2000 times magnification of the positive electrode sample of Comparative Example 2. FIG.
도 5b 내지 도 5c는 실시예 8 내지 실시예 10의 양극 샘플에 대하여 2000배 확대 촬영한 SEM 사진이다.5B to 5C are SEM images taken at 2000 times magnification of the positive electrode samples of Examples 8 to 10. FIG.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this process, the size or shape of the components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. Definitions of these terms should be made based on the contents throughout the specification.
도 1은 본 발명의 제1실시예에 따른 전극 조립체를 나타내는 단면도이고, 도 2는 본 발명의 제2실시예에 따른 전극 조립체의 단면도이다. 1 is a cross-sectional view showing an electrode assembly according to a first embodiment of the present invention, Figure 2 is a cross-sectional view of an electrode assembly according to a second embodiment of the present invention.
도 1 및 도 2를 참고하면, 본 발명에 따른 이차전지용 전극 조립체(10)는 크게 음극(1), 양극(2)을 포함한다. 1 and 2, the electrode assembly 10 for a secondary battery according to the present invention largely includes a negative electrode 1 and a positive electrode 2.
음극(1)은 양극(2)과 대향하여 배치되며 바이셀을 형성하도록 음극 집전체(11)의 양면에 형성된 한 쌍의 음극 활물질층(13a,13b)을 구비하고 있다. 그리고, 음극(1)은 풀셀을 형성할 경우 음극 집전체(11)의 일면에 음극 활물질층이 구비하는 구조를 가질 수 있다. The negative electrode 1 is disposed to face the positive electrode 2 and includes a pair of negative electrode active material layers 13a and 13b formed on both sides of the negative electrode current collector 11 to form a bicell. When the full cell is formed, the negative electrode 1 may have a structure in which a negative electrode active material layer is provided on one surface of the negative electrode current collector 11.
양극(2)은 바이셀을 형성하도록 양극 집전체(21)의 양면에 형성된 양극 활물질층(23a,23b)을 구비하고 있다. 그리고, 양극(2)은 풀셀을 형성할 경우 양극집전체(21)의 일면에 양극 활물질층이 형성된 구조를 가질 수 있다. The positive electrode 2 includes positive electrode active material layers 23a and 23b formed on both surfaces of the positive electrode current collector 21 to form a bicell. In addition, when forming the full cell, the cathode 2 may have a structure in which a cathode active material layer is formed on one surface of the cathode current collector 21.
양극 활물질층(23a,23b)은 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 양극 활물질을 포함하며, 이러한 양극 활물질의 대표적인 예로는 LiCoO2, LiNiO2, LiNiCoO2, LiFeO4, LiMnO2, LiMn2O4, V2O5, V6O13, LiNiCoAlO2, LiNi1-x-yCoxMyO2(0 ≤ x ≤ 1, 0 ≤y ≤ 1, 0 ≤ x+y ≤ 1, M은 Al, Sr, Mg, La 등의 금속) 또는 Li[NixCo1-x-yMny]O2(여기서 0<x<0.5, 0<y<0.5이다)와 같은 리튬-전이금속 산화물을 사용할 수 있다. The cathode active material layers 23a and 23b include a cathode active material capable of reversibly intercalating and deintercalating lithium ions. Representative examples of the cathode active material include LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiFeO 4 , and the like. LiMnO 2 , LiMn 2 O 4 , V 2 O 5 , V 6 O 13 , LiNiCoAlO 2 , LiNi 1-xy Co x M y O 2 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1, M is a metal such as Al, Sr, Mg, La) or a lithium-transition metal such as Li [Ni x Co 1-xy Mn y ] O 2 (where 0 <x <0.5, 0 <y <0.5) Oxides can be used.
상기 양극 활물질은 종류에 따라 리튬코발트계(LCO), 리튬니켈코발트망간계(NCM), 리튬니켈코발트알루미늄계(NCA), 리튬망간계(LMO) 및 리튬인산철계(LFP) 등 크게 5가지로 구분된다. 이 경우, 양극 활물질로 5가지 종류의 활물질을 단독으로 사용하거나 또는 예를 들어, 층상구조의 NCM 또는 NCA와 스피넬 구조의 LMO를 혼합하는 하이브리드 형태로 구성하는 것도 가능하다.The positive electrode active material is largely divided into five types such as lithium cobalt-based (LCO), lithium nickel cobalt manganese (NCM), lithium nickel cobalt aluminum (NCA), lithium manganese (LMO) and lithium iron phosphate (LFP) Are distinguished. In this case, it is also possible to use five types of active materials alone as the positive electrode active material or to form a hybrid form in which, for example, a layered NCM or NCA and a spinel structure LMO are mixed.
그러나, 본 발명에서는 상기 양극 활물질 이외에도 다른 종류의 양극 활물질을 사용하는 것도 물론 가능하다. However, in the present invention, it is of course possible to use other types of positive electrode active materials in addition to the positive electrode active material.
음극 활물질층(13,13a)은 리튬 이온을 인터칼레이션 및 디인터칼레이션할 수 있는 음극 활물질을 포함하며, 이러한 음극 활물질로는 결정질 또는 비정질의 탄소, 탄소 섬유, 또는 탄소 복합체의 탄소계 음극 활물질, 주석 산화물, 이들을 리튬화한 것, 리튬, 리튬합금 및 이들의 혼합물로 구성된 군에서 선택될 수 있다. The negative electrode active material layers 13 and 13a include a negative electrode active material capable of intercalating and deintercalating lithium ions, and the negative electrode active material includes a carbon-based negative electrode of crystalline or amorphous carbon, carbon fiber, or carbon composite material. It can be selected from the group consisting of an active material, tin oxide, lithiated thereof, lithium, lithium alloys and mixtures thereof.
음극(1) 및 양극(2)은 적당량의 활물질, 도전제, 결합제 및 유기 용매를 혼합하여 슬러리를 제조한 다음, 음극 및 양극 집전체(11,21)로서 구리 또는 알루미늄 박판 등의 양면에 제조된 슬러리를 캐스팅하고, 건조 및 압연하여 얻어질 수 있다. The negative electrode 1 and the positive electrode 2 are prepared by mixing an appropriate amount of an active material, a conductive agent, a binder, and an organic solvent to prepare a slurry, and then, as the negative electrode and the positive electrode current collectors 11 and 21, on both sides of a copper or aluminum sheet or the like. The resulting slurry can be obtained by casting, drying and rolling.
도전제로는 예를 들어, 그래파이트, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소 섬유, 금속 섬유, 불화 카본, 알루미늄, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄, 폴리페닐렌 유도체에서 선택된 적어도 하나를 사용할 수 있다.Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, metal fiber, carbon fluoride, aluminum, nickel powder, zinc oxide and potassium titanate. At least one selected from titanium oxide and polyphenylene derivatives may be used.
예를 들어, 양극은 활물질, 도전제, 결합제로서 LiCoO2, 수퍼-P 카본, PVdF로 구성된 슬러리를 알루미늄 호일에 캐스팅하여 사용하고, 음극으로는 MCMB(mesocarbon microbeads), 수퍼-P 카본, PVdF로 구성된 슬러리를 알루미늄 호일에 캐스팅하여 사용할 수 있다. 양극과 음극에 있어서, 슬러리를 각각 캐스팅한 후, 입자 간 및 금속 호일과의 접착력을 증대시키기 위하여 롤 프레싱을 실시하는 것이 바람직하다.For example, the positive electrode is used by casting a slurry composed of LiCoO 2 , super-P carbon, PVdF as an active material, a conductive agent, a binder on an aluminum foil, and the negative electrode is MCMB (mesocarbon microbeads), super-P carbon, PVdF The constructed slurry can be cast and used in aluminum foil. In the positive electrode and the negative electrode, after the slurry is cast, it is preferable to perform roll pressing in order to increase the adhesive force between the particles and the metal foil.
음극(1)의 표면에 다층 구조로 형성되는 다공성 분리막(3a,3b)은 상기 음극 활물질층(13a,13b)을 커버하도록 각각 전해액에 팽윤이 이루어지며 전해질 이온의 전도가 가능한 고분자로 이루어지는 제1 무기공 고분자 필름층(31a,31b)과, 내열성 고분자 또는 내열성 고분자 및 팽윤성 고분자와, 무기물 입자의 혼합물의 초극세 섬유상으로 이루어진 무기물 함유 다공성 고분자 웹층(33a,33b)으로 이루어질 수 있다. The porous separators 3a and 3b formed in the multilayer structure on the surface of the negative electrode 1 each include a first polymer made of a polymer that swells in the electrolyte so as to cover the negative electrode active material layers 13a and 13b and is capable of conducting electrolyte ions. The inorganic-porous polymer film layers 31a and 31b, and the inorganic-containing porous polymer web layers 33a and 33b made of ultrafine fibrous forms of a mixture of heat resistant polymer or heat resistant polymer and swellable polymer and inorganic particles.
