WO2014157229A1 - Tace peptide epitope, antihuman tace protein antibody and hybridoma producing antibody - Google Patents

Tace peptide epitope, antihuman tace protein antibody and hybridoma producing antibody Download PDF

Info

Publication number
WO2014157229A1
WO2014157229A1 PCT/JP2014/058328 JP2014058328W WO2014157229A1 WO 2014157229 A1 WO2014157229 A1 WO 2014157229A1 JP 2014058328 W JP2014058328 W JP 2014058328W WO 2014157229 A1 WO2014157229 A1 WO 2014157229A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
tace
rankl
peptide
amino acid
Prior art date
Application number
PCT/JP2014/058328
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 菅崎
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2015508553A priority Critical patent/JPWO2014157229A1/en
Publication of WO2014157229A1 publication Critical patent/WO2014157229A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present invention relates to a TACE peptide epitope, an anti-human TACE protein antibody, and a hybridoma that produces the antibody.
  • Periodontal disease is one of the lifestyle-related diseases whose morbidity increases with age, and it develops when an excessive immune reaction is induced in the periodontal tissue by infection with periodontal pathogens.
  • the alveolar bone fracture causes loss of tooth support tissue, resulting in masticatory disorders and markedly lower quality of life. It is known that this bone destruction is caused by excessive bone resorption promotion by osteoclasts, and RANKL (Non-patent Document 1), which is an essential factor for osteoclast formation and activation, is a periodontal tissue of periodontal disease. It has also been reported that expression is increased at the mRNA level and at the protein level (Non-patent Documents 2 and 3).
  • Non-Patent Document 2 discloses the type of cells that express RANKL in periodontal disease.
  • plaque deposits in the groove (periodontal pocket) between the teeth and gums, and the bacteria and their products that make up the majority of the plaque are transferred from the periodontal pocket to the gingiva. It passes through the epithelium, enters the gingival tissue, and the invading bacteria and products stimulate immune system cells, causing infiltration of lymphocytes and activation of infiltrating lymphocytes. In this way, lymphocytes that have migrated from capillaries in the gingiva by being attracted by invading bacteria and products accumulate near the periodontal pocket, that is, near the epithelium far from the alveolar bone (non-patented).
  • RANKL (RANK ligand), an essential factor for osteoclast formation and activation, is usually membrane-bound on immune cells such as lymphocytes that support osteoclast formation and stromal cells such as osteoblasts. It is synthesized as a protein (Non-patent Document 1). Therefore, direct cell-cell contact between these osteoclast-forming support cells and osteoclast precursor cells / osteoclasts is considered essential for RANKL signal transmission (Non-patent Document 5).
  • Membrane-bound RANKL is composed of three regions, an intracellular domain, a transmembrane domain, and an extracellular domain. Only a specific region of the extracellular domain is required for functioning as an osteoclast differentiation factor.
  • Non-patent Document 7 RANKL-expressing cells (infiltrated activated lymphocytes) and osteoclasts that are present on the surface of the alveolar bone and actually resorb bone.
  • Non-patent Document 7 it is unlikely that osteoclast-forming support cells (infiltrated activated lymphocytes) and osteoclasts transmit RANKL signals through cell-cell contact.
  • Non-Patent Documents 4, 6 to 8 reports have been made on the shedding of membrane-bound RANKL to free RANKL by enzymatic cleavage.
  • Non-patent Document 9 The function of RANKL as an osteoclast differentiation factor requires only a specific region of the extracellular domain (Non-patent Document 9) and cleaves a specific amino acid sequence between that region (soluble RANKL domain) and the transmembrane domain Any enzyme capable of converting from membrane-bound to free RANKL while maintaining the osteoclast differentiation promoting function of RANKL can be achieved.
  • An object of the present invention is to provide an antibody having a high inhibitory ability of TACE function.
  • TACE TNF- ⁇ convertingenzyme
  • Item 1 An anti-human TACE protein antibody that specifically binds to a region of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ or MAKSYPNEEKDAW.
  • Item 2 The antibody according to Item 1, which specifically binds to a region of the amino acid sequence represented by YPIAVSGD.
  • Item 3. The antibody according to Item 1 or 2, which is a monoclonal antibody.
  • TACE peptide epitope which is a peptide consisting of at least 7 consecutive amino acids in the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ, or a peptide consisting of an amino acid sequence represented by MAKSYPNEEKDAW.
  • Item 5 Item 5.
  • Item 6 Item 4. A hybridoma that produces the antibody according to any one of Items 1 to 3.
