WO2014157510A1 - 超音波診断装置および超音波診断方法 - Google Patents

超音波診断装置および超音波診断方法 Download PDF

Info

Publication number
WO2014157510A1
WO2014157510A1 PCT/JP2014/058837 JP2014058837W WO2014157510A1 WO 2014157510 A1 WO2014157510 A1 WO 2014157510A1 JP 2014058837 W JP2014058837 W JP 2014058837W WO 2014157510 A1 WO2014157510 A1 WO 2014157510A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
signal
measurement
code
pulse
Prior art date
Application number
PCT/JP2014/058837
Other languages
English (en)
French (fr)
Inventor
健悟 近藤
山川 誠
椎名 毅
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to EP14773770.4A priority Critical patent/EP2979645A4/en
Priority to CN201480018632.9A priority patent/CN105073021B/zh
Priority to US14/780,488 priority patent/US10561400B2/en
Priority to JP2015508691A priority patent/JP6355624B2/ja
Publication of WO2014157510A1 publication Critical patent/WO2014157510A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • G01S7/52022Details of transmitters for pulse systems using a sequence of pulses, at least one pulse manipulating the transmissivity or reflexivity of the medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic diagnostic method, and more particularly to an ultrasonic diagnostic apparatus and an ultrasonic diagnostic method using acoustic radiation pressure.
  • One method for quantitatively determining the tissue hardness is to determine the elastic distribution from the shear wave propagation velocity. In this method, a shear wave is generated in a living body, and the propagation speed is estimated by measuring the shear wave with an ultrasonic wave.
  • Non-Patent Document 1 a method of pushing a tissue in a living body using an acoustic radiation pressure generated by ultrasonic irradiation has been proposed (for example, see Non-Patent Document 1).
  • an ultrasonic burst wave (Push ultrasonic wave) of about several hundreds ⁇ s for generating a shear wave is applied, and pressurization by acoustic radiation pressure (hereinafter sometimes referred to as vibration). I do. Thereafter, in order to observe the propagation of the shear wave generated in the object, ultrasonic image measurement is performed at a repetition frequency of about several kHz (Track ultrasonic wave). Observation with Track ultrasound is usually performed for several ms to several tens of ms. The displacement distribution is measured from the obtained image, and the propagation speed of the shear wave is estimated.
  • an object of the present invention is to provide an ultrasonic diagnostic apparatus and an ultrasonic diagnostic method capable of performing an ultrasonic diagnosis using acoustic radiation pressure without inducing an increase in temperature of an irradiation site.
  • an ultrasonic diagnostic apparatus of the present invention includes a first pulse output unit that outputs an encoded pressurizing pulse signal, A second pulse output unit for outputting a measurement pulse signal for measurement; A probe for generating an ultrasonic wave to generate a shear wave on an object based on the pressure pulse signal, and an ultrasonic wave for measurement based on the measurement pulse; A receiving unit that receives an echo of a measurement ultrasonic wave and outputs an electrical signal; An elastic modulus estimator that performs a decoding process on the electrical signal output by the receiver and estimates the elastic modulus of the object based on the decoded signal.
  • the pressurization pulse signal is a signal for pressurization, that is, it cannot be “pulled” only by “pressing”, and therefore, the encoded pressurization pulse signal uses a unipolar code. .
  • the encoded pressure pulse signal is generated based on a bipolar code.
  • the apparatus further comprises a displacement estimation unit, wherein the displacement estimation unit estimates the displacement by decoding the electrical signal output from the reception unit using a bipolar code, and based on the estimated displacement, The modulus estimator estimates the elastic modulus.
  • the first pulse output unit outputs the pressure pulse signal when the bit of the encoded pressure pulse signal has the first value, and the bit of the encoded pressure pulse signal is the first bit. When the value is 2, no pressure pulse signal is output.
  • the encoded pressure pulse signal is preferably a set of unipolar codes, and the set of unipolar codes is generated by a single bipolar code.
  • a set of unipolar codes is composed of a first unipolar code and a second unipolar code.
  • the first unipolar code bit is “1” when the bit of the bipolar code is “+1”. And is “0” when the bit of the bipolar code is “ ⁇ 1”.
  • the bit of the second unipolar code is “0” when the bit of the bipolar code is “+1”, and is “1” when the bit of the bipolar code is “ ⁇ 1”.
  • the bipolar code is a Barker code.
  • the first pulse output unit outputs the first pulse every fixed period. 0 to N pressure pulse signals are output based on the unipolar code, and the second pulse output unit performs (N + M) measurement pulse signals at different timings from the pressure pulse signal for each cycle. Is output.
  • the first pulse output unit outputs 0 or more and N or less pressurization pulse signals based on the second unipolar code for each period, and the second pulse output unit
  • the measurement pulse signal is output (N + M) times at different timings from the pressurization pulse signal for each cycle.
  • the first pulse output unit outputs a pressurizing pulse signal between adjacent measurement pulse signals.
  • the apparatus further includes a displacement estimation unit, and the displacement estimation unit is a first unipolar code displacement that represents an encoded unipolar displacement based on an ultrasonic echo at an adjacent time point in the first period.
  • a first calculation unit that calculates a signal and calculates a second unipolar code displacement signal that represents an encoded unipolar displacement based on ultrasonic echoes at adjacent time points in the second period;
  • a second calculation unit for calculating a bipolar code displacement signal representing the encoded bipolar displacement based on a difference between the first unipolar code displacement signal and the second unipolar code displacement signal;
  • a third calculating unit that calculates a signal representing displacement by decoding by correlation processing between the signal and the bipolar code.
  • the method for controlling an ultrasonic diagnostic apparatus of the present invention includes a step of outputting an encoded pressure pulse signal, a step of outputting an ultrasonic wave that generates a shear wave on an object based on the pressure pulse signal, and a measurement A measurement pulse signal for outputting, a step of outputting a measurement ultrasonic wave based on the measurement pulse signal, a step of receiving an echo of the measurement ultrasonic wave and outputting an electric signal, and the electric signal Performing a decryption process, and estimating an elastic modulus based on the decrypted electrical signal.
  • the method further includes a step of estimating a displacement of the object, and the step of estimating the displacement includes performing a decoding process on the electrical signal to estimate the displacement, and estimating the elastic modulus. And estimating an elastic modulus based on the estimated displacement.
  • the encoded pressurizing pulse signal is encoded with a set of unipolar codes, and the set of unipolar codes is generated based on a bipolar code.
  • the step of estimating the displacement includes the step of estimating the displacement by decoding the electrical signal output based on the received ultrasonic echo using a bipolar code.
  • one set of unipolar codes is generated by one bipolar code, and the one set of unipolar codes includes a first unipolar code and a second unipolar code.
  • the step of outputting the pressurizing pulse signal is based on the first unipolar code at regular intervals in the first period.
  • 0 or more and N or less pressurizing pulse signals are output, and in the second period, 0 or more and N or less pressurizing pulse signals based on the second unipolar code for each period.
  • the step of outputting the measurement pulse signal includes the step of outputting (N + M) measurement pulses at a timing different from the pressurization pulse signal for each cycle in the first period, During the period Including a pulse signal with different timings (N + M) times the step of outputting a measurement pulse signal.
  • the step of outputting the pressurization pulse signal includes the step of outputting the pressurization pulse signal between adjacent measurement pulse signals.
  • the ultrasonic diagnostic apparatus and the ultrasonic diagnostic method of the present invention it is possible to perform an ultrasonic diagnosis using acoustic radiation pressure without inducing an increase in the temperature of the irradiated part.
  • FIG. 1 is a diagram showing a configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • the ultrasonic diagnostic apparatus 50 includes an ultrasonic probe 3 and an ultrasonic diagnostic apparatus body 4.
  • the ultrasonic probe 3 includes transducers 1-1 to 1-n arranged one-dimensionally and transducers 2-1 to 2-n arranged one-dimensionally.
  • the transducers 1-1 to 1-n output a plane wave ultrasonic wave, which is a measurement ultrasonic wave, and receive an echo (a reflected wave of the measurement ultrasonic wave).
  • the transducers 2-1 to 2-n output an acoustic radiation pressure to the diagnostic target 20 by outputting an ultrasonic wave for generating a shear wave to the diagnostic target 20 that is the target.
  • the ultrasonic diagnostic apparatus main body 4 transmits a Push pulse signal, which is a pressure pulse signal, to the probe, a Push pulse transmission unit 5, a unipolar code storage unit 6, and a Track pulse signal, which is a measurement pulse signal, to the probe.
  • the track pulse transmission unit 7, the echo reception unit (reception unit) 8, the displacement estimation unit 90, the transmission speed estimation unit 12, the elastic modulus estimation unit 13, the display unit 14, and the bipolar code storage unit 15 Prepare.
  • the displacement estimation unit 90 includes a unipolar displacement estimation unit 9, a bipolar displacement estimation unit 10, and a decoding unit 11.
  • a [i] represents the i-th bit of the Barker code.
  • ap [n] and an [n] are expressed by the following equations (1) and (2) when an N-bit Barker code a [i] is used.
  • the Push pulse transmission unit 5 generates a Push pulse using the unipolar codes ap and an.
  • the unipolar code is used because pressurization with acoustic radiation pressure cannot be “pulled” only by “push”.