또한, 상기 분리막(3a,3b)은 음극(1)에 직접 형성하지 않고 별도로 형성한 후, 음극과 양극을 조립할 때 음극과 양극 사이에 삽입하여 봉지화하는 것도 가능하다.In addition, the separators 3a and 3b may be separately formed without directly forming the cathode 1, and then inserted and encapsulated between the cathode and the anode when assembling the anode and the cathode.
음극 활물질층(13a)과 양극 활물질층(23a)의 입자 표면에는 음극 활물질층 및 양극 활물질층에 함유된 카본 블랙(Carbon Black) 또는 다른 도전제에 의한 전자 전도 네트워크 이외에 메탈 네트워크를 형성하여 전극의 성능을 향상시킬 수 있는 다공성 전도성 금속층(50,60)이 형성된다.On the surface of the particles of the negative electrode active material layer 13a and the positive electrode active material layer 23a, a metal network is formed in addition to the electron conductive network by carbon black or other conductive agent contained in the negative electrode active material layer and the positive electrode active material layer. Porous conductive metal layers 50 and 60 may be formed to improve performance.
다공성 전도성 금속층(50,60)은 음극 활물질층(13a)의 표면에 형성되는 다공성 제1전도성 금속층(50)과, 양극 활물질층(23a)의 표면에 형성되는 다공성 제2전도성 금속층(60)을 포함한다.The porous conductive metal layers 50 and 60 are formed of the porous first conductive metal layer 50 formed on the surface of the negative electrode active material layer 13a and the porous second conductive metal layer 60 formed on the surface of the positive electrode active material layer 23a. Include.
제1 및 제2 전도성 금속층(50,60)의 두께는 각각 30~400Å로 설정되는 것이 바람직하다. 더욱 바람직하게는 제1전도성 금속층(50)은 30~300Å 범위로 설정되고, 제2전도성 금속층(60)은 110~400Å 범위로 설정되는 것이 좋다. The thicknesses of the first and second conductive metal layers 50 and 60 are preferably set to 30 to 400 kPa, respectively. More preferably, the first conductive metal layer 50 is set in the range of 30 to 300 kPa, and the second conductive metal layer 60 is set in the range of 110 to 400 kPa.
제1 및 제2 전도성 금속층(50,60)의 두께가 각각 30Å 미만인 경우 저항이 증가하며, 전기전도도의 특성 향상이 미미하고, 400Å을 초과하는 경우 증착 두께로 인한 리튬 이온의 이동 경로가 장애를 받기 때문에 오히려 전지 특성에 악영향을 끼친다. When the thicknesses of the first and second conductive metal layers 50 and 60 are respectively less than 30 μs, the resistance increases, and the improvement of the electrical conductivity is insignificant. Rather, it adversely affects battery characteristics.
음극 활물질층(13a)의 표면에 형성되는 제1전도성 금속층(50)은 두께가 증가하거나 감소함에 따라 저항값이 증가하며, 양극 활물질층(23a)의 표면에 형성되는 제2전도성 금속층(60)도 두께가 증가하거나 감소함에 따라 저항값 및 전기전도도가 증가하는 경향을 나타낸다.The first conductive metal layer 50 formed on the surface of the negative electrode active material layer 13a increases in resistance as the thickness increases or decreases, and the second conductive metal layer 60 formed on the surface of the positive electrode active material layer 23a As the thickness increases or decreases, the resistance value and the electrical conductivity tend to increase.
여기에서, 제1전도성 금속층(50)은 Cu 또는 Ni으로 형성될 수 있고, 제2전도성 금속층(60)은 Al 또는 Ni로 형성될 수 있다. Here, the first conductive metal layer 50 may be formed of Cu or Ni, and the second conductive metal layer 60 may be formed of Al or Ni.
그리고, 다공성 전도성 금속층(50,60)에는 리튬 이온이 통과할 수 있도록 복수의 기공(70)이 형성된다. 즉, 전도성 금속층(50,60)이 활물질층(13a,23a)의 입자 표면을 완전히 덮어버리면 리튬 이온의 이동이 억제되어 성능이 저하되기 때문에 리튬 이온이 충분히 이동될 수 있는 기공(70)을 확보한 형태로 형성된다.In addition, a plurality of pores 70 are formed in the porous conductive metal layers 50 and 60 to allow lithium ions to pass therethrough. That is, when the conductive metal layers 50 and 60 completely cover the particle surfaces of the active material layers 13a and 23a, the movement of lithium ions is suppressed and the performance is reduced, thereby securing pores 70 through which lithium ions can be sufficiently transferred. It is formed in one form.
이를 위해, 도 3에 도시된 바와 같이, 전도성 금속층(50,60)은 증착 방법, 예를 들어, 열증착(thermal evaporation) 또는 전자빔 증착(electron-beam evaporation) 등에 의해 형성되는데, 전도성 금속층(50,60)을 증착할 때 증착 조건을 적절하게 조절하여 전도성 금속층(50,60)이 부분적으로 상호 연결되도록 점 입자(80) 형태로 증착되도록 하고, 이에 따라 증착된 입자(80)와 입자(80) 사이에 3차원 구조의 메탈 네트워크를 형성하면서도 부분적으로 기공(70)을 확보하여 리튬 이온이 충분히 통과할 수 있도록 한다. To this end, as shown in FIG. 3, the conductive metal layers 50 and 60 are formed by a deposition method, for example, thermal evaporation or electron-beam evaporation, and the like. In the case of depositing 60, the deposition conditions are appropriately adjusted so that the conductive metal layers 50 and 60 are deposited in the form of point particles 80 so as to be partially interconnected, thereby depositing the particles 80 and 80. While forming a metal network of a three-dimensional structure between the) to partially secure the pores (70) to allow sufficient lithium ions to pass through.
전도성 금속층을 형성하기 위한 증착 방법은 상기한 열증착(thermal evaporation) 이외에 스퍼터링(sputtering), CVD(chemical vapor deposition), PVD(physical vapor deposition) 등의 방법을 적용할 수 있다.As the deposition method for forming the conductive metal layer, a method such as sputtering, chemical vapor deposition (CVD), and physical vapor deposition (PVD) may be applied in addition to the thermal evaporation described above.
이와 같이, 본 실시예에서는 음극 활물질층 및 양극 활물질층의 입자 표면에 전도성 금속층(50,60)을 증착 방법에 의해 리튬 이온이 통과하는 통로인 기공(70)을 갖는 3차원 메탈 네트워크를 형성함으로써, 전기전도도 및 이온전도도를 향상시킬 수 있고, 이에 따라 전극의 성능을 향상시킬 수 있다.As described above, in the present embodiment, by forming the conductive metal layers 50 and 60 on the surface of the particles of the negative electrode active material layer and the positive electrode active material layer, a three-dimensional metal network having pores 70 which are passages through which lithium ions pass is formed. In addition, the electrical conductivity and the ion conductivity can be improved, thereby improving the performance of the electrode.
특히, 겔 폴리머 전해질 배터리의 경우 이온전도도가 떨어지는데, 본 실시예의 음극 활물질층 및 양극 활물질층의 입자 표면에 전도성 금속층을 점 입자 형태로 형성하여 증착된 입자(80)와 입자(80) 사이에 메탈 네트워크를 형성하면서도 부분적으로 기공(70)을 확보하여 전기전도도 및 이온전도도를 향상시킴에 따라 전지의 성능을 향상시킬 수 있다. In particular, in the case of the gel polymer electrolyte battery, the ion conductivity is low, and the conductive metal layer is formed on the surface of the particles of the negative electrode active material layer and the positive electrode active material layer of the present embodiment in the form of dot particles to form a metal between the deposited particles 80 and the particles 80. While forming a network, the pores 70 may be partially secured to improve electrical conductivity and ion conductivity, thereby improving battery performance.
플랙시블 배터리를 구성하기 위하여 겔 폴리머 전해질을 사용할 경우 본 실시예의 음극 활물질층 및 양극 활물질층의 입자 표면에 다공성 전도성 금속층을 형성하여 전기전도도 및 이온전도도를 향상시킴에 따라 전지의 성능을 향상시킬 수 있다. In the case of using a gel polymer electrolyte to form a flexible battery, a porous conductive metal layer is formed on the surface of the negative electrode active material layer and the positive electrode active material layer of the present embodiment to improve the electrical conductivity and the ion conductivity, thereby improving the performance of the battery. have.
분리막(3a,3b)은 제1 무기공 고분자 필름층(31a,31b) 대신에 팽윤성 고분자를 전기방사하여 얻어지는 다공성 고분자 웹을 사용하는 것도 가능하다. 상기 다공성 고분자 웹은 예를 들어, 팽윤성 고분자를 용매에 용해시켜 방사용액을 형성한 후, 방사용액을 음극 활물질층 위에 전기방사하여 초극세 섬유로 이루어진 다공성 고분자 웹을 형성하고, 상기 고분자(예를 들어, PVDF)의 융점 보다 낮은 온도에서 다공성 고분자 웹을 캘린더링함에 의해 다공성 고분자 웹층이 얻어진다. As the separators 3a and 3b, a porous polymer web obtained by electrospinning the swellable polymer instead of the first inorganic porous polymer film layers 31a and 31b may be used. For example, the porous polymer web may be formed by dissolving a swellable polymer in a solvent to form a spinning solution, and then electrospinning the spinning solution on a negative electrode active material layer to form a porous polymer web made of ultra-fine fibers. , PVDF) is obtained by calendering the porous polymer web at a temperature lower than the melting point of PVDF).
