WO2014157267A1 - Optical interference pigment and method for producing same - Google Patents

Optical interference pigment and method for producing same Download PDF

Info

Publication number
WO2014157267A1
WO2014157267A1 PCT/JP2014/058401 JP2014058401W WO2014157267A1 WO 2014157267 A1 WO2014157267 A1 WO 2014157267A1 JP 2014058401 W JP2014058401 W JP 2014058401W WO 2014157267 A1 WO2014157267 A1 WO 2014157267A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
interference pigment
light interference
light
Prior art date
Application number
PCT/JP2014/058401
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 沖
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480017178.5A priority Critical patent/CN105073907A/en
Publication of WO2014157267A1 publication Critical patent/WO2014157267A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0098Organic pigments exhibiting interference colours, e.g. nacrous pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/101Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an anthracene dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/105Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing a methine or polymethine dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/106Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an azo dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/107Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an azomethine dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a light interference pigment and a method for producing the same.
  • Patent Document 1 discloses that a light-reflecting film in which a cholesteric liquid crystal phase is fixed by being cured by ultraviolet irradiation is pulverized by peeling off from a carrier and classified by sieving, thereby obtaining UV-A and / or UV.
  • Patent Document 2 describes a method for producing a light protective agent preparation in which a light reflecting film obtained by curing and fixing a cholesteric liquid crystal phase by ultraviolet irradiation is pulverized and mixed with a pigment.
  • Patent Document 3 describes a method for producing a liquid crystal polyester obtained by granulating a polycondensate, and further describes that the particles are washed with an acidic aqueous solution after being granulated, and further washed with water.
  • Patent Document 4 describes a method for producing a flat polyester powder by washing porous polyester before granulation with high-temperature ethylene glycol or hot water, drying it, and then pulverizing it into particles. Yes.
  • Patent Document 5 the PTFE coarse particles obtained by suspension polymerization of polytetrafluoroethylene (PTFE) are finely pulverized in a wet state and then washed with water (pure water) to efficiently produce a powder for molding PTFE. It describes that the amount of impurities can be reduced.
  • PTFE polytetrafluoroethylene
  • Patent Documents 1 and 2 it has not been studied in the past, including Patent Documents 1 and 2, to wash the obtained light interference particles after crushing the light reflecting film in which the cholesteric liquid crystal phase is cured and fixed.
  • the film obtained by curing and solidifying the polymerizable liquid crystal compound is still used as a functional film as a member of other products.
  • the first place unlike the case of pulverizing a non-film-like polycondensate as in Patent Documents 3 to 5, there is no known need to remove impurities by washing after film formation, and examples of washing after film formation are also included. Little was known.
  • Patent Document 6 discloses a light reflection film in which a cholesteric liquid crystal phase is cured and fixed. It was only described that it was immersed in a container containing an organic solvent and washed.
  • the present invention aims to ameliorate the above problems and satisfy the demands. That is, the problem to be solved by the present invention is to provide a method for producing a light interference pigment having good light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium.
  • a light-reflective cholesteric liquid crystal film obtained by curing and fixing a polymerizable liquid crystal compound is As a countermeasure against problems peculiar to lamination such as wavelength shift and wavelength shift, there are many uncured monomers and additives in the film to adjust the curing and add additives. In this case, when the pigment is dispersed in the dispersion medium, these uncured monomers and additives are expected to elute and adversely affect various performances.
  • cholesteric liquid crystals also have the problem that the optical characteristics at the selective reflection wavelength are further deteriorated (the selective reflection wavelength is shifted and the light reflectance is lowered).
  • the main factor is that the film having a cholesteric liquid crystal structure is used as an optical interference pigment.
  • the free volume (space) of the liquid crystal structure of the light interference pigment widens, and as a result, the gap between the light interference pigments It was found that ⁇ n (refractive index) of the light interference pigment was lowered by the surrounding material (for example, resin) entering the dispersion medium.
  • the present invention which is means for solving the above problems, is as follows. [1] A step of producing a film having a cholesteric liquid crystal structure in which the alignment state of the polymerizable liquid crystal compound is cured and fixed; Crushing a film having a cholesteric liquid crystal structure to produce light interference particles; Washing the optical interference particles with an organic solvent having an SP value of at least 8.5 to 12 (cal / cm 3 ) 1/2 at a temperature of 35 ° C.
  • V represents the molar molecular volume of the solvent and ⁇ E represents the cohesive energy;
  • a method for producing a light interference pigment [2] The method for producing a light interference pigment according to [1] reflects right-handed circularly polarized light obtained by curing a film having a cholesteric liquid crystal structure and fixing the alignment state of at least one polymerizable liquid crystal compound.
  • the method for producing a light interference pigment according to [1] or [2] is preferably cleaned by immersing the light interference particles in an organic solvent.
  • the filtration accuracy of the filter used for filtering the organic solvent is 0.3 to 6 ⁇ m.
  • the washing temperature is preferably 40 ° C. or higher and the boiling point of the organic solvent or lower.
  • the light interference particles preferably have a flat plate shape.
  • the selective reflection wavelength of the light interference pigment is preferably 420 nm or less.
  • the thickness of the light interference particles is preferably 4 to 10 ⁇ m.
  • the substrate is preferably a plastic film having a glass transition temperature of 150 ° C. or lower.
  • the polymerizable liquid crystal compound is preferably a compound represented by the following general formula (X).
  • the manufacturing method of the light interference pigment which has the favorable light reflection performance in the selective reflection wavelength when it makes it disperse
  • FIG. 1 is a schematic view showing a cross section of an example of a film having a cholesteric liquid crystal structure, which is used when manufacturing optical interference particles used for manufacturing the optical interference pigment of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the solid containing the polymerizable liquid crystal compound may be composed of a crystal of the polymerizable liquid crystal compound or may be an amorphous form that is not a crystal.
  • other components such as a polymerization initiator and a chiral agent, may also be included. In some cases, all or some of these may be mixed.
  • the SP value represents the solubility parameter value ⁇ calculated by the Hoy method, and is defined by the square root of the cohesive energy density represented by the following formula (1).
  • ( ⁇ E / V) 1/2 formula (1)
  • V represents the molar molecular volume of the solvent
  • ⁇ E represents the cohesive energy (evaporation energy).
  • the SP value ( ⁇ ) was calculated according to J. Hildebrand, R. Scott: “The Solubility of Non-electrolytes”, 3rd Ed. , P.119-133, Reinhold Publishing Corp. (1949).
  • the Hoy method represents the content described in “Polymer Handbook (4th. Edition)”.
  • the method for producing a light interference pigment according to the present invention includes a step of producing a film having a cholesteric liquid crystal structure in which an alignment state of a polymerizable liquid crystal compound is cured and fixed, and crushing a film having a cholesteric liquid crystal structure to produce light interference particles. And a step of cleaning the optical interference particles using an organic solvent having an SP value of at least 8.5 to 12 (cal / cm 3 ) 1/2 at a temperature of 35 ° C. or higher.
  • the SP value represents the solubility parameter ⁇ measured by the Hoy method and is represented by the following formula (1)).
  • This measured value is a value when the optical performance of a film coated with a thin dispersion liquid containing a light interference pigment and a dispersion medium is measured, and is substantially the value of the dispersion liquid containing the light interference pigment and the dispersion medium. It is equal to the optical performance.
  • materials used in the method for producing a light interference pigment of the present invention and preferred production conditions will be described.
  • the method for producing a light interference pigment of the present invention includes a step of producing a film having a cholesteric liquid crystal structure in which the alignment state of the polymerizable liquid crystal compound is cured and fixed.
  • a liquid containing a cholesteric liquid crystal material is applied on a substrate, the solvent is evaporated, and then heated to align the liquid crystal.
  • a method in which the step of irradiating with ultraviolet rays is repeated once or a plurality of times is preferable. Details of a method for manufacturing a film having a cholesteric liquid crystal structure will be described below.
  • the film having a cholesteric liquid crystal structure is formed by forming an alignment film on a substrate as necessary, and applying, drying, aligning and fixing a cholesteric liquid crystal composition coating solution containing a solvent described later on the surface thereof.
  • the coating can be performed by a known method (for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, or a die coating method) using a cholesteric liquid crystal composition coating solution. Alternatively, it may be formed by discharging using an inkjet apparatus.
  • a plastic film as a substrate, and to use a plastic film having a glass transition temperature of 170 ° C. or lower reduces the production cost by using a resin having low heat resistance. From the viewpoint of being able to do so.
  • the glass transition temperature of the plastic film used as the substrate is more preferably 40 to 160 ° C., and particularly preferably 60 to 150 ° C.
  • As the substrate it is preferable to use PET.
  • the state of “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound contained in the film having a cholesteric liquid crystal structure is maintained, but is not limited thereto, specifically, Usually, the film having the cholesteric liquid crystal structure has no fluidity in the temperature range of 0 ° C. to 50 ° C., and -30 ° C. to 70 ° C. under severer conditions, and changes in the alignment form by an external field or external force. The state which can maintain the fixed orientation form stably without being pointed out.
  • a liquid containing a polymerizable liquid crystal compound (hereinafter also referred to as a liquid crystal composition) is once heated to the liquid crystal phase formation temperature, and then cooled while maintaining the alignment state. By doing so, it can be formed by fixing without impairing the alignment form in the liquid crystal state.
  • the liquid crystal composition to which the polymerization initiator is added can be formed by heating and aligning to the liquid crystal phase formation temperature and then fixing the alignment state of the liquid crystal state by polymerization.
  • the latter polymerization reaction is preferably performed, and the photopolymerization reaction is more preferably performed using a photopolymerization initiator.
  • a low-molecular liquid crystal compound may have a group that reacts with heat, light, or the like, and as a result, it may be polymerized or cross-linked by reaction with heat, light, or the like to increase the molecular weight and lose liquid crystallinity.
  • the liquid crystal composition is preferably obtained by mixing a polymerizable liquid crystal compound, an optically active compound (in the present invention, synonymous with a chiral agent and a chiral agent), a polymerization initiator, and a solvent.
  • a polymerizable liquid crystal compound may be used.
  • the liquid crystal composition may contain a non-polymerizable liquid crystal compound as long as it contains a polymerizable liquid crystal compound.
  • a polymerizable liquid crystal compound and a non-polymerizable liquid crystal compound can be used in combination.
  • a low molecular weight polymerizable liquid crystal compound and a polymer liquid crystal compound can be used in combination.
  • liquid crystal composition in order to improve alignment uniformity, coating suitability, and film strength.
  • the liquid crystal composition may further contain a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer and the like as long as the optical performance is not deteriorated.
  • the liquid crystal temperature range of the liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like.
  • a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a cholesteric liquid crystal phase.
  • a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting a cholesteric liquid crystal phase, which is disadvantageous from waste of heat energy, deformation of the substrate, and alteration.
  • Polymerizable liquid crystal compounds As the polymerizable liquid crystal compound, a polymerizable rod-like liquid crystal compound is preferable.
  • Polymerizable rod-shaped liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • the orientation of the polymerizable rod-like liquid crystal compound is fixed by polymerization, and the rod-like liquid crystal compound is more preferably a polymerizable rod-like nematic liquid crystal compound.
  • the polymerizable rod-like liquid crystal compound include Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), U.S. Pat. Nos. 4,683,327, 5,622,648 and 5,770,107, WO 95/22586, 95/24455, 97/97. No. 0600, No. 98/23580, No.
  • the polymerizable liquid crystal compound is preferably a compound represented by the following general formula (X).
  • Formula (X) Q 1 -L 1 -Cy 1 -L 2- (Cy 2 -L 3 ) n -Cy 3 -L 4 -Q 2 (In General Formula (X), Q 1 and Q 2 are each independently a polymerizable group, L 1 and L 4 are each independently a divalent linking group, and L 2 and L 3 are each independently a single group. A bond or a divalent linking group, Cy 1 , Cy 2 and Cy 3 are divalent cyclic groups, and n is 0, 1, 2, or 3.)
  • the compound (polymerizable rod-like liquid crystal compound) represented by the general formula (X) will be further described below.
  • Q 1 and Q 2 are each independently a polymerizable group.
  • the polymerization reaction of the polymerizable group is preferably addition polymerization (including ring-opening polymerization) or condensation polymerization.
  • the polymerizable group is preferably a functional group capable of addition polymerization reaction or condensation polymerization reaction. Examples of polymerizable groups are shown below.
  • L 1 and L 4 are each independently a divalent linking group.
  • L 1 and L 4 each independently comprises —O—, —S—, —CO—, —NR—, —C ⁇ N—, a divalent chain group, a divalent cyclic group, and combinations thereof.
  • a divalent linking group selected from the group is preferred.
  • R is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom.
  • the example of the bivalent coupling group which consists of a combination is shown below. Here, the left side is coupled to Q (Q 1 or Q 2 ), and the right side is coupled to Cy (Cy 1 or Cy 3 ).
  • L-1 —CO—O—divalent chain group —O— L-2: —CO—O—divalent chain group —O—CO— L-3: —CO—O—divalent chain group —O—CO—O— L-4: —CO—O—divalent chain group—O—divalent cyclic group— L-5: —CO—O—divalent chain group —O—divalent cyclic group —CO—O— L-6: —CO—O—divalent chain group —O—divalent cyclic group —O—CO— L-7: —CO—O—Divalent chain group—O—Divalent cyclic group—Divalent chain group— L-8: —CO—O—divalent chain group—O—divalent cyclic group—divalent chain group —CO—O— L-9: —CO—O—Divalent chain group—O—Divalent cyclic group—Divalent chain group—O—CO— L-10: —CO
  • the alkylene group may have a branch.
  • the alkylene group preferably has 1 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
  • the alkylene part of the substituted alkylene group is the same as the above alkylene group. Examples of the substituent include a halogen atom.
  • the alkenylene group may have a branch.
  • the alkenylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
  • the alkylene part of the substituted alkylene group is the same as the above alkylene group.
  • the substituent include a halogen atom.
  • the alkynylene group may have a branch.
  • the alkynylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
  • the alkynylene part of the substituted alkynylene group is the same as the above alkynylene group.
  • Examples of the substituent include a halogen atom.
  • divalent chain group examples include ethylene, trimethylene, propylene, tetramethylene, 2-methyl-tetramethylene, pentamethylene, hexamethylene, octamethylene, 2-butenylene, 2-butynylene and the like.
  • divalent cyclic group is the same as those of Cy 1 , Cy 2 and Cy 3 described later.
  • R 2 is preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, more preferably a methyl group, an ethyl group or a hydrogen atom, and a hydrogen atom. Most preferred.
  • L 2 or L 3 each independently represents a single bond or a divalent linking group.
  • L 2 and L 3 each independently comprises —O—, —S—, —CO—, —NR—, —C ⁇ N—, a divalent chain group, a divalent cyclic group, and combinations thereof. It is preferably a divalent linking group or a single bond selected from the group.
  • R is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom, preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and more preferably a methyl group, an ethyl group or a hydrogen atom. Preferably, it is a hydrogen atom.
  • the divalent chain group and the divalent cyclic group have the same definitions as L 1 and L 4 .
  • Preferred divalent linking groups as L 2 or L 3 include —COO—, —OCO—, —OCOO—, —OCONR—, —COS—, —SCO—, —CONR—, —NRCO—, —CH 2. CH 2 —, —C ⁇ C—COO—, —C ⁇ N—, —C ⁇ N—N ⁇ C—, and the like.
  • n is 0, 1, 2, or 3.
  • two L 3 may be the same or different, and two Cy 2 may be the same or different.
  • n is preferably 1 or 2, and more preferably 1.
  • Cy 1 , Cy 2 and Cy 3 are each independently a divalent cyclic group.
  • the ring contained in the cyclic group is preferably a 5-membered ring, 6-membered ring, or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and most preferably a 6-membered ring.
  • the ring contained in the cyclic group may be a condensed ring. However, it is more preferably a monocycle than a condensed ring.
  • the ring contained in the cyclic group may be any of an aromatic ring, an aliphatic ring, and a heterocyclic ring.
  • Examples of the aromatic ring include a benzene ring and a naphthalene ring.
  • Examples of the aliphatic ring include a cyclohexane ring.
  • Examples of the heterocyclic ring include a pyridine ring and a pyrimidine ring.
  • As the cyclic group having a benzene ring 1,4-phenylene is preferable.
  • As the cyclic group having a naphthalene ring naphthalene-1,5-diyl and naphthalene-2,6-diyl are preferable.
  • the cyclic group having a cyclohexane ring is preferably 1,4-cyclohexylene.
  • cyclic group having a pyridine ring pyridine-2,5-diyl is preferable.
  • the cyclic group having a pyrimidine ring is preferably pyrimidine-2,5-diyl.
  • the cyclic group may have a substituent. Examples of the substituent include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 5 carbon atoms, a halogen-substituted alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms.
  • Examples of the polymerizable liquid crystal compound represented by the general formula (X) are shown below. The present invention is not limited to these.
  • the rod-like liquid crystal compound in addition to the polymerizable rod-like liquid crystal compound represented by the general formula (X), at least one compound represented by the following general formula (V) may be mixed.
  • Formula (V) M 1- (L 1 ) p -Cy 1 -L 2- (Cy 2 -L 3 ) n -Cy 3- (L 4 ) q -M 2
  • M 1 and M 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a heterocyclic group, a cyano group, a halogen, —SCN, —CF 3 , It represents a nitro group or Q 1 , but at least one of M 1 and M 2 represents a group other than Q 1 .
  • Q 1, L 1, L 2, L 3, L 4, Cy 1, Cy 2, Cy 3 and n have the same meanings as the group represented by the general formula (X).
  • P and q are 0 or 1.
  • M 1 and M 2 do not represent Q 1 , they are preferably a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a cyano group, more preferably a carbon number It is preferably an alkyl group of 1 to 4 or a phenyl group, and p and q are preferably 0.
  • optically active compounds As the optically active compound, a known chiral agent (for example, liquid crystal device handbook, chapter 3-4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 142nd Committee, 1989) is used. be able to.
  • the optically active compound generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as a chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the optically active compound may have a polymerizable group.
  • a polymer having a rod-like nematic liquid crystalline repeating unit and an optically active structure can be formed by a polymerization reaction of the polymerizable rod-like nematic liquid crystalline compound.
  • the polymerizable group of the optically active compound is preferably the same group as the polymerizable group of the polymerizable rod-like nematic liquid crystalline compound.
  • the polymerizable group of the optically active compound is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group.
  • a commercially available chiral agent may be used as the chiral agent, and LC-756 (manufactured by BASF) can be preferably used when forming a light reflection layer that reflects right circularly polarized light.
  • the chiral agent may have liquid crystallinity.
  • the amount of chiral agent used is preferably 1 to 30 mol% of the amount of the polymerizable liquid crystal compound. A smaller amount of chiral agent is preferred because it often does not affect liquid crystallinity. Therefore, it is preferable that the chiral agent has a strong twisting force.
  • a chiral agent having a strong twisting force for example, the chiral agents described in JP-A Nos. 2003-287623 and 4287599 can be used.
  • the film-forming liquid crystal composition having a cholesteric liquid crystal structure is preferably a curable composition, and for that purpose, it preferably contains a polymerization initiator.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator, a photopolymerization reaction using a photopolymerization initiator, and a polymerization reaction by electron beam irradiation. To prevent the substrate from being deformed or altered by heat, The polymerization reaction by photopolymerization reaction and electron beam irradiation is preferred.
  • the alignment state of the polymerizable liquid crystal compound is fixed by a curing reaction that proceeds by irradiating the composition containing the polymerizable liquid crystal compound and the photopolymerization initiator with ultraviolet rays. It is preferable to do.
  • photopolymerization initiators examples include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970) and the like .
  • the amount of the photopolymerization initiator used is preferably from 0.1 to 20% by mass, more preferably from 1 to 8% by mass, based on the liquid crystal composition (solid content in the case of a coating liquid).
  • Light irradiation for the polymerization of the liquid crystal compound is preferably performed using ultraviolet rays. Irradiation energy is preferably 10mJ / cm 2 ⁇ 50J / cm 2, further preferably 50mJ / cm 2 ⁇ 800mJ / cm 2. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
  • oxygen concentration in the atmosphere is related to the degree of polymerization, when the desired degree of polymerization is not reached in the air, it is preferable to reduce the oxygen concentration by a method such as nitrogen substitution.
  • a preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
  • the polymerization reaction rate is preferably 70% or more, and preferably 80% or more from the viewpoint of maintaining the mechanical strength of the film having a cholesteric liquid crystal structure and suppressing unreacted substances from flowing into the liquid crystal layer and the like. More preferably, it is more preferably 90% or more.
  • a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective.
  • polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can be used.
  • the polymerization reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of the polymerization reactive bonding group before and after the polymerization.
  • a compound described in [0012] to [0030] of JP2012-211306A, a fluorine-containing (meth) acrylate, or [0037] to [0044] of JP2012-101999A By containing at least one of these compounds, it is preferable to reduce the tilt angle of the molecules of the liquid crystal compound at the air interface or to substantially horizontally align it.
  • “horizontal alignment” means that the major axis of the liquid crystal molecule is parallel to the film surface, but it is not required to be strictly parallel. An orientation with an inclination angle of less than 20 degrees is meant.
  • the alignment control agent used in the present invention the compounds described in Japanese Patent Application No. 2003-331269 (Japanese Patent Laid-Open No. 2005-099258) can be used, and the synthesis method of these compounds is also described in the specification. ing.
  • first alignment control agent a compound having at least one perfluoroalkyl chain can be exemplified.
  • the first orientation control agent preferably has an embossing ratio represented by the following formula (1) of 50% or less.
  • A is the lower layer That is, it represents the fluorine atom content relative to the total amount of carbon atoms and fluorine atoms present on the surface of the one-layer product, and B represents the fluorine atom content ratio relative to the total amount of carbon atoms and fluorine atoms present on the surface of the upper layer, ie, the two-layer product. Represents.
  • the measurement method for the fluorine atom content relative to the total amount of carbon atoms and fluorine atoms present on the surface of each layer used when measuring the protrusion ratio of the alignment control agent is not limited.
  • fluorine atoms / carbon atoms (F / C) existing on the surface of each layer were measured by X-ray photoelectron spectroscopy, and the calculation was performed based on these values.
  • the first alignment control agent is preferably non-polymerizable. It is preferable that the first alignment control agent has at least two perfluoroalkyl chains, and it is more preferable that the first alignment control agent has two perfluoroalkyl chains.
  • the first alignment control agent is preferably contained in an amount of 0.03% by mass or more, more preferably 0.10% by mass or more, based on the polymerizable liquid crystal compound in the liquid crystal composition.
  • the first alignment control agent is preferably represented by the following general formula (I).
  • the compound of the following formula (I) is characterized by having a divalent group at the center and a fluorinated alkyl group at the terminal.
  • a compound having a fluorinated alkyl group at the terminal is effective as an alignment accelerator, but conventionally known alignment control agents have a limited use concentration range and a low solubility, limiting their use. It had been. Since the compound of the following formula (I) exhibits the same or better orientation performance in a wider concentration range and good solubility, a composition containing them has an advantage that it is easy to use in production.
  • L 1 , L 2 , L 3 , L 4 , L 5 and L 6 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO. —, —COS—, —SCO—, —NRCO—, —CONR— (R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), more preferably —O—, —S—, —CO—. , —COO—, —OCO—, —COS—, —SCO—, and more preferably —O—, —CO—, —COO—, —OCO—.
  • the alkyl group which R can take may be linear or branched.
  • the number of carbon atoms is more preferably 1 to 3, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
  • Sp represents a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms, still more preferably a single bond or an alkylene group having 1 to 4 carbon atoms,
  • Non-adjacent methylene groups in the alkylene are substituted with —O—, —S—, —CO—, —COO—, —OCO—, —COS—, —SCO—, —NRCO—, —CONR—, —OH. It may be.
  • the alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred.
  • a 1 and A 2 each represent a divalent aromatic hydrocarbon group or a divalent heterocyclic group, and more preferably a divalent aromatic hydrocarbon.
  • the divalent aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 14, more preferably 6 to 10, and still more preferably a phenylene group. .
  • a phenylene group it is preferable to have a bond at the meta or para position, and it is particularly preferable to have a bond at the para position.
  • the divalent heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring.
  • a 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is most preferable.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the heterocycle is preferably an aromatic heterocycle.
  • the aromatic heterocycle is generally an unsaturated heterocycle. An unsaturated heterocyclic ring having the most double bond is more preferable.
  • heterocyclic rings examples include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included.
  • the divalent aromatic hydrocarbon group or divalent heterocyclic group represented by A 1 and A 2 may have a substituent.
  • a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group.
  • the substituent for the divalent aromatic hydrocarbon group or divalent heterocyclic group represented by A 1 or A 2 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group. Examples include groups. A 1 and A 2 are preferably the same.
  • T is (X represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group or an ester group, Ya, Yb, Yc Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), more preferably And more preferably It is.
  • the alkyl group which X can take has 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • the description and preferred range of the alkyl group that X can take can be referred to.
  • the halogen atom that X can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
  • the ester group that X can take include a group represented by RCOO—.
  • R include an alkyl group having 1 to 8 carbon atoms.
  • the description and preferred range of the alkyl group that R can take can be referred to.
  • Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—.
  • the alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified.
  • the divalent aromatic heterocyclic group the following explanation and description regarding the aromatic heterocyclic group of A 1 and A 2 can be referred to.
  • Hb represents a fluorinated alkyl group having 3 to 30 carbon atoms, more preferably a fluorinated alkyl group having 3 to 20 carbon atoms, and still more preferably a fluorinated alkyl group having 3 to 10 carbon atoms.
  • the fluorinated alkyl group may or may not be substituted with hydrogen.
  • the fluorinated alkyl group may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear.
  • Preferred examples of the fluorinated alkyl group include those having a perfluoroalkyl group at the end. That is, it is preferably a group represented by the following general formula.
  • p is preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10.
  • q is preferably from 0 to 20, more preferably from 0 to 10, and even more preferably from 0 to 5.
  • p + q is 3 to 30.
  • k, l, m, n, and p are integers greater than or equal to 0, and o is an integer from 1 to 4. Further, when k, l, m, n, o, and p are 2 or more, a plurality of structures in parentheses may be the same or different. For example, when k is 2, two L 1 existing in the molecule may be the same or different from each other.
  • k, l, m, and n are preferably any integer of 0 to 6, more preferably any integer of 0 to 4, and any of 0 to 3 An integer is more preferable, and an integer of 0 to 2 is even more preferable.
  • o is preferably 1 or 2.
  • p is preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the compound represented by the general formula (I) may have a symmetrical molecular structure or may have no symmetry.
  • the symmetry here means one corresponding to any of point symmetry, line symmetry, or rotational symmetry
  • asymmetry means one not corresponding to any of point symmetry, line symmetry, or rotational symmetry.
  • the two fluorinated alkyl groups (Hb) present in the molecule are preferably the same as each other, and the linking group (L 1 ) k -Sp- (L 2 -A 1 ) l -L 3 present in the molecule and -L 4 - (a 2 -L 5 ) m -Sp- (L 6) n also is preferably identical to each other.
  • the terminal Hb- (L 1 ) k -Sp- and -Sp- (L 6 ) n -Hb are preferably groups represented by any one of the following general formulas.
  • p is preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10.
  • q is preferably from 0 to 20, more preferably from 0 to 10, and even more preferably from 0 to 5.
  • terminal Hb- (L 1 ) k -Sp-L 2 -and -L 5 -Sp- (L 6 ) n -Hb are any of the following: A group represented by the general formula is preferred.
  • the compound represented by the general formula (I) is synthesized by appropriately selecting and combining the synthesis methods described in JP-A Nos. 2002-129162, 2002-97170, and references cited therein. can do. Moreover, it can synthesize
  • the liquid crystal composition preferably contains a second alignment control agent.
  • a second alignment control agent There is no restriction
  • the second alignment control agent is non-polymerizable.
  • the protrusion ratio represented by the formula (1) of the second alignment control agent is preferably more than 50%, more preferably more than 50% and 90% or less.
  • the second alignment control agent has a perfluoroalkyl chain, and it is preferable that the second alignment control agent has 6 perfluoroalkyl chains.
  • the second alignment control agent is preferably contained in an amount of 0.003 to 1.0% by mass, more preferably 0.005 to 1.0% by mass, based on the polymerizable liquid crystal compound in the liquid crystal composition. .
  • the second alignment controller is preferably represented by the following general formula (II).
  • the composition containing the compound represented by the following general formula (II) has an advantage of being easy to use in production.
  • L 1 , L 2 , L 3 , L 4 , L 5 and L 6 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO. —, —COS—, —SCO—, —NRCO—, —CONR— (in the general formula (II), R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), —NRCO—, — CONR- has the effect of reducing the solubility, and has a tendency to increase the haze value during film formation.
  • the alkyl group which R can take may be linear or branched.
  • the number of carbon atoms is more preferably 1 to 3, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
  • Sp 1 , Sp 2 , Sp 3 and Sp 4 each independently represents a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms, and more preferably A single bond or an alkylene group having 1 to 4 carbon atoms.
  • the hydrogen atom of the alkylene group may be substituted with a fluorine atom.
  • the alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred. From the viewpoint of synthesis, it is preferable that Sp 1 and Sp 4 are the same, and Sp 2 and Sp 3 are the same.
  • a 1 and A 2 are trivalent or tetravalent aromatic hydrocarbons.
  • the carbon number of the trivalent or tetravalent aromatic hydrocarbon group is preferably 6 to 22, more preferably 6 to 14, further preferably 6 to 10, and further preferably 6. More preferred.
  • the trivalent or tetravalent aromatic hydrocarbon group represented by A 1 or A 2 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to.
  • Examples of the substituent for the trivalent or tetravalent aromatic hydrocarbon group represented by A 1 or A 2 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group. be able to.
  • a molecule having a large number of perfluoroalkyl moieties in the molecule can orient the liquid crystal with a small addition amount, leading to a decrease in haze. Therefore, A 1 and A 2 are tetravalent so as to have a large number of perfluoroalkyl groups in the molecule. It is preferable that From the viewpoint of synthesis, A 1 and A 2 are preferably the same.
  • T is (X represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group or an ester group, Ya, Yb, Yc Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), more preferably And more preferably And even more preferably It is.
  • the alkyl group which X can take has 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched.
  • Examples of preferable alkyl groups include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and among them, a methyl group is preferable.
  • the alkyl part of the alkoxy group that X can take the description and preferred range of the alkyl group that X can take can be referred to.
  • the halogen atom that X can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
  • Examples of the ester group that X can take include a group represented by R′COO—.
  • R ′ examples include an alkyl group having 1 to 8 carbon atoms.
  • the description and preferred range of the alkyl group that R ′ can take the description and preferred range of the alkyl group that X can take can be referred to.
  • Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—.
  • the alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified.
  • the divalent aromatic heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring.
  • a 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is most preferable.
  • As the hetero atom constituting the heterocyclic ring a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the heterocycle is preferably an aromatic heterocycle.
  • the aromatic heterocycle is generally an unsaturated heterocycle. An unsaturated heterocyclic ring having the most double bond is more preferable.
  • heterocyclic rings examples include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included.
  • the divalent heterocyclic group may have a substituent.
  • substituents that can be taken by the trivalent or tetravalent aromatic hydrocarbons of A 1 and A 2 .
  • Hb represents a perfluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group having 3 to 20 carbon atoms, and still more preferably a perfluoroalkyl group having 3 to 10 carbon atoms.
  • the perfluoroalkyl group may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear.
  • m and n are each independently 2 or 3, and a plurality of parenthesized structures may be the same or different from each other, but are preferably the same.
  • M and n in the general formula (II) are determined by the valences of A 1 and A 2 , and the preferable range is also determined by the preferable ranges of the valences of A 1 and A 2 . It is not limited to any theory that a compound in which m and n are 2 or 3 has a remarkably good alignment control performance and haze reduction performance even if the addition amount is small as compared with a conventionally known compound and n is 1. Although it does not do, it is estimated that it originates in the fluorine content in a compound.
  • o and p are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of Xs may be the same or different from each other.
  • o is preferably 1 or 2.
  • p is preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the compound represented by the general formula (II) may have a symmetrical molecular structure or may have no symmetry.
  • the symmetry here means one corresponding to any of point symmetry, line symmetry, or rotational symmetry
  • asymmetry means one not corresponding to any of point symmetry, line symmetry, or rotational symmetry.
  • the compound represented by the general formula (II) includes the perfluoroalkyl group (Hb), the linking group-(-Sp 1 -L 1 -Sp 2 -L 2 ) m -A 1 -L 3 -and -L described above. 4 -A 2 - (L 5 -Sp 3 -L 6 -Sp 4 -) n -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect.
  • the two perfluoroalkyl groups (Hb) present in the molecule are preferably the same as each other, and the linking group present in the molecule-(-Sp 1 -L 1 -Sp 2 -L 2 ) m -A 1 -L 3 - and -L 4 -A 2 - (L 5 -Sp 3 -L 6 -Sp 4 -) n - also is preferably identical to each other.
  • the terminal Hb-Sp 1 -L 1 -Sp 2 -and -Sp 3 -L 6 -Sp 4 -Hb are preferably groups represented by any one of the following general formulas.
  • a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10.
  • b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5.
  • a + b is 3 to 30.
  • r is preferably from 1 to 10, and more preferably from 1 to 4.
  • Hb-Sp 1 -L 1 -Sp 2 -L 2 -and -L 5 -Sp 3 -L 6 -Sp 4 -Hb at the end of the general formula (II) are represented by any one of the following general formulas.
  • the compound represented by the general formula (II) is synthesized by appropriately selecting and combining the synthesis methods described in JP-A No. 2002-129162, JP-A No. 2002-97170, and literatures cited therein. can do. Moreover, it can synthesize
  • the liquid crystal composition can contain a solvent and other additives (for example, cellulose ester) as necessary.
  • organic solvent As the solvent for the liquid crystal composition, an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • the film forming method of the film having a cholesteric liquid crystal structure is not particularly limited, and a film having a cholesteric liquid crystal structure can be formed by forming a liquid crystal composition containing a polymerizable liquid crystal compound by a method such as coating.
  • a film having a cholesteric liquid crystal structure can be produced by applying a coating liquid containing a polymerizable liquid crystal compound on the substrate, and a liquid containing a cholesteric liquid crystal material is applied on the alignment film to form a liquid crystal layer.
  • a film having a cholesteric liquid crystal structure can also be produced.
  • a film having a cholesteric liquid crystal structure by coating a coating liquid containing a polymerizable liquid crystal compound on a substrate.
  • the film having a cholesteric liquid crystal structure preferably exhibits optical anisotropy.
  • Light irradiation for the polymerization of the liquid crystal compound is preferably performed using ultraviolet rays.
  • the irradiation energy is preferably 20 mJ / cm 2 to 50 J / cm 2 , and more preferably 100 to 800 mJ / cm 2 .
  • limiting in particular about the time which irradiates a coating film with an ultraviolet-ray it will be determined from the viewpoint of both sufficient intensity
  • light irradiation may be performed under heating conditions.
  • An example of a manufacturing method is (A) Applying a liquid crystal composition containing an alignment control agent and a polymerizable (curable) liquid crystal compound to the surface of a substrate such as a transparent plastic resin film to form a cholesteric liquid crystal phase; (B) irradiating the liquid crystal composition with ultraviolet rays to advance a curing reaction, fixing the cholesteric liquid crystal phase, and forming a light reflection layer;
  • a production method comprising at least
  • the method for producing a light interference pigment of the present invention comprises a light reflecting layer that reflects right-handed circularly polarized light obtained by curing a film having a cholesteric liquid crystal structure and fixing the alignment state of at least one polymerizable liquid crystal compound, and at least It is preferable to manufacture by laminating
  • a film having a cholesteric liquid crystal structure having the structure shown in FIG. 1 (the substrate is not shown in FIG. 1) is manufactured on the substrate. It is possible to form a film (light reflecting layer) having a cholesteric liquid crystal structure in which the number of stacked layers is further increased by repeating the process.
  • a liquid crystal composition is applied to the surface of the substrate or the lower light reflection layer.
  • the liquid crystal composition is preferably prepared as a coating solution in which a material is dissolved and / or dispersed in a solvent.
  • the liquid crystal composition applied to the surface to become a coating film is in a cholesteric liquid crystal phase.
  • the coating film may be dried and the solvent may be removed to obtain a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the cholesteric liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature of the liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like.
  • a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase.
  • a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
  • (B) Process it is preferable to irradiate an ultraviolet-ray to the coating film used as the state of the cholesteric liquid crystal phase, and to advance hardening reaction.
  • a light source such as an ultraviolet lamp is used.
  • the curing reaction of the liquid crystal composition proceeds by irradiating ultraviolet rays, the cholesteric liquid crystal phase is fixed, and the light reflecting layer is formed.
  • ultraviolet irradiation may be performed under heating conditions. Moreover, it is preferable to maintain the temperature at the time of ultraviolet irradiation in the temperature range which exhibits a cholesteric liquid crystal phase so that a cholesteric liquid crystal phase may not be disturbed. Also, since the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable. A preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
  • the reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 70% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 80% or more, more preferably 90% or more.
  • a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective.
  • polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can also be used.
  • the reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
  • the cholesteric liquid crystal phase is fixed and the light reflecting layer is formed.
  • the state in which the liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • the layer has no fluidity and is oriented by an external field or external force. It shall mean a state in which the fixed orientation form can be kept stable without causing a change in form.
  • the alignment state of the cholesteric liquid crystal phase is preferably fixed by a curing reaction that proceeds by ultraviolet irradiation.
  • the liquid crystalline mixture may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • a film having a cholesteric liquid crystal structure has a liquid crystal film (hereinafter sometimes abbreviated as a liquid crystal film) formed by fixing a cholesteric liquid crystal phase.
  • the film having a cholesteric liquid crystal structure is preferably a laminate of two or more layers. That is, the liquid crystal film preferably has two or more layers having a cholesteric liquid crystal structure.
  • FIG. 1 shows an example of a laminated structure of a film 1 having a cholesteric liquid crystal structure, and reference numerals 15a and 15b denote light reflecting layers, respectively.
  • the light reflecting layers 15a and 15b are preferably films having a cholesteric liquid crystal structure, and preferably exhibit light selective reflectivity for reflecting light of a specific wavelength based on the helical pitch of the cholesteric liquid crystal phase. In one embodiment of the present invention, it is preferable that the adjacent light reflecting layers 15a and 15b have opposite spiral directions of the respective cholesteric liquid crystal phases and the same reflection center wavelength ⁇ 15 .
  • the selective reflection wavelength is not particularly limited.
  • the spectral distribution of solar energy intensity shows a general tendency that the shorter the wavelength, the higher the energy, but the infrared wavelength.
  • the selective reflection wavelength of the film having a cholesteric liquid crystal structure is preferably 420 nm or less.
  • each light reflecting layer is about 1 ⁇ m to 8 ⁇ m (preferably about 3 to 7 ⁇ m). However, it is not limited to these ranges.
  • a light reflecting layer having a desired helical pitch can be formed.
  • the thickness of a layer can be made into a desired range by adjusting the application quantity.
  • the adjacent light reflecting layers 15a and 15b have the spiral directions of the respective cholesteric liquid crystal phases opposite to each other.
  • the adjacent light reflecting layers 16a and 16b have the spiral directions of the respective cholesteric liquid crystal phases. It is preferable that they are opposite to each other.
  • a light reflection layer made of a cholesteric liquid crystal phase in the opposite direction and having the same selective reflection center wavelength in the vicinity, both the left circularly polarized light and the right circularly polarized light having the same wavelength can be reflected. .
  • the light that has passed through the light reflecting layer 16b (the light that has been reflected by the right circularly polarized light having the wavelength ⁇ 16 and only the left circularly polarized light is transmitted) is selected so that the next light passes through 15a and 15b instead of 16b.
  • the center wavelength of the reflected is not lambda
  • left-handed circularly polarized light component of the wavelength lambda 16 will be the size of the helical pitch passes through different cholesteric liquid crystal layer.
  • the left circularly polarized light component having the wavelength ⁇ 16 is slightly affected by the optical rotation of the cholesteric liquid crystal phase in the other light reflecting layers, and changes such as a shift in the wavelength of the left circularly polarized light component. Occurs.
  • this phenomenon is not limited to the “left circularly polarized light component of wavelength ⁇ 16 ”, but is a change that occurs when circularly polarized light with a certain wavelength passes through cholesteric liquid crystal phases with different helical pitches. is there.
  • the set of light reflecting layers be adjacent to each other.
  • the mode of the film having a cholesteric liquid crystal structure is not limited to the above mode.
  • a structure in which one or a plurality of light reflecting layers are stacked on one surface of the substrate may be used, or one or more pairs of light reflecting layers are stacked on both surfaces of the substrate. There may be.
  • the aspect which has 2 or more sets of light reflection layers which show the same reflection center wavelength may be sufficient.
  • each light reflecting layer constituting the film having a cholesteric liquid crystal structure is preferably 1 to 10 ⁇ m, and more preferably 2 to 7 ⁇ m.
  • the total thickness of the film having a cholesteric liquid crystal structure is preferably 1 to 50 ⁇ m from the viewpoint of controlling the thickness of the light interference particles obtained by crushing the film having the cholesteric liquid crystal structure within a preferable range, and is 3 to 30 ⁇ m. More preferably, it is 4 to 10 ⁇ m.
  • the method for producing a light interference pigment of the present invention includes a step of producing light interference particles by crushing a film having a cholesteric liquid crystal structure.
  • a step of producing light interference particles by crushing a film having a cholesteric liquid crystal structure There is no particular limitation on the process for producing optical interference particles by crushing a film having a cholesteric liquid crystal structure.
  • the substrate is peeled off from the film having a cholesteric liquid crystal structure. It can be produced by crushing the film from which the substrate has been peeled to form a flake, further crushing and crushing to the size of fine particles.
  • the light interference particles can be pulverized by drying or wet pulverizing the immobilized cholesteric liquid crystal structure.
  • the method for producing a light interference pigment of the present invention it is preferable that after interference with a film having a cholesteric liquid crystal structure, light interference particles having an average equivalent circle diameter of 100 ⁇ m or less are collected using a filter.
  • the method of sorting the light interference particles using a filter include a method of classifying using a sieve or a cyclone. Among them, it is possible to select and use light interference particles having an average equivalent circle diameter of 1 to 100 ⁇ m, more preferably 1 to 70 ⁇ m, and particularly preferably 5 to 50 ⁇ m. It is desirable from the viewpoint of the physical performance of the film.
  • the shape of the light interference particles is not particularly limited, and may be spherical, circular, elliptical, polygonal, rod, or fibrous.
  • the light interference particles are preferably flat (flat or flat), more preferably a circular flat.
  • the thickness of the flat or flat plate-like light interference particles is, for example, preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, and particularly preferably 4 to 10 ⁇ m.
  • the flat optical interference particles preferably have an aspect ratio (average equivalent circle diameter / thickness) of 0.1 to 150, more preferably 0.5 to 50, and particularly preferably 1 to 10. preferable.
  • the selective reflection wavelength of the light interference particles is preferably 420 nm or less.
  • Examples of the method for measuring the selective reflection wavelength of the light interference particles include the following methods. It can be measured by sealing between two quartz glass plates together with a liquid having the same refractive index as that of the optical interference particles (manufactured by Moritex Co., Ltd., Cargill standard refractive liquid series A).
  • the selective reflection wavelength of the light interference particles cannot be directly obtained, it may be obtained indirectly by measuring the selective reflection wavelength of the interlayer film for laminated glass to which the light interference particles and the resin are added.
  • the method for producing an optical interference pigment according to the present invention comprises at least an SP value of 8.5 to 12 (cal / cm 3 ) 1/2 .
  • a step of washing at a temperature of 35 ° C. or higher using an organic solvent is included.
  • the light interference particles after the film having the cholesteric liquid crystal structure is in contact with the outside interface in the state where the light interference particles are not in contact with the outside interface.
  • the light interference pigment obtained after cleaning is obtained by cleaning, by a specific method, the interface corresponding to the inside of the film that is not in contact with the interface with the outside among the light interference particles.
  • the light reflection performance at the selective reflection wavelength when is dispersed in a dispersion medium is improved.
  • the impurities and unnecessary components removed by such a washing step include light interference particles that are finer than a size that exhibits a sufficient light interference effect (for example, an average equivalent circle diameter of 5 ⁇ m or less), impurities (such as those without a reactive group) originally contained in a polymerizable liquid crystal compound, and the like.
  • the present invention is not limited by the types and amounts of impurities and unnecessary components removed by these washing steps.
  • the light interference pigment and organic solvent used in the cleaning step may contain impurities and unnecessary components, and the present invention provides impurities and unnecessary components contained in the light interference pigment and organic solvent used in these cleaning steps. It is not limited by the type or amount.
  • the method for producing a light interference pigment of the present invention is washed at a temperature of 35 ° C. or higher.
  • the washing temperature is more preferably 40 ° C. or more and the boiling point of the organic solvent or less from the viewpoint of further improving the light reflection performance at the selective reflection wavelength when dispersed in the dispersion medium, A temperature of 40 to 60 ° C. is particularly preferable.
  • the SP value of the organic solvent is 12 (cal / cm 3 ) 1/2 or more, the solubility of the monomer is deteriorated and it is not suitable for washing.
  • the SP value of the organic solvent is more preferably 8.5 to 10 (cal / cm 3 ) 1/2 .
  • a material constituting the film having a cholesteric liquid crystal structure or a material used for forming the film is dissolved in an organic solvent having an SP value in the above range.
  • Examples of the organic solvent having an SP value of 8.5 to 12 (cal / cm 3 ) 1/2 include butyl acetate, toluene, methyl ethyl ketone, and acetone. These organic solvents may be used alone or in combination of two or more. However, when two or more organic solvents are mixed and used, the SP values of all organic solvents used for washing are the above. It is preferable that it is an organic solvent contained in the range.
  • the method for washing the light interference particles using an organic solvent there are no particular restrictions on the method for washing the light interference particles using an organic solvent, and examples include a method of washing by immersing the light interference particles in an organic solvent, and a method of washing by spraying the organic solvent onto the light interference particles. be able to.
  • the method for producing a light interference pigment of the present invention it is preferable to wash the light interference particles by immersing them in an organic solvent.
  • the method for producing a light interference pigment of the present invention it is preferable to collect a residue obtained by immersing light interference particles in an organic solvent and washing, and then filtering the organic solvent through a filter.
  • the light interference particles obtained by pulverization are usually classified by dryness, unnecessary fine particles remain.
  • fine particles of unnecessary size can be removed together.
  • the light reflection performance at the selective reflection wavelength when dispersed in a medium is improved.
  • a series of washing operations of immersing and filtering light interference particles in an organic solvent are repeated twice or more from the viewpoint of further improving the light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium. Also good.
  • the filtration accuracy of the filter used for filtering the organic solvent is preferably 0.3 to 6 ⁇ m, and more preferably 0.5 to 3 ⁇ m. It is more preferable.
  • optical characteristics are greater than when unnecessary particles remain in the filtration residue. The light reflectance at the wavelength is improved.
  • the light interference pigment of the present invention is produced by the method for producing a light interference pigment of the present invention. Therefore, the light interference pigment of the present invention has good light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium.
  • the preferred structure and preferred optical properties of the light interference pigment of the present invention are the same as the preferred structure and preferred optical properties of the light interference particles.
  • the light interference pigment of the present invention is preferably used as a UV reflecting material. There is no restriction
  • the light interference pigment of the present invention can be used for producing a light interference pigment dispersion.
  • the method for producing a light interference pigment dispersion preferably includes a step of dispersing the light interference pigment produced by the method for producing a light interference pigment of the present invention in a dispersion medium containing alcohol.
  • the main factor that causes the selective reflection wavelength and reflection spectrum peak shape of the light interference pigment dispersion to deviate from that of the light interference pigment before the dispersion is used is that the solvent interferes with the light interference pigment (occurs simultaneously with the elution of the residual monomer).
  • the birefringence ⁇ n of the light interference pigment decreases due to the surrounding material (for example, resin) entering the gap.
  • (1) and (2) are repeated in the same manner except that the coating liquid (B) is applied on the lower cholesteric liquid crystal layer film instead of the substrate in (1).
  • the produced two-layer laminated film having a cholesteric liquid crystal structure that reflects ultraviolet light having a wavelength of 380 nm was peeled from the substrate.
  • the peeled two-layer laminated film having a cholesteric liquid crystal structure was crushed into flakes, and further pulverized to the size of fine particles to produce light interference particles.
  • the particle size of the light interference particles was classified using a sieve.
  • the average thickness was 10 ⁇ m and the average equivalent circle diameter was 20 ⁇ m.
  • grains have a cholesteric liquid crystal structure.
  • the selective reflection wavelength of the obtained light interference particles was confirmed using an ultraviolet-visible near-infrared spectrophotometer V-670 (manufactured by JASCO Corporation), it was about 380 nm.
  • Example 7 In Example 1, when the obtained light interference particles were evaluated in the same manner as in Example 1 without solvent washing, the evaluation was C.
  • Example 8 In Example 1, Bencot (Asahi Kasei Co., Ltd.) impregnated with methyl ethyl ketone (same as Example 3, SP value 9.3, boiling point 79.5 ° C.) on the surface of the two-layer laminated film having a cholesteric liquid crystal structure peeled from the substrate. After wiping twice with a product manufactured by Sensui Co., Ltd., it was pulverized into light interference particles in the same manner as in Example 1. Thereafter, the obtained light interference particles were evaluated in the same manner as in Example 1 without solvent washing, and the evaluation was C.
  • Example 9 Instead of a PET film as a base film, on one side of a long film of triacetylcellulose (Fujitack, manufactured by Fuji Film Co., Ltd., thickness: 100 ⁇ m, width: 500 mm, glass transition temperature 145 ° C.) A 5% by weight solution of long-chain alkyl-modified PVA (MP-203, manufactured by Kuraray Co., Ltd.) is applied, dried at 90 ° C. for 4 minutes, and then rubbed to form an alignment film forming resin having a thickness of 2.0 ⁇ m. A film having a layer formed thereon was used. Other than that, a light interference pigment was produced in the same manner as in Example 3, and the light interference pigment was evaluated. The evaluation was also A.
  • Example 10 As a base material, a 5% by weight long-chain alkyl-modified PVA (MP-203, manufactured by Kuraray Co., Ltd.) was applied to one side of a 2 mm thick glass plate instead of PET film as in Example 8. Then, after drying at 90 ° C. for 4 minutes, a film in which a rubbing treatment was performed to form an alignment film-forming resin layer having a thickness of 2.0 ⁇ m was used. Other than that, a light interference pigment was produced in the same manner as in Example 3, and the light interference pigment was evaluated. The evaluation was also A.
  • MP-203 manufactured by Kuraray Co., Ltd.
  • Example 11 A light interference pigment was produced in the same manner as in Example 3 except that RM-257 (manufactured by Merck) was used as the rod-like liquid crystal compound, and the light interference pigment was evaluated. The evaluation was also A.
  • Example 12 A light interference pigment was produced in the same manner as in Example 3 except that LC-242 (manufactured by BASF) was used as the rod-like liquid crystal compound, and the light interference pigment was evaluated. The evaluation was also A.
  • the light interference pigment obtained by the production method of the present invention has good light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium (particularly when a dispersion containing a silicone resin and alcohol).
  • Comparative Example 1 it can be seen from Comparative Example 1 that the light interference pigment produced under conditions where the washing temperature is lower than the lower limit specified in the present invention deteriorates the light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium. It was.
  • Comparative Examples 2 to 4 the light interference pigment produced under the condition that the organic solvent used for cleaning exceeds the upper limit of the SP value defined in the present invention, the light reflection performance at the selective reflection wavelength when dispersed in the dispersion medium It turned out to get worse.
  • the light interference pigment produced under the condition that the organic solvent used for cleaning is lower than the lower limit value of the SP value defined in the present invention has deteriorated light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium.
  • a light interference pigment produced using water, which is a solvent exceeding the upper limit of the SP value defined in the present invention at the time of washing as disclosed in JP2011-132512A and International Publication WO96 / 28498, It was found that the light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium deteriorates.
  • the light interference pigment produced without washing the particles obtained after pulverization as in JP-A-2000-44451 has a light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium. It turns out that it gets worse. From Comparative Example 8, it was produced without washing the particles obtained after pulverization even when the surface was washed without pulverizing a film having a cholesteric liquid crystal structure as in JP 2012-101999 A It was found that the light interference pigment deteriorates the light reflection performance at the selective reflection wavelength when dispersed in the dispersion medium.
  • Film having a cholesteric liquid crystal structure may include a substrate) 15a Light reflecting layer 15b in which the alignment state (cholesteric liquid crystal phase) of the polymerizable liquid crystal compound is fixed 15b Light reflecting layer in which the alignment state (cholesteric liquid crystal phase) of the polymerizable liquid crystal compound is fixed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