  • the Push pulse transmitting unit 5 transmits the first group of Push pulses encoded at regular intervals according to ap [0] to ap [N-1] to the transducer 2-i.
  • the vibrator 2-i is driven.
  • the Push pulse transmitting unit 5 transmits the second group of Push pulses encoded at regular intervals according to an [0] to an [N ⁇ 1] to the transducer 2-i,
  • the vibrator 2-i is driven.
  • the track pulse transmission unit 7 transmits the track pulse to the transducer 1-i at regular intervals in the first period and the second period to drive the transducer 1-i.
  • the echo receiving unit 8 receives a signal based on the ultrasonic echo (reflected wave) output from the transducer 1-i in the first period and the second period, performs a process such as amplification, and performs an electrical signal (hereinafter referred to as an electric signal). , And may be referred to as an echo electrical signal).
  • the displacement estimation unit 90 includes a unipolar displacement estimation unit 9, a bipolar displacement estimation unit 10, and a decoding unit 11.
  • the displacement estimation unit 90 estimates the displacement from one point in time by decoding the electrical signal using a bipolar code.
  • the unipolar displacement estimator 9 calculates a unipolar code displacement signal representing a coded unipolar displacement from an electrical signal at an adjacent time point (frame) by a displacement measurement method used for ultrasonic measurement.
  • the bipolar displacement estimation unit 10 calculates a bipolar code displacement signal representing a bipolar displacement encoded from the unipolar code displacement signal in the first period and the unipolar code displacement signal in the second period.
  • the decoding unit 11 calculates a bipolar displacement signal representing the displacement by decoding (pulse compression) by correlation processing between the Barker code a and the bipolar code displacement signal.
  • a signal equivalent to a signal obtained by applying a very short push ultrasonic wave with a large amplitude without encoding as described in Non-Patent Document 1 is obtained by pulse compression.
  • the transmission speed estimation unit 12 estimates the transmission speed of the shear wave generated in the object based on the bipolar displacement signal.
  • the elastic modulus estimator 13 calculates an elastic modulus (Young's modulus) based on the transmission speed of the shear wave.
  • the display unit 14 displays a two-dimensional image with the elastic modulus as a pixel value.
  • FIG. 2 is a flowchart showing an operation procedure of the ultrasonic diagnostic apparatus according to the embodiment of the present invention.
  • variable x is set to “dx / 2”.
  • the variable x represents the x coordinate of the diagnostic object 20 as shown in FIG.
  • an ultrasonic wave Push ultrasonic wave
  • the track pulse transmission unit 7 outputs (N + M) track pulse signals, and when the transducers 1-1 to 1-n receive the track pulse signal, they irradiate measurement plane wave ultrasonic waves.
  • N is the number of bits of the Barker code a and the unipolar code ap
  • M is the number of frames of an image to be displayed on the display unit 14, that is, the number of times when displacement is estimated.
  • the transducers 1-1 to 1-n receive ultrasonic echoes (reflected waves) for measurement.
  • the echo receiver 8 generates electrical signals rp [0, y, x ⁇ ] to rp [N + M ⁇ 1, y, x ⁇ ] based on the ultrasonic echo.
  • y is a y-coordinate of the diagnosis target 20, and is calculated based on the time t when the ultrasonic echo is received and the ultrasonic velocity.
  • y 0 to YS-1.
  • YS is the size in the y direction (vertical direction) of the two-dimensional image displayed on the display unit 14.
  • x ⁇ x ⁇ dx / 2 to x + dx / 2-1.
  • an ultrasonic wave for generating a shear wave is irradiated on the line x.
  • the track pulse transmission unit 7 outputs (N + M) track pulse signals, and when the transducers 1-1 to 1-n receive the track pulse signal, they irradiate measurement plane wave ultrasonic waves.
  • the transducers 1-1 to 1-n receive ultrasonic echoes for measurement.
  • the echo receiver 8 generates electrical signals rn [0, y, x ⁇ ] to rn [N + M ⁇ 1, y, x ⁇ ] based on the ultrasonic echo.
  • step S304 If the variable x is not equal to (XS ⁇ dx / 2-1) in step S304, the process proceeds to step S305, and if the variable x is equal to (XS ⁇ dx / 2-1), The process proceeds to step S306.
  • XS is the size in the x direction (lateral direction) of the two-dimensional image displayed on the display unit 14.
  • step S305 the variable x is incremented by “dx”, and the process returns to step S302.
  • step S306 the variable k is set to “0”.
  • step S307 the unipolar displacement estimation unit 9 is used for ultrasonic measurement from the electrical signal rp [k, y, x] based on the ultrasonic echo and the electrical signal rp [k + 1, y, x] based on the ultrasonic echo.
  • a unipolar code displacement signal dp [k, y, x] is calculated by a displacement measurement method.
  • the unipolar displacement estimation unit 9 takes a window of size W around the point for which displacement is to be obtained as shown in Equation (1), and the cross-correlation coefficient is maximized by template matching.
  • v be the displacement.
  • ⁇ y is a distance representing a sampling interval in the y direction.
  • step S308 the unipolar displacement estimation unit 9 is used for ultrasonic measurement from the electrical signal rn [k, y, x] based on the ultrasonic echo and the electrical signal rn [k + 1, y, x] based on the ultrasonic echo.
  • a unipolar code displacement signal dn [k, y, x] is calculated by a displacement measurement method.
  • the unipolar displacement estimator 9 takes a window of size W around the point for which displacement is to be calculated as shown in Equation (2), and the cross-correlation coefficient is maximized by template matching.
  • point v be the displacement.
  • ⁇ y is a distance representing a sampling interval in the y direction.
  • step S309 the bipolar displacement estimation unit 10 subtracts the unipolar code displacement signal dn [k, y, x] from the unipolar code displacement signal dp [k, y, x] to obtain the bipolar code displacement signal db. [K, y, x] is calculated.
  • step S310 if the variable k is not equal to (N + M-2), the process proceeds to step S311. If the variable k is equal to (N + M-2), the process proceeds to step S312.
  • step S311 the variable k is incremented by “1”, and the process returns to step S307.
  • step S312 the variable k is set to “0”.
  • step S314 if the variable k is not equal to (M-1), the process proceeds to step S315. If the variable k is equal to (M-1), the process proceeds to step S316.
  • step S315 the variable k is incremented by “1”, and the process returns to step S313.
  • step S316 the transmission speed estimation unit 12 estimates a propagation time using a cross-correlation based on the bipolar displacement signal d [k, y, x], and then transmits a shear wave transmission speed cs [y, x ] Is estimated.
  • y 0 to YS-1
  • x 0 to XS-1.
  • YS is the size in the y direction (vertical direction) of the two-dimensional image displayed on the display unit 14.
  • the transmission speed estimation unit 12 takes two points [y1, x1] and [y2, x2] in the direction along the propagation direction of the shear wave in the vicinity of the point [y, x] for obtaining elasticity.
  • the propagation time ⁇ [y, x] between two points is estimated by cross-correlation as in the following equation. ⁇ t is the interval between time point k and time point k + 1.
  • the transmission speed estimation unit 12 obtains the shear wave transmission speed csc [y, x] from the shear wave propagation time ⁇ [y, x] by the following equation.
  • l is the distance between the two points for which the propagation time was obtained.
  • step S317 the elastic modulus estimator 13 obtains the rigidity G [y, x] by the following equation.
  • is the density. Since the density distribution is generally unknown, an average density is used.
  • G [y, x] ⁇ ⁇ cs [y, x] 2 (4)
  • the elastic modulus estimation unit 13 calculates a Young's modulus E [y, x] according to the following equation.
  • is a Poisson's ratio, and can be regarded as approximately 0.5 in living soft tissue.
  • step S318 the display unit 14 displays a two-dimensional image with a pixel value of E [y, x].
  • FIG. 3 is a flowchart showing the processing procedure of step S302 of FIG.
  • variables i and j are set to 0 in step S101.
  • step S102 the track pulse transmission unit 7 transmits a track pulse signal, and when the transducers 1-1 to 1-n receive the track pulse signal, they emit ultrasonic waves of a plane wave for measurement.
  • step S103 the transducers 1-1 to 1-n receive ultrasonic echoes for measurement, and the echo receiving unit 8 performs an electrical signal rp [i, y, x ⁇ based on the ultrasonic echoes by beam forming. ] Is generated.
  • y 0 to YS-1.
  • x ⁇ x ⁇ dx / 2 to x + dx / 2-1.
  • step S104 when the unipolar code ap [i] is “1”, the process proceeds to step S105, and when the unipolar code ap [i] is “0”, the process proceeds to step S106.
  • step S105 the Push pulse transmission unit 5 outputs a Push pulse signal, and when the vibrator 2-i positioned on the line x receives the Push pulse signal, a shear wave is applied to a portion of the target on the line x. Irradiate ultrasonic waves to generate.
  • step S106 the Push pulse transmission unit 5 does not output a Push pulse signal, and the transducer 2-i positioned on the line x is an ultrasonic wave for generating a shear wave in a portion on the line x of the object. Do not irradiate.
  • step S107 the track pulse transmission unit 7 transmits a track pulse signal, and upon receiving the track pulse signal, the transducers 1-1 to 1-n irradiate a plane wave ultrasonic wave for measurement.
  • step S108 the transducers 1-1 to 1-n receive ultrasonic echoes for measurement, and the echo receiving unit 8 performs an electrical signal rp [i, y, x ⁇ based on the ultrasonic echoes by beam forming. ] Is generated.
  • y 0 to YS-1.
  • x ⁇ x ⁇ dx / 2 to x + dx / 2-1.
  • step S109 the variable i is incremented by “1”.
  • step S110 if the variable i is smaller than the frame number N, the process returns to step S104. If the variable i becomes equal to the frame number N, the process proceeds to step S111.
  • step S111 the track pulse transmission unit 7 transmits a track pulse signal, and when the transducers 1-1 to 1-n receive the track pulse signal, they emit ultrasonic waves of a plane wave for measurement.