음극(1)에서 음극 활물질층(13a,13b)을 커버하도록 형성되는 제1 무기공 고분자 필름층(31a,31b)은 전해액에 팽윤이 이루어지며 전해질 이온의 전도가 가능한 고분자, 예를 들어, PVDF(폴리비닐리덴플루오라이드), PEO(Poly-Ethylen Oxide), PMMA(폴리메틸메타크릴레이트), TPU(Thermoplastic Poly Urethane) 중 어느 하나를 사용할 수 있다. 또한, 제1 무기공 고분자 필름층(31a,31b)은 상기 고분자를 용매에 용해시켜 방사용액을 형성한 후, 방사용액을 상기 음극 활물질층 위에 전기방사하여 초극세 섬유상으로 이루어진 다공성 고분자 웹을 형성하고, 상기 고분자의 융점 보다 낮은 온도에서 다공성 고분자 웹을 열처리하거나 캘린더링을 실시함에 의해 무기공의 고분자 필름층(31a,31b)이 얻어진다.The first inorganic porous polymer film layers 31a and 31b formed to cover the negative electrode active material layers 13a and 13b in the negative electrode 1 are swelled in the electrolyte and are capable of conducting electrolyte ions, for example, PVDF. (Polyvinylidene fluoride), PEO (Poly-Ethylen Oxide), PMMA (polymethyl methacrylate), TPU (Thermoplastic Poly Urethane) can be used. In addition, the first inorganic porous polymer film layers 31a and 31b form a spinning solution by dissolving the polymer in a solvent, and then electrospinning the spinning solution on the anode active material layer to form a porous polymer web made of ultra-fine fibrous fibers. By heat-treating or calendering the porous polymer web at a temperature lower than the melting point of the polymer, the polymer film layers 31a and 31b of the inorganic pores are obtained.
상기 열처리 공정에서 열처리 온도가 고분자의 융점보다 다소 낮은 온도에서 실시할 수 있는 것은 고분자 웹에 용매가 잔존하고 있기 때문이며, 또한 열처리에 의해 고분자 웹이 완전히 녹는 것을 막으면서 무기공 필름을 형성하도록 하기 위함이다.In the heat treatment process, the heat treatment temperature may be performed at a temperature slightly lower than the melting point of the polymer because the solvent remains in the polymer web, and also to form the inorganic porous film while preventing the polymer web from completely melting by the heat treatment. to be.
상기와 같이 전해액에 팽윤이 이루어지며 전해질 이온의 전도가 가능한 재료로 이루어진 무기공 고분자 필름층(31a,31b)을 음극 활물질층(13a,13b)의 표면에 직접 전기방사하여 음극 활물질층(13a,13b)에 밀착 형성하면, 전해액에 의해 팽윤이 이루어지면서 리튬 이온의 전도를 유지하면서도 음극 활물질층(13a,13b)과 필름 사이의 공간 형성을 차단하여 리튬 이온이 쌓여서 리튬 금속으로 석출되는 현상을 방지할 수 있다. 그 결과, 음극(1)의 표면에 덴드라이트 형성을 억제할 수 있어 안전성 향상을 도모할 수 있다.As described above, the inorganic porous polymer film layers 31a and 31b made of a material capable of conducting electrolyte ions swelling in the electrolyte solution are directly electrospun onto the surfaces of the negative electrode active material layers 13a and 13b. When formed in close contact with 13b), swelling is performed by the electrolyte solution while maintaining conduction of lithium ions while blocking the formation of spaces between the negative electrode active material layers 13a and 13b and the film to prevent lithium ions from accumulating and depositing into lithium metal. can do. As a result, dendrite formation can be suppressed on the surface of the cathode 1 and safety can be improved.
제1무기공 고분자 필름층(31a,31b) 위에 형성되는 무기물 함유 다공성 고분자 웹층(33a,33b)은 내열성 고분자 또는 내열성 고분자 및 팽윤성 고분자와, 무기물 입자의 혼합물을 용매에 용해시켜 방사용액을 형성한 후, 방사용액을 제1무기공 고분자 필름층(31a,31b) 위에 전기방사하여 초극세 섬유상으로 이루어진 다공성 고분자 웹을 형성하고, 얻어진 다공성 고분자 웹을 고분자의 융점 이하의 온도에서 캘린더링하여 형성된다.The inorganic-containing porous polymer web layers 33a and 33b formed on the first inorganic porous film layers 31a and 31b are formed by dissolving a mixture of a heat resistant polymer or a heat resistant polymer and a swellable polymer and an inorganic particle in a solvent to form a spinning solution. Thereafter, the spinning solution is electrospun on the first non-porous polymer film layers 31a and 31b to form a porous polymer web made of ultra-fine fibrous, and the obtained porous polymer web is formed by calendering at a temperature below the melting point of the polymer.
무기물 입자는 Al2O3, TiO2, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SiO2, SiO, SnO, SnO2, PbO2, ZnO, P2O5, CuO, MoO, V2O5, B2O3, Si3N4, CeO2, Mn3O4, Sn2P2O7, Sn2B2O5, Sn2BPO6 및 이들의 각 혼합물 중에서 선택된 적어도 1종을 사용할 수 있다. The inorganic particles are Al 2 O 3 , TiO 2 , BaTiO 3 , Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, Li 2 CO 3 , CaCO 3 , LiAlO 2 , SiO 2 , SiO, SnO, SnO 2 , PbO 2 , ZnO, P 2 O 5 , CuO, MoO, V 2 O 5 , B 2 O 3 , Si 3 N 4 , CeO 2 , Mn 3 O 4 , Sn 2 P 2 O 7 , Sn 2 B At least one selected from 2 O 5 , Sn 2 BPO 6, and mixtures thereof can be used.
혼합물이 내열성 고분자 또는 내열성 고분자 및 팽윤성 고분자와 무기물 입자로 이루어지는 경우, 무기물 입자의 함량은 무기물 입자의 크기가 10 내지 100nm 사이일 때 혼합물 전체에 대하여 10 내지 25 중량% 범위로 함유하는 것이 바람직하다. 더욱 바람직하게는 무기물 입자를 10 내지 20 중량% 범위로 함유하며 크기가 15 내지 25nm 범위인 것이 좋다.When the mixture consists of a heat resistant polymer or a heat resistant polymer and a swellable polymer and inorganic particles, the content of the inorganic particles is preferably contained in the range of 10 to 25% by weight based on the total mixture when the size of the inorganic particles is between 10 and 100 nm. More preferably, the inorganic particles are contained in the range of 10 to 20% by weight, and the size is in the range of 15 to 25 nm.
또한, 상기 혼합물이 내열성 고분자 및 팽윤성 고분자와 무기물 입자로 이루어지는 경우, 내열성 고분자와 팽윤성 고분자는 5:5 내지 7:3 범위의 중량비로 혼합되는 것이 바람직하며, 6:4인 경우가 더욱 바람직하다. 이 경우, 상기 팽윤성 고분자는 섬유간의 결합을 도와주는 바인더 역할로 첨가된다.In addition, when the mixture consists of a heat resistant polymer, a swellable polymer and inorganic particles, the heat resistant polymer and the swellable polymer are preferably mixed in a weight ratio of 5: 5 to 7: 3, and more preferably 6: 4. In this case, the swellable polymer is added as a binder to help bond between the fibers.
내열성 고분자와 팽윤성 고분자의 혼합비가 중량비로 5:5보다 작은 경우 내열성이 떨어져서 요구되는 고온 특성을 갖지 못하며, 혼합비가 중량비로 7:3보다 큰 경우 강도가 떨어지고 방사 트러블이 발생하게 된다.When the mixing ratio of the heat resistant polymer and the swellable polymer is less than 5: 5 by weight, the heat resistance is poor and does not have the required high temperature characteristics. When the mixing ratio is larger than 7: 3 by weight, the strength drops and the radiation trouble occurs.
본 발명에서 사용 가능한 내열성 고분자 수지는 전기방사를 위해 유기용매에 용해될 수 있고 융점이 180℃ 이상인 수지로서, 예를 들어, 폴리아크릴로니트릴(PAN), 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리{비스[2-(2-메톡시에톡시)포스파젠]} 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등을 사용할 수 있다. The heat resistant polymer resin usable in the present invention is a resin that can be dissolved in an organic solvent for electrospinning and has a melting point of 180 ° C. or higher, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, Aromatic polyesters such as poly (meth-phenylene isophthalamide), polysulfones, polyetherketones, polyethylene terephthalates, polytrimethylene terephthalates, polyethylene naphthalates, and the like, polytetrafluoroethylene, polydiphenoxyphosphazenes Polyphosphazenes, such as poly {bis [2- (2-methoxyethoxy) phosphazene]}, polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate pros Cypionate and the like can be used.
