WO2014157389A1 - Electrolyte membrane composition, solid polymer electrolyte membrane, method of producing said electrolyte membrane, membrane-electrode assembly, solid polymer-type fuel cell, and water electrolysis cell and water electrolysis apparatus - Google Patents

Electrolyte membrane composition, solid polymer electrolyte membrane, method of producing said electrolyte membrane, membrane-electrode assembly, solid polymer-type fuel cell, and water electrolysis cell and water electrolysis apparatus Download PDF

Info

Publication number
WO2014157389A1
WO2014157389A1 PCT/JP2014/058640 JP2014058640W WO2014157389A1 WO 2014157389 A1 WO2014157389 A1 WO 2014157389A1 JP 2014058640 W JP2014058640 W JP 2014058640W WO 2014157389 A1 WO2014157389 A1 WO 2014157389A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
electrolyte membrane
group
composition
independently
Prior art date
Application number
PCT/JP2014/058640
Other languages
French (fr)
Japanese (ja)
Inventor
法寛 山本
宣彰 若林
敏明 門田
翔平 藤下
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2015508610A priority Critical patent/JPWO2014157389A1/en
Publication of WO2014157389A1 publication Critical patent/WO2014157389A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/12Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • C08G75/0222Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3444Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte membrane composition, a solid polymer electrolyte membrane, a method for producing the electrolyte membrane, a membrane-electrode assembly, a solid polymer fuel cell, a water electrolysis cell, and a water electrolysis apparatus.
  • a fuel cell is a power generator that directly takes out electricity by electrochemically reacting hydrogen gas obtained by reforming various hydrocarbon fuels (natural gas, methane, etc.) and oxygen gas in the air. It is attracting attention as a pollution-free power generator that can directly convert chemical energy into electrical energy with high efficiency.
  • Such a fuel cell is composed of a pair of electrode films (anode electrode and cathode electrode) carrying a catalyst and a proton conductive solid polymer electrolyte membrane sandwiched between the electrode films. Hydrogen ions and electrons are generated at the anode electrode, and the hydrogen ions pass through the solid polymer electrolyte membrane and react with oxygen at the cathode electrode to generate water.
  • solid polymer electrolyte membrane examples include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Kogyo Co., Ltd.), and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.).
  • fluorocarbon polymer electrolyte membranes having sulfonic acid groups mainly aromatic rings such as polyaromatic hydrocarbons, polyether ether ketones, polyphenylene sulfides, polyimides or polybenzazoles
  • a polymer electrolyte membrane having a chain skeleton and having a sulfonic acid group is used.
  • a polymer electrolyte membrane comprising an ion exchange membrane made of a polymer compound having a sulfonic acid group and a polyphenylene sulfide resin (Patent Document 1), a polymer electrolyte and a high platinum affinity
  • Patent Document 2 a polymer electrolyte membrane containing a compound
  • Patent Document 3 a polymer electrolyte membrane containing a polymer electrolyte and a specific sulfur-containing heterocyclic aromatic compound
  • the polymer electrolyte membrane described in Patent Document 1 may be inferior in film forming property because the polyphenylene sulfide resin has poor solubility in an organic solvent. Further, in the polymer electrolyte membranes described in Patent Documents 2 and 3, the durability of the electrolyte membrane is reduced due to elution from the electrolyte membrane of a compound having a high platinum affinity or a sulfur-containing heterocyclic aromatic compound, and the battery. There was room for improvement due to concerns about the decline in power generation performance.
  • An object of the present invention is to provide a composition capable of easily obtaining a polymer electrolyte membrane that is excellent in durability and can suppress a decrease in power generation performance and water electrolysis performance over time.
  • the present inventors have intensively studied to solve the above problems, and as a result, a polymer having an arylene sulfide skeleton and a polymer soluble in an organic solvent together with a polymer having an ion exchange group.
  • the electrolyte membrane composition containing the present invention the inventors have found that the above object can be achieved, and have completed the present invention.
  • the configuration of the present invention is as follows.
  • An electrolyte membrane composition comprising a polymer (A) having an ion exchange group and a polymer (B) having an arylene sulfide skeleton and soluble in an organic solvent.
  • R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group or a halogen atom, and a and b are each Independently, it is an integer of 0 to 3.
  • X 1 and X 2 are each independently a direct bond, —S—, —NH—, —SO— or —SO 2 —, but at least one of X 1 and X 2 is —S—.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group, or a halogen atom, and c represents an integer of 0 to 4.
  • R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b Is synonymous with ]
  • R 3 and c are each independently synonymous with R 3 and c in the formula (2).
  • D is independently a direct bond, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) 1 — (l is 1 to 10 -C (CF 3 ) 2 -,-(CH 2 ) l- (l is an integer of 1 to 10), -C (CR ' 3 ) 2- (R' is independently A cyclohexylidene group, a fluorenylidene group, —O— or —S—, and A and E are each independently a direct bond, —O— or —S—.
  • R 4 to R 11 are each independently a hydrogen atom, a fluorine atom, an alkyl group, an allyl group, an aryl group, a halogenated alkyl group in which some or all of the hydrogen atoms are halogenated, a nitro group, or a cyano group.
  • r is an integer of 0-4.
  • the structural unit represented by Formula (7) is not the structural unit represented by Formula (2).
  • electrolyte membrane composition according to any one of [1] to [7], further comprising at least one metal component selected from the group consisting of metal-containing compounds and metal ions.
  • a platinum surface having a surface area of 0.785 mm 2 is immersed in an aqueous solution obtained by immersing the electrolyte membrane (volume 0.036 cm 3 ) in 50 mL of 1N sulfuric acid aqueous solution at 80 ° C. for 100 hours and then removing the electrolyte membrane.
  • the poisoning rate of platinum is 20% or less when immersed in 20 cycles of cyclic voltammetry at a sweep rate of 0.01 V / s and a sweep potential range of 0.05 to 0.4 V. 9].
  • the solid polymer electrolyte membrane according to [9].
  • a membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, the solid polymer electrolyte membrane according to any one of [9] to [11], a catalyst layer, and a gas diffusion layer are laminated in this order.
  • a polymer electrolyte fuel cell having the membrane-electrode assembly according to [13].
  • a water electrolysis cell in which a catalyst layer, the solid polymer electrolyte membrane according to any one of [9] to [11], and a catalyst layer are laminated in this order.
  • a water electrolysis apparatus having the water electrolysis cell according to [15].
  • the present invention it is possible to easily obtain a polymer electrolyte membrane that is excellent in durability and can suppress a decrease in power generation performance and water electrolysis performance over time.
  • composition for electrolyte membrane of this invention contains the polymer (A) which has an ion exchange group, and the polymer (B) which has an arylene sulfide skeleton and is soluble in an organic solvent. According to such a composition, it is possible to easily obtain a polymer electrolyte membrane that is excellent in durability and that can suppress a decrease in power generation performance and water electrolysis performance over time.
  • composition for an electrolyte membrane of the present invention is preferably a liquid composition from the viewpoint of ease of production of a solid polymer electrolyte membrane (hereinafter also simply referred to as “electrolyte membrane”).
  • the polymer (A) having an ion exchange group is not particularly limited as long as it is a polymer having an ion exchange group, and may be one used for a conventional solid polymer electrolyte membrane.
  • As an ion exchange group a well-known thing can be used, although it does not specifically limit, A phosphonic acid group, a sulfonic acid group, etc. are mentioned. Among these, by using a polymer having a sulfonic acid group, an electrolyte membrane excellent in power generation performance and water electrolysis performance can be obtained.
  • the said polymer (A) may be used individually by 1 type, and may use 2 or more types together.
  • Examples of such a polymer (A) include polyacetal, polyethylene, polypropylene, acrylic resin, polystyrene, polystyrene-graft-ethylenetetrafluoroethylene copolymer, polystyrene-graft-polytetrafluoroethylene, and aliphatic polycarbonate.
  • Polymers in which sulfonic acid groups are introduced into aliphatic polymers aliphatic polymers having sulfonic acid groups
  • polyesters polysulfones, polyphenylene ethers, polyether imides, aromatic polycarbonates, polyether ether ketones, poly Ether ketone, polyether ketone ketone, polyether ether sulfone, polyether sulfone, polycarbonate, polyphenylene sulfide, aromatic polyamide, aromatic polyamideimide, aromatic polyimide ,
  • a polymer in which a sulfonic acid group is introduced into an aromatic polymer having an aromatic ring in part or all of the main chain thereof such as polybenzoxazole, polybenzothiazole, polybenzimidazole, etc.
  • polymer (A) a known polymer can be used, and is not limited to, but is not limited to a total fluorocarbon polymer having a sulfonic acid group commercially available under a trade name such as Nafion, Aciplex or Flemion, JP 2012-067216, JP 2010-238374, JP 2010-174179, JP 2010-135282, JP 2004-137444, JP 2004-345997, JP 2004. -346163, International Publication No. 2011/155528, Japanese Patent Application Laid-Open No. 2007-177197, International Publication No. 2007/043274, and the like.
  • the polymer (A) is a polymer comprising a hydrophilic segment (A1) serving as a structural unit having a proton conductive group and a hydrophobic segment (B1) serving as a hydrophobic structural unit. It is preferable.
  • the polymer (A) may be a block polymer or a random polymer, but an electrolyte membrane that is more excellent in power generation, water electrolysis performance, and dimensional stability during a wet and dry cycle is obtained. From the viewpoint of being obtained, a block copolymer of the hydrophilic segment (A1) and the hydrophobic segment (A2) is preferable.
  • the hydrophilic segment (A1) is not particularly limited as long as it has a proton conductive group and exhibits hydrophilicity.
  • the hydrophilic segment (A1) has an aromatic ring in the main chain and a proton conductive group such as a sulfonic acid group. From the point that an electrolyte membrane having high continuity of the hydrophilic segment and high proton conductivity can be obtained (hereinafter referred to as “structural unit”). (9) ”) is preferable, and a segment composed of the structural unit (9) is more preferable.
  • the hydrophilic segment (A1) may consist of only one type of structural unit or may contain two or more types of structural units.
  • Ar 11 , Ar 12 and Ar 13 are each independently a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated carbon atom having 1 to 20 carbon atoms.
  • R 18 and R 19 each independently represents a hydrogen atom or a protecting group. However, at least one of all R 18 and R 19 contained in the structural unit (9) is a hydrogen atom.
  • x 1 independently represents an integer of 0 to 6
  • x 2 represents an integer of 1 to 7
  • a represents 0 or 1
  • b represents an integer of 0 to 20.
  • the protecting group refers to an ion, atom or atomic group used for the purpose of temporarily protecting a reactive group (—SO 3 — or —SO 3 ⁇ ).
  • a reactive group —SO 3 — or —SO 3 ⁇
  • Specific examples include an alkali metal atom, an aliphatic hydrocarbon group, an alicyclic group, an oxygen-containing heterocyclic group, and a nitrogen-containing cation.
  • the hydrophilic segment (A1) includes, in addition to the structural unit (9) having a sulfonic acid group, as a structural unit having a proton conductive group other than the sulfonic acid group, for example, a structural unit having a phosphonic acid group, Aromatic structural units having a nitrogen-containing heterocyclic ring described in Kaikai 2011-089036 and International Publication No. 2007/010731 may be included.
  • hydrophobic segment (A2) is not particularly limited as long as it is a hydrophobic segment.
  • the hydrophilic segment (A2) may consist of only one type of structural unit or may contain two or more types of structural units.
  • the hydrophobic segment (A2) is preferably a hydrophobic segment having an aromatic ring in the main chain and not containing a proton conductive group such as a sulfonic acid group, and an electrolyte membrane that is more excellent in suppressing hot water swelling.
  • a structural unit represented by the following formula (10) hereinafter also referred to as “structural unit (10)”
  • a structural unit represented by the following formula (11) hereinafter referred to as “structural unit (11)”.
  • a segment containing at least one structural unit selected from the group consisting of structural units represented by the following formula (12) hereinafter also referred to as “structural unit (12)”.
  • it is a segment composed of at least one structural unit selected from the group consisting of the structural unit (10) and the structural unit (11).
  • the polymer (A) contains any one of the structural units (10) to (12), in particular, the structural unit (10) or (11), the hydrophobicity of the polymer is remarkably improved. Therefore, it is possible to obtain an electrolyte membrane having excellent hot water resistance while having proton conductivity similar to the conventional one. Moreover, when segment (A2) contains a nitrile group, an electrolyte membrane having high toughness and mechanical strength can be produced.
  • the hydrophobic segment (A2) includes the polymer (10) obtained by increasing the rigidity of the segment (A2) and increasing the aromatic ring density.
  • the hot water resistance, radical resistance to peroxide, gas barrier properties, mechanical strength, dimensional stability, etc. of the electrolyte membrane can be improved.
  • the hydrophobic segment (A2) may include one type of structural unit (10), or may include two or more types of structural units (10).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 21 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • L- (L is a direct bond, —O—, —S—, —CO—, —SO 2 —, —CONH—, —COO—, —CF 2 —, —CH 2 —, —C (CF 3 ) 2 -or -C (CH 3 ) 2- ;
  • R 22 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, a halogenated aryl group or a nitrogen-containing heterocyclic ring, and at least one of these groups one of the hydrogen atoms, further hydroxy group, a nitro group, may be substituted with at least one group selected from nitrile group and a group consisting of R 22 -L-.
  • the plurality of L may be the same or different, and a plurality of R 22 (provided that The structure of the portion excluding the structural difference caused by the substitution may be the same or different.
  • c 1 and c 2 independently represent an integer of 0 or 1 or more, d represents an integer of 1 or more, and e independently represents an integer of 0 to (2c 1 + 2c 2 +4).
  • the hydrophobic segment (A2) contains the structural unit (11) because radical resistance to peroxide and the like is improved, and an electrolyte membrane excellent in power generation / water electrolysis durability can be obtained. Further, when the hydrophobic segment (A2) contains the structural unit (11), an appropriate flexibility (flexibility) can be imparted to the segment (A2), and the electrolyte membrane containing the resulting polymer Toughness can be improved.
  • the hydrophobic segment (A2) may include one type of structural unit (11), or may include two or more types of structural units (11).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 31 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • f represents 0 or an integer of 1 or more
  • g represents an integer of 0 to (2f + 4).
  • the structural unit represented by Formula (11) is a structural unit other than the structural unit represented by Formula (10).
  • the hydrophobic segment (A2) contains the structural unit (12), the segment (A2) can be imparted with appropriate flexibility (flexibility), and the toughness of the electrolyte membrane containing the resulting polymer Can be improved.
  • the hydrophobic segment (A2) may include one type of structural unit (12) or may include two or more types of structural units (12).
  • G and J are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 I ⁇ (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon group, aromatic A hydrocarbon group or a halogenated hydrocarbon group.), A cyclohexylidene group or a fluorenylidene group, Q independently represents an oxygen atom or a sulfur atom, and R 1 to R 16 each independently represents a hydrogen atom.
  • R 22-L-(L and R 22 are independently the same as L and R 22 in formula (10).) indicates, R 1 ⁇
  • a plurality of groups of R 16 may be bonded to form a ring structure.
  • s and t each independently represent an integer of 0 to 4, and r represents 0 or an integer of 1 or more.
  • the polymer (A) can be synthesized by a conventionally known method, and is not particularly limited.
  • the compound serving as the structural unit is reacted in the presence of a catalyst or a solvent.
  • it can be synthesized by introducing a proton conductive group by a method such as conversion of a sulfonic acid ester group or the like to a sulfonic acid group, or sulfonation using a sulfonating agent.
  • the polystyrene equivalent weight average molecular weight (Mw) of the polymer (A) by gel permeation chromatography (GPC) is preferably 10,000 to 1,000,000, more preferably 20,000 to 800,000, and even more preferably 50,000 to 300,000.
  • the ion exchange capacity of the polymer (A) is preferably 0.5 to 3.5 meq / g, more preferably 0.5 to 3.0 meq / g, still more preferably 0.8 to 2.8 meq / g. is there.
  • An ion exchange capacity of 0.5 meq / g or more is preferable because an electrolyte membrane having high proton conductivity and high power generation performance and water electrolysis performance can be obtained.
  • it is 3.5 meq / g or less, an electrolyte membrane having sufficiently high water resistance can be obtained, which is preferable.
  • the ion exchange capacity can be measured, for example, by the method described in the examples below.
  • the ion exchange capacity can be adjusted, for example, by changing the type of each structural unit, the use ratio, the combination, and the amount of ion exchange groups introduced. Therefore, it can be adjusted by changing the charge amount ratio and type of the precursor (monomer / oligomer) that induces the structural unit during polymerization.
  • the proportion of the structural unit containing an ion exchange group when the proportion of the structural unit containing an ion exchange group is increased in the polymer, the ion exchange capacity of the obtained electrolyte membrane is increased and the proton conductivity is increased, but the water resistance tends to be reduced.
  • the proportion of the structural unit is reduced, the ion exchange capacity of the obtained electrolyte membrane is reduced and the water resistance is increased, but the proton conductivity tends to be lowered.
  • the polymer (B) is a polymer having an arylene sulfide skeleton and soluble in an organic solvent.
  • a polymer (B) By using such a polymer (B), it is possible to obtain a composition for an electrolyte membrane in which the polymer (B) is uniformly dispersed, and to the outside of the electrolyte membrane during battery operation or water electrolysis device operation. The elution of the polymer and the deterioration of the electrolyte membrane are suppressed, and an electrolyte membrane excellent in durability can be easily obtained.
  • the said polymer (B) may be used individually by 1 type, and may use 2 or more types together.
  • a catalyst layer is provided on an electrode of a polymer electrolyte fuel cell, and platinum, ruthenium, or the like is used as a catalyst contained in the catalyst layer.
  • platinum, ruthenium, or the like is used as a catalyst contained in the catalyst layer.
  • These catalysts are important because they promote the chemical reaction that is the source of the extracted electrical energy.
  • a part of the catalyst in the catalyst layer is deposited in the electrolyte membrane. It is believed that the electrolyte membrane is deteriorated by the catalyst, and this is a factor that lowers the long-term stability of the polymer electrolyte fuel cell.
  • platinum, ruthenium, iridium, iron, etc. are used as the catalyst contained in the catalyst layer.
  • a part of the catalyst in the catalyst layer is deposited in the electrolyte membrane during the operation of the water electrolysis device, and this deposited catalyst causes deterioration of the electrolyte membrane, and the long-term stability of the water electrolysis device. Is considered to be a factor that reduces In particular, the deposited platinum and iron may cause significant deterioration of the electrolyte membrane.
  • the present inventors inactivate a catalyst such as platinum in the vicinity of the interface between the electrolyte membrane and the electrode, while being located away from the interface between the electrolyte membrane and the electrode, Catalysts such as platinum, which are thought to have little impact on the battery, are not deactivated, so that the polymer electrolyte fuel cell has a good balance between power generation performance and long-term stability, and water electrolysis performance and long-term stability. We thought that an excellent water electrolysis apparatus with good balance could be obtained.
  • the present inventors have used an electrolyte membrane containing the polymer (B) together with the polymer (A) having an ion exchange group, so that the solid state excellent in balance between power generation performance and long-term stability can be obtained. It has been found that a molecular fuel cell and a water electrolysis device excellent in balance between water electrolysis performance and long-term stability can be obtained.
  • the electrolyte membrane containing the polymer (B) has a specific poisoning rate of platinum. It becomes as follows. This means that the elution amount of the polymer (B) from the electrolyte membrane is below a certain range. This inactivates platinum in the vicinity of the interface between the electrolyte membrane and the electrode, while deactivating platinum, which is located far from the interface between the electrolyte membrane and the electrode and has little effect on the deterioration of the electrolyte membrane. It is not considered to be converted.
  • composition for electrolyte membrane of the present invention contains the polymer (B), a polymer electrolyte fuel cell excellent in balance between power generation performance and long-term stability, and water electrolysis performance and long-term stability. It is possible to obtain a water electrolysis apparatus excellent in balance.
  • the polymer (B) has an arylene sulfide skeleton.
  • the polymer (B) has an arylene sulfide skeleton, so that the polymer (B) has excellent compatibility with the polymer (A), and the elution to the outside of the electrolyte membrane during battery power generation or water electrolysis is suppressed.
  • the arylene sulfide skeleton refers to a structural unit in which a sulfide bond (—S—) is bonded to a monocyclic or polycyclic aromatic hydrocarbon group, for example, a heavy unit having a thianthrene structure.
  • the polymer is also referred to as a polymer having an arylene sulfide skeleton because it has a portion in which a sulfide bond is bonded to a benzene ring.
  • the sulfide bond portion is easily coordinated to platinum. For this reason, it is thought that this sulfide bond part contributes to inactivation of platinum.
  • the polymer (B) becomes a polymer having excellent compatibility with the polymer (A), and becomes a polymer in which elution to the outside of the electrolyte membrane during battery power generation or water decomposition is suppressed.
  • at least one of the structural units represented by the following formula (1) or (2) (hereinafter also referred to as “structural unit (1)” and “structural unit (2)”) is included.
  • R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group, or a halogen atom, and a and b are each Independently, it is an integer of 0 to 3.
  • X 1 and X 2 are each independently a direct bond, —S—, —NH—, —SO— or —SO 2 —, but at least one of X 1 and X 2 is —S—.
  • R 1 and R 2 are preferably a cyano group or a halogen atom from the viewpoint of improving the solubility in a polar solvent.
  • Said a and b are preferably 0 or 1, more preferably 0.
  • At least one of X 1 and X 2 is —S—, and the other is preferably a single bond or —S— from the viewpoint of becoming a polymer having a high sulfur content, and is an organic solvent. From the viewpoints of obtaining a polymer excellent in solubility in water and obtaining an electrolyte membrane that can sufficiently inactivate platinum in the vicinity of the interface between the electrolyte membrane and the electrode even if the amount of the polymer (B) added is small. More preferably, it is —S—.
  • R 3 is an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group or a halogen atom, and c is an integer of 0 to 4.
  • R 3 is preferably a cyano group, a chlorine atom, a bromine atom, or an iodine atom from the viewpoint of improving the solubility in a polar solvent.
  • the c is preferably 0 or 1, more preferably 0.
  • the polymer (B) can obtain a composition for an electrolyte membrane in which the polymer (B) is uniformly dispersed, and is a solid polymer fuel excellent in balance in power generation performance, water electrolysis performance, long-term stability, etc. It is preferable that at least one of the structural units represented by the following formulas (3) to (5) is included from the viewpoint that a battery or a water electrolysis device can be obtained.
  • R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b Is synonymous with ]
  • R 3 and c are each independently synonymous with R 3 and c in the formula (2).
  • the polymer (B) contains the structural unit (2), a polymer having better solubility in an organic solvent is obtained, and an electrolyte membrane composition in which the polymer (B) is uniformly dispersed is obtained.
  • the structural unit represented by the formulas (4) and (5) it is preferable that the structural unit represented by the formula (5) is included in the structural units represented by the formula (5). It is more preferable that the structural unit and the structural unit represented by the following formula (2 ′) are included.
  • R 3 and c are independently the same meanings as R 3 and c in the formula (2).
  • the polymer (B) As the polymer (B), a polymer excellent in compatibility with the polymer (A) or an organic solvent can be obtained, and a composition for an electrolyte membrane in which the polymer (B) is uniformly dispersed can be obtained. It is preferable to have a structural unit represented by the following formula (6) from the viewpoint of obtaining a polymer electrolyte fuel cell and a water electrolysis device that are excellent in performance, water electrolysis performance, long-term stability and the like. .
  • R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b X 3 is —O— or —S—. ]
  • the polymer (B) has at least one group selected from the group consisting of a polar group, a group containing a fluorine atom and a fluorenylidene group, so that a polymer excellent in solubility in a polar solvent can be obtained. From the point of view, it is preferable.
  • These groups are not particularly limited as long as they are contained in the polymer (B), but may be contained in any one of the groups represented by the above or the following formulas (1) to (8). preferable.
  • Examples of the polar group include a cyano group, a hydroxy group, and a carboxy group.
  • Examples of the group containing a fluorine atom include —CF 3 , —C (CF 3 ) 2 — and the like.
  • the polymer (B) preferably has a structural unit represented by the following formula (7) from the viewpoint of obtaining a polymer excellent in solubility in an organic solvent, and the structural unit (1) and In addition to the structural unit (2), it is more preferable to further have a structural unit represented by the following formula (7).
  • D is independently a direct bond, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) 1 — (l is 1 to 10 -C (CF 3 ) 2 -,-(CH 2 ) l- (l is an integer of 1 to 10), -C (CR ' 3 ) 2- (R' is independently A cyclohexylidene group, a fluorenylidene group, —O— or —S—, and A and E are each independently a direct bond, —O— or —S—.
  • R 4 to R 11 are each independently a hydrogen atom, a fluorine atom, an alkyl group, an allyl group, an aryl group, a halogenated alkyl group in which some or all of the hydrogen atoms are halogenated, a nitro group, or a cyano group.
  • r is an integer of 0-4.
  • the structural unit represented by Formula (7) is not the structural unit (2).
  • the hydrocarbon group for R ′ is preferably a linear or branched alkyl group having 1 to 12 carbon atoms, more preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and 1 to 5 carbon atoms.
  • the linear or branched alkyl group is more preferable.
  • Preferable specific examples of the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group. And n-heptyl group.
  • Examples of the cyclic hydrocarbon group for R ′ include an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • the alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 3 to 12 carbon atoms, specifically, a cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group; And cycloalkenyl groups such as cyclobutenyl group, cyclopentenyl group, and cyclohexenyl group.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a biphenyl group, and a naphthyl group.
  • the alkyl group in R 4 to R 11 is preferably a group exemplified as a preferred example of the hydrocarbon group in R ′.
  • the halogenated alkyl group for R 4 to R 11 is preferably a group obtained by halogenating some or all of the alkyl groups.
  • the aryl group in R 4 to R 11 is preferably a group listed as a preferred example of the aromatic hydrocarbon group.
  • D is preferably —S—, —O—, —C (CF 3 ) 2 — or a fluorenylidene group from the viewpoint of obtaining a polymer having excellent solubility in a polar solvent.
  • a and E are preferably —O— or —S— from the viewpoint of improving the solubility of the polymer (B).
  • R 4 to R 11 are each a hydrogen atom, a fluorine atom, a halogenated alkyl group in which some or all of the hydrogen atoms are halogenated from the viewpoint of obtaining a polymer excellent in solubility in a polar solvent, A nitro group or a cyano group is preferred.
  • the polymer (B) includes the structural unit (1)
  • the polymer (B) has a structural unit represented by the following formula (8), which is superior in solubility in an organic solvent and has a high sulfur content. Is preferable from the viewpoint of obtaining
  • R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b in the above formula, D, E, R 4 ⁇ R 11 and r are as defined above D in the formula (7), E, R 4 ⁇ R 11 and r, a 'is -O- or -S- It is. ]
  • the method for synthesizing the polymer (B) is not particularly limited, and can be synthesized by a conventionally known method. For example, a method for polymerizing a monomer having an arylene sulfide skeleton, a sulfide bond when synthesizing a polymer, and the like. And a method of polymerizing so that the resulting polymer has an arylene sulfide skeleton.
  • the polymer (B) includes, for example, a dihydroxy compound containing a dihalide containing the structural unit (1) and a structural unit represented by the formula (7) (where A and E are direct bonds). Can be obtained by polymerizing by heating in an appropriate organic solvent in the presence of an alkali metal compound such as potassium carbonate, and the structural unit represented by the formula (7) (where A and E are The dihalogen compound containing a direct bond) and an alkali metal sulfide salt such as sodium sulfide are heated and polymerized in a suitable organic solvent. Specific examples include the methods shown in Synthesis Examples 3 to 7 below.
  • the amount of the dihalide containing the structural unit (1) and the monomer that can become the post-polymerization structural unit (2) are the solubility in an organic solvent and the deterioration of the electrolyte membrane. From the viewpoint of the balance with the inhibitory effect, it is preferably 10 to 70 mol%, more preferably 20 to 60 mol%, based on 100 mol% of all monomers used for the synthesis of the polymer (B).
  • the number average molecular weight of the polymer (B) is preferably 1000 or more, more preferably 1100 or more, and further preferably 1200 or more. Further, the upper limit of the number average molecular weight of the polymer (B) is preferably 10,000 or less, more preferably 9000 or less, and further preferably 8000 or less. When the number average molecular weight of the polymer (B) is less than 1000, the amount of the polymer (B) eluted out of the electrolyte membrane during battery power generation or water decomposition may be excessively increased.
  • the molecular weight of the said polymer (B) can be measured by the method as described in a following example.
  • the polymer (B) preferably has a sulfur atom content constituting a sulfide bond in the polymer of 2.0 mmol / g or more. More preferably, it is 2.5 mmol / g or more, More preferably, it is 2.7 mmol / g or more. When the content of sulfur atoms constituting the sulfide bond in the polymer (B) is less than 2.0 mmol / g, the effect of suppressing deterioration of the electrolyte membrane during battery power generation or water decomposition may not be sufficient.
  • the polymer (B) preferably has a sulfur atom content constituting a sulfide bond in the polymer of 10.0 mmol / g or less. Content of the sulfur atom which comprises the sulfide bond in such a polymer (B) can be quantified by a Raman spectroscopy, for example.
  • the polymer (B) is a polymer soluble in an organic solvent.
  • the “polymer soluble in an organic solvent” is preferably a polymer that is soluble in 10 g or more in 1 L of an organic solvent, and more preferably a polymer that is soluble in 20 g or more.
  • the organic solvent is not particularly limited, but for example, aprotic systems such as NMP, N, N-dimethylformamide, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, dimethylurea, dimethylimidazolidinone, and acetonitrile.
  • aprotic systems such as NMP, N, N-dimethylformamide, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, dimethylurea, dimethylimidazolidinone, and acetonitrile.
  • Polar solvents chlorinated solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, alcohols such as methanol, ethanol, propanol, iso-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol Alkylene glycol monoalkyl ethers such as monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, acetone, methyl ethyl Tons, ketones such as cyclohexanone, tetrahydrofuran, ethers 1,3-dioxane and the like.
  • chlorinated solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene
  • alcohols such as methanol, ethanol, propanol, iso-propyl alcohol, sec-butyl
  • the said polymer (B) is a polymer which does not have crystallinity from the point that the polymer excellent in the solubility to an organic solvent is obtained. Whether or not the polymer has crystallinity can be determined, for example, by the presence or absence of a melting peak in DSC measurement.
  • the melting point of the polymer (B) measured by Yanagimoto Seisakusho, precision melting point measuring device is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and still more preferably 120. °C or more.
  • the melting point of the polymer (B) is less than 80 ° C., the polymer (B) is likely to move in the electrolyte membrane while the battery or water electrolysis apparatus is operating at a high temperature, and is easily eluted out of the electrolyte membrane. Therefore, durability of the electrolyte membrane, power generation performance, and water electrolysis performance tend to decrease.
  • the polymer (B) has a mass ratio of the polymer (A) to the polymer (B) of 99.99: 0.01 to 70:30, preferably 99.95: 0.05 to 75. : 25, more preferably 99.9: 0.1 to 80:20, particularly preferably 99.5: 0.5 to 85:15 in an amount of 99.5: 0.5 to 85:15. .
  • a mass ratio of the polymer (A) to the polymer (B) of 99.99: 0.01 to 70:30, preferably 99.95: 0.05 to 75. : 25, more preferably 99.9: 0.1 to 80:20, particularly preferably 99.5: 0.5 to 85:15 in an amount of 99.5: 0.5 to 85:15.
  • the electrolyte membrane composition of the present invention may further contain at least one metal component selected from the group consisting of a metal-containing compound and a metal ion in addition to the polymer (A) and the polymer (B).
  • a component having hydrogen peroxide decomposability is preferable. Specifically, hydrogen peroxide that can be generated during battery power generation or water decomposition is converted into water by using a redox reaction or a disproportionation reaction. A component having capacity is more preferred.
  • the metal component examples include tin (Sn), aluminum (Al), manganese (Mn), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), and nickel (Ni). , Palladium (Pd), silver (Ag), cerium (Ce), vanadium (V), neodymium (Nd), praseodymium (Pr), samarium (Sm), cobalt (Co), gadolinium (Gd), terbium (Tb) And metal-containing compounds such as dysprosium (Dy), holmium (Ho) and erbium (Er), or metal ions thereof.
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • oxides of these metals are preferable.
  • a tin oxide and a tin ion are preferable, and the electrolyte membrane excellent in durability is obtained by using the composition containing these.
  • the compounding amount of the metal component is not particularly limited, but is preferably 0.01 to 30% by weight, more preferably 0.1 to 25% by weight with respect to 100% by weight of the electrolyte membrane composition of the present invention. More preferably, it is 1 to 20% by weight.
  • the electrolyte membrane composition according to the present invention preferably further contains a solvent.
  • a liquid composition can be obtained because the composition for electrolyte membrane of this invention contains the said solvent.
  • the solvent which can melt
  • the said organic solvent etc. are mentioned. These solvents can be used alone or in combination of two or more.
  • NMP is preferable from the viewpoint of the solubility of the polymer (A) and the polymer (B) and the viscosity of the composition.
  • the composition of the mixture is preferably 25 to 95% by mass, more preferably 25 to 90% by mass of the aprotic polar solvent. %, And the other solvent is preferably 5 to 75% by mass, more preferably 10 to 75% by mass (provided that the total is 100% by mass).
  • the blending amount of the other solvent is within the above range, the effect of reducing the viscosity of the resulting composition is excellent.
  • NMP is preferable as the aprotic polar solvent
  • methanol or methyl ethyl ketone is effective as the other solvent in reducing the viscosity of the composition in a wide composition range.
  • the content of the polymer (A) in the liquid composition is preferably 1 to 40% by mass, more preferably 3 to 25% by mass, although it depends on the molecular weight of the polymer.
  • the content of the polymer (A) is less than 1% by mass, the obtained electrolyte membrane tends to cause poor appearance and tends to generate pinholes.
  • the content of the polymer (A) exceeds 40% by mass, the viscosity of the composition may be too high to form a film from the composition, and the obtained electrolyte film may have surface smoothness. May be lacking.
  • the viscosity of the liquid composition is preferably 2,000 to 100,000 mPa ⁇ s, more preferably 3,000 to 50, although it depends on the molecular weight and concentration of the polymers (A) and (B). 1,000 mPa ⁇ s.
  • the viscosity of the liquid composition is within the above range, it is preferable because the composition has excellent retention during film formation, the thickness can be easily adjusted, and the film can be easily formed by a casting method.
  • the liquid composition can be prepared by mixing the polymer (A) and the polymer (B) in the solvent. Specifically, a method of simultaneously dissolving or dispersing the polymers (A) and (B) in the solvent, and after dissolving or dispersing the polymer (A) in the solvent, the polymer (B) Examples thereof include a method of preparing by mixing with this, or a method of dissolving or dispersing the polymer (A) after dissolving the polymer (B) in the solvent.
  • inorganic acids such as sulfuric acid and phosphoric acid; phosphate glass; tungstic acid; phosphoric acid Salt hydrate; ⁇ -alumina proton substitution product; inorganic proton conductor particles such as proton-introduced oxide; organic acid containing carboxylic acid; organic acid containing sulfonic acid; organic acid containing phosphonic acid; May be.
  • the electrolyte membrane of the present invention is not particularly limited as long as it is a membrane obtained from the electrolyte membrane composition, but is preferably a membrane obtained from the liquid composition.
  • the electrolyte membrane of the present invention can be suitably used as an electrolyte membrane for a polymer electrolyte fuel cell and as an electrolyte membrane for water electrolysis, and particularly preferably used as an electrolyte membrane for a polymer electrolyte fuel cell. it can.
  • the electrolyte membrane of the present invention contains the polymer (A) and the polymer (B), it is difficult to deteriorate during battery power generation, has excellent power generation performance and durability, and when an electrode containing platinum is used, The platinum poisoning rate due to the eluate that can be eluted from the electrolyte membrane is low. Similarly, it is hardly deteriorated during water electrolysis, is excellent in water electrolysis performance and durability, and when an electrode containing platinum is used, the poisoning rate of platinum due to an eluate that can be eluted from the electrolyte membrane is low.
  • the electrolyte membrane of the present invention (volume 0.036 cm 3 ) was immersed in 50 mL of 1N sulfuric acid aqueous solution at 80 ° C. for 100 hours, and then the platinum membrane having a surface area of 0.785 mm 2 was added to the aqueous solution obtained by removing the electrolyte membrane.
  • the lower limit of the platinum poisoning rate may be 0%.
  • the platinum poisoning rate is in the above range
  • the platinum in the vicinity of the interface between the electrolyte membrane and the electrode is inactivated and located at a location away from the interface between the electrolyte membrane and the electrode.
  • the polymer (B) is preferably present at least within 30% of the thickness of the membrane from the surface of the membrane. Since the polymer (B) usually has low proton conductivity, in order to obtain an electrolyte membrane having high power generation performance and high water electrolysis performance, the content of the polymer (B) contained in the electrolyte membrane is reduced as much as possible. It is considered that it is desired to improve the durability of the electrolyte membrane. In particular, as described above, the polymer (B) only needs to be able to inactivate platinum in the vicinity of the interface between the electrolyte membrane and the electrode. Electrolyte membrane excellent in balance between power generation performance, water electrolysis performance and long-term stability even when the content of the polymer (B) contained in the electrolyte membrane is small because it is located within 30% of the surface of Can be obtained.
  • the polymer (B) is preferably unevenly distributed in the vicinity of the surface of the membrane, and may be present only at a position within 30% from the surface of the electrolyte membrane with respect to the thickness of the membrane. More preferred.
  • the electrolyte membrane has a concentration gradient such that the concentration of the polymer (B) gradually increases as it approaches the surface of the membrane. It may be.
  • the electrolyte membrane of the present invention may be a single layer film or a multilayered film.
  • the thickness of each layer is arbitrary. For example, one layer may be thick and the other layer may be thin.
  • the electrolyte membrane of the present invention contains the polymer (B) on one side or both surfaces in contact with the electrode when the membrane-electrode assembly is produced,
  • the electrolyte membrane which does not contain a polymer (B) in the part other than that may be sufficient.
  • the electrode is preferably a cathode electrode.
  • the electrolyte membrane according to the present invention includes, for example, a step of applying the electrolyte membrane composition onto a substrate by a known method such as die coating, spray coating, knife coating, roll coating, spin coating, or gravure coating. Can be manufactured.
  • the electrolyte membrane of the present invention can be obtained by applying the electrolyte membrane composition onto a substrate, drying the applied composition, and peeling the resulting film from the substrate, if necessary. it can. Since the composition for electrolyte membrane of this invention contains a polymer (A) and a polymer (B), an electrolyte membrane can be easily manufactured with the said well-known method.
  • the substrate is not particularly limited as long as it is a substrate used when a normal solution is applied, and examples thereof include a substrate made of resin, metal, glass, and preferably a polyethylene terephthalate (PET) film. And a base made of a thermoplastic resin.
  • a substrate made of resin, metal, glass, and preferably a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • a base made of a thermoplastic resin.
  • the drying is preferably performed by holding at a temperature of 50 to 150 ° C. for 0.1 to 10 hours. Note that the drying may be performed in one step, or may be performed in two or more steps, that is, pre-drying after preliminary drying. Moreover, you may perform the said drying in inert gas atmosphere, such as nitrogen atmosphere, or under reduced pressure as needed.
  • inert gas atmosphere such as nitrogen atmosphere
  • the preliminary drying can be performed by holding at 30 to 100 ° C., more preferably 50 to 100 ° C., preferably 10 to 180 minutes, more preferably 15 to 60 minutes. Further, the main drying can be carried out preferably by holding at a temperature not lower than the preliminary drying temperature, more preferably at a temperature of 50 to 150 ° C., and preferably for 0.1 to 10 hours.
  • the organic solvent in the dried film can be replaced with water, and the residual organic solvent in the obtained electrolyte film The amount can be reduced.
  • the amount of residual organic solvent in the electrolyte membrane thus obtained is preferably 5% by mass or less.
  • the amount of the remaining organic solvent in the obtained film can be 1% by mass or less.
  • the amount of water used is 50 parts by weight or more with respect to 1 part by weight of the dried film, the temperature of the water during immersion is 10 to 60 ° C., and the immersion time is 10 minutes to 10 hours. It is.
  • the dried membrane After the dried membrane is immersed in water as described above, it is further dried at 30 to 100 ° C., preferably 50 to 80 ° C. for 10 to 180 minutes, preferably 15 to 60 minutes, and then 50 to 150 ° C.
  • the composition (I) is applied onto a substrate by a known method, and after drying or as necessary, a layer is formed, and then the layer is formed.
  • coating composition (II) on top and drying and forming a layer is mentioned.
  • another composition may be applied on the obtained layer and dried.
  • the composition (I) is applied onto a substrate by a known method and, if necessary, pre-dried, a film previously formed from the composition (II) or the like is placed thereon and subjected to hot pressing or the like.
  • a laminated film can also be obtained.
  • compositions (I), the composition (II), and other compositions that can be further used are not particularly limited as long as they can form a layer and do not impair the effects of the present invention.
  • the composition containing (A) or the composition for electrolyte membrane of the present invention is preferred.
  • at least one composition is the electrolyte membrane composition of the present invention.
  • composition (I), composition (II), and other compositions that can be further used differ in the composition (formulation component and / or amount) of the composition forming the adjacent layers.
  • formulation component and / or amount of the composition forming the adjacent layers.
  • composition of the composition forming the non-adjacent layers may be the same or different.
  • the composition for an electrolyte membrane of the present invention is used as the composition (I), and the polymer (B) includes the polymer (A) as the composition (II).
  • the polymer (B) is easily produced at least at a position within 30% of the thickness of the membrane from the membrane surface or an unevenly distributed electrolyte membrane. be able to.
  • a reinforced solid polymer electrolyte membrane can also be produced by using a porous substrate or a sheet-like fibrous material.
  • the method for producing the reinforced solid polymer electrolyte membrane include a method of impregnating the liquid composition into a porous substrate or a sheet-like fibrous material, and a method for impregnating the electrolyte membrane composition of the present invention with a porous substrate.
  • the porous substrate preferably has a large number of pores or voids penetrating in the thickness direction.
  • organic porous substrates made of various resins, metal oxides such as glass and alumina And inorganic porous base materials composed of metal and the metal itself.
  • the porous substrate may have a large number of through holes penetrating in a direction substantially parallel to the thickness direction.
  • Examples of such a porous substrate include, for example, JP 2008-119662, JP 2007-154153, JP 8-20660, JP 8-20660, JP 2006-120368.
  • JP 2008-119662 JP 2007-154153
  • JP 8-20660 JP 8-20660
  • JP 2006-120368 JP 2008-119662
  • JP 2007-154153 JP 8-20660
  • JP 8-20660 JP 8-20660
  • JP 2006-120368 Japanese Patent Laid-Open No. 2004-171994
  • Japanese Patent Laid-Open No. 2009-64777 can be used.
  • an organic porous substrate is preferable.
  • the porous substrate include polyolefins such as polytetrafluoroethylene, high molecular weight polyethylene, cross-linked polyethylene, polyethylene and polypropylene, polyimide, polyacrylotolyl, polyamideimide, polyetherimide, and polyether.
  • a base material composed of one or more selected from the group consisting of sulfone and glass is preferred.
  • the polyolefin is preferably high molecular weight polyethylene, cross-linked polyethylene, polyethylene or the like.
  • porous base materials examples include stretched porous polytetrafluoroethylene GORE-SELECT (manufactured by Japan Gore-Tex) and high molecular weight polyethylene porous base materials (manufactured by Lydall, SOLUPOR (registered trademark)). Is mentioned.
  • the porous base material is preferably a base material made of polyolefin such as polytetrafluoroethylene, high molecular weight polyethylene, cross-linked polyethylene, polyethylene and the like because it contacts the polymer (A). If necessary, the polyolefin substrate may be hydrophilized.
  • polyolefin such as polytetrafluoroethylene, high molecular weight polyethylene, cross-linked polyethylene, polyethylene and the like because it contacts the polymer (A). If necessary, the polyolefin substrate may be hydrophilized.
  • the hydrophilization treatment is a treatment that modifies the polyolefin constituting the porous using an alkali metal solution, and this treatment modifies the surface of the porous substrate and imparts hydrophilicity. Since the denatured portion may be browned, the browned portion may be removed by oxidative decomposition with hydrogen peroxide, sodium hypochlorite, ozone, or the like. Such hydrophilic treatment is sometimes referred to as chemical etching.
  • the alkali metal solution include a solution obtained by dissolving methyl lithium, a metal sodium-naphthalene complex, a metal sodium-anthracene complex, and the like in an organic solvent such as tetrahydrofuran, a metal sodium-liquid ammonia solution, and the like.
  • the porosity and thickness of the porous substrate are not particularly limited as long as the effects of the present invention are not impaired.
  • a sheet-like fibrous substance a nonwoven fabric, a woven fabric, a knitted fabric, etc. are mentioned.
  • the fibers constituting the woven fabric include, but are not limited to, polyethylene fibers, fluoropolymer reinforced fibers, polyimide fibers, polyphenylene sulfide sulfone fibers, polysulfone fibers, and glass fibers.
  • fibers constituting the nonwoven fabric examples include polyamide resins, polyvinyl alcohol resins, polyvinylidene chloride resins, polyvinyl chloride resins, polyester resins, polyacrylonitrile resins, polyolefin resins (for example, polyethylene resins, Polypropylene resin), polystyrene resin (for example, crystalline polystyrene, amorphous polystyrene), aromatic polyamide resin or polyurethane resin, or glass, carbon, potassium titanate, silicon carbide, silicon nitride Further, fibers composed of inorganic components such as zinc oxide, aluminum borate, and wollastonite can be used.
  • inorganic components such as zinc oxide, aluminum borate, and wollastonite
  • the thickness of the sheet-like fibrous substance is not particularly limited as long as the effects of the present invention are not impaired.
  • the electrolyte membrane of the present invention has a dry film thickness of preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m. Even when the electrolyte membrane of the present invention is a laminated membrane or a reinforced solid polymer electrolyte membrane, the thickness of the laminated membrane is preferably within this range.
  • the membrane-electrode assembly according to the present invention is a membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, an electrolyte membrane of the present invention, a catalyst layer, and a gas diffusion layer are laminated in this order.
  • a catalyst layer for the cathode electrode is provided on one surface of the electrolyte membrane of the present invention
  • a catalyst layer for the anode electrode is provided on the other surface
  • each of the catalyst layers for the cathode electrode and the anode electrode is further provided.
  • a gas diffusion layer is provided on each of the cathode electrode side and the anode electrode side in contact with the side opposite to the electrolyte membrane.
  • Known gas diffusion layers and catalyst layers can be used without particular limitation.
  • the gas diffusion layer examples include a porous substrate or a laminated structure of a porous substrate and a microporous layer.
  • the gas diffusion layer is composed of a laminated structure of a porous base material and a microporous layer, the microporous layer is preferably in contact with the catalyst layer.
  • the gas diffusion layer preferably contains a fluoropolymer in order to impart water repellency.
  • the catalyst layer is composed of a catalyst, an ion exchange resin, or the like.
  • the catalyst include metal catalysts such as platinum, palladium, gold, ruthenium, iridium, cobalt and iron, and noble metal catalysts such as platinum, palladium, gold, ruthenium and iridium are preferably used.
  • the metal catalyst may contain two or more elements such as an alloy or a mixture. As such a metal catalyst, a catalyst supported on carbon particles having a high specific surface area can be used.
  • the ion exchange resin serves as a binder component for binding the catalyst, and efficiently supplies ions generated by a reaction on the catalyst to the electrolyte membrane at the anode electrode, and is supplied from the electrolyte membrane at the cathode electrode.
  • a substance that efficiently supplies ions to the catalyst is preferable.
  • the ion exchange resin is preferably a polymer having a proton exchange group in order to improve proton conductivity in the catalyst layer.
  • Proton exchange groups contained in such polymers include sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups, but are not particularly limited.
  • the ion exchange resin known ones can be used without particular limitation, and examples thereof include Nafion
  • the polymer (A) may be used as an ion exchange resin, and further a fluorine having a proton exchange group. It may be a polymer containing atoms, another polymer obtained from ethylene or styrene, a copolymer or a blend thereof.
  • the catalyst layer may further contain additives such as carbon fiber and a resin not having an ion exchange group, if necessary.
  • This additive is preferably a component having high water repellency, and examples thereof include a fluorine-containing copolymer, a silane coupling agent, a silicone resin, a wax, and polyphosphazene. It is a coalescence.
  • the polymer electrolyte fuel cell according to the present invention has the membrane-electrode assembly. Therefore, the polymer electrolyte hydrogen fuel cell according to the present invention is particularly excellent in durability, suppresses a decrease in power generation performance with time, and enables stable power generation over a long period of time.
  • the polymer electrolyte fuel cell according to the present invention includes at least one electricity generating unit including a separator and located on both outer sides of at least one membrane-electrode assembly and its gas diffusion layer;
  • a polymer electrolyte fuel cell comprising: a fuel supply unit for supplying electricity to the electricity generation unit; and an oxidant supply unit for supplying oxidant to the electricity generation unit, wherein the membrane-electrode assembly is as described above preferable.
  • separator those used in ordinary solid polymer fuel cells can be used. Specifically, a carbon type separator, a metal type separator, or the like can be used.
  • the polymer electrolyte fuel cell of the present invention may be a single cell or a stack cell in which a plurality of single cells are connected in series.
  • a known method can be used as the stacking method. Specifically, it may be planar stacking in which single cells are arranged in a plane, or bipolar in which single cells are stacked via separators each having a fuel or oxidant flow path formed on the back surface of the separator. Stacking may be used.
  • the water electrolysis cell according to the present invention includes a laminate in which the catalyst layer, the electrolyte membrane of the present invention, and the catalyst layer are laminated in this order.
  • the catalyst layer known ones can be used without particular limitation, and specific examples include the same layers as the catalyst layer described in the membrane-electrode assembly.
  • the water electrolysis apparatus according to the present invention has the water electrolysis cell.
  • a sample film is prepared from the polymers obtained in Synthesis Examples 1 and 2 below, and the sample film is immersed in deionized water to completely remove the acid remaining in the film.
  • a hydrochloric acid aqueous solution was prepared by immersing in 2 mL of 2N saline per 1 mg to exchange ions. This hydrochloric acid aqueous solution was neutralized with a standard aqueous solution of 0.001N sodium hydroxide using phenolphthalein as an indicator. The membrane after ion exchange was washed with deionized water and vacuum dried at 110 ° C. for 2 hours, and the dry weight of the membrane was measured.
  • Ion exchange capacity titration amount of sodium hydroxide (mmol) / dry weight of membrane (g)
  • the molecular weight was measured using the following two methods depending on the polymer to be measured.
  • the polymer to be measured is dissolved in an N-methyl-2-pyrrolidone buffer solution (hereinafter referred to as “NMP buffer solution”), the NMP buffer solution is used as an eluent, and TOSOH HLC-8220 (manufactured by Tosoh Corporation) is used as an apparatus.
  • NMP buffer solution N-methyl-2-pyrrolidone buffer solution
  • TOSOH HLC-8220 manufactured by Tosoh Corporation
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) in terms of polystyrene were determined by gel permeation chromatography (GPC) using TSKgel ⁇ -M (manufactured by Tosoh Corporation) as a column.
  • the NMP buffer solution was prepared at a ratio of NMP (3 L) / phosphoric acid (3.3 mL) / lithium bromide (7.83
  • the polymer to be measured was dissolved in tetrahydrofuran (THF), THF was used as an eluent, TOSOH HLC-8220 (manufactured by Tosoh Corporation) was used as an apparatus, and TSKgel ⁇ -M (manufactured by Tosoh Corporation) was used as a column.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the addition system solution was added to the obtained reaction system under nitrogen. After heating the system to 60 ° C. with stirring, 15.39 g (235.43 mmol) of zinc and 2.05 g (3.14 mmol) of bis (triphenylphosphine) nickel dichloride were added to further promote the polymerization, and 80 ° C. For 3 hours. An exotherm and an increase in viscosity were observed with the reaction.
  • the obtained solution was diluted with 273 mL of DMAc, and filtered using Celite as a filter aid. To the filtrate, 29.82 g (343.33 mmol) of lithium bromide was added and reacted at 100 ° C. for 7 hours. After the reaction, the reaction solution was cooled to room temperature and poured into 3.2 L of water to be solidified. The solidified product was washed and filtered four times while stirring with acetone. The washed product was washed and filtered seven times while stirring with 1N sulfuric acid. Further, the washed product was washed and filtered with deionized water until the pH of the washing solution became 5 or more. The obtained washed product was dried at 75 ° C. for 24 hours to obtain 25.18 g of a polymer having a target ion exchange group.
  • the number average molecular weight (Mn) of the molecular weight in terms of polystyrene measured by GPC (solvent: NMP buffer solution) of the polymer having an ion exchange group was 53,000, and the weight average molecular weight (Mw) was 120,000.
  • the ion exchange capacity of this polymer was 2.30 meq / g.
  • the separated organic layer was washed successively with 740 mL of water, 740 mL of a 10 wt% aqueous potassium carbonate solution and 740 mL of saturated brine, and then the solvent was distilled off under reduced pressure.
  • the residue was purified by silica gel column chromatography (chloroform solvent). Subsequently, the solvent was distilled off from the obtained eluate under reduced pressure. Thereafter, the residue was dissolved in 970 mL of hexane at 65 ° C. and then cooled to room temperature. The precipitated solid was separated by filtration. The separated solid was dried to obtain 99.4 g of a white solid of 2,5-dichlorobenzenesulfonic acid (2,2-dimethylpropyl) represented by the following formula in a yield of 82.1%.
  • the nickel-containing solution was poured into the obtained liquid, and a polymerization reaction was performed at 70 ° C. for 4 hours.
  • the reaction mixture was added to 60 mL of methanol, and then 60 mL of a 6 mol / L hydrochloric acid aqueous solution was added to the resulting mixture and stirred for 1 hour.
  • the precipitated solid was separated by filtration and dried to obtain 1.62 g of a grayish white polymerization intermediate.
  • 1.62 g of the obtained polymerization intermediate was added to a mixed solution of 1.13 g (13.0 mmol) of lithium bromide and 56 mL of NMP, and reacted at 120 ° C. for 24 hours.
  • the reaction mixture was poured into 560 mL of 6 mol / L hydrochloric acid aqueous solution and stirred for 1 hour.
  • the precipitated solid was separated by filtration.
  • the separated solid was dried to obtain 0.42 g of an off-white polymer having a target sulfonic acid group.
  • the number average molecular weight (Mn) of the molecular weight in terms of polystyrene measured by GPC (solvent: NMP buffer solution) of the polymer having a sulfonic acid group was 75000, and the weight average molecular weight (Mw) was 173,000.
  • the ion exchange capacity of this polymer was 1.95 meq / g.
  • the obtained polymer having an ion exchange group was a polymer having the following structural unit (hereinafter also referred to as “polymer (A2)”).
  • n and n are each independently a value calculated from the charged amount of the raw material forming each structural unit.
  • the resulting reaction solution was allowed to cool and then poured into 110 mL of a methanol / 4 wt% sulfuric acid solution (5/1 (volume ratio)).
  • the precipitated product was filtered, and the filtrate was placed in 110 mL of water and stirred at 55 ° C. for 1 hour.
  • the liquid after stirring was filtered, and the residue was again stirred in 110 mL of water at 55 ° C. for 1 hour.
  • the liquid after stirring was filtered, and the filtrate was put into 110 mL of methanol and stirred at 55 ° C. for 1 hour, and then filtered.
  • the filtrate was again put into 110 mL of methanol and stirred and filtered at 55 ° C. for 1 hour. .
  • the filtrate was air-dried and then vacuum-dried at 80 ° C. to obtain 9.91 g of the desired polymer.
  • the resulting reaction solution was allowed to cool and then poured into 90 mL of a methanol / 4 wt% sulfuric acid solution (5/1 (volume ratio)).
  • the precipitated product was filtered, and the filtrate was placed in 90 mL of water and stirred at 55 ° C. for 1 hour.
  • the liquid after stirring was filtered, and the residue was again stirred in 90 mL of water at 55 ° C. for 1 hour.
  • the liquid after stirring was filtered, and the filtrate was put into 90 mL of methanol and stirred at 55 ° C. for 1 hour, and then filtered.
  • the filtrate was again put into 90 mL of methanol and stirred at 55 ° C. for 1 hour and filtered. .
  • the filtrate was air-dried and then vacuum-dried at 80 ° C. to obtain 9.91 g of the desired polymer.
  • the solution dissolved in 85 ml was cast coated on a PET film with a die coater, pre-dried at 80 ° C. for 40 minutes, and then dried at 120 ° C. for 40 minutes.
  • the dried PET film with a coating film is immersed in a large amount of distilled water overnight to remove residual NMP in the coating film, and then air-dried.
  • the polymer (A1) and the polymer (B1) have a mass ratio (heavy weight)
  • the electrolyte membrane 1 was obtained that was contained in a combination (A1) / polymer (B1)) 97/3 and had a thickness of 40 ⁇ m.
  • Platinum poisoning test A platinum disk electrode with a surface area of 0.785 mm 2 is immersed in a 1N sulfuric acid aqueous solution degassed with N 2 gas, a sweep rate of 0.01 V / s, and a sweep potential range of 0.05 to 1.5 V. The platinum voltammetry was performed by repeating the sweep until the cyclic voltammogram became constant, and a platinum disk electrode having a clean surface was obtained. In addition, the amount of electricity of the hydrogen desorption wave of the last measured cyclic voltammogram was the amount of electricity measured when the electrode surface was clean.
  • the electrolyte membrane 1 (thickness 40 ⁇ m, area 9 cm 2 , that is, volume 0.036 cm 3 ) peeled from the PET film is placed in a container containing 50 mL of 1N sulfuric acid aqueous solution, and the container is sealed and sealed at 80 ° C. for 100 hours.
  • the heated aqueous solution was collected as a test solution.
  • a platinum disk electrode surface having a clean surface was immersed in a test solution deaerated with N 2 gas, and cyclic voltammetry was measured for 20 cycles at a sweep rate of 0.01 V / s and a sweep potential range of 0.05 to 0.4 V. .
  • Platinum poisoning rate (%) [(quantity of electricity measured when electrode surface is clean) ⁇ (quantity of electricity measured when electrode surface is poisoned)] ⁇ 100 / (clean electrode surface) Measured quantity of electricity)
  • a platinum wire was used as the counter electrode for cyclic voltammetry, and a reversible hydrogen electrode was used as the reference electrode. Further, during cyclic voltammetry, N 2 gas was kept flowing to prevent air from entering the portion above the electrolyte in the electrochemical cell. The measurement was performed at room temperature. The results are shown in Table 1.
  • Example 2 In Example 1, a polymer (A1) and a polymer (B2) were obtained in the same manner as in Example 1 except that the polymer (B2) obtained in Synthesis Example 4 was used instead of the polymer (B1). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 2 having a thickness of 40 ⁇ m was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
  • Example 4 In Example 3, the polymer (A1) and the polymer (B4) were obtained in the same manner as in Example 3 except that the polymer (B4) obtained in Synthesis Example 6 was used instead of the polymer (B3). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 4 having a thickness of 40 ⁇ m was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
  • EPS-12A 12 wt% SnO 2 aqueous dispersion, manufactured by Yamanaka Sangyo Co., Ltd.
  • a mixed solvent of NMP / methyl ethyl ketone / methanol 60/20/20 (mass ratio).
  • the same procedure as in Example 1 was performed except that 15 g of the polymer (A1) obtained in Synthesis Example 1 and 0.47 g of the polymer (B1) obtained in Synthesis Example 3 were dissolved in the solution.
  • an electrolyte membrane 5 was obtained.
  • the electrolyte membrane 5 includes a polymer (A1), a polymer (B1), and SnO 2 (metal component) at a mass ratio (polymer (A1) / polymer (B1) / metal component) 94/3/3.
  • the film thickness was 40 ⁇ m.
  • Example 6 In Example 3, the polymer (A1) and the polymer (B5) were used in the same manner as in Example 3 except that the polymer (B5) obtained in Synthesis Example 7 was used instead of the polymer (B3). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 6 having a film thickness of 40 ⁇ m was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
  • Example 7 In Example 1, the polymer (A2) and the polymer (B1) were obtained in the same manner as in Example 1 except that the polymer (A2) obtained in Synthesis Example 2 was used instead of the polymer (A1). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 7 having a thickness of 40 ⁇ m was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
  • Example 8 In Example 1, 71.4 ml of Nafion D2020 (manufactured by DuPont, polymer concentration 21% dispersion, ion exchange capacity 1.08 meq / g) was used instead of the polymer (A1), NMP was added, and water was added. In addition, Nafion and polymer (B1) were contained at a mass ratio of 97/3 in the same manner as in Example 1 except that the total amount of NMP was changed to 85 ml by distilling off 1-propanol and replacing the solvent. An electrolyte membrane 8 having a thickness of 40 ⁇ m was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
  • Example 1 In Example 1, polymer (A1) and thianthrene were in a mass ratio of 97/3 in the same manner as in Example 1 except that thianthrene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of polymer (B1). An electrolyte membrane having a thickness of 40 ⁇ m was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
  • Example 2 an electrolyte membrane having a thickness of 40 ⁇ m was obtained in the same manner as in Example 1 except that the polymer (B1) was not used. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
  • the electrolyte membranes obtained in Examples 1 to 8 and Comparative Example 2 have a low platinum poisoning rate even at high temperatures, and there is little concern about performance degradation due to a decrease in catalytic activity during battery power generation or water decomposition. It was a membrane.
  • the electrolyte membrane obtained in Comparative Example 1 has a high platinum poisoning rate, and is a membrane in which the power generation performance and the water resolution are liable to be lowered due to a decrease in catalytic activity.
  • cathode electrode paste 80 g of zirconia balls (YTZ balls) having a diameter of 5 mm are placed in a 200 ml plastic bottle, and platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass) 1.25 g, distilled 3.64 g of water, 11.91 g of n-propyl alcohol and Nafion D2020 (4.40 g) were added, and the mixture was stirred for 60 minutes with a paint shaker, and then the zirconia balls were removed to obtain a cathode electrode paste.
  • platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass) 1.25 g, distilled 3.64 g of water, 11.91 g of n-propyl alcohol and Nafion D2020 (4.40 g) were added, and the mixture was stirred for 60 minutes with a
  • Example 9 [Production of electrodes] Using the mask having an opening of 5 cm ⁇ 5 cm on one side (the side opposite to the PET film) of the electrolyte membrane 1 with the PET film obtained in Example 1, the anode electrode paste was applied with a doctor blade, and the PET film Then, the cathode electrode paste was applied with a doctor blade using a mask having an opening of 5 cm ⁇ 5 cm on the peeled surface. This was dried at 120 ° C. for 60 minutes to obtain a laminate in which catalyst layers were formed on both surfaces of the electrolyte membrane. The catalyst coating amount of each catalyst layer was 0.50 mg / cm 2 .
  • GDL24BC manufactured by SGL CARBON was used as the gas diffusion layer.
  • the electrolyte membrane having the catalyst layer formed on both sides was sandwiched between two gas diffusion layers and hot-pressed at 160 ° C. for 20 minutes under a pressure of 60 kg / cm 2 to prepare a membrane-electrode assembly.
  • a separator also serving as a gas flow path is laminated on the gas diffusion layer of the obtained membrane-electrode assembly, and is sandwiched between two titanium current collectors.
  • Two evaluation fuel cells were prepared.
  • Example 10 evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 2 with PET film obtained in Example 2 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • Example 11 evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 3 with PET film obtained in Example 3 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • Example 12 evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 4 with PET film obtained in Example 4 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • Example 13 evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 5 with PET film obtained in Example 5 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • Example 14 In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, the evaluation was performed in the same manner as in Example 9 except that the electrolyte membrane 6 with PET film obtained in Example 6 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • Example 15 In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, the evaluation was performed in the same manner as in Example 9 except that the electrolyte membrane 7 with PET film obtained in Example 7 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • Example 16 In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, the evaluation was performed in the same manner as in Example 9 except that the electrolyte membrane 8 with PET film obtained in Example 8 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • a layered product (electrolyte membrane 9, 40 ⁇ m) in which the layer (F1) and the layer (F2) having a thickness of 39 ⁇ m and consisting only of the polymer (A1) were laminated in this order was obtained.
  • the mass ratio (polymer (A1) / polymer (B1)) of the polymer (A1) and the polymer (B1) in the entire electrolyte membrane 9 was 99.72 / 0.28.
  • Example 9 instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 9 with PET film was used, and the cathode electrode paste was layered on the surface (F1) and the anode electrode paste was layered.
  • F2 A fuel cell for evaluation was prepared in the same manner as in Example 9 except that it was applied to the surface, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
  • a laminate (electrolyte film 10, thickness 40 ⁇ m) in which a layer (F4) having a thickness of 38 ⁇ m and a layer (F3) made of only (F3), the polymer (A1), and the layer (F3) was obtained in this order was obtained.
  • the mass ratio (polymer (A1) / polymer (B1)) of the polymer (A1) and the polymer (B1) in the entire electrolyte membrane 8 was 99.5 / 0.5.
  • Example 9 instead of the electrolyte membrane 1 with PET film obtained in Example 1, an evaluation fuel cell was prepared in the same manner as in Example 9 except that the electrolyte membrane 10 with PET film was used. Using the fuel cell, an OCV durability test and an output voltage measurement before and after the OCV durability test were performed. The results are shown in Table 2.
  • the solution dissolved in 85 ml was cast coated on a PET film with a die coater.
  • a high molecular weight polyethylene porous substrate manufactured by Lydall, SOLUPOR (registered trademark), 3P07A; specific gravity 3.0 g / m 2 , air permeability 1.4 s / 50 ml, porosity 83 %, Thickness 20 ⁇ m).
  • the solution was cast again from the side of the porous substrate not in contact with the coating solution, and both surfaces of the porous substrate were impregnated with the solution.
  • drying was performed at 120 ° C. for 40 minutes to obtain a laminate in which a coating film was formed on both surfaces of the substrate.
  • the laminated body after drying is immersed in a large amount of distilled water overnight, the remaining NMP in the coating film is removed, and then air-dried to be reinforced with a porous substrate made of high molecular weight polyethylene, and the polymer (A1) and An electrolyte membrane 11 having a thickness of 20 ⁇ m was obtained, in which the mass ratio of polymer (B1) to polymer (A1) / polymer (B1) was 97/3.
  • Example 9 an evaluation fuel cell was prepared in the same manner as in Example 9 except that the electrolyte membrane 11 was used instead of the electrolyte membrane 1 with the PET film obtained in Example 1.
  • the OCV durability test and the output voltage measurement before and after the OCV durability test were performed. The results are shown in Table 2.
  • Comparative Example 5 Fuel for evaluation in the same manner as in Example 9 except that the electrolyte membrane with PET film obtained in Comparative Example 1 was used instead of the electrolyte membrane with PET film obtained in Example 1 in Example 9. A battery was created. The fuel cell was used to measure the OCV durability test and the output voltage before and after the OCV durability test. The initial voltage could not be measured due to platinum catalyst poisoning. could not.