  • step S112 the transducers 1-1 to 1-n receive ultrasonic echoes for measurement, and the echo receiving unit 8 performs an electrical signal rp [N + 1 + j, y, x ⁇ based on the ultrasonic echoes by beam forming. ] Is generated.
  • y 0 to YS-1.
  • x ⁇ x ⁇ dx / 2 to x + dx / 2-1.
  • step S113 the variable j is incremented by “1”.
  • step S114 if the variable j is smaller than (M-1), the process returns to step S111. If the variable j is equal to (M-1), the process ends.
  • FIG. 4 is a flowchart showing the processing procedure of step S303 in FIG.
  • variables i and j are set to 0 in step S201.
  • step S202 the track pulse transmission unit 7 transmits a track pulse signal, and upon receiving the track pulse signal, the transducers 1-1 to 1-n irradiate measurement plane wave ultrasonic waves.
  • step S203 the transducers 1-1 to 1-n receive ultrasonic echoes for measurement, and the echo receiving unit 8 performs an electrical signal rn [i, y, x ⁇ based on the ultrasonic echoes by beam forming. ] Is generated.
  • y 0 to YS-1.
  • x ⁇ x ⁇ dx / 2 to x + dx / 2-1.
  • step S204 if the unipolar code an [i] is “1”, the process proceeds to step S205. If the unipolar code an [i] is “0”, the process proceeds to step S206.
  • step S205 the Push pulse transmission unit 5 outputs a Push pulse signal, and when the vibrator 2-i positioned on the line x receives the Push pulse signal, a shear wave is generated in a portion on the line x of the diagnosis target 20. Irradiate ultrasonic waves to generate
  • step S206 the Push pulse transmission unit 5 does not output the Push pulse signal, and the transducer 2-i located on the line x is an ultrathreshold for generating a shear wave in a portion on the line x of the diagnosis target 20. Do not irradiate sound waves.
  • step S207 the track pulse transmission unit 7 transmits a track pulse signal, and upon receiving the track pulse signal, the transducers 1-1 to 1-n irradiate a plane wave ultrasonic wave for measurement.
  • step S208 the transducers 1-1 to 1-n receive ultrasonic echoes for measurement, and the echo receiving unit 8 performs an electrical signal rn [i, y, x ⁇ based on the ultrasonic echoes by beam forming. ] Is generated.
  • y 0 to YS-1.
  • x ⁇ x ⁇ dx / 2 to x + dx / 2-1.
  • step S209 the variable i is incremented by “1”.
  • step S210 if the variable i is smaller than the frame number N, the process returns to step S204. If the variable i becomes equal to the frame number N, the process proceeds to step S211.
  • step S211 the track pulse transmission unit 7 transmits a track pulse signal, and upon receiving the track pulse signal, the transducers 1-1 to 1-n irradiate measurement plane wave ultrasonic waves.
  • step S212 the transducers 1-1 to 1-n receive ultrasonic echoes for measurement, and the echo receiving unit 8 performs an electrical signal rn [N + 1 + j, y, x ⁇ based on the ultrasonic echoes by beam forming. ] Is generated.
  • y 0 to YS-1.
  • x ⁇ x ⁇ dx / 2 to x + dx / 2-1.
  • step S213 the variable j is incremented by “1”.
  • step S214 if the variable j is smaller than (M-1), the process returns to step S211. If the variable j is equal to (M-1), the process ends.
  • FIG. 5 is a diagram for explaining measurement based on the conventional Push pulse signal and Track pulse signal.
  • steps S316 to S318 are performed using an ensemble average of an electric signal based on an echo of a measurement ultrasonic wave (Track ultrasonic wave) as a measurement result by repeating a plurality of measurements.
  • Track ultrasonic wave a measurement ultrasonic wave
  • Push pulse signals P [1, 0], P [1, 1],..., P [1, N ⁇ 1] are output every period Tc1, Is irradiated with ultrasonic waves for generating shear waves.
  • the Push pulse signal is not encoded by ap or an as in the present embodiment, and is always output every cycle Tc1.
  • the Track pulse signal T [1, 0] is output and the plane wave ultrasonic wave is irradiated before the ultrasonic wave irradiation for generating the shear wave on the object based on the Push pulse signal. Further, after the irradiation of the ultrasonic wave for generating the shear wave based on the Push pulse signal, the Track pulse signal T [1,1], T [1,2],. 1] is output, and ultrasonic waves of plane waves for measurement are irradiated. As a result, electrical signals r [1, 0], r [1, 1],..., R [1, M ⁇ 1] based on the ultrasonic echo signals for measurement are obtained.
  • FIG. 6 is a diagram for explaining measurement based on the Push pulse signal (pressurization pulse signal) and the Track pulse signal (measurement pulse signal) according to the embodiment of the present invention.
  • a Push pulse signal pressurized pulse signal
  • a Push pulse signal pressurized pulse signal
  • the amplitude of the shear wave generated in the object by the ultrasonic wave (Push ultrasonic wave) transmitted corresponding to the Push pulse signal of the present embodiment is encoded by the Push pulse signal. It can be made much smaller than the amplitude of the shear wave generated by the sound wave. Also, Tc0 can be made longer than Tc1. Thereby, in this Embodiment, since the energy given to the diagnostic object 20 per unit time can be made smaller than before, a temperature rise can be prevented.
  • EN2 2 ⁇ Tc0 ⁇ (N + M) takes time for measurement.
  • Tc0> Tc1 and Tc0> Tc2 are obtained. It has been shown that the ensemble average count S needs to be considerably increased in order to obtain a measurement accuracy equivalent to the above measurement accuracy. Therefore, as a whole, the measurement time EN2 of the present embodiment can be made shorter than the conventional measurement time EN1.
  • the incident energy is reduced by simply reducing the amplitude of the acoustic radiation pressure or shortening the irradiation time without using the encoded pressure pulse signal
  • the SNR Signal to Noise Ratio
  • the propagation wave velocity estimation accuracy decreases.
  • the present invention is also applicable to such a technique (a technique that simply reduces the amplitude of the acoustic radiation pressure or shortens the irradiation time and increases the SNR by increasing the number of measurements without using an encoded pulse signal).
  • ultrasonic diagnosis using acoustic radiation pressure can be performed in a short time and without causing an increase in the temperature of the irradiated region.
  • the Barker code is used as an example of the bipolar code, but the present invention is not limited to this.
  • Other binary codes such as Golay code, M-sequence code, and Legendre code may be used.
  • the ultrasonic diagnostic apparatus calculates the sum of the polar displacement signal d1 [k, y, x] and the bipolar displacement signal d2 [k, y, x] as a target bipolar displacement signal d [k, y, x]. To do.
  • the displacement is calculated by template matching using cross-correlation as shown in equations (1) and (2), but the present invention is not limited to this.
  • the IQ signal may be obtained from the echo signal by quadrature detection
  • the phase difference of the RF signal may be estimated from the IQ signal between adjacent time points
  • the displacement may be calculated from the phase difference.
  • the displacement from the previous time point is calculated, but the present invention is not limited to this. It is good also as decoding with the same algorithm using the displacement on the basis of an initial value. Similarly to the displacement between adjacent frames, since the accumulated displacement from the initial value is also propagated by the shear wave, the elasticity may be estimated using the displacement with the initial value as a reference.
  • the transmission period of the Push pulse signal and the transmission period of the track pulse signal have been described as being similar, but the present invention is not limited to this.
  • the transmission period of the track pulse signal may be shorter than the transmission period of the Push pulse signal. In this case, the displacement can be estimated by a larger number of track pulses, so that the measurement accuracy can be further improved. . Furthermore, in order to perform decoding with high accuracy, it is more preferable that the transmission period of the track pulse signal is 1 / integer with respect to the transmission period of the Push pulse signal.
  • the track pulse signal is described as being transmitted by a plane wave, but the present invention is not limited to this.
  • the transmission range of the track pulse signal may be limited within a range including a region where elasticity estimation is performed.
  • beam forming it is possible to increase the signal-to-noise ratio of the reflected signal, and using the resulting signal with a high signal-to-noise ratio improves the accuracy of displacement estimation.
  • By increasing the accuracy of displacement estimation it is possible to provide a device with higher accuracy of elasticity estimation.
  • the elastic modulus is estimated by performing the displacement estimation and further calculating the transmission speed.
  • the displacement and the transmission speed itself are calculated. It is also possible to estimate the elastic modulus directly from the received signal.
  • the description has been given of performing decoding on a bipolar code displacement signal has been given, but the present invention is not limited to this.
  • the effects of the present invention can be obtained by decoding ultrasonic echo signals for measurement or signals estimated by displacement without decoding.
  • the embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
  • the scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
  • the displacement of the object is estimated, and the propagation velocity of the shear wave is estimated based on this, and then the elastic modulus is estimated, but only the displacement or propagation velocity is estimated, and the elastic modulus is estimated.
  • a form in which no estimation is performed is also within the scope of the present invention.
  • the element that transmits Push ultrasonic waves to the probe 3 and the element that transmits and receives Track ultrasonic waves are separately provided. However, the same element may be used.
  • each probe can have a configuration (shape) suitable for Push ultrasound and a configuration (shape) suitable for transmission / reception of Track ultrasound, so that the design can be optimized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 照射部位の温度の上昇を誘発せずに、音響放射圧を用いた超音波診断が可能な超音波診断装置および超音波診断方法を提供する。 Pushパルス送信部5は、符号化された加圧パルス信号を出力する。Trackパルス送信部7は、計測のための計測パルス信号を出力する。超音波プローブ3は、加圧パルス信号に基づいて対象物にせん断波を発生させる超音波と、計測パルス信号に基づいて計測用の超音波とを出力する。エコー受信部8は計測用超音波のエコーを受信し、電気信号を出力する。弾性率推定部は、エコー受信部が出力する電気信号に復号化処理を行い、復号化された信号に基づいて対象物の弾性率を推定する。