본 발명에 사용 가능한 팽윤성 고분자 수지는 전해액에 팽윤이 일어나는 수지로서 전기 방사법에 의하여 초극세 섬유로 형성 가능한 것으로, 예를 들어, 폴리비닐리덴플루오라이드(PVDF), 폴리(비닐리덴플루오라이드-코-헥사플루오로프로필렌), 퍼풀루오로폴리머, 폴리비닐클로라이드 또는 폴리비닐리덴 클로라이드 및 이들의 공중합체 및 폴리에틸렌글리콜 디알킬에테르 및 폴리에틸렌글리콜 디알킬에스터를 포함하는 폴리에틸렌글리콜 유도체, 폴리(옥시메틸렌-올리 고-옥시에틸렌), 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드를 포함하는 폴리옥사이드, 폴리비닐아세테이트, 폴리(비닐피롤리돈-비닐아세테이트), 폴리스티렌 및 폴리스티렌 아크릴로니트릴 공중합체, 폴리아크릴로니트릴 메틸메타크릴레이트 공중합체를 포함하는 폴리아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리메틸메타크릴레이트 공중합체 및 이들의 혼합물을 들 수 있다. The swellable polymer resin usable in the present invention is a resin that swells in an electrolyte and can be formed into ultrafine fibers by electrospinning. For example, polyvinylidene fluoride (PVDF), poly (vinylidene fluoride-co-hexa) Fluoropropylene), perfuluropolymer, polyvinylchloride or polyvinylidene chloride and copolymers thereof and polyethylene glycol derivatives including polyethylene glycol dialkyl ether and polyethylene glycol dialkyl ester, poly (oxymethylene-oligo- Oxyethylene), polyoxides including polyethylene oxide and polypropylene oxide, polyvinylacetate, poly (vinylpyrrolidone-vinylacetate), polystyrene and polystyrene acrylonitrile copolymers, polyacrylonitrile methyl methacrylate copolymers Polyacrylic containing Casting reel can be given to the copolymer, polymethyl methacrylate, polymethyl methacrylate copolymers and mixtures thereof.
도 1에 도시된 제1실시예에서는 음극(1)의 표면에 다층 구조의 분리막(3a,3b)이 형성되어 있다. 그러나, 상기 분리막(3a,3b)은 음극(1) 대신에 양극(2)의 표면에 형성되는 것도 가능하다. 이 경우, 바람직하게는 양극(2)의 표면에 무기물 함유 다공성 고분자 웹층(33: 33a,33b)이 먼저 형성되고, 제1 무기공 고분자 필름층(31: 31a,31b)이 다공성 고분자 웹층(33: 33a,33b)의 표면에 형성되는 것이 음극(1)과의 조립시에 쉽게 밀착이 이루어지게 된다.In the first embodiment shown in FIG. 1, the separators 3a and 3b having a multi-layer structure are formed on the surface of the cathode 1. However, the separators 3a and 3b may be formed on the surface of the anode 2 instead of the cathode 1. In this case, preferably, the inorganic-containing porous polymer web layers 33: 33a and 33b are first formed on the surface of the anode 2, and the first inorganic porous polymer film layers 31: 31a and 31b are formed of the porous polymer web layer 33. It is formed on the surfaces of 33a and 33b to be in close contact with the cathode 1 during assembly.
제1실시예에서는 2층 구조 분리막(3a,3b)이 음극(1) 또는 양극(2)의 어느 한쪽에 형성되어 있으나, 도 2에 도시된 제2실시예와 같이 분리막(3)이 제1 무기공 고분자 필름층(31: 31a,31b)과 무기물 함유 다공성 고분자 웹층(33: 33a,33b)으로 이루어지며, 음극(1)과 양극(2)에 분리되어 형성될 수도 있다.In the first embodiment, the two-layer structure separation membranes 3a and 3b are formed on either the negative electrode 1 or the positive electrode 2, but the separation membrane 3 is the first as shown in the second embodiment shown in FIG. It is composed of the inorganic porous polymer film layers 31: 31a and 31b and the inorganic-containing porous polymer web layers 33: 33a and 33b, and may be formed separately from the cathode 1 and the anode 2.
예를 들어, 음극 활물질층(13a,13b)을 커버하도록 제1무기공 고분자 필름층(31: 31a,31b)이 음극(1)에 형성되고, 양극 활물질층(23a,23b)을 커버하도록 무기물 함유 다공성 고분자 웹층(33: 33a,33b)이 양극(2)에 형성되는 것도 가능하다.For example, the first non-porous polymer film layers 31: 31a and 31b are formed on the negative electrode 1 to cover the negative electrode active material layers 13a and 13b, and the inorganic material to cover the positive electrode active material layers 23a and 23b. It is also possible that the porous polymeric web layers 33: 33a and 33b are formed on the anode 2.
또한, 양극(2)의 무기물 함유 다공성 고분자 웹층(33a,33b)의 표면에 제1 무기공 고분자 필름층(31a,31b)과 동일한 방법으로 제2 무기공 고분자 필름층을 형성하는 것도 가능하다. 이 경우, 음극(1)과 양극(2)이 조립되는 경우 제1 무기공 고분자 필름층(31a,31b)과 제2 무기공 고분자 필름층이 서로 접착하게 된다.It is also possible to form the second inorganic porous polymer film layer on the surfaces of the inorganic material-containing porous polymeric web layers 33a and 33b of the anode 2 in the same manner as the first inorganic porous polymer film layers 31a and 31b. In this case, when the cathode 1 and the anode 2 are assembled, the first inorganic porous polymer film layers 31a and 31b and the second inorganic porous polymer film layer are bonded to each other.
제1 무기공 고분자 필름층(31a,31b)과 무기물 함유 다공성 고분자 웹층(33a,33b)이 음극(2)에 일체로 형성되거나, 또는 음극(1)과 양극(2)에 분리되어 형성될 때, 무기물 함유 다공성 고분자 웹층(33a,33b)의 두께는 5 내지 50um 범위로 설정되고, 제1 무기공 고분자 필름층(31a,31b)의 두께는 5 내지 14um 범위로 설정되는 것이 바람직하다.When the first inorganic porous polymer film layers 31a and 31b and the inorganic-containing porous polymer web layers 33a and 33b are integrally formed on the negative electrode 2 or are formed separately from the negative electrode 1 and the positive electrode 2, respectively. It is preferable that the thickness of the inorganic-containing porous polymer web layers 33a and 33b is set in a range of 5 to 50um, and the thickness of the first inorganic porous polymer film layers 31a and 31b is set in a range of 5 to 14um.
이 경우, 분리막의 기능은 무기물 함유 다공성 고분자 웹층(33a,33b)이 제1 무기공 고분자 필름층(31a,31b) 보다 기공도가 높기 때문에 무기물 함유 다공성 고분자 웹층(33a,33b) 보다는 제1 무기공 고분자 필름층(31a,31b)의 두께에 더욱 민감하게 반응한다. 후술하는 바와 같이, 제1 무기공 고분자 필름층(31a,31b)의 두께가 5um 미만인 경우 마이크로 단락이 발생하며, 14um를 초과하는 경우 너무 두꺼워서 Li 이온의 이동을 막아서 충방전이 이루어지지 못하게 된다. 상기 제1 무기공 고분자 필름층(31a,31b)의 두께는 필름층의 이온 전도도 및 에너지 밀도를 고려하여 조절하는 것이 바람직하다. In this case, the function of the separator is that the inorganic-containing porous polymer web layers 33a and 33b have a higher porosity than the first inorganic-porous polymer film layers 31a and 31b, so that the first inorganic rather than the inorganic-containing porous polymer web layers 33a and 33b. Responds more sensitively to the thickness of the co-polymer film layers 31a and 31b. As will be described later, when the thickness of the first inorganic porous polymer film layers 31a and 31b is less than 5 μm, a micro short circuit occurs. When the thickness of the first inorganic porous polymer film layers 31a and 31b is greater than 14 μm, it is too thick to prevent the movement of Li ions, thereby preventing charge and discharge. The thickness of the first inorganic porous polymer film layers 31a and 31b is preferably adjusted in consideration of the ion conductivity and energy density of the film layer.
상기한 바와 같이, 본 발명에서는 분리막 역할을 하는 제1 무기공 고분자 필름층(31a,31b)과 무기물 함유 다공성 고분자 웹층(33a,33b)이 도 1과 같이 음극(1) 또는 양극(2)을 실링 구조로 둘러싸거나, 도 2와 같이 음극(1) 및 양극(2)을 동시에 실링 구조로 둘러싸고 있다.As described above, in the present invention, the first inorganic porous polymer film layers 31a and 31b and the inorganic porous polymer web layers 33a and 33b serving as separators may be formed of the cathode 1 or the anode 2 as shown in FIG. 1. It encloses with a sealing structure, or surrounds the cathode 1 and the anode 2 simultaneously with the sealing structure like FIG.