The present invention provides a method for producing an optical interference pigment, said method being characterized by comprising a step of hardening the alignment state of a polymerizable liquid crystal compound to produce a film having a fixed cholesteric liquid crystal structure, a step of crushing the film having a cholesteric liquid crystal structure to produce optical interference particles, and a step of washing the optical interference particles at a temperature of 35˚C or higher using at least an organic solvent having an SP value of 8.5 to 12 (cal/cm3)1/2, wherein the SP value represents a solubility parameter (δ) as measured by a Hoy method and is represented by formula (1): δ = (ΔE/V)1/2 (wherein V represents the molar molecular volume of the solvent; and ΔE represents a cohesive energy). The production method enables the provision of an optical interference pigment that has good light reflection performance at a selective reflection wavelength when being dispersed in a dispersion medium.

Description

光干渉顔料およびその製造方法Optical interference pigment and method for producing the same
 本発明は、光干渉顔料およびその製造方法に関する。 The present invention relates to a light interference pigment and a method for producing the same.
 コレステリック液晶相を硬化して固定化した光反射膜は、選択反射波長において、原理的には片方の円偏光を反射し、もう片方の光は透過することが知られている。このようなコレステリック液晶相を硬化して固定化した光反射膜の応用として、コレステリック液晶相を硬化して固定化した光反射膜を砕いて、得られた粒子を光干渉粒子として用いることが知られている。例えば、特許文献1には、コレステリック液晶相を紫外線照射により硬化させて固定化した光反射膜を、担体から引き剥がした粉砕し、ふるい分けすることにより分級することにより、UV-Aおよび/またはUV-B領域におけるフィルターとして作用する顔料を製造する方法が記載されている。特許文献2には、コレステリック液晶相を紫外線照射により硬化させて固定化した光反射膜を、粉砕し、顔料と混合した光線保護剤調製物を製造する方法が記載されている。 It is known that a light reflection film obtained by curing and fixing a cholesteric liquid crystal phase reflects one circularly polarized light in principle and transmits the other light at a selective reflection wavelength. As an application of the light reflecting film in which the cholesteric liquid crystal phase is cured and fixed, it is known that the light reflecting film in which the cholesteric liquid crystal phase is cured and fixed is crushed and the resulting particles are used as light interference particles. It has been. For example, Patent Document 1 discloses that a light-reflecting film in which a cholesteric liquid crystal phase is fixed by being cured by ultraviolet irradiation is pulverized by peeling off from a carrier and classified by sieving, thereby obtaining UV-A and / or UV. A method for producing pigments acting as filters in the -B region is described. Patent Document 2 describes a method for producing a light protective agent preparation in which a light reflecting film obtained by curing and fixing a cholesteric liquid crystal phase by ultraviolet irradiation is pulverized and mixed with a pigment.
 一方、光干渉作用を奏する粒子を製造する技術分野とは異なる技術分野において、モノマーを重縮合した非フィルム状(バルク状)の重縮合物である液晶ポリマーを粉砕して、粒子を製造する方法が知られている。このような光干渉作用を奏さない粒子を非フィルム状(バルク状)の重縮合物を粉砕して製造する技術分野では、粒子化する前または粒子化後に粒子を洗浄することが知られている。例えば、特許文献3には、重縮合物を粒子化した液晶ポリエステルの製造方法が記載されており、さらに粒子化後に粒子を酸性水溶液で洗浄し、さらに水で洗浄することが記載されている。特許文献4には、粒子化前の多孔質ポリエステルを高温のエチレングリコールや熱水で洗浄し、乾燥した後で、粉砕して粒子化し、扁平状のポリエステル粉体を製造する方法が記載されている。特許文献5では、ポリテトラフルオロエチレン(PTFE)の懸濁重合によってえられるPTFE粗粒子を湿潤状態で微粉砕したのち、水(純水)によって洗浄するPTFE成形用粉末の製造方法により、効率よく不純物の量を低減させることができることなどが記載されている。 On the other hand, in a technical field different from the technical field of producing particles having an optical interference effect, a method of producing particles by pulverizing a liquid crystal polymer which is a non-film-like (bulk) polycondensate obtained by polycondensing monomers It has been known. In the technical field of producing such non-film-like (bulk) polycondensate by producing particles that do not exhibit such light interference action, it is known to wash the particles before or after the particles are formed. . For example, Patent Document 3 describes a method for producing a liquid crystal polyester obtained by granulating a polycondensate, and further describes that the particles are washed with an acidic aqueous solution after being granulated, and further washed with water. Patent Document 4 describes a method for producing a flat polyester powder by washing porous polyester before granulation with high-temperature ethylene glycol or hot water, drying it, and then pulverizing it into particles. Yes. In Patent Document 5, the PTFE coarse particles obtained by suspension polymerization of polytetrafluoroethylene (PTFE) are finely pulverized in a wet state and then washed with water (pure water) to efficiently produce a powder for molding PTFE. It describes that the amount of impurities can be reduced.
 しかしながら、コレステリック液晶相を硬化して固定化した光反射膜を砕いた後に、得られた光干渉粒子を洗浄することは、特許文献1および2を含めて従来検討されていなかった。
 また、コレステリック液晶相を硬化して固定化した光反射膜を砕く前においても、重合性液晶化合物を硬化して固めたフィルムはそのまま機能性フィルムとして他の製品の部材として用いられていることから、そもそも特許文献3~5のように非フィルム状の重縮合物を砕く場合と異なり、フィルム化後に洗浄により不純物を取り除くという必要性が知られておらず、フィルム化後に洗浄を行った例もほとんど知られていなかった。わずかに知られているコレステリック液晶相を硬化して固定化した光反射膜に対して洗浄を行った例としては、特許文献6に、コレステリック液晶相を硬化して固定化した光反射膜をフィルム状のまま有機溶媒が入った容器に浸漬させ、洗浄処理をしたことが記載されている程度であった。
However, it has not been studied in the past, including Patent Documents 1 and 2, to wash the obtained light interference particles after crushing the light reflecting film in which the cholesteric liquid crystal phase is cured and fixed.
In addition, even before crushing the light reflecting film on which the cholesteric liquid crystal phase is cured and fixed, the film obtained by curing and solidifying the polymerizable liquid crystal compound is still used as a functional film as a member of other products. In the first place, unlike the case of pulverizing a non-film-like polycondensate as in Patent Documents 3 to 5, there is no known need to remove impurities by washing after film formation, and examples of washing after film formation are also included. Little was known. As an example of cleaning a light reflection film in which a slightly known cholesteric liquid crystal phase is cured and fixed, Patent Document 6 discloses a light reflection film in which a cholesteric liquid crystal phase is cured and fixed. It was only described that it was immersed in a container containing an organic solvent and washed.
特開2000-044451号公報JP 2000-044551 A 特開2003-183145号公報JP 2003-183145 A 特開2003-132512号公報JP 2003-132512 A 特開2012-001440号公報JP 2012-001440 A 国際公開WO96/28498号International Publication WO 96/28498 特開2012-101999号公報JP 2012-101999 A
 重合性液晶化合物を硬化して固定化した光反射膜を砕いて得られた光干渉顔料を分散媒に分散させて化粧品等に使用する場合、残留モノマー(重合性液晶化合物)が安全性に影響する可能性が考えられる。さらに、本発明者が実際に光干渉顔料を分散媒に分散させた分散液を調製したところ、光干渉顔料としての品質(選択反射波長における光反射性能)が悪化する問題があることを見出した。
 この問題を回避するため、液晶ポリマーや重縮合体などのポリマー系の材料を使い、コレステリック液晶相を固定化した光反射層を形成することが考えられるが、ポリマー系の材料の場合には、顔料化しにくいという問題があることがわかった。
When a light interference pigment obtained by crushing a light-reflecting film that has been cured by fixing a polymerizable liquid crystal compound is dispersed in a dispersion medium and used in cosmetics, the residual monomer (polymerizable liquid crystal compound) affects safety. There is a possibility of doing. Furthermore, when the present inventor actually prepared a dispersion liquid in which a light interference pigment is dispersed in a dispersion medium, it has been found that there is a problem that the quality (light reflection performance at a selective reflection wavelength) as the light interference pigment deteriorates. .
In order to avoid this problem, it is conceivable to use a polymer-based material such as a liquid crystal polymer or a polycondensate to form a light reflecting layer in which a cholesteric liquid crystal phase is fixed. In the case of a polymer-based material, It was found that there was a problem that it was difficult to make a pigment.
 本発明は上記の問題を改善することや要望を満たすことを目的とするものである。すなわち、本発明が解決しようとする課題は、分散媒に分散させたときの選択反射波長における光反射性能が良好である光干渉顔料の製造方法を提供することにある。 The present invention aims to ameliorate the above problems and satisfy the demands. That is, the problem to be solved by the present invention is to provide a method for producing a light interference pigment having good light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium.
 このような状況のもと、上記課題を解決することを目的に本発明者が鋭意検討した結果、重合性液晶化合物を硬化して固定化した光反射性のコレステリック液晶フィルムは、積層時のハジキや波長のシフトなど積層特有の問題の対策として、硬化を調整したり添加剤を添加したりするために、未硬化のモノマー、添加剤が膜内部に多く存在するため、光干渉顔料化して使用する場合に、顔料を分散媒に分散させた際に、これらの未硬化のモノマー、添加剤が溶出して各種性能に悪影響を及ぼすことが予想された。そのため、事前に溶剤で洗うことを検討したが溶解性が低すぎると洗浄が不十分で、一方で溶解性が高すぎると硬化したモノマーの一部が溶解して性能低下を及ぼすという新たな問題があることがわかった。
 特にコレステリック液晶ではさらに選択反射波長における光学特性が劣化する(選択反射波長がズレる、光反射率が低下する)問題もあることがわかり、その主要因は、コレステリック液晶構造を有する膜を光干渉顔料化したときに光干渉顔料へ溶剤の染込み(残留モノマーの溶出と同時に起こる)で膨潤が起こり、光干渉顔料の液晶構造の自由体積(空間)が広がった結果、その光干渉顔料の隙間に分散媒中の周囲の素材(例えば樹脂)が入り込むことで光干渉顔料のΔn(屈折率)が下がることによるとわかった。
Under such circumstances, the present inventors diligently studied to solve the above-mentioned problems. As a result, a light-reflective cholesteric liquid crystal film obtained by curing and fixing a polymerizable liquid crystal compound is As a countermeasure against problems peculiar to lamination such as wavelength shift and wavelength shift, there are many uncured monomers and additives in the film to adjust the curing and add additives. In this case, when the pigment is dispersed in the dispersion medium, these uncured monomers and additives are expected to elute and adversely affect various performances. For this reason, we considered washing with a solvent in advance, but if the solubility was too low, the washing was insufficient, while if the solubility was too high, a new problem that some of the cured monomers would dissolve and degrade performance I found out that
In particular, cholesteric liquid crystals also have the problem that the optical characteristics at the selective reflection wavelength are further deteriorated (the selective reflection wavelength is shifted and the light reflectance is lowered). The main factor is that the film having a cholesteric liquid crystal structure is used as an optical interference pigment. As a result of the solvent penetration into the light interference pigment (which occurs simultaneously with the elution of the residual monomer), the free volume (space) of the liquid crystal structure of the light interference pigment widens, and as a result, the gap between the light interference pigments It was found that Δn (refractive index) of the light interference pigment was lowered by the surrounding material (for example, resin) entering the dispersion medium.
 そこで、さらに以上の課題や問題を解決するために本発明者が鋭意検討を進めた結果、重合性液晶化合物の配向状態を硬化して固定化した製造したコレステリック液晶構造を有する膜を砕いた粒子を、特定のSP値の溶媒を用いて、特定の温度で洗浄することで、分散媒に分散させたときの選択反射波長における光反射性能が良好となることを見出し、本発明に至った。 Therefore, as a result of the present inventors diligently studying to solve the above problems and problems, particles obtained by pulverizing a film having a cholesteric liquid crystal structure produced by fixing and fixing the alignment state of the polymerizable liquid crystal compound By using a solvent having a specific SP value and washing at a specific temperature, it was found that the light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium was improved, and the present invention was achieved.
 上記課題を解決するための手段である本発明は以下のとおりである。
[1] 重合性液晶化合物の配向状態を硬化して固定化したコレステリック液晶構造を有する膜を製造する工程と、
 コレステリック液晶構造を有する膜を砕いて光干渉粒子を製造する工程と、
 光干渉粒子を少なくともSP値が8.5~12(cal/cm31/2の有機溶媒を用い、35℃以上の温度で洗浄する工程と、
を含むことを特徴とし、
SP値はHoy法で測定された溶解度パラメータδを表し、下記式(1)で表される;
δ=(ΔE/V)1/2             式(1)
式(1)中、Vは溶媒のモル分子容積を表し、ΔEは凝集エネルギーを表す;
光干渉顔料の製造方法。
[2] [1]に記載の光干渉顔料の製造方法は、コレステリック液晶構造を有する膜を、少なくとも1層の重合性液晶化合物の配向状態を硬化して固定化してなる右円偏光を反射する光反射層と、少なくとも1層の重合性液晶化合物の配向状態を硬化して固定化してなる左円偏光を反射する光反射層とを積層して製造することが好ましい。
[3] [1]または[2]に記載の光干渉顔料の製造方法は、有機溶媒中に光干渉粒子を浸漬させて洗浄することが好ましい。
[4] [1]~[3]のいずれかに記載の光干渉顔料の製造方法は、有機溶媒中に光干渉粒子を浸漬させて洗浄した後に、有機溶媒をフィルターでろ過した残渣を分取することが好ましい。
[5] [4]に記載の光干渉顔料の製造方法は、有機溶媒のろ過に用いるフィルターのろ過精度が0.3~6μmであることが好ましい。
[6] [1]~[5]のいずれかに記載の光干渉顔料の製造方法は、洗浄の温度が40℃以上、有機溶媒の沸点以下であることが好ましい。
[7] [1]~[6]のいずれかに記載の光干渉顔料の製造方法は、光干渉粒子が平板状の形状であることが好ましい。
[8] [1]~[7]のいずれかに記載の光干渉顔料の製造方法は、光干渉顔料の選択反射波長が420nm以下であることが好ましい。
[9] [1]~[8]のいずれかに記載の光干渉顔料の製造方法は、光干渉粒子の厚みが4~10μmであることが好ましい。
[10] [1]~[9]のいずれかに記載の光干渉顔料の製造方法は、コレステリック液晶構造を有する膜を砕いた後に、フィルターを用いて平均円相当径が100μm以下である光干渉粒子を分取することが好ましい。
[11] [1]~[10]のいずれかに記載の光干渉顔料の製造方法は、重合性液晶化合物を含む塗布液を基板上に塗布して、コレステリック液晶構造を有する膜を製造することが好ましい。
[12] [11]に記載の光干渉顔料の製造方法は、基板が、ガラス転移温度150℃以下のプラスチックフィルムであることが好ましい。
[13] [1]~[12]のいずれかに記載の光干渉顔料の製造方法は、重合性液晶化合物の配向状態を、重合性液晶化合物と光重合開始剤を含む組成物に対して紫外線照射することにより進行する硬化反応によって固定化することが好ましい。
[14] [1]~[13]のいずれかに記載の光干渉顔料の製造方法は、重合性液晶化合物が、下記一般式(X)にて表される化合物であることが好ましい。
一般式(X) Q1-L1-Cy1-L2-(Cy2-L3n-Cy3-L4-Q2
(一般式(X)中、Q1およびQ2はそれぞれ独立に重合性基であり、L1およびL4はそれぞれ独立に二価の連結基であり、L2およびL3はそれぞれ独立に単結合または二価の連結基であり、Cy1、Cy2およびCy3は二価の環状基であり、nは0、1、2、または3である。)
[15] [1]~[14]のいずれかに記載の光干渉顔料の製造方法で製造されたことを特徴とする光干渉顔料。
The present invention, which is means for solving the above problems, is as follows.
[1] A step of producing a film having a cholesteric liquid crystal structure in which the alignment state of the polymerizable liquid crystal compound is cured and fixed;
Crushing a film having a cholesteric liquid crystal structure to produce light interference particles;
Washing the optical interference particles with an organic solvent having an SP value of at least 8.5 to 12 (cal / cm 3 ) 1/2 at a temperature of 35 ° C. or higher;
Including,
The SP value represents the solubility parameter δ measured by the Hoy method, and is represented by the following formula (1);
δ = (ΔE / V) 1/2 formula (1)
In formula (1), V represents the molar molecular volume of the solvent and ΔE represents the cohesive energy;
A method for producing a light interference pigment.
[2] The method for producing a light interference pigment according to [1] reflects right-handed circularly polarized light obtained by curing a film having a cholesteric liquid crystal structure and fixing the alignment state of at least one polymerizable liquid crystal compound. It is preferable to manufacture by laminating a light reflecting layer and a light reflecting layer that reflects left circularly polarized light obtained by curing and fixing the alignment state of at least one polymerizable liquid crystal compound.
[3] The method for producing a light interference pigment according to [1] or [2] is preferably cleaned by immersing the light interference particles in an organic solvent.
[4] The method for producing a light interference pigment according to any one of [1] to [3], wherein the light interference particles are immersed in an organic solvent and washed, and then the residue obtained by filtering the organic solvent through a filter is collected. It is preferable to do.
[5] In the method for producing a light interference pigment described in [4], it is preferable that the filtration accuracy of the filter used for filtering the organic solvent is 0.3 to 6 μm.
[6] In the method for producing a light interference pigment according to any one of [1] to [5], the washing temperature is preferably 40 ° C. or higher and the boiling point of the organic solvent or lower.
[7] In the method for producing a light interference pigment according to any one of [1] to [6], the light interference particles preferably have a flat plate shape.
[8] In the method for producing a light interference pigment according to any one of [1] to [7], the selective reflection wavelength of the light interference pigment is preferably 420 nm or less.
[9] In the method for producing a light interference pigment according to any one of [1] to [8], the thickness of the light interference particles is preferably 4 to 10 μm.
[10] The method for producing a light interference pigment according to any one of [1] to [9], wherein a film having a cholesteric liquid crystal structure is crushed and then an average equivalent circle diameter is 100 μm or less using a filter. It is preferable to fractionate the particles.
[11] The method for producing an optical interference pigment according to any one of [1] to [10], wherein a coating liquid containing a polymerizable liquid crystal compound is applied on a substrate to produce a film having a cholesteric liquid crystal structure. Is preferred.
[12] In the method for producing a light interference pigment according to [11], the substrate is preferably a plastic film having a glass transition temperature of 150 ° C. or lower.
[13] The method for producing a light interference pigment according to any one of [1] to [12], wherein the alignment state of the polymerizable liquid crystal compound is changed to ultraviolet rays with respect to the composition containing the polymerizable liquid crystal compound and the photopolymerization initiator. It is preferable to fix by a curing reaction that proceeds by irradiation.
[14] In the method for producing a light interference pigment according to any one of [1] to [13], the polymerizable liquid crystal compound is preferably a compound represented by the following general formula (X).
Formula (X) Q 1 -L 1 -Cy 1 -L 2- (Cy 2 -L 3 ) n -Cy 3 -L 4 -Q 2
(In General Formula (X), Q 1 and Q 2 are each independently a polymerizable group, L 1 and L 4 are each independently a divalent linking group, and L 2 and L 3 are each independently a single group. A bond or a divalent linking group, Cy 1 , Cy 2 and Cy 3 are divalent cyclic groups, and n is 0, 1, 2, or 3.)
[15] A light interference pigment produced by the method for producing a light interference pigment according to any one of [1] to [14].
 本発明によれば、分散媒に分散させたときの選択反射波長における光反射性能が良好である光干渉顔料の製造方法を提供することができる。
することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the light interference pigment which has the favorable light reflection performance in the selective reflection wavelength when it makes it disperse | distribute to a dispersion medium can be provided.
can do.
図1は、本発明の光干渉顔料の製造に用いられる光干渉粒子を製造するときに用いる、コレステリック液晶構造を有する膜の一例の断面を表す概略図である。FIG. 1 is a schematic view showing a cross section of an example of a film having a cholesteric liquid crystal structure, which is used when manufacturing optical interference particles used for manufacturing the optical interference pigment of the present invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 なお、本明細書中において、重合性液晶化合物を含む固形物は、重合性液晶化合物の結晶からなる場合もあるし、結晶でないアモルファス状の場合もある。また、重合開始剤やキラル剤など他の成分も含んでいる場合もある。また、これら全てもしくは一部が混合したものの場合もある。
 本明細書中、SP値とは、Hoy法によって算出した溶解度パラメータの値δを表し、下記式(1)で表される凝集エネルギー密度の平方根で定義される。
δ=(ΔE/V)1/2             式(1)
(式(1)中、Vは溶媒のモル分子容積を表し、ΔEは凝集エネルギー(蒸発エネルギー)を表す。)
 SP値(δ)はJ.Hildebrand, R.Scott:”The Solubility of Non-electrolytes”,3rd Ed., p.119-133,Reinhold Publishing Corp.(1949)に記載がある。
 Hoy法は、「PolymerHandbook(4th.edition)」に記載の内容のものを表す。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, the solid containing the polymerizable liquid crystal compound may be composed of a crystal of the polymerizable liquid crystal compound or may be an amorphous form that is not a crystal. Moreover, other components, such as a polymerization initiator and a chiral agent, may also be included. In some cases, all or some of these may be mixed.
In the present specification, the SP value represents the solubility parameter value δ calculated by the Hoy method, and is defined by the square root of the cohesive energy density represented by the following formula (1).
δ = (ΔE / V) 1/2 formula (1)
(In formula (1), V represents the molar molecular volume of the solvent, and ΔE represents the cohesive energy (evaporation energy).)
The SP value (δ) was calculated according to J. Hildebrand, R. Scott: “The Solubility of Non-electrolytes”, 3rd Ed. , P.119-133, Reinhold Publishing Corp. (1949).
The Hoy method represents the content described in “Polymer Handbook (4th. Edition)”.
[光干渉顔料の製造方法]
 本発明の光干渉顔料の製造方法は、重合性液晶化合物の配向状態を硬化して固定化したコレステリック液晶構造を有する膜を製造する工程と、コレステリック液晶構造を有する膜を砕いて光干渉粒子を製造する工程と、光干渉粒子を少なくともSP値が8.5~12(cal/cm31/2の有機溶媒を用い、35℃以上の温度で洗浄する工程と、を含むことを特徴とする(SP値はHoy法で測定された溶解度パラメータδを表し、下記式(1)で表される。)。
δ=(ΔE/V)1/2             式(1)
(式(1)中、Vは溶媒のモル分子容積を表し、ΔEは凝集エネルギー(蒸発エネルギー)を表す。)
 このような構成により、分散媒に分散させたときの選択反射波長における光反射性能が良好となる光干渉顔料を製造することができる。
 ここで、光干渉顔料を分散媒に分散させたときの「選択反射波長における光反射性能が良好である」とは、乾燥させた光干渉顔料1gをアクリルシリコーン10gとエタノール0.5gに混ぜ込み、PMMAプレートに100μmの厚みで塗布し、塗布したプレートが、選択反射波長において、反射率が1%以上であることを意味し、反射率が3%以上であることがより好ましく、10%以上であることが特に好ましい。なお、この測定値は、光干渉顔料と分散媒を含む分散液を薄くのばして塗った膜の光学性能を測定した場合の値であり、実質的に光干渉顔料と分散媒を含む分散液の光学性能と等しいものである。
 以下、本発明の光干渉顔料の製造方法に用いられる材料、好ましい製造条件について説明する。
[Method for producing optical interference pigment]
The method for producing a light interference pigment according to the present invention includes a step of producing a film having a cholesteric liquid crystal structure in which an alignment state of a polymerizable liquid crystal compound is cured and fixed, and crushing a film having a cholesteric liquid crystal structure to produce light interference particles. And a step of cleaning the optical interference particles using an organic solvent having an SP value of at least 8.5 to 12 (cal / cm 3 ) 1/2 at a temperature of 35 ° C. or higher. (The SP value represents the solubility parameter δ measured by the Hoy method and is represented by the following formula (1)).
δ = (ΔE / V) 1/2 formula (1)
(In formula (1), V represents the molar molecular volume of the solvent, and ΔE represents the cohesive energy (evaporation energy).)
With such a configuration, it is possible to produce an optical interference pigment that has good light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium.
Here, “the light reflection performance at the selective reflection wavelength is good” when the light interference pigment is dispersed in the dispersion medium means that 1 g of the dried light interference pigment is mixed with 10 g of acrylic silicone and 0.5 g of ethanol. It is applied to a PMMA plate with a thickness of 100 μm, and the applied plate means that the reflectance is 1% or more at the selective reflection wavelength, and the reflectance is more preferably 3% or more, more preferably 10% or more. It is particularly preferred that This measured value is a value when the optical performance of a film coated with a thin dispersion liquid containing a light interference pigment and a dispersion medium is measured, and is substantially the value of the dispersion liquid containing the light interference pigment and the dispersion medium. It is equal to the optical performance.
Hereinafter, materials used in the method for producing a light interference pigment of the present invention and preferred production conditions will be described.
(1)コレステリック液晶構造を有する膜の製造
 本発明の光干渉顔料の製造方法は、重合性液晶化合物の配向状態を硬化して固定化したコレステリック液晶構造を有する膜を製造する工程を含む。コレステリック液晶構造を有する膜を製造する工程の形成方法は特に制限はないが、例えば、コレステリック液晶材料を含む液を基板の上に塗布し、溶剤を蒸発させた後、加熱して液晶を配向させ紫外線を照射する工程を1回または複数回繰り返すことで作製する方法が好ましい。
 コレステリック液晶構造を有する膜の作製方法の詳細について以下述べる。
(1) Production of Film Having Cholesteric Liquid Crystal Structure The method for producing a light interference pigment of the present invention includes a step of producing a film having a cholesteric liquid crystal structure in which the alignment state of the polymerizable liquid crystal compound is cured and fixed. There is no particular limitation on the method of forming the film having a cholesteric liquid crystal structure, but for example, a liquid containing a cholesteric liquid crystal material is applied on a substrate, the solvent is evaporated, and then heated to align the liquid crystal. A method in which the step of irradiating with ultraviolet rays is repeated once or a plurality of times is preferable.
Details of a method for manufacturing a film having a cholesteric liquid crystal structure will be described below.
 コレステリック液晶構造を有する膜は、基板上に、必要に応じて配向膜を形成し、その表面に後述の溶媒を含有したコレステリック液晶組成物塗布液を塗布、乾燥、配向させ固定化して形成する。塗布はコレステリック液晶組成物塗布液を公知の方法(例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。また、インクジェット装置を用いて吐出して形成してもよい。 The film having a cholesteric liquid crystal structure is formed by forming an alignment film on a substrate as necessary, and applying, drying, aligning and fixing a cholesteric liquid crystal composition coating solution containing a solvent described later on the surface thereof. The coating can be performed by a known method (for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, or a die coating method) using a cholesteric liquid crystal composition coating solution. Alternatively, it may be formed by discharging using an inkjet apparatus.
 基板としては特に制限は無く、ガラスもしくはプラスチックフィルム、金属等を適宜使用することができる。その中でも、本発明の光干渉顔料の製造方法では基板としてプラスチックフィルムを用いることが好ましく、ガラス転移温度170℃以下のプラスチックフィルムを用いることが、耐熱性が低い樹脂を用いて製造コストの低減することができる観点から好ましい。基板として用いられるプラスチックフィルムのガラス転移温度は40~160℃であることがより好ましく、60~150℃であることが特に好ましい。
 基板としては、PETを用いることが好ましい。
There is no restriction | limiting in particular as a board | substrate, Glass or a plastic film, a metal, etc. can be used suitably. Among them, in the method for producing a light interference pigment of the present invention, it is preferable to use a plastic film as a substrate, and to use a plastic film having a glass transition temperature of 170 ° C. or lower reduces the production cost by using a resin having low heat resistance. From the viewpoint of being able to do so. The glass transition temperature of the plastic film used as the substrate is more preferably 40 to 160 ° C., and particularly preferably 60 to 150 ° C.
As the substrate, it is preferable to use PET.
 「固定化した」という状態は、コレステリック液晶構造を有する膜に含まれる液晶化合物の配向が保持された状態が最も典型的、且つ好ましい態様ではあるが、それだけには限定されず、具体的には、通常0℃~50℃、より過酷な条件下では-30℃~70℃の温度範囲において、該コレステリック液晶構造を有する膜に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を指すものである。 The state of “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound contained in the film having a cholesteric liquid crystal structure is maintained, but is not limited thereto, specifically, Usually, the film having the cholesteric liquid crystal structure has no fluidity in the temperature range of 0 ° C. to 50 ° C., and -30 ° C. to 70 ° C. under severer conditions, and changes in the alignment form by an external field or external force. The state which can maintain the fixed orientation form stably without being pointed out.