  • Item 7 A therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling, comprising an effective amount of the antibody according to any one of Items 1 to 3.
  • Item 8 The therapeutic or prophylactic agent according to Item 7, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
  • Item 9 A method for treating or preventing a disease caused by RANKL-RANK signaling, comprising a step of administering an effective amount of the antibody according to any one of items 1 to 3 to a subject.
  • Item 10 The method according to Item 9, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
  • Item 11 The antibody according to any one of Items 1 to 3, for treating or preventing a disease caused by RANKL-RANK signaling.
  • Item 12. The antibody according to Item 11, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
  • Item 13 Use of the antibody according to any one of Items 1 to 3 for producing a therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling.
  • Item 14 The use according to Item 13, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
  • the antibody according to the present invention has a very high ability to inhibit TACE function. Therefore, the antibody according to the present invention inhibits RANKL-RANK signaling and is very useful for the treatment or prevention of diseases caused by the signaling.
  • Example 1 The result of the TACE inhibitory ability comparison of the affinity purified polyclonal antibody in Example 1 is shown.
  • the result of the TACE inhibitory ability comparison of the affinity purified polyclonal antibody and the small molecule inhibitor TAPI-2 in Example 1 is shown.
  • the result of the TACE inhibitory ability comparison of the monoclonal antibodies C6-30 and C6-62 and the small molecule inhibitor TAPI-2 in Example 2 is shown.
  • the result of each test in Example 3 is shown.
  • the measurement result of the osteoclast differentiation promotion cytokine from the activated T cell in Example 4 is shown.
  • FIG. 5 (upper) shows the results of measuring TNF- ⁇ using a commercially available ELISA kit for the culture supernatant 2 hours after stimulation.
  • FIG. 5 shows the results of measurement of sRANKL using a commercially available ELISA kit for the culture supernatant on the third day after stimulation.
  • the amino acid sequence of TACE is shown.
  • the three-dimensional structure of TACE and the position of Peptide-1 are shown.
  • the three-dimensional structure of TACE and the position of Peptide-2 are shown.
  • the three-dimensional structure of TACE and the position of Peptide-3 are shown.
  • the three-dimensional structure of TACE and the position of Peptide-4 are shown.
  • the three-dimensional structure of TACE and the position of Peptide-5 are shown.
  • the three-dimensional structure of TACE and the position of Peptide-6 are shown.
  • the three-dimensional structure of TACE and the position of Peptide-7 are shown.
  • Antibody TACE (TNF- ⁇ converting enzyme, ADAM-17) targeted by the antibody of the present invention is a 70 kDa (824 amino acid residue) enzyme that recognizes and cleaves a specific amino acid sequence (VGPQRJFSGAPAMME). Belongs.
  • the amino acid sequence of human TACE is shown in FIG. 6 (SEQ ID NO: 10). . Expression in various cells such as T cells and B cells has been reported.
  • TACE is a membrane-bound enzyme that is composed of three domains: the extracellular domain (215-671), the transmembrane domain (672-692), and the intracellular domain (693-824).
  • the catalytic domain (223-474) is present in the extracellular domain (Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, CastnerBJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. 1997 A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 385 (6618): 729- 33.; Moss ML, Jin SL, MiIIa ME, Bickett DM.
  • the antibody according to the present invention specifically binds to a region of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ (SEQ ID NO: 9) or MAKSYPNEEKDAW (SEQ ID NO: 4) in the amino acid sequence of TACE.
  • those that specifically bind to the region of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ (SEQ ID NO: 9) are preferable, and among the amino acid regions, the amino acid region represented by YPIAVSGD (SEQ ID NO: 12) Those that specifically bind to are more preferred.
  • the specific binding of the antibody according to the present invention to the region of the amino acid sequence derived from TACE shown above can be visualized by a known method.
  • immunoassay methods for example, ELISA method
  • immunoelectrophoresis methods for example, Western blot method
  • immunohistochemistry for tissues or cells.
  • the antibody of the present invention is a fluorescent substance (for example, fluorescein isothiocyanate), a radioisotope (for example, iodine 125), an enzyme (for example, alkaline phosphatase, horseradish peroxidase), and other proteins (for example, avidin). It may be labeled with a molecule such as Alternatively, a secondary antibody that specifically recognizes the antibody of the present invention may be used.
  • the antibody of the present invention is not limited as long as it can specifically bind to the above-mentioned TACE-derived amino acid sequence region.