따라서, 도 1 및 도 2와 같이 본 발명의 전극 조립체(10,10a)는 음극(1) 및 양극(2)을 단순히 적층함에 의해 단위 셀을 형성할 수 있으며, 예를 들어, 전기자동차용 대용량 전지를 구성하기 위하여 대형 사이즈로 제작될 때 다수의 단위 셀을 단순히 적층한 후, 케이스 조립이 이루어질 있다. 따라서, 본 발명은, 별도의 분리막 필름으로 다수의 바이 셀을 폴딩하는 공정을 거치는 종래기술과 비교하여 높은 조립생산성을 갖게 된다.Thus, as shown in FIGS. 1 and 2, the electrode assemblies 10 and 10a of the present invention may form a unit cell by simply stacking the cathode 1 and the anode 2, for example, a large capacity for an electric vehicle. When fabricating a large size in order to construct a battery, a plurality of unit cells are simply stacked and then case assembled. Therefore, the present invention has a high assembly productivity compared to the prior art that goes through the process of folding a plurality of bi-cell with a separate membrane film.
음극(1) 및 양극(2)은 음극 및 양극 집전체(11,21)의 일부분을 돌출되게 형성한 음극 및 양극 단자가 구비된다. 본 발명의 전극 조립체(10,10a)는 다수의 음극(1) 및 양극(2)을 적층 조립할 때 도 3과 같이 음극(1)의 음극 단자(11a)와 양극(2)의 양극 단자(21a)가 서로 반대 방향을 향하도록 적층한다.The negative electrode 1 and the positive electrode 2 are provided with a negative electrode and a positive electrode terminal formed to protrude portions of the negative electrode and the positive electrode current collectors 11 and 21. When the electrode assemblies 10 and 10a of the present invention are laminated and assembled with a plurality of negative electrodes 1 and positive electrodes 2, the negative electrode terminal 11a of the negative electrode 1 and the positive electrode terminal 21a of the positive electrode 2 as shown in FIG. 3. ) Are stacked so that they face in opposite directions.
종래의 필름 형식의 세퍼레이터가 고온에서 수축되는 문제점이 있지만 본 발명에서는 다공성 고분자 웹층(33a,33b)에 무기물이 함유되어 있어 500℃에서 열처리시에도 수축하거나 용융(melting)되지 않고 형태를 유지한다.Conventional film type separators have a problem of shrinkage at high temperature, but in the present invention, the porous polymer web layers 33a and 33b contain an inorganic material and thus retain their shape without shrinking or melting even when heat-treated at 500 ° C.
기존의 폴리올레핀계 필름 세퍼레이터는 내부 단락시 초기 발열에 의해 손상된 부분에 더하여 그 주변 필름이 계속 수축되거나 용융되어 필름 세퍼레이터가 타서 없어지는 부분이 넓어지게 되므로 더욱 하드 단락(hard short-circuit)을 발생시키게 되지만, 본 발명의 전극은 내부 단락이 일어난 부분에서 작은 손상이 있을 뿐 단락 부위가 넓어지는 현상으로 이어지지 않는다.Existing polyolefin-based film separators cause hard short-circuit as the peripheral film is continuously shrunk or melted in addition to the part damaged by initial heat generation during internal short circuit, and the film separator burns away. However, the electrode of the present invention has only a small damage in the portion where the internal short circuit occurs, and does not lead to a phenomenon in which the short circuit portion is widened.
또한, 본 발명의 전극은 과충전시에도 하드 단락이 아닌 아주 작은 미세 단락(soft short-circuit)을 일으켜 과충전 전류를 계속 소비함으로써 5V~6V 사이의 일정 전압과 100℃ 이하의 전지 온도를 유지하게 되므로 과충전 안정성도 향상시킬 수 있다. In addition, the electrode of the present invention maintains a constant voltage between 5V and 6V and a battery temperature of less than 100 ° C by continuously consuming overcharge current by causing a very small short-circuit rather than a hard short during overcharge. Overcharge stability can also be improved.
본 발명에 따른 전극 조립체는 이차전지로서 리튬 이온 전지 또는 리튬 폴리머 전지를 구성할 수 있다.The electrode assembly according to the present invention may constitute a lithium ion battery or a lithium polymer battery as a secondary battery.
본 발명에 따른 전극 조립체가 리튬 이온 전지(LIB)를 구성하는 경우, 도 1 및 도 2와 같이, 음극(1)과 양극(2)에 분리막(3a,3b;3)을 형성하고, 압착 조립한 전극 조립체(10,10a)에 전해액을 포함한다. When the electrode assembly according to the present invention constitutes a lithium ion battery (LIB), as shown in FIGS. 1 and 2, separators 3a, 3b; 3 are formed on the negative electrode 1 and the positive electrode 2, and the assembly is compressed. One electrode assembly 10, 10a contains an electrolyte solution.
상기 전해액은 비수성 유기용매와 리튬염의 용질을 포함하는 유기 전해액을 포함하며, 상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 전지의 작동을 가능하게 한다. The electrolyte solution includes an organic electrolyte solution containing a non-aqueous organic solvent and a solute of a lithium salt, and the lithium salt serves as a source of lithium ions in the battery to enable operation of a basic lithium battery.
또한, 본 발명에 따른 전극 조립체가 리튬 폴리머 전지(LPB)를 구성하는 경우, 리튬 폴리머 전지는 음극(1), 양극(2) 및 음극과 양극 사이에 삽입된 폴리머 전해질을 포함하며, 폴리머 전해질은 전해질 매트릭스 역할을 하는 다공성 분리막과 겔 폴리머로 이루어진다.In addition, when the electrode assembly according to the present invention constitutes a lithium polymer battery (LPB), the lithium polymer battery includes a negative electrode (1), a positive electrode (2) and a polymer electrolyte inserted between the negative electrode and the positive electrode, the polymer electrolyte It consists of a porous membrane and a gel polymer that serves as an electrolyte matrix.
리튬 폴리머 전지는 음극(1)과 양극(2) 중 하나, 바람직하게는 음극(1)의 표면에 다공성 분리막을 일체로 형성하거나, 음극(1)과 양극(2) 사이에 삽입하여 압착 조립한 전극 조립체에 전해액을 포함한다. The lithium polymer battery is formed by integrally forming a porous separator on one of the negative electrode 1 and the positive electrode 2, preferably on the surface of the negative electrode 1, or by inserting it between the negative electrode 1 and the positive electrode 2 and pressing-assembled. Including an electrolyte in the electrode assembly.
상기 다공성 분리막은 전해질 매트릭스 역할을 하며, 나노섬유로 이루어진 단일층의 다공성 고분자 웹과, 다공성 고분자 웹 또는 무기공 고분자 필름과 다공성 부직포가 적층된 복합 다공성 분리막을 사용할 수 있다. 상기 전해액은 비수성 유기용매와 리튬염의 용질, 겔 폴리머 형성용 모노머와 중합 개시제를 포함한다.The porous membrane may serve as an electrolyte matrix, and a composite porous membrane in which a single layer porous polymer web made of nanofibers, a porous polymer web or an inorganic porous polymer film, and a porous nonwoven fabric are stacked. The electrolyte solution includes a non-aqueous organic solvent and a solute of a lithium salt, a monomer for forming a gel polymer, and a polymerization initiator.
상기 전극 조립체를 케이스에 조립한 상태에서 전해액을 충전하면, 다공성 분리막에 전해액의 함침이 이루어지며, 겔화 열처리 공정을 거치면 겔 폴리머 형성용 모노머의 중합반응에 의해 겔 상태의 겔 폴리머가 합성되어 겔형 폴리머 전해질이 형성된다. 이 경우 다공성 분리막은 겔형 폴리머 전해질 내에서 전해질 매트릭스 역할을 하면서 음극(1)과 양극(2)을 분리하는 역할을 한다.When the electrolyte is charged while the electrode assembly is assembled to the case, the electrolyte is impregnated into the porous separator. After the gelation heat treatment, the gel polymer in the gel state is synthesized by the polymerization reaction of the monomer for forming the gel polymer. An electrolyte is formed. In this case, the porous separator serves to separate the negative electrode 1 and the positive electrode 2 while serving as an electrolyte matrix in the gel polymer electrolyte.
이하에서는 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 그러나, 아래의 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely examples of the present invention, and the scope of the present invention is not limited thereto.
(비교예 1)(Comparative Example 1)
음극은 그래파이트, 도전재(CB), 결합제(PVdF)를 각각 9g, 0.5g, 0.5g씩 혼합한 것을 용매로 사용되는 NMP(N-Methyl pyrrolidone)에 용해하여 얻어진 페이스트를 구리 호일에 캐스팅한 후, 입자 간 및 금속 호일과의 접착력을 증대시키기 위하여 롤 프레싱을 실시하여 비교예 1의 음극을 제조하였다.The negative electrode is a mixture of graphite, conductive material (CB) and binder (PVdF) of 9g, 0.5g and 0.5g, respectively, dissolved in NMP (N-Methyl pyrrolidone), which is used as a solvent, and then cast into a copper foil. In order to increase the adhesion between the particles and the metal foil, roll pressing was performed to prepare a negative electrode of Comparative Example 1.