Description

超音波診断装置および超音波診断方法
 本発明は、超音波診断装置および超音波診断方法に関し、特に音響放射圧を用いた超音波診断装置および超音波診断方法に関する。
 がんなどの疾患は、その病状と病変部位の硬さに相関があることが知られている。生体内の硬さの分布を知ることは、その診断において非常に重要な情報となる。組織の硬さを定量的に求める方法の一つとして、せん断波の伝搬速度から弾性分布を求める方法がある。この方法では、生体内にせん断波を発生させ、そのせん断波を超音波により計測することで伝搬速度を推定する。
 近年、せん断波を発生させる方法として、超音波の照射により発生する音響放射圧を用いて生体内の組織を押す方法が提案されている(たとえば 非特許文献1を参照)。
 非特許文献1に記載の方法では、せん断波を生成するための数100μs程度の超音波バースト波(Push超音波)を照射し、音響放射圧による加圧(以下、加振という場合もあり)を行う。その後、対象物内に発生させたせん断波の伝搬を観測するため、数kHz程度の繰り返し周波数で超音波画像計測を行う(Track 超音波)。Track超音波による観測は通常数msから数10ms程度行う。得られた画像から変位分布を計測し、せん断波の伝搬速度を推定する。
J. Bercoff, M. Tanter, and M. Fink, "Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, pp.396-409, Vol. 51, No. 4, APRIL 2004.
 しかしながら、この方法では、通常の画像診断と比較して非常に強いエネルギーを短時間に入射する必要がある。そのような超音波を照射すると照射部位の温度が上昇する等の不具合があり、改善が必要である。
 それゆえに、本発明の目的は、照射部位の温度の上昇を誘発せずに、音響放射圧を用いた超音波診断が可能な超音波診断装置および超音波診断方法を提供することである。
 上記課題を解決するために、本発明の超音波診断装置は、符号化された加圧パルス信号を出力する第1のパルス出力部と、
 計測のための計測パルス信号を出力する第2のパルス出力部と、
 前記加圧パルス信号に基づいて対象物にせん断波を発生させる超音波と、前記計測パルスに基づいて計測用の超音波とを出力するプローブと、
 計測用超音波のエコーを受信し、電気信号を出力する受信部と、
 受信部が出力する電気信号に復号化処理を行い、該復号化された信号に基づいて前記対象物の弾性率を推定する弾性率推定部とを備える。
 尚、加圧パルス信号は、加圧のための信号であり、つまり「押す」のみで「引く」事が出来ないため、符号化された加圧パルス信号は、単極性符号を用いることになる。 そして好ましくは、符号化された加圧パルス信号は、双極性符号に基づいて生成されたものである。そして好ましくは変位推定部を更に備え、該変位推定部は、受信部が出力する電気信号を双極性符号を用いて復号化することによって変位を推定し、該推定された変位に基づいて、弾性率推定部が弾性率を推定する。
 また好ましくは、第1のパルス出力部は、符号化された加圧パルス信号のビットが第1の値の場合に加圧パルス信号を出力し、符号化された加圧パルス信号のビットが第2の値の場合に加圧パルス信号を出力しない。
 符号化された加圧パルス信号は、好ましくは1組の単極性符号であり、該1組の単極性符号は、1つの双極性符号によって生成される。1組の単極性符号は、第1の単極性符号と第2の単極性符号とからなる、第1の単極性符号のビットは、双極性符号のビットが「+1」のときに「1」であり、双極性符号のビットが「-1」のときに「0」である。第2の単極性符号のビットは、双極性符号のビットが「+1」のときに「0」であり、双極性符号のビットが「-1」のときに「1」である。
 また好ましくは、双極性符号は、バーカー符号である。
 また好ましくは、双極性符号のビット数がNであり、変位を推定する時点の数をMとした場合に、第1の期間において、第1のパルス出力部は、一定の周期ごとに第1の単極性符号に基づいて、0個以上N個以下の加圧パルス信号を出力し、第2のパルス出力部は、周期ごとに加圧パルス信号と異なるタイミングで(N+M)回の計測パルス信号を出力する。第2の期間において、第1のパルス出力部は、周期ごとに第2の単極性符号に基づいて、0個以上N個以下の加圧パルス信号を出力し、第2のパルス出力部は、周期ごとに加圧パルス信号と異なるタイミングで(N+M)回の計測パルス信号を出力する。
 また好ましくは、第1のパルス出力部は、隣接する計測パルス信号の間に、加圧パルス信号を出力する。
 また好ましくは、変位推定部を備え、該変位推定部は、第1の期間において、隣接する時点の超音波エコーに基づいて、符号化された単極性の変位を表わす第1の単極性符号変位信号を算出し、第2の期間において、隣接する時点の超音波エコーに基づいて、符号化された単極性の変位を表わす第2の単極性符号変位信号を算出する第1の算出部と、第1の単極性符号変位信号と第2の単極性符号変位信号の差分によって、符号化された双極性の変位を表わす双極性符号変位信号を算出する第2の算出部と、双極性符号変位信号と双極性符号との相関処理による復号化によって、変位を表わす信号を算出する第3の算出部とを含む。
 本発明の超音波診断装置の制御方法は、符号化された加圧パルス信号を出力するステップと、加圧パルス信号に基づいて対象物にせん断波を発生させる超音波を出力するステップと、計測のための計測パルス信号を出力するステップと、計測パルス信号に基づいて計測用の超音波を出力するステップと、計測用の超音波のエコーを受信して電気信号を出力ステップと、該電気信号に復号化処理を行い、該復号化された電気信号基づいて弾性率を推定するステップとを備える。
 また好ましくは、対象物の変位を推定するステップを更に有し、該変位を推定するステップは、前記電気信号に復号化処理を行うことで前記変位を推定し、前記弾性率を推定するステップは、前記推定された変位に基づいて弾性率を推定することを含む。また好ましくは、符号化された加圧パルス信号が、1組の単極性符号で符号化されていることを含み、1組の単極性符号は、双極性符号に基づいて生成されたものであり、変位を推定するステップは、受信した超音波エコーに基づいて出力された電気信号を双極性符号を用いて復号化することによって変位を推定するステップを含む。
 また好ましくは、1組の単極性符号は、1つの双極性符号によって生成され、1組の単極性符号は、第1の単極性符号と第2の単極性符号とからなり、双極性符号のビット数がNであり、変位を推定する時点の数をMとした場合に、加圧パルス信号を出力するステップは、第1の期間において、一定の周期ごとに第1の単極性符号に基づいて、0個以上N個以下の加圧パルス信号を出力するステップを含み、第2の期間において、周期ごとに第2の単極性符号に基づいて、0個以上N個以下の加圧パルス信号を出力するステップを含み、計測パルス信号を出力するステップは、第1の期間において、周期ごとに加圧パルス信号と異なるタイミングで(N+M)回の計測パルスを出力するステップを含み、第2の期間において、周期ごとに加圧パルス信号と異なるタイミングで(N+M)回の計測パルス信号を出力するステップを含む。
 また好ましくは、加圧パルス信号を出力するステップは、隣接する計測パルス信号の間に、加圧パルス信号を出力するステップを含む。
 本発明の超音波診断装置および超音波診断方法によれば、照射部位の温度の上昇を誘発せずに、音響放射圧を用いた超音波診断が可能となる。
本発明の実施形態の超音波診断装置の構成を表わす図である。 本発明の実施形態の超音波診断装置の動作手順を表わすフローチャートである。 図2のステップS302の処理手順を表わすフローチャートである。 図2のステップS303の処理手順を表わすフローチャートである。 従来のPushパルスおよびTrackパルスに基づく測定を説明するための図である。 本発明の実施形態のPushパルスおよびTrackパルスに基づく測定を説明するための図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 図1は、本発明の実施形態の超音波診断装置の構成を表わす図である。
 図1を参照して、この超音波診断装置50は、超音波プローブ3と、超音波診断装置本体4とを備える。
 超音波プローブ3は、1次元に配列された振動子1-1~1-nと、1次元に配列された振動子2-1~2-nを備える。
 振動子1-1~1-nは、計測用の超音波である平面波の超音波を出力するとともに、エコー(計測用の超音波の反射波)を受信する。
 振動子2-1~2-nは、対象物である診断対象20にせん断波を発生させるための超音波を出力することによって、診断対象20に音響放射圧を与える。
 超音波診断装置本体4は、加圧パルス信号であるPushパルス信号をプローブに送信するPushパルス送信部5と、単極性符号記憶部6と、計測パルス信号であるTrackパルス信号をプローブに送信するTrackパルス送信部7と、エコー受信部(受信部)8と、変位推定部90と、伝達速度推定部12と、弾性率推定部13と、表示部14と、双極性符号記憶部15とを備える。変位推定部90は、単極性変位推定部9と、双極性変位推定部10と、復号部11とを含む。
 双極性符号記憶部15は、Nビットのバーカー符号a[i](i=0~N-1)を記憶する。ここで、a[i]は、バーカー符号の第iビットを表わす。
 単極性符号記憶部6は、バーカー符号a[i]に基づいて生成される1セットの正の部分を表わす単極性符号ap[i](i=0~N-1)、負の部分を表わすan[i](i=0~N-1)を記憶する。ap[n]、an[n]は、Nビットのバーカー符号a[i]を用いると、以下の式(1)、(2)で表わされる。
 a[i]=+1のときに、ap[i]=1、
 a[i]=-1のときに、ap[i]=0  …(1)
 a[i]=+1のときに、an[i]=0、
 a[i]=-1のときに、an[i]=1  …(2)
 N=5の場合には、{a[i]}={+1,+1,+1,-1,+1}であり、{ap[i]}={1,1,1,0,1}、{an[i]}={0,0,0,1,0}となる。
 Pushパルス送信部5は、単極性符号ap、anを用いて、Pushパルスを生成する。単極性符号を用いるのは、音響放射圧による加圧では、「押す」のみで「引く」ことができないためである。Pushパルス送信部5は、第1期間において、ap[0]~ap[N-1]に従って、一定の間隔で符号化された第1群のPushパルスを振動子2-iへ送信して、振動子2-iを駆動する。Pushパルス送信部5は、第2期間において、an[0]~an[N-1]に従って、一定の間隔で符号化された第2群のPushパルスを振動子2-iへ送信して、振動子2-iを駆動する。
 Trackパルス送信部7は、第1期間および第2期間において、一定の間隔でTrackパルスを振動子1-iへ送信して、振動子1-iを駆動する。
 エコー受信部8は、第1期間および第2期間において、振動子1-iから出力される超音波エコー(反射波)に基づく信号を受信して増幅等の処理を行って、電気信号(以下、エコー電気信号という場合有)を出力する。
 変位推定部90は、単極性変位推定部9と、双極性変位推定部10と、復号部11とを含む。変位推定部90は、電気信号を双極性符号を用いて復号化することによって、1時点前からの変位を推定する。
 単極性変位推定部9は、隣接する時点(フレーム)の電気信号から超音波計測に用いられる変位計測法によって、符号化された単極性の変位を表わす単極性符号変位信号を算出する。