 本発明における配向状態を固定化する方法としては、重合性液晶化合物を含む液(以下、液晶組成物ともいう)を一旦、液晶相形成温度まで加熱し、次にその配向状態を維持したまま冷却することにより、その液晶状態における配向形態を損なうことなく固定化することで形成できる。また、重合開始剤を添加した液晶組成物を液晶相形成温度まで加熱し配向した後、重合することによって液晶状態の配向状態を固定化することで形成できる。後者の重合反応により行うことが好ましく、光重合開始剤を用いて光重合反応により行うことがより好ましい。なお、本発明においては、コレステリック液晶構造を有する膜が最終的に形成された際に、その光学的性質が保持されていれば液晶化合物はもはや液晶性である必要はない。例えば、低分子の液晶化合物が熱、光等で反応する基を有しており、結果的に熱、光等で反応により重合又は架橋し、高分子量化して液晶性を失ってもよい。 As a method for fixing the alignment state in the present invention, a liquid containing a polymerizable liquid crystal compound (hereinafter also referred to as a liquid crystal composition) is once heated to the liquid crystal phase formation temperature, and then cooled while maintaining the alignment state. By doing so, it can be formed by fixing without impairing the alignment form in the liquid crystal state. In addition, the liquid crystal composition to which the polymerization initiator is added can be formed by heating and aligning to the liquid crystal phase formation temperature and then fixing the alignment state of the liquid crystal state by polymerization. The latter polymerization reaction is preferably performed, and the photopolymerization reaction is more preferably performed using a photopolymerization initiator. In the present invention, when the film having the cholesteric liquid crystal structure is finally formed, the liquid crystal compound is no longer required to be liquid crystalline as long as the optical properties are maintained. For example, a low-molecular liquid crystal compound may have a group that reacts with heat, light, or the like, and as a result, it may be polymerized or cross-linked by reaction with heat, light, or the like to increase the molecular weight and lose liquid crystallinity.
 液晶組成物は重合性液晶化合物と光学活性化合物(本発明ではカイラル剤、キラル剤と同義)と重合開始剤と溶媒とを混合することにより得られることが好ましい。重合性液晶化合物は単独又は複数使用してもよい。液晶組成物は、重合性液晶化合物を含んでいれば、非重合性の液晶化合物を含んでいてもよい。例えば、重合性液晶化合物と非重合性の液晶化合物との併用が可能である。また、低分子の重合性液晶化合物と高分子液晶化合物との併用も可能である。液晶組成物には、更に、配向の均一性や塗布適性、膜強度を向上させるために水平配向剤やムラ防止剤、ハジキ防止剤、重合性モノマーなどを添加してもよい。液晶組成物には、必要に応じてさらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤等を光学的性能を低下させない範囲で添加できる。 The liquid crystal composition is preferably obtained by mixing a polymerizable liquid crystal compound, an optically active compound (in the present invention, synonymous with a chiral agent and a chiral agent), a polymerization initiator, and a solvent. One or more polymerizable liquid crystal compounds may be used. The liquid crystal composition may contain a non-polymerizable liquid crystal compound as long as it contains a polymerizable liquid crystal compound. For example, a polymerizable liquid crystal compound and a non-polymerizable liquid crystal compound can be used in combination. Further, a low molecular weight polymerizable liquid crystal compound and a polymer liquid crystal compound can be used in combination. In addition, a horizontal alignment agent, a non-uniformity inhibitor, a repellency inhibitor, a polymerizable monomer, and the like may be added to the liquid crystal composition in order to improve alignment uniformity, coating suitability, and film strength. If necessary, the liquid crystal composition may further contain a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer and the like as long as the optical performance is not deteriorated.
 液晶組成物の液晶温度範囲は、製造適性等の面から10~250℃の範囲内に存在することが好ましく、10~150℃の範囲内に存在することがより好ましい。10℃未満であるとコレステリック液晶相を呈する温度範囲にまで温度を下げるために冷却工程等が必要となることがある。また200℃を超えると一旦コレステリック液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にするために高温を要し熱エネルギーの浪費、基板の変形、変質等からも不利になる。 The liquid crystal temperature range of the liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like. When the temperature is lower than 10 ° C., a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a cholesteric liquid crystal phase. When the temperature exceeds 200 ° C., a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting a cholesteric liquid crystal phase, which is disadvantageous from waste of heat energy, deformation of the substrate, and alteration.
-重合性液晶化合物-
 重合性液晶化合物としては、重合性棒状液晶化合物が好ましい。
 重合性棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
 重合性棒状液晶化合物を重合によって配向を固定することがより好ましく、棒状液晶化合物は重合性棒状ネマチック液晶化合物であることがより好ましい。
 重合性棒状液晶化合物としては、Makromol.  Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、WO95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1-272551号、同6-16616号、同7-110469号、同11-80081号、および特願2001-64627号などに記載の化合物を用いることができる。
 本発明の光干渉顔料の製造方法は、重合性液晶化合物が、下記一般式(X)にて表される化合物であることが好ましい。
一般式(X) Q1-L1-Cy1-L2-(Cy2-L3n-Cy3-L4-Q2
(一般式(X)中、Q1およびQ2はそれぞれ独立に重合性基であり、L1およびL4はそれぞれ独立に二価の連結基であり、L2およびL3はそれぞれ独立に単結合または二価の連結基であり、Cy1、Cy2およびCy3は二価の環状基であり、nは0、1、2、または3である。)
-Polymerizable liquid crystal compounds-
As the polymerizable liquid crystal compound, a polymerizable rod-like liquid crystal compound is preferable.
Polymerizable rod-shaped liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
More preferably, the orientation of the polymerizable rod-like liquid crystal compound is fixed by polymerization, and the rod-like liquid crystal compound is more preferably a polymerizable rod-like nematic liquid crystal compound.
Examples of the polymerizable rod-like liquid crystal compound include Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), U.S. Pat. Nos. 4,683,327, 5,622,648 and 5,770,107, WO 95/22586, 95/24455, 97/97. No. 0600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and Japanese Patent Application No. 2001-64627 These compounds can be used.
In the method for producing a light interference pigment of the present invention, the polymerizable liquid crystal compound is preferably a compound represented by the following general formula (X).
Formula (X) Q 1 -L 1 -Cy 1 -L 2- (Cy 2 -L 3 ) n -Cy 3 -L 4 -Q 2
(In General Formula (X), Q 1 and Q 2 are each independently a polymerizable group, L 1 and L 4 are each independently a divalent linking group, and L 2 and L 3 are each independently a single group. A bond or a divalent linking group, Cy 1 , Cy 2 and Cy 3 are divalent cyclic groups, and n is 0, 1, 2, or 3.)
 以下にさらに一般式(X)で表される化合物(重合性棒状液晶化合物)について説明する。
 一般式(X)中、Q1およびQ2はそれぞれ独立に重合性基である。重合性基の重合反応は、付加重合(開環重合を含む)または縮合重合であることが好ましい。言い換えると、重合性基は、付加重合反応または縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例を示す。
Figure JPOXMLDOC01-appb-C000001
The compound (polymerizable rod-like liquid crystal compound) represented by the general formula (X) will be further described below.
In general formula (X), Q 1 and Q 2 are each independently a polymerizable group. The polymerization reaction of the polymerizable group is preferably addition polymerization (including ring-opening polymerization) or condensation polymerization. In other words, the polymerizable group is preferably a functional group capable of addition polymerization reaction or condensation polymerization reaction. Examples of polymerizable groups are shown below.
Figure JPOXMLDOC01-appb-C000001
 一般式(X)中、L1およびL4はそれぞれ独立に二価の連結基である。L1およびL4はそれぞれ独立に、-O-、-S-、-CO-、-NR-、-C=N-、二価の鎖状基、二価の環状基およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記Rは炭素原子数が1から7のアルキル基または水素原子である。
 組み合わせからなる二価の連結基の例を以下に示す。ここで、左側がQ(Q1またはQ2)に、右側がCy(Cy1またはCy3)に結合する。
L-1:-CO-O-二価の鎖状基-O-
L-2:-CO-O-二価の鎖状基-O-CO-
L-3:-CO-O-二価の鎖状基-O-CO-O-
L-4:-CO-O-二価の鎖状基-O-二価の環状基-
L-5:-CO-O-二価の鎖状基-O-二価の環状基-CO-O-
L-6:-CO-O-二価の鎖状基-O-二価の環状基-O-CO-
L-7:-CO-O-二価の鎖状基-O-二価の環状基-二価の鎖状基-
L-8:-CO-O-二価の鎖状基-O-二価の環状基-二価の鎖状基-CO-O-
L-9:-CO-O-二価の鎖状基-O-二価の環状基-二価の鎖状基-O-CO-
L-10:-CO-O-二価の鎖状基-O-CO-二価の環状基-
L-11:-CO-O-二価の鎖状基-O-CO-二価の環状基-CO-O-
L-12:-CO-O-二価の鎖状基-O-CO-二価の環状基-O-CO-
L-13:-CO-O-二価の鎖状基-O-CO-二価の環状基-二価の鎖状基-
L-14:-CO-O-二価の鎖状基-O-CO-二価の環状基-二価の鎖状基-CO-O-
L-15:-CO-O-二価の鎖状基-O-CO-二価の環状基-二価の鎖状基-O-CO-
L-16:-CO-O-二価の鎖状基-O-CO-O-二価の環状基-
L-17:-CO-O-二価の鎖状基-O-CO-O-二価の環状基-CO-O-
L-18:-CO-O-二価の鎖状基-O-CO-O-二価の環状基-O-CO-
L-19:-CO-O-二価の鎖状基-O-CO-O-二価の環状基-二価の鎖状基-
L-20:-CO-O-二価の鎖状基-O-CO-O-二価の環状基-二価の鎖状基-CO-O-
L-21:-CO-O-二価の鎖状基-O-CO-O-二価の環状基-二価の鎖状基-O-CO-
 二価の鎖状基は、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基を意味する。アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基が好ましく、アルキレン基およびアルケニレン基がさらに好ましい。
 アルキレン基は、分岐を有していてもよい。アルキレン基の炭素数は1乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
 置換アルキレン基のアルキレン部分は、上記アルキレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
 アルケニレン基は、分岐を有していてもよい。アルケニレン基の炭素数は2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
 置換アルキレン基のアルキレン部分は、上記アルキレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
 アルキニレン基は、分岐を有していてもよい。アルキニレン基の炭素数は2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
 置換アルキニレン基のアルキニレン部分は、上記アルキニレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
 二価の鎖状基の具体例としては、エチレン、トリメチレン、プロピレン、テトラメチレン、2-メチル-テトラメチレン、ペンタメチレン、ヘキサメチレン、オクタメチレン、2-ブテニレン、2-ブチニレンなどが上げられる。
 二価の環状基の定義および例は、後述するCy1、Cy2およびCy3の定義および例と同様である。
In general formula (X), L 1 and L 4 are each independently a divalent linking group. L 1 and L 4 each independently comprises —O—, —S—, —CO—, —NR—, —C═N—, a divalent chain group, a divalent cyclic group, and combinations thereof. A divalent linking group selected from the group is preferred. R is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom.
The example of the bivalent coupling group which consists of a combination is shown below. Here, the left side is coupled to Q (Q 1 or Q 2 ), and the right side is coupled to Cy (Cy 1 or Cy 3 ).
L-1: —CO—O—divalent chain group —O—
L-2: —CO—O—divalent chain group —O—CO—
L-3: —CO—O—divalent chain group —O—CO—O—
L-4: —CO—O—divalent chain group—O—divalent cyclic group—
L-5: —CO—O—divalent chain group —O—divalent cyclic group —CO—O—
L-6: —CO—O—divalent chain group —O—divalent cyclic group —O—CO—
L-7: —CO—O—Divalent chain group—O—Divalent cyclic group—Divalent chain group—
L-8: —CO—O—divalent chain group—O—divalent cyclic group—divalent chain group —CO—O—
L-9: —CO—O—Divalent chain group—O—Divalent cyclic group—Divalent chain group —O—CO—
L-10: —CO—O—divalent chain group—O—CO—divalent cyclic group—
L-11: —CO—O—divalent chain group —O—CO—divalent cyclic group —CO—O—
L-12: —CO—O—divalent chain group —O—CO—divalent cyclic group —O—CO—
L-13: —CO—O—Divalent chain group—O—CO—Divalent cyclic group—Divalent chain group—
L-14: —CO—O—divalent chain group—O—CO—divalent cyclic group—divalent chain group—CO—O—
L-15: —CO—O—Divalent chain group—O—CO—Divalent cyclic group—Divalent chain group—O—CO—
L-16: —CO—O—divalent chain group—O—CO—O—divalent cyclic group—
L-17: —CO—O—divalent chain group —O—CO—O—divalent cyclic group —CO—O—
L-18: —CO—O—divalent chain group —O—CO—O—divalent cyclic group —O—CO—
L-19: —CO—O—divalent chain group—O—CO—O—divalent cyclic group—divalent chain group—
L-20: —CO—O—divalent chain group—O—CO—O—divalent cyclic group—divalent chain group—CO—O—
L-21: —CO—O—divalent chain group—O—CO—O—divalent cyclic group—divalent chain group—O—CO—
The divalent chain group means an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, or a substituted alkynylene group. An alkylene group, a substituted alkylene group, an alkenylene group and a substituted alkenylene group are preferred, and an alkylene group and an alkenylene group are more preferred.
The alkylene group may have a branch. The alkylene group preferably has 1 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
The alkylene part of the substituted alkylene group is the same as the above alkylene group. Examples of the substituent include a halogen atom.
The alkenylene group may have a branch. The alkenylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
The alkylene part of the substituted alkylene group is the same as the above alkylene group. Examples of the substituent include a halogen atom.
The alkynylene group may have a branch. The alkynylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
The alkynylene part of the substituted alkynylene group is the same as the above alkynylene group. Examples of the substituent include a halogen atom.
Specific examples of the divalent chain group include ethylene, trimethylene, propylene, tetramethylene, 2-methyl-tetramethylene, pentamethylene, hexamethylene, octamethylene, 2-butenylene, 2-butynylene and the like.
The definition and examples of the divalent cyclic group are the same as those of Cy 1 , Cy 2 and Cy 3 described later.
 一般式(X)中、R2は、炭素原子数1から4のアルキル基または水素原子であることが好ましく、メチル基、エチル基または水素原子であることがさらに好ましく、水素原子であることがもっとも好ましい。 In general formula (X), R 2 is preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, more preferably a methyl group, an ethyl group or a hydrogen atom, and a hydrogen atom. Most preferred.
 一般式(X)中、L2またはL3はそれぞれ独立に単結合または二価の連結基である。L2およびL3はそれぞれ独立に、-O-、-S-、-CO-、-NR-、-C=N-、二価の鎖状基、二価の環状基およびそれらの組み合わせからなる群より選ばれる二価の連結基または単結合であることが好ましい。上記Rは炭素原子数が1から7のアルキル基または水素原子であり、炭素原子数1から4のアルキル基または水素原子であることが好ましく、メチル基、エチル基または水素原子であることがさらに好ましく、水素原子であることがもっとも好ましい。二価の鎖状基、および二価の環状基についてはL1およびL4の定義と同義である。
 L2またはL3として好ましい二価の連結基としては、-COO-、-OCO-、-OCOO-、-OCONR-、-COS-、-SCO-、-CONR-、-NRCO-、-CH2CH2-、-C=C-COO-、-C=N-、-C=N-N=C-、等が挙げられる。
In general formula (X), L 2 or L 3 each independently represents a single bond or a divalent linking group. L 2 and L 3 each independently comprises —O—, —S—, —CO—, —NR—, —C═N—, a divalent chain group, a divalent cyclic group, and combinations thereof. It is preferably a divalent linking group or a single bond selected from the group. R is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom, preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and more preferably a methyl group, an ethyl group or a hydrogen atom. Preferably, it is a hydrogen atom. The divalent chain group and the divalent cyclic group have the same definitions as L 1 and L 4 .
Preferred divalent linking groups as L 2 or L 3 include —COO—, —OCO—, —OCOO—, —OCONR—, —COS—, —SCO—, —CONR—, —NRCO—, —CH 2. CH 2 —, —C═C—COO—, —C═N—, —C═N—N═C—, and the like.
 一般式(X)において、nは0、1、2、または3である。nが2または3の場合、二つのL3は同じであっても異なっていてもよく、二つのCy2も同じであっても異なっていてもよい。nは1または2であることが好ましく、1であることがさらに好ましい。 In the general formula (X), n is 0, 1, 2, or 3. When n is 2 or 3, two L 3 may be the same or different, and two Cy 2 may be the same or different. n is preferably 1 or 2, and more preferably 1.
 一般式(X)において、Cy1、Cy2およびCy3は、それぞれ独立に、二価の環状基である。
 環状基に含まれる環は、5員環、6員環、または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。
 環状基に含まれる環は、縮合環であっても良い。ただし、縮合環よりも単環であることがより好ましい。
 環状基に含まれる環は、芳香族環、脂肪族環、および複素環のいずれでもよい。芳香族環の例には、ベンゼン環およびナフタレン環が含まれる。脂肪族環の例には、シクロヘキサン環が含まれる。複素環の例には、ピリジン環およびピリミジン環が含まれる。
 ベンゼン環を有する環状基としては、1,4-フェニレンが好ましい。ナフタレン環を有する環状基としては、ナフタレン-1,5-ジイルおよびナフタレン-2,6-ジイルが好ましい。シクロヘキサン環を有する環状基としては1,4-シクロへキシレンであることが好ましい。ピリジン環を有する環状基としてはピリジンー2,5-ジイルが好ましい。ピリミジン環を有する環状基としては、ピリミジンー2,5-ジイルが好ましい。
 環状基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、シアノ基、ニトロ基、炭素原子数が1乃至5のアルキル基、炭素原子数が1乃至5のハロゲン置換アルキル基、炭素原子数が1乃至5のアルコキシ基、炭素原子数が1乃至5のアルキルチオ基、炭素原子数が2乃至6のアシルオキシ基、炭素原子数が2乃至6のアルコキシカルホ゛ニル基、カルバモイル基、炭素原子数が2乃至6のアルキル置換カルバモイル基および炭素原子数が2乃至6のアシルアミノ基が含まれる。
In the general formula (X), Cy 1 , Cy 2 and Cy 3 are each independently a divalent cyclic group.
The ring contained in the cyclic group is preferably a 5-membered ring, 6-membered ring, or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and most preferably a 6-membered ring.
The ring contained in the cyclic group may be a condensed ring. However, it is more preferably a monocycle than a condensed ring.
The ring contained in the cyclic group may be any of an aromatic ring, an aliphatic ring, and a heterocyclic ring. Examples of the aromatic ring include a benzene ring and a naphthalene ring. Examples of the aliphatic ring include a cyclohexane ring. Examples of the heterocyclic ring include a pyridine ring and a pyrimidine ring.
As the cyclic group having a benzene ring, 1,4-phenylene is preferable. As the cyclic group having a naphthalene ring, naphthalene-1,5-diyl and naphthalene-2,6-diyl are preferable. The cyclic group having a cyclohexane ring is preferably 1,4-cyclohexylene. As the cyclic group having a pyridine ring, pyridine-2,5-diyl is preferable. The cyclic group having a pyrimidine ring is preferably pyrimidine-2,5-diyl.
The cyclic group may have a substituent. Examples of the substituent include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 5 carbon atoms, a halogen-substituted alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. An alkylthio group having 1 to 5 carbon atoms, an acyloxy group having 2 to 6 carbon atoms, an alkoxycarbonyl group having 2 to 6 carbon atoms, a carbamoyl group, and an alkyl-substituted carbamoyl group having 2 to 6 carbon atoms And an acylamino group having 2 to 6 carbon atoms.
 以下に、一般式(X)で表される重合性液晶化合物の例を示す。本発明はこれらに限定されるものではない。 Examples of the polymerizable liquid crystal compound represented by the general formula (X) are shown below. The present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、棒状液晶化合物としては、一般式(X)で表される重合性棒状液晶化合物に加え、少なくとも一種の下記一般式(V)で表される化合物を混合してもよい。
一般式(V)  M1-(L1p-Cy1-L2-(Cy2-L3n-Cy3-(L4q-M2
 式中、M1、および、M2はそれぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、ヘテロ環基、シアノ基、ハロゲン、-SCN、-CF3、ニトロ基、または、Q1を表すが、M1、および、M2の少なくとも一つは、Q1以外の基を表す。
 ただし、Q1、L1、L2、L3、L4、Cy1、Cy2、Cy3およびnは一般式(X)で表される基と同義である。また、pおよびqは0、または1である。
 M1、および、M2が、Q1を表さない場合、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、シアノ基であることが好ましく、より好ましくは、炭素数1~4のアルキル基、もしくは、フェニル基であり、pおよびqは0であることが好ましい。
Further, as the rod-like liquid crystal compound, in addition to the polymerizable rod-like liquid crystal compound represented by the general formula (X), at least one compound represented by the following general formula (V) may be mixed.
Formula (V) M 1- (L 1 ) p -Cy 1 -L 2- (Cy 2 -L 3 ) n -Cy 3- (L 4 ) q -M 2
In the formula, M 1 and M 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a heterocyclic group, a cyano group, a halogen, —SCN, —CF 3 , It represents a nitro group or Q 1 , but at least one of M 1 and M 2 represents a group other than Q 1 .
However, Q 1, L 1, L 2, L 3, L 4, Cy 1, Cy 2, Cy 3 and n have the same meanings as the group represented by the general formula (X). P and q are 0 or 1.
When M 1 and M 2 do not represent Q 1 , they are preferably a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a cyano group, more preferably a carbon number It is preferably an alkyl group of 1 to 4 or a phenyl group, and p and q are preferably 0.
 また、一般式(X)で表される重合性液晶化合物と、一般式(V)で表される化合物の混合物中における、一般式(V)で表される化合物の好ましい混合比率としては、0.1%~40%であり、より好ましくは、1%~30%であり、更に好ましくは、5%~20%である。
 以下に、一般式(V)で表される化合物の好ましい例を示すが、本発明はこれらに限定されるものではない。
Moreover, as a preferable mixing ratio of the compound represented by the general formula (V) in the mixture of the polymerizable liquid crystal compound represented by the general formula (X) and the compound represented by the general formula (V), 0 1% to 40%, more preferably 1% to 30%, and still more preferably 5% to 20%.
Although the preferable example of a compound represented by general formula (V) below is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
-光学活性化合物-
 光学活性化合物としては公知のカイラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)を用いることができる。光学活性化合物は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もカイラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。光学活性化合物(カイラル剤)は、重合性基を有していてもよい。光学活性化合物が重合性基を有する場合は、重合性棒状ネマチック液晶性化合物の重合反応により、棒状ネマチック液晶性繰り返し単位と光学活性構造とを有するポリマーを形成することができる。光学活性化合物の重合性基は、重合性棒状ネマチック液晶性化合物の重合性基と同様の基であることが好ましい。従って、光学活性化合物の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが最も好ましい。
 カイラル剤としては市販のカイラル剤を用いてもよく、右円偏光を反射する光反射層を形成する場合は、例えばLC-756(BASF社製)を好ましく用いることができる。
 また、カイラル剤は、液晶性を有していてもよい。
-Optically active compounds-
As the optically active compound, a known chiral agent (for example, liquid crystal device handbook, chapter 3-4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 142nd Committee, 1989) is used. be able to. The optically active compound generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as a chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The optically active compound (chiral agent) may have a polymerizable group. When the optically active compound has a polymerizable group, a polymer having a rod-like nematic liquid crystalline repeating unit and an optically active structure can be formed by a polymerization reaction of the polymerizable rod-like nematic liquid crystalline compound. The polymerizable group of the optically active compound is preferably the same group as the polymerizable group of the polymerizable rod-like nematic liquid crystalline compound. Accordingly, the polymerizable group of the optically active compound is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Is most preferred.
A commercially available chiral agent may be used as the chiral agent, and LC-756 (manufactured by BASF) can be preferably used when forming a light reflection layer that reflects right circularly polarized light.
Moreover, the chiral agent may have liquid crystallinity.
 カイラル剤の使用量は、重合性液晶化合物の量の1~30モル%であることが好ましい。カイラル剤の使用量は、より少なくした方が液晶性に影響を及ぼさないことが多いため好まれる。従って、カイラル剤は、ねじり力の強い方が好ましい。このような捻れ力の強いカイラル剤としては、例えば、特開2003-287623号公報、特許4287599号に記載のカイラル剤を用いることが可能である。 The amount of chiral agent used is preferably 1 to 30 mol% of the amount of the polymerizable liquid crystal compound. A smaller amount of chiral agent is preferred because it often does not affect liquid crystallinity. Therefore, it is preferable that the chiral agent has a strong twisting force. As such a chiral agent having a strong twisting force, for example, the chiral agents described in JP-A Nos. 2003-287623 and 4287599 can be used.
-重合開始剤-
 コレステリック液晶構造を有する膜形成用の液晶組成物は、硬化性組成物であるのが好ましく、そのためには、重合開始剤を含有しているのが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応と電子線照射による重合反応が含まれるが、熱により基板等が変形、変質するのを防ぐためにも、光重合反応と電子線照射による重合反応が好ましい。すなわち、本発明の光干渉顔料の製造方法は、重合性液晶化合物の配向状態を、重合性液晶化合物と光重合開始剤を含む組成物に対して紫外線照射することにより進行する硬化反応によって固定化することが好ましい。
-Polymerization initiator-
The film-forming liquid crystal composition having a cholesteric liquid crystal structure is preferably a curable composition, and for that purpose, it preferably contains a polymerization initiator. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator, a photopolymerization reaction using a photopolymerization initiator, and a polymerization reaction by electron beam irradiation. To prevent the substrate from being deformed or altered by heat, The polymerization reaction by photopolymerization reaction and electron beam irradiation is preferred. That is, in the method for producing a light interference pigment of the present invention, the alignment state of the polymerizable liquid crystal compound is fixed by a curing reaction that proceeds by irradiating the composition containing the polymerizable liquid crystal compound and the photopolymerization initiator with ultraviolet rays. It is preferable to do.
 光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)及びオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。 Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970) and the like .
 光重合開始剤の使用量は、液晶組成物(塗布液の場合は固形分)の0.1~20質量%であることが好ましく、1~8質量%であることがさらに好ましい。
 液晶化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、10mJ/cm2~50J/cm2であることが好ましく、50mJ/cm2~800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
 また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達しない場合には、窒素置換等の方法により酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。
The amount of the photopolymerization initiator used is preferably from 0.1 to 20% by mass, more preferably from 1 to 8% by mass, based on the liquid crystal composition (solid content in the case of a coating liquid).
Light irradiation for the polymerization of the liquid crystal compound is preferably performed using ultraviolet rays. Irradiation energy is preferably 10mJ / cm 2 ~ 50J / cm 2, further preferably 50mJ / cm 2 ~ 800mJ / cm 2. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
Further, since the oxygen concentration in the atmosphere is related to the degree of polymerization, when the desired degree of polymerization is not reached in the air, it is preferable to reduce the oxygen concentration by a method such as nitrogen substitution. A preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
 重合の反応率はコレステリック液晶構造を有する膜の機械的強度の保持や未反応物が液晶層等に流出することを抑える等の観点から、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりさらに好ましい。重合反応率を向上させるためには照射する紫外線の照射量を増大する方法や窒素雰囲気下あるいは加熱条件下での重合が効果的である。また、一旦重合させた後に、重合温度よりも高温状態で保持して熱重合反応によって反応をさらに推し進める方法や、再度紫外線を照射する方法も用いることができる。重合反応率の測定は重合反応性の結合基の赤外振動スペクトルの吸収強度を重合前後で比較することによって行うことができる。 The polymerization reaction rate is preferably 70% or more, and preferably 80% or more from the viewpoint of maintaining the mechanical strength of the film having a cholesteric liquid crystal structure and suppressing unreacted substances from flowing into the liquid crystal layer and the like. More preferably, it is more preferably 90% or more. In order to improve the polymerization reaction rate, a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective. Moreover, after superposing | polymerizing once, the method of hold | maintaining at a temperature higher than superposition | polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can be used. The polymerization reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of the polymerization reactive bonding group before and after the polymerization.
-配向制御剤-
 液晶組成物中に、特開2012-211306号公報の[0012]~[0030]に記載の化合物、含フッ素(メタ)アクリレートまたは特開2012-101999号公報の[0037]~[0044]に記載の化合物の少なくとも一種を含有させることで、空気界面において液晶性化合物の分子のチルト角を低減若しくは実質的に水平配向させることが好ましい。尚、本明細書で「水平配向」とは、液晶分子長軸と膜面が平行であることをいうが、厳密に平行であることを要求するものではなく、本明細書では、水平面とのなす傾斜角が20度未満の配向を意味するものとする。液晶性化合物が空気界面付近で水平配向する場合、配向欠陥が出にくいため選択反射波長以外の領域での透明性が高くなり、また選択反射波長領域での反射率が増大する。一方、液晶性化合物のチルト角が大きい場合には、コレステリックの螺旋軸が膜面法線からずれるため、反射率が低下したり、フィンガープリントパターンが発生しヘイズの増大や回折性を示したりするため好ましくない。
 配向制御剤として利用可能な含フッ素(メタ)アクリレート系ポリマーの例は、特開2007-272185号公報の[0018]~[0043]等に記載がある。
 本発明に用いられる配向制御剤については、特願2003-331269号明細書(特開2005-099258号公報)に記載の化合物を用いることができ、それら化合物の合成法も該明細書に記載されている。
-Orientation control agent-