비교예 1의 음극 샘플은 메탈 증착 없이 2Ah 사이즈로 준비하고, 비교예 1의 음극의 샘플에 대하여 2000배 확대 촬영한 SEM 사진을 도 4a에 나타내었다.The negative electrode sample of Comparative Example 1 was prepared in 2Ah size without metal deposition, and a SEM photograph taken at 2000 times magnification of the negative electrode sample of Comparative Example 1 is shown in FIG. 4A.
(실시예 1 내지 실시예 6)(Examples 1 to 6)
비교예 1의 음극을 2Ah 사이즈로 준비하고, 열증착기(thermal evaporater)의 세라믹 기판 지그에 2Ah 사이즈의 음극 시료를 장착하고 열증착기의 회전홀더에 지그를 장착하였다. 증착할 두께에 비례하여 Cu 메탈을 측량하고 이를 텅스텐 보트에 세팅하였다.A negative electrode of Comparative Example 1 was prepared in a size of 2 Ah, a negative electrode sample of 2 Ah size was mounted on a ceramic substrate jig of a thermal evaporator, and a jig was mounted on a rotary holder of the thermal evaporator. Cu metal was weighed in proportion to the thickness to be deposited and set in a tungsten boat.
이어서, 5-2 torr의 저진공 상태로 10분 동안 홀더의 회전 속도를 2m/s로 회전시키고, 5-5 torr의 고진공 상태로 30분 동안 홀더의 회전 속도를 2m/s로 회전시킨 후, 열증착기를 3.5V, 120A, 3min로 설정하여 Cu 메탈을 음극 시료에 증착하는 방법으로 음극 시료에 대하여 각각 30Å, 105Å, 120Å, 135Å, 150Å, 300Å의 두께로 구리(Cu)를 증착하여 실시예 1 내지 실시예 6의 샘플을 제작하였다. Subsequently, after rotating the holder at a speed of 2 m / s for 10 minutes with a low vacuum of 5 -2 torr and rotating the speed of the holder at 2 m / s for 30 minutes with a high vacuum of 5 -5 torr, Cu metal was deposited on the negative electrode sample by setting the thermal evaporator to 3.5 V, 120 A, and 3 min to deposit copper (Cu) at a thickness of 30 mV, 105 mV, 120 mV, 135 mV, 150 mV, and 300 mV for the negative electrode sample, respectively. Samples of 1 to 6 were prepared.
얻어진 실시예 2 내지 실시예 5의 샘플에 대하여 2000배 확대 촬영한 SEM 사진을 도 4b 내지 도 4e에 나타내었다.SEM pictures taken at 2000 times magnification of the samples of Examples 2 to 5 obtained are shown in FIGS. 4B to 4E.
또한, 실시예 1 내지 실시예 6의 샘플에 대하여 구리의 증착 두께에 따른 저항값과 전기전도도를 측정하여 비교예 1의 특성과 함께 하기 표 1에 기재하였다.In addition, for the samples of Examples 1 to 6, the resistance value and the electrical conductivity according to the deposition thickness of copper were measured, and are shown in Table 1 together with the characteristics of Comparative Example 1.
또한, 실시예 2 및 실시예 5에 대한 하프셀 테스트를 실시하여 방전시에 전지 용량을 구하고 하기 표 2에 기재하였다.In addition, half-cell tests for Example 2 and Example 5 were conducted to obtain battery capacity at the time of discharge, and are shown in Table 2 below.
표 1
샘플 두께(Å) 저항값(mΩ·cm) 전기전도도(S/cm)
비교예 1 0 12.64 7.91×10
실시예 1 30 8.001 1.04×102
실시예 2 105 2.607 3.83×102
실시예 3 120 2.648 3.77×102
실시예 4 135 5.961 1.67×102
실시예 5 150 6.460 1.54×102
실시예 6 300 10.12 1.00×102
Table 1
Sample Thickness Resistance value (mΩcm) Electrical Conductivity (S / cm)
Comparative Example 1 0 12.64 7.91 × 10
Example 1 30 8.001 1.04 × 10 2
Example 2 105 2.607 3.83 × 10 2
Example 3 120 2.648 3.77 × 10 2
Example 4 135 5.961 1.67 × 10 2
Example 5 150 6.460 1.54 × 10 2
Example 6 300 10.12 1.00 × 10 2
표 2
샘플 두께(Å) 용량(mAh/g)
비교예 1 0 261.9
실시예 2 105 330.4
실시예 5 150 273.9
TABLE 2
Sample Thickness Capacity (mAh / g)
Comparative Example 1 0 261.9
Example 2 105 330.4
Example 5 150 273.9
상기한 표 1에 나타난 바와 같이, 본 발명에 따라 음극의 표면에 구리가 증착된 실시예 1 내지 실시예 6의 샘플은, 구리가 증착되지 않은 비교예 1과 비교하여 저항값과 전기전도도 특성이 우수한 것으로 나타났고, 증착된 구리의 두께가 박막일수록 더 좋게 특성이 나타났다. 그러나, 증착된 구리의 두께가 실시예 1과 같이 너무 박막이거나 실시예 6과 같이 두꺼워지는 경우는 다시 저항값은 증가하고 전기전도도는 떨어지는 경향을 나타냈다.As shown in Table 1, the samples of Examples 1 to 6 in which copper is deposited on the surface of the cathode according to the present invention have a resistance value and an electric conductivity characteristic compared to Comparative Example 1 in which copper is not deposited. It was found to be excellent, and the thinner the thickness of the deposited copper, the better the properties were. However, when the thickness of the deposited copper was too thin as in Example 1 or thickened as in Example 6, the resistance value increased and the electrical conductivity decreased.
또한, 실시예 2 및 실시예 5의 샘플의 하프셀 테스트 결과, 표 2에 기재된 바와 같이 전지의 용량도 구리의 증착 두께가 박막일수록 더 좋게 특성이 나타났다. 특히, 구리의 두께를 105Å로 형성한 실시예 2가 저항값, 전기전도도 및 용량이 가장 우수한 것으로 나타났다.In addition, as a result of the half-cell test of the samples of Example 2 and Example 5, as shown in Table 2, the capacity of the battery also showed better characteristics as the deposition thickness of copper was thinner. In particular, Example 2, in which the thickness of copper was formed to 105 kW, showed the best resistance value, electrical conductivity, and capacity.
(비교예 2)(Comparative Example 2)
양극은 리튬니켈코발트망간계(NCM) 산화물과 리튬망간계(LMO) 산화물을 혼합한 하이브리드 타입의 활물질, 도전재(CB), 결합제(CMC, SBR)를 각각 8g, 1.5g, 0.5g씩 혼합한 것을 용매로 사용되는 증류수에 용해하여 얻어진 페이스트를 알루미늄 호일에 캐스팅한 후, 입자 간 및 금속 호일과의 접착력을 증대시키기 위하여 롤 프레싱을 실시하여 비교예 2의 양극을 제조하였다.The positive electrode was mixed with 8 g, 1.5 g, and 0.5 g of a hybrid type active material, a conductive material (CB), and a binder (CMC, SBR), respectively, in which lithium nickel cobalt manganese (NCM) oxide and lithium manganese (LMO) oxide were mixed. The paste obtained by dissolving one in distilled water used as a solvent was cast on aluminum foil, and roll pressing was performed to increase the adhesion between particles and the metal foil to prepare a positive electrode of Comparative Example 2.
비교예 2의 양극 샘플은 메탈 증착 없이 2Ah 사이즈로 준비하고, 비교예 2의 양극의 샘플에 대하여 2000배 확대 촬영한 SEM 사진을 도 5a에 나타내었다.A positive electrode sample of Comparative Example 2 was prepared in 2Ah size without metal deposition, and a SEM photograph taken at 2000 times magnification of the positive electrode sample of Comparative Example 2 is shown in FIG. 5A.
(실시예 7 내지 실시예 11)(Examples 7 to 11)
비교예 2의 양극을 2Ah 사이즈로 준비하고, 열증착기(thermal evaporater)의 세라믹 기판 지그에 2Ah 사이즈의 양극 시료를 장착하고 열증착기의 회전홀더에 지그를 장착하였다. 증착할 두께에 비례하여 Al 메탈을 측량하고 이를 텅스텐 보트에 세팅하였다.A positive electrode of Comparative Example 2 was prepared in a size of 2 Ah, a positive electrode sample having a size of 2 Ah was mounted on a ceramic substrate jig of a thermal evaporator, and a jig was mounted on a rotary holder of the thermal evaporator. Al metal was weighed in proportion to the thickness to be deposited and set in a tungsten boat.