Abstract

The present invention relates to an electrolyte membrane composition, solid polymer electrolyte membrane, method of producing said electrolyte membrane, membrane-electrode assembly, solid polymer-type fuel cell, water electrolysis cell, and water electrolysis apparatus. This electrolyte membrane composition comprises a polymer (A) that has an ion exchange group, and a polymer (B) that has an arylene sulfide backbone and is soluble in an organic solvent.

Description

電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置Composition for electrolyte membrane, solid polymer electrolyte membrane, method for producing the electrolyte membrane, membrane-electrode assembly, solid polymer fuel cell, water electrolysis cell, and water electrolysis apparatus
 本発明は、電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置に関する。 The present invention relates to an electrolyte membrane composition, a solid polymer electrolyte membrane, a method for producing the electrolyte membrane, a membrane-electrode assembly, a solid polymer fuel cell, a water electrolysis cell, and a water electrolysis apparatus.
 燃料電池は、各種の炭化水素系燃料(天然ガス、メタンなど)を改質して得られる水素ガスと、空気中の酸素ガスとを電気化学的に反応させて直接電気を取り出す発電装置であり、化学エネルギーを電気エネルギーに高効率で直接変換できる無公害な発電装置として注目を集めている。 A fuel cell is a power generator that directly takes out electricity by electrochemically reacting hydrogen gas obtained by reforming various hydrocarbon fuels (natural gas, methane, etc.) and oxygen gas in the air. It is attracting attention as a pollution-free power generator that can directly convert chemical energy into electrical energy with high efficiency.
 このような燃料電池は、触媒を担持した一対の電極膜(アノード極とカソード極)と該電極膜に挟持されたプロトン伝導性の固体高分子電解質膜とから構成される。アノード極では、水素イオンと電子が生じ、水素イオンは固体高分子電解質膜を通って、カソード極で酸素と反応して水が生じる。 Such a fuel cell is composed of a pair of electrode films (anode electrode and cathode electrode) carrying a catalyst and a proton conductive solid polymer electrolyte membrane sandwiched between the electrode films. Hydrogen ions and electrons are generated at the anode electrode, and the hydrogen ions pass through the solid polymer electrolyte membrane and react with oxygen at the cathode electrode to generate water.
 前記固体高分子電解質膜としては、Nafion(登録商標、デュポン(株)製)、アシプレックス(登録商標、旭化成工業(株)製)、フレミオン(登録商標、旭硝子(株)製)の商品名で市販されているスルホン酸基を有する全フッ化炭素系高分子電解質膜;ポリ芳香族炭化水素系、ポリエーテルエーテルケトン系、ポリフェニレンスルフィド系、ポリイミド系またはポリベンザゾール系などの芳香族環を主鎖骨格に有し、スルホン酸基を有する高分子電解質膜;等が使用されている。 Examples of the solid polymer electrolyte membrane include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Kogyo Co., Ltd.), and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.). Commercially available fluorocarbon polymer electrolyte membranes having sulfonic acid groups; mainly aromatic rings such as polyaromatic hydrocarbons, polyether ether ketones, polyphenylene sulfides, polyimides or polybenzazoles A polymer electrolyte membrane having a chain skeleton and having a sulfonic acid group is used.
 ところで、このような燃料電池では、酸素の還元反応によって生成する過酸化水素または過酸化物ラジカルが、固体高分子電解質膜の劣化を引き起こす可能性があると懸念されている。また、近年、燃料電池の長期安定性を低くする要因として、燃料電池作動中に、触媒層にある白金の一部が高分子電解質膜内で析出し、この析出した白金の近傍で過酸化水素が発生し易くなることが報告されている(非特許文献1)。同文献には、このような過酸化水素によって高分子電解質膜の劣化が助長されることも報告されている。 By the way, in such a fuel cell, there is a concern that hydrogen peroxide or peroxide radicals generated by oxygen reduction reaction may cause deterioration of the solid polymer electrolyte membrane. In recent years, as a factor for lowering the long-term stability of the fuel cell, a part of platinum in the catalyst layer is precipitated in the polymer electrolyte membrane during the operation of the fuel cell, and hydrogen peroxide is formed in the vicinity of the deposited platinum. Has been reported to occur easily (Non-patent Document 1). It is also reported in this document that degradation of the polymer electrolyte membrane is promoted by such hydrogen peroxide.
 このような問題点を解決するために、スルホン酸基を有する高分子化合物からなるイオン交換膜とポリフェニレンスルフィド樹脂とを含む高分子電解質膜(特許文献1)、高分子電解質と白金親和度の高い化合物とを含む高分子電解質膜(特許文献2)、高分子電解質と特定の含硫黄複素環芳香族化合物とを含む高分子電解質膜(特許文献3)が提案されている。 In order to solve such problems, a polymer electrolyte membrane comprising an ion exchange membrane made of a polymer compound having a sulfonic acid group and a polyphenylene sulfide resin (Patent Document 1), a polymer electrolyte and a high platinum affinity A polymer electrolyte membrane containing a compound (Patent Document 2) and a polymer electrolyte membrane containing a polymer electrolyte and a specific sulfur-containing heterocyclic aromatic compound (Patent Document 3) have been proposed.
特開2008-235265号公報JP 2008-235265 A 特開2009-227979号公報JP 2009-227979 A 特開2012-046741号公報JP 2012-046741 A
 しかしながら、前記特許文献1に記載の高分子電解質膜は、ポリフェニレンスルフィド樹脂が有機溶媒への溶解性に乏しいため、製膜性に劣る場合があった。
 また、前記特許文献2や3に記載の高分子電解質膜では、白金親和度の高い化合物や含硫黄複素環芳香族化合物の該電解質膜からの溶出による、該電解質膜の耐久性の低下や電池の発電性能の低下の懸念があるため改善の余地があった。
However, the polymer electrolyte membrane described in Patent Document 1 may be inferior in film forming property because the polyphenylene sulfide resin has poor solubility in an organic solvent.
Further, in the polymer electrolyte membranes described in Patent Documents 2 and 3, the durability of the electrolyte membrane is reduced due to elution from the electrolyte membrane of a compound having a high platinum affinity or a sulfur-containing heterocyclic aromatic compound, and the battery. There was room for improvement due to concerns about the decline in power generation performance.
 本発明の目的は、耐久性に優れ、発電性能および水電解性能の経時的な低下を抑制可能な高分子電解質膜を容易に得ることができる組成物を提供することにある。 An object of the present invention is to provide a composition capable of easily obtaining a polymer electrolyte membrane that is excellent in durability and can suppress a decrease in power generation performance and water electrolysis performance over time.
 このような状況のもと、本発明者らは、前記課題を解決すべく鋭意検討した結果、イオン交換基を有する重合体とともに、アリーレンスルフィド骨格を有し、かつ有機溶媒に可溶な重合体を含む電解質膜用組成物によれば、前記の目的を達成できることを見出し、本発明を完成するに至った。
 本発明の構成は以下の通りである。
Under such circumstances, the present inventors have intensively studied to solve the above problems, and as a result, a polymer having an arylene sulfide skeleton and a polymer soluble in an organic solvent together with a polymer having an ion exchange group. According to the electrolyte membrane composition containing the present invention, the inventors have found that the above object can be achieved, and have completed the present invention.
The configuration of the present invention is as follows.
 [1] イオン交換基を有する重合体(A)、および、アリーレンスルフィド骨格を有し有機溶媒に可溶な重合体(B)を含む、電解質膜用組成物。 [1] An electrolyte membrane composition comprising a polymer (A) having an ion exchange group and a polymer (B) having an arylene sulfide skeleton and soluble in an organic solvent.
 [2] 前記重合体(B)が結晶性を有さない、[1]に記載の電解質膜用組成物。 [2] The electrolyte membrane composition according to [1], wherein the polymer (B) does not have crystallinity.
 [3] 前記重合体(B)が、少なくとも下記式(1)または(2)で表される構造単位のいずれかを含む、[1]または[2]に記載の電解質膜用組成物。 [3] The electrolyte membrane composition according to [1] or [2], wherein the polymer (B) includes at least one of structural units represented by the following formula (1) or (2).
Figure JPOXMLDOC01-appb-C000006
[式(1)中、R1およびR2はそれぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルキルスルファニル基、シアノ基またはハロゲン原子であり、aおよびbはそれぞれ独立して、0~3の整数である。X1およびX2はそれぞれ独立して、直接結合、-S-、-NH-、-SO-または-SO2-であるが、X1およびX2の少なくとも一方は-S-である。]
Figure JPOXMLDOC01-appb-C000006
[In Formula (1), R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group or a halogen atom, and a and b are each Independently, it is an integer of 0 to 3. X 1 and X 2 are each independently a direct bond, —S—, —NH—, —SO— or —SO 2 —, but at least one of X 1 and X 2 is —S—. ]
Figure JPOXMLDOC01-appb-C000007
[式(2)中、R3は、炭素数1~5のアルキル基、炭素数1~5のアルキルスルファニル基、シアノ基またはハロゲン原子であり、cは0~4の整数である。]
Figure JPOXMLDOC01-appb-C000007
[In the formula (2), R 3 represents an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group, or a halogen atom, and c represents an integer of 0 to 4. ]
 [4] 前記重合体(B)が、少なくとも下記式(3)~(5)で表される構造単位のいずれかを含む、[1]~[3]のいずれかに記載の電解質膜用組成物。 [4] The electrolyte membrane composition according to any one of [1] to [3], wherein the polymer (B) includes at least one of structural units represented by the following formulas (3) to (5): object.
Figure JPOXMLDOC01-appb-C000008
[式(3)中、R1、R2、X1、X2、aおよびbはそれぞれ独立して、前記式(1)中のR1、R2、X1、X2、aおよびbと同義である。]
Figure JPOXMLDOC01-appb-C000008
Wherein (3), R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b Is synonymous with ]
Figure JPOXMLDOC01-appb-C000009
[式(4)および(5)中、R3およびcはそれぞれ独立して、前記式(2)中のR3およびcと同義である。]
Figure JPOXMLDOC01-appb-C000009
[In the formulas (4) and (5), R 3 and c are each independently synonymous with R 3 and c in the formula (2). ]
 [5] 前記重合体(B)が、極性基、フッ素原子を含む基およびフルオレニリデン基からなる群より選ばれる少なくとも1種の基を有する、[1]~[4]のいずれかに記載の電解質膜用組成物。 [5] The electrolyte according to any one of [1] to [4], wherein the polymer (B) has at least one group selected from the group consisting of a polar group, a group containing a fluorine atom, and a fluorenylidene group. Film composition.
 [6] 前記重合体(B)が、下記式(7)で表される構造単位を有する、[1]~[5]のいずれかに記載の電解質膜用組成物。 [6] The electrolyte membrane composition according to any one of [1] to [5], wherein the polymer (B) has a structural unit represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000010
[式(7)中、Dは独立して、直接結合、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2)l-(lは1~10の整数である)、-C(CF3)2-、-(CH2)l-(lは1~10の整数である)、-C(CR'3)2-(R'は独立して、炭化水素基または環状炭化水素基である)、シクロヘキシリデン基、フルオレニリデン基、-O-または-S-であり、AおよびEはそれぞれ独立して、直接結合、-O-または-S-であり、R4~R11はそれぞれ独立して、水素原子、フッ素原子、アルキル基、アリル基、アリール基、一部もしくはすべての水素原子がハロゲン化されたハロゲン化アルキル基、ニトロ基またはシアノ基であり、rは0~4の整数である。ただし、式(7)で表される構造単位は、式(2)で表される構造単位ではない。]
Figure JPOXMLDOC01-appb-C000010
[In the formula (7), D is independently a direct bond, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) 1 — (l is 1 to 10 -C (CF 3 ) 2 -,-(CH 2 ) l- (l is an integer of 1 to 10), -C (CR ' 3 ) 2- (R' is independently A cyclohexylidene group, a fluorenylidene group, —O— or —S—, and A and E are each independently a direct bond, —O— or —S—. R 4 to R 11 are each independently a hydrogen atom, a fluorine atom, an alkyl group, an allyl group, an aryl group, a halogenated alkyl group in which some or all of the hydrogen atoms are halogenated, a nitro group, or a cyano group. And r is an integer of 0-4. However, the structural unit represented by Formula (7) is not the structural unit represented by Formula (2). ]
 [7] 前記重合体(B)の数平均分子量が、1,000~10,000の範囲にある、[1]~[6]のいずれかに記載の電解質膜用組成物。 [7] The electrolyte membrane composition according to any one of [1] to [6], wherein the polymer (B) has a number average molecular weight in the range of 1,000 to 10,000.
 [8] 金属含有化合物および金属イオンからなる群より選ばれる少なくとも1種の金属成分を更に含む、[1]~[7]のいずれかに記載の電解質膜用組成物。 [8] The electrolyte membrane composition according to any one of [1] to [7], further comprising at least one metal component selected from the group consisting of metal-containing compounds and metal ions.
 [9] [1]~[8]のいずれかに記載の電解質膜用組成物から得られる、固体高分子電解質膜。 [9] A solid polymer electrolyte membrane obtained from the electrolyte membrane composition according to any one of [1] to [8].
 [10] 前記電解質膜(体積0.036cm3)を80℃の1N硫酸水溶液50mLに100時間浸漬させた後、該電解質膜を除去することで得られる水溶液に、表面積0.785mm2の白金表面を、掃引速度0.01V/s、掃引電位範囲0.05~0.4Vでサイクリックボルタンメトリーを20サイクル測定している間浸漬させた際の白金の被毒率が20%以下となる、[9]に記載の固体高分子電解質膜。 [10] A platinum surface having a surface area of 0.785 mm 2 is immersed in an aqueous solution obtained by immersing the electrolyte membrane (volume 0.036 cm 3 ) in 50 mL of 1N sulfuric acid aqueous solution at 80 ° C. for 100 hours and then removing the electrolyte membrane. The poisoning rate of platinum is 20% or less when immersed in 20 cycles of cyclic voltammetry at a sweep rate of 0.01 V / s and a sweep potential range of 0.05 to 0.4 V. 9]. The solid polymer electrolyte membrane according to [9].
 [11] 前記重合体(B)が、前記電解質膜の膜厚に対して、少なくとも該電解質膜の表面から30%以内の位置に存在する、[9]または[10]に記載の固体高分子電解質膜。 [11] The solid polymer according to [9] or [10], wherein the polymer (B) is present at least within 30% of the thickness of the electrolyte membrane relative to the thickness of the electrolyte membrane. Electrolyte membrane.
 [12] [1]~[8]のいずれかに記載の電解質膜用組成物を塗布する工程を含む、[9]~[11]のいずれかに記載の固体高分子電解質膜の製造方法。 [12] The method for producing a solid polymer electrolyte membrane according to any one of [9] to [11], comprising a step of applying the electrolyte membrane composition according to any one of [1] to [8].
 [13] ガス拡散層、触媒層、[9]~[11]のいずれかに記載の固体高分子電解質膜、触媒層およびガス拡散層がこの順で積層された、膜-電極接合体。
 [14] [13]に記載の膜-電極接合体を有する固体高分子型燃料電池。
[13] A membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, the solid polymer electrolyte membrane according to any one of [9] to [11], a catalyst layer, and a gas diffusion layer are laminated in this order.
[14] A polymer electrolyte fuel cell having the membrane-electrode assembly according to [13].
 [15] 触媒層、[9]~[11]のいずれかに記載の固体高分子電解質膜および触媒層がこの順で積層された、水電解セル。
 [16] [15]に記載の水電解セルを有する水電解装置。
[15] A water electrolysis cell in which a catalyst layer, the solid polymer electrolyte membrane according to any one of [9] to [11], and a catalyst layer are laminated in this order.
[16] A water electrolysis apparatus having the water electrolysis cell according to [15].
 本発明によれば、耐久性に優れ、発電性能および水電解性能の経時的な低下を抑制可能な高分子電解質膜を容易に得ることができる。 According to the present invention, it is possible to easily obtain a polymer electrolyte membrane that is excellent in durability and can suppress a decrease in power generation performance and water electrolysis performance over time.
 ≪電解質膜用組成物≫
 本発明の電解質膜用組成物は、イオン交換基を有する重合体(A)と、アリーレンスルフィド骨格を有し有機溶媒に可溶な重合体(B)とを含む。
 このような組成物によれば、耐久性に優れ、発電性能および水電解性能の経時的な低下を抑制可能な高分子電解質膜を容易に得ることができる。
≪Composition for electrolyte membrane≫
The composition for electrolyte membrane of this invention contains the polymer (A) which has an ion exchange group, and the polymer (B) which has an arylene sulfide skeleton and is soluble in an organic solvent.
According to such a composition, it is possible to easily obtain a polymer electrolyte membrane that is excellent in durability and that can suppress a decrease in power generation performance and water electrolysis performance over time.
 本発明の電解質膜用組成物は、固体高分子電解質膜(以下、単に「電解質膜」ともいう。)の製造容易性などの点から、液状組成物であることが好ましい。 The composition for an electrolyte membrane of the present invention is preferably a liquid composition from the viewpoint of ease of production of a solid polymer electrolyte membrane (hereinafter also simply referred to as “electrolyte membrane”).
 <イオン交換基を有する重合体(A)>
 前記イオン交換基を有する重合体(A)としては、イオン交換基を有する重合体であれば特に制限されず、従来の固体高分子電解質膜に使用されていたものであってもよい。
 イオン交換基としては、公知のものを用いることができ、特に限定されないが、ホスホン酸基、スルホン酸基等が挙げられる。
 中でも、スルホン酸基を有する重合体を用いることで、発電性能および水電解性能に優れる電解質膜を得ることができる。
 前記重合体(A)は、1種単独で用いてもよく、2種以上を併用してもよい。
<Polymer having ion exchange group (A)>
The polymer (A) having an ion exchange group is not particularly limited as long as it is a polymer having an ion exchange group, and may be one used for a conventional solid polymer electrolyte membrane.
As an ion exchange group, a well-known thing can be used, Although it does not specifically limit, A phosphonic acid group, a sulfonic acid group, etc. are mentioned.
Among these, by using a polymer having a sulfonic acid group, an electrolyte membrane excellent in power generation performance and water electrolysis performance can be obtained.
The said polymer (A) may be used individually by 1 type, and may use 2 or more types together.
 このような重合体(A)としては、例えば、ポリアセタール、ポリエチレン、ポリプロピレン、アクリル系樹脂、ポリスチレン、ポリスチレン-グラフト-エチレンテトラフルオロエチレン共重合体、ポリスチレン-グラフト-ポリテトラフルオロエチレン、脂肪族ポリカーボネート等の脂肪族系重合体にスルホン酸基が導入された重合体(スルホン酸基を有する脂肪族系重合体)、ポリエステル、ポリスルホン、ポリフェニレンエーテル、ポリエーテルイミド、芳香族ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルスルホン、ポリエーテルスルホン、ポリカーボネート、ポリフェニレンスルフィド、芳香族ポリアミド、芳香族ポリアミドイミド、芳香族ポリイミド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール等の主鎖の一部又は全部に芳香族環を有する芳香族系重合体にスルホン酸基が導入された重合体(スルホン酸基を有する芳香族系重合体)が挙げられる。
 また、これらの重合体に導入する基を、スルホン酸基からホスホン酸基等のイオン交換基に代えた重合体、またはこれらの基を併用した重合体などが挙げられる。
Examples of such a polymer (A) include polyacetal, polyethylene, polypropylene, acrylic resin, polystyrene, polystyrene-graft-ethylenetetrafluoroethylene copolymer, polystyrene-graft-polytetrafluoroethylene, and aliphatic polycarbonate. Polymers in which sulfonic acid groups are introduced into aliphatic polymers (aliphatic polymers having sulfonic acid groups), polyesters, polysulfones, polyphenylene ethers, polyether imides, aromatic polycarbonates, polyether ether ketones, poly Ether ketone, polyether ketone ketone, polyether ether sulfone, polyether sulfone, polycarbonate, polyphenylene sulfide, aromatic polyamide, aromatic polyamideimide, aromatic polyimide , A polymer in which a sulfonic acid group is introduced into an aromatic polymer having an aromatic ring in part or all of the main chain thereof such as polybenzoxazole, polybenzothiazole, polybenzimidazole, etc. (aromatic having a sulfonic acid group System polymer).
Moreover, the polymer which replaced the group introduce | transduced into these polymers with ion-exchange groups, such as a phosphonic acid group from a sulfonic acid group, or the polymer which used these groups together is mentioned.
 重合体(A)としては、公知のものを用いることができ、限定されないが、Nafion、アシプレックス、フレミオン等の商品名で市販されているスルホン酸基を有する全フッ化炭素系重合体、特開2012-067216号公報、特開2010-238374号公報、特開2010-174179号公報、特開2010-135282号公報、特開2004-137444号公報、特開2004-345997号公報、特開2004-346163号公報、国際公開第2011/155528号、特開2007-177197号公報、国際公開第2007/043274号等に記載の重合体が挙げられる。 As the polymer (A), a known polymer can be used, and is not limited to, but is not limited to a total fluorocarbon polymer having a sulfonic acid group commercially available under a trade name such as Nafion, Aciplex or Flemion, JP 2012-067216, JP 2010-238374, JP 2010-174179, JP 2010-135282, JP 2004-137444, JP 2004-345997, JP 2004. -346163, International Publication No. 2011/155528, Japanese Patent Application Laid-Open No. 2007-177197, International Publication No. 2007/043274, and the like.
 前記重合体(A)は、具体的には、プロトン伝導性基を有する構造単位となる親水性セグメント(A1)と、疎水性構造単位となる疎水性セグメント(B1)とからなる重合体であることが好ましい。この場合、該重合体(A)は、ブロック重合体であってもよく、ランダム重合体であってもよいが、より発電や水電解性能および乾湿サイクル時の寸法安定性に優れる電解質膜が得られる等の点から、親水性セグメント(A1)と疎水性セグメント(A2)とのブロック共重合体が好ましい。 Specifically, the polymer (A) is a polymer comprising a hydrophilic segment (A1) serving as a structural unit having a proton conductive group and a hydrophobic segment (B1) serving as a hydrophobic structural unit. It is preferable. In this case, the polymer (A) may be a block polymer or a random polymer, but an electrolyte membrane that is more excellent in power generation, water electrolysis performance, and dimensional stability during a wet and dry cycle is obtained. From the viewpoint of being obtained, a block copolymer of the hydrophilic segment (A1) and the hydrophobic segment (A2) is preferable.
 ・親水性セグメント(A1)
 親水性セグメント(A1)としては、プロトン伝導性基を有し、親水性を示すセグメントであれば特に制限されないが、例えば、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有する親水性セグメントが挙げられ、親水性セグメントの連続性が高く、プロトン伝導度が高い電解質膜が得られるなどの点から、下記式(9)で表される構造単位(以下「構造単位(9)」ともいう。)を含むセグメントであることが好ましく、構造単位(9)からなるセグメントであることがより好ましい。
 親水性セグメント(A1)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
・ Hydrophilic segment (A1)
The hydrophilic segment (A1) is not particularly limited as long as it has a proton conductive group and exhibits hydrophilicity. For example, the hydrophilic segment (A1) has an aromatic ring in the main chain and a proton conductive group such as a sulfonic acid group. From the point that an electrolyte membrane having high continuity of the hydrophilic segment and high proton conductivity can be obtained (hereinafter referred to as “structural unit”). (9) ") is preferable, and a segment composed of the structural unit (9) is more preferable.
The hydrophilic segment (A1) may consist of only one type of structural unit or may contain two or more types of structural units.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(9)中、Ar11、Ar12およびAr13はそれぞれ独立に、ハロゲン原子、ニトリル基、炭素数1~20の1価の炭化水素基もしくは炭素数1~20の1価のハロゲン化炭化水素基で置換されていてもよい、ベンゼン環、縮合芳香環または含窒素複素環を有する芳香族基を示し、YおよびZはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-(CH2u-、-(CF2u-(uは1~10の整数である。)、-C(CH32-または-C(CF32-を示し、R17は独立に、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-または-(CF2p-(pは1~12の整数を示す。)を示し、R18およびR19はそれぞれ独立に、水素原子または保護基を示す。ただし、前記構造単位(9)中に含まれる全てのR18およびR19のうち少なくとも1個は水素原子である。
 x1は独立に、0~6の整数を示し、x2は1~7の整数を示し、aは0または1を示し、bは0~20の整数を示す。
In the formula (9), Ar 11 , Ar 12 and Ar 13 are each independently a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated carbon atom having 1 to 20 carbon atoms. An aromatic group having a benzene ring, a condensed aromatic ring or a nitrogen-containing heterocyclic ring which may be substituted with a hydrogen group, and Y and Z are each independently a direct bond, —O—, —S—, —CO —, —SO 2 —, —SO—, — (CH 2 ) u —, — (CF 2 ) u — (u is an integer of 1 to 10), —C (CH 3 ) 2 — or —C (CF 3 ) 2 — and R 17 is independently a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p — or — (CF 2 ) p. -(P represents an integer of 1 to 12), and R 18 and R 19 each independently represents a hydrogen atom or a protecting group. However, at least one of all R 18 and R 19 contained in the structural unit (9) is a hydrogen atom.
x 1 independently represents an integer of 0 to 6, x 2 represents an integer of 1 to 7, a represents 0 or 1, and b represents an integer of 0 to 20.
 前記保護基とは、反応性の基(-SO3-または-SO3 -)を一時的に保護する目的で使用されるイオン、原子または原子団等のことをいう。具体的には、アルカリ金属原子、脂肪族炭化水素基、脂環基、含酸素複素環基および含窒素カチオンなどが挙げられる。 The protecting group refers to an ion, atom or atomic group used for the purpose of temporarily protecting a reactive group (—SO 3 — or —SO 3 ). Specific examples include an alkali metal atom, an aliphatic hydrocarbon group, an alicyclic group, an oxygen-containing heterocyclic group, and a nitrogen-containing cation.
 親水性セグメント(A1)は、スルホン酸基を有する前記構造単位(9)以外にも、スルホン酸基以外のプロトン伝導性基を有する構造単位として、例えば、ホスホン酸基を有する構造単位や、特開2011-089036号公報および国際公開第2007/010731号等に記載の含窒素複素環を有する芳香族系構造単位などを含んでもよい。 The hydrophilic segment (A1) includes, in addition to the structural unit (9) having a sulfonic acid group, as a structural unit having a proton conductive group other than the sulfonic acid group, for example, a structural unit having a phosphonic acid group, Aromatic structural units having a nitrogen-containing heterocyclic ring described in Kaikai 2011-089036 and International Publication No. 2007/010731 may be included.
 ・疎水性セグメント(A2)
 疎水性セグメント(A2)としては、疎水性を示すセグメントであれば特に制限されない。
 親水性セグメント(A2)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
・ Hydrophobic segment (A2)
The hydrophobic segment (A2) is not particularly limited as long as it is a hydrophobic segment.
The hydrophilic segment (A2) may consist of only one type of structural unit or may contain two or more types of structural units.
 疎水性セグメント(A2)としては、好ましくは、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有しない疎水性セグメントが挙げられ、より熱水膨潤抑制に優れる電解質膜が得られるなどの点から、下記式(10)で表される構造単位(以下「構造単位(10)」ともいう。)、下記式(11)で表される構造単位(以下「構造単位(11)」ともいう。)および下記式(12)で表される構造単位(以下「構造単位(12)」ともいう。)からなる群より選ばれる少なくとも1種の構造単位を含むセグメントであることが好ましく、構造単位(10)および構造単位(11)からなる群より選ばれる少なくとも1種の構造単位からなるセグメントであることがより好ましい。 The hydrophobic segment (A2) is preferably a hydrophobic segment having an aromatic ring in the main chain and not containing a proton conductive group such as a sulfonic acid group, and an electrolyte membrane that is more excellent in suppressing hot water swelling. From the viewpoint of being obtained, a structural unit represented by the following formula (10) (hereinafter also referred to as “structural unit (10)”), a structural unit represented by the following formula (11) (hereinafter referred to as “structural unit (11)”. And a segment containing at least one structural unit selected from the group consisting of structural units represented by the following formula (12) (hereinafter also referred to as “structural unit (12)”). Preferably, it is a segment composed of at least one structural unit selected from the group consisting of the structural unit (10) and the structural unit (11).
 前記重合体(A)が、構造単位(10)~(12)のいずれか、特には、構造単位(10)または(11)を含有することにより、該重合体の疎水性が著しく向上する。このため、従来と同様のプロトン伝導性を具備しながら、優れた熱水耐性を有する電解質膜を得ることができる。また、セグメント(A2)がニトリル基を含む場合は、靭性および機械的強度の高い電解質膜を製造できる。 When the polymer (A) contains any one of the structural units (10) to (12), in particular, the structural unit (10) or (11), the hydrophobicity of the polymer is remarkably improved. Therefore, it is possible to obtain an electrolyte membrane having excellent hot water resistance while having proton conductivity similar to the conventional one. Moreover, when segment (A2) contains a nitrile group, an electrolyte membrane having high toughness and mechanical strength can be produced.
・構造単位(10)
 疎水性セグメント(A2)が、構造単位(10)を含有することにより、該セグメント(A2)の剛直性が高くなり、かつ芳香環密度が高くなることで、得られる重合体(10)を含む電解質膜の熱水耐性、過酸化物に対するラジカル耐性、ガスバリア性、機械的強度および寸法安定性等を向上させることができる。
 前記疎水性セグメント(A2)は、1種類の構造単位(10)を含んでもよく、2種類以上の構造単位(10)を含んでもよい。
・ Structural unit (10)
By including the structural unit (10), the hydrophobic segment (A2) includes the polymer (10) obtained by increasing the rigidity of the segment (A2) and increasing the aromatic ring density. The hot water resistance, radical resistance to peroxide, gas barrier properties, mechanical strength, dimensional stability, etc. of the electrolyte membrane can be improved.
The hydrophobic segment (A2) may include one type of structural unit (10), or may include two or more types of structural units (10).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(10)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R21は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-L-(Lは、直接結合、-O-、-S-、-CO-、-SO2-、-CONH-、-COO-、-CF2-、-CH2-、-C(CF32-または-C(CH32-を示し;R22は、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、ハロゲン化アリール基または含窒素複素環を示し、これらの基の少なくとも1つの水素原子は、さらにヒドロキシ基、ニトロ基、ニトリル基およびR22-L-からなる群より選ばれる少なくとも1種の基で置換されていてもよい。)を示し、複数のR21が結合して環構造を形成してもよい。
 なお、R21がR22-L-であり、かつ、該R22がさらにR22-L-で置換される場合、複数のLは同一でも異なっていてもよく、複数のR22(ただし、置換によって生じる構造の差異を除く部分の構造)も同一でも異なっていてもよい。このことは、他の式中の符号においても同様である。
 c1およびc2は独立に0または1以上の整数を示し、dは1以上の整数を示し、eは独立に、0~(2c1+2c2+4)の整数を示す。
In the formula (10), at least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 21 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —. L- (L is a direct bond, —O—, —S—, —CO—, —SO 2 —, —CONH—, —COO—, —CF 2 —, —CH 2 —, —C (CF 3 ) 2 -or -C (CH 3 ) 2- ; R 22 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, a halogenated aryl group or a nitrogen-containing heterocyclic ring, and at least one of these groups one of the hydrogen atoms, further hydroxy group, a nitro group, may be substituted with at least one group selected from nitrile group and a group consisting of R 22 -L-.) shows a plurality of R 21 is bonded To form a ring structure.
When R 21 is R 22 -L-, and R 22 is further substituted with R 22 -L-, the plurality of L may be the same or different, and a plurality of R 22 (provided that The structure of the portion excluding the structural difference caused by the substitution may be the same or different. The same applies to the symbols in the other equations.
c 1 and c 2 independently represent an integer of 0 or 1 or more, d represents an integer of 1 or more, and e independently represents an integer of 0 to (2c 1 + 2c 2 +4).
・構造単位(11)
 前記疎水性セグメント(A2)が構造単位(11)を含むと、過酸化物などに対するラジカル耐性が向上し、発電・水電解耐久性に優れる電解質膜が得られると考えられるため好ましい。
 また、前記疎水性セグメント(A2)が構造単位(11)を含有することにより、該セグメント(A2)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 前記疎水性セグメント(A2)は、1種類の構造単位(11)を含んでもよく、2種類以上の構造単位(11)を含んでもよい。
・ Structural unit (11)
It is preferable that the hydrophobic segment (A2) contains the structural unit (11) because radical resistance to peroxide and the like is improved, and an electrolyte membrane excellent in power generation / water electrolysis durability can be obtained.
Further, when the hydrophobic segment (A2) contains the structural unit (11), an appropriate flexibility (flexibility) can be imparted to the segment (A2), and the electrolyte membrane containing the resulting polymer Toughness can be improved.
The hydrophobic segment (A2) may include one type of structural unit (11), or may include two or more types of structural units (11).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(11)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R31は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-L-(LおよびR22はそれぞれ独立に、前記式(1)中のLおよびR22と同義である。)を示し、複数のR31が結合して環構造を形成してもよい。
 fは0または1以上の整数を示し、gは0~(2f+4)の整数を示す。ただし、式(11)で表される構造単位は、式(10)で表される構造単位以外の構造単位である。
In the formula (11), at least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 31 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —. L— (L and R 22 are each independently synonymous with L and R 22 in the formula (1)), and a plurality of R 31 may be bonded to form a ring structure.
f represents 0 or an integer of 1 or more, and g represents an integer of 0 to (2f + 4). However, the structural unit represented by Formula (11) is a structural unit other than the structural unit represented by Formula (10).
・構造単位(12)
 前記疎水性セグメント(A2)が構造単位(12)を含有することにより、該セグメント(A2)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 前記疎水性セグメント(A2)は、1種類の構造単位(12)を含んでもよく、2種類以上の構造単位(12)を含んでもよい。
・ Structural unit (12)
When the hydrophobic segment (A2) contains the structural unit (12), the segment (A2) can be imparted with appropriate flexibility (flexibility), and the toughness of the electrolyte membrane containing the resulting polymer Can be improved.
The hydrophobic segment (A2) may include one type of structural unit (12) or may include two or more types of structural units (12).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(12)中、GおよびJはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基またはフルオレニリデン基を示し、Qは独立に、酸素原子または硫黄原子を示し、R1~R16はそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-L-(LおよびR22はそれぞれ独立に、式(10)中のLおよびR22と同義である。)を示し、R1~R16のうちの複数の基が結合して環構造を形成してもよい。
 sおよびtはそれぞれ独立に、0~4の整数を示し、rは0または1以上の整数を示す。
In the formula (12), G and J are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 I − (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon group, aromatic A hydrocarbon group or a halogenated hydrocarbon group.), A cyclohexylidene group or a fluorenylidene group, Q independently represents an oxygen atom or a sulfur atom, and R 1 to R 16 each independently represents a hydrogen atom. , halogen atom, hydroxy group, nitro group, nitrile group or R 22-L-(L and R 22 are independently the same as L and R 22 in formula (10).) indicates, R 1 ~ A plurality of groups of R 16 may be bonded to form a ring structure.