In a liquid crystal composition, a compound described in [0012] to [0030] of JP2012-211306A, a fluorine-containing (meth) acrylate, or [0037] to [0044] of JP2012-101999A. By containing at least one of these compounds, it is preferable to reduce the tilt angle of the molecules of the liquid crystal compound at the air interface or to substantially horizontally align it. In this specification, “horizontal alignment” means that the major axis of the liquid crystal molecule is parallel to the film surface, but it is not required to be strictly parallel. An orientation with an inclination angle of less than 20 degrees is meant. When the liquid crystal compound is horizontally aligned in the vicinity of the air interface, since alignment defects are less likely to occur, the transparency in a region other than the selective reflection wavelength is increased, and the reflectance in the selective reflection wavelength region is increased. On the other hand, when the tilt angle of the liquid crystal compound is large, the cholesteric helical axis is deviated from the normal of the film surface, so that the reflectivity is reduced, a fingerprint pattern is generated, and haze is increased or diffraction is exhibited. Therefore, it is not preferable.
Examples of the fluorine-containing (meth) acrylate-based polymer that can be used as an orientation control agent are described in JP-A No. 2007-272185, [0018] to [0043].
As the alignment control agent used in the present invention, the compounds described in Japanese Patent Application No. 2003-331269 (Japanese Patent Laid-Open No. 2005-099258) can be used, and the synthesis method of these compounds is also described in the specification. ing.
 さらに、2種以上の配向制御剤を組み合わせて用いることが好ましく、2種以上のフッ素系配向制御剤を組み合わせて用いることがより好ましく、以下の第1の配向制御剤と、第2の配向制御剤を組み合わせて用いることが特に好ましい。
(1) 第1の配向制御剤
 第1の配向制御剤として、少なくとも1つのペルフルオロアルキル鎖を有する化合物を挙げることができる。
 第1の配向制御剤は、下記式(1)で表される浮き出し率が50%以下であることが好ましい。
式(1)
浮き出し率(%)=100%×B/A
(式(1)中、重合性液晶分子と配向制御剤を含む下層用硬化性液晶組成物をコレステリック液晶相の状態で硬化することによって固定して下層を形成し、下層の上に配向制御剤を除いた以外は下層用硬化性液晶組成物と同じ組成の上層用硬化性液晶組成物を塗布し、コレステリック液晶相の状態で硬化することによって固定して上層を積層したときにおいて、Aは下層すなわち1層品の表面に存在する炭素原子およびフッ素原子の合計量に対するフッ素原子含有率を表し、Bは上層すなわち2層品の表面に存在する炭素原子およびフッ素原子の合計量に対するフッ素原子含有率を表す。)
Furthermore, it is preferable to use a combination of two or more types of alignment control agents, more preferably to use a combination of two or more types of fluorine-based alignment control agents, and the following first alignment control agent and second alignment control. It is particularly preferable to use a combination of agents.
(1) First alignment control agent As the first alignment control agent, a compound having at least one perfluoroalkyl chain can be exemplified.
The first orientation control agent preferably has an embossing ratio represented by the following formula (1) of 50% or less.
Formula (1)
Raising rate (%) = 100% × B / A
(In Formula (1), the lower layer curable liquid crystal composition containing polymerizable liquid crystal molecules and an alignment control agent is fixed by curing in the state of a cholesteric liquid crystal phase to form a lower layer, and the alignment control agent is formed on the lower layer. When the upper layer is laminated by applying the upper layer curable liquid crystal composition having the same composition as that of the lower layer curable liquid crystal composition and curing in the state of the cholesteric liquid crystal phase, A is the lower layer That is, it represents the fluorine atom content relative to the total amount of carbon atoms and fluorine atoms present on the surface of the one-layer product, and B represents the fluorine atom content ratio relative to the total amount of carbon atoms and fluorine atoms present on the surface of the upper layer, ie, the two-layer product. Represents.)
 配向制御剤の浮き出し率を測定するときに用いられる各層の表面に存在する炭素原子およびフッ素原子の合計量に対するフッ素原子含有率は、その測定方法に制限はない。
 本発明ではX線光電子分光法で、各層の表面に存在するフッ素原子/炭素原子(F/C)を測定し、それらの値に基づいて、算出した。
The measurement method for the fluorine atom content relative to the total amount of carbon atoms and fluorine atoms present on the surface of each layer used when measuring the protrusion ratio of the alignment control agent is not limited.
In the present invention, fluorine atoms / carbon atoms (F / C) existing on the surface of each layer were measured by X-ray photoelectron spectroscopy, and the calculation was performed based on these values.
 第1の配向制御剤が非重合性であることが好ましい。
 第1の配向制御剤が少なくとも2本以上のペルフルオロアルキル鎖を有することが好ましく、第1の配向制御剤がペルフルオロアルキル鎖を2本有することがより好ましい。
The first alignment control agent is preferably non-polymerizable.
It is preferable that the first alignment control agent has at least two perfluoroalkyl chains, and it is more preferable that the first alignment control agent has two perfluoroalkyl chains.
 第1の配向制御剤が、液晶組成物中の重合性液晶化合物に対して0.03質量%以上含まれることが好ましく、0.10質量%以上含まれることがさらに好ましい。 The first alignment control agent is preferably contained in an amount of 0.03% by mass or more, more preferably 0.10% by mass or more, based on the polymerizable liquid crystal compound in the liquid crystal composition.
 第1の配向制御剤は、下記一般式(I)で表されることが好ましい。
 下記式(I)の化合物は二価の基を中心に有し、末端にフッ化アルキル基を有することを特徴とする。末端にフッ化アルキル基を有する化合物は配向促進剤として効果的であるが、従来知られている配向制御剤は、使用濃度範囲が狭いといった点や溶解性が低いといった点があり、用途が制限されていた。下記式(I)の化合物は同等以上の配向性能をより広い濃度範囲かつ良好な溶解性で示すことから、それらを含む組成物は製造において使用しやすいというメリットがある。
The first alignment control agent is preferably represented by the following general formula (I).
The compound of the following formula (I) is characterized by having a divalent group at the center and a fluorinated alkyl group at the terminal. A compound having a fluorinated alkyl group at the terminal is effective as an alignment accelerator, but conventionally known alignment control agents have a limited use concentration range and a low solubility, limiting their use. It had been. Since the compound of the following formula (I) exhibits the same or better orientation performance in a wider concentration range and good solubility, a composition containing them has an advantage that it is easy to use in production.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(I)において、L1、L2、L3、L4、L5、L6はおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(Rは水素原子または炭素数が1~6のアルキル基)を表し、より好ましくは-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-であり、さらに好ましくは-O-、-CO-、-COO-、-OCO-である。上記のRがとりうるアルキル基は、直鎖状であっても分枝状であってもよい。炭素数は1~3であることがより好ましく、メチル基、エチル基、n-プロピル基を例示することができる。 In the general formula (I), L 1 , L 2 , L 3 , L 4 , L 5 and L 6 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO. —, —COS—, —SCO—, —NRCO—, —CONR— (R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), more preferably —O—, —S—, —CO—. , —COO—, —OCO—, —COS—, —SCO—, and more preferably —O—, —CO—, —COO—, —OCO—. The alkyl group which R can take may be linear or branched. The number of carbon atoms is more preferably 1 to 3, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
 Spは単結合または炭素数1~10のアルキレン基を表し、より好ましくは単結合または炭素数1~7のアルキレン基であり、さらに好ましくは単結合または炭素数1~4のアルキレン基であり、該アルキレン中の隣接しないメチレン基は-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-、-OHで置換されていてもよい。アルキレン基には、分枝があっても無くてもよいが、好ましいのは分枝がない直鎖のアルキレン基である。 Sp represents a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms, still more preferably a single bond or an alkylene group having 1 to 4 carbon atoms, Non-adjacent methylene groups in the alkylene are substituted with —O—, —S—, —CO—, —COO—, —OCO—, —COS—, —SCO—, —NRCO—, —CONR—, —OH. It may be. The alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred.
 A1、A2は二価の芳香族炭化水素基または二価の複素環基を表し、より好ましくは二価の芳香族炭化水素である。二価の芳香族炭化水素基の炭素数は6~22であることが好ましく、6~14であることがより好ましく、6~10であることがさらに好ましく、フェニレン基であることがさらにより好ましい。フェニレン基である場合は、メタ位またはパラ位に結合手を有することが好ましく、パラ位に結合手を有することが特に好ましい。二価の複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がさらに好ましく、6員環が最も好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環は、芳香族性複素環であることが好ましい。芳香族性複素環は、一般に不飽和複素環である。最多二重結合を有する不飽和複素環がさらに好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。A1、A2で表される二価の芳香族炭化水素基または二価の複素環基は置換基を有していてもよい。そのような置換基の例として、炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を挙げることができる。これらの基の説明と好ましい範囲については、下記のTの対応する記載を参照することができる。A1、A2で表される二価の芳香族炭化水素基または二価の複素環基に対する置換基としては、例えばメチル基、エチル基、メトキシ基、エトキシ基、臭素原子、塩素原子、シアノ基などを挙げることができる。A1とA2は同一であることが好ましい。 A 1 and A 2 each represent a divalent aromatic hydrocarbon group or a divalent heterocyclic group, and more preferably a divalent aromatic hydrocarbon. The divalent aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 14, more preferably 6 to 10, and still more preferably a phenylene group. . In the case of a phenylene group, it is preferable to have a bond at the meta or para position, and it is particularly preferable to have a bond at the para position. The divalent heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring. A 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is most preferable. As the hetero atom constituting the heterocyclic ring, a nitrogen atom, an oxygen atom and a sulfur atom are preferable. The heterocycle is preferably an aromatic heterocycle. The aromatic heterocycle is generally an unsaturated heterocycle. An unsaturated heterocyclic ring having the most double bond is more preferable. Examples of heterocyclic rings include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included. The divalent aromatic hydrocarbon group or divalent heterocyclic group represented by A 1 and A 2 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to. Examples of the substituent for the divalent aromatic hydrocarbon group or divalent heterocyclic group represented by A 1 or A 2 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group. Examples include groups. A 1 and A 2 are preferably the same.
 Tは
Figure JPOXMLDOC01-appb-C000009
で表される二価の基または二価の芳香族複素環基を表す(Xは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を表し、Ya、Yb、Yc、Ydはおのおの独立して水素原子または炭素数1~4のアルキル基を表す)であり、より好ましくは
Figure JPOXMLDOC01-appb-C000010
であり、さらに好ましくは
Figure JPOXMLDOC01-appb-C000011
である。Xがとりうるアルキル基の炭素数は1~8であり、1~5であることが好ましく、1~3であることがより好ましい。アルキル基は、直鎖状、分枝状、環状のいずれであってもよく、直鎖状または分枝状であることが好ましい。好ましいアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができる。Xがとりうるアルコキシ基のアルキル部分については、Xがとりうるアルキル基の説明と好ましい範囲を参照することができる。Xがとりうるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子が好ましい。Xがとりうるエステル基としては、RCOO-で表される基を例示することができる。Rとしては炭素数1~8のアルキル基を挙げることができる。Rがとりうるアルキル基の説明と好ましい範囲については、上記のXがとりうるアルキル基の説明と好ましい範囲を参照することができる。エステルの具体例として、CH3COO-、C25COO-を挙げることができる。Ya、Yb、Yc、Ydがとりうる炭素数1~4のアルキル基は、直鎖状であっても分枝状であってもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができる。二価の芳香族複素環基の説明と好ましい範囲については、下記のA1とA2の芳香族複素環基に関する説明と記載を参照することができる。
T is
Figure JPOXMLDOC01-appb-C000009
(X represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group or an ester group, Ya, Yb, Yc Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), more preferably
Figure JPOXMLDOC01-appb-C000010
And more preferably
Figure JPOXMLDOC01-appb-C000011
It is. The alkyl group which X can take has 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. The alkyl group may be linear, branched or cyclic, and is preferably linear or branched. Preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. For the alkyl part of the alkoxy group that X can take, the description and preferred range of the alkyl group that X can take can be referred to. Examples of the halogen atom that X can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable. Examples of the ester group that X can take include a group represented by RCOO—. Examples of R include an alkyl group having 1 to 8 carbon atoms. For the description and preferred range of the alkyl group that R can take, the description and preferred range of the alkyl group that X can take can be referred to. Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—. The alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified. For the explanation and preferred range of the divalent aromatic heterocyclic group, the following explanation and description regarding the aromatic heterocyclic group of A 1 and A 2 can be referred to.
 Hbは炭素数3~30のフッ化アルキル基を表し、より好ましくは炭素数3~20のフッ化アルキル基であり、さらに好ましくは3~10のフッ化アルキル基である。ここで、フッ化アルキル基は水素で置換されていても置換されていなくてもよい。フッ化アルキル基は、直鎖状、分枝状、環状のいずれであってもよいが、直鎖状または分枝状であるものが好ましく、直鎖状であることがより好ましい。フッ化アルキル基としては、末端がペルフルオロアルキル基であるものを好ましく例示することができる。すなわち、以下の一般式で表される基であることが好ましい。
  (Cp2p+1)-(Cq2q)-
上式において、pは1~30であることが好ましく、1~20であることがより好ましく、1~10であることがさらに好ましい。qは0~20であることが好ましく、0~10であることがより好ましく、0~5であることがさらに好ましい。p+qは3~30である。
Hb represents a fluorinated alkyl group having 3 to 30 carbon atoms, more preferably a fluorinated alkyl group having 3 to 20 carbon atoms, and still more preferably a fluorinated alkyl group having 3 to 10 carbon atoms. Here, the fluorinated alkyl group may or may not be substituted with hydrogen. The fluorinated alkyl group may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear. Preferred examples of the fluorinated alkyl group include those having a perfluoroalkyl group at the end. That is, it is preferably a group represented by the following general formula.
(C p F 2p + 1 ) − (C q H 2q ) −
In the above formula, p is preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10. q is preferably from 0 to 20, more preferably from 0 to 10, and even more preferably from 0 to 5. p + q is 3 to 30.
 k,l,m,n,pは0以上の整数を表し、oは1~4のいずれかの整数である。また、k,l,m,n,o,pが2以上であるとき、複数存在する括弧内の構造は互いに同一であっても異なっていてもよい。例えば、kが2であるとき、分子内に2つ存在するL1は互いに同一であっても異なっていてもよい。一般式(I)のk,l,m,nは0~6のいずれかの整数であることが好ましく、0~4のいずれかの整数であることがより好ましく、0~3のいずれかの整数であることがさらに好ましく、0~2のいずれかの整数であることがさらにより好ましい。一般式(I)のk,l,m,nの好ましい組み合わせとして、l=m=1でありk=n=0である組み合わせと、l=m=1でありk=n=1である組み合わせを挙げることができ、より好ましい組み合わせとしてl=m=1でありk=n=0である組み合わせを挙げることができる。oは1または2であることが好ましい。pは1~4のいずれかの整数であることが好ましく、1または2であることがより好ましい。 k, l, m, n, and p are integers greater than or equal to 0, and o is an integer from 1 to 4. Further, when k, l, m, n, o, and p are 2 or more, a plurality of structures in parentheses may be the same or different. For example, when k is 2, two L 1 existing in the molecule may be the same or different from each other. In the general formula (I), k, l, m, and n are preferably any integer of 0 to 6, more preferably any integer of 0 to 4, and any of 0 to 3 An integer is more preferable, and an integer of 0 to 2 is even more preferable. As a preferable combination of k, l, m, and n in the general formula (I), a combination in which l = m = 1 and k = n = 0 and a combination in which l = m = 1 and k = n = 1 More preferable combinations include a combination in which l = m = 1 and k = n = 0. o is preferably 1 or 2. p is preferably an integer of 1 to 4, and more preferably 1 or 2.
 一般式(I)で表される化合物は、分子構造が対称性を有するものであってもよいし、対称性を有しないものであってもよい。なお、ここでいう対称性とは、点対称、線対称、回転対称のいずれかに該当するものを意味し、非対称とは点対称、線対称、回転対称のいずれにも該当しないものを意味する。 The compound represented by the general formula (I) may have a symmetrical molecular structure or may have no symmetry. In addition, the symmetry here means one corresponding to any of point symmetry, line symmetry, or rotational symmetry, and asymmetry means one not corresponding to any of point symmetry, line symmetry, or rotational symmetry. .
 一般式(I)で表される化合物は、以上述べたフッ化アルキル基(Hb)、連結基(L1k-Sp-(L2-A1l-L3および-L4-(A2-L5m-Sp-(L6n、ならびに排除体積効果を持つ2価の基であるTを組み合わせた化合物である。分子内に2つ存在するフッ化アルキル基(Hb)は互いに同一であることが好ましく、分子内に存在する連結基(L1k-Sp-(L2-A1l-L3および-L4-(A2-L5m-Sp-(L6nも互いに同一であることが好ましい。末端のHb-(L1k-Sp-および-Sp-(L6n-Hbは、以下のいずれかの一般式で表される基であることが好ましい。
  (Cp2p+1)-(Cq2q)-
  (Cp2p+1)-(Cq2q)-O-(Cr2r)-
  (Cp2p+1)-(Cq2q)-COO-(Cr2r)-
  (Cp2p+1)-(Cq2q)-OCO-(Cr2r)-
上式において、pは1~30であることが好ましく、1~20であることがより好ましく、1~10であることがさらに好ましい。qは0~20であることが好ましく、0~10であることがより好ましく、0~5であることがさらに好ましい。p+qは3~30である。rは1~10であることが好ましく、1~4であることがより好ましい。
また、一般式(I)のlが1以上であるとき、末端のHb-(L1k-Sp-L2-および-L5-Sp-(L6n-Hbは、以下のいずれかの一般式で表される基であることが好ましい。
  (Cp2p+1)-(Cq2q)-O
  (Cp2p+1)-(Cq2q)-COO-
  (Cp2p+1)-(Cq2q)-O-(Cr2r)-O-
  (Cp2p+1)-(Cq2q)-COO-(Cr2r)-COO-
  (Cp2p+1)-(Cq2q)-OCO-(Cr2r)-COO-
上式におけるp、qおよびrの定義は直上の定義と同じである。
 以下に、一般式(I)で表される化合物の具体例を示す。ただし、本発明で採用することができる一般式(I)で表される化合物は、下記の具体例によって限定的に解釈されるべきものではない。
The compound represented by formula (I), above mentioned fluorinated alkyl group (Hb), the linking group (L 1) k -Sp- (L 2 -A 1) l -L 3 and -L 4 - ( A 2 -L 5 ) m -Sp- (L 6 ) n , and T, which is a divalent group having an excluded volume effect. The two fluorinated alkyl groups (Hb) present in the molecule are preferably the same as each other, and the linking group (L 1 ) k -Sp- (L 2 -A 1 ) l -L 3 present in the molecule and -L 4 - (a 2 -L 5 ) m -Sp- (L 6) n also is preferably identical to each other. The terminal Hb- (L 1 ) k -Sp- and -Sp- (L 6 ) n -Hb are preferably groups represented by any one of the following general formulas.
(C p F 2p + 1 ) − (C q H 2q ) −
(C p F 2p + 1) - (C q H 2q) -O- (C r H 2r) -
(C p F 2p + 1 ) — (C q H 2q ) —COO— (C r H 2r ) —
(C p F 2p + 1) - (C q H 2q) -OCO- (C r H 2r) -
In the above formula, p is preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10. q is preferably from 0 to 20, more preferably from 0 to 10, and even more preferably from 0 to 5. p + q is 3 to 30. r is preferably from 1 to 10, and more preferably from 1 to 4.
When l in the general formula (I) is 1 or more, terminal Hb- (L 1 ) k -Sp-L 2 -and -L 5 -Sp- (L 6 ) n -Hb are any of the following: A group represented by the general formula is preferred.
(C p F 2p + 1) - (C q H 2q) -O
(C p F 2p + 1) - (C q H 2q) -COO-
(C p F 2p + 1) - (C q H 2q) -O- (C r H 2r) -O-
(C p F 2p + 1 )-(C q H 2q ) —COO— (C r H 2r ) —COO—
(C p F 2p + 1) - (C q H 2q) -OCO- (C r H 2r) -COO-
The definitions of p, q and r in the above formula are the same as the definitions immediately above.
Specific examples of the compound represented by the general formula (I) are shown below. However, the compound represented by the general formula (I) that can be employed in the present invention should not be limitedly interpreted by the following specific examples.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(I)で表される化合物は、特開2002-129162号公報や特開2002-97170号や当該公報において引用されている文献に記載される合成法を適宜選択して組み合わせることにより合成することができる。また、その他の公知の合成法も必要に応じて組み合わせることにより合成することができる。 The compound represented by the general formula (I) is synthesized by appropriately selecting and combining the synthesis methods described in JP-A Nos. 2002-129162, 2002-97170, and references cited therein. can do. Moreover, it can synthesize | combine by combining another well-known synthesis method as needed.
(2)第2の配向制御剤
 液晶組成物が、第2の配向制御剤を含むことが好ましい。
 第2の配向制御剤は、本発明の趣旨に反しない限りにおいて特に制限はない。
(2) Second alignment control agent The liquid crystal composition preferably contains a second alignment control agent.
There is no restriction | limiting in particular unless the 2nd orientation control agent is contrary to the meaning of this invention.
 第2の配向制御剤が非重合性であることが好ましい。 It is preferable that the second alignment control agent is non-polymerizable.
 第2の配向制御剤の式(1)で表される浮き出し率が50%よりも多いことが好ましく、50%よりも多く90%以下であることがより好ましい。 The protrusion ratio represented by the formula (1) of the second alignment control agent is preferably more than 50%, more preferably more than 50% and 90% or less.
 第2の配向制御剤がペルフルオロアルキル鎖を有することが好ましく、第2の配向制御剤がペルフルオロアルキル鎖を6本有することが好ましい。 It is preferable that the second alignment control agent has a perfluoroalkyl chain, and it is preferable that the second alignment control agent has 6 perfluoroalkyl chains.
 第2の配向制御剤が、液晶組成物中の重合性液晶化合物に対して0.003~1.0質量%含まれることが好ましく、0.005~1.0質量%含まれることがより好ましい。 The second alignment control agent is preferably contained in an amount of 0.003 to 1.0% by mass, more preferably 0.005 to 1.0% by mass, based on the polymerizable liquid crystal compound in the liquid crystal composition. .
 第2の配向制御剤は、下記一般式(II)で表されることが好ましい。下記一般式(II)で表される化合物を含む組成物は製造において使用しやすいというメリットがある。
Figure JPOXMLDOC01-appb-C000020
The second alignment controller is preferably represented by the following general formula (II). The composition containing the compound represented by the following general formula (II) has an advantage of being easy to use in production.
Figure JPOXMLDOC01-appb-C000020
 一般式(II)において、L1、L2、L3、L4、L5、L6はおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(II)中におけるRは水素原子または炭素数が1~6のアルキル基を表す)を表し、-NRCO-、-CONR-は溶解性を減ずる効果があり、膜作成時にヘイズ値が上昇する傾向があることからより好ましくは-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-であり、化合物の安定性の観点からさらに好ましくは-O-、-CO-、-COO-、-OCO-である。上記のRがとりうるアルキル基は、直鎖状であっても分枝状であってもよい。炭素数は1~3であることがより好ましく、メチル基、エチル基、n-プロピル基を例示することができる。 In the general formula (II), L 1 , L 2 , L 3 , L 4 , L 5 and L 6 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO. —, —COS—, —SCO—, —NRCO—, —CONR— (in the general formula (II), R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), —NRCO—, — CONR- has the effect of reducing the solubility, and has a tendency to increase the haze value during film formation. More preferably, -O-, -S-, -CO-, -COO-, -OCO-, -COS- —SCO—, and —O—, —CO—, —COO—, and —OCO— are more preferable from the viewpoint of the stability of the compound. The alkyl group which R can take may be linear or branched. The number of carbon atoms is more preferably 1 to 3, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
 Sp1、Sp2、Sp3、Sp4はそれぞれ独立して単結合または炭素数1~10のアルキレン基を表し、より好ましくは単結合または炭素数1~7のアルキレン基であり、さらに好ましくは単結合または炭素数1~4のアルキレン基である。但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい。アルキレン基には、分枝があっても無くてもよいが、好ましいのは分枝がない直鎖のアルキレン基である。合成上の観点からは、Sp1とSp4が同一であり、かつ、Sp2とSp3が同一であることが好ましい。 Sp 1 , Sp 2 , Sp 3 and Sp 4 each independently represents a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms, and more preferably A single bond or an alkylene group having 1 to 4 carbon atoms. However, the hydrogen atom of the alkylene group may be substituted with a fluorine atom. The alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred. From the viewpoint of synthesis, it is preferable that Sp 1 and Sp 4 are the same, and Sp 2 and Sp 3 are the same.
 A1、A2は3価または4価の芳香族炭化水素である。3価または4価の芳香族炭化水素基の炭素数は6~22であることが好ましく、6~14であることがより好ましく、6~10であることがさらに好ましく、6であることがさらにより好ましい。A1、A2で表される3価または4価の芳香族炭化水素基は置換基を有していてもよい。そのような置換基の例として、炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を挙げることができる。これらの基の説明と好ましい範囲については、下記のTの対応する記載を参照することができる。A1、A2で表される3価または4価の芳香族炭化水素基に対する置換基としては、例えばメチル基、エチル基、メトキシ基、エトキシ基、臭素原子、塩素原子、シアノ基などを挙げることができる。ペルフルオロアルキル部分を分子内に多く有する分子は、少ない添加量で液晶を配向させることができ、ヘイズ低下につながることから、分子内にペルフルオロアルキル基を多く有するようにA1、A2は4価であることが好ましい。合成上の観点からは、A1とA2は同一であることが好ましい。 A 1 and A 2 are trivalent or tetravalent aromatic hydrocarbons. The carbon number of the trivalent or tetravalent aromatic hydrocarbon group is preferably 6 to 22, more preferably 6 to 14, further preferably 6 to 10, and further preferably 6. More preferred. The trivalent or tetravalent aromatic hydrocarbon group represented by A 1 or A 2 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to. Examples of the substituent for the trivalent or tetravalent aromatic hydrocarbon group represented by A 1 or A 2 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group. be able to. A molecule having a large number of perfluoroalkyl moieties in the molecule can orient the liquid crystal with a small addition amount, leading to a decrease in haze. Therefore, A 1 and A 2 are tetravalent so as to have a large number of perfluoroalkyl groups in the molecule. It is preferable that From the viewpoint of synthesis, A 1 and A 2 are preferably the same.
 Tは
Figure JPOXMLDOC01-appb-C000021
で表される二価の基または二価の芳香族複素環基を表す(Xは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を表し、Ya、Yb、Yc、Ydはおのおの独立して水素原子または炭素数1~4のアルキル基を表す)であり、より好ましくは
Figure JPOXMLDOC01-appb-C000022
であり、さらに好ましくは
Figure JPOXMLDOC01-appb-C000023
であり、よりさらに好ましくは、
Figure JPOXMLDOC01-appb-C000024
である。
 Xがとりうるアルキル基の炭素数は1~8であり、1~5であることが好ましく、1~3であることがより好ましい。アルキル基は、直鎖状、分枝状、環状のいずれであってもよく、直鎖状または分枝状であることが好ましい。好ましいアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができ、その中でもメチル基が好ましい。Xがとりうるアルコキシ基のアルキル部分については、Xがとりうるアルキル基の説明と好ましい範囲を参照することができる。Xがとりうるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子が好ましい。Xがとりうるエステル基としては、R’COO-で表される基を例示することができる。R’としては炭素数1~8のアルキル基を挙げることができる。R’がとりうるアルキル基の説明と好ましい範囲については、上記のXがとりうるアルキル基の説明と好ましい範囲を参照することができる。エステルの具体例として、CH3COO-、C25COO-を挙げることができる。Ya、Yb、Yc、Ydがとりうる炭素数1~4のアルキル基は、直鎖状であっても分枝状であってもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができる。
 二価の芳香族複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がさらに好ましく、6員環が最も好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環は、芳香族性複素環であることが好ましい。芳香族性複素環は、一般に不飽和複素環である。最多二重結合を有する不飽和複素環がさらに好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。二価の複素環基は置換基を有していてもよい。そのような置換基の例の説明と好ましい範囲については、上記のA1とA2の3価または4価の芳香族炭化水素が取り得る置換基に関する説明と記載を参照することができる。
T is
Figure JPOXMLDOC01-appb-C000021
(X represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group or an ester group, Ya, Yb, Yc Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), more preferably
Figure JPOXMLDOC01-appb-C000022
And more preferably
Figure JPOXMLDOC01-appb-C000023
And even more preferably
Figure JPOXMLDOC01-appb-C000024
It is.
The alkyl group which X can take has 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. The alkyl group may be linear, branched or cyclic, and is preferably linear or branched. Examples of preferable alkyl groups include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and among them, a methyl group is preferable. For the alkyl part of the alkoxy group that X can take, the description and preferred range of the alkyl group that X can take can be referred to. Examples of the halogen atom that X can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable. Examples of the ester group that X can take include a group represented by R′COO—. Examples of R ′ include an alkyl group having 1 to 8 carbon atoms. For the description and preferred range of the alkyl group that R ′ can take, the description and preferred range of the alkyl group that X can take can be referred to. Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—. The alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified.
The divalent aromatic heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring. A 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is most preferable. As the hetero atom constituting the heterocyclic ring, a nitrogen atom, an oxygen atom and a sulfur atom are preferable. The heterocycle is preferably an aromatic heterocycle. The aromatic heterocycle is generally an unsaturated heterocycle. An unsaturated heterocyclic ring having the most double bond is more preferable. Examples of heterocyclic rings include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included. The divalent heterocyclic group may have a substituent. For the explanation and preferred ranges of examples of such substituents, reference can be made to the explanations and descriptions regarding the substituents that can be taken by the trivalent or tetravalent aromatic hydrocarbons of A 1 and A 2 .