이어서, 5-2 torr의 저진공 상태로 10분 동안 홀더의 회전 속도를 2m/s로 회전시키고, 5-5 torr의 고진공 상태로 30분 동안 홀더의 회전 속도를 2m/s로 회전시킨 후, 열증착기를 2.8V, 100A, 3min로 설정하여 Al 메탈을 양극 시료에 증착하는 방법으로 양극 시료에 대하여 각각 110Å, 200Å, 220Å, 240Å, 400Å의 두께로 Al을 증착하여 실시예 7 내지 실시예 11의 샘플을 제작하였다. Subsequently, after rotating the holder at a speed of 2 m / s for 10 minutes with a low vacuum of 5 -2 torr and rotating the speed of the holder at 2 m / s for 30 minutes with a high vacuum of 5 -5 torr, A method of depositing Al metal on a positive electrode sample by setting a thermal evaporator at 2.8 V, 100 A, and 3 min to deposit Al at a thickness of 110 mW, 200 mW, 220 mW, 240 mW, and 400 mW for the positive electrode sample, respectively. Samples of were prepared.
얻어진 실시예 8 내지 실시예 10의 샘플에 대하여 2000배 확대 촬영한 SEM 사진을 도 5b 내지 도 5d에 나타내었다.SEM pictures taken at 2000 times magnification of the samples of the obtained Examples 8 to 10 are shown in FIGS. 5B to 5D.
또한, 실시예 7 내지 실시예 11의 샘플에 대하여 Al의 증착 두께에 따른 저항값과 전기전도도를 측정하고, 하프셀 테스트를 실시하여 이온전도도 및 전압 특성을 구하여 비교예 2의 특성과 함께 하기 표 3에 기재하였다.In addition, for the samples of Examples 7 to 11, the resistance value and the electrical conductivity according to the deposition thickness of Al were measured, the half cell test was performed, and the ion conductivity and the voltage characteristics were obtained. It described in 3.
표 3
샘플 두께(Å) 저항값(mΩ·cm) 전기전도도(S/cm) 이온전도도(S/cm) 용량(mAh/g)
비교예 2 0 0.264 3.87×103 2.8×10-4 113.9
실시예 7 110 0.191 1.09×104 5.7×10-4 120.0
실시예 8 200 0.048 2.08×104 6.9×10-4 139.8
실시예 9 220 0.094 1.87×104 6.5×10-4 127.4
실시예 10 240 0.181 1.24×104 6.4×10-4 124.4
실시예 11 400 0.210 1.01×104 5.4×10-4 117.4
TABLE 3
Sample Thickness Resistance value (mΩcm) Electrical Conductivity (S / cm) Ion Conductivity (S / cm) Capacity (mAh / g)
Comparative Example 2 0 0.264 3.87 × 10 3 2.8 × 10 -4 113.9
Example 7 110 0.191 1.09 × 10 4 5.7 × 10 -4 120.0
Example 8 200 0.048 2.08 × 10 4 6.9 × 10 -4 139.8
Example 9 220 0.094 1.87 × 10 4 6.5 × 10 -4 127.4
Example 10 240 0.181 1.24 × 10 4 6.4 × 10 -4 124.4
Example 11 400 0.210 1.01 × 10 4 5.4 × 10 -4 117.4
상기한 표 3에 나타난 바와 같이, 본 발명에 따라 양극의 표면에 알루미늄이 증착된 실시예 7 내지 실시예 11의 샘플은, 알루미늄이 증착되지 않은 비교예 2와 비교하여 저항값, 전기전도도, 이온전도도와 전지의 용량이 우수한 것으로 나타났다. 특히, 알루미늄의 두께를 200Å로 형성한 실시예 8의 경우는 저항값, 전기전도도, 이온전도도 및 용량이 모두 비교예 2보다 월등하게 우수한 것으로 나타났다.As shown in Table 3, the samples of Examples 7 to 11 in which aluminum is deposited on the surface of the anode according to the present invention are compared with those of Comparative Example 2 in which aluminum is not deposited. The conductivity and battery capacity were found to be good. In particular, in Example 8 in which the thickness of aluminum was formed to be 200 kPa, the resistance value, the electrical conductivity, the ion conductivity, and the capacity were all superior to those of Comparative Example 2.
그러나, 증착된 알루미늄의 두께가 실시예 7과 같이 너무 박막이거나 실시예 11과 같이 두꺼워지는 경우는 다시 저항값은 증가하고 전기전도도는 떨어지는 경향을 나타냈고, 이온전도도와 전지의 용량도 증착된 알루미늄의 두께가 너무 박막이거나 두꺼워지는 경우 특성이 떨어지는 것으로 나타났다.However, when the thickness of the deposited aluminum was too thin as in Example 7, or thickened as in Example 11, the resistance value increased and the electrical conductivity decreased, and the ion conductivity and the capacity of the battery also decreased. If the thickness is too thin or too thick, the properties were found to be inferior.
상기한 바와 같이, 본 발명의 이차전지용 전극 조립체는 음극 활물질층 및/또는 양극 활물질층의 입자 표면에 다공성 전도성 금속층을 증착방법에 의해 형성함으로써, 전극 내부에 활물질과 혼합된 도전제에 의한 전자전도 네트워크 이외에 다공성 전도성 금속층에 의한 메탈 네트워크를 형성하여 전기전도도, 이온전도도 및 전지의 용량을 향상시킬 수 있다. As described above, the electrode assembly for secondary batteries of the present invention forms a porous conductive metal layer on the surface of the particles of the negative electrode active material layer and / or the positive electrode active material layer by a deposition method, and thus conducts electrons by the conductive agent mixed with the active material in the electrode. In addition to the network, a metal network may be formed by the porous conductive metal layer, thereby improving electrical conductivity, ion conductivity, and battery capacity.
특히, 플랙시블 배터리를 구성하기 위하여 겔 폴리머 전해질을 사용할 경우 본 실시예의 음극 활물질층 및 양극 활물질층의 입자 표면에 3차원 구조의 다수의 기공을 갖는 다공성 전도성 금속층을 형성하여 전기전도도 및 이온전도도를 향상시킴에 따라 전지의 성능을 향상시킬 수 있다. In particular, in the case of using a gel polymer electrolyte to form a flexible battery, a porous conductive metal layer having a plurality of pores of three-dimensional structure is formed on the surface of the negative electrode active material layer and the positive electrode active material layer of the present embodiment to improve electrical conductivity and ion conductivity. By improving, the performance of the battery can be improved.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 전극 활물질층의 입자 표면에 전도성 금속층을 부분적으로 형성하여 전극 내부에 활물질과 혼합된 도전제에 의한 전자전도 네트워크 이외에 다공성 전도성 금속층에 의한 메탈 네트워크를 형성하여 전기전도도, 이온전도도 및 전지의 용량을 향상시킬 수 있는 기술로서, 리튬 이온 전지 또는 리튬 폴리머 전지와 같은 이차전지에 적용될 수 있다.The present invention partially forms a conductive metal layer on the particle surface of the electrode active material layer to form a metal network by the porous conductive metal layer in addition to the electronic conductive network by the conductive agent mixed with the active material in the electrode, thereby forming the electrical conductivity, ion conductivity and As a technique capable of improving the capacity, it can be applied to a secondary battery such as a lithium ion battery or a lithium polymer battery.

Claims (11)

  1. 음극 집전체과 상기 음극 집전체의 적어도 일면에 형성된 음극 활물질층을 구비한 음극; A negative electrode having a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector;
    양극 집전체와, 상기 양극 집전체의 적어도 일면에 형성된 양극 활물질층을 구비한 양극; A positive electrode having a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the positive electrode current collector;
    상기 음극과 양극 사이에 형성되는 다공성 분리막; 및 A porous separator formed between the cathode and the anode; And
    상기 음극 활물질층과 양극 활물질층 중 적어도 하나의 표면에 형성되며 리튬 이온의 이동이 가능하도록 복수의 기공을 갖는 다공성 전도성 금속층을 포함하는 이차전지용 전극 조립체. The electrode assembly for a secondary battery comprising a porous conductive metal layer formed on at least one surface of the negative electrode active material layer and the positive electrode active material layer and having a plurality of pores to allow the movement of lithium ions.
  2. 제1항에 있어서, The method of claim 1,
    상기 음극 및 양극은 각각 전극 내부에 활물질과 혼합된 도전제에 의한 전자전도 네트워크와 상기 다공성 전도성 금속층에 의한 메탈 네트워크를 구비하는 것을 특징으로 하는 이차전지용 전극 조립체. The negative electrode and the positive electrode are each an electrode assembly for a secondary battery, characterized in that it comprises an electron conductive network by a conductive agent mixed with an active material and a metal network by the porous conductive metal layer inside the electrode.
  3. 제1항에 있어서, The method of claim 1,
    상기 전도성 금속층은 음극 활물질층 또는 양극 활물질층의 입자 표면에 다수의 점 입자 형태로 증착되어 메탈 네트워크를 형성하도록 상호 연결되며, 입자와 입자 사이에 리튬 이온이 이동되는 기공이 형성되는 것을 특징으로 하는 전극 조립체. The conductive metal layer is deposited on the particle surface of the negative electrode active material layer or the positive electrode active material layer in the form of a plurality of point particles are interconnected to form a metal network, characterized in that the pores for moving lithium ions between the particles and the particles are formed Electrode assembly.