s and t each independently represent an integer of 0 to 4, and r represents 0 or an integer of 1 or more.
 ・重合体(A)の合成方法
 前記重合体(A)は、従来公知の方法で合成することができ、特に制限されないが、例えば、前記構造単位となる化合物を触媒や溶媒の存在下で反応させ、必要によりスルホン酸エステル基などをスルホン酸基に変換する、または、スルホン化剤を用いてスルホン化する等の方法でプロトン伝導性基を導入することにより合成することができる。
Synthetic method of polymer (A) The polymer (A) can be synthesized by a conventionally known method, and is not particularly limited. For example, the compound serving as the structural unit is reacted in the presence of a catalyst or a solvent. Then, if necessary, it can be synthesized by introducing a proton conductive group by a method such as conversion of a sulfonic acid ester group or the like to a sulfonic acid group, or sulfonation using a sulfonating agent.
 〈重合体(A)の物性等〉
 前記重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、好ましくは1万~100万、より好ましくは2万~80万、さらに好ましくは5万~30万である。
<Physical properties of polymer (A)>
The polystyrene equivalent weight average molecular weight (Mw) of the polymer (A) by gel permeation chromatography (GPC) is preferably 10,000 to 1,000,000, more preferably 20,000 to 800,000, and even more preferably 50,000 to 300,000.
 前記重合体(A)のイオン交換容量は、好ましくは0.5~3.5meq/g、より好ましくは0.5~3.0meq/g、さらに好ましくは0.8~2.8meq/gである。イオン交換容量が、0.5meq/g以上であると、プロトン伝導度が高く、かつ発電性能および水電解性能の高い電解質膜を得ることができるため好ましい。一方、3.5meq/g以下であると、充分に高い耐水性を有する電解質膜を得ることができるため好ましい。
 前記イオン交換容量は、例えば、下記実施例に記載の方法で測定することができる。
The ion exchange capacity of the polymer (A) is preferably 0.5 to 3.5 meq / g, more preferably 0.5 to 3.0 meq / g, still more preferably 0.8 to 2.8 meq / g. is there. An ion exchange capacity of 0.5 meq / g or more is preferable because an electrolyte membrane having high proton conductivity and high power generation performance and water electrolysis performance can be obtained. On the other hand, if it is 3.5 meq / g or less, an electrolyte membrane having sufficiently high water resistance can be obtained, which is preferable.
The ion exchange capacity can be measured, for example, by the method described in the examples below.
 前記イオン交換容量は、例えば、各構造単位の種類、使用割合、組み合わせ、イオン交換基の導入量を変えることにより、調整することができる。したがって、重合時に構造単位を誘導する前駆体(モノマー・オリゴマー)の仕込み量比、種類を変えれば調整することができる。 The ion exchange capacity can be adjusted, for example, by changing the type of each structural unit, the use ratio, the combination, and the amount of ion exchange groups introduced. Therefore, it can be adjusted by changing the charge amount ratio and type of the precursor (monomer / oligomer) that induces the structural unit during polymerization.
 概して、イオン交換基を含む構造単位の存在割合が重合体中に多くなると、得られる電解質膜のイオン交換容量が増えプロトン伝導性が高くなるが、耐水性が低下する傾向にあり、一方、該構造単位の存在割合が少なくなると、得られる電解質膜のイオン交換容量が小さくなり、耐水性が高まるが、プロトン伝導性が低下する傾向にある。 In general, when the proportion of the structural unit containing an ion exchange group is increased in the polymer, the ion exchange capacity of the obtained electrolyte membrane is increased and the proton conductivity is increased, but the water resistance tends to be reduced. When the proportion of the structural unit is reduced, the ion exchange capacity of the obtained electrolyte membrane is reduced and the water resistance is increased, but the proton conductivity tends to be lowered.
 <重合体(B)>
 前記重合体(B)は、アリーレンスルフィド骨格を有し有機溶媒に可溶な重合体である。
 このような重合体(B)を用いることで、該重合体(B)が均一に分散した電解質膜用組成物を得ることができ、電池作動中や水電解装置作動中の電解質膜外への該重合体の溶出および電解質膜の劣化が抑制され、耐久性に優れる電解質膜を容易に得ることができる。また、発電性能や水電解性能、長期安定性などにバランス良く優れる固体高分子型燃料電池や水電解装置を得ることができる。
 前記重合体(B)は、1種単独で用いてもよく、2種以上を併用してもよい。
<Polymer (B)>
The polymer (B) is a polymer having an arylene sulfide skeleton and soluble in an organic solvent.
By using such a polymer (B), it is possible to obtain a composition for an electrolyte membrane in which the polymer (B) is uniformly dispersed, and to the outside of the electrolyte membrane during battery operation or water electrolysis device operation. The elution of the polymer and the deterioration of the electrolyte membrane are suppressed, and an electrolyte membrane excellent in durability can be easily obtained. In addition, it is possible to obtain a polymer electrolyte fuel cell and a water electrolysis device that are excellent in balance between power generation performance, water electrolysis performance, long-term stability, and the like.
The said polymer (B) may be used individually by 1 type, and may use 2 or more types together.
 一般的に、固体高分子型燃料電池の電極には、触媒層が設けられ、触媒層に含まれる触媒として、白金、ルテニウム等が用いられている。これらの触媒は、取り出される電気エネルギーの元となる化学反応を促進するため重要であるが、一方で、電池作動中に、触媒層にある触媒の一部が電解質膜内で析出し、この析出した触媒により電解質膜の劣化が引き起こされ、固体高分子型燃料電池の長期安定性が低下する要因となっていると考えられている。 Generally, a catalyst layer is provided on an electrode of a polymer electrolyte fuel cell, and platinum, ruthenium, or the like is used as a catalyst contained in the catalyst layer. These catalysts are important because they promote the chemical reaction that is the source of the extracted electrical energy. On the other hand, during the operation of the battery, a part of the catalyst in the catalyst layer is deposited in the electrolyte membrane. It is believed that the electrolyte membrane is deteriorated by the catalyst, and this is a factor that lowers the long-term stability of the polymer electrolyte fuel cell.
 また、水の電気分解により水素と酸素を生成する水電解装置中の水電解セルにおいても、触媒層に含まれる触媒として、白金、ルテニウム、イリジウム、鉄等が用いられており、固体高分子型燃料電池の場合と同様に、水電解装置作動中に触媒層にある触媒の一部が電解質膜内で析出し、この析出した触媒により電解質膜の劣化が引き起こされ、水電解装置の長期安定性が低下する要因となっていると考えられている。特に、析出した白金、鉄により、顕著に電解質膜の劣化が引き起こされることがある。 In addition, in water electrolysis cells in water electrolysis devices that generate hydrogen and oxygen by electrolysis of water, platinum, ruthenium, iridium, iron, etc. are used as the catalyst contained in the catalyst layer. As in the case of the fuel cell, a part of the catalyst in the catalyst layer is deposited in the electrolyte membrane during the operation of the water electrolysis device, and this deposited catalyst causes deterioration of the electrolyte membrane, and the long-term stability of the water electrolysis device. Is considered to be a factor that reduces In particular, the deposited platinum and iron may cause significant deterioration of the electrolyte membrane.
 以上のことから、本発明者らは、電解質膜と電極との界面付近の白金等の触媒を不活性化させる一方、電解質膜と電極との界面から離れた所に位置し、電解質膜の劣化に与える影響が少ないと考えられる白金等の触媒は不活性化させないようにすることで、発電性能と長期安定性とにバランス良く優れる固体高分子型燃料電池、および、水電解性能と長期安定性とにバランス良く優れる水電解装置が得られるのではないかと考えた。 From the above, the present inventors inactivate a catalyst such as platinum in the vicinity of the interface between the electrolyte membrane and the electrode, while being located away from the interface between the electrolyte membrane and the electrode, Catalysts such as platinum, which are thought to have little impact on the battery, are not deactivated, so that the polymer electrolyte fuel cell has a good balance between power generation performance and long-term stability, and water electrolysis performance and long-term stability. We thought that an excellent water electrolysis apparatus with good balance could be obtained.
 本発明者らは、鋭意検討した結果、イオン交換基を有する重合体(A)とともに前記重合体(B)を含む電解質膜を用いることで、発電性能と長期安定性とにバランス良く優れる固体高分子型燃料電池、および、水電解性能と長期安定性とにバランス良く優れる水電解装置が得られることを見出した。 As a result of intensive studies, the present inventors have used an electrolyte membrane containing the polymer (B) together with the polymer (A) having an ion exchange group, so that the solid state excellent in balance between power generation performance and long-term stability can be obtained. It has been found that a molecular fuel cell and a water electrolysis device excellent in balance between water electrolysis performance and long-term stability can be obtained.
 前記重合体(B)は、アリーレンスルフィド骨格を有し、かつ、有機溶媒に可溶な重合体であるため、該重合体(B)を含む電解質膜は、白金の被毒率が特定の値以下となる。これは、該電解質膜からの重合体(B)の溶出量が一定の範囲以下となることを意味する。これにより、電解質膜と電極との界面付近の白金を不活性化させる一方、電解質膜と電極との界面から離れた所に位置し電解質膜の劣化に与える影響が少ないと考えられる白金を不活性化させないと考えられる。
 よって、本発明の電解質膜用組成物が前記重合体(B)を含むことで、発電性能と長期安定性とにバランス良く優れる固体高分子型燃料電池、および、水電解性能と長期安定性とにバランス良く優れる水電解装置を得ることができる。
Since the polymer (B) has an arylene sulfide skeleton and is soluble in an organic solvent, the electrolyte membrane containing the polymer (B) has a specific poisoning rate of platinum. It becomes as follows. This means that the elution amount of the polymer (B) from the electrolyte membrane is below a certain range. This inactivates platinum in the vicinity of the interface between the electrolyte membrane and the electrode, while deactivating platinum, which is located far from the interface between the electrolyte membrane and the electrode and has little effect on the deterioration of the electrolyte membrane. It is not considered to be converted.
Therefore, when the composition for electrolyte membrane of the present invention contains the polymer (B), a polymer electrolyte fuel cell excellent in balance between power generation performance and long-term stability, and water electrolysis performance and long-term stability. It is possible to obtain a water electrolysis apparatus excellent in balance.
 前記重合体(B)は、アリーレンスルフィド骨格を有する。重合体(B)がアリーレンスルフィド骨格を有することで、前記重合体(A)との相溶性に優れる重合体となり、電池発電中や水電解中の電解質膜外への溶出が抑制された重合体となる傾向がある。
 なお、本発明において、アリーレンスルフィド骨格とは、単環式または多環式の芳香族炭化水素基にスルフィド結合(-S-)が結合した構造単位のことをいい、例えば、チアントレン構造を有する重合体も、ベンゼン環にスルフィド結合が結合した部分を有するため、アリーレンスルフィド骨格を有する重合体という。
 この骨格中、スルフィド結合部分は、白金に配位しやすい。このため、該スルフィド結合部分は、白金の不活性化に寄与すると考えられる。
The polymer (B) has an arylene sulfide skeleton. The polymer (B) has an arylene sulfide skeleton, so that the polymer (B) has excellent compatibility with the polymer (A), and the elution to the outside of the electrolyte membrane during battery power generation or water electrolysis is suppressed. Tend to be.
In the present invention, the arylene sulfide skeleton refers to a structural unit in which a sulfide bond (—S—) is bonded to a monocyclic or polycyclic aromatic hydrocarbon group, for example, a heavy unit having a thianthrene structure. The polymer is also referred to as a polymer having an arylene sulfide skeleton because it has a portion in which a sulfide bond is bonded to a benzene ring.
In this skeleton, the sulfide bond portion is easily coordinated to platinum. For this reason, it is thought that this sulfide bond part contributes to inactivation of platinum.
 前記重合体(B)は、前記重合体(A)との相溶性に優れる重合体となり、電池発電中や水分解中の電解質膜外への溶出が抑制された重合体となる等の点から、少なくとも下記式(1)または(2)で表される構造単位(以下それぞれ、「構造単位(1)」および「構造単位(2)」ともいう。)のいずれかを含むことが好ましい。 The polymer (B) becomes a polymer having excellent compatibility with the polymer (A), and becomes a polymer in which elution to the outside of the electrolyte membrane during battery power generation or water decomposition is suppressed. Preferably, at least one of the structural units represented by the following formula (1) or (2) (hereinafter also referred to as “structural unit (1)” and “structural unit (2)”) is included.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記式(1)中、R1およびR2はそれぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルキルスルファニル基、シアノ基またはハロゲン原子であり、aおよびbはそれぞれ独立して、0~3の整数である。X1およびX2はそれぞれ独立して、直接結合、-S-、-NH-、-SO-または-SO2-であるが、X1およびX2の少なくとも一方は-S-である。 In the formula (1), R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group, or a halogen atom, and a and b are each Independently, it is an integer of 0 to 3. X 1 and X 2 are each independently a direct bond, —S—, —NH—, —SO— or —SO 2 —, but at least one of X 1 and X 2 is —S—.
 前記R1およびR2としては、極性溶媒への溶解性が向上するなどの点から、シアノ基またはハロゲン原子が好ましい。
 前記aおよびbは、好ましくは0または1であり、より好ましくは0である。
R 1 and R 2 are preferably a cyano group or a halogen atom from the viewpoint of improving the solubility in a polar solvent.
Said a and b are preferably 0 or 1, more preferably 0.
 前記X1およびX2のうち、少なくとも一方は-S-であるが、もう一方は、硫黄含有量が高い重合体となる等の点から、好ましくは単結合または-S-であり、有機溶媒への溶解性に優れる重合体が得られ、重合体(B)の添加量が少なくても十分に電解質膜と電極との界面付近の白金を不活性化できる電解質膜が得られる等の点から、より好ましくは-S-である。 At least one of X 1 and X 2 is —S—, and the other is preferably a single bond or —S— from the viewpoint of becoming a polymer having a high sulfur content, and is an organic solvent. From the viewpoints of obtaining a polymer excellent in solubility in water and obtaining an electrolyte membrane that can sufficiently inactivate platinum in the vicinity of the interface between the electrolyte membrane and the electrode even if the amount of the polymer (B) added is small. More preferably, it is —S—.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 前記式(2)中、R3は、炭素数1~5のアルキル基、炭素数1~5のアルキルスルファニル基、シアノ基またはハロゲン原子であり、cは0~4の整数である。 In the formula (2), R 3 is an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group or a halogen atom, and c is an integer of 0 to 4.
 前記R3は、極性溶媒への溶解性が向上するなどの点から、シアノ基、塩素原子、臭素原子またはヨウ素原子が好ましい。
 また、前記cは、好ましくは0または1であり、より好ましくは0である。
R 3 is preferably a cyano group, a chlorine atom, a bromine atom, or an iodine atom from the viewpoint of improving the solubility in a polar solvent.
The c is preferably 0 or 1, more preferably 0.
 前記重合体(B)は、該重合体(B)が均一に分散した電解質膜用組成物を得ることができ、発電性能や水電解性能、長期安定性などにバランス良く優れる固体高分子型燃料電池や水電解装置を得ることができる等の点から、少なくとも下記式(3)~(5)で表される構造単位のいずれかを含むことが好ましい。 The polymer (B) can obtain a composition for an electrolyte membrane in which the polymer (B) is uniformly dispersed, and is a solid polymer fuel excellent in balance in power generation performance, water electrolysis performance, long-term stability, etc. It is preferable that at least one of the structural units represented by the following formulas (3) to (5) is included from the viewpoint that a battery or a water electrolysis device can be obtained.
Figure JPOXMLDOC01-appb-C000017
[式(3)中、R1、R2、X1、X2、aおよびbはそれぞれ独立して、前記式(1)中のR1、R2、X1、X2、aおよびbと同義である。]
Figure JPOXMLDOC01-appb-C000017
Wherein (3), R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b Is synonymous with ]
Figure JPOXMLDOC01-appb-C000018
[式(4)および(5)中、R3およびcはそれぞれ独立して、前記式(2)中のR3およびcと同義である。]
Figure JPOXMLDOC01-appb-C000018
[In the formulas (4) and (5), R 3 and c are each independently synonymous with R 3 and c in the formula (2). ]
 前記重合体(B)が前記構造単位(2)を含む場合、より有機溶媒に対する溶解性に優れる重合体が得られ、該重合体(B)が均一に分散した電解質膜用組成物を得ることができる等の点から、前記式(4)および(5)で表される構造単位のうちでは、前記式(5)で表される構造単位を含むことが好ましく、前記式(5)で表される構造単位および下記式(2')で表される構造単位を含むことがより好ましい。 When the polymer (B) contains the structural unit (2), a polymer having better solubility in an organic solvent is obtained, and an electrolyte membrane composition in which the polymer (B) is uniformly dispersed is obtained. Among the structural units represented by the formulas (4) and (5), it is preferable that the structural unit represented by the formula (5) is included in the structural units represented by the formula (5). It is more preferable that the structural unit and the structural unit represented by the following formula (2 ′) are included.
Figure JPOXMLDOC01-appb-C000019
[式(2')中、R3およびcはそれぞれ独立して、前記式(2)中のR3およびcと同義である。]
Figure JPOXMLDOC01-appb-C000019
In formula (2 '), R 3 and c are independently the same meanings as R 3 and c in the formula (2). ]
 前記重合体(B)は、重合体(A)や有機溶媒に対する相溶性に優れる重合体が得られ、該重合体(B)が均一に分散した電解質膜用組成物を得ることができ、発電性能や水電解性能、長期安定性などにバランス良く優れる固体高分子型燃料電池や水電解装置を得ることができる等の点から、下記式(6)で表される構造単位を有することが好ましい。 As the polymer (B), a polymer excellent in compatibility with the polymer (A) or an organic solvent can be obtained, and a composition for an electrolyte membrane in which the polymer (B) is uniformly dispersed can be obtained. It is preferable to have a structural unit represented by the following formula (6) from the viewpoint of obtaining a polymer electrolyte fuel cell and a water electrolysis device that are excellent in performance, water electrolysis performance, long-term stability and the like. .
Figure JPOXMLDOC01-appb-C000020
[式(6)中、R1、R2、X1、X2、aおよびbはそれぞれ独立して、前記式(1)中のR1、R2、X1、X2、aおよびbと同義であり、X3は、-O-または-S-である。]
Figure JPOXMLDOC01-appb-C000020
Wherein (6), R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b X 3 is —O— or —S—. ]
 また、前記重合体(B)は、極性基、フッ素原子を含む基およびフルオレニリデン基からなる群より選ばれる少なくとも1種の基を有することが、極性溶媒への溶解性に優れる重合体が得られる等の点から好ましい。
 これらの基は、前記重合体(B)中に含まれていれば特に制限されないが、前記または下記式(1)~(8)で表される何れかの基中に含まれていることが好ましい。
In addition, the polymer (B) has at least one group selected from the group consisting of a polar group, a group containing a fluorine atom and a fluorenylidene group, so that a polymer excellent in solubility in a polar solvent can be obtained. From the point of view, it is preferable.
These groups are not particularly limited as long as they are contained in the polymer (B), but may be contained in any one of the groups represented by the above or the following formulas (1) to (8). preferable.
 前記極性基としては、シアノ基、ヒドロキシ基、カルボキシ基などが挙げられる。
 前記フッ素原子を含む基としては、-CF3、-C(CF32-などが挙げられる。
Examples of the polar group include a cyano group, a hydroxy group, and a carboxy group.
Examples of the group containing a fluorine atom include —CF 3 , —C (CF 3 ) 2 — and the like.
 前記重合体(B)は、有機溶媒への溶解性により優れる重合体が得られる等の点から、下記式(7)で表される構造単位を有することが好ましく、前記構造単位(1)および/または前記構造単位(2)に加えて、さらに、下記式(7)で表される構造単位を有することがより好ましい。 The polymer (B) preferably has a structural unit represented by the following formula (7) from the viewpoint of obtaining a polymer excellent in solubility in an organic solvent, and the structural unit (1) and In addition to the structural unit (2), it is more preferable to further have a structural unit represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000021
[式(7)中、Dは独立して、直接結合、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2)l-(lは1~10の整数である)、-C(CF3)2-、-(CH2)l-(lは1~10の整数である)、-C(CR'3)2-(R'は独立して、炭化水素基または環状炭化水素基である)、シクロヘキシリデン基、フルオレニリデン基、-O-または-S-であり、AおよびEはそれぞれ独立して、直接結合、-O-または-S-であり、R4~R11はそれぞれ独立して、水素原子、フッ素原子、アルキル基、アリル基、アリール基、一部もしくはすべての水素原子がハロゲン化されたハロゲン化アルキル基、ニトロ基またはシアノ基であり、rは0~4の整数である。ただし、式(7)で表される構造単位は、構造単位(2)ではない。]
Figure JPOXMLDOC01-appb-C000021
[In the formula (7), D is independently a direct bond, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) 1 — (l is 1 to 10 -C (CF 3 ) 2 -,-(CH 2 ) l- (l is an integer of 1 to 10), -C (CR ' 3 ) 2- (R' is independently A cyclohexylidene group, a fluorenylidene group, —O— or —S—, and A and E are each independently a direct bond, —O— or —S—. R 4 to R 11 are each independently a hydrogen atom, a fluorine atom, an alkyl group, an allyl group, an aryl group, a halogenated alkyl group in which some or all of the hydrogen atoms are halogenated, a nitro group, or a cyano group. And r is an integer of 0-4. However, the structural unit represented by Formula (7) is not the structural unit (2). ]
 前記R'における炭化水素基としては、炭素数1~12の直鎖または分岐鎖のアルキル基が好ましく、炭素数1~8の直鎖または分岐鎖のアルキル基がより好ましく、炭素数1~5の直鎖または分岐鎖のアルキル基がさらに好ましい。
 前記炭化水素基の好適な具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基およびn-ヘプチル基が挙げられる。
The hydrocarbon group for R ′ is preferably a linear or branched alkyl group having 1 to 12 carbon atoms, more preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and 1 to 5 carbon atoms. The linear or branched alkyl group is more preferable.
Preferable specific examples of the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group. And n-heptyl group.
 前記R'における環状炭化水素基としては、脂環式炭化水素基または芳香族炭化水素基が挙げられる。
 前記脂環式炭化水素基としては、炭素数3~12の脂環式炭化水素基が好ましく、具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基およびシクロへキシル基等のシクロアルキル基;シクロブテニル基、シクロペンテニル基およびシクロヘキセニル基等のシクロアルケニル基などが挙げられる。
 前記芳香族炭化水素基としては、炭素数6~12の芳香族炭化水素基が好ましく、具体的には、フェニル基、ビフェニル基およびナフチル基などが挙げられる。
Examples of the cyclic hydrocarbon group for R ′ include an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
The alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 3 to 12 carbon atoms, specifically, a cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group; And cycloalkenyl groups such as cyclobutenyl group, cyclopentenyl group, and cyclohexenyl group.
The aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, and specific examples include a phenyl group, a biphenyl group, and a naphthyl group.
 前記R4~R11におけるアルキル基としては、前記R'における炭化水素基の好ましい例として挙げた基などが望ましい。前記R4~R11におけるハロゲン化アルキル基としては、前記アルキル基の一部またはすべての水素原子をハロゲン化した基が好ましい。
 前記R4~R11におけるアリール基としては、前記芳香族炭化水素基の好ましい例として挙げた基などが望ましい。
The alkyl group in R 4 to R 11 is preferably a group exemplified as a preferred example of the hydrocarbon group in R ′. The halogenated alkyl group for R 4 to R 11 is preferably a group obtained by halogenating some or all of the alkyl groups.
The aryl group in R 4 to R 11 is preferably a group listed as a preferred example of the aromatic hydrocarbon group.
 前記Dとしては、極性溶媒への溶解性に優れる重合体が得られる等の点から、-S-、-O-、-C(CF3)2-、フルオレニリデン基が好ましい。
 前記AおよびEとしては、重合体(B)の溶解性向上等の点から、-O-または-S-が好ましい。
 前記R4~R11としては、極性溶媒への溶解性に優れる重合体が得られる等の点から、水素原子、フッ素原子、一部もしくはすべての水素原子がハロゲン化されたハロゲン化アルキル基、ニトロ基またはシアノ基が好ましい。
D is preferably —S—, —O—, —C (CF 3 ) 2 — or a fluorenylidene group from the viewpoint of obtaining a polymer having excellent solubility in a polar solvent.
A and E are preferably —O— or —S— from the viewpoint of improving the solubility of the polymer (B).
R 4 to R 11 are each a hydrogen atom, a fluorine atom, a halogenated alkyl group in which some or all of the hydrogen atoms are halogenated from the viewpoint of obtaining a polymer excellent in solubility in a polar solvent, A nitro group or a cyano group is preferred.
 前記重合体(B)は、前記構造単位(1)を含む場合、下記式(8)で表される構造単位を有することが、有機溶媒への溶解性により優れ、硫黄含有量が高い重合体が得られる等の点から好ましい。 When the polymer (B) includes the structural unit (1), the polymer (B) has a structural unit represented by the following formula (8), which is superior in solubility in an organic solvent and has a high sulfur content. Is preferable from the viewpoint of obtaining
Figure JPOXMLDOC01-appb-C000022
[式(8)中、R1、R2、X1、X2、aおよびbはそれぞれ独立して、前記式(1)中のR1、R2、X1、X2、aおよびbと同義であり、D、E、R4~R11およびrは前記式(7)中のD、E、R4~R11およびrと同義であり、A'は-O-または-S-である。]
Figure JPOXMLDOC01-appb-C000022
Wherein (8), R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b in the above formula, D, E, R 4 ~ R 11 and r are as defined above D in the formula (7), E, R 4 ~ R 11 and r, a 'is -O- or -S- It is. ]
 〈重合体(B)の合成方法〉
 前記重合体(B)の合成方法は特に制限されず、従来公知の方法で合成することができ、例えば、アリーレンスルフィド骨格を有するモノマーを重合する方法や、重合体を合成する際にスルフィド結合を形成し、得られる重合体がアリーレンスルフィド骨格を有するように重合する方法が挙げられる。
<Synthesis Method of Polymer (B)>
The method for synthesizing the polymer (B) is not particularly limited, and can be synthesized by a conventionally known method. For example, a method for polymerizing a monomer having an arylene sulfide skeleton, a sulfide bond when synthesizing a polymer, and the like. And a method of polymerizing so that the resulting polymer has an arylene sulfide skeleton.
 前記重合体(B)は、例えば、前記構造単位(1)を含むジハロゲン化物と前記式(7)で表される構造単位(但し、AおよびEは直接結合である。)を含むジヒドロキシ化合物とを炭酸カリウムなどのアルカリ金属化合物の存在下、適当な有機溶媒中で加熱して重合させることによって得ることができ、また、前記式(7)で表される構造単位(但し、AおよびEは直接結合である。)を含むジハロゲン化合物と硫化ナトリウムなどのアルカリ金属硫化物塩とを適当な有機溶媒中で加熱して重合させることによって得ることができる。
 具体的には、下記合成例3~7に示す方法が挙げられる。
The polymer (B) includes, for example, a dihydroxy compound containing a dihalide containing the structural unit (1) and a structural unit represented by the formula (7) (where A and E are direct bonds). Can be obtained by polymerizing by heating in an appropriate organic solvent in the presence of an alkali metal compound such as potassium carbonate, and the structural unit represented by the formula (7) (where A and E are The dihalogen compound containing a direct bond) and an alkali metal sulfide salt such as sodium sulfide are heated and polymerized in a suitable organic solvent.
Specific examples include the methods shown in Synthesis Examples 3 to 7 below.
 前記重合体(B)を合成する際における、構造単位(1)を含むジハロゲン化物、および重合後構造単位(2)となりうるモノマーの仕込み量としては、有機溶媒への溶解性と電解質膜の劣化抑制効果とのバランスの観点から、重合体(B)の合成に用いる全モノマー100mol%に対し、好ましくは10~70mol%、さらに好ましくは20~60mol%である。 In the synthesis of the polymer (B), the amount of the dihalide containing the structural unit (1) and the monomer that can become the post-polymerization structural unit (2) are the solubility in an organic solvent and the deterioration of the electrolyte membrane. From the viewpoint of the balance with the inhibitory effect, it is preferably 10 to 70 mol%, more preferably 20 to 60 mol%, based on 100 mol% of all monomers used for the synthesis of the polymer (B).
 〈重合体(B)の物性等〉
 前記重合体(B)の数平均分子量は、好ましくは1000以上であり、より好ましくは1100以上、さらに好ましくは1200以上である。また、重合体(B)の数平均分子量の上限は、好ましくは10000以下であり、より好ましくは9000以下、さらに好ましくは8000以下である。
 重合体(B)の数平均分子量が1000未満であると、電池発電中や水分解中に電解質膜外へ溶出する重合体(B)の量が過度に多くなることがある。また、重合体(B)の数平均分子量が10000を超えると重合体(B)の後述する有機溶媒に対する溶解性が低下したり、前記重合体(A)に対する相溶性(分散性)が低下したりする場合がある。
 なお、前記重合体(B)の分子量は、以下の実施例に記載の方法で測定することができる。
<Physical properties of polymer (B)>
The number average molecular weight of the polymer (B) is preferably 1000 or more, more preferably 1100 or more, and further preferably 1200 or more. Further, the upper limit of the number average molecular weight of the polymer (B) is preferably 10,000 or less, more preferably 9000 or less, and further preferably 8000 or less.
When the number average molecular weight of the polymer (B) is less than 1000, the amount of the polymer (B) eluted out of the electrolyte membrane during battery power generation or water decomposition may be excessively increased. In addition, when the number average molecular weight of the polymer (B) exceeds 10,000, the solubility of the polymer (B) in an organic solvent described later decreases, or the compatibility (dispersibility) of the polymer (A) decreases. Sometimes.
In addition, the molecular weight of the said polymer (B) can be measured by the method as described in a following example.
 前記重合体(B)は、該重合体中のスルフィド結合を構成する硫黄原子の含有量が、2.0mmol/g以上であることが好ましい。より好ましくは、2.5mmol/g以上であり、さらに好ましくは2.7mmol/g以上である。重合体(B)中のスルフィド結合を構成する硫黄原子の含有量が2.0mmol/g未満であると、電池発電時や水分解時の電解質膜の劣化抑制効果が十分ではない場合がある。
 また、前記重合体(B)は、該重合体中のスルフィド結合を構成する硫黄原子の含有量が、10.0mmol/g以下であることが好ましい。
 このような重合体(B)中のスルフィド結合を構成する硫黄原子の含有量は、例えば、ラマン分光法で定量することができる。
The polymer (B) preferably has a sulfur atom content constituting a sulfide bond in the polymer of 2.0 mmol / g or more. More preferably, it is 2.5 mmol / g or more, More preferably, it is 2.7 mmol / g or more. When the content of sulfur atoms constituting the sulfide bond in the polymer (B) is less than 2.0 mmol / g, the effect of suppressing deterioration of the electrolyte membrane during battery power generation or water decomposition may not be sufficient.
The polymer (B) preferably has a sulfur atom content constituting a sulfide bond in the polymer of 10.0 mmol / g or less.
Content of the sulfur atom which comprises the sulfide bond in such a polymer (B) can be quantified by a Raman spectroscopy, for example.
 前記重合体(B)は、有機溶媒に可溶な重合体である。ここで、「有機溶媒に可溶な重合体」とは、有機溶媒1L中に、10g以上溶ける重合体であることが好ましく、20g以上溶ける重合体であることがより好ましい。有機溶媒としては下記の通り例示できるが、特に、N-メチル-2-ピロリドン(以下NMP)/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒1L中に、10g以上溶ける重合体であることが好ましく、20g以上溶ける重合体であることがより好ましい。
 重合体(B)は、有機溶媒に可溶であるため、簡便な製造方法で電解質膜を作製することが可能であり、前記重合体(A)に対する相溶性(分散性)が良好であるため好ましい。
The polymer (B) is a polymer soluble in an organic solvent. Here, the “polymer soluble in an organic solvent” is preferably a polymer that is soluble in 10 g or more in 1 L of an organic solvent, and more preferably a polymer that is soluble in 20 g or more. Examples of the organic solvent can be exemplified as follows. Particularly, a polymer that can be dissolved in an amount of 10 g or more in 1 L of a mixed solvent of N-methyl-2-pyrrolidone (hereinafter NMP) / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). It is preferable that the polymer is soluble in 20 g or more.
Since the polymer (B) is soluble in an organic solvent, it is possible to produce an electrolyte membrane by a simple production method and the compatibility (dispersibility) with the polymer (A) is good. preferable.
 前記有機溶媒としては、特に制限されないが、例えば、NMP、N,N-ジメチルホルムアミド、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジメチル尿素、ジメチルイミダゾリジノン、アセトニトリルなどの非プロトン系極性溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒、メタノール、エタノール、プロパノール、iso-プロピルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、1,3-ジオキサン等のエーテル類などが挙げられる。 The organic solvent is not particularly limited, but for example, aprotic systems such as NMP, N, N-dimethylformamide, γ-butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, dimethylurea, dimethylimidazolidinone, and acetonitrile. Polar solvents, chlorinated solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, alcohols such as methanol, ethanol, propanol, iso-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol Alkylene glycol monoalkyl ethers such as monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, acetone, methyl ethyl Tons, ketones such as cyclohexanone, tetrahydrofuran, ethers 1,3-dioxane and the like.
 また、前記重合体(B)は、有機溶媒への溶解性に優れる重合体が得られる等の点から、結晶性を有さない重合体であることが好ましい。
 重合体が結晶性を有するか否かは、例えば、DSC測定における融解ピークの有無で判断することができる。
Moreover, it is preferable that the said polymer (B) is a polymer which does not have crystallinity from the point that the polymer excellent in the solubility to an organic solvent is obtained.
Whether or not the polymer has crystallinity can be determined, for example, by the presence or absence of a melting peak in DSC measurement.
 前記重合体(B)の柳本製作所製、精密融点測定装置(型番:MP―500D)で測定した融点は、80℃以上であることが好ましく、より好ましくは100℃以上であり、さらに好ましくは120℃以上である。重合体(B)の融点が80℃未満であると、電池や水電解装置を高温で作動中に、重合体(B)が電解質膜中で移動しやすくなり、電解質膜外に溶出しやすくなるため、電解質膜の耐久性ならびに発電性能および水電解性能が低下する傾向にある。 The melting point of the polymer (B) measured by Yanagimoto Seisakusho, precision melting point measuring device (model number: MP-500D) is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and still more preferably 120. ℃ or more. When the melting point of the polymer (B) is less than 80 ° C., the polymer (B) is likely to move in the electrolyte membrane while the battery or water electrolysis apparatus is operating at a high temperature, and is easily eluted out of the electrolyte membrane. Therefore, durability of the electrolyte membrane, power generation performance, and water electrolysis performance tend to decrease.
 前記重合体(B)は、前記重合体(A)と前記重合体(B)との質量比が、99.99:0.01~70:30、好ましくは99.95:0.05~75:25、より好ましくは99.9:0.1~80:20、特に好ましくは99.5:0.5~85:15となる量で本発明の電解質膜用組成物に配合することが望ましい。このような範囲で重合体(A)と重合体(B)が含まれていると、良好な耐久性とプロトン伝導性を示す電解質膜が得られる。 The polymer (B) has a mass ratio of the polymer (A) to the polymer (B) of 99.99: 0.01 to 70:30, preferably 99.95: 0.05 to 75. : 25, more preferably 99.9: 0.1 to 80:20, particularly preferably 99.5: 0.5 to 85:15 in an amount of 99.5: 0.5 to 85:15. . When the polymer (A) and the polymer (B) are contained in such a range, an electrolyte membrane exhibiting good durability and proton conductivity can be obtained.
 <金属成分>
 本発明の電解質膜用組成物は、前記重合体(A)および重合体(B)以外に、金属含有化合物および金属イオンからなる群より選ばれる少なくとも1種の金属成分をさらに含んでもよい。