 双極性変位推定部10は、第1の期間の単極性符号変位信号と第2の期間の単極性符号変位信号とから符号化された双極性の変位を表わす双極性符号変位信号を算出する。
 復号部11は、バーカー符号aと双極性符号変位信号との相関処理による復号化(パルス圧縮)によって、変位を表わす双極性変位信号を算出する。非特許文献1に記載されたような符号化をせずに大振幅の極短時間のPush超音波を与えた場合に得られる信号と同等の信号がパルス圧縮によって得られる。
 伝達速度推定部12は、双極性変位信号に基づいて、対象物内に発生させたせん断波の伝達速度を推定する。
 弾性率推定部13は、せん断波の伝達速度に基づいて、弾性率(ヤング率)を算出する。
 表示部14は、弾性率を画素値とした2次元の画像を表示する。
 (動作)
 図2は、本発明の実施形態の超音波診断装置の動作手順を表わすフローチャートである。
 図2を参照して、ステップS301において、変数xが「dx/2」に設定される。変数xは、図1に示すように、診断対象20のx座標を表わす。
 ステップS302において、Pushパルス送信部5は、単極性符号ap[i](i=0~N-1)に基づくPushパルス信号を出力し、ラインxに位置する振動子2-iは、Pushパルス信号を受けると、ラインx上にせん断波を発生させるための超音波(Push超音波)を照射する。Trackパルス送信部7は、(N+M)個のTrackパルス信号を出力し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。ここで、Nはバーカー符号a、単極性符号ap,anのビット数である。Mは、表示部14に表示する画像のフレーム数、つまり変位を推定する時点の数である。
 振動子1-1~1-nは、計測用の超音波のエコー(反射波)を受信する。エコー受信部8は、超音波エコーに基づく電気信号rp[0,y,xα]~rp[N+M-1,y,xα]を生成する。yは、診断対象20のy座標であり、超音波エコーを受信した時刻tと超音波の速度に基づいて算出される。y=0~YS-1である。YSは、表示部14に表示される2次元画像のy方向(縦方向)のサイズである。xα=x-dx/2~x+dx/2-1である。
 ステップS303において、Pushパルス送信部5は、単極性符号an[i](i=0~N-1)に基づくPushパルス信号を出力し、ラインxに位置する振動子2-iは、Pushパルス信号を受けると、ラインx上にせん断波を発生させるための超音波を照射する。Trackパルス送信部7は、(N+M)個のTrackパルス信号を出力し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。
 振動子1-1~1-nは、計測用の超音波のエコーを受信する。エコー受信部8は、超音波エコーに基づく電気信号rn[0,y,xα]~rn[N+M-1,y,xα]を生成する。
 ステップS304において、変数xが(XS-dx/2-1)と等しくない場合には、処理がステップS305に進み、変数xが(XS-dx/2-1)と等しくなった場合には、処理がステップS306に進む。ただし、XSは、表示部14に表示される2次元画像のx方向(横方向)のサイズである。
 ステップS305において、変数xが「dx」だけインクリメントされ、処理がステップS302に戻る。
 ステップS306において、変数kが「0」に設定される。
 ステップS307において、単極性変位推定部9は、超音波エコーに基づく電気信号rp[k,y,x]と超音波エコーに基づく電気信号rp[k+1,y,x]から超音波計測に用いられる変位計測法によって単極性符号変位信号dp[k,y,x]を算出する。
 具体的には、単極性変位推定部9は、式(1)に示すように変位を求める点の周囲にある大きさWの窓を取り、テンプレートマッチングにより、相互相関係数が最大となる点vを変位とする。Δyはy方向のサンプリング間隔を表す距離である。
Figure JPOXMLDOC01-appb-M000001
 ステップS308において、単極性変位推定部9は、超音波エコーに基づく電気信号rn[k,y,x]と超音波エコーに基づく電気信号rn[k+1,y,x]から超音波計測に用いられる変位計測法によって単極性符号変位信号dn[k,y,x]を算出する。
 具体的には、単極性変位推定部9は、式(2)に示すように、変位を求める点の周囲にある大きさWの窓を取り、テンプレートマッチングにより、相互相関係数が最大となる点vを変位とする。Δyはy方向のサンプリング間隔を表す距離である。
Figure JPOXMLDOC01-appb-M000002
 ステップS309において、双極性変位推定部10は、単極性符号変位信号dp[k,y,x]から単極性符号変位信号dn[k,y,x]を減算して、双極性符号変位信号db[k,y,x]を算出する。
 ステップS310において、変数kが(N+M-2)と等しくない場合には、処理がステップS311に進み、変数kが(N+M-2)と等しくなった場合には、処理がステップS312に進む。
 ステップS311において、変数kが「1」だけインクリメントされ、処理がステップS307に戻る。
 ステップS312において、変数kが「0」に設定される。
 ステップS313において、復号部11は、i=0~N-1について、バーカー符号aの第iビットa[i]と双極性符号変位信号db[k+i,y,x]との積を計算して、この積の総和を双極性変位信号d[k,y,x]として算出する。
 ステップS314において、変数kが(M-1)と等しくない場合には、処理がステップS315に進み、変数kが(M-1)と等しくなった場合には、処理がステップS316に進む。
 ステップS315において、変数kが「1」だけインクリメントされ、処理がステップS313に戻る。
 ステップS316において、伝達速度推定部12は、双極性変位信号d[k,y,x]に基づいて、相互相関などを用いて伝搬時間を推定し、それからせん断波の伝達速度cs[y,x]を推定する。ただし、y=0~YS-1、x=0~XS-1である。YSは、表示部14に表示される2次元画像のy方向(縦方向)のサイズである。
 具体的には、伝達速度推定部12は、弾性を求める点[y, x]の近傍に、せん断波の伝搬方向に沿った方向に2点[y1, x1]、 [y2, x2]を取り、以下の式のように相互相関により2点間の伝搬時間τ[y, x]を推定する。Δtは時点kと時点k+1の間の間隔である。
Figure JPOXMLDOC01-appb-M000003
 伝達速度推定部12は、せん断波の伝搬時間τ[y,x」から、せん断波の伝達速度cs [y,x]を次式によって求める。ここで、lは伝搬時間を求めた2点間の距離である。
Figure JPOXMLDOC01-appb-M000004
 ステップS317において、弾性率推定部13は、剛性率G[y,x]を次式で求める。ρは密度である。一般に密度分布は未知であるため、平均的な密度を用いる。
 G[y,x]=ρ×cs[y,x]2 …(4)
 弾性率推定部13は、次式に従って、ヤング率E[y,x]を算出する。νはポアソン比であり、生体軟組織ではほぼ0.5とみなせる。
 E[y,x]=2×G[y,x]×(1+ν) …(5)
 ステップS318において、表示部14は、画素値をE[y,x]とした2次元画像を表示する。
 図3は、図2のステップS302の処理手順を表わすフローチャートである。
 図3を参照して、ステップS101において、変数iおよびjが0に設定される。
 ステップS102において、Trackパルス送信部7は、Trackパルス信号を送信し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。
 ステップS103において、振動子1-1~1-nは、計測用の超音波のエコーを受信し、エコー受信部8は、ビームフォーミングによって、超音波エコーに基づく電気信号rp[i,y,xα]を生成する。前述のようにy=0~YS-1である。xα=x-dx/2~x+dx/2-1である。
 ステップS104において、単極性符号ap[i]が「1」の場合に、処理がステップS105に進み、単極性符号ap[i]が「0」の場合に、処理がステップS106に進む。
 ステップS105において、Pushパルス送信部5は、Pushパルス信号を出力し、ラインxに位置する振動子2-iは、Pushパルス信号を受けると、対象物のラインx上の部分に、せん断波を発生させるための超音波を照射する。
 ステップS106において、Pushパルス送信部5は、Pushパルス信号を出力せず、ラインxに位置する振動子2-iは、対象物のラインx上の部分に、せん断波を発生させるための超音波を照射しない。
 ステップS107において、Trackパルス送信部7は、Trackパルス信号を送信し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。
 ステップS108において、振動子1-1~1-nは、計測用の超音波のエコーを受信し、エコー受信部8は、ビームフォーミングによって、超音波エコーに基づく電気信号rp[i,y,xα]を生成する。前述のようにy=0~YS-1である。xα=x-dx/2~x+dx/2-1である。
 ステップS109において、変数iが「1」だけインクリメントされる。
 ステップS110において、変数iがフレーム数Nよりも小さい場合には、処理がステップS104に戻り、変数iがフレーム数Nと等しくなった場合には、処理がステップS111に進む。
 ステップS111において、Trackパルス送信部7は、Trackパルス信号を送信し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。
 ステップS112において、振動子1-1~1-nは、計測用の超音波のエコーを受信し、エコー受信部8は、ビームフォーミングによって、超音波エコーに基づく電気信号rp[N+1+j,y,xα]を生成する。前述のようにy=0~YS-1である。xα=x-dx/2~x+dx/2-1である。
 ステップS113において、変数jが「1」だけインクリメントされる。
 ステップS114において、変数jが(M-1)よりも小さい場合には、処理がステップS111に戻り、変数jが(M-1)と等しくなった場合には、処理が終了する。
 以上の結果、超音波エコーに基づく電気信号rp[0,y,xα]~rp[N+M-1,y,xα]が得られる。y=0~YS-1であり、xα=x-dx/2~x+dx/2-1であるから、YS×dx×(N+M)個の電気信号rpが得られる。
 図4は、図2のステップS303の処理手順を表わすフローチャートである。
 図4を参照して、ステップS201において、変数iおよびjが0に設定される。
 ステップS202において、Trackパルス送信部7は、Trackパルス信号を送信し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。
 ステップS203において、振動子1-1~1-nは、計測用の超音波のエコーを受信し、エコー受信部8は、ビームフォーミングによって、超音波エコーに基づく電気信号rn[i,y,xα]を生成する。前述のようにy=0~YS-1である。xα=x-dx/2~x+dx/2-1である。
 ステップS204において、単極性符号an[i]が「1」の場合に、処理がステップS205に進み、単極性符号an[i]が「0」の場合に、処理がステップS206に進む。
 ステップS205において、Pushパルス送信部5は、Pushパルス信号を出力し、ラインxに位置する振動子2-iは、Pushパルス信号を受けると、診断対象20のラインx上の部分に、せん断波を発生させるための超音波を照射する。