 Hbは炭素数2~30のペルフルオロアルキル基を表し、より好ましくは炭素数3~20のペルフルオロアルキル基であり、さらに好ましくは3~10のペルフルオロアルキル基である。ペルフルオロアルキル基は、直鎖状、分枝状、環状のいずれであってもよいが、直鎖状または分枝状であるものが好ましく、直鎖状であることがより好ましい。 Hb represents a perfluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group having 3 to 20 carbon atoms, and still more preferably a perfluoroalkyl group having 3 to 10 carbon atoms. The perfluoroalkyl group may be linear, branched or cyclic, but is preferably linear or branched, and more preferably linear.
 m、nはそれぞれ独立に2または3であり、このとき複数存在する括弧内の構造は互いに同一であっても異なっていてもよいが、互いに同一であることが好ましい。一般式(II)のm、nは、A1、A2の価数によって定まり、好ましい範囲もA1、A2の価数の好ましい範囲によって定まる。従来知られていた及びnが1の化合物に比べ、mおよびnが2または3である化合物が、添加量が少なくても顕著に配向制御性能およびヘイズ低下性能が良いのは、いかなる理論に拘泥するものでもないが、化合物中のフッ素含有量に起因すると推測される。
 o、pはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。oは1または2であることが好ましい。pは1~4のいずれかの整数であることが好ましく、1または2であることがより好ましい。
m and n are each independently 2 or 3, and a plurality of parenthesized structures may be the same or different from each other, but are preferably the same. M and n in the general formula (II) are determined by the valences of A 1 and A 2 , and the preferable range is also determined by the preferable ranges of the valences of A 1 and A 2 . It is not limited to any theory that a compound in which m and n are 2 or 3 has a remarkably good alignment control performance and haze reduction performance even if the addition amount is small as compared with a conventionally known compound and n is 1. Although it does not do, it is estimated that it originates in the fluorine content in a compound.
o and p are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of Xs may be the same or different from each other. o is preferably 1 or 2. p is preferably an integer of 1 to 4, and more preferably 1 or 2.
 一般式(II)で表される化合物は、分子構造が対称性を有するものであってもよいし、対称性を有しないものであってもよい。なお、ここでいう対称性とは、点対称、線対称、回転対称のいずれかに該当するものを意味し、非対称とは点対称、線対称、回転対称のいずれにも該当しないものを意味する。 The compound represented by the general formula (II) may have a symmetrical molecular structure or may have no symmetry. In addition, the symmetry here means one corresponding to any of point symmetry, line symmetry, or rotational symmetry, and asymmetry means one not corresponding to any of point symmetry, line symmetry, or rotational symmetry. .
 一般式(II)で表される化合物は、以上述べたペルフルオロアルキル基(Hb)、連結基-(-Sp1-L1-Sp2-L2m-A1-L3-および-L4-A2-(L5-Sp3-L6-Sp4-)n-、ならびに好ましくは排除体積効果を持つ2価の基であるTを組み合わせた化合物である。分子内に2つ存在するペルフルオロアルキル基(Hb)は互いに同一であることが好ましく、分子内に存在する連結基-(-Sp1-L1-Sp2-L2m-A1-L3-および-L4-A2-(L5-Sp3-L6-Sp4-)n-も互いに同一であることが好ましい。末端のHb-Sp1-L1-Sp2-および-Sp3-L6-Sp4-Hbは、以下のいずれかの一般式で表される基であることが好ましい。
  (Ca2a+1)-(Cb2b)-
  (Ca2a+1)-(Cb2b)-O-(Cr2r)-
  (Ca2a+1)-(Cb2b)-COO-(Cr2r)-
  (Ca2a+1)-(Cb2b)-OCO-(Cr2r)-
上式において、aは2~30であることが好ましく、3~20であることがより好ましく、3~10であることがさらに好ましい。bは0~20であることが好ましく、0~10であることがより好ましく、0~5であることがさらに好ましい。a+bは3~30である。rは1~10であることが好ましく、1~4であることがより好ましい。
また、一般式(II)の末端のHb-Sp1-L1-Sp2-L2-および-L5-Sp3-L6-Sp4-Hbは、以下のいずれかの一般式で表される基であることが好ましい。
  (Ca2a+1)-(Cb2b)-O
  (Ca2a+1)-(Cb2b)-COO-
  (Ca2a+1)-(Cb2b)-O-(Cr2r)-O-
  (Ca2a+1)-(Cb2b)-COO-(Cr2r)-COO-
  (Ca2a+1)-(Cb2b)-OCO-(Cr2r)-COO-
 上式におけるa、bおよびrの定義は直上の定義と同じである。
 以下に、一般式(II)で表される化合物の具体例を示す。ただし、本発明で採用することができる一般式(II)で表される化合物は、下記の具体例によって限定的に解釈されるべきものではない。
The compound represented by the general formula (II) includes the perfluoroalkyl group (Hb), the linking group-(-Sp 1 -L 1 -Sp 2 -L 2 ) m -A 1 -L 3 -and -L described above. 4 -A 2 - (L 5 -Sp 3 -L 6 -Sp 4 -) n -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect. The two perfluoroalkyl groups (Hb) present in the molecule are preferably the same as each other, and the linking group present in the molecule-(-Sp 1 -L 1 -Sp 2 -L 2 ) m -A 1 -L 3 - and -L 4 -A 2 - (L 5 -Sp 3 -L 6 -Sp 4 -) n - also is preferably identical to each other. The terminal Hb-Sp 1 -L 1 -Sp 2 -and -Sp 3 -L 6 -Sp 4 -Hb are preferably groups represented by any one of the following general formulas.
(C a F 2a + 1 )-(C b H 2b )-
(C a F 2a + 1 ) — (C b H 2b ) —O— (C r H 2r ) —
(C a F 2a + 1 ) — (C b H 2b ) —COO— (C r H 2r ) —
(C a F 2a + 1 )-(C b H 2b ) -OCO- (C r H 2r )-
In the above formula, a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10. b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5. a + b is 3 to 30. r is preferably from 1 to 10, and more preferably from 1 to 4.
Further, Hb-Sp 1 -L 1 -Sp 2 -L 2 -and -L 5 -Sp 3 -L 6 -Sp 4 -Hb at the end of the general formula (II) are represented by any one of the following general formulas. It is preferred that
(C a F 2a + 1 )-(C b H 2b ) -O
(C a F 2a + 1 )-(C b H 2b ) —COO—
(C a F 2a + 1 )-(C b H 2b ) —O— (C r H 2r ) —O—
(C a F 2a + 1 )-(C b H 2b ) —COO— (C r H 2r ) —COO—
(C a F 2a + 1 )-(C b H 2b ) —OCO— (C r H 2r ) —COO—
The definitions of a, b and r in the above formula are the same as the definitions immediately above.
Specific examples of the compound represented by the general formula (II) are shown below. However, the compound represented by the general formula (II) that can be employed in the present invention should not be limitedly interpreted by the following specific examples.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 一般式(II)で表される化合物は、特開2002-129162号公報や特開2002-97170号や当該公報において引用されている文献に記載される合成法を適宜選択して組み合わせることにより合成することができる。また、その他の公知の合成法も必要に応じて組み合わせることにより合成することができる。 The compound represented by the general formula (II) is synthesized by appropriately selecting and combining the synthesis methods described in JP-A No. 2002-129162, JP-A No. 2002-97170, and literatures cited therein. can do. Moreover, it can synthesize | combine by combining another well-known synthesis method as needed.
-その他の成分-
 液晶組成物は、重合性液晶化合物、光学活性化合物、重合開始剤、配向制御剤に加えて、必要に応じて溶媒や他の添加剤(例えば、セルロースエステル)を含むことができる。
-Other ingredients-
In addition to the polymerizable liquid crystal compound, the optically active compound, the polymerization initiator, and the alignment control agent, the liquid crystal composition can contain a solvent and other additives (for example, cellulose ester) as necessary.
 液晶組成物の溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。 As the solvent for the liquid crystal composition, an organic solvent is preferably used. Examples of organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
-膜形成方法-
 コレステリック液晶構造を有する膜の膜形成方法としては特に制限はなく、重合性液晶化合物を含む液晶組成物を塗布等の方法により製膜することによりコレステリック液晶構造を有する膜を形成することができる。重合性液晶化合物を含む塗布液を基板上に塗布して、コレステリック液晶構造を有する膜を製造することもでき、コレステリック液晶材料を含む液を配向膜の上に塗布し、液晶層を形成することによりコレステリック液晶構造を有する膜を作製することもできる。本発明の光干渉顔料の製造方法は、重合性液晶化合物を含む塗布液を基板上に塗布して、コレステリック液晶構造を有する膜を製造することが好ましい。コレステリック液晶構造を有する膜は、光学異方性を示すことが好ましい。
-Film formation method-
The film forming method of the film having a cholesteric liquid crystal structure is not particularly limited, and a film having a cholesteric liquid crystal structure can be formed by forming a liquid crystal composition containing a polymerizable liquid crystal compound by a method such as coating. A film having a cholesteric liquid crystal structure can be produced by applying a coating liquid containing a polymerizable liquid crystal compound on the substrate, and a liquid containing a cholesteric liquid crystal material is applied on the alignment film to form a liquid crystal layer. Thus, a film having a cholesteric liquid crystal structure can also be produced. In the method for producing a light interference pigment of the present invention, it is preferable to produce a film having a cholesteric liquid crystal structure by coating a coating liquid containing a polymerizable liquid crystal compound on a substrate. The film having a cholesteric liquid crystal structure preferably exhibits optical anisotropy.
 液晶化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2であることが好ましく、100~800mJ/cm2であることがさらに好ましい。また、塗膜に紫外線を照射する時間については特に制限はないが、硬化膜の充分な強度及び生産性の双方の観点から決定されるであろう。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。 Light irradiation for the polymerization of the liquid crystal compound is preferably performed using ultraviolet rays. The irradiation energy is preferably 20 mJ / cm 2 to 50 J / cm 2 , and more preferably 100 to 800 mJ / cm 2 . Moreover, there is no restriction | limiting in particular about the time which irradiates a coating film with an ultraviolet-ray, However, It will be determined from the viewpoint of both sufficient intensity | strength and productivity of a cured film. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
 製造方法の一例は、
(A)透明可塑性樹脂フィルム等の基板の表面に、配向制御剤と重合性(硬化性の)液晶化合物を含む液晶組成物を塗布して、コレステリック液晶相の状態にすること、
(B)液晶組成物に紫外線を照射して硬化反応を進行させ、コレステリック液晶相を固定して光反射層を形成すること、
を少なくとも含む製造方法である。
 本発明の光干渉顔料の製造方法は、コレステリック液晶構造を有する膜を、少なくとも1層の重合性液晶化合物の配向状態を硬化して固定化してなる右円偏光を反射する光反射層と、少なくとも1層の重合性液晶化合物の配向状態を硬化して固定化してなる左円偏光を反射する光反射層とを積層して製造することが好ましい。
 (A)及び(B)の工程を基板の一方の表面上で2回繰り返すことで、図1に示した構成のコレステリック液晶構造を有する膜(図1では基板は不図示)を基板上に製造することができ、さらに繰り返すことでさらに積層数を増やしたコレステリック液晶構造を有する膜(光反射層)を形成することができる。
An example of a manufacturing method is
(A) Applying a liquid crystal composition containing an alignment control agent and a polymerizable (curable) liquid crystal compound to the surface of a substrate such as a transparent plastic resin film to form a cholesteric liquid crystal phase;
(B) irradiating the liquid crystal composition with ultraviolet rays to advance a curing reaction, fixing the cholesteric liquid crystal phase, and forming a light reflection layer;
Is a production method comprising at least
The method for producing a light interference pigment of the present invention comprises a light reflecting layer that reflects right-handed circularly polarized light obtained by curing a film having a cholesteric liquid crystal structure and fixing the alignment state of at least one polymerizable liquid crystal compound, and at least It is preferable to manufacture by laminating | stacking the light reflection layer which reflects the left circularly-polarized light formed by hardening | curing and fixing the orientation state of one layer of polymeric liquid crystal compound.
By repeating the steps (A) and (B) twice on one surface of the substrate, a film having a cholesteric liquid crystal structure having the structure shown in FIG. 1 (the substrate is not shown in FIG. 1) is manufactured on the substrate. It is possible to form a film (light reflecting layer) having a cholesteric liquid crystal structure in which the number of stacked layers is further increased by repeating the process.
(A)工程
 (A)工程では、まず、基板又は下層の光反射層の表面に、液晶組成物を塗布する。液晶組成物は、溶媒に材料を溶解及び/又は分散した、塗布液として調製されるのが好ましい。
(A) Process In the (A) process, first, a liquid crystal composition is applied to the surface of the substrate or the lower light reflection layer. The liquid crystal composition is preferably prepared as a coating solution in which a material is dissolved and / or dispersed in a solvent.
 次に、表面に塗布され、塗膜となった液晶組成物を、コレステリック液晶相の状態にすることが好ましい。液晶組成物が、溶媒を含む塗布液として調製されている態様では、塗膜を乾燥し、溶媒を除去することで、コレステリック液晶相の状態にすることができる場合がある。また、コレステリック液晶相への転移温度とするために、所望により、塗膜を加熱してもよい。例えば、一旦等方性相の温度まで加熱し、その後、コレステリック液晶相転移温度まで冷却する等によって、安定的にコレステリック液晶相の状態にすることができる。液晶組成物の液晶相転移温度は、製造適性等の面から10~250℃の範囲内であることが好ましく、10~150℃の範囲内であることがより好ましい。10℃未満であると液晶相を呈する温度範囲にまで温度を下げるために冷却工程等が必要となることがある。また200℃を超えると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にするために高温を要し、熱エネルギーの浪費、基板の変形、変質等からも不利になる。 Next, it is preferable that the liquid crystal composition applied to the surface to become a coating film is in a cholesteric liquid crystal phase. In an embodiment in which the liquid crystal composition is prepared as a coating solution containing a solvent, the coating film may be dried and the solvent may be removed to obtain a cholesteric liquid crystal phase. Moreover, in order to set it as the transition temperature to a cholesteric liquid crystal phase, you may heat a coating film depending on necessity. For example, the cholesteric liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the cholesteric liquid crystal phase transition temperature. The liquid crystal phase transition temperature of the liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like. When the temperature is lower than 10 ° C., a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase. When the temperature exceeds 200 ° C., a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
(B)工程
 次に、(B)の工程では、コレステリック液晶相の状態となった塗膜に、紫外線を照射して、硬化反応を進行させることが好ましい。紫外線照射には、紫外線ランプ等の光源が利用される。この工程では、紫外線を照射することによって、液晶組成物の硬化反応が進行し、コレステリック液晶相が固定されて、光反射層が形成されることが好ましい。
(B) Process Next, in the process of (B), it is preferable to irradiate an ultraviolet-ray to the coating film used as the state of the cholesteric liquid crystal phase, and to advance hardening reaction. For ultraviolet irradiation, a light source such as an ultraviolet lamp is used. In this step, it is preferable that the curing reaction of the liquid crystal composition proceeds by irradiating ultraviolet rays, the cholesteric liquid crystal phase is fixed, and the light reflecting layer is formed.
 硬化反応を促進するため、加熱条件下で紫外線照射を実施してもよい。また、紫外線照射時の温度は、コレステリック液晶相が乱れないように、コレステリック液晶相を呈する温度範囲に維持するのが好ましい。また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達せず、膜強度が不十分の場合には、窒素置換等の方法により、雰囲気中の酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。紫外線照射によって進行される硬化反応(例えば重合反応)の反応率は、層の機械的強度の保持等や未反応物が層から流出するのを抑える等の観点から、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりさらに好ましい。反応率を向上させるためには照射する紫外線の照射量を増大する方法や窒素雰囲気下あるいは加熱条件下での重合が効果的である。また、一旦重合させた後に、重合温度よりも高温状態で保持して熱重合反応によって反応をさらに推し進める方法や、再度紫外線を照射する方法を用いることもできる。反応率の測定は反応性基(例えば重合性基)の赤外振動スペクトルの吸収強度を、反応進行の前後で比較することによって行うことができる。 In order to accelerate the curing reaction, ultraviolet irradiation may be performed under heating conditions. Moreover, it is preferable to maintain the temperature at the time of ultraviolet irradiation in the temperature range which exhibits a cholesteric liquid crystal phase so that a cholesteric liquid crystal phase may not be disturbed. Also, since the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable. A preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less. The reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 70% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 80% or more, more preferably 90% or more. In order to improve the reaction rate, a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective. Moreover, after superposing | polymerizing once, the method of hold | maintaining at a temperature higher than superposition | polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can also be used. The reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
 上記工程では、コレステリック液晶相が固定されて、光反射層が形成される。ここで、液晶相を「固定化した」状態は、コレステリック液晶相となっている液晶化合物の配向が保持された状態が最も典型的、且つ好ましい態様である。それだけには限定されず、具体的には、通常0℃~50℃、より過酷な条件下では-30℃~70℃の温度範囲において、該層に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を意味するものとする。本発明では、紫外線照射によって進行する硬化反応により、コレステリック液晶相の配向状態を固定することが好ましい。
 なお、本発明においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、最終的に光反射層中の液晶性混合物がもはや液晶性を示す必要はない。例えば、液晶性混合物が、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
In the above process, the cholesteric liquid crystal phase is fixed and the light reflecting layer is formed. Here, the state in which the liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. However, it is not limited to this. Specifically, in the temperature range of 0 ° C. to 50 ° C., and in the temperature range of −30 ° C. to 70 ° C. under more severe conditions, the layer has no fluidity and is oriented by an external field or external force. It shall mean a state in which the fixed orientation form can be kept stable without causing a change in form. In the present invention, the alignment state of the cholesteric liquid crystal phase is preferably fixed by a curing reaction that proceeds by ultraviolet irradiation.
In the present invention, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and finally the liquid crystalline mixture in the light reflecting layer no longer needs to exhibit liquid crystallinity. For example, the liquid crystalline mixture may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
<コレステリック液晶構造を有する膜の構造>
 上述のとおり、コレステリック液晶構造を有する膜はコレステリック液晶相を固定してなる液晶膜(以下、液晶膜と省略することがある)を有する。
 本発明では、コレステリック液晶構造を有する膜が、2層以上の積層体であることが好ましい。すなわち、液晶膜は、コレステリック液晶構造を有する膜が2層以上積層されていることが好ましい。図1は、コレステリック液晶構造を有する膜1の積層構成の一例を示したものであって、15aと15bは、各光反射層をそれぞれ示している。
 光反射層15aと15bは、コレステリック液晶構造を有する膜であることが好ましく、当該コレステリック液晶相の螺旋ピッチに基づいて、特定の波長の光を反射する光選択反射性を示すことが好ましい。本発明の1つの実施形態では、隣接する光反射層15aと15bは、それぞれのコレステリック液晶相の螺旋方向が互いに逆であるとともに、その反射中心波長λ15が同一であることが好ましい。
<Structure of film having cholesteric liquid crystal structure>
As described above, a film having a cholesteric liquid crystal structure has a liquid crystal film (hereinafter sometimes abbreviated as a liquid crystal film) formed by fixing a cholesteric liquid crystal phase.
In the present invention, the film having a cholesteric liquid crystal structure is preferably a laminate of two or more layers. That is, the liquid crystal film preferably has two or more layers having a cholesteric liquid crystal structure. FIG. 1 shows an example of a laminated structure of a film 1 having a cholesteric liquid crystal structure, and reference numerals 15a and 15b denote light reflecting layers, respectively.
The light reflecting layers 15a and 15b are preferably films having a cholesteric liquid crystal structure, and preferably exhibit light selective reflectivity for reflecting light of a specific wavelength based on the helical pitch of the cholesteric liquid crystal phase. In one embodiment of the present invention, it is preferable that the adjacent light reflecting layers 15a and 15b have opposite spiral directions of the respective cholesteric liquid crystal phases and the same reflection center wavelength λ 15 .
 選択反射波長は特に制限はないが、例えば熱線遮熱機能を付与する場合、太陽光エネルギー強度のスペクトル分布は、短波長であるほど高エネルギーであるという一般的傾向を示すが、赤外光波長域のスペクトル分布には、波長950~1130nm、及び波長1130~1350nmに、2つのエネルギー強度のピークが存在する。選択反射の中心波長が、1010~1070nm(より好ましくは1020~1060nm)の範囲にある少なくとも一組の光反射層と、選択反射の中心波長が、1190~1290nm(より好ましくは1200~1280nm)の範囲にある少なくとも一組の光反射層とを利用することにより、該2つのピークに相当する光をより効率的に反射することができ、その結果、遮熱性をより改善することができる。
 一方、本発明では、コレステリック液晶構造を有する膜の選択反射波長としては420nm以下であることが好ましい。
The selective reflection wavelength is not particularly limited. For example, when a heat ray heat shielding function is provided, the spectral distribution of solar energy intensity shows a general tendency that the shorter the wavelength, the higher the energy, but the infrared wavelength. In the spectral distribution of the region, there are two energy intensity peaks at wavelengths of 950 to 1130 nm and wavelengths of 1130 to 1350 nm. At least one pair of light reflecting layers having a selective reflection center wavelength in the range of 1010 to 1070 nm (more preferably 1020 to 1060 nm), and a selective reflection center wavelength of 1190 to 1290 nm (more preferably 1200 to 1280 nm). By utilizing at least one pair of light reflecting layers in the range, light corresponding to the two peaks can be more efficiently reflected, and as a result, the heat shielding property can be further improved.
On the other hand, in the present invention, the selective reflection wavelength of the film having a cholesteric liquid crystal structure is preferably 420 nm or less.
 また、各光反射層の厚みは、1μm~8μm程度(好ましくは3~7μm程度)である。但し、これらの範囲に限定されるものではない。層の形成に用いる材料(主には重合性液晶化合物及びキラル剤)の種類及びその濃度等を調整することで、所望の螺旋ピッチの光反射層を形成することができる。また層の厚みは、塗布量を調整することで所望の範囲とすることができる。 The thickness of each light reflecting layer is about 1 μm to 8 μm (preferably about 3 to 7 μm). However, it is not limited to these ranges. By adjusting the type and concentration of materials (mainly polymerizable liquid crystal compound and chiral agent) used for forming the layer, a light reflecting layer having a desired helical pitch can be formed. Moreover, the thickness of a layer can be made into a desired range by adjusting the application quantity.
 上記した通り、隣接する光反射層15aと15bは、それぞれのコレステリック液晶相の螺旋方向が互いに逆であり、同様に、隣接する光反射層16aと16bは、それぞれのコレステリック液晶相の螺旋方向が互いに逆であることが好ましい。このように、逆向きのコレステリック液晶相からなり、選択反射の中心波長が同一の光反射層を近くに配置することで、同波長の左円偏光及び右円偏光の双方を反射することができる。 As described above, the adjacent light reflecting layers 15a and 15b have the spiral directions of the respective cholesteric liquid crystal phases opposite to each other. Similarly, the adjacent light reflecting layers 16a and 16b have the spiral directions of the respective cholesteric liquid crystal phases. It is preferable that they are opposite to each other. As described above, by arranging a light reflection layer made of a cholesteric liquid crystal phase in the opposite direction and having the same selective reflection center wavelength in the vicinity, both the left circularly polarized light and the right circularly polarized light having the same wavelength can be reflected. .
 例えば、光反射層16bを通過した光(波長λ16の右円偏光が反射され、左円偏光のみが透過した光)が、次に通過するのが16bではなく15aや15bのように、選択反射の中心波長がλ16ではない場合、波長λ16の左円偏光成分は螺旋ピッチのサイズが異なるコレステリック液晶層を通過することになる。この場合、波長λ16の左円偏光成分は、他の光反射層中のコレステッリツク液晶相の旋光性の影響を僅かではあるが受けることになり、左円偏光成分の波長がシフトするなどの変化が生じる。当然のことながら、この現象は、「波長λ16の左円偏光成分」に限って起こるわけではなく、ある波長のある円偏光が、異なる螺旋ピッチのコレステリック液晶相を通過する場合に生じる変化である。勿論、当該一組の光反射層が隣接しているのが好ましい。 For example, the light that has passed through the light reflecting layer 16b (the light that has been reflected by the right circularly polarized light having the wavelength λ 16 and only the left circularly polarized light is transmitted) is selected so that the next light passes through 15a and 15b instead of 16b. when the center wavelength of the reflected is not lambda 16, left-handed circularly polarized light component of the wavelength lambda 16 will be the size of the helical pitch passes through different cholesteric liquid crystal layer. In this case, the left circularly polarized light component having the wavelength λ 16 is slightly affected by the optical rotation of the cholesteric liquid crystal phase in the other light reflecting layers, and changes such as a shift in the wavelength of the left circularly polarized light component. Occurs. Naturally, this phenomenon is not limited to the “left circularly polarized light component of wavelength λ 16 ”, but is a change that occurs when circularly polarized light with a certain wavelength passes through cholesteric liquid crystal phases with different helical pitches. is there. Of course, it is preferable that the set of light reflecting layers be adjacent to each other.
 コレステリック液晶構造を有する膜の態様は、上記態様に限定されるものではない。基板の一方の表面上に、1層または複数層の光反射層を積層した構成であってもよいし、また、基板の双方の表面上に、1組以上ずつ光反射層を積層した構成であってもよい。また、同一の反射中心波長を示す2組以上の光反射層を有する態様であってもよい。 The mode of the film having a cholesteric liquid crystal structure is not limited to the above mode. A structure in which one or a plurality of light reflecting layers are stacked on one surface of the substrate may be used, or one or more pairs of light reflecting layers are stacked on both surfaces of the substrate. There may be. Moreover, the aspect which has 2 or more sets of light reflection layers which show the same reflection center wavelength may be sufficient.
 コレステリック液晶構造を有する膜を構成する各光反射層の厚さは、それぞれ、1~10μmであることが好ましく、2~7μmであることがより好ましい。コレステリック液晶構造を有する膜全体の厚さは、コレステリック液晶構造を有する膜を砕いて得られる光干渉粒子の厚みを好ましい範囲に制御する観点から、1~50μmであることが好ましく、3~30μmであることがより好ましく、4~10μmであることが特に好ましい。 The thickness of each light reflecting layer constituting the film having a cholesteric liquid crystal structure is preferably 1 to 10 μm, and more preferably 2 to 7 μm. The total thickness of the film having a cholesteric liquid crystal structure is preferably 1 to 50 μm from the viewpoint of controlling the thickness of the light interference particles obtained by crushing the film having the cholesteric liquid crystal structure within a preferable range, and is 3 to 30 μm. More preferably, it is 4 to 10 μm.
(2)コレステリック液晶構造を有する膜を砕いて光干渉粒子を製造する工程
 本発明の光干渉顔料の製造方法は、コレステリック液晶構造を有する膜を砕いて光干渉粒子を製造する工程を含む。
 コレステリック液晶構造を有する膜を砕いて光干渉粒子を製造する工程としては特に制限はないが、例えば、コレステリック液晶構造を有する膜が基板を有する場合は、コレステリック液晶構造を有する膜から基板を剥離し、基板を剥離したフィルムを破砕してフレーク状にし、更に粉砕し微粒子のサイズまで砕くことで作製することができる。光干渉粒子の粉砕は、固定化したコレステリック液晶構造を乾燥又は湿式粉砕することができる。
 本発明の光干渉顔料の製造方法は、コレステリック液晶構造を有する膜を砕いた後に、フィルターを用いて平均円相当径が100μm以下である光干渉粒子を分取することが好ましい。フィルターを用いて光干渉粒子を分取する方法としては、ふるいやサイクロン等を用いて分級する方法を挙げることができる。その中でも、1~100μmの平均円相当径、より好ましくは1~70μm、特に好ましくは5~50μmの平均円相当径の光干渉粒子を選別して用いることが、光反射性能などの光学性能や膜の物理性能の観点で望ましい。
(2) Step of Producing Light Interference Particles by Crushing Film Having Cholesteric Liquid Crystal Structure The method for producing a light interference pigment of the present invention includes a step of producing light interference particles by crushing a film having a cholesteric liquid crystal structure.
There is no particular limitation on the process for producing optical interference particles by crushing a film having a cholesteric liquid crystal structure.For example, when a film having a cholesteric liquid crystal structure has a substrate, the substrate is peeled off from the film having a cholesteric liquid crystal structure. It can be produced by crushing the film from which the substrate has been peeled to form a flake, further crushing and crushing to the size of fine particles. The light interference particles can be pulverized by drying or wet pulverizing the immobilized cholesteric liquid crystal structure.
In the method for producing a light interference pigment of the present invention, it is preferable that after interference with a film having a cholesteric liquid crystal structure, light interference particles having an average equivalent circle diameter of 100 μm or less are collected using a filter. Examples of the method of sorting the light interference particles using a filter include a method of classifying using a sieve or a cyclone. Among them, it is possible to select and use light interference particles having an average equivalent circle diameter of 1 to 100 μm, more preferably 1 to 70 μm, and particularly preferably 5 to 50 μm. It is desirable from the viewpoint of the physical performance of the film.