<Metal component>
The electrolyte membrane composition of the present invention may further contain at least one metal component selected from the group consisting of a metal-containing compound and a metal ion in addition to the polymer (A) and the polymer (B).
 前記金属成分としては、過酸化水素分解能を有する成分が好ましく、具体的には酸化還元反応や不均化反応を利用して電池発電中や水分解中に生じ得る過酸化水素を水に変換する能力を有する成分がより好ましい。 As the metal component, a component having hydrogen peroxide decomposability is preferable. Specifically, hydrogen peroxide that can be generated during battery power generation or water decomposition is converted into water by using a redox reaction or a disproportionation reaction. A component having capacity is more preferred.
 前記金属成分としては、スズ(Sn)、アルミニウム(Al)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、ニッケル(Ni)、パラジウム(Pd)、銀(Ag)、セリウム(Ce)、バナジウム(V)、ネオジウム(Nd)、プラセオジウム(Pr)、サマリウム(Sm)、コバルト(Co)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)およびエルビウム(Er)等の金属含有化合物またはこれらの金属イオン等が挙げられる。 Examples of the metal component include tin (Sn), aluminum (Al), manganese (Mn), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), and nickel (Ni). , Palladium (Pd), silver (Ag), cerium (Ce), vanadium (V), neodymium (Nd), praseodymium (Pr), samarium (Sm), cobalt (Co), gadolinium (Gd), terbium (Tb) And metal-containing compounds such as dysprosium (Dy), holmium (Ho) and erbium (Er), or metal ions thereof.
 前記金属含有化合物としては、これらの金属の酸化物が好ましい。
 また、前記金属成分としては、酸化スズやスズイオンが好ましく、これらを含む組成物を用いることで、耐久性に優れる電解質膜が得られる。
As the metal-containing compound, oxides of these metals are preferable.
Moreover, as said metal component, a tin oxide and a tin ion are preferable, and the electrolyte membrane excellent in durability is obtained by using the composition containing these.
 前記金属成分の配合量は、特に制限されないが、本発明の電解質膜用組成物100重量%に対し、好ましくは0.01~30重量%、より好ましくは0.1~25重量%であり、さらに好ましくは1~20重量%である。 The compounding amount of the metal component is not particularly limited, but is preferably 0.01 to 30% by weight, more preferably 0.1 to 25% by weight with respect to 100% by weight of the electrolyte membrane composition of the present invention. More preferably, it is 1 to 20% by weight.
 <溶媒>
 本発明にかかる電解質膜用組成物は、さらに溶媒を含むことが好ましい。本発明の電解質膜用組成物が前記溶媒を含むことで、液状組成物を得ることができる。
<Solvent>
The electrolyte membrane composition according to the present invention preferably further contains a solvent. A liquid composition can be obtained because the composition for electrolyte membrane of this invention contains the said solvent.
 前記溶媒としては、特に制限されないが、前記重合体(A)および前記重合体(B)を溶解できる溶媒であることが好ましく、具体的には、前記有機溶媒などが挙げられる。これらの溶媒は、1種単独で、または2種以上を組み合わせて用いることができる。
 特に重合体(A)および重合体(B)の溶解性や、組成物粘度の面から、NMPが好ましい。
Although it does not restrict | limit especially as said solvent, It is preferable that it is a solvent which can melt | dissolve said polymer (A) and said polymer (B), Specifically, the said organic solvent etc. are mentioned. These solvents can be used alone or in combination of two or more.
In particular, NMP is preferable from the viewpoint of the solubility of the polymer (A) and the polymer (B) and the viscosity of the composition.
 また、前記溶媒として、非プロトン系極性溶媒と他の溶媒との混合物を用いる場合、該混合物の組成は、非プロトン系極性溶媒が、好ましくは25~95質量%、より好ましくは25~90質量%であり、他の溶媒が、好ましくは5~75質量%、より好ましくは10~75質量%(但し、合計は100質量%)である。他の溶媒の配合量が前記範囲内にあると、得られる組成物の粘度を下げる効果に優れる。この場合の非プロトン系極性溶媒と他の溶媒との組み合わせとしては、非プロトン系極性溶媒としてNMP、他の溶媒として幅広い組成範囲で組成物の粘度を下げる効果があるメタノールやメチルエチルケトンが好ましい。 Further, when a mixture of an aprotic polar solvent and another solvent is used as the solvent, the composition of the mixture is preferably 25 to 95% by mass, more preferably 25 to 90% by mass of the aprotic polar solvent. %, And the other solvent is preferably 5 to 75% by mass, more preferably 10 to 75% by mass (provided that the total is 100% by mass). When the blending amount of the other solvent is within the above range, the effect of reducing the viscosity of the resulting composition is excellent. As a combination of the aprotic polar solvent and the other solvent in this case, NMP is preferable as the aprotic polar solvent, and methanol or methyl ethyl ketone is effective as the other solvent in reducing the viscosity of the composition in a wide composition range.
 前記液状組成物中の前記重合体(A)の含有量は、該重合体の分子量にもよるが、好ましくは1~40質量%であり、より好ましくは3~25質量%である。重合体(A)の含有量が1質量%未満では、得られる電解質膜は、外観不良が発生しやすく、また、ピンホールが生成しやすい傾向にある。一方、重合体(A)の含有量が40質量%を超えると、組成物の粘度が高すぎて、該組成物から膜を形成し難い場合があり、また、得られる電解質膜が表面平滑性に欠ける場合がある。 The content of the polymer (A) in the liquid composition is preferably 1 to 40% by mass, more preferably 3 to 25% by mass, although it depends on the molecular weight of the polymer. When the content of the polymer (A) is less than 1% by mass, the obtained electrolyte membrane tends to cause poor appearance and tends to generate pinholes. On the other hand, when the content of the polymer (A) exceeds 40% by mass, the viscosity of the composition may be too high to form a film from the composition, and the obtained electrolyte film may have surface smoothness. May be lacking.
 前記液状組成物の粘度は、前記重合体(A)および(B)の分子量や濃度等にもよるが、好ましくは2,000~100,000mPa・sであり、より好ましくは3,000~50,000mPa・sである。
 液状組成物の粘度が前記範囲にあると、製膜中の組成物の滞留性に優れ、厚みの調整が容易となり、流延法によるフィルム化が容易となるため好ましい。
The viscosity of the liquid composition is preferably 2,000 to 100,000 mPa · s, more preferably 3,000 to 50, although it depends on the molecular weight and concentration of the polymers (A) and (B). 1,000 mPa · s.
When the viscosity of the liquid composition is within the above range, it is preferable because the composition has excellent retention during film formation, the thickness can be easily adjusted, and the film can be easily formed by a casting method.
 前記液状組成物は、前記溶媒中で重合体(A)と重合体(B)とを混合することによって、調製することができる。具体的には、重合体(A)と(B)とを前記溶媒中に同時に溶解または分散させる方法、重合体(A)を前記溶媒中に溶解または分散させた後、重合体(B)をこれに混合することによって調製する方法、または重合体(B)を前記溶媒中に溶解させた後に、重合体(A)を溶解または分散させる方法が挙げられる。 The liquid composition can be prepared by mixing the polymer (A) and the polymer (B) in the solvent. Specifically, a method of simultaneously dissolving or dispersing the polymers (A) and (B) in the solvent, and after dissolving or dispersing the polymer (A) in the solvent, the polymer (B) Examples thereof include a method of preparing by mixing with this, or a method of dissolving or dispersing the polymer (A) after dissolving the polymer (B) in the solvent.
 前記電解質膜用組成物には、前記重合体(A)、重合体(B)および必要により配合される溶媒等以外に、硫酸、リン酸などの無機酸;リン酸ガラス;タングステン酸;リン酸塩水和物;β-アルミナプロトン置換体;プロトン導入酸化物等の無機プロトン伝導体粒子;カルボン酸を含む有機酸;スルホン酸を含む有機酸;ホスホン酸を含む有機酸;適量の水などを配合してもよい。 In the composition for electrolyte membrane, in addition to the polymer (A), the polymer (B) and a solvent blended as necessary, inorganic acids such as sulfuric acid and phosphoric acid; phosphate glass; tungstic acid; phosphoric acid Salt hydrate; β-alumina proton substitution product; inorganic proton conductor particles such as proton-introduced oxide; organic acid containing carboxylic acid; organic acid containing sulfonic acid; organic acid containing phosphonic acid; May be.
 ≪固体高分子電解質膜≫
 本発明の電解質膜は、前記電解質膜用組成物から得られる膜であれば特に制限されないが、前記液状組成物から得られる膜であることが好ましい。
 本発明の電解質膜は、固体高分子型燃料電池用電解質膜として、また、水電解用電解質膜として好適に用いることができ、特に、固体高分子型燃料電池用電解質膜として好適に用いることができる。
≪Solid polymer electrolyte membrane≫
The electrolyte membrane of the present invention is not particularly limited as long as it is a membrane obtained from the electrolyte membrane composition, but is preferably a membrane obtained from the liquid composition.
The electrolyte membrane of the present invention can be suitably used as an electrolyte membrane for a polymer electrolyte fuel cell and as an electrolyte membrane for water electrolysis, and particularly preferably used as an electrolyte membrane for a polymer electrolyte fuel cell. it can.
 本発明の電解質膜は、重合体(A)と重合体(B)とを含むため、電池発電中において劣化しにくく、発電性能および耐久性に優れ、白金を含む電極を用いた場合に、該電解質膜から溶出し得る溶出物による、白金の被毒率が低い。
 また、同様に水電解中において劣化しにくく、水電解性能および耐久性に優れ、白金を含む電極を用いた場合に、該電解質膜から溶出し得る溶出物による、白金の被毒率が低い。
Since the electrolyte membrane of the present invention contains the polymer (A) and the polymer (B), it is difficult to deteriorate during battery power generation, has excellent power generation performance and durability, and when an electrode containing platinum is used, The platinum poisoning rate due to the eluate that can be eluted from the electrolyte membrane is low.
Similarly, it is hardly deteriorated during water electrolysis, is excellent in water electrolysis performance and durability, and when an electrode containing platinum is used, the poisoning rate of platinum due to an eluate that can be eluted from the electrolyte membrane is low.
 本発明の電解質膜(体積0.036cm3)は、80℃の1N硫酸水溶液50mLに100時間浸漬させた後、該電解質膜を除去することで得られる水溶液に、表面積0.785mm2の白金表面を、掃引速度0.01V/s、掃引電位範囲0.05~0.4Vでサイクリックボルタンメトリーを20サイクル測定している間浸漬させた際の白金の被毒率が、好ましくは20%以下、より好ましくは15%以下となる。前記白金の被毒率の下限は、0%であってもよい。
 白金の被毒率が前記範囲にあると、白金を含む電極を用いた場合に、電解質膜と電極との界面付近の白金を不活性化し、電解質膜と電極との界面から離れた所に位置し、電解質膜の劣化に与える影響が少ないと考えられる白金を不活性化させにくい、発電性能および水電解性能ならびに長期安定性にバランス良く優れる固体高分子型燃料電池や水電解装置が得られる。
The electrolyte membrane of the present invention (volume 0.036 cm 3 ) was immersed in 50 mL of 1N sulfuric acid aqueous solution at 80 ° C. for 100 hours, and then the platinum membrane having a surface area of 0.785 mm 2 was added to the aqueous solution obtained by removing the electrolyte membrane. Is poisoned when platinum is immersed while measuring 20 cycles of cyclic voltammetry at a sweep rate of 0.01 V / s and a sweep potential range of 0.05 to 0.4 V, preferably 20% or less. More preferably, it is 15% or less. The lower limit of the platinum poisoning rate may be 0%.
When the platinum poisoning rate is in the above range, when an electrode containing platinum is used, the platinum in the vicinity of the interface between the electrolyte membrane and the electrode is inactivated and located at a location away from the interface between the electrolyte membrane and the electrode. Thus, it is possible to obtain a polymer electrolyte fuel cell and a water electrolysis apparatus that are excellent in balance between power generation performance, water electrolysis performance, and long-term stability, which are difficult to inactivate platinum, which is considered to have little influence on the deterioration of the electrolyte membrane.
 本発明の電解質膜は、該膜の膜厚に対して、少なくとも該電解質膜の表面から30%以内の位置に前記重合体(B)が存在することが好ましい。
 前記重合体(B)は、通常、プロトン伝導性が低いため、発電性能や水電解性能の高い電解質膜を得るには、電解質膜中に含まれる重合体(B)の含有量をできるだけ少なくし、電解質膜の耐久性を向上させることが望まれると考えられる。特に、前述のように重合体(B)は、電解質膜と電極との界面付近の白金を不活性化できればよいため、前記重合体(B)が、電解質膜の膜厚に対して、該膜の表面から30%以内の位置に存在することで、電解質膜中に含まれる重合体(B)の含有量が少なくても、発電性能や水電解性能と長期安定性とにバランス良く優れる電解質膜を得ることができる。
In the electrolyte membrane of the present invention, the polymer (B) is preferably present at least within 30% of the thickness of the membrane from the surface of the membrane.
Since the polymer (B) usually has low proton conductivity, in order to obtain an electrolyte membrane having high power generation performance and high water electrolysis performance, the content of the polymer (B) contained in the electrolyte membrane is reduced as much as possible. It is considered that it is desired to improve the durability of the electrolyte membrane. In particular, as described above, the polymer (B) only needs to be able to inactivate platinum in the vicinity of the interface between the electrolyte membrane and the electrode. Electrolyte membrane excellent in balance between power generation performance, water electrolysis performance and long-term stability even when the content of the polymer (B) contained in the electrolyte membrane is small because it is located within 30% of the surface of Can be obtained.
 さらに電解質膜中に含まれる重合体(B)の含有量を少なくしても、発電性能や水電解性能および長期安定性にバランス良く優れる電解質膜を得ることができる等の点から、本発明の電解質膜は、前記重合体(B)が、該膜の表面付近に偏在することが好ましく、該膜の膜厚に対して、該電解質膜の表面から30%以内の位置のみに存在することがより好ましい。
 前記重合体(B)が、電解質膜の表面付近に偏在する場合には、該膜の表面に近づくにつれ、重合体(B)の濃度がだんだん濃くなっていくような、濃度勾配を有する電解質膜であってもよい。
Furthermore, even if the content of the polymer (B) contained in the electrolyte membrane is reduced, an electrolyte membrane excellent in balance between power generation performance, water electrolysis performance and long-term stability can be obtained. In the electrolyte membrane, the polymer (B) is preferably unevenly distributed in the vicinity of the surface of the membrane, and may be present only at a position within 30% from the surface of the electrolyte membrane with respect to the thickness of the membrane. More preferred.
When the polymer (B) is unevenly distributed near the surface of the electrolyte membrane, the electrolyte membrane has a concentration gradient such that the concentration of the polymer (B) gradually increases as it approaches the surface of the membrane. It may be.
 本発明の電解質膜は、単層の膜であってもよく、多層の積層膜であってもよい。
 なお、積層膜の場合、各層の厚さは任意であり、例えば一方の層を厚く、他方の層を薄くしてもよい。
The electrolyte membrane of the present invention may be a single layer film or a multilayered film.
In the case of a laminated film, the thickness of each layer is arbitrary. For example, one layer may be thick and the other layer may be thin.
 本発明の電解質膜は、電解質膜の耐久性とプロトン伝導性の観点から、膜-電極接合体を作製した際に電極に接する片面、または両面の表面付近に重合体(B)を含有し、それ以外の部分には重合体(B)を含まない電解質膜であってもよい。
 なお、膜-電極接合体を作製した際に電極に接する片面表面付近のみに重合体(B)を含有し、それ以外の部分には重合体(B)を含まない場合には、電解質膜の劣化をより抑制するために、該電極はカソード電極であることが好ましい。
From the viewpoint of durability and proton conductivity of the electrolyte membrane, the electrolyte membrane of the present invention contains the polymer (B) on one side or both surfaces in contact with the electrode when the membrane-electrode assembly is produced, The electrolyte membrane which does not contain a polymer (B) in the part other than that may be sufficient.
When the membrane-electrode assembly is prepared, the polymer (B) is contained only in the vicinity of one surface in contact with the electrode, and the other portion does not contain the polymer (B). In order to further suppress deterioration, the electrode is preferably a cathode electrode.
 <固体高分子電解質膜の製造方法>
 本発明にかかる電解質膜は、例えば、前記電解質膜用組成物を、ダイコート、スプレーコート、ナイフコート、ロールコート、スピンコート、グラビアコートなどの公知の方法により基体上に塗布する工程を含むことにより、製造することができる。具体的には、前記電解質膜用組成物を基体上に塗布した後、塗布した組成物を乾燥させ、必要により、得られる膜を基体から剥離することで、本発明の電解質膜を得ることができる。
 本発明の電解質膜用組成物は、重合体(A)と重合体(B)とを含有するため、上記公知の方法で容易に電解質膜を製造することができる。
<Method for producing solid polymer electrolyte membrane>
The electrolyte membrane according to the present invention includes, for example, a step of applying the electrolyte membrane composition onto a substrate by a known method such as die coating, spray coating, knife coating, roll coating, spin coating, or gravure coating. Can be manufactured. Specifically, the electrolyte membrane of the present invention can be obtained by applying the electrolyte membrane composition onto a substrate, drying the applied composition, and peeling the resulting film from the substrate, if necessary. it can.
Since the composition for electrolyte membrane of this invention contains a polymer (A) and a polymer (B), an electrolyte membrane can be easily manufactured with the said well-known method.
 前記基体としては、通常の溶液を塗布する際に用いられる基体であれば特に限定されず、例えば、樹脂製、金属製、ガラス製などの基体が挙げられ、好ましくは、ポリエチレンテレフタレート(PET)フィルムなどの熱可塑性樹脂からなる基体が挙げられる。 The substrate is not particularly limited as long as it is a substrate used when a normal solution is applied, and examples thereof include a substrate made of resin, metal, glass, and preferably a polyethylene terephthalate (PET) film. And a base made of a thermoplastic resin.
 前記乾燥は、50~150℃の温度で、0.1~10時間保持することにより行うことが好ましい。
 なお、前記乾燥は、1段階で行ってもよく、2段階以上、つまり、予め予備乾燥した後本乾燥してもよい。
 また、前記乾燥は、必要に応じて、窒素雰囲気下等の不活性ガス雰囲気下、もしくは減圧下にて行ってもよい。
The drying is preferably performed by holding at a temperature of 50 to 150 ° C. for 0.1 to 10 hours.
Note that the drying may be performed in one step, or may be performed in two or more steps, that is, pre-drying after preliminary drying.
Moreover, you may perform the said drying in inert gas atmosphere, such as nitrogen atmosphere, or under reduced pressure as needed.
 前記予備乾燥は、好ましくは30~100℃、より好ましくは50~100℃で、好ましくは10~180分間、より好ましくは15~60分間保持することにより行うことができる。
 また、前記本乾燥は、好ましくは、前記予備乾燥温度以上の温度、より好ましくは50~150℃の温度で、好ましくは0.1~10時間保持することにより行うことができる。
The preliminary drying can be performed by holding at 30 to 100 ° C., more preferably 50 to 100 ° C., preferably 10 to 180 minutes, more preferably 15 to 60 minutes.
Further, the main drying can be carried out preferably by holding at a temperature not lower than the preliminary drying temperature, more preferably at a temperature of 50 to 150 ° C., and preferably for 0.1 to 10 hours.
 前記予備乾燥の後または本乾燥の後に、得られた乾燥後の膜を水に浸漬すると、乾燥後の膜中の有機溶媒を水と置換することができ、得られる電解質膜中の残留有機溶媒量を低減することができる。このようにして得られる電解質膜の残存有機溶媒量は、好ましくは5質量%以下である。また、浸漬条件によっては、得られる膜の残存有機溶媒量を1質量%以下とすることができる。
 このような条件としては、例えば、乾燥後の膜1重量部に対する水の使用量が50重量部以上であり、浸漬する際の水の温度が10~60℃、浸漬時間が10分~10時間である。
When the obtained dried film is immersed in water after the preliminary drying or after the main drying, the organic solvent in the dried film can be replaced with water, and the residual organic solvent in the obtained electrolyte film The amount can be reduced. The amount of residual organic solvent in the electrolyte membrane thus obtained is preferably 5% by mass or less. Depending on the immersion conditions, the amount of the remaining organic solvent in the obtained film can be 1% by mass or less.
As such conditions, for example, the amount of water used is 50 parts by weight or more with respect to 1 part by weight of the dried film, the temperature of the water during immersion is 10 to 60 ° C., and the immersion time is 10 minutes to 10 hours. It is.
 前記のように乾燥後の膜を水に浸漬した後、さらに、30~100℃、好ましくは50~80℃で、10~180分間、好ましくは15~60分間乾燥し、次いで、50~150℃で、好ましくは500mmHg~0.1mmHgの減圧下、0.5~24時間真空乾燥することにより、電解質膜を得ることが望ましい。 After the dried membrane is immersed in water as described above, it is further dried at 30 to 100 ° C., preferably 50 to 80 ° C. for 10 to 180 minutes, preferably 15 to 60 minutes, and then 50 to 150 ° C. Thus, it is preferable to obtain an electrolyte membrane by vacuum drying under reduced pressure of 500 mmHg to 0.1 mmHg for 0.5 to 24 hours.
 前記積層膜(2層)を得る方法としては、組成物(I)を公知の方法で基体上に塗布し、乾燥を経ずにまたは必要に応じて乾燥させて層を形成した後、該層の上に組成物(II)を塗布し、乾燥させて層を形成する方法が挙げられる。3層以上の積層膜を得る場合には、さらに、得られた層の上に他の組成物を塗布し、乾燥させればよい。
 また、組成物(I)を公知の方法で基体上に塗布し、必要により予備乾燥させた後、その上に、予め組成物(II)などから形成した膜を配置し、熱プレスなどをすることにより、積層膜を得ることもできる。
As a method for obtaining the laminated film (two layers), the composition (I) is applied onto a substrate by a known method, and after drying or as necessary, a layer is formed, and then the layer is formed. The method of apply | coating composition (II) on top and drying and forming a layer is mentioned. In the case of obtaining a laminated film having three or more layers, another composition may be applied on the obtained layer and dried.
In addition, the composition (I) is applied onto a substrate by a known method and, if necessary, pre-dried, a film previously formed from the composition (II) or the like is placed thereon and subjected to hot pressing or the like. Thus, a laminated film can also be obtained.
 前記組成物(I)、組成物(II)、および、さらに用いられうる他の組成物としては、層を形成することができ、本発明の効果を損なわない限り特に制限されないが、前記重合体(A)を含む組成物、または前記本発明の電解質膜用組成物が好ましい。組成物(I)、組成物(II)、および、さらに用いられうる他の組成物のうち、少なくとも1つの組成物は、前記本発明の電解質膜用組成物である。 The composition (I), the composition (II), and other compositions that can be further used are not particularly limited as long as they can form a layer and do not impair the effects of the present invention. The composition containing (A) or the composition for electrolyte membrane of the present invention is preferred. Among the composition (I), the composition (II), and other compositions that can be further used, at least one composition is the electrolyte membrane composition of the present invention.
 なお、前記組成物(I)、組成物(II)、および、さらに用いられうる他の組成物としては、隣り合う層を形成する組成物の組成(配合成分および/または配合量)が異なることが好ましく、隣り合わない層を形成する組成物の組成は、同一であっても異なってもよい。 The composition (I), composition (II), and other compositions that can be further used differ in the composition (formulation component and / or amount) of the composition forming the adjacent layers. Are preferred, and the composition of the composition forming the non-adjacent layers may be the same or different.
 このような方法によれば、例えば、前記組成物(I)として、本発明の電解質膜用組成物を用い、前記組成物(II)として、前記重合体(A)を含み前記重合体(B)を含まない組成物を用いることで、前記重合体(B)が、少なくとも膜の表面から該膜の厚みに対して30%以内の位置に存在する、または偏在した電解質膜を容易に製造することができる。 According to such a method, for example, the composition for an electrolyte membrane of the present invention is used as the composition (I), and the polymer (B) includes the polymer (A) as the composition (II). ) -Containing composition, the polymer (B) is easily produced at least at a position within 30% of the thickness of the membrane from the membrane surface or an unevenly distributed electrolyte membrane. be able to.
 また、多孔質基材やシート状の繊維質物質を用いることで、補強された固体高分子電解質膜を製造することもできる。
 補強された固体高分子電解質膜を製造する方法としては、たとえば、前記液状組成物を多孔質基材やシート状の繊維質物質に含浸させる方法、本発明の電解質膜用組成物を多孔質基材やシート状の繊維質物質に塗布する方法、ならびに、予め本発明の電解質膜用組成物から膜を形成した後、多孔質基材やシート状の繊維質物質に前記膜を重ねて熱プレスする方法などが挙げられる。
A reinforced solid polymer electrolyte membrane can also be produced by using a porous substrate or a sheet-like fibrous material.
Examples of the method for producing the reinforced solid polymer electrolyte membrane include a method of impregnating the liquid composition into a porous substrate or a sheet-like fibrous material, and a method for impregnating the electrolyte membrane composition of the present invention with a porous substrate. A method of applying to a material or a sheet-like fibrous material, and after forming a film from the electrolyte membrane composition of the present invention in advance, the membrane is laminated on a porous substrate or a sheet-like fibrous material, and hot pressing The method of doing is mentioned.
 前記多孔質基材としては、厚さ方向に対して貫通する多数の細孔または空隙を有するものであることが好ましく、例えば、各種樹脂からなる有機多孔質基材、ガラス、アルミナなど金属酸化物や金属自体から構成される無機多孔質基材等が挙げられる。
 前記多孔質基材としては、厚さ方向に対してほぼ平行な方向に貫通している貫通孔を多数個有するものであってもよい。
The porous substrate preferably has a large number of pores or voids penetrating in the thickness direction. For example, organic porous substrates made of various resins, metal oxides such as glass and alumina And inorganic porous base materials composed of metal and the metal itself.
The porous substrate may have a large number of through holes penetrating in a direction substantially parallel to the thickness direction.
 このような、多孔質基材としては、例えば、特開2008-119662号公報、特開2007-154153号公報、特開平8-20660号公報、特開平8-20660号公報、特開2006-120368号公報、特開2004-171994号公報、特開2009-64777号公報に開示されたものを使用することができる。 Examples of such a porous substrate include, for example, JP 2008-119662, JP 2007-154153, JP 8-20660, JP 8-20660, JP 2006-120368. For example, those disclosed in Japanese Patent Laid-Open No. 2004-171994 and Japanese Patent Laid-Open No. 2009-64777 can be used.
 前記多孔質基材としては、有機多孔質基材が好ましい。また、前記多孔質基材としては、具体的には、ポリテトラフルオロエチレン、高分子量ポリエチレン、架橋型ポリエチレン、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリイミド、ポリアクリロトリル、ポリアミドイミド、ポリエーテルイミド、ポリエーテルサルホン、および、ガラスからなる群より選ばれる1種以上からなる基材が好ましい。なお、ポリオレフィンとしては、高分子量ポリエチレン、架橋型ポリエチレン、ポリエチレンなどが望ましい。 As the porous substrate, an organic porous substrate is preferable. Specific examples of the porous substrate include polyolefins such as polytetrafluoroethylene, high molecular weight polyethylene, cross-linked polyethylene, polyethylene and polypropylene, polyimide, polyacrylotolyl, polyamideimide, polyetherimide, and polyether. A base material composed of one or more selected from the group consisting of sulfone and glass is preferred. The polyolefin is preferably high molecular weight polyethylene, cross-linked polyethylene, polyethylene or the like.
 前記多孔質基材の市販品としては、延伸多孔質ポリテトラフルオロエチレンであるGORE-SELECT(ジャパンゴアテックス製)や高分子量ポリエチレン製多孔質基材(Lydall社製、SOLUPOR(登録商標))などが挙げられる。 Examples of commercially available porous base materials include stretched porous polytetrafluoroethylene GORE-SELECT (manufactured by Japan Gore-Tex) and high molecular weight polyethylene porous base materials (manufactured by Lydall, SOLUPOR (registered trademark)). Is mentioned.
 前記多孔質基材としては、前記重合体(A)と接触するため、ポリテトラフルオロエチレン、高分子量ポリエチレン、架橋型ポリエチレン、ポリエチレン等のポリオレフィンからなる基材が好ましい。また必要に応じて、ポリオレフィン製基材は親水化処理されていてもよい。 The porous base material is preferably a base material made of polyolefin such as polytetrafluoroethylene, high molecular weight polyethylene, cross-linked polyethylene, polyethylene and the like because it contacts the polymer (A). If necessary, the polyolefin substrate may be hydrophilized.
 親水化処理は、アルカリ金属溶液を使用して、多孔質を構成するポリオレフィンを変性させる処理であり、かかる処理により、多孔質基材表面が変性され、親水性が付与される。なお、変性部分は褐色化することもあるので、褐色化した部分を過酸化水素や次亜塩素酸ソーダ、オゾンなどにより酸化分解して除去してもよい。このような親水化処理を化学エッチングということもある。
 前記アルカリ金属溶液としては、メチルリチウム、金属ナトリウム-ナフタレン錯体、金属ナトリウム-アントラセン錯体などをテトラヒドロフラン等の有機溶剤に溶かした溶液、金属ナトリウム-液体アンモニア溶液などが挙げられる。
The hydrophilization treatment is a treatment that modifies the polyolefin constituting the porous using an alkali metal solution, and this treatment modifies the surface of the porous substrate and imparts hydrophilicity. Since the denatured portion may be browned, the browned portion may be removed by oxidative decomposition with hydrogen peroxide, sodium hypochlorite, ozone, or the like. Such hydrophilic treatment is sometimes referred to as chemical etching.
Examples of the alkali metal solution include a solution obtained by dissolving methyl lithium, a metal sodium-naphthalene complex, a metal sodium-anthracene complex, and the like in an organic solvent such as tetrahydrofuran, a metal sodium-liquid ammonia solution, and the like.
 前記多孔質基材の空孔率や厚みなどは、本発明の効果を損なわない限り、特に制限されない。 The porosity and thickness of the porous substrate are not particularly limited as long as the effects of the present invention are not impaired.
 また、シート状の繊維質物質としては、不織布、織布、編布等が挙げられる。織布を構成する繊維としては、ポリエチレン繊維、含フッ素重合体強化繊維、ポリイミド繊維、ポリフェニレンスルフィドスルホン繊維、ポリスルホン繊維、ガラス繊維等が挙げられるが、これらに限定されるものではない。
 不織布を構成する繊維としては、例えば、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリ塩化ビニル系樹脂、ポリエステル系樹脂、ポリアクリロニトリル系樹脂、ポリオレフィン系樹脂(例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂)、ポリスチレン系樹脂(例えば、結晶性ポリスチレン、非晶性ポリスチレン)、芳香族ポリアミド系樹脂またはポリウレタン系樹脂などの有機成分、あるいは、ガラス、炭素、チタン酸カリウム、炭化珪素、窒化珪素、酸化亜鉛、ホウ酸アルミニウム、ワラストナイトなどの無機成分から構成される繊維が使用できる。
Moreover, as a sheet-like fibrous substance, a nonwoven fabric, a woven fabric, a knitted fabric, etc. are mentioned. Examples of the fibers constituting the woven fabric include, but are not limited to, polyethylene fibers, fluoropolymer reinforced fibers, polyimide fibers, polyphenylene sulfide sulfone fibers, polysulfone fibers, and glass fibers.
Examples of the fibers constituting the nonwoven fabric include polyamide resins, polyvinyl alcohol resins, polyvinylidene chloride resins, polyvinyl chloride resins, polyester resins, polyacrylonitrile resins, polyolefin resins (for example, polyethylene resins, Polypropylene resin), polystyrene resin (for example, crystalline polystyrene, amorphous polystyrene), aromatic polyamide resin or polyurethane resin, or glass, carbon, potassium titanate, silicon carbide, silicon nitride Further, fibers composed of inorganic components such as zinc oxide, aluminum borate, and wollastonite can be used.
 前記シート状の繊維質物質の厚みなどは、本発明の効果を損なわない限り、特に制限されない。 The thickness of the sheet-like fibrous substance is not particularly limited as long as the effects of the present invention are not impaired.
 本発明の電解質膜は、その乾燥膜厚が、好ましくは5~200μm、より好ましくは10~150μmである。本発明の電解質膜が積層膜や補強された固体高分子電解質膜である場合でも、積層膜の厚みは、この範囲にあることが好ましい。 The electrolyte membrane of the present invention has a dry film thickness of preferably 5 to 200 μm, more preferably 10 to 150 μm. Even when the electrolyte membrane of the present invention is a laminated membrane or a reinforced solid polymer electrolyte membrane, the thickness of the laminated membrane is preferably within this range.
 ≪膜-電極接合体≫
 本発明に係る膜-電極接合体は、ガス拡散層、触媒層、本発明の電解質膜、触媒層およびガス拡散層がこの順で積層された膜-電極接合体である。具体的には、本発明の電解質膜の一方の面にはカソード電極用の触媒層、他方の面にはアノード電極用の触媒層を設け、さらにカソード電極用およびアノード電極用の各触媒層の電解質膜と反対側に接して、カソード電極側およびアノード電極側にそれぞれガス拡散層を設けたものであることが好ましい。
 ガス拡散層、触媒層としては、公知のものを特に制限なく使用可能である。
≪Membrane-electrode assembly≫
The membrane-electrode assembly according to the present invention is a membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, an electrolyte membrane of the present invention, a catalyst layer, and a gas diffusion layer are laminated in this order. Specifically, a catalyst layer for the cathode electrode is provided on one surface of the electrolyte membrane of the present invention, a catalyst layer for the anode electrode is provided on the other surface, and each of the catalyst layers for the cathode electrode and the anode electrode is further provided. It is preferable that a gas diffusion layer is provided on each of the cathode electrode side and the anode electrode side in contact with the side opposite to the electrolyte membrane.
Known gas diffusion layers and catalyst layers can be used without particular limitation.
 前記ガス拡散層としては、多孔性基材または多孔性基材と微多孔層との積層構造体などが挙げられる。ガス拡散層が多孔性基材と微多孔層の積層構造体からなる場合には、微多孔層が触媒層に接することが好ましい。また、前記ガス拡散層は、撥水性を付与するために含フッ素重合体を含んでいることが好ましい。 Examples of the gas diffusion layer include a porous substrate or a laminated structure of a porous substrate and a microporous layer. When the gas diffusion layer is composed of a laminated structure of a porous base material and a microporous layer, the microporous layer is preferably in contact with the catalyst layer. The gas diffusion layer preferably contains a fluoropolymer in order to impart water repellency.
 前記触媒層は、触媒、イオン交換樹脂などから構成される。
 触媒としては、白金、パラジウム、金、ルテニウム、イリジウム、コバルト、鉄などの金属触媒が挙げられ、白金、パラジウム、金、ルテニウム、イリジウムなどの貴金属触媒が好ましく用いられる。また、金属触媒は、合金や混合物などのように、2種以上の元素を含むものであってもよい。このような金属触媒は、通常、高比表面積カーボン微粒子に担持したものを用いることができる。
The catalyst layer is composed of a catalyst, an ion exchange resin, or the like.
Examples of the catalyst include metal catalysts such as platinum, palladium, gold, ruthenium, iridium, cobalt and iron, and noble metal catalysts such as platinum, palladium, gold, ruthenium and iridium are preferably used. The metal catalyst may contain two or more elements such as an alloy or a mixture. As such a metal catalyst, a catalyst supported on carbon particles having a high specific surface area can be used.
 前記イオン交換樹脂は、前記触媒を結着させるバインダー成分として働くとともに、アノード極では触媒上の反応によって発生したイオンを電解質膜へ効率的に供給し、また、カソード極では電解質膜から供給されたイオンを触媒へ効率的に供給する物質であることが好ましい。 The ion exchange resin serves as a binder component for binding the catalyst, and efficiently supplies ions generated by a reaction on the catalyst to the electrolyte membrane at the anode electrode, and is supplied from the electrolyte membrane at the cathode electrode. A substance that efficiently supplies ions to the catalyst is preferable.