 ステップS206において、Pushパルス送信部5は、Pushパルス信号を出力せず、ラインxに位置する振動子2-iは、診断対象20のラインx上の部分に、せん断波を発生させるための超音波を照射しない。
 ステップS207において、Trackパルス送信部7は、Trackパルス信号を送信し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。
 ステップS208において、振動子1-1~1-nは、計測用の超音波のエコーを受信し、エコー受信部8は、ビームフォーミングによって、超音波エコーに基づく電気信号rn[i,y,xα]を生成する。前述のようにy=0~YS-1である。xα=x-dx/2~x+dx/2-1である。
 ステップS209において、変数iが「1」だけインクリメントされる。
 ステップS210において、変数iがフレーム数Nよりも小さい場合には、処理がステップS204に戻り、変数iがフレーム数Nと等しくなった場合には、処理がステップS211に進む。
 ステップS211において、Trackパルス送信部7は、Trackパルス信号を送信し、振動子1-1~1-nは、Trackパルス信号を受けると、計測用の平面波の超音波を照射する。
 ステップS212において、振動子1-1~1-nは、計測用の超音波のエコーを受信し、エコー受信部8は、ビームフォーミングによって、超音波エコーに基づく電気信号rn[N+1+j,y,xα]を生成する。前述のようにy=0~YS-1である。xα=x-dx/2~x+dx/2-1である。
 ステップS213において、変数jが「1」だけインクリメントされる。
 ステップS214において、変数jが(M-1)よりも小さい場合には、処理がステップS211に戻り、変数jが(M-1)と等しくなった場合には、処理が終了する。
 以上の結果、計測用の超音波エコーに基づく電気信号rn[0,y,xα]~rn[N+M-1,y,xα]が得られる。y=0~YS-1であり、xα=x-dx/2~x+dx/2-1であるから、YS×dx×(N+M)個の電気信号rnが得られる。
(参考:従来(非特許文献1)のPushパルス信号およびTrackパルス信号)
 図5は、従来のPushパルス信号およびTrackパルス信号に基づく測定を説明するための図である。
 従来では、所定の精度を得るため、複数回の測定を繰り返し、測定結果である計測用超音波(Track超音波)のエコーに基づく電気信号のアンサンブル平均を用いて、ステップS316~S318の処理を行なう。
 従来では、第1回の測定において、周期Tc1ごとにPushパルス信号P[1,0],P[1,1],・・・,P[1,N-1]が出力されて、対象物にせん断波を発生させるための超音波が照射される。Pushパルス信号は、本実施の形態のようにapやanによって符号化されておらず、周期Tc1ごとに常に出力される。
 Pushパルス信号に基づく、対象物にせん断波を発生させるための超音波の照射の前に、Trackパルス信号T[1,0]が出力されて、平面波の超音波が照射される。また、Pushパルス信号に基づくせん断波発生用の超音波の照射の終了後に、Tc2ごとにTrackパルス信号T[1,1],T[1,2],・・・,T[1,M-1]が出力されて、計測用の平面波の超音波が照射される。これにより、計測用の超音波のエコー信号に基づく電気信号r[1,0],r[1,1],・・・,r[1,M-1]が得られる。
 従来では、1回の測定には、Tc1×N+Tc2×Mの時間がかかる。アンサンブル平均のために、S回の測定を行なうとすると、従来では、EN1=S×(Tc1×N+Tc2×M)の時間がかかる。
 (本実施の形態のPushパルス信号およびTrackパルス信号)
 図6は、本発明の実施形態のPushパルス信号(加圧パルス信号)およびTrackパルス信号(計測パルス信号)に基づく測定を説明するための図である。
 本実施の形態では、周期Tc0ごとにトラックパルス信号Tp[0]~Tn[N+M-1]が出力されて、計測用の平面波の超音波が照射される。また、隣接するトラックパルス信号Tpの間のタイミングで、周期Tcごとに、単極性符号ap[i](i=0~N)に基づいて、Pushパルス信号(加圧パルス信号)Pp[i]が出力または出力されない。したがって、Pushパルス信号Ppは0個以上N個以下の個数出力される。Pushパルス信号Pp[i]が出力された場合に、それに基づいて、対象物にせん断波を発生させるための超音波が照射される。
 その後、周期Tc0ごとにトラックパルス信号Tn[0]~Tn[N+M-1]が出力されて、計測用の平面波の超音波が照射される。また、隣接するトラックパルス信号Tnの間のタイミングで、周期Tcごとに、単極性符号an[i](i=0~N)に基づいて、Pushパルス信号(加圧パルス信号)Pn[i]が出力または出力されない。したがって、Pushパルス信号Pnは0個以上N個以下の個数出力される。Pushパルス信号Pn[i]が出力された場合に、それに基づいて、対象物にせん断波を発生させるための超音波が照射される。
 本実施の形態のPushパルス信号に対応して送信される超音波(Push超音波)によって対象物内で発生するせん断波の振幅は、Pushパルス信号が符号化されているため、従来のPush超音波によって発生するせん断波の振幅よりもはるかに小さくすることができる。また、Tc0もTc1よりも長くすることができる。これにより、本実施の形態では、単位時間当たりに診断対象20に与えられるエネルギーを従来よりも小さくすることができるので、温度上昇を防止することができる。
 本実施の形態では、測定のために、EN2=2×Tc0×(N+M)の時間がかかる。この時間を従来の時間EN1(=S×(Tc1×N+Tc2×M))と比較すると、Tc0>Tc1、Tc0>Tc2であるが、出願人の実験によれば、従来の測定において本実施の形態の測定精度と同等の測定精度を得るためには、アンサンブル平均の回数Sは、相当程度大きくする必要があることが示されている。したがって、全体として本実施の形態の測定時間EN2は、従来の測定時間EN1よりも小さくすることができる。
 また、符号化された加圧パルス信号を用いることなく、単に、音響放射圧の振幅を下げる、あるいは照射時間を短くすることによって入射エネルギーを低下させた場合、発生したせん断波の観測においてSNR(Signal to Noise Ratio)が下がり、伝搬波速度の推定精度が低下する。これに対して、複数回計測し、アンサンブル平均を取ることでSNRを上げることは可能であるが、平均を取る回数に比例して計測時間が増加するという問題がある。本発明は、このような技術(符号化パルス信号を用いることなく、単に、音響放射圧の振幅を下げる、あるいは照射時間を短くするとともに、計測回数を増やしてSNRを上げる技術)に対しても、短時間に、且つ、照射部位の温度の上昇を誘発せずに、音響放射圧を用いた超音波診断が可能となる。
 なお、本実施の形態では、双極性符号の例としてバーカー符号を用いたが、これに限定するものではない。Golay符号、M系列符号、Legendre符号などの他の二値符号を用いてもよい。
 Golay符号の場合には、具体的には、2つのGolay符号a[i]、b[i](i=0~N-1)を用いる。
 超音波診断装置は、{a[i]}を用いて、本実施の形態で説明したのと同様の方法で、双極性変位信号d1[k,y,x](k=0~M-1、x=0~XS-1、y=0~YS-1)を算出する。同様に、超音波診断装置は、{b[i]}を用いて、本実施の形態で説明したのと同様の方法で、双極性変位信号d2[k,y,x](k=0~M-1、x=0~XS-1、y=0~YS-1)を算出する。そして、超音波診断装置は、極性変位信号d1[k,y,x]と双極性変位信号d2[k,y,x]の和を目的の双極性変位信号d[k,y,x]とする。
 また、本実施の形態では、式(1)、(2)に示すような相互相関を用いたテンプレートマッチングによって、変位を算出したが、これに限定するものではない。たとえば、エコー信号から直交検波によってIQ信号を求め、隣接する時点間のIQ信号によってRF信号の位相差を推定し、位相差から変位を算出することとしてもよい。
 また、本実施の形態では、1つ前の時点からの変位を算出したが、これに限定するものではない。初期値を基準とした変位を用いて、同様のアルゴリズムで復号化することとしてもよい。また、隣接フレーム間変位と同様に、初期値からの累積変位もせん断波によって伝搬するので、初期値を基準として変位を用いて弾性推定を行なうこととしてもよい。また、本実施の形態では、Pushパルス信号の送信周期とトラックパルス信号の送信周期とを同様のものとして説明を行ったが、これに限定するものではない。Pushパルス信号の送信周期に対してトラックパルス信号の送信周期が短くても良く、その場合はより多くのトラックパルスによる変位の推定が可能であるため、さらに測定精度を向上させることが可能である。またさらに、復号化を精度よく行うためにはPush パルス信号の送信周期に対してトラックパルス信号の送信周期は整数分の1になることがより好ましい。
 また、本実施の形態では、トラックパルス信号は平面波で送信するものとして説明を行ったが、これに限定するものではない。弾性推定を行う領域を含む範囲でトラックパルス信号の送信範囲を限定しても良い。例えばいわゆるビームフォーミングによって送信ビームを形成することにより、反射信号のシグナルノイズ比を高めることが可能であり、この結果得られるシグナルノイズ比の高い信号を用いることで変位推定の精度が向上する。変位推定の精度が高くなることでさらに弾性推定の精度が高い装置を提供可能である。
 また、本実施の形態では、変位推定を実施し、さらに伝達速度を算出することで弾性率を推定したが、数学的に等価である処理を実施すれば、変位や伝達速度そのものを算出することなく受信信号から直接弾性率を推定することも可能である。
 またさらに、本実施の形態では、双極性符号変位信号に対して復号化を実施する説明を行ったが、これに限定するものではない。例えば、計測用の超音波のエコー信号や復号化せずに変位推定した信号などに対して復号化しても本発明の効果を得ることが出来る。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、上記では、対象物の変位を推定し、これに基づいてせん断波の伝搬速度を推定したうえで、弾性率を推定したが、変位の推定、または伝搬速度の推定のみを行い、弾性率の推定を行わない形態も本発明の範疇である。また、上記においては、プローブ3にPush超音波を送信する素子と、Track超音波を送受信する素子とを別個に設けたが、同一の素子で行っても構わない。この場合は、プローブを小型化できるというメリットがある。また、Push超音波を送信するプローブと、Track超音波を送受信するプローブとが別個に設けられていても良い。この場合は、それぞれのプローブをPush超音波用に適した構成(形状)、Track超音波を送受信に適した構成(形状)に出来るので、設計の最適化が図れる。
 本願は、2013年03月28日提出の日本国特許出願特願2013-069852を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
 1-1~1-n、2-1~2-n 振動子
 3 超音波プローブ
 4 超音波診断装置本体
 5 Pushパルス送信部
 7 Trackパルス送信部
 8 エコー受信部
 9 単極性変位推定部
 10 双極性変位推定部
 11 復号部
 12 伝達速度推定部
 13 弾性率推定部
 14 表示部
 50 超音波診断装置
 90 変位推定部