(光干渉粒子の形状)
 光干渉粒子の形状は、特に制限されず、球状、円状、楕円形状、多角形状、ロッド又は繊維状であってもよい。また、本発明の光干渉顔料の製造方法は、光干渉粒子が平板状(扁平又は鱗片状などの平板状)であることが好ましく、円状の平板状であることがより好ましい。
 扁平状又は鱗片状などの平板状の光干渉粒子の厚みは、例えば、1~50μmであることが好ましく、3~30μmであることがより好ましく、4~10μmであることが特に好ましい。
 平板状の光干渉粒子は、アスペクト比(平均円相当径/厚み)が0.1~150であることが好ましく、0.5~50であることがより好ましく、1~10であることが特に好ましい。
(Shape of light interference particles)
The shape of the light interference particles is not particularly limited, and may be spherical, circular, elliptical, polygonal, rod, or fibrous. In the method for producing a light interference pigment of the present invention, the light interference particles are preferably flat (flat or flat), more preferably a circular flat.
The thickness of the flat or flat plate-like light interference particles is, for example, preferably 1 to 50 μm, more preferably 3 to 30 μm, and particularly preferably 4 to 10 μm.
The flat optical interference particles preferably have an aspect ratio (average equivalent circle diameter / thickness) of 0.1 to 150, more preferably 0.5 to 50, and particularly preferably 1 to 10. preferable.
(光干渉粒子の特性)
 光干渉粒子の選択反射波長としては420nm以下であることが好ましい。
 光干渉粒子の選択反射波長の測定方法としては、以下の方法を挙げることができる。
 2枚の石英ガラス板の間に、光干渉粒子と屈折率が同じ液体((株)モリテックス社製、カーギル標準屈折液シリーズA)と一緒に封入することで測定できる。
 光干渉粒子の選択反射波長を直接できない場合は、光干渉粒子と樹脂を添加した合わせガラス用中間膜の選択反射波長を測定することによって、間接的に求めてもよい。
(Characteristics of light interference particles)
The selective reflection wavelength of the light interference particles is preferably 420 nm or less.
Examples of the method for measuring the selective reflection wavelength of the light interference particles include the following methods.
It can be measured by sealing between two quartz glass plates together with a liquid having the same refractive index as that of the optical interference particles (manufactured by Moritex Co., Ltd., Cargill standard refractive liquid series A).
When the selective reflection wavelength of the light interference particles cannot be directly obtained, it may be obtained indirectly by measuring the selective reflection wavelength of the interlayer film for laminated glass to which the light interference particles and the resin are added.
(3)光干渉粒子の洗浄によって光干渉顔料を製造する工程
 本発明の光干渉顔料の製造方法は、光干渉粒子を少なくともSP値が8.5~12(cal/cm31/2の有機溶媒を用い、35℃以上の温度で洗浄する工程を含む。
 コレステリック液晶構造を有する膜を砕いた後の光干渉粒子は、コレステリック液晶構造を有する膜の状態では外部との界面に接していなかった膜内部が外部との界面に接することとなる。本発明の光干渉顔料の製造方法では、光干渉粒子のうち、外部との界面に接していなかった膜内部に相当する界面を特定の方法で洗浄することにより、洗浄後に得られた光干渉顔料を分散媒に分散させたときの選択反射波長における光反射性能が良好となる。
 このような洗浄工程によって除去される不純物や不要成分としては特に制限はないが、例えば、未反応のまま残留している重合性液晶化合物(残留モノマー)や、カイラル剤、配向制御剤、サイズが十分に光干渉作用を奏するサイズよりも細かい(例えば平均円相当径が5μm以下の)光干渉粒子、もともと重合性液晶化合物に含まれる不純物(反応基がないものなど)などを挙げることができるが、本発明はこれらの洗浄工程によって除去される不純物や不要成分の種類や量によって限定されるものではない。
 また、洗浄工程に用いられる光干渉顔料や有機溶媒には不純物や不要成分が含まれてもよく、本発明はこれらの洗浄工程に用いられる光干渉顔料や有機溶媒に含まれる不純物や不要成分の種類や量によって限定されるものではない。
(3) Step of Producing Optical Interference Pigment by Washing of Optical Interference Particles The method for producing an optical interference pigment according to the present invention comprises at least an SP value of 8.5 to 12 (cal / cm 3 ) 1/2 . A step of washing at a temperature of 35 ° C. or higher using an organic solvent is included.
In the state of the film having the cholesteric liquid crystal structure, the light interference particles after the film having the cholesteric liquid crystal structure is in contact with the outside interface in the state where the light interference particles are not in contact with the outside interface. In the method for producing a light interference pigment of the present invention, the light interference pigment obtained after cleaning is obtained by cleaning, by a specific method, the interface corresponding to the inside of the film that is not in contact with the interface with the outside among the light interference particles. The light reflection performance at the selective reflection wavelength when is dispersed in a dispersion medium is improved.
There are no particular limitations on the impurities and unnecessary components removed by such a washing step, but for example, the polymerizable liquid crystal compound (residual monomer) remaining unreacted, the chiral agent, the alignment control agent, and the size Examples include light interference particles that are finer than a size that exhibits a sufficient light interference effect (for example, an average equivalent circle diameter of 5 μm or less), impurities (such as those without a reactive group) originally contained in a polymerizable liquid crystal compound, and the like. The present invention is not limited by the types and amounts of impurities and unnecessary components removed by these washing steps.
Further, the light interference pigment and organic solvent used in the cleaning step may contain impurities and unnecessary components, and the present invention provides impurities and unnecessary components contained in the light interference pigment and organic solvent used in these cleaning steps. It is not limited by the type or amount.
 本発明の光干渉顔料の製造方法は、35℃以上の温度で洗浄する。35℃以上の温度で洗浄すると、残留モノマーである重合性液晶化合物が十分に洗浄されやすい。
 洗浄の温度は40℃以上、有機溶媒の沸点以下であることが、分散媒に分散させたときの選択反射波長における光反射性能をより改善する観点からより好ましく、
40~60℃であることが特に好ましい。
The method for producing a light interference pigment of the present invention is washed at a temperature of 35 ° C. or higher. When washed at a temperature of 35 ° C. or higher, the polymerizable liquid crystal compound that is a residual monomer is easily washed sufficiently.
The washing temperature is more preferably 40 ° C. or more and the boiling point of the organic solvent or less from the viewpoint of further improving the light reflection performance at the selective reflection wavelength when dispersed in the dispersion medium,
A temperature of 40 to 60 ° C. is particularly preferable.
 有機溶媒のSP値は12(cal/cm31/2以上になるとモノマーの溶解性が悪くなり洗浄に適さない。
 有機溶媒のSP値は8.5~10(cal/cm31/2であることがより好ましい。コレステリック液晶構造を有する膜を構成する材料または形成するために用いられる材料は、SP値が上記の範囲の有機溶媒に溶解する。
 SP値が8.5~12(cal/cm31/2である有機溶媒としては、例えば、酢酸ブチル、トルエン、メチルエチルケトン、アセトンなどを挙げることができる。
 これらの有機溶媒は単独で用いても、2種以上を混合して用いてもよいが、2種以上の有機溶媒を混合して用いる場合、洗浄に用いられる全ての有機溶媒のSP値が上記の範囲内に含まれる有機溶媒であることが好ましい。
When the SP value of the organic solvent is 12 (cal / cm 3 ) 1/2 or more, the solubility of the monomer is deteriorated and it is not suitable for washing.
The SP value of the organic solvent is more preferably 8.5 to 10 (cal / cm 3 ) 1/2 . A material constituting the film having a cholesteric liquid crystal structure or a material used for forming the film is dissolved in an organic solvent having an SP value in the above range.
Examples of the organic solvent having an SP value of 8.5 to 12 (cal / cm 3 ) 1/2 include butyl acetate, toluene, methyl ethyl ketone, and acetone.
These organic solvents may be used alone or in combination of two or more. However, when two or more organic solvents are mixed and used, the SP values of all organic solvents used for washing are the above. It is preferable that it is an organic solvent contained in the range.
 有機溶媒を用いて光干渉粒子を洗浄する方法としては特に制限は無く、有機溶媒中に光干渉粒子を浸漬させて洗浄する方法や、有機溶媒を光干渉粒子に吹きかけて洗浄する方法などを挙げることができる。本発明の光干渉顔料の製造方法は、有機溶媒中に光干渉粒子を浸漬させて洗浄することが好ましい。 There are no particular restrictions on the method for washing the light interference particles using an organic solvent, and examples include a method of washing by immersing the light interference particles in an organic solvent, and a method of washing by spraying the organic solvent onto the light interference particles. be able to. In the method for producing a light interference pigment of the present invention, it is preferable to wash the light interference particles by immersing them in an organic solvent.
 本発明の光干渉顔料の製造方法は、有機溶媒中に光干渉粒子を浸漬させて洗浄した後に、有機溶媒をフィルターでろ過した残渣を分取することが好ましい。粉砕して得られた光干渉粒子は通常ドライで分級を行うが細かいサイズの不要粒子が残ってしまう。しかしながら、このように有機溶媒中に光干渉粒子を浸漬させて洗浄した後に、有機溶媒をフィルターでろ過した残渣を分取する際に、細かいサイズの不要粒子を一緒に取り除くことができるため、分散媒に分散させたときの選択反射波長における光反射性能が良好となる。
 なお、有機溶媒中に光干渉粒子を浸漬させ、濾過するという一連の洗浄操作は、分散媒に分散させたときの選択反射波長における光反射性能をより改善する観点から2回以上繰り返して行ってもよい。
In the method for producing a light interference pigment of the present invention, it is preferable to collect a residue obtained by immersing light interference particles in an organic solvent and washing, and then filtering the organic solvent through a filter. Although the light interference particles obtained by pulverization are usually classified by dryness, unnecessary fine particles remain. However, after the optical interference particles are immersed and washed in the organic solvent in this way, when separating the residue obtained by filtering the organic solvent with a filter, fine particles of unnecessary size can be removed together. The light reflection performance at the selective reflection wavelength when dispersed in a medium is improved.
In addition, a series of washing operations of immersing and filtering light interference particles in an organic solvent are repeated twice or more from the viewpoint of further improving the light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium. Also good.
 本発明の光干渉顔料の製造方法は、細かいサイズの不要粒子を取り除く観点から、有機溶媒のろ過に用いるフィルターのろ過精度が0.3~6μmであることが好ましく、0.5~3μmであることがより好ましい。このようなろ過精度のフィルターでろ過を行って細かいサイズ(例えば平均円相当径が5μm以下)の不要粒子を取り除くことにより、不要粒子がろ過の残渣に残ったときよりも光学特性(特に選択反射波長における光反射率)が良好となる。 In the method for producing a light interference pigment of the present invention, from the viewpoint of removing unnecessary fine particles, the filtration accuracy of the filter used for filtering the organic solvent is preferably 0.3 to 6 μm, and more preferably 0.5 to 3 μm. It is more preferable. By filtering with a filter with such filtration accuracy to remove unnecessary particles of fine size (for example, the average equivalent circle diameter is 5 μm or less), optical characteristics (especially selective reflection) are greater than when unnecessary particles remain in the filtration residue. The light reflectance at the wavelength is improved.
[光干渉顔料]
 本発明の光干渉顔料は、本発明の光干渉顔料の製造方法で製造されたことを特徴とする。そのため、本発明の光干渉顔料は、分散媒に分散させたときの選択反射波長における光反射性能が良好となる。
 本発明の光干渉顔料の好ましい構造や好ましい光学特性は、光干渉粒子の好ましい構造や好ましい光学特性と同様である。
 本発明の光干渉顔料は、UV反射材料として用いられることが好ましい。本発明の光干渉顔料の用途としては特に制限は無く、本発明の光干渉顔料は化粧品などに添加してもよい。
[Light interference pigment]
The light interference pigment of the present invention is produced by the method for producing a light interference pigment of the present invention. Therefore, the light interference pigment of the present invention has good light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium.
The preferred structure and preferred optical properties of the light interference pigment of the present invention are the same as the preferred structure and preferred optical properties of the light interference particles.
The light interference pigment of the present invention is preferably used as a UV reflecting material. There is no restriction | limiting in particular as a use of the light interference pigment of this invention, You may add the light interference pigment of this invention to cosmetics etc.
<光干渉顔料分散液の製造方法>
 本発明の光干渉顔料は、光干渉顔料分散液の製造に用いることができる。
<Method for producing optical interference pigment dispersion>
The light interference pigment of the present invention can be used for producing a light interference pigment dispersion.
 光干渉顔料分散液の製造方法は、本発明の光干渉顔料の製造方法で製造された光干渉顔料をアルコールを含む分散媒に分散させる工程を含むことが好ましい。 The method for producing a light interference pigment dispersion preferably includes a step of dispersing the light interference pigment produced by the method for producing a light interference pigment of the present invention in a dispersion medium containing alcohol.
 光干渉顔料分散液の選択反射波長や反射スペクトルのピーク形状が分散液とする前の光干渉顔料からズレる主要因は、光干渉顔料への溶剤の染込み(残留モノマーの溶出と同時に起こる)で膨潤が起こり、光干渉顔料の液晶層の自由体積(空間)が広がった結果、その隙間に周囲の素材(例えば樹脂)が入り込むことで光干渉顔料の複屈折率Δnが下がることによるものと推定されている。そのため、溶剤の染込み(残留モノマーの溶出と同時に起こる)で膨潤が起こるようなアルコール(例えばエタノール)などの素材や光干渉顔料の液晶層の自由体積の隙間に入り込むような樹脂(例えばシリコーン樹脂)などの素材を含む光干渉顔料分散液として使用したり、そのような光干渉顔料分散液を製造したりする場合には、本発明の光干渉顔料の製造方法における洗浄が必要となる。 The main factor that causes the selective reflection wavelength and reflection spectrum peak shape of the light interference pigment dispersion to deviate from that of the light interference pigment before the dispersion is used is that the solvent interferes with the light interference pigment (occurs simultaneously with the elution of the residual monomer). As a result of swelling and the free volume (space) of the liquid crystal layer of the light interference pigment expanding, it is estimated that the birefringence Δn of the light interference pigment decreases due to the surrounding material (for example, resin) entering the gap. Has been. For this reason, alcohol (such as ethanol) that swells due to solvent soaking (which occurs simultaneously with elution of residual monomer) or resin that enters the free volume of the liquid crystal layer of the light interference pigment (such as silicone resin) ) And the like, or when producing such a light interference pigment dispersion, cleaning in the method for producing a light interference pigment of the present invention is required.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1~8および比較例1~6]
(塗布液の調製)
 下記表に示す塗布液(A)、(B)をそれぞれ調製した。
[Examples 1 to 8 and Comparative Examples 1 to 6]
(Preparation of coating solution)
Coating solutions (A) and (B) shown in the following table were prepared.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(波長380nmの紫外光を反射するコレステリック液晶構造を有するフィルムの作製)
(1) 調製した塗布液(A)を、ワイヤーバーを用いて、乾燥後の乾膜の厚みが4.5μmになるように基材フィルム(富士フイルム製PETフィルム、Tg75℃)上に、室温にて塗布した。
(2) 室温にて30秒間乾燥させた後、125℃の雰囲気で2分間加熱し、その後95℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、コレステリック液晶層膜を作製した。
 コレステリック液晶層膜を室温まで冷却した後、(1)において基板の代わりに下層のコレステリック液晶層膜上に塗布液(B)を塗布する以外は同様にして、(1)および(2)を繰り返し、基材フィルム上にそれぞれ塗布液(A)および(B)由来の右円偏光を反射する層および左円偏光を反射する層がこの順に積層されたコレステリック液晶構造を有する2層積層フィルムを作製した。
(Preparation of a film having a cholesteric liquid crystal structure that reflects ultraviolet light having a wavelength of 380 nm)
(1) Using a wire bar, the prepared coating solution (A) is placed on a substrate film (Fuji Film PET film, Tg 75 ° C.) at room temperature so that the dry film thickness after drying is 4.5 μm. Was applied.
(2) After drying at room temperature for 30 seconds, heated in an atmosphere of 125 ° C. for 2 minutes, and then UV-irradiated at 95 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds. A cholesteric liquid crystal layer film was prepared.
After cooling the cholesteric liquid crystal layer film to room temperature, (1) and (2) are repeated in the same manner except that the coating liquid (B) is applied on the lower cholesteric liquid crystal layer film instead of the substrate in (1). A two-layer laminated film having a cholesteric liquid crystal structure in which a layer reflecting right circularly polarized light and a layer reflecting left circularly polarized light derived from the coating liquids (A) and (B) are laminated in this order on the base film, respectively. did.
(UV反射可能な光干渉粒子の作製)
 作製した波長380nmの紫外光を反射するコレステリック液晶構造を有する2層積層フィルムを基板より剥離した。
 剥離したコレステリック液晶構造を有する2層積層フィルムを破砕してフレーク状にし、更に粉砕し微粒子のサイズまで砕くことで光干渉粒子を作製した。
 光干渉粒子の粒子サイズは、ふるいを使い分級した。得られた光干渉粒子300個の形状を、光学顕微鏡を用いて観察した結果、平均厚みが10μm、平均円相当直径が20μmであった。
 また、得られた光干渉粒子は、コレステリック液晶構造を有していることを、偏光顕微鏡を用いて確認した。さらに、得られた光干渉粒子の選択反射波長を、紫外可視近赤外分光光度計V-670(日本分光(株)製)を用いて確認したところ、約380nmであった。
(Preparation of UV-reflective optical interference particles)
The produced two-layer laminated film having a cholesteric liquid crystal structure that reflects ultraviolet light having a wavelength of 380 nm was peeled from the substrate.
The peeled two-layer laminated film having a cholesteric liquid crystal structure was crushed into flakes, and further pulverized to the size of fine particles to produce light interference particles.
The particle size of the light interference particles was classified using a sieve. As a result of observing the shape of 300 obtained optical interference particles using an optical microscope, the average thickness was 10 μm and the average equivalent circle diameter was 20 μm.
Moreover, it confirmed using the polarizing microscope that the obtained light interference particle | grains have a cholesteric liquid crystal structure. Further, when the selective reflection wavelength of the obtained light interference particles was confirmed using an ultraviolet-visible near-infrared spectrophotometer V-670 (manufactured by JASCO Corporation), it was about 380 nm.
(光干渉粒子の洗浄による光干渉顔料の作製)
 上記光干渉粒子の粉体1gと、下記表3に示す溶媒(有機溶媒または水)100gをフラスコに入れて、下記表3に示すように溶媒の温度を調整した上で、1時間スターラーで攪拌した。スターラーの回転速度は100rpmとした。攪拌後、溶媒および光干渉粒子を含む溶液を1μmの濾紙で濾過し、濾紙上の残渣として光干渉粒子を取り出した。
 この攪拌および濾過の作業を3回繰り返し、最後に室温で1晩放置して乾燥させたものを、光干渉顔料とした。
(Preparation of optical interference pigments by cleaning optical interference particles)
1 g of the light interference particle powder and 100 g of the solvent (organic solvent or water) shown in Table 3 below are placed in a flask, and the temperature of the solvent is adjusted as shown in Table 3 below, followed by stirring with a stirrer for 1 hour. did. The rotation speed of the stirrer was 100 rpm. After stirring, the solution containing the solvent and the light interference particles was filtered through a 1 μm filter paper, and the light interference particles were taken out as a residue on the filter paper.
This agitation and filtration operation was repeated three times. Finally, the mixture was allowed to stand overnight at room temperature and dried to obtain a light interference pigment.
(光干渉顔料の選択反射波長における光反射性能の評価)
 乾燥させた光干渉顔料1gをアクリルシリコーン(信越化学(株)製KP-541)10gとエタノール(和光純薬工業(株)製759-48001)0.5gに混ぜ込み、PMMAプレートに100μmの厚みで塗布し、塗布したプレートの光学特性を以下の基準にしたがって評価した。実用上、AまたはB評価であることが必要であり、A評価であることが好ましい。
評価基準:
A:380nmに10%以上の反射ピークをもつ反射スペクトルが観察された。
B:反射幅が広がってブロードになり、380nmに1%以上の反射はあるものの、明確なピークが見られなくなった。
C:反射幅が広がってブロードになり、380nmに反射は殆ど観察されなくなった(反射率1%未満)。
 得られた結果を下記表3に記載した。
(Evaluation of light reflection performance at selective reflection wavelength of light interference pigment)
1 g of the dried optical interference pigment is mixed with 10 g of acrylic silicone (KP-541 manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.5 g of ethanol (759-800001 manufactured by Wako Pure Chemical Industries, Ltd.), and a thickness of 100 μm is added to the PMMA plate. The optical properties of the coated plate were evaluated according to the following criteria. Practically, it is necessary to have an A or B evaluation, and an A evaluation is preferable.
Evaluation criteria:
A: A reflection spectrum having a reflection peak of 10% or more at 380 nm was observed.
B: The reflection width widened and became broad, but a clear peak was not seen although there was reflection of 1% or more at 380 nm.
C: The reflection width was broadened and the reflection was hardly observed at 380 nm (reflectance less than 1%).
The obtained results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
[比較例7]
 実施例1において、得られた光干渉粒子を溶剤洗浄なしでそのまま実施例1と同様の評価を行ったところ、評価はCであった。
[Comparative Example 7]
In Example 1, when the obtained light interference particles were evaluated in the same manner as in Example 1 without solvent washing, the evaluation was C.
[比較例8]
 実施例1において、基板から剥離したコレステリック液晶構造を有する2層積層フィルムの表面を、メチルエチルケトン(実施例3と同じ、SP値9.3、沸点79.5℃)を染込ませたベンコット(旭化成せんい(株)製)で2回拭き取りを実施した後、実施例1と同様に光干渉粒子に粉砕した。その後、得られた光干渉粒子を溶剤洗浄なしでそのまま実施例1と同様の評価を行ったところ、評価はCであった。
[Comparative Example 8]
In Example 1, Bencot (Asahi Kasei Co., Ltd.) impregnated with methyl ethyl ketone (same as Example 3, SP value 9.3, boiling point 79.5 ° C.) on the surface of the two-layer laminated film having a cholesteric liquid crystal structure peeled from the substrate. After wiping twice with a product manufactured by Sensui Co., Ltd., it was pulverized into light interference particles in the same manner as in Example 1. Thereafter, the obtained light interference particles were evaluated in the same manner as in Example 1 without solvent washing, and the evaluation was C.
[実施例9]
 基材フィルムとしてPETフィルムの代わりに、トリアセチルセルロース(フジタック、富士フイルム(株)製、厚さ:100μm、幅:500mm、ガラス転移温度145℃)の長尺状のフィルムの一方の側に、長鎖アルキル変成ポバール(MP-203、クラレ(株)製)5重量%溶液を塗布し、90℃で4分間乾燥させた後、ラビング処理を行って膜厚2.0μmの配向膜形成用樹脂層を形成させたフィルムを用いた。
 それ以外は、実施例3と同様の方法で光干渉顔料を製造し、光干渉顔料の評価を行ったところ、評価もAであった。
[Example 9]
Instead of a PET film as a base film, on one side of a long film of triacetylcellulose (Fujitack, manufactured by Fuji Film Co., Ltd., thickness: 100 μm, width: 500 mm, glass transition temperature 145 ° C.) A 5% by weight solution of long-chain alkyl-modified PVA (MP-203, manufactured by Kuraray Co., Ltd.) is applied, dried at 90 ° C. for 4 minutes, and then rubbed to form an alignment film forming resin having a thickness of 2.0 μm. A film having a layer formed thereon was used.
Other than that, a light interference pigment was produced in the same manner as in Example 3, and the light interference pigment was evaluated. The evaluation was also A.
[実施例10]
 基材としてPETフィルムの代わりに、厚さ2mmのガラス板の一方の側に、実施例8と同様に、長鎖アルキル変成ポバール(MP-203、クラレ(株)製)5重量%溶液を塗布し、90℃で4分間乾燥させた後、ラビング処理を行って膜厚2.0μmの配向膜形成用樹脂層を形成させたフィルムを用いた。それ以外は、実施例3と同様の方法で光干渉顔料を製造し、光干渉顔料の評価を行ったところ、評価もAであった。
[Example 10]
As a base material, a 5% by weight long-chain alkyl-modified PVA (MP-203, manufactured by Kuraray Co., Ltd.) was applied to one side of a 2 mm thick glass plate instead of PET film as in Example 8. Then, after drying at 90 ° C. for 4 minutes, a film in which a rubbing treatment was performed to form an alignment film-forming resin layer having a thickness of 2.0 μm was used. Other than that, a light interference pigment was produced in the same manner as in Example 3, and the light interference pigment was evaluated. The evaluation was also A.
[実施例11]
 棒状液晶化合物として、RM-257(Merck社製)を用いた以外は実施例3と同様の方法で光干渉顔料を製造し、光干渉顔料の評価を行ったところ、評価もAであった。
[Example 11]
A light interference pigment was produced in the same manner as in Example 3 except that RM-257 (manufactured by Merck) was used as the rod-like liquid crystal compound, and the light interference pigment was evaluated. The evaluation was also A.
[実施例12]
 棒状液晶化合物として、LC-242(BASF社製)を用いた以外は実施例3と同様の方法で光干渉顔料を製造し、光干渉顔料の評価を行ったところ、評価もAであった。
[Example 12]
A light interference pigment was produced in the same manner as in Example 3 except that LC-242 (manufactured by BASF) was used as the rod-like liquid crystal compound, and the light interference pigment was evaluated. The evaluation was also A.
 以上の結果から、本発明の製造方法で得られた光干渉顔料は、分散媒に分散させたとき(特にシリコーン樹脂およびアルコールを含む分散液としたとき)の選択反射波長における光反射性能が良好であることがわかった。
 一方、比較例1より、洗浄温度が本発明で規定する下限値を下回る条件で製造された光干渉顔料は、分散媒に分散させたときの選択反射波長における光反射性能が悪化することがわかった。
 比較例2~4より、洗浄に用いる有機溶剤が本発明で規定するSP値の上限値を上回る条件で製造された光干渉顔料は、分散媒に分散させたときの選択反射波長における光反射性能が悪化することがわかった。
 比較例5より、洗浄に用いる有機溶剤が本発明で規定するSP値の下限値を下回る条件で製造された光干渉顔料は、分散媒に分散させたときの選択反射波長における光反射性能が悪化することがわかった。
 比較例6より、特開2011-132512号公報や国際公開WO96/28498号のように洗浄時に本発明で規定するSP値の上限値を上回る溶媒である水を用いて製造された光干渉顔料は、分散媒に分散させたときの選択反射波長における光反射性能が悪化することがわかった。
 比較例7より、特開2000-44451号公報のように粉砕後に得られた粒子を洗浄せずに製造された光干渉顔料は、分散媒に分散させたときの選択反射波長における光反射性能が悪化することがわかった。
 比較例8より、特開2012-101999号公報のようにコレステリック液晶構造を有する膜を粉砕しない状態で表面を洗浄した場合であっても、粉砕後に得られた粒子を洗浄せずに製造された光干渉顔料は、分散媒に分散させたときの選択反射波長における光反射性能が悪化することがわかった。
From the above results, the light interference pigment obtained by the production method of the present invention has good light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium (particularly when a dispersion containing a silicone resin and alcohol). I found out that
On the other hand, it can be seen from Comparative Example 1 that the light interference pigment produced under conditions where the washing temperature is lower than the lower limit specified in the present invention deteriorates the light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium. It was.
According to Comparative Examples 2 to 4, the light interference pigment produced under the condition that the organic solvent used for cleaning exceeds the upper limit of the SP value defined in the present invention, the light reflection performance at the selective reflection wavelength when dispersed in the dispersion medium It turned out to get worse.
From Comparative Example 5, the light interference pigment produced under the condition that the organic solvent used for cleaning is lower than the lower limit value of the SP value defined in the present invention has deteriorated light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium. I found out that
From Comparative Example 6, a light interference pigment produced using water, which is a solvent exceeding the upper limit of the SP value defined in the present invention at the time of washing, as disclosed in JP2011-132512A and International Publication WO96 / 28498, It was found that the light reflection performance at the selective reflection wavelength when dispersed in a dispersion medium deteriorates.
From Comparative Example 7, the light interference pigment produced without washing the particles obtained after pulverization as in JP-A-2000-44451 has a light reflection performance at a selective reflection wavelength when dispersed in a dispersion medium. It turns out that it gets worse.
From Comparative Example 8, it was produced without washing the particles obtained after pulverization even when the surface was washed without pulverizing a film having a cholesteric liquid crystal structure as in JP 2012-101999 A It was found that the light interference pigment deteriorates the light reflection performance at the selective reflection wavelength when dispersed in the dispersion medium.
1    コレステリック液晶構造を有する膜(基板を含んでいてもよい)
15a  重合性液晶化合物の配向状態(コレステリック液晶相)を固定してなる光反射層
15b  重合性液晶化合物の配向状態(コレステリック液晶相)を固定してなる光反射層
1 Film having a cholesteric liquid crystal structure (may include a substrate)
15a Light reflecting layer 15b in which the alignment state (cholesteric liquid crystal phase) of the polymerizable liquid crystal compound is fixed 15b Light reflecting layer in which the alignment state (cholesteric liquid crystal phase) of the polymerizable liquid crystal compound is fixed