 また、前記イオン交換樹脂としては、触媒層内のプロトン伝導性を向上させるためにプロトン交換基を有するポリマーが好ましい。
 このようなポリマーに含まれるプロトン交換基としては、スルホン酸基、カルボン酸基、リン酸基などがあるが特に限定されるものではない。
The ion exchange resin is preferably a polymer having a proton exchange group in order to improve proton conductivity in the catalyst layer.
Proton exchange groups contained in such polymers include sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups, but are not particularly limited.
 前記イオン交換樹脂は、公知のものを特に制限なく使用可能であり、例えば、Nafionが挙げられ、前記重合体(A)をイオン交換樹脂として使用してもよく、さらにプロトン交換基を有する、フッ素原子を含むポリマー、エチレンやスチレンなどから得られる他のポリマー、これらの共重合体やブレンドであっても構わない。 As the ion exchange resin, known ones can be used without particular limitation, and examples thereof include Nafion, the polymer (A) may be used as an ion exchange resin, and further a fluorine having a proton exchange group. It may be a polymer containing atoms, another polymer obtained from ethylene or styrene, a copolymer or a blend thereof.
 前記触媒層は、必要に応じてさらに、炭素繊維、イオン交換基を有しない樹脂等の添加剤を含んでもよい。この添加剤としては撥水性の高い成分であることが好ましく、例えば、含フッ素共重合体、シランカップリング剤、シリコーン樹脂、ワックス、ポリホスファゼンなどを挙げることができるが、好ましくは含フッ素共重合体である。 The catalyst layer may further contain additives such as carbon fiber and a resin not having an ion exchange group, if necessary. This additive is preferably a component having high water repellency, and examples thereof include a fluorine-containing copolymer, a silane coupling agent, a silicone resin, a wax, and polyphosphazene. It is a coalescence.
 ≪固体高分子型燃料電池≫
 本発明に係る固体高分子型燃料電池は、前記膜-電極接合体を有する。このため、本発明に係る固体高分子型水素燃料電池は、特に耐久性に優れ、発電性能の経時的な低下が抑制され、長期にわたって安定な発電が可能である。
≪Solid polymer fuel cell≫
The polymer electrolyte fuel cell according to the present invention has the membrane-electrode assembly. Therefore, the polymer electrolyte hydrogen fuel cell according to the present invention is particularly excellent in durability, suppresses a decrease in power generation performance with time, and enables stable power generation over a long period of time.
 本発明に係る固体高分子型燃料電池は、具体的には、少なくとも一つの膜-電極接合体およびそのガス拡散層の両外側に位置する、セパレータを含む少なくとも一つの電気発生部;燃料を前記電気発生部に供給する燃料供給部;および酸化剤を前記電気発生部に供給する酸化剤供給部を含む固体高分子型燃料電池であって、膜-電極接合体が前記のものであることが好ましい。 Specifically, the polymer electrolyte fuel cell according to the present invention includes at least one electricity generating unit including a separator and located on both outer sides of at least one membrane-electrode assembly and its gas diffusion layer; A polymer electrolyte fuel cell comprising: a fuel supply unit for supplying electricity to the electricity generation unit; and an oxidant supply unit for supplying oxidant to the electricity generation unit, wherein the membrane-electrode assembly is as described above preferable.
 前記セパレータとしては、通常の固体高分子型燃料電池に使用されるものを用いることができる。具体的にはカーボンタイプのセパレータ、金属タイプのセパレータなどを用いることができる。 As the separator, those used in ordinary solid polymer fuel cells can be used. Specifically, a carbon type separator, a metal type separator, or the like can be used.
 また、固体高分子型燃料電池を構成する部材としては、公知のものを特に制限なく使用することが可能である。本発明の固体高分子型燃料電池は単セルであってもよいし、複数の単セルを直列に繋いだスタックセルであってもよい。スタックの方法としては公知の方法を用いることができる。具体的には単セルを平面状に並べた平面スタッキングであってもよいし、燃料または酸化剤の流路が、セパレータの裏表面にそれぞれ形成されているセパレータを介して単セルを積み重ねるバイポーラースタッキングであってもよい。 Further, as a member constituting the polymer electrolyte fuel cell, a known member can be used without any particular limitation. The polymer electrolyte fuel cell of the present invention may be a single cell or a stack cell in which a plurality of single cells are connected in series. A known method can be used as the stacking method. Specifically, it may be planar stacking in which single cells are arranged in a plane, or bipolar in which single cells are stacked via separators each having a fuel or oxidant flow path formed on the back surface of the separator. Stacking may be used.
 ≪水電解セル≫
 本発明に係る水電解セルは、触媒層、本発明の電解質膜および触媒層がこの順で積層された積層体を含む。
 前記触媒層としては、公知のものを特に制限なく使用可能であり、具体的には、前記膜-電極接合体で説明した触媒層と同様の層などが挙げられる。
≪Water electrolysis cell≫
The water electrolysis cell according to the present invention includes a laminate in which the catalyst layer, the electrolyte membrane of the present invention, and the catalyst layer are laminated in this order.
As the catalyst layer, known ones can be used without particular limitation, and specific examples include the same layers as the catalyst layer described in the membrane-electrode assembly.
 ≪水電解装置≫
 本発明に係る水電解装置は、前記水電解セルを有する。
≪Water electrolysis equipment≫
The water electrolysis apparatus according to the present invention has the water electrolysis cell.
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
 以下合成例で得られた重合体の評価は以下のようにして行なった。 Hereinafter, the polymer obtained in the synthesis example was evaluated as follows.
 〔イオン交換基を有する重合体のイオン交換容量〕
 下記合成例1および2で得られた重合体から試料膜を作成し、該試料膜を脱イオン水に浸漬することで、該膜中に残存している酸を完全に除去した後、重合体1mg当たり2mLの2N食塩水に浸漬してイオン交換させることにより塩酸水溶液を調製した。この塩酸水溶液を、フェノールフタレインを指示薬として、0.001N水酸化ナトリウムの標準水溶液にて中和滴定した。イオン交換後の膜を脱イオン水で洗浄し、110℃で2時間真空乾燥させて膜の乾燥重量を測定した。下記式に示すように、水酸化ナトリウムの滴定量と膜の乾燥重量とから、スルホン酸基の当量(以下「イオン交換容量」という。)を求めた。
 イオン交換容量(meq/g)=水酸化ナトリウムの滴定量(mmol)/膜の乾燥重量(g)
[Ion exchange capacity of a polymer having an ion exchange group]
A sample film is prepared from the polymers obtained in Synthesis Examples 1 and 2 below, and the sample film is immersed in deionized water to completely remove the acid remaining in the film. A hydrochloric acid aqueous solution was prepared by immersing in 2 mL of 2N saline per 1 mg to exchange ions. This hydrochloric acid aqueous solution was neutralized with a standard aqueous solution of 0.001N sodium hydroxide using phenolphthalein as an indicator. The membrane after ion exchange was washed with deionized water and vacuum dried at 110 ° C. for 2 hours, and the dry weight of the membrane was measured. As shown in the following formula, an equivalent amount of sulfonic acid groups (hereinafter referred to as “ion exchange capacity”) was determined from the titration amount of sodium hydroxide and the dry weight of the membrane.
Ion exchange capacity (meq / g) = titration amount of sodium hydroxide (mmol) / dry weight of membrane (g)
 〔分子量の測定〕
 分子量の測定は測定する重合体に応じて以下の2種類の方法を用いた。
 測定する重合体をN-メチル-2-ピロリドン緩衝溶液(以下「NMP緩衝溶液」という。)に溶解し、溶離液としてNMP緩衝溶液を、装置としてTOSOH HLC-8220(東ソー(株)製)を、カラムとしてTSKgel α-M(東ソー(株)製)を用いたゲルパーミエーションクロマトグラフィー(GPC)によって、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を求めた。
 NMP緩衝溶液は、NMP(3L)/リン酸(3.3mL)/臭化リチウム(7.83g)の比率で調製した。
(Measurement of molecular weight)
The molecular weight was measured using the following two methods depending on the polymer to be measured.
The polymer to be measured is dissolved in an N-methyl-2-pyrrolidone buffer solution (hereinafter referred to as “NMP buffer solution”), the NMP buffer solution is used as an eluent, and TOSOH HLC-8220 (manufactured by Tosoh Corporation) is used as an apparatus. The number average molecular weight (Mn) and the weight average molecular weight (Mw) in terms of polystyrene were determined by gel permeation chromatography (GPC) using TSKgel α-M (manufactured by Tosoh Corporation) as a column.
The NMP buffer solution was prepared at a ratio of NMP (3 L) / phosphoric acid (3.3 mL) / lithium bromide (7.83 g).
 測定する重合体をテトラヒドロフラン(THF)に溶解し、溶離液としてTHFを、装置としてTOSOH HLC-8220(東ソー(株)製)を、カラムとしてTSKgel α-M(東ソー(株)製)を用いたゲルパーミエーションクロマトグラフィー(GPC)によって、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を求めた。 The polymer to be measured was dissolved in tetrahydrofuran (THF), THF was used as an eluent, TOSOH HLC-8220 (manufactured by Tosoh Corporation) was used as an apparatus, and TSKgel α-M (manufactured by Tosoh Corporation) was used as a column. The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene were determined by gel permeation chromatography (GPC).
 〔重合体(B)のDSC測定〕
 Thermo plus DSC8230(リガク(株)製)を用いて、下記合成例で得られた重合体(B)1mgを封入したアルミパンを20℃から300℃まで窒素雰囲気下、5℃/minの速度で昇温し、DSC曲線の吸熱ピークの有無を確認した。
[DSC measurement of polymer (B)]
Using Thermo plus DSC8230 (manufactured by Rigaku Corporation), an aluminum pan encapsulating 1 mg of the polymer (B) obtained in the following synthesis example from 20 ° C. to 300 ° C. in a nitrogen atmosphere at a rate of 5 ° C./min. The temperature was raised and the presence or absence of an endothermic peak in the DSC curve was confirmed.
 [イオン交換基を有する重合体の合成]
 [合成例1]
 (1-1)親水性ユニットの合成
 攪拌機を備えた1Lのフラスコに、ネオペンチルアルコール(45.30g、514mmol)のピリジン(300mL)溶液を加え、続いて3,5-ジクロロベンゼンスルホニルクロライド(114.65g、467mmol)を、少量ずつ攪拌しながら15分かけて添加した。この間、反応温度は18~20℃に保った。反応混合物を、氷浴中で冷却しながらさらに30分攪拌した後、氷冷した10% HCl水溶液(1600mL)に添加した。水に不溶の成分を700mLの酢酸エチルで抽出し、1N HCl水溶液で2回(各700mL)洗浄し、次いで、5% NaHCO3水溶液で2回(各700mL)洗浄し、その後硫酸マグネシウムで乾燥させた。回転乾燥機を用いて溶媒を除去し、残渣を500mLのメタノールで再結晶させた。その結果、下記式(13)で表される3,5-ジクロロベンゼンスルホン酸ネオペンチルの光沢のある無色結晶を収量105.98g、収率76%で得た。
[Synthesis of a polymer having an ion exchange group]
[Synthesis Example 1]
(1-1) Synthesis of hydrophilic unit To a 1 L flask equipped with a stirrer was added a solution of neopentyl alcohol (45.30 g, 514 mmol) in pyridine (300 mL), followed by 3,5-dichlorobenzenesulfonyl chloride (114 .65 g, 467 mmol) was added in small portions over 15 minutes with stirring. During this time, the reaction temperature was kept at 18-20 ° C. The reaction mixture was stirred for an additional 30 minutes while cooling in an ice bath and then added to ice-cold 10% aqueous HCl (1600 mL). Insoluble components in water were extracted with 700 mL of ethyl acetate, washed twice with 1N aqueous HCl (700 mL each), then twice with 5% aqueous NaHCO 3 (700 mL each) and then dried over magnesium sulfate. It was. The solvent was removed using a rotary dryer and the residue was recrystallized with 500 mL of methanol. As a result, shiny colorless crystals of neopentyl 3,5-dichlorobenzenesulfonate represented by the following formula (13) were obtained in a yield of 105.98 g and a yield of 76%.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 (1-2)スルホン酸基を有する重合体の合成
 添加系:前記式(13)で表される化合物29.15g(98.09mmol)およびトリフェニルホスフィン1.65g(6.28mmol)の混合物中に、脱水したジメチルアセトアミド(DMAc)71mLを窒素下で加えて添加系溶液を調製した。
(1-2) Synthesis of polymer having sulfonic acid group Addition system: In a mixture of 29.15 g (98.09 mmol) of the compound represented by the formula (13) and 1.65 g (6.28 mmol) of triphenylphosphine In addition, 71 mL of dehydrated dimethylacetamide (DMAc) was added under nitrogen to prepare an addition system solution.
 反応系:2,5-ジクロロベンゾフェノン23.03g(91.71mmol)、2,6-ジクロロベンゾニトリル1.75g(10.19mmol)、トリフェニルホスフィン1.92g(7.34mmol)および亜鉛15.99g(244.57mmol)の混合物中に、脱水したDMAc66mLを窒素下で加えた。この系を撹拌下に60℃まで加熱した後、ビス(トリフェニルホスフィン)ニッケルジクロリド1.60g(2.45mmol)を加えて重合を開始し、80℃で20分間撹拌した。反応に伴い発熱や粘度上昇が観察された。 Reaction system: 2,5-dichlorobenzophenone 23.03 g (91.71 mmol), 2,6-dichlorobenzonitrile 1.75 g (10.19 mmol), triphenylphosphine 1.92 g (7.34 mmol) and zinc 15.99 g In a mixture of (244.57 mmol), 66 mL of dehydrated DMAc was added under nitrogen. This system was heated to 60 ° C. with stirring, and then 1.60 g (2.45 mmol) of bis (triphenylphosphine) nickel dichloride was added to initiate polymerization, followed by stirring at 80 ° C. for 20 minutes. An exotherm and an increase in viscosity were observed with the reaction.
 得られた反応系に添加系溶液を窒素下で加えた。この系を撹拌下に60℃まで加熱した後、亜鉛15.39g(235.43mmol)およびビス(トリフェニルホスフィン)ニッケルジクロリド2.05g(3.14mmol)を加えてさらに重合を促進させ、80℃で3時間撹拌した。反応に伴い発熱や粘度上昇が観察された。 The addition system solution was added to the obtained reaction system under nitrogen. After heating the system to 60 ° C. with stirring, 15.39 g (235.43 mmol) of zinc and 2.05 g (3.14 mmol) of bis (triphenylphosphine) nickel dichloride were added to further promote the polymerization, and 80 ° C. For 3 hours. An exotherm and an increase in viscosity were observed with the reaction.
 得られた溶液をDMAc273mLで希釈し、セライトをろ過助剤として用いてろ過した。ろ液に臭化リチウム29.82g(343.33mmol)を加え、100℃で7時間反応させた。反応後、反応液を室温まで冷却し、水3.2Lに投入して凝固させた。凝固物をアセトンで撹拌しながら4回洗浄・ろ過した。洗浄物を1N硫酸で撹拌しながら7回洗浄・ろ過した。さらに洗浄物を洗浄液のpHが5以上になるまで脱イオン水で洗浄・ろ過した。得られた洗浄物を75℃で24時間乾燥させることにより目的のイオン交換基を有する重合体25.18gを得た。 The obtained solution was diluted with 273 mL of DMAc, and filtered using Celite as a filter aid. To the filtrate, 29.82 g (343.33 mmol) of lithium bromide was added and reacted at 100 ° C. for 7 hours. After the reaction, the reaction solution was cooled to room temperature and poured into 3.2 L of water to be solidified. The solidified product was washed and filtered four times while stirring with acetone. The washed product was washed and filtered seven times while stirring with 1N sulfuric acid. Further, the washed product was washed and filtered with deionized water until the pH of the washing solution became 5 or more. The obtained washed product was dried at 75 ° C. for 24 hours to obtain 25.18 g of a polymer having a target ion exchange group.
 このイオン交換基を有する重合体のGPC(溶媒:NMP緩衝溶液)で測定したポリスチレン換算の分子量は、数平均分子量(Mn)が53000であり、重量平均分子量(Mw)が120000であった。この重合体のイオン交換容量は2.30meq/gであった。NMRで確認したところ、得られたイオン交換基を有する重合体は、下記構造単位(q:r=90:10)を有する重合体(以下「重合体(A1)」ともいう。)であった。 The number average molecular weight (Mn) of the molecular weight in terms of polystyrene measured by GPC (solvent: NMP buffer solution) of the polymer having an ion exchange group was 53,000, and the weight average molecular weight (Mw) was 120,000. The ion exchange capacity of this polymer was 2.30 meq / g. When confirmed by NMR, the obtained polymer having an ion exchange group was a polymer having the following structural unit (q: r = 90: 10) (hereinafter also referred to as “polymer (A1)”). .
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 [合成例2]
 (2-1)親水性ユニットの合成
 2,2-ジメチルプロパノール44.9g(510.2mmol)をピリジン147mlに溶解させた。この溶液に、0℃で、2,5-ジクロロベンゼンスルホン酸クロリド100g(405.6mmol)を加え、室温で1時間攪拌し、反応させた。反応混合物に、酢酸エチル740mLおよび2mol%塩酸水溶液740mLを加え、30分間撹拌した後、静置し、有機層を分離した。分離した有機層を水740mL、10重量%炭酸カリウム水溶液740mLおよび飽和食塩水740mLで順次洗浄した後、減圧下で、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィ(クロロホルム溶媒)で精製した。次いで、得られた溶出液から溶媒を、減圧下で留去した。その後、残渣を、65℃のヘキサン970mLに溶解させた後、室温まで冷却した。析出した固体を濾過により分離した。分離した固体を乾燥し、下記式で表される2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)の白色固体を99.4g、収率82.1%で得た。
[Synthesis Example 2]
(2-1) Synthesis of hydrophilic unit 44.9 g (510.2 mmol) of 2,2-dimethylpropanol was dissolved in 147 ml of pyridine. To this solution, 100 g (405.6 mmol) of 2,5-dichlorobenzenesulfonic acid chloride was added at 0 ° C., and the mixture was stirred at room temperature for 1 hour to be reacted. To the reaction mixture, 740 mL of ethyl acetate and 740 mL of 2 mol% aqueous hydrochloric acid were added, stirred for 30 minutes, and allowed to stand to separate the organic layer. The separated organic layer was washed successively with 740 mL of water, 740 mL of a 10 wt% aqueous potassium carbonate solution and 740 mL of saturated brine, and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (chloroform solvent). Subsequently, the solvent was distilled off from the obtained eluate under reduced pressure. Thereafter, the residue was dissolved in 970 mL of hexane at 65 ° C. and then cooled to room temperature. The precipitated solid was separated by filtration. The separated solid was dried to obtain 99.4 g of a white solid of 2,5-dichlorobenzenesulfonic acid (2,2-dimethylpropyl) represented by the following formula in a yield of 82.1%.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 (2-2)スルホン酸基を有する重合体の合成
 無水塩化ニッケル1.62g(12.5mmol)とジメチルスルホキシド(DMSO)15mLとをフラスコ内で混合し、内温70℃に調整した。これに、2,2’-ビピリジン2.15g(13.8mol)を加え、同温度で10分間撹拌し、ニッケル含有溶液を調製した。
(2-2) Synthesis of polymer having sulfonic acid group 1.62 g (12.5 mmol) of anhydrous nickel chloride and 15 mL of dimethyl sulfoxide (DMSO) were mixed in a flask to adjust the internal temperature to 70 ° C. To this, 2.15 g (13.8 mol) of 2,2′-bipyridine was added and stirred at the same temperature for 10 minutes to prepare a nickel-containing solution.
 (2-1)で合成した2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)1.49g(5.0mmol)と下記式(S)で表されるスミカエクセルPES5200P(住友化学(株)製、Mn=40000、Mw=94000)0.50g(0.013mmol)とをジメチルスルホキシド(DMSO)5mLに溶解させることで得られた溶液に、亜鉛1.23g(18.8mmol)を加え、70℃に調整した。 1.49 g (5.0 mmol) of 2,5-dichlorobenzenesulfonic acid (2,2-dimethylpropyl) synthesized in (2-1) and Sumika Excel PES5200P represented by the following formula (S) (Sumitomo Chemical Co., Ltd.) ), Mn = 40000, Mw = 94000) 0.50 g (0.013 mmol) and 5 ml of dimethyl sulfoxide (DMSO) were dissolved in 1.23 g (18.8 mmol) of zinc. Adjusted to 70 ° C.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 得られた液に、前記ニッケル含有溶液を注ぎ込み、70℃で4時間重合反応を行った。反応混合物をメタノール60mL中に加え、次いで、得られた混合物に6mol/L塩酸水溶液60mLを加え、1時間撹拌した。析出した固体を濾過により分離した後、乾燥し、灰白色の重合中間体1.62gを得た。得られた重合中間体1.62gを、臭化リチウム1.13g(13.0mmol)とNMP56mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸水溶液560mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥させ、灰白色の目的のスルホン酸基を有する重合体0.42gを得た。 The nickel-containing solution was poured into the obtained liquid, and a polymerization reaction was performed at 70 ° C. for 4 hours. The reaction mixture was added to 60 mL of methanol, and then 60 mL of a 6 mol / L hydrochloric acid aqueous solution was added to the resulting mixture and stirred for 1 hour. The precipitated solid was separated by filtration and dried to obtain 1.62 g of a grayish white polymerization intermediate. 1.62 g of the obtained polymerization intermediate was added to a mixed solution of 1.13 g (13.0 mmol) of lithium bromide and 56 mL of NMP, and reacted at 120 ° C. for 24 hours. The reaction mixture was poured into 560 mL of 6 mol / L hydrochloric acid aqueous solution and stirred for 1 hour. The precipitated solid was separated by filtration. The separated solid was dried to obtain 0.42 g of an off-white polymer having a target sulfonic acid group.
 このスルホン酸基を有する重合体のGPC(溶媒:NMP緩衝溶液)で測定したポリスチレン換算の分子量は、数平均分子量(Mn)が75000であり、重量平均分子量(Mw)が173000であった。この重合体のイオン交換容量は1.95meq/gであった。得られたイオン交換基を有する重合体は、下記構造単位を有する重合体(以下「重合体(A2)」ともいう。)であった。 The number average molecular weight (Mn) of the molecular weight in terms of polystyrene measured by GPC (solvent: NMP buffer solution) of the polymer having a sulfonic acid group was 75000, and the weight average molecular weight (Mw) was 173,000. The ion exchange capacity of this polymer was 1.95 meq / g. The obtained polymer having an ion exchange group was a polymer having the following structural unit (hereinafter also referred to as “polymer (A2)”).
Figure JPOXMLDOC01-appb-C000027
(式中、mおよびnはそれぞれ独立に、それぞれの構造単位を形成する原料の仕込み量から算出される値である。)
Figure JPOXMLDOC01-appb-C000027
(In the formula, m and n are each independently a value calculated from the charged amount of the raw material forming each structural unit.)
 [重合体(B)の合成]
 [合成例3]
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた100mLの三つ口のフラスコに、4,4’-チオジフェノール3.27g(0.015mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン3.36g(0.010mol)、2,7-ジフルオロチアントレン(J.Polym.Sci.:Part A:Polym.Chem.,42,6353-6363(2004)に従って合成)6.31g(0.025mol)および炭酸カリウム4.49g(0.033mol)を量り取った。フラスコを窒素置換後、N,N-ジメチルアセトアミド37mlおよびトルエン17mlを加えて攪拌した。フラスコを140℃のオイルバスにつけ、攪拌後の液を加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、160℃で20時間反応を続けた。
[Synthesis of polymer (B)]
[Synthesis Example 3]
To a 100 mL three-necked flask equipped with a stirrer, thermometer, condenser, Dean-Stark tube and nitrogen-introduced three-way cock, 3.27 g (0.015 mol) of 4,4′-thiodiphenol, 2, 2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane 3.36 g (0.010 mol), 2,7-difluorothianthrene (J. Polym. Sci .: Part A: synthesized according to Polym.Chem., 42, 6353-6363 (2004)) 6.31 g (0.025 mol) and 4.49 g (0.033 mol) potassium carbonate were weighed out. After replacing the flask with nitrogen, 37 ml of N, N-dimethylacetamide and 17 ml of toluene were added and stirred. The flask was placed in an oil bath at 140 ° C., and the liquid after stirring was heated to reflux. When water produced by the reaction was azeotroped with toluene and reacted while being removed out of the system with a Dean-Stark tube, almost no water was observed in about 3 hours. After removing most of the toluene while gradually raising the reaction temperature, the reaction was continued at 160 ° C. for 20 hours.
 得られた反応液を放冷後、メタノール/4wt%硫酸溶液(5/1(体積比))110mL中に投入した。沈殿した生成物をろ過し、ろ物を水110mL中に入れ、55℃で1時間攪拌した。攪拌後の液をろ過し、ろ物を再度水110mL中、55℃で1時間攪拌した。次いで、攪拌後の液をろ過し、ろ物をメタノール110mL中に入れ、55℃で1時間攪拌した後、ろ過し、ろ物を再度メタノール110mL中に入れ、55℃で1時間攪拌しろ過した。ろ物を風乾後、80℃で真空乾燥し、目的の重合体9.91gを得た。 The resulting reaction solution was allowed to cool and then poured into 110 mL of a methanol / 4 wt% sulfuric acid solution (5/1 (volume ratio)). The precipitated product was filtered, and the filtrate was placed in 110 mL of water and stirred at 55 ° C. for 1 hour. The liquid after stirring was filtered, and the residue was again stirred in 110 mL of water at 55 ° C. for 1 hour. Subsequently, the liquid after stirring was filtered, and the filtrate was put into 110 mL of methanol and stirred at 55 ° C. for 1 hour, and then filtered. The filtrate was again put into 110 mL of methanol and stirred and filtered at 55 ° C. for 1 hour. . The filtrate was air-dried and then vacuum-dried at 80 ° C. to obtain 9.91 g of the desired polymer.
 得られた目的の重合体のGPC(溶媒:テトラヒドロフラン)で求めたポリスチレン換算の数平均分子量(Mn)は2,200であり、重量平均分子量(Mw)は6000であった。また、DSC測定において融解ピークは確認されず、結晶性を有さないものであった。得られた重合体は、NMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒1Lに20g以上溶解した。得られた重合体は下記構造単位を有する重合体(以下「重合体(B1)」ともいう。)であった。 The number average molecular weight (Mn) in terms of polystyrene determined by GPC (solvent: tetrahydrofuran) of the obtained target polymer was 2,200, and the weight average molecular weight (Mw) was 6000. Moreover, a melting peak was not confirmed in DSC measurement, and it did not have crystallinity. 20 g or more of the obtained polymer was dissolved in 1 L of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The obtained polymer was a polymer having the following structural unit (hereinafter also referred to as “polymer (B1)”).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 [合成例4]
 合成例3において4,4’-チオジフェノール3.27g(0.015mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン3.36g(0.010mol)および2,7-ジフルオロチアントレン6.31g(0.025mol)の代わりに、4,4’-チオジフェノール5.46g(0.025mol)、2,6-ジクロロベンゾニトリル1.72g(0.010mol)および2,7-ジフルオロチアントレン3.78g(0.015mol)を用いた以外は合成例3と同様にして目的の重合体7.82gを得た。
[Synthesis Example 4]
In Synthesis Example 3, 3.27 g (0.015 mol) of 4,4′-thiodiphenol, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane Instead of 36 g (0.010 mol) and 6.31 g (0.025 mol) of 2,7-difluorothianthrene, 5.46 g (0.025 mol) of 4,4′-thiodiphenol, 2,6-dichlorobenzonitrile 7.82 g of the target polymer was obtained in the same manner as in Synthesis Example 3, except that 1.72 g (0.010 mol) and 3.78 g (0.015 mol) of 2,7-difluorothianthrene were used.
 得られた目的の重合体のGPC(溶媒:テトラヒドロフラン)で求めたポリスチレン換算の数平均分子量(Mn)は2,500であり、重合平均分子量(Mw)は6000であった。また、DSC測定において融解ピークは確認されず、結晶性を有さないものであった。得られた重合体は、NMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒1Lに20g以上溶解した。得られた重合体は下記構造単位を有する重合体(以下「重合体(B2)」ともいう。)であった。 The number average molecular weight (Mn) in terms of polystyrene determined by GPC (solvent: tetrahydrofuran) of the obtained target polymer was 2,500, and the polymerization average molecular weight (Mw) was 6000. Moreover, a melting peak was not confirmed in DSC measurement, and it did not have crystallinity. 20 g or more of the obtained polymer was dissolved in 1 L of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The obtained polymer was a polymer having the following structural unit (hereinafter also referred to as “polymer (B2)”).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 [合成例5]
 以下の合成経路に従い、化合物(IV)を合成した。
[Synthesis Example 5]
Compound (IV) was synthesized according to the following synthetic route.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 冷却したメタノール320gに水酸化カリウム21.65g(0.39mol)を溶解させた。この溶液に10℃以下の温度で9,9-ビス(4-ヒドロキシフェニル)フルオレン(化合物(I))59.47g(0.17mol)を加え、続いてN,N-ジメチルチオカルバモイルクロライド48g(0.39mol)を加え、60℃に昇温して3時間反応を行った。反応溶液を冷却した後、析出した固体をろ過により回収し、メタノール/水の混合溶液(50/50体積比)400mLで洗浄した。得られた固体をクロロホルム400mLに溶解させ、水400mLで3回洗浄を行った。クロロホルム層を無水硫酸マグネシウムで乾燥し濃縮した後、メタノール400mLに投入した。析出物をろ過により分離し、得られた固体を乾燥することで化合物(II)77g(収率86%)を得た。 21.65 g (0.39 mol) of potassium hydroxide was dissolved in 320 g of cooled methanol. To this solution, 59.47 g (0.17 mol) of 9,9-bis (4-hydroxyphenyl) fluorene (compound (I)) was added at a temperature of 10 ° C. or lower, followed by 48 g of N, N-dimethylthiocarbamoyl chloride ( 0.39 mol) was added, the temperature was raised to 60 ° C., and the reaction was carried out for 3 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with 400 mL of a methanol / water mixed solution (50/50 volume ratio). The obtained solid was dissolved in 400 mL of chloroform, and washed with 400 mL of water three times. The chloroform layer was dried over anhydrous magnesium sulfate and concentrated, and then poured into 400 mL of methanol. The precipitate was separated by filtration, and the obtained solid was dried to obtain 77 g (yield 86%) of compound (II).
 化合物(II)52gにジフェニルエーテル30gを加え窒素雰囲気下にて250℃で5時間反応させた。反応混合物を冷却した後メタノール500mLに加え、析出物をろ過により回収し乾燥することにより、化合物(III)(収率91%)を得た。 30 g of diphenyl ether was added to 52 g of compound (II), and reacted at 250 ° C. for 5 hours in a nitrogen atmosphere. The reaction mixture was cooled and then added to 500 mL of methanol, and the precipitate was collected by filtration and dried to obtain compound (III) (yield 91%).
 冷却したメタノール160gに水酸化カリウム50g(0.9mol)を溶解させた後、化合物(III)47gおよびテトラヒドロフラン160gを加え、還流条件にて10時間反応させた。反応混合物を冷却した後、水2Lに投入し、濃塩酸をpH=5になるまで添加した。デカンテーションにより水層を分離し、粘性のある析出物を得た。これをクロロホルム600mLに溶解させ、水600mLで3回洗浄した。クロロホルム層を無水硫酸マグネシウムで乾燥した後、濃縮した。これをメタノール1.5Lに投入し、析出物をろ過により回収した後乾燥し、9,9-ビス(4-メルカプトフェニル)フルオレン(化合物(IV))30g(収率88%)を得た。 After dissolving 50 g (0.9 mol) of potassium hydroxide in 160 g of cooled methanol, 47 g of compound (III) and 160 g of tetrahydrofuran were added and reacted under reflux conditions for 10 hours. After cooling the reaction mixture, it was poured into 2 L of water and concentrated hydrochloric acid was added until pH = 5. The aqueous layer was separated by decantation to obtain a viscous precipitate. This was dissolved in 600 mL of chloroform and washed 3 times with 600 mL of water. The chloroform layer was dried over anhydrous magnesium sulfate and concentrated. This was put into 1.5 L of methanol, and the precipitate was collected by filtration and dried to obtain 30 g (yield 88%) of 9,9-bis (4-mercaptophenyl) fluorene (compound (IV)).
 合成例3において4,4’-チオジフェノール3.27g(0.015mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン3.36g(0.010mol)および2,7-ジフルオロチアントレン6.31g(0.025mol)の代わりに、9,9-ビス(4-メルカプトフェニル)フルオレン(化合物(IV))9.56g(0.025mol)および2,7-ジフルオロチアントレン6.31g(0.025mol)を用いた以外は合成例3と同様にして目的の重合体12.42gを得た。 In Synthesis Example 3, 3.27 g (0.015 mol) of 4,4′-thiodiphenol, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane Instead of 36 g (0.010 mol) and 6.31 g (0.025 mol) of 2,7-difluorothianthrene, 9.56 g (0.35 g) of 9,9-bis (4-mercaptophenyl) fluorene (compound (IV)). 025 mol) and 2,7-difluorothianthrene 6.31 g (0.025 mol) were used in the same manner as in Synthesis Example 3 to obtain 12.42 g of the target polymer.
 得られた目的の重合体のGPC(溶媒:テトラヒドロフラン)で求めたポリスチレン換算の数平均分子量(Mn)は2,100であり、重量平均分子量(Mw)は8000であった。また、DSC測定において融解ピークは確認されず、結晶性を有さないものであった。得られた重合体は、NMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒1Lに20g以上溶解した。得られた重合体は下記構造単位を有する重合体(以下「重合体(B3)」ともいう。)であった。 The number average molecular weight (Mn) in terms of polystyrene determined by GPC (solvent: tetrahydrofuran) of the obtained target polymer was 2,100, and the weight average molecular weight (Mw) was 8,000. Moreover, a melting peak was not confirmed in DSC measurement, and it did not have crystallinity. 20 g or more of the obtained polymer was dissolved in 1 L of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The obtained polymer was a polymer having the following structural unit (hereinafter also referred to as “polymer (B3)”).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 [合成例6]
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた100mLの三つ口のフラスコに、1,4-ジフルオロベンゼン3.42g(0.03mol)、2,6-ジクロロベンゾニトリル4.17g(0.03mol)および硫化ナトリウム4.68g(0.06mol)を量り取った。該フラスコを窒素置換後、NMP25mlおよびトルエン13mlを加えて攪拌した。フラスコを140℃のオイルバスにつけ、攪拌後の液を加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、190℃で20時間反応を続けた。
[Synthesis Example 6]
To a 100 mL three-necked flask equipped with a stirrer, thermometer, condenser, Dean-Stark tube and nitrogen-introduced three-way cock, 3.42 g (0.03 mol) of 1,4-difluorobenzene, 2,6- 4.17 g (0.03 mol) of dichlorobenzonitrile and 4.68 g (0.06 mol) of sodium sulfide were weighed out. After the flask was purged with nitrogen, 25 ml of NMP and 13 ml of toluene were added and stirred. The flask was placed in an oil bath at 140 ° C., and the liquid after stirring was heated to reflux. When water produced by the reaction was azeotroped with toluene and reacted while being removed out of the system with a Dean-Stark tube, almost no water was observed in about 3 hours. After removing most of the toluene while gradually raising the reaction temperature, the reaction was continued at 190 ° C. for 20 hours.
 得られた反応液を放冷後、メタノール/4wt%硫酸溶液(5/1(体積比))90mL中に投入した。沈殿した生成物をろ過し、ろ物を水90mL中に入れ、55℃で1時間攪拌した。攪拌後の液をろ過し、ろ物を再度水90mL中、55℃で1時間攪拌した。次いで、攪拌後の液をろ過し、ろ物をメタノール90mL中に入れ、55℃で1時間攪拌した後、ろ過し、ろ物を再度メタノール90mL中に入れ、55℃で1時間攪拌しろ過した。ろ物を風乾後、80℃で真空乾燥し、目的の重合体9.91gを得た。 The resulting reaction solution was allowed to cool and then poured into 90 mL of a methanol / 4 wt% sulfuric acid solution (5/1 (volume ratio)). The precipitated product was filtered, and the filtrate was placed in 90 mL of water and stirred at 55 ° C. for 1 hour. The liquid after stirring was filtered, and the residue was again stirred in 90 mL of water at 55 ° C. for 1 hour. Subsequently, the liquid after stirring was filtered, and the filtrate was put into 90 mL of methanol and stirred at 55 ° C. for 1 hour, and then filtered. The filtrate was again put into 90 mL of methanol and stirred at 55 ° C. for 1 hour and filtered. . The filtrate was air-dried and then vacuum-dried at 80 ° C. to obtain 9.91 g of the desired polymer.