Claims (18)

  1.  符号化された加圧パルス信号を出力する第1のパルス出力部と、
     計測のための計測パルス信号を出力する第2のパルス出力部と、
     前記加圧パルス信号に基づいて対象物にせん断波を発生させる超音波と、前記計測パルス信号に基づいて計測用の超音波とを出力するプローブと、
     計測用超音波のエコーを受信し、電気信号を出力する受信部と、
     受信部が出力する電気信号に復号化処理を行い、該復号化された信号に基づいて前記対象物の弾性率を推定する弾性率推定部とを備えた超音波診断装置。
  2.  前記対象物の変位を推定する変位推定部を更に備え、該変位推定部は、前記受信部が出力する電気信号を復号化することによって前記対象物の変位を推定し、前記弾性率推定部は、前記推定された変位に基づいて前記対象物の弾性率を推定することを特徴とする請求項1に記載の超音波診断装置。
  3.  前記符号化された加圧パルス信号が、1組の単極性符号で符号化されていることを特徴とする請求項2に記載の超音波診断装置。
  4.  前記1組の単極性符号は、双極性符号に基づいて生成されたものであり、
     前記変位推定部は、前記電気信号を前記双極性符号を用いて復号化することによって変位を推定する、請求項3に記載の超音波診断装置。
  5.  前記第1のパルス出力部は、前記単極性符号のビットが第1の値の場合に前記加圧パルスを出力し、前記単極性符号のビットが第2の値の場合に前記加圧パルス信号を出力しない、請求項4に記載の超音波診断装置。
  6.  前記1組の単極性符号は、1つの前記双極性符号によって生成され、
     前記1組の単極性符号は、第1の単極性符号と第2の単極性符号とからなり、
     前記第1の単極性符号のビットは、前記双極性符号のビットが「+1」のときに「1」であり、前記双極性符号のビットが「-1」のときに「0」であり、
     前記第2の単極性符号のビットは、前記双極性符号のビットが「+1」のときに「0」であり、前記双極性符号のビットが「-1」のときに「1」である、請求項5記載の超音波診断装置。
  7.  前記双極性符号は、バーカー符号である、請求項6記載の超音波診断装置。
  8.  前記双極性符号のビット数がNであり、前記変位を推定する時点の数をMとした場合に、
     第1の期間において、前記第1のパルス出力部は、一定の周期ごとに前記第1の単極性符号に基づいて、0個以上N個以下の前記加圧パルス信号を出力し、前記第2のパルス出力部は、前記周期ごとに前記加圧パルス信号と異なるタイミングで(N+M)回の前記計測パルス信号を出力し、
     第2の期間において、前記第1のパルス出力部は、前記周期ごとに前記第2の単極性符号に基づいて、0個以上N個以下の前記加圧パルス信号を出力し、前記第2のパルス出力部は、前記周期ごとに前記加圧パルス信号と異なるタイミングで(N+M)回の前記計測パルス信号を出力する、請求項6記載の超音波診断装置。
  9.  前記第1のパルス出力部は、隣接する前記計測パルス信号の間に、前記加圧パルス信号を出力する、請求項8記載の超音波診断装置。
  10.  前記変位推定部は、
     前記第1の期間において、隣接する時点の前記電気信号に基づいて、符号化された単極性の変位を表わす第1の単極性符号変位信号を算出し、前記第2の期間において、隣接する時点の前記電気信号に基づいて、符号化された単極性の変位を表わす第2の単極性符号変位信号を算出する第1の算出部と、
     前記第1の単極性符号変位信号と前記第2の単極性符号変位信号の差分によって、符号化された双極性の変位を表わす双極性符号変位信号を算出する第2の算出部と、
     前記双極性符号変位信号と前記双極性符号との相関処理による復号化によって、変位を表わす信号を算出する第3の算出部とを含む、請求項9記載の超音波診断装置。
  11.  符号化された加圧パルス信号を出力するステップと、
     前記加圧パルスに基づいて対象物にせん断波を発生させる超音波を出力するステップと、
     計測のための計測パルス信号を出力するステップと、
     前記計測パルス信号に基づいて計測用の超音波を出力するステップと、
     計測用の超音波のエコー信号を受信し、電気信号を出力するステップと、
     前記電気信号に復号化処理を行い、該復号化された信号に基づいて対象物の弾性率を推定するステップとを備えた超音波診断装置の制御方法。
  12.  対象物の変位を推定するステップを更に備え、該変位を推定するステップは、前記電気信号に復号化処理を行うことで前記変位を推定し、前記弾性率を推定するステップは、前記推定された変位に基づいて弾性率を推定することを特徴とする請求項11に記載の超音波診断方法。
  13.  前記符号化された加圧パルス信号が、1組の単極性符号で符号化されていることを特徴とする請求項12に記載の超音波診断装置の制御方法。
  14.  前記1組の単極性符号は、双極性符号に基づいて生成されたものであり、
     前記変位を推定するステップは、前記電気信号を前記双極性符号を用いて復号化することによって変位を推定するステップを含む、請求項11記載の超音波診断装置の制御方法。
  15.  前記1組の単極性符号は、1つの前記双極性符号によって生成され、
     前記1組の単極性符号は、第1の単極性符号と第2の単極性符号とからなり、
     前記双極性符号のビット数がNであり、前記変位を推定する時点の数をMとした場合に、
     前記加圧パルス信号を出力するステップは、第1の期間において、一定の周期ごとに前記第1の単極性符号に基づいて、0個以上N個以下の前記加圧パルス信号を出力するステップを含み、第2の期間において、前記周期ごとに前記第2の単極性符号に基づいて、0個以上N個以下の前記加圧パルス信号を出力するステップを含み、
     前記計測パルス信号を出力するステップは、前記第1の期間において、前記周期ごとに前記加圧パルス信号と異なるタイミングで(N+M)回の前記計測パルス信号を出力するステップを含み、前記第2の期間において、前記周期ごとに前記加圧パルスと異なるタイミングで(N+M)回の前記計測パルス信号を出力するステップを含む、請求項14記載の超音波診断装置の制御方法。
  16.  前記加圧パルス信号を出力するステップは、隣接する前記計測パルス信号の間に、前記加圧パルス信号を出力するステップを含む、請求項15記載の超音波診断装置の制御方法。
  17.  符号化された加圧パルス信号を出力する第1のパルス出力部と、
     計測のための計測パルス信号を出力する第2のパルス出力部と、
     前記加圧パルス信号に基づいて対象物にせん断波を発生させる超音波と、前記計測パルス信号に基づいて計測用の超音波とを出力するプローブと、
     計測用超音波のエコーを受信し、電気信号を出力する受信部と、
     受信部が出力する電気信号に復号化処理を行い、該復号化された信号に基づいて前記対象物の変位を推定する変位推定部とを備えた超音波診断装置。
  18.  符号化された加圧パルス信号を出力する第1のパルス出力部と、
     計測のための計測パルス信号を出力する第2のパルス出力部と、
     前記加圧パルス信号に基づいて対象物にせん断波を発生させる超音波と、前記計測パルス信号に基づいて計測用の超音波とを出力するプローブと、
     計測用超音波のエコーを受信し、電気信号を出力する受信部と、
     受信部が出力する電気信号に復号化処理を行い、該復号化された信号に基づいて前記対象物に発生したせん断波の速度を推定する速度推定部とを備えた超音波診断装置。
PCT/JP2014/058837 2013-03-28 2014-03-27 超音波診断装置および超音波診断方法 WO2014157510A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14773770.4A EP2979645A4 (en) 2013-03-28 2014-03-27 ULTRASONIC DIAGNOSTIC DEVICE AND ULTRASONIC DIAGNOSTIC METHOD
CN201480018632.9A CN105073021B (zh) 2013-03-28 2014-03-27 超声波诊断装置和超声波诊断方法
US14/780,488 US10561400B2 (en) 2013-03-28 2014-03-27 Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
JP2015508691A JP6355624B2 (ja) 2013-03-28 2014-03-27 超音波診断装置および超音波診断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069852 2013-03-28
JP2013069852 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157510A1 true WO2014157510A1 (ja) 2014-10-02