Claims (15)

  1.  重合性液晶化合物の配向状態を硬化して固定化したコレステリック液晶構造を有する膜を製造する工程と、
     前記コレステリック液晶構造を有する膜を砕いて光干渉粒子を製造する工程と、
     前記光干渉粒子を少なくともSP値が8.5~12(cal/cm31/2の有機溶媒を用い、35℃以上の温度で洗浄する工程とを含むことを特徴とし、
    SP値はHoy法で測定された溶解度パラメータδを表し、下記式(1)で表される;
    δ=(ΔE/V)1/2             式(1)
    式(1)中、Vは溶媒のモル分子容積を表し、ΔEは凝集エネルギーを表す;
    光干渉顔料の製造方法。
    A step of producing a film having a cholesteric liquid crystal structure in which the alignment state of the polymerizable liquid crystal compound is cured and fixed;
    Crushing the film having the cholesteric liquid crystal structure to produce light interference particles;
    Washing the light interference particles with an organic solvent having an SP value of at least 8.5 to 12 (cal / cm 3 ) 1/2 at a temperature of 35 ° C. or higher,
    The SP value represents the solubility parameter δ measured by the Hoy method, and is represented by the following formula (1);
    δ = (ΔE / V) 1/2 formula (1)
    In formula (1), V represents the molar molecular volume of the solvent and ΔE represents the cohesive energy;
    A method for producing a light interference pigment.
  2.  前記コレステリック液晶構造を有する膜を、少なくとも1層の重合性液晶化合物の配向状態を硬化して固定化してなる右円偏光を反射する光反射層と、少なくとも1層の重合性液晶化合物の配向状態を硬化して固定化してなる左円偏光を反射する光反射層とを積層して製造する、請求項1に記載の光干渉顔料の製造方法。 A light-reflecting layer that reflects right circularly polarized light obtained by curing and fixing the alignment state of at least one polymerizable liquid crystal compound on the film having the cholesteric liquid crystal structure, and the alignment state of at least one polymerizable liquid crystal compound The method for producing a light interference pigment according to claim 1, wherein the light interference pigment is produced by laminating a light reflecting layer that reflects left circularly polarized light obtained by curing and fixing the light.
  3.  前記有機溶媒中に前記光干渉粒子を浸漬させて洗浄する、請求項1または2に記載の光干渉顔料の製造方法。 The method for producing a light interference pigment according to claim 1 or 2, wherein the light interference particles are immersed and washed in the organic solvent.
  4.  前記有機溶媒中に前記光干渉粒子を浸漬させて洗浄した後に、該有機溶媒をフィルターでろ過した残渣を分取する、請求項1~3のいずれか一項に記載の光干渉顔料の製造方法。 The method for producing a light interference pigment according to any one of claims 1 to 3, wherein after washing the light interference particles in the organic solvent and washing, the residue obtained by filtering the organic solvent with a filter is collected. .
  5.  前記有機溶媒のろ過に用いる前記フィルターのろ過精度が0.3~6μmである、請求項4に記載の光干渉顔料の製造方法。 The method for producing a light interference pigment according to claim 4, wherein the filter used for filtering the organic solvent has a filtration accuracy of 0.3 to 6 µm.
  6.  前記洗浄の温度が40℃以上、前記有機溶媒の沸点以下である、請求項1~5のいずれか一項に記載の光干渉顔料の製造方法。 The method for producing a light interference pigment according to any one of claims 1 to 5, wherein the washing temperature is 40 ° C or higher and lower than the boiling point of the organic solvent.
  7.  前記光干渉粒子が平板状の形状である、請求項1~6のいずれか一項に記載の光干渉顔料の製造方法。 The method for producing a light interference pigment according to any one of claims 1 to 6, wherein the light interference particles have a flat plate shape.
  8.  前記光干渉顔料の選択反射波長が420nm以下である請求項1~7のいずれか一項に記載の光干渉顔料の製造方法。 The method for producing a light interference pigment according to any one of claims 1 to 7, wherein a selective reflection wavelength of the light interference pigment is 420 nm or less.
  9.  前記光干渉粒子の厚みが4~10μmである、請求項1~8のいずれか一項に記載の光干渉顔料の製造方法。 The method for producing a light interference pigment according to any one of claims 1 to 8, wherein the thickness of the light interference particles is 4 to 10 袖 m.
  10.  前記コレステリック液晶構造を有する膜を砕いた後に、フィルターを用いて平均円相当径が100μm以下である前記光干渉粒子を分取する、請求項1~9のいずれか一項に記載の光干渉顔料の製造方法。 The optical interference pigment according to any one of claims 1 to 9, wherein after the film having the cholesteric liquid crystal structure is crushed, the optical interference particles having an average equivalent circle diameter of 100 µm or less are collected using a filter. Manufacturing method.
  11.  前記重合性液晶化合物を含む塗布液を基板上に塗布して、前記コレステリック液晶構造を有する膜を製造する、請求項1~10のいずれか一項に記載の光干渉顔料の製造方法。 The method for producing an optical interference pigment according to any one of claims 1 to 10, wherein a film having the cholesteric liquid crystal structure is produced by applying a coating liquid containing the polymerizable liquid crystal compound on a substrate.
  12.  前記基板が、ガラス転移温度150℃以下のプラスチックフィルムである、請求項11に記載の光干渉顔料の製造方法。 The method for producing an optical interference pigment according to claim 11, wherein the substrate is a plastic film having a glass transition temperature of 150 ° C or lower.
  13.  前記重合性液晶化合物の配向状態を、前記重合性液晶化合物と光重合開始剤を含む組成物に対して紫外線照射することにより進行する硬化反応によって固定化する、請求項1~12のいずれか一項に記載の光干渉顔料の製造方法。 The alignment state of the polymerizable liquid crystal compound is fixed by a curing reaction that proceeds by irradiating the composition containing the polymerizable liquid crystal compound and a photopolymerization initiator with ultraviolet rays. The manufacturing method of the optical interference pigment of claim | item.
  14.  前記重合性液晶化合物が、下記一般式(X)にて表される化合物である、請求項1~13のいずれか一項に記載の光干渉顔料の製造方法。
    一般式(X) Q1-L1-Cy1-L2-(Cy2-L3n-Cy3-L4-Q2
    (一般式(X)中、Q1およびQ2はそれぞれ独立に重合性基であり、L1およびL4はそれぞれ独立に二価の連結基であり、L2およびL3はそれぞれ独立に単結合または二価の連結基であり、Cy1、Cy2およびCy3は二価の環状基であり、nは0、1、2、または3である。)
    The method for producing an optical interference pigment according to any one of claims 1 to 13, wherein the polymerizable liquid crystal compound is a compound represented by the following general formula (X).
    Formula (X) Q 1 -L 1 -Cy 1 -L 2- (Cy 2 -L 3 ) n -Cy 3 -L 4 -Q 2
    (In General Formula (X), Q 1 and Q 2 are each independently a polymerizable group, L 1 and L 4 are each independently a divalent linking group, and L 2 and L 3 are each independently a single group. A bond or a divalent linking group, Cy 1 , Cy 2 and Cy 3 are divalent cyclic groups, and n is 0, 1, 2, or 3.)
  15.  請求項1~14のいずれか一項に記載の光干渉顔料の製造方法で製造されたことを特徴とする光干渉顔料。 An optical interference pigment produced by the method for producing an optical interference pigment according to any one of claims 1 to 14.
PCT/JP2014/058401 2013-03-27 2014-03-26 Optical interference pigment and method for producing same WO2014157267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480017178.5A CN105073907A (en) 2013-03-27 2014-03-26 Optical interference pigment and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-067345 2013-03-27
JP2013067345A JP5902641B2 (en) 2013-03-27 2013-03-27 Optical interference pigment and method for producing the same