 得られた目的の重合体のGPC(溶媒:NMP緩衝溶液)で求めたポリスチレン換算の数平均分子量(Mn)は2,500であり、重量平均分子量(Mw)は6000であった。また、DSC測定において融解ピークは確認されず、結晶性を有さないものであった。得られた重合体は、NMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒1Lに20g以上溶解した。得られた重合体は下記構造単位を有する重合体(以下「重合体(B4)」ともいう。)であった。 The number average molecular weight (Mn) in terms of polystyrene determined by GPC (solvent: NMP buffer solution) of the obtained target polymer was 2,500, and the weight average molecular weight (Mw) was 6000. Moreover, a melting peak was not confirmed in DSC measurement, and it did not have crystallinity. 20 g or more of the obtained polymer was dissolved in 1 L of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The obtained polymer was a polymer having the following structural unit (hereinafter also referred to as “polymer (B4)”).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 [合成例7]
 合成例3において4,4’-チオジフェノール3.27g(0.015mol)の代わりに、4,4’-チオ-ビス(6-t-ブチル-m-クレゾール)5.38g(0.015mol)を用いた以外は合成例3と同様にして目的の重合体8.85gを得た。
[Synthesis Example 7]
In Synthesis Example 3, instead of 3.27 g (0.015 mol) of 4,4′-thiodiphenol, 5.38 g (0.015 mol) of 4,4′-thio-bis (6-tert-butyl-m-cresol) was used. ) Was used in the same manner as in Synthesis Example 3 except that 8.85 g of the target polymer was obtained.
 得られた目的の重合体のGPC(溶媒:テトラヒドロフラン)で求めたポリスチレン換算の数平均分子量(Mn)は1,400であり、重量平均分子量(Mw)は2200であった。また、DSC測定において融解ピークは確認されず、結晶性を有さないものであった。得られた重合体は、NMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒1Lに20g以上溶解した。得られた重合体は下記構造単位を有する重合体(以下「重合体(B5)」ともいう。)であった。 The number average molecular weight (Mn) in terms of polystyrene determined by GPC (solvent: tetrahydrofuran) of the obtained target polymer was 1,400, and the weight average molecular weight (Mw) was 2,200. Moreover, a melting peak was not confirmed in DSC measurement, and it did not have crystallinity. 20 g or more of the obtained polymer was dissolved in 1 L of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The obtained polymer was a polymer having the following structural unit (hereinafter also referred to as “polymer (B5)”).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 [実施例1]
 合成例1で得られた重合体(A1)15gと、合成例3で得られた重合体(B1)0.47gとをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mlに溶解した溶液をPETフィルムの上にダイコータにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、重合体(A1)と重合体(B1)とが質量比(重合体(A1)/重合体(B1))97/3で含まれ、膜厚が40μmである電解質膜1を得た。
[Example 1]
15 g of the polymer (A1) obtained in Synthesis Example 1 and 0.47 g of the polymer (B1) obtained in Synthesis Example 3 are mixed solvents of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The solution dissolved in 85 ml was cast coated on a PET film with a die coater, pre-dried at 80 ° C. for 40 minutes, and then dried at 120 ° C. for 40 minutes. The dried PET film with a coating film is immersed in a large amount of distilled water overnight to remove residual NMP in the coating film, and then air-dried. The polymer (A1) and the polymer (B1) have a mass ratio (heavy weight) The electrolyte membrane 1 was obtained that was contained in a combination (A1) / polymer (B1)) 97/3 and had a thickness of 40 μm.
 〔性能評価〕
 (1)白金被毒試験
 N2ガスで脱気した1N硫酸水溶液中に表面積0.785mm2の白金ディスク電極を浸漬し、掃引速度0.01V/s、掃引電位範囲0.05~1.5Vでサイクリックボルタンメトリーを行い、サイクリックボルタモグラムが一定になるまで掃引を繰り返し清浄な表面を有する白金ディスク電極を得た。また、最後に測定したサイクリックボルタモグラムの水素脱離波の電気量を電極表面が清浄である場合に測定された電気量とした。
[Performance evaluation]
(1) Platinum poisoning test A platinum disk electrode with a surface area of 0.785 mm 2 is immersed in a 1N sulfuric acid aqueous solution degassed with N 2 gas, a sweep rate of 0.01 V / s, and a sweep potential range of 0.05 to 1.5 V. The platinum voltammetry was performed by repeating the sweep until the cyclic voltammogram became constant, and a platinum disk electrode having a clean surface was obtained. In addition, the amount of electricity of the hydrogen desorption wave of the last measured cyclic voltammogram was the amount of electricity measured when the electrode surface was clean.
 次に、1N硫酸水溶液50mLの入った容器中に、PETフィルムから剥離した電解質膜1(厚み40μm、面積9cm2、すなわち体積0.036cm3)を入れ、容器を密閉し、80℃で100時間加熱した後の水溶液を試験液として回収した。清浄な表面を有する白金ディスク電極表面をN2ガスで脱気した試験液に浸漬し、掃引速度0.01V/s、掃引電位範囲0.05~0.4Vでサイクリックボルタンメトリーを20サイクル測定した。20サイクル目の水素脱離波の電気量を求め、これを電極表面が被毒した場合に測定された電気量とし、下記式から白金の被毒率を求めた。
白金の被毒率(%)=[(電極表面が清浄である場合に測定された電気量)-(電極表面が被毒した場合に測定された電気量)]×100/(電極表面が清浄である場合に測定された電気量)
Next, the electrolyte membrane 1 (thickness 40 μm, area 9 cm 2 , that is, volume 0.036 cm 3 ) peeled from the PET film is placed in a container containing 50 mL of 1N sulfuric acid aqueous solution, and the container is sealed and sealed at 80 ° C. for 100 hours. The heated aqueous solution was collected as a test solution. A platinum disk electrode surface having a clean surface was immersed in a test solution deaerated with N 2 gas, and cyclic voltammetry was measured for 20 cycles at a sweep rate of 0.01 V / s and a sweep potential range of 0.05 to 0.4 V. . The amount of electricity of the hydrogen desorption wave at the 20th cycle was obtained, and this was used as the amount of electricity measured when the electrode surface was poisoned, and the poisoning rate of platinum was obtained from the following formula.
Platinum poisoning rate (%) = [(quantity of electricity measured when electrode surface is clean) − (quantity of electricity measured when electrode surface is poisoned)] × 100 / (clean electrode surface) Measured quantity of electricity)
 サイクリックボルタンメトリーの対極には白金線を、参照極には可逆水素電極を用いた。また、サイクリックボルタンメトリー中、電気化学セルの電解液より上の部分には空気の混入を防ぐためN2ガスを流し続けた。測定は室温にて行った。結果を表1に示す。 A platinum wire was used as the counter electrode for cyclic voltammetry, and a reversible hydrogen electrode was used as the reference electrode. Further, during cyclic voltammetry, N 2 gas was kept flowing to prevent air from entering the portion above the electrolyte in the electrochemical cell. The measurement was performed at room temperature. The results are shown in Table 1.
 [実施例2]
 実施例1において、重合体(B1)の代わりに合成例4で得られた重合体(B2)を用いた以外は実施例1と同様にして、重合体(A1)と重合体(B2)とが質量比97/3で含まれ、膜厚が40μmである電解質膜2を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Example 2]
In Example 1, a polymer (A1) and a polymer (B2) were obtained in the same manner as in Example 1 except that the polymer (B2) obtained in Synthesis Example 4 was used instead of the polymer (B1). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 2 having a thickness of 40 μm was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [実施例3]
 実施例1において、重合体(B1)の代わりに合成例5で得られた重合体(B3)を用い、混合溶媒にNMP/メタノール=80/20(質量比)を用いた以外は実施例1と同様にして、重合体(A1)と重合体(B3)とが質量比97/3で含まれ、膜厚が40μmである電解質膜3を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Example 3]
In Example 1, the polymer (B3) obtained in Synthesis Example 5 was used instead of the polymer (B1), and NMP / methanol = 80/20 (mass ratio) was used as the mixed solvent. In the same manner as described above, an electrolyte membrane 3 containing the polymer (A1) and the polymer (B3) at a mass ratio of 97/3 and having a film thickness of 40 μm was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [実施例4]
 実施例3において、重合体(B3)の代わりに合成例6で得られた重合体(B4)を用いた以外は実施例3と同様にして、重合体(A1)と重合体(B4)とが質量比97/3で含まれ、膜厚が40μmである電解質膜4を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Example 4]
In Example 3, the polymer (A1) and the polymer (B4) were obtained in the same manner as in Example 3 except that the polymer (B4) obtained in Synthesis Example 6 was used instead of the polymer (B3). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 4 having a thickness of 40 μm was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [実施例5]
 EPS-12A(12wt%SnO2水分散液、山中産業社製)3.9gをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mLに加え、SnO2を分散させた分散液に合成例1で得られた重合体(A1)15gと、合成例3で得られた重合体(B1)0.47gとを溶解させた液を用いた以外は、実施例1と同様にして電解質膜5を得た。電解質膜5は、重合体(A1)、重合体(B1)およびSnO2(金属成分)が質量比(重合体(A1)/重合体(B1)/金属成分)94/3/3で含まれ、膜厚が40μmであった。この電解質膜5を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Example 5]
Dispersion in which SnO 2 was dispersed by adding 3.9 g of EPS-12A (12 wt% SnO 2 aqueous dispersion, manufactured by Yamanaka Sangyo Co., Ltd.) to 85 mL of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The same procedure as in Example 1 was performed except that 15 g of the polymer (A1) obtained in Synthesis Example 1 and 0.47 g of the polymer (B1) obtained in Synthesis Example 3 were dissolved in the solution. Thus, an electrolyte membrane 5 was obtained. The electrolyte membrane 5 includes a polymer (A1), a polymer (B1), and SnO 2 (metal component) at a mass ratio (polymer (A1) / polymer (B1) / metal component) 94/3/3. The film thickness was 40 μm. Using this electrolyte membrane 5, the same platinum poisoning test as in Example 1 was conducted. The results are shown in Table 1.
 [実施例6]
 実施例3において、重合体(B3)の代わりに合成例7で得られた重合体(B5)を用いた以外は実施例3と同様にして、重合体(A1)と重合体(B5)とが質量比97/3で含まれ、膜厚が40μmである電解質膜6を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Example 6]
In Example 3, the polymer (A1) and the polymer (B5) were used in the same manner as in Example 3 except that the polymer (B5) obtained in Synthesis Example 7 was used instead of the polymer (B3). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 6 having a film thickness of 40 μm was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [実施例7]
 実施例1において、重合体(A1)の代わりに合成例2で得られた重合体(A2)を用いた以外は実施例1と同様にして、重合体(A2)と重合体(B1)とが質量比97/3で含まれ、膜厚が40μmである電解質膜7を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Example 7]
In Example 1, the polymer (A2) and the polymer (B1) were obtained in the same manner as in Example 1 except that the polymer (A2) obtained in Synthesis Example 2 was used instead of the polymer (A1). Was obtained at a mass ratio of 97/3, and an electrolyte membrane 7 having a thickness of 40 μm was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [実施例8]
 実施例1において、重合体(A1)の代わりにNafion D2020(デュポン(株)製、ポリマー濃度21%分散液、イオン交換容量1.08meq/g)71.4mlを用い、NMPを添加後、水および1-プロパノールを留去し溶媒置換することで、NMPの総量を85mlとした以外は実施例1と同様にして、Nafionと重合体(B1)とが質量比97/3で含まれ、膜厚が40μmである電解質膜8を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Example 8]
In Example 1, 71.4 ml of Nafion D2020 (manufactured by DuPont, polymer concentration 21% dispersion, ion exchange capacity 1.08 meq / g) was used instead of the polymer (A1), NMP was added, and water was added. In addition, Nafion and polymer (B1) were contained at a mass ratio of 97/3 in the same manner as in Example 1 except that the total amount of NMP was changed to 85 ml by distilling off 1-propanol and replacing the solvent. An electrolyte membrane 8 having a thickness of 40 μm was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [比較例1]
 実施例1において、重合体(B1)の代わりにチアントレン(東京化成工業(株)製)を用いた以外は実施例1と同様にして、重合体(A1)とチアントレンとが質量比97/3で含まれ、膜厚が40μmである電解質膜を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Comparative Example 1]
In Example 1, polymer (A1) and thianthrene were in a mass ratio of 97/3 in the same manner as in Example 1 except that thianthrene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of polymer (B1). An electrolyte membrane having a thickness of 40 μm was obtained. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [比較例2]
 実施例1において、重合体(B1)を使用しない以外は実施例1と同様にして、膜厚が40μmである電解質膜を得た。この電解質膜を用いて実施例1と同様の白金被毒試験を行った。結果を表1に示す。
[Comparative Example 2]
In Example 1, an electrolyte membrane having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the polymer (B1) was not used. Using this electrolyte membrane, the same platinum poisoning test as in Example 1 was performed. The results are shown in Table 1.
 [比較例3]
 合成例1で得られた重合体(A1)15gと、ポリフェニレンサルファイド(PPS、シグマアルドリッチジャパン社製、融点285~300℃)0.47gとをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mlに溶解しようとしたところPPSが溶解しなかったため、キャスト塗工により電解質膜を作製することができなかった。
[Comparative Example 3]
15 g of the polymer (A1) obtained in Synthesis Example 1 and 0.47 g of polyphenylene sulfide (PPS, Sigma-Aldrich Japan, melting point 285 to 300 ° C.) NMP / methyl ethyl ketone / methanol = 60/20/20 (mass) The PPS was not dissolved when trying to dissolve in 85 ml of the mixed solvent of the ratio), and thus the electrolyte membrane could not be produced by cast coating.
 〔評価結果〕
 表1より、実施例1~8および比較例2で得られる電解質膜は、高温下でも白金の被毒率が低く、電池発電時や水分解時における触媒活性の低下による性能低下の懸念が小さい膜であった。一方、比較例1で得られる電解質膜は、白金の被毒率が高く、触媒活性の低下による発電性能や水分解能の低下が懸念される膜であった。
〔Evaluation results〕
From Table 1, the electrolyte membranes obtained in Examples 1 to 8 and Comparative Example 2 have a low platinum poisoning rate even at high temperatures, and there is little concern about performance degradation due to a decrease in catalytic activity during battery power generation or water decomposition. It was a membrane. On the other hand, the electrolyte membrane obtained in Comparative Example 1 has a high platinum poisoning rate, and is a membrane in which the power generation performance and the water resolution are liable to be lowered due to a decrease in catalytic activity.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 〔アノード電極ペーストの調製〕
 200mLのポリボトルに直径5mmのジルコニアボール((株)ニッカトー製「YTZボール」)80gを入れ、白金ルテニウム担持カーボン粒子(田中貴金属工業(株)製「TEC61E54」、Pt:29.8質量%担持、Ru:23.2質量%担持)1.28g、蒸留水3.60g、n-プロピルアルコール12.02gおよびNafion D2020(デュポン(株)製、ポリマー濃度21%分散液、イオン交換容量1.08meq/g)3.90gを加え、ペイントシェーカーで60分間攪拌した後、ジルコニアボールを除去することでアノード電極ペーストを得た。
[Preparation of anode electrode paste]
In a 200 mL plastic bottle, 80 g of zirconia balls having a diameter of 5 mm (“YTZ balls” manufactured by Nikkato Co., Ltd.) are placed, platinum ruthenium-supporting carbon particles (“TEC61E54” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), Pt: 29.8% by mass, Ru: 23.2% by mass supported) 1.28 g, distilled water 3.60 g, n-propyl alcohol 12.02 g and Nafion D2020 (manufactured by DuPont, polymer concentration 21% dispersion, ion exchange capacity 1.08 meq / g) After adding 3.90 g and stirring with a paint shaker for 60 minutes, an anodic electrode paste was obtained by removing zirconia balls.
 〔カソード電極ペーストの調製〕
 次に、200mlのポリボトルに直径5mmのジルコニアボール(YTZボール)80gを入れ、白金担持カーボン粒子(田中貴金属工業(株)製「TEC10E50E」、Pt:45.6質量%担持)1.25g、蒸留水3.64g、n-プロピルアルコール11.91gおよびNafion D2020(4.40g)を加え、ペイントシェーカーで60分間攪拌した後、ジルコニアボールを除去することでカソード電極ペーストを得た。
[Preparation of cathode electrode paste]
Next, 80 g of zirconia balls (YTZ balls) having a diameter of 5 mm are placed in a 200 ml plastic bottle, and platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass) 1.25 g, distilled 3.64 g of water, 11.91 g of n-propyl alcohol and Nafion D2020 (4.40 g) were added, and the mixture was stirred for 60 minutes with a paint shaker, and then the zirconia balls were removed to obtain a cathode electrode paste.
 [実施例9]
 〔電極の製造〕
 実施例1で得られたPETフィルム付の電解質膜1の片面(PETフィルムと反対側)に、5cm×5cmの開口を有するマスクを用い、前記アノード電極ペーストをドクターブレードにて塗布し、PETフィルムから剥離した後、剥離面に、5cm×5cmの開口を有するマスクを用い、ドクターブレードにて前記カソード電極ペーストを塗布した。これを120℃で60分間乾燥することで、電解質膜の両面に触媒層が形成された積層体を得た。各触媒層の触媒塗布量は0.50mg/cm2であった。
[Example 9]
[Production of electrodes]
Using the mask having an opening of 5 cm × 5 cm on one side (the side opposite to the PET film) of the electrolyte membrane 1 with the PET film obtained in Example 1, the anode electrode paste was applied with a doctor blade, and the PET film Then, the cathode electrode paste was applied with a doctor blade using a mask having an opening of 5 cm × 5 cm on the peeled surface. This was dried at 120 ° C. for 60 minutes to obtain a laminate in which catalyst layers were formed on both surfaces of the electrolyte membrane. The catalyst coating amount of each catalyst layer was 0.50 mg / cm 2 .
 〔ガス拡散層〕
 ガス拡散層としてSGL CARBON社製のGDL24BCを用いた。
[Gas diffusion layer]
GDL24BC manufactured by SGL CARBON was used as the gas diffusion layer.
 〔固体高分子型燃料電池の作製〕
 前記触媒層が両面に形成された電解質膜を、2枚のガス拡散層で挟み、圧力60kg/cm2下、160℃で20分間ホットプレスし、膜-電極接合体を作製した。得られた膜-電極接合体のガス拡散層上にガス流路を兼ねるセパレータを積層し、これを2枚のチタン製の集電体で挟み、さらにその外側にヒーターを配置し、有効面積25cm2の評価用燃料電池を作製した。
[Production of polymer electrolyte fuel cells]
The electrolyte membrane having the catalyst layer formed on both sides was sandwiched between two gas diffusion layers and hot-pressed at 160 ° C. for 20 minutes under a pressure of 60 kg / cm 2 to prepare a membrane-electrode assembly. A separator also serving as a gas flow path is laminated on the gas diffusion layer of the obtained membrane-electrode assembly, and is sandwiched between two titanium current collectors. Two evaluation fuel cells were prepared.
 〔性能評価〕
 (2)OCV(open circuit voltage)耐久性試験
 得られた評価用燃料電池のカソード電極側(電解質膜のカソード電極ペーストを塗布した側)に常圧で0.2L/minの流量で空気を供給し、アノード電極側(電解質膜のアノード電極ペーストを塗布した側)に常圧で0.2L/minの流量で純水素を供給し、セル温度を90℃、カソード電極側相対湿度を20%、アノード電極側相対湿度を20%として、発電は行わずに開回路状態にした時(初期)および発電は行わずに開回路状態で300時間運転した時の電圧を測定し、運転の間の電圧低下速度を測定した。結果を表2に示す。
[Performance evaluation]
(2) OCV (open circuit voltage) durability test Supply air at a normal pressure and a flow rate of 0.2 L / min to the cathode electrode side (the side where the electrolyte electrode cathode electrode paste was applied) of the fuel cell for evaluation obtained Then, pure hydrogen was supplied to the anode electrode side (side where the anode electrode paste of the electrolyte membrane was applied) at a flow rate of 0.2 L / min at normal pressure, the cell temperature was 90 ° C., the cathode electrode side relative humidity was 20%, When the anode electrode side relative humidity is set to 20%, voltage is measured when the circuit is operated for 300 hours in the open circuit state without power generation (initial stage) and when the circuit is operated for 300 hours without power generation. The rate of decline was measured. The results are shown in Table 2.
 (3)OCV耐久性試験前後の出力電圧測定
 得られた評価用燃料電池のカソード電極側に背圧120kPa、利用率40%で空気を供給し、アノード電極側に背圧120kPa、利用率70%で純水素を供給し、セル温度を80℃、カソード電極側相対湿度を50%、アノード電極側相対湿度を50%として、電流密度1A/cm2でのセル電圧を測定した(初期)。また、開回路状態で300時間運転した後の電流密度1A/cm2でのセル電圧を測定した。これらの結果から、OCV耐久性試験前後のセル電圧の低下度を求めた。結果を表2に示す。
(3) Output voltage measurement before and after the OCV durability test Air was supplied to the cathode electrode side of the obtained fuel cell for evaluation at a back pressure of 120 kPa and a utilization factor of 40%, and a back pressure of 120 kPa and a utilization factor of 70% to the anode electrode side. The cell voltage at a current density of 1 A / cm 2 was measured by supplying pure hydrogen, setting the cell temperature to 80 ° C., the cathode electrode side relative humidity to 50%, and the anode electrode side relative humidity to 50% (initial). In addition, the cell voltage at a current density of 1 A / cm 2 after 300 hours of operation in an open circuit state was measured. From these results, the degree of decrease in cell voltage before and after the OCV durability test was determined. The results are shown in Table 2.
 [実施例10]
 実施例9において、実施例1で得られたPETフィルム付の電解質膜1の代わりに、実施例2で得られたPETフィルム付の電解質膜2を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Example 10]
In Example 9, evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 2 with PET film obtained in Example 2 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例11]
 実施例9において、実施例1で得られたPETフィルム付の電解質膜1の代わりに、実施例3で得られたPETフィルム付の電解質膜3を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Example 11]
In Example 9, evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 3 with PET film obtained in Example 3 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例12]
 実施例9において、実施例1で得られたPETフィルム付の電解質膜1の代わりに、実施例4で得られたPETフィルム付の電解質膜4を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Example 12]
In Example 9, evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 4 with PET film obtained in Example 4 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例13]
 実施例9において、実施例1で得られたPETフィルム付の電解質膜1の代わりに、実施例5で得られたPETフィルム付の電解質膜5を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Example 13]
In Example 9, evaluation was performed in the same manner as in Example 9 except that instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 5 with PET film obtained in Example 5 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例14]
 実施例9において、実施例1で得られたPETフィルム付の電解質膜1の代わりに、実施例6で得られたPETフィルム付の電解質膜6を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Example 14]
In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, the evaluation was performed in the same manner as in Example 9 except that the electrolyte membrane 6 with PET film obtained in Example 6 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例15]
 実施例9において、実施例1で得られたPETフィルム付の電解質膜1の代わりに、実施例7で得られたPETフィルム付の電解質膜7を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Example 15]
In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, the evaluation was performed in the same manner as in Example 9 except that the electrolyte membrane 7 with PET film obtained in Example 7 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例16]
 実施例9において、実施例1で得られたPETフィルム付の電解質膜1の代わりに、実施例8で得られたPETフィルム付の電解質膜8を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Example 16]
In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, the evaluation was performed in the same manner as in Example 9 except that the electrolyte membrane 8 with PET film obtained in Example 8 was used. A fuel cell was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例17]
 合成例1で得られた重合体(A1)5gと、合成例3で得られた重合体(B1)0.55gとをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒95mLに溶解した溶液を、PETフィルムの上にダイコータにて、乾燥後の膜厚が1μmになるように厚みを制御してキャスト塗工し、80℃で40分予備乾燥した。その上から、合成例1で得られた重合体(A1)15gを、NMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mLに溶解した溶液をダイコータにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた。その後風乾することで、PETフィルム上に、重合体(A1)と重合体(B1)とが質量比(重合体(A1)/重合体(B1))90/10で含まれる、膜厚1μmの層(F1)と、重合体(A1)のみからなる、厚み39μmの層(F2)とがこの順で積層された積層体(電解質膜9、40μm)が得られた。電解質膜9全体における重合体(A1)と重合体(B1)の質量比(重合体(A1)/重合体(B1))は99.72/0.28であった。
[Example 17]
5 g of the polymer (A1) obtained in Synthesis Example 1 and 0.55 g of the polymer (B1) obtained in Synthesis Example 3 are mixed solvents of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The solution dissolved in 95 mL was cast-coated on a PET film with a die coater so that the thickness after drying was 1 μm, and pre-dried at 80 ° C. for 40 minutes. From that, a solution obtained by dissolving 15 g of the polymer (A1) obtained in Synthesis Example 1 in 85 mL of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio) was cast coated with a die coater. The sample was pre-dried at 80 ° C. for 40 minutes and then dried at 120 ° C. for 40 minutes. The dried PET film with a coating film was immersed in a large amount of distilled water overnight to remove the remaining NMP in the coating film. After that, by air drying, the polymer (A1) and the polymer (B1) are contained in a mass ratio (polymer (A1) / polymer (B1)) 90/10 on the PET film. A layered product (electrolyte membrane 9, 40 μm) in which the layer (F1) and the layer (F2) having a thickness of 39 μm and consisting only of the polymer (A1) were laminated in this order was obtained. The mass ratio (polymer (A1) / polymer (B1)) of the polymer (A1) and the polymer (B1) in the entire electrolyte membrane 9 was 99.72 / 0.28.
 実施例9において実施例1で得られたPETフィルム付の電解質膜1の代わりに、前記PETフィルム付の電解質膜9を用い、前記カソード電極ペーストを層(F1)表面に、アノード電極ペーストを層(F2)表面に塗布した以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。 In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, the electrolyte membrane 9 with PET film was used, and the cathode electrode paste was layered on the surface (F1) and the anode electrode paste was layered. (F2) A fuel cell for evaluation was prepared in the same manner as in Example 9 except that it was applied to the surface, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [実施例18]
 合成例1で得られた重合体(A1)5gと、合成例3で得られた重合体(B1)0.55gとをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒95mlに溶解した溶液を、PETフィルムの上にダイコータにて、乾燥後の膜厚が1μmになるように厚みを制御してキャスト塗工し、80℃で40分予備乾燥した。その上から、合成例1で得られた重合体(A1)15gをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mlに溶解した溶液をダイコータにてキャスト塗工し、80℃で40分予備乾燥した。さらに続いて、予備乾燥後の塗膜上に、合成例1で得られた重合体(A1)5gと、合成例3で得られた重合体(B1)0.55gとをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒95mlに溶解した溶液を、ダイコータにて乾燥後の膜厚が1μmになるように厚みを制御してキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた。その後風乾することで、PETフィルム上に、重合体(A1)と重合体(B1)とが質量比(重合体(A1)/重合体(B1))90/10で含まれる、厚み1μmの層(F3)と、重合体(A1)のみからなる、厚み38μmの層(F4)と、層(F3)とがこの順で積層された積層体(電解質膜10、厚み40μm)が得られた。電解質膜8全体における重合体(A1)と重合体(B1)の質量比(重合体(A1)/重合体(B1))は99.5/0.5であった。
[Example 18]
5 g of the polymer (A1) obtained in Synthesis Example 1 and 0.55 g of the polymer (B1) obtained in Synthesis Example 3 are mixed solvents of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The solution dissolved in 95 ml was cast-coated on a PET film with a die coater so that the thickness after drying was 1 μm, and pre-dried at 80 ° C. for 40 minutes. From that, a solution obtained by dissolving 15 g of the polymer (A1) obtained in Synthesis Example 1 in 85 ml of a mixed solvent of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio) was cast coated with a die coater, Pre-dried at 80 ° C. for 40 minutes. Subsequently, 5 g of the polymer (A1) obtained in Synthesis Example 1 and 0.55 g of the polymer (B1) obtained in Synthesis Example 3 were added onto the pre-dried coating film with NMP / methyl ethyl ketone / methanol. = 60/20/20 (mass ratio) solution dissolved in 95 ml of mixed solvent was cast coated with a thickness of 1 μm after drying with a die coater, and preliminarily prepared at 80 ° C. for 40 minutes. After drying, it was dried at 120 ° C. for 40 minutes. The dried PET film with a coating film was immersed in a large amount of distilled water overnight to remove the remaining NMP in the coating film. Thereafter, the film is air-dried, and the polymer (A1) and the polymer (B1) are contained in a mass ratio (polymer (A1) / polymer (B1)) 90/10 on the PET film. A laminate (electrolyte film 10, thickness 40 μm) in which a layer (F4) having a thickness of 38 μm and a layer (F3) made of only (F3), the polymer (A1), and the layer (F3) was obtained in this order was obtained. The mass ratio (polymer (A1) / polymer (B1)) of the polymer (A1) and the polymer (B1) in the entire electrolyte membrane 8 was 99.5 / 0.5.
 実施例9において実施例1で得られたPETフィルム付の電解質膜1の代わりに、前記PETフィルム付の電解質膜10を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。 In Example 9, instead of the electrolyte membrane 1 with PET film obtained in Example 1, an evaluation fuel cell was prepared in the same manner as in Example 9 except that the electrolyte membrane 10 with PET film was used. Using the fuel cell, an OCV durability test and an output voltage measurement before and after the OCV durability test were performed. The results are shown in Table 2.
 [実施例19]
 合成例1で得られた重合体(A1)15gと、合成例3で得られた重合体(B1)0.47gとをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mlに溶解した溶液を、PETフィルムの上にダイコータにてキャスト塗工した。この塗工液の上に、高分子量ポリエチレン製多孔質基材(Lydall社製、SOLUPOR(登録商標)、3P07A;比重3.0g/m2、透気度1.4s/50ml、空孔率83%、厚さ20μm)を接触させた。さらに多孔質基材の塗工液と接していない側から再度前記溶液をキャスト塗工し、多孔質基材の両面に前記溶液を含浸させた。次いで、80℃で40分予備乾燥した後、120℃で40分乾燥することで、前記基材の両面に塗膜が形成された積層体を得た。乾燥後の積層体を大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾することで、高分子量ポリエチレン製多孔質基材で補強され、重合体(A1)と重合体(B1)とが質量比(重合体(A1)/重合体(B1))が97/3で含まれる、膜厚20μmの電解質膜11を得た。
[Example 19]
15 g of the polymer (A1) obtained in Synthesis Example 1 and 0.47 g of the polymer (B1) obtained in Synthesis Example 3 are mixed solvents of NMP / methyl ethyl ketone / methanol = 60/20/20 (mass ratio). The solution dissolved in 85 ml was cast coated on a PET film with a die coater. On this coating liquid, a high molecular weight polyethylene porous substrate (manufactured by Lydall, SOLUPOR (registered trademark), 3P07A; specific gravity 3.0 g / m 2 , air permeability 1.4 s / 50 ml, porosity 83 %, Thickness 20 μm). Further, the solution was cast again from the side of the porous substrate not in contact with the coating solution, and both surfaces of the porous substrate were impregnated with the solution. Next, after preliminary drying at 80 ° C. for 40 minutes, drying was performed at 120 ° C. for 40 minutes to obtain a laminate in which a coating film was formed on both surfaces of the substrate. The laminated body after drying is immersed in a large amount of distilled water overnight, the remaining NMP in the coating film is removed, and then air-dried to be reinforced with a porous substrate made of high molecular weight polyethylene, and the polymer (A1) and An electrolyte membrane 11 having a thickness of 20 μm was obtained, in which the mass ratio of polymer (B1) to polymer (A1) / polymer (B1) was 97/3.
 実施例9において実施例1で得られたPETフィルム付の電解質膜1の代わりに、前記電解質膜11を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。 In Example 9, an evaluation fuel cell was prepared in the same manner as in Example 9 except that the electrolyte membrane 11 was used instead of the electrolyte membrane 1 with the PET film obtained in Example 1. The OCV durability test and the output voltage measurement before and after the OCV durability test were performed. The results are shown in Table 2.
 [比較例4]
 実施例9において実施例1で得られたPETフィルム付の電解質膜1の代わりに、比較例2で得られたPETフィルム付の電解質膜を用いた以外は実施例9と同様にして評価用燃料電池を作成し、該燃料電池を用いて、OCV耐久性試験およびOCV耐久性試験前後の出力電圧測定を行った。結果を表2に示す。
[Comparative Example 4]
Fuel for evaluation in the same manner as in Example 9, except that the electrolyte membrane with PET film obtained in Comparative Example 2 was used instead of the electrolyte membrane with PET film obtained in Example 1 in Example 9. A battery was prepared, and an OCV durability test and an output voltage measurement before and after the OCV durability test were performed using the fuel cell. The results are shown in Table 2.
 [比較例5]
 実施例9において実施例1で得られたPETフィルム付の電解質膜1の代わりに、比較例1で得られたPETフィルム付の電解質膜を用いた以外は実施例9と同様にして評価用燃料電池を作成した。該燃料電池を用いて、OCV耐久性試験、およびOCV耐久性試験前後の出力電圧測定を行おうとしたところ、初期の電圧が、白金触媒被毒のため測定できなかったため、これらを測定することができなかった。
[Comparative Example 5]
Fuel for evaluation in the same manner as in Example 9 except that the electrolyte membrane with PET film obtained in Comparative Example 1 was used instead of the electrolyte membrane with PET film obtained in Example 1 in Example 9. A battery was created. The fuel cell was used to measure the OCV durability test and the output voltage before and after the OCV durability test. The initial voltage could not be measured due to platinum catalyst poisoning. could not.
 〔評価結果〕
 実施例9~19で得られる燃料電池は、開回路電圧の低下速度が比較例4で得られる燃料電池より小さいことが分かった。また、実施例9~19で得られる燃料電池は、OCV耐久試験前後のセル電圧低下度が比較例4で得られる燃料電池より小さいことが分かった。以上より、本発明の電解質膜は発電性能に優れ、耐久性に優れていることが分かる。
〔Evaluation results〕
It was found that the fuel cells obtained in Examples 9 to 19 had a lower open circuit voltage decrease rate than the fuel cell obtained in Comparative Example 4. Further, it was found that the fuel cells obtained in Examples 9 to 19 had a cell voltage decrease degree before and after the OCV endurance test smaller than the fuel cell obtained in Comparative Example 4. From the above, it can be seen that the electrolyte membrane of the present invention has excellent power generation performance and excellent durability.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035