Family

ID=51624471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058837 WO2014157510A1 (ja) 2013-03-28 2014-03-27 超音波診断装置および超音波診断方法

Country Status (5)

Country Link
US (1) US10561400B2 (ja)
EP (1) EP2979645A4 (ja)
JP (1) JP6355624B2 (ja)
CN (2) CN107296629A (ja)
WO (1) WO2014157510A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498183B2 (ja) * 2014-04-02 2019-04-10 国立大学法人群馬大学 超音波映像システム
CN105678703B (zh) * 2016-02-04 2019-05-21 汕头市超声仪器研究所有限公司 一种剪切波弹性成像与准静态成像结合的图像优化方法
CN105559830B (zh) * 2016-02-04 2019-02-01 汕头市超声仪器研究所有限公司 一种加载编码激励的超声成像方法
WO2020042020A1 (zh) * 2018-08-29 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性检测设备及剪切波弹性成像方法、装置
KR102664396B1 (ko) * 2019-01-15 2024-05-08 삼성전자주식회사 라이다 장치 및 그 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505669A (ja) * 2004-07-09 2008-02-28 インスチチュート ナショナル デ ラ サンテ エト デ ラ ルシェルシェ メディケール エラストグラフィーの実施方法
WO2011126729A2 (en) * 2010-04-05 2011-10-13 Aloka Co., Ltd Methods and apparatus for ultrasound imaging
JP2012024438A (ja) * 2010-07-27 2012-02-09 Konica Minolta Medical & Graphic Inc 超音波診断装置
JP2012125549A (ja) * 2010-12-16 2012-07-05 General Electric Co <Ge> せん断変位波形の相関を向上させた方法及びシステム
JP2012170823A (ja) * 2011-02-17 2012-09-10 Siemens Medical Solutions Usa Inc 振幅及び位相変調された超音波を用いた粘弾性測定

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155980A (en) * 1999-03-16 2000-12-05 General Electric Company Ultrasonic imaging system with beamforming using unipolar or bipolar coded excitation
GB2428476A (en) 2005-07-20 2007-01-31 David Richard Andrews Hand-held inspection device for heterogeneous structures
US9554770B2 (en) * 2008-09-29 2017-01-31 Siemens Medical Solutions Usa, Inc. High pulse repetition frequency for detection of tissue mechanical property with ultrasound
CN102481143B (zh) * 2009-09-04 2014-10-15 株式会社日立医疗器械 超声波诊断装置
CN101869485B (zh) * 2010-06-23 2012-07-04 深圳大学 超声成像方法及装置
US10004474B2 (en) 2010-10-27 2018-06-26 Siemens Medical Solutions Usa, Inc. Tissue density quantification using shear wave information in medical ultrasound scanning
DE102011076351A1 (de) 2011-05-24 2012-08-09 Siemens Aktiengesellschaft Verfahren und Computertomographiesystem zur Erzeugung tomographischer Bilddatensätze
CN102793566B (zh) * 2011-05-24 2014-04-16 中国科学院深圳先进技术研究院 声辐射力的产生系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505669A (ja) * 2004-07-09 2008-02-28 インスチチュート ナショナル デ ラ サンテ エト デ ラ ルシェルシェ メディケール エラストグラフィーの実施方法
WO2011126729A2 (en) * 2010-04-05 2011-10-13 Aloka Co., Ltd Methods and apparatus for ultrasound imaging
JP2012024438A (ja) * 2010-07-27 2012-02-09 Konica Minolta Medical & Graphic Inc 超音波診断装置
JP2012125549A (ja) * 2010-12-16 2012-07-05 General Electric Co <Ge> せん断変位波形の相関を向上させた方法及びシステム
JP2012170823A (ja) * 2011-02-17 2012-09-10 Siemens Medical Solutions Usa Inc 振幅及び位相変調された超音波を用いた粘弾性測定

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIDEKI YOSHIKAWA ET AL.: "Effect of Burst Length and Amplitude of Push Pulse on Imaging Area in Ultrasonic Shear Wave Imaging Shear wave imaging", PROCEEDINGS OF SYMPOSIUM ON ULTRASONIC ELECTRONICS, vol. 32, pages 275 - 276, XP055297228 *
J. BERCOFF; M. TANTER; M. FINK: "Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping", IEEE TRANS. ULTRASON., FERROELECTR., FREQ. CONTROL, vol. 51, no. 14, April 2004 (2004-04-01), pages 396 - 409, XP011445387, DOI: doi:10.1109/TUFFC.2004.1295425
See also references of EP2979645A4 *

Also Published As

Publication number Publication date
JPWO2014157510A1 (ja) 2017-02-16
CN105073021A (zh) 2015-11-18
CN107296629A (zh) 2017-10-27
JP6355624B2 (ja) 2018-07-11
US10561400B2 (en) 2020-02-18
EP2979645A1 (en) 2016-02-03
EP2979645A4 (en) 2016-12-28
US20160051231A1 (en) 2016-02-25
CN105073021B (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
US10159466B2 (en) Sparse tracking in acoustic radiation force impulse imaging
JP6053860B2 (ja) 医療用超音波イメージングシステムにおいて剪断波情報を求めるためのコンピュータプログラム
EP2654552B1 (en) Shear wave velocity estimation using center of mass
JP6355624B2 (ja) 超音波診断装置および超音波診断方法
CN106419961B (zh) 声学辐射力成像中的自适应运动估计
JP6063553B2 (ja) 超音波イメージング方法及び超音波イメージング装置
EP2671511A1 (en) Ultrasound diagnostic apparatus and method
JP2012081269A5 (ja)
US20180296190A1 (en) Ultrasonic diagnostic device and ultrasonic signal processing method
US11006928B2 (en) Sound speed imaging using shear waves
EP3700429B1 (en) Method and apparatus for ultrasound measurement and imaging of biological tissue elasticity in real time
JP6063552B2 (ja) 超音波イメージング方法及び超音波イメージング装置
WO2016033752A1 (zh) 弹性测量检测方法及系统
CN106955125B (zh) 声学辐射力脉冲成像中的运动无关性
CN110507361B (zh) 剪切波成像方法及系统
US11963824B2 (en) Shear wave imaging based on ultrasound with increased pulse repetition interval
KR20150111698A (ko) 초음파 영상을 위한 적응 복조 방법 및 장치
KR101117544B1 (ko) 탄성영상 형성을 위한 초음파 진단 시스템 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018632.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508691

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014773770

Country of ref document: EP