  4. 제1항에 있어서, The method of claim 1,
    상기 양극 활물질층에 형성되는 전도성 금속층은 Al 또는 Ni로 형성되는 것을 특징으로 하는 이차전지용 전극 조립체.The conductive metal layer formed on the positive electrode active material layer is an electrode assembly for a secondary battery, characterized in that formed of Al or Ni.
  5. 제1항에 있어서,The method of claim 1,
    상기 음극 활물질층에 형성되는 전도성 금속층은 Cu 또는 Ni로 형성되는 것을 특징으로 하는 이차전지용 전극 조립체. The conductive metal layer formed on the negative electrode active material layer is a secondary battery electrode assembly, characterized in that formed of Cu or Ni.
  6. 제1항에 있어서,The method of claim 1,
    상기 전도성 금속층은 30 내지 400Å 두께로 설정되는 것을 특징으로 하는 이차전지용 전극 조립체. The conductive metal layer is a secondary battery electrode assembly, characterized in that set to 30 to 400 내지 thickness.
  7. 제6항에 있어서,The method of claim 6,
    상기 음극 활물질층에 형성되는 전도성 금속층은 30~300Å 범위로 설정되고, 상기 양극 활물질층에 형성되는 전도성 금속층은 110~400Å 범위로 설정되는 것을 특징으로 하는 이차전지용 전극 조립체. The conductive metal layer formed on the negative electrode active material layer is set in the range of 30 ~ 300Å, the conductive metal layer formed on the positive electrode active material layer is set in the range of 110 ~ 400Å.
  8. 제1항에 있어서, 상기 전도성 금속층은 진공증착방법으로 형성되는 것을 특징으로 하는 이차전지용 전극 조립체. The electrode assembly of claim 1, wherein the conductive metal layer is formed by a vacuum deposition method.
  9. 케이스;case;
    상기 케이스 내에 조립된 제1항 내지 제8항 중 어느 한 항에 따른 전극 조립체; 및An electrode assembly according to any one of claims 1 to 8 assembled in the case; And
    상기 케이스 내에 충전된 전해액을 포함하는 이차전지.A secondary battery comprising an electrolyte solution charged in the case.
  10. 제9항에 있어서, The method of claim 9,
    상기 전해액은 비수성 유기용매, 리튬염의 용질, 겔 폴리머 형성용 모노머 및 중합 개시제를 포함하는 유기 전해액으로 이루어지며, The electrolyte is composed of an organic electrolyte containing a non-aqueous organic solvent, a solute of a lithium salt, a monomer for forming a gel polymer, and a polymerization initiator,
    상기 전해액은 상기 다공성 분리막에 함침된 후, 상기 겔 폴리머 형성용 모노머를 중합반응시킴에 따라 겔 폴리머 전해질을 형성하고, 상기 다공성 분리막은 상기 겔 폴리머 전해질 내에 전해질 매트릭스 역할을 하는 것을 특징으로 하는 이차전지.After the electrolyte is impregnated into the porous separator, the gel polymer electrolyte is formed by polymerizing the gel polymer forming monomer, and the porous separator serves as an electrolyte matrix in the gel polymer electrolyte. .
  11. 제9항에 있어서, The method of claim 9,
    상기 전해액은 비수성 유기용매와 리튬염의 용질을 포함하는 유기 전해액인 것을 특징으로 하는 이차전지.The electrolyte is a secondary battery, characterized in that the organic electrolyte containing a non-aqueous organic solvent and a solute of lithium salt.
PCT/KR2014/002664 2013-03-28 2014-03-28 Electrode assembly for secondary battery and secondary battery using same WO2014157987A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130033651 2013-03-28
KR10-2013-0033651 2013-03-28
KR10-2014-0036627 2014-03-28
KR1020140036627A KR101592353B1 (en) 2013-03-28 2014-03-28 Electrode assembly and secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2014157987A1 true WO2014157987A1 (en) 2014-10-02

Family

ID=51624841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002664 WO2014157987A1 (en) 2013-03-28 2014-03-28 Electrode assembly for secondary battery and secondary battery using same

Country Status (1)

Country Link
WO (1) WO2014157987A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978762A (en) * 2016-10-21 2018-05-01 罗伯特·博世有限公司 Electrode with the conductive grid in active material structure
WO2024073897A1 (en) * 2022-10-08 2024-04-11 宁德时代新能源科技股份有限公司 Negative electrode sheet, secondary battery, and electrical apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082917A (en) * 2000-02-22 2001-08-31 박호군 Carbon electrodes coated with porous metal film, its fabrication method and lithium secondary battery using it
KR20090076275A (en) * 2008-01-08 2009-07-13 주식회사 엘지화학 Anode for battery, method for manufacturing thereof, and lithium secondary battery comprising the same
KR100953543B1 (en) * 2003-12-01 2010-04-21 삼성에스디아이 주식회사 Lithium anode, process for preparing the same and lithium battery using the same
KR20100097767A (en) * 2002-08-24 2010-09-03 에보닉 데구사 게엠베하 A separator-electrode unit for lithium-ion batteries, a method for the production thereof and a battery comprising the unit
KR20130011670A (en) * 2011-07-22 2013-01-30 주식회사 엘지화학 Lithium secondary battery with improved electrical safety

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082917A (en) * 2000-02-22 2001-08-31 박호군 Carbon electrodes coated with porous metal film, its fabrication method and lithium secondary battery using it
KR20100097767A (en) * 2002-08-24 2010-09-03 에보닉 데구사 게엠베하 A separator-electrode unit for lithium-ion batteries, a method for the production thereof and a battery comprising the unit
KR100953543B1 (en) * 2003-12-01 2010-04-21 삼성에스디아이 주식회사 Lithium anode, process for preparing the same and lithium battery using the same
KR20090076275A (en) * 2008-01-08 2009-07-13 주식회사 엘지화학 Anode for battery, method for manufacturing thereof, and lithium secondary battery comprising the same
KR20130011670A (en) * 2011-07-22 2013-01-30 주식회사 엘지화학 Lithium secondary battery with improved electrical safety

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978762A (en) * 2016-10-21 2018-05-01 罗伯特·博世有限公司 Electrode with the conductive grid in active material structure
WO2024073897A1 (en) * 2022-10-08 2024-04-11 宁德时代新能源科技股份有限公司 Negative electrode sheet, secondary battery, and electrical apparatus

Similar Documents

Publication Publication Date Title
US11018379B2 (en) Electrode, secondary battery using same, and method for manufacturing electrode
KR102119801B1 (en) Flexible current collector and secondary battery using the same
KR101246827B1 (en) Electrode assembly, rechargeable battery using the same and method of manufacturing the same
KR102486801B1 (en) Secondary battery
WO2012165758A1 (en) Lithium secondary battery
CN111954943A (en) Separator, method for manufacturing the same, and lithium battery including the same
WO2015020338A1 (en) Flexible current collector, method for manufacturing same, and secondary battery using same
WO2018212481A1 (en) Method for manufacturing anode for lithium secondary battery
WO2017188537A1 (en) Separator comprising porous adhesive layer, and lithium secondary battery using same
WO2015002390A1 (en) Cathode mixture having improved conductivity, and cathode and electrochemical device containing same
WO2017111566A1 (en) Negative electrode active material having improved output characteristics and electrode for electrochemical device, containing negative electrode active material
WO2021080052A1 (en) Lithium metal anode structure, electrochemical device comprising same, and method for manufacturing lithium metal anode structure
WO2019093836A1 (en) Strip-shaped electrode used for cylindrical jelly roll and lithium secondary battery comprising same
KR101705307B1 (en) Preparation method of separator for electrochemical device using phase inversion process, separator formed therefrom, and electrochemical device including the same
KR101592353B1 (en) Electrode assembly and secondary battery using the same
WO2019221410A1 (en) Negative electrode including electrode protective layer, and lithium secondary battery employing same
WO2016117950A1 (en) Lithium secondary battery having improved output characteristics
WO2019045552A1 (en) Method for manufacturing flexible battery, and flexible battery manufactured thereby
US20150132626A1 (en) Electrode assembly and secondary battery using the electrode assembly
KR20130071935A (en) Electrode assembly, rechargeable battery using the same and method of manufacturing the same
WO2021133127A1 (en) Aqueous slurry for positive electrode, positive electrode composition, lithium-ion secondary battery including said positive electrode composition, and methods for manufacturing same
KR20170135593A (en) Composite anode active material, anode and lithium battery comprising the material, and preparation method thereof
WO2018135929A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
WO2020050559A1 (en) Secondary battery separator having no separator substrate
WO2014157987A1 (en) Electrode assembly for secondary battery and secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772582

Country of ref document: EP

Kind code of ref document: A1