Claims (16)

  1.  イオン交換基を有する重合体(A)、および、アリーレンスルフィド骨格を有し有機溶媒に可溶な重合体(B)を含む、電解質膜用組成物。 An electrolyte membrane composition comprising a polymer (A) having an ion exchange group and a polymer (B) having an arylene sulfide skeleton and soluble in an organic solvent.
  2.  前記重合体(B)が結晶性を有さない、請求項1に記載の電解質膜用組成物。 The composition for an electrolyte membrane according to claim 1, wherein the polymer (B) does not have crystallinity.
  3.  前記重合体(B)が、少なくとも下記式(1)または(2)で表される構造単位のいずれかを含む、請求項1または2に記載の電解質膜用組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R1およびR2はそれぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルキルスルファニル基、シアノ基またはハロゲン原子であり、aおよびbはそれぞれ独立して、0~3の整数である。X1およびX2はそれぞれ独立して、直接結合、-S-、-NH-、-SO-または-SO2-であるが、X1およびX2の少なくとも一方は-S-である。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R3は、炭素数1~5のアルキル基、炭素数1~5のアルキルスルファニル基、シアノ基またはハロゲン原子であり、cは0~4の整数である。]
    The composition for electrolyte membrane of Claim 1 or 2 in which the said polymer (B) contains at least either of the structural unit represented by following formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1), R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group or a halogen atom, and a and b are each Independently, it is an integer of 0 to 3. X 1 and X 2 are each independently a direct bond, —S—, —NH—, —SO— or —SO 2 —, but at least one of X 1 and X 2 is —S—. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), R 3 represents an alkyl group having 1 to 5 carbon atoms, an alkylsulfanyl group having 1 to 5 carbon atoms, a cyano group, or a halogen atom, and c represents an integer of 0 to 4. ]
  4.  前記重合体(B)が、少なくとも下記式(3)~(5)で表される構造単位のいずれかを含む、請求項1~3のいずれか1項に記載の電解質膜用組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R1、R2、X1、X2、aおよびbはそれぞれ独立して、前記式(1)中のR1、R2、X1、X2、aおよびbと同義である。]
    Figure JPOXMLDOC01-appb-C000004
    [式(4)および(5)中、R3およびcはそれぞれ独立して、前記式(2)中のR3およびcと同義である。]
    The composition for an electrolyte membrane according to any one of claims 1 to 3, wherein the polymer (B) contains at least one of structural units represented by the following formulas (3) to (5).
    Figure JPOXMLDOC01-appb-C000003
    Wherein (3), R 1, R 2, X 1, X 2, a and b are each independently, R 1 in the formula (1), R 2, X 1, X 2, a and b Is synonymous with ]
    Figure JPOXMLDOC01-appb-C000004
    [In the formulas (4) and (5), R 3 and c are each independently synonymous with R 3 and c in the formula (2). ]
  5.  前記重合体(B)が、極性基、フッ素原子を含む基およびフルオレニリデン基からなる群より選ばれる少なくとも1種の基を有する、請求項1~4のいずれか1項に記載の電解質膜用組成物。 The composition for an electrolyte membrane according to any one of claims 1 to 4, wherein the polymer (B) has at least one group selected from the group consisting of a polar group, a group containing a fluorine atom, and a fluorenylidene group. object.
  6.  前記重合体(B)が、下記式(7)で表される構造単位を有する、請求項1~5のいずれか1項に記載の電解質膜用組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式(7)中、Dは独立して、直接結合、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2)l-(lは1~10の整数である)、-C(CF3)2-、-(CH2)l-(lは1~10の整数である)、-C(CR'3)2-(R'は独立して、炭化水素基または環状炭化水素基である)、シクロヘキシリデン基、フルオレニリデン基、-O-または-S-であり、AおよびEはそれぞれ独立して、直接結合、-O-または-S-であり、R4~R11はそれぞれ独立して、水素原子、フッ素原子、アルキル基、アリル基、アリール基、一部もしくはすべての水素原子がハロゲン化されたハロゲン化アルキル基、ニトロ基またはシアノ基であり、rは0~4の整数である。ただし、式(7)で表される構造単位は、式(2)で表される構造単位ではない。]
    The composition for an electrolyte membrane according to any one of claims 1 to 5, wherein the polymer (B) has a structural unit represented by the following formula (7).
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (7), D is independently a direct bond, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) 1 — (l is 1 to 10 -C (CF 3 ) 2 -,-(CH 2 ) l- (l is an integer of 1 to 10), -C (CR ' 3 ) 2- (R' is independently A cyclohexylidene group, a fluorenylidene group, —O— or —S—, and A and E are each independently a direct bond, —O— or —S—. R 4 to R 11 are each independently a hydrogen atom, a fluorine atom, an alkyl group, an allyl group, an aryl group, a halogenated alkyl group in which some or all of the hydrogen atoms are halogenated, a nitro group, or a cyano group. And r is an integer of 0-4. However, the structural unit represented by Formula (7) is not the structural unit represented by Formula (2). ]
  7.  前記重合体(B)の数平均分子量が、1,000~10,000の範囲にある、請求項1~6のいずれか1項に記載の電解質膜用組成物。 The composition for an electrolyte membrane according to any one of claims 1 to 6, wherein the number average molecular weight of the polymer (B) is in the range of 1,000 to 10,000.
  8.  金属含有化合物および金属イオンからなる群より選ばれる少なくとも1種の金属成分を更に含む、請求項1~7のいずれか1項に記載の電解質膜用組成物。 The composition for an electrolyte membrane according to any one of claims 1 to 7, further comprising at least one metal component selected from the group consisting of a metal-containing compound and a metal ion.
  9.  請求項1~8のいずれか1項に記載の電解質膜用組成物から得られる、固体高分子電解質膜。 A solid polymer electrolyte membrane obtained from the electrolyte membrane composition according to any one of claims 1 to 8.
  10.  前記電解質膜(体積0.036cm3)を80℃の1N硫酸水溶液50mLに100時間浸漬させた後、該電解質膜を除去することで得られる水溶液に、表面積0.785mm2の白金表面を、掃引速度0.01V/s、掃引電位範囲0.05~0.4Vでサイクリックボルタンメトリーを20サイクル測定している間浸漬させた際の白金の被毒率が20%以下となる、請求項9に記載の固体高分子電解質膜。 After the electrolyte membrane (volume 0.036 cm 3 ) was immersed in 50 mL of 1N sulfuric acid aqueous solution at 80 ° C. for 100 hours, the platinum surface with a surface area of 0.785 mm 2 was swept into the aqueous solution obtained by removing the electrolyte membrane. 10. The platinum poisoning rate when immersed for 20 cycles of cyclic voltammetry at a speed of 0.01 V / s and a sweep potential range of 0.05 to 0.4 V is 20% or less. The solid polymer electrolyte membrane described.
  11.  前記重合体(B)が、前記電解質膜の膜厚に対して、少なくとも該電解質膜の表面から30%以内の位置に存在する、請求項9または10に記載の固体高分子電解質膜。 The solid polymer electrolyte membrane according to claim 9 or 10, wherein the polymer (B) is present at least at a position within 30% from the surface of the electrolyte membrane with respect to the thickness of the electrolyte membrane.
  12.  請求項1~8のいずれか1項に記載の電解質膜用組成物を塗布する工程を含む、請求項9~11のいずれか1項に記載の固体高分子電解質膜の製造方法。 The method for producing a solid polymer electrolyte membrane according to any one of claims 9 to 11, comprising a step of applying the electrolyte membrane composition according to any one of claims 1 to 8.
  13.  ガス拡散層、触媒層、請求項9~11のいずれか1項に記載の固体高分子電解質膜、触媒層およびガス拡散層がこの順で積層された、膜-電極接合体。 A membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, the solid polymer electrolyte membrane according to any one of claims 9 to 11, a catalyst layer, and a gas diffusion layer are laminated in this order.
  14.  請求項13に記載の膜-電極接合体を有する固体高分子型燃料電池。 A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 13.
  15.  触媒層、請求項9~11のいずれか1項に記載の固体高分子電解質膜および触媒層がこの順で積層された、水電解セル。 A water electrolysis cell in which a catalyst layer, the solid polymer electrolyte membrane according to any one of claims 9 to 11 and a catalyst layer are laminated in this order.
  16.  請求項15に記載の水電解セルを有する水電解装置。 A water electrolysis apparatus comprising the water electrolysis cell according to claim 15.
PCT/JP2014/058640 2013-03-28 2014-03-26 Electrolyte membrane composition, solid polymer electrolyte membrane, method of producing said electrolyte membrane, membrane-electrode assembly, solid polymer-type fuel cell, and water electrolysis cell and water electrolysis apparatus WO2014157389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508610A JPWO2014157389A1 (en) 2013-03-28 2014-03-26 Composition for electrolyte membrane, solid polymer electrolyte membrane, method for producing the electrolyte membrane, membrane-electrode assembly, polymer electrolyte fuel cell, water electrolysis cell, and water electrolysis apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069506 2013-03-28
JP2013069506 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157389A1 true WO2014157389A1 (en) 2014-10-02