Publications (1)

Publication Number Publication Date
WO2014157267A1 true WO2014157267A1 (en) 2014-10-02

Family

ID=51624233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058401 WO2014157267A1 (en) 2013-03-27 2014-03-26 Optical interference pigment and method for producing same

Country Status (3)

Country Link
JP (1) JP5902641B2 (en)
CN (1) CN105073907A (en)
WO (1) WO2014157267A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10517849B2 (en) 2016-10-26 2019-12-31 Constellation Pharmaceuticals, Inc. LSD1 inhibitors and medical uses thereof
US10526287B2 (en) 2015-04-23 2020-01-07 Constellation Pharmaceuticals, Inc. LSD1 inhibitors and uses thereof
US10647661B2 (en) 2017-07-11 2020-05-12 Vertex Pharmaceuticals Incorporated Carboxamides as modulators of sodium channels
US10894797B2 (en) 2018-09-18 2021-01-19 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as SRC homology-2 phosphatase inhibitors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687721B2 (en) * 2016-03-08 2020-04-28 富士フイルム株式会社 Coloring composition, dichroic dye compound, light-absorption anisotropic film, laminate and image display device
CN107272294B (en) * 2017-07-10 2020-08-18 华南师范大学 Electric control intelligent window, preparation method and light adjusting method
CN113165354A (en) * 2018-11-29 2021-07-23 3M创新有限公司 Composite membrane, method of making the same, and articles comprising the composite membrane
WO2021020243A1 (en) * 2019-07-30 2021-02-04 日本ゼオン株式会社 Composite pigment, identification medium, and method for determining authenticity
CN114207083A (en) * 2019-07-30 2022-03-18 日本瑞翁株式会社 Composite pigment, identification medium and authenticity judgment method
CN114573599A (en) * 2022-02-24 2022-06-03 苏州大学 Photoisomerizable chiral molecules and application thereof in realizing color liquid crystal film patterning

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304983A (en) * 1994-05-06 1995-11-21 Consortium Elektrochem Ind Gmbh Pigment with platelet structure, composition containing same, data memory medium, and production of this pigment
JPH08245901A (en) * 1995-01-26 1996-09-24 Daimler Benz Ag Pigment with color relating to visual angle, its production and its use for coating material
JP2000504366A (en) * 1996-01-26 2000-04-11 ビーエーエスエフ アクチェンゲゼルシャフト Pigment manufacturing method
JP2001122741A (en) * 1999-10-28 2001-05-08 Fuji Photo Film Co Ltd Cosmetic
JP2001131291A (en) * 1999-11-02 2001-05-15 Daicel Chem Ind Ltd Optically coherent particle and its manufacturing method
JP2001509520A (en) * 1997-07-09 2001-07-24 レヴェオ・インコーポレーテッド Coloring media with improved brightness and color characteristics
JP2001261739A (en) * 2000-03-16 2001-09-26 Merck Patent Gmbh Wide range liquid crystal pigment
JP2003026707A (en) * 2001-07-12 2003-01-29 Dainippon Ink & Chem Inc Light-interfering spherical resin particle and manufacturing method therefor
JP2012001440A (en) * 2010-06-14 2012-01-05 Ohken Co Ltd Method for producing polyester flat particle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418075C2 (en) * 1994-05-24 2000-06-29 Daimler Chrysler Ag Effect lacquer or effect lacquering, in particular for vehicle bodies, using liquid-crystalline interference pigments
DE4418076C2 (en) * 1994-05-24 2000-06-21 Daimler Chrysler Ag Effect paint or effect paint, in particular for vehicle bodies, using liquid-crystalline interference pigments

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304983A (en) * 1994-05-06 1995-11-21 Consortium Elektrochem Ind Gmbh Pigment with platelet structure, composition containing same, data memory medium, and production of this pigment
JPH08245901A (en) * 1995-01-26 1996-09-24 Daimler Benz Ag Pigment with color relating to visual angle, its production and its use for coating material
JP2000504366A (en) * 1996-01-26 2000-04-11 ビーエーエスエフ アクチェンゲゼルシャフト Pigment manufacturing method
JP2001509520A (en) * 1997-07-09 2001-07-24 レヴェオ・インコーポレーテッド Coloring media with improved brightness and color characteristics
JP2001122741A (en) * 1999-10-28 2001-05-08 Fuji Photo Film Co Ltd Cosmetic
JP2001131291A (en) * 1999-11-02 2001-05-15 Daicel Chem Ind Ltd Optically coherent particle and its manufacturing method
JP2001261739A (en) * 2000-03-16 2001-09-26 Merck Patent Gmbh Wide range liquid crystal pigment
JP2003026707A (en) * 2001-07-12 2003-01-29 Dainippon Ink & Chem Inc Light-interfering spherical resin particle and manufacturing method therefor
JP2012001440A (en) * 2010-06-14 2012-01-05 Ohken Co Ltd Method for producing polyester flat particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10526287B2 (en) 2015-04-23 2020-01-07 Constellation Pharmaceuticals, Inc. LSD1 inhibitors and uses thereof
US10517849B2 (en) 2016-10-26 2019-12-31 Constellation Pharmaceuticals, Inc. LSD1 inhibitors and medical uses thereof
US11013718B2 (en) 2016-10-26 2021-05-25 Constellation Pharmaceuticals, Inc. LSD1 inhibitors and medical uses thereof
US11547695B2 (en) 2016-10-26 2023-01-10 Constellation Pharmaceuticals, Inc. LSD1 inhibitors and medical uses thereof
US10647661B2 (en) 2017-07-11 2020-05-12 Vertex Pharmaceuticals Incorporated Carboxamides as modulators of sodium channels
US11603351B2 (en) 2017-07-11 2023-03-14 Vertex Pharmaceuticals Incorporated Carboxamides as modulators of sodium channels
US10894797B2 (en) 2018-09-18 2021-01-19 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as SRC homology-2 phosphatase inhibitors
US11034705B2 (en) 2018-09-18 2021-06-15 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as Src homology-2 phosphate inhibitors
US11459340B2 (en) 2018-09-18 2022-10-04 Nikang Therapeutics, Inc. Tri-substituted heteroaryl derivatives as Src homology-2 phosphatase inhibitors
US11518772B2 (en) 2018-09-18 2022-12-06 Nikang Therapeutics, Inc. Fused tricyclic ring derivatives as Src homology-2 phosphate inhibitors

Also Published As

Publication number Publication date
JP2014189677A (en) 2014-10-06
JP5902641B2 (en) 2016-04-13
CN105073907A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5902641B2 (en) Optical interference pigment and method for producing the same
US7534474B2 (en) Multireactive polymerizable mesogenic compounds
JP5932556B2 (en) Liquid crystal composition, polymer, film and cholesteric liquid crystal
KR101363479B1 (en) Polymerizable liquid crystal compounds, polymerizable liquid crystal composition, and optically anisotropic body
JP5502775B2 (en) Thermal barrier coating
JP4694929B2 (en) Polymerizable composition, retardation plate, method for producing polymer film, liquid crystal display device
JP6159081B2 (en) Cholesteric liquid crystal laminate, method for producing the same, and combination of cholesteric liquid crystal laminate
JP2003105030A (en) Polymerizable liquid crystal substance
JP6564765B2 (en) Layer or article comprising cholesteric polymer particles
JP5411770B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, polymer, and film
Kim et al. Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures
CN103360257B (en) Polymerizable biphenyl compound
CN111344610B (en) Reflection sheet, decorative sheet, and method for manufacturing reflection sheet
JP2006348227A (en) Liquid crystal and liquid crystal/polymer composite
TWI328605B (en) Polymerizable mixture comprising monomer, liquid crystalline monomer and monomer from 1 to less than 50% by weight
JP2011207940A (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, polymer and film
JP5889031B2 (en) Polymerizable liquid crystal composition, polymer material, method for producing the same, and film
JP5721484B2 (en) Polymerizable liquid crystal composition, polymer material and optically anisotropic film using the same, and polymerizable liquid crystal compound
JP7433435B2 (en) Liquid crystal compositions, optical elements and light guiding elements
JP5411771B2 (en) Compound, polymerizable composition, polymer, and film
JP4491366B2 (en) Retardation plate
WO2014189136A1 (en) Film, method for producing same, and display having film
Lub et al. Synthesis and photopolymerization of cholesteric liquid crystalline vinyl ethers
JP5824432B2 (en) Optically active compound, liquid crystal composition and optical film
JP6511407B2 (en) Polymerizable compound, polymerizable composition, and film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017178.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772618

Country of ref document: EP

Kind code of ref document: A1