Family

ID=51624352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058640 WO2014157389A1 (en) 2013-03-28 2014-03-26 Electrolyte membrane composition, solid polymer electrolyte membrane, method of producing said electrolyte membrane, membrane-electrode assembly, solid polymer-type fuel cell, and water electrolysis cell and water electrolysis apparatus

Country Status (2)

Country Link
JP (1) JPWO2014157389A1 (en)
WO (1) WO2014157389A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012812A1 (en) * 2016-07-15 2018-01-18 주식회사 엘지화학 Sulfide-based polymer, film comprising same, and manufacturing method therefor
JP2018110108A (en) * 2016-12-12 2018-07-12 東レ株式会社 POLYMER ELECTROLYTE COMPOSITION, POLYMER ELECTROLYTE MEMBRANE USING THE SAME, ELECTROLYTE MEMBRANE WITH CATALYST LAYER, MEMBRANE ELECTRODE COMPOSITE, SOLID POLYMER FUEL CELL, SOLID POLYMER WATER ELECTROLYSIS HYDROGEN GENERATOR AND ELECTROCHEMICAL HYDROGEN COMPRESSOR, AND PRODUCTION METHOD OF POLYMER ELECTROLYtE COMPOSITION
EP3322018A4 (en) * 2016-05-04 2018-07-18 LG Chem, Ltd. Polymer electrolyte membrane production method, polymer electrolyte membrane produced using same, membrane electrode assembly comprising said polymer electrolyte membrane, and fuel cell comprising said membrane electrode assembly
CN109923242A (en) * 2016-11-04 2019-06-21 株式会社日本多宁 Solid macromolecule membrane electrode
JP7455605B2 (en) 2019-03-29 2024-03-26 現代自動車株式会社 Antioxidant for fuel cells and fuel cells containing the same
JP7473153B2 (en) 2020-01-23 2024-04-23 国立研究開発法人物質・材料研究機構 Hydrogen production device and hydrogen production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510198A (en) * 1995-07-27 1999-09-07 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Polymer electrolytes and their preparation
JP2007213905A (en) * 2006-02-08 2007-08-23 Jsr Corp Electrode electrolyte for polymer fuel cell and its use
JP2008235265A (en) * 2007-02-21 2008-10-02 Asahi Kasei Chemicals Corp Polyelectrolyte composition having high durability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510198A (en) * 1995-07-27 1999-09-07 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Polymer electrolytes and their preparation
JP2007213905A (en) * 2006-02-08 2007-08-23 Jsr Corp Electrode electrolyte for polymer fuel cell and its use
JP2008235265A (en) * 2007-02-21 2008-10-02 Asahi Kasei Chemicals Corp Polyelectrolyte composition having high durability

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790528B2 (en) 2016-05-04 2020-09-29 Lg Chem, Ltd. Polymer electrolyte membrane production method, polymer electrolyte membrane produced using same, membrane electrode assembly comprising said polymer electrolyte membrane, and fuel cell comprising said membrane electrode assembly
EP3322018A4 (en) * 2016-05-04 2018-07-18 LG Chem, Ltd. Polymer electrolyte membrane production method, polymer electrolyte membrane produced using same, membrane electrode assembly comprising said polymer electrolyte membrane, and fuel cell comprising said membrane electrode assembly
WO2018012812A1 (en) * 2016-07-15 2018-01-18 주식회사 엘지화학 Sulfide-based polymer, film comprising same, and manufacturing method therefor
CN107849251A (en) * 2016-07-15 2018-03-27 株式会社Lg化学 Sulfide-based polymer, the preparation method for including the film of the polymer and the film
CN107849251B (en) * 2016-07-15 2020-03-10 株式会社Lg化学 Sulfide-based polymer, film comprising same, and method for producing film
US10428182B2 (en) 2016-07-15 2019-10-01 Lg Chem, Ltd. Sulfide-based polymer, film comprising same and method for preparing same
EP3536824A4 (en) * 2016-11-04 2019-11-20 Nihon Trim Co., Ltd. Solid polymer film electrode
CN109923242A (en) * 2016-11-04 2019-06-21 株式会社日本多宁 Solid macromolecule membrane electrode
CN109923242B (en) * 2016-11-04 2021-10-29 株式会社日本多宁 Solid polymer membrane electrode
JP2018110108A (en) * 2016-12-12 2018-07-12 東レ株式会社 POLYMER ELECTROLYTE COMPOSITION, POLYMER ELECTROLYTE MEMBRANE USING THE SAME, ELECTROLYTE MEMBRANE WITH CATALYST LAYER, MEMBRANE ELECTRODE COMPOSITE, SOLID POLYMER FUEL CELL, SOLID POLYMER WATER ELECTROLYSIS HYDROGEN GENERATOR AND ELECTROCHEMICAL HYDROGEN COMPRESSOR, AND PRODUCTION METHOD OF POLYMER ELECTROLYtE COMPOSITION
JP7059608B2 (en) 2016-12-12 2022-04-26 東レ株式会社 Polymer electrolyte composition, polymer electrolyte membrane using it, electrolyte membrane with catalyst layer, membrane electrode composite, polymer electrolyte fuel cell, solid polymer electrolyte hydrogen generator and electrochemical hydrogen compression apparatus, And a method for producing a polymer electrolyte composition.
JP7455605B2 (en) 2019-03-29 2024-03-26 現代自動車株式会社 Antioxidant for fuel cells and fuel cells containing the same
JP7473153B2 (en) 2020-01-23 2024-04-23 国立研究開発法人物質・材料研究機構 Hydrogen production device and hydrogen production method

Also Published As

Publication number Publication date
JPWO2014157389A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014087957A1 (en) Electrolyte-membrane assembly, membrane electrode assembly, fuel cell, water-electrolysis cell, and water-electrolysis device
CA2662608C (en) Aromatic polyether copolymers and polymer blends and fuel cells comprising same
JP4508954B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
TWI671942B (en) Composite polymer electrolyte membrane, electrolyte membrane with catalyst layer, membrane electrode composite, solid polymer fuel cell, hydrogen compression device and composite polymer electrolyte membrane
EP2134768B1 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups and use thereof in proton exchange membrane fuel cells
JP5905857B2 (en) Polymer electrolyte, polymer electrolyte membrane, fuel cell catalyst layer binder, and use thereof
WO2014157389A1 (en) Electrolyte membrane composition, solid polymer electrolyte membrane, method of producing said electrolyte membrane, membrane-electrode assembly, solid polymer-type fuel cell, and water electrolysis cell and water electrolysis apparatus
JP2008112712A (en) Proton conductive electrolyte membrane, its manufacturing method, membrane-electrode assembly using it, and fuel cell
US7786244B2 (en) Development and characterization of novel proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups
JP2005183311A (en) Polyelectrolyte for direct methanol type fuel cell electrode, varnish composition, and direct methanol type fuel cell
WO2015005370A1 (en) Electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2008053084A (en) Fuel cell and membrane-electrode assembly therefor
JP2009104926A (en) Membrane electrode assembly
JP5552785B2 (en) Solid polymer electrolyte membrane, method for producing the same, and liquid composition
JP5309822B2 (en) Aromatic sulfonic acid derivative, sulfonated polymer, polymer electrolyte material and polymer electrolyte fuel cell using the same
JP4337038B2 (en) Composition comprising an acidic group-containing polybenzimidazole compound
JP2007048747A (en) Membrane-electrode assembly for solid polymer fuel cell
WO2013161405A1 (en) Composition for electrolyte membranes, solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, membrane-electrode assembly, solid polymer fuel cell, water electrolysis cell, and water electrolysis system
JP5440330B2 (en) Solid polymer electrolyte membrane, method for producing the same, and liquid composition
JP5626960B2 (en) POLYMER ELECTROLYTE, PROCESS FOR PRODUCING THE SAME AND USE THEREOF
JP2015228292A (en) Solid polymer electrolyte membrane, membrane-electrode assembly, fuel battery, water electrolysis cell and water electrolysis device
JP6819047B2 (en) Diphenylsulfone compounds for polymer electrolytes, polymer electrolytes, methods for producing polymer electrolytes, membrane electrode assemblies, and polymer electrolyte fuel cells.
JP2015008060A (en) Electrolytic film, film-electrode assembly, and solid polymer type fuel battery
JP2006179256A (en) Membrane-electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP5716677B2 (en) Hydrogen fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772665

Country of ref document: EP

Kind code of ref document: A1