  • IgG, IgM, IgA, IgD, IgE, IgY and the like can be used. Can be mentioned.
  • the subclass is not limited. Preferably, it is IgG.
  • the antibody of the present invention is derived from a mammal (for example, human, mouse, rat, rabbit) or bird (for example, chicken or ostrich) capable of producing the antibody.
  • a mammal for example, human, mouse, rat, rabbit
  • bird for example, chicken or ostrich
  • the antibody of the present invention may be a polyclonal antibody or a monoclonal antibody.
  • a chimeric antibody, a humanized antibody, or a human antibody may be used among monoclonal antibodies.
  • the chimeric antibody and the humanized antibody refer to an antibody derived from a human other than a site capable of binding to an antigen among immunoglobulin proteins.
  • a human antibody refers to a human-derived antibody or an antibody derived from a human antibody-producing mouse having a complete human-derived immunoglobulin gene.
  • Chimeric antibodies, humanized antibodies, and human antibodies have low immunogenicity in humans and are useful in using antibodies in medical preparations and the like. Therefore, when the antibody of the present invention is used for medical preparations, monoclonal antibodies are preferable, and humanized antibodies or human antibodies are particularly preferable.
  • the antibody of the present invention may be a full-length immunoglobulin protein or a fragment thereof containing a site capable of binding to an antigen. It may also be a composition containing an antibody, such as antiserum.
  • the antibody of the present invention can be prepared by administering an antigen to an immunized animal.
  • the antigen the TACE peptide epitope of the present invention described later can be used.
  • an antigen is administered to an immunized animal, since the peptide has a small molecular weight and may not cause an immune response sufficiently, the peptide is bound to an appropriate protein (eg, albumin, thyroglobulin hemocyanin, etc.) It may be used as
  • the antibody of the present invention can also be obtained by searching for an antibody that binds to an antigen or a fragment thereof from a library such as a cell or phage that can produce various antibodies or fragments thereof.
  • a library such as a cell or phage that can produce various antibodies or fragments thereof.
  • the TACE peptide epitope of the present invention described later can be used as the antigen.
  • the method for obtaining a peptide used as an antigen is not particularly limited, and can be a known method.
  • it may be naturally derived, chemically synthesized, cell-free synthesized or recombinant peptide.
  • polyclonal antibody can be obtained by immunizing an immunized animal (eg, mouse, rat, rabbit, chicken) by a usual method, preparing serum, and purifying the antibody from antiserum. Immunization can be performed, for example, by inoculating an immunogen solution emulsified with an equal volume of Freund's complete or incomplete adjuvant (primary immunization) and then immunizing several times at intervals of 2 to 4 weeks. it can. Purification of the polyclonal antibody from the antiserum can be performed by DEAE ion exchange chromatography or protein G affinity chromatography.
  • a monoclonal antibody can be prepared by preparing a hybridoma producing a monoclonal antibody and purifying the antibody produced by the hybridoma. Alternatively, it can also be prepared by a phage display method, that is, a method of searching for an antibody or antibody fragment that specifically binds to an antigen from a phage library that expresses various antibodies or antibody fragments.
  • Methods for separating hybridomas are known per se (for example, Kohler et al., Nature, 256: 495 (1975)), and can be obtained, for example, by the following method.
  • the spleen is aseptically removed from the immunized animal (eg, mouse) several days after the final immunization, and spleen cells are prepared from the spleen.
  • Spleen cells are used in the cell fusion step together with myeloma cells (myeloma cells).
  • myeloma cells myeloma cells.
  • NS-1, P3U1, SP2 / 0 and the like can be used as myeloma cells.
  • spleen cells and myeloma cells are mixed in a medium containing a fusion promoter such as PEG. It can be carried out by mixing at a conventional mixing ratio (a ratio of about 1/5 to 1/10). After the fusion, only the hybridoma is grown using a selection medium (for example, HAT medium). Among them, the hybridoma secreting the target monoclonal antibody in the culture supernatant is confirmed, for example, by screening the reactivity of the culture supernatant with the TACE peptide epitope by enzyme linked immunoassay (ELISA). Can be selected.
  • ELISA enzyme linked immunoassay
  • Monoclonal antibodies produced by hybridomas can be easily prepared by culturing them.
  • the culture can be performed in an appropriate medium (for example, Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum) or in vivo (for example, in the peritoneal cavity of a mouse).
  • DMEM Dulbecco's modified Eagle medium
  • the antibody can also be purified using the culture supernatant or ascites as a starting material.
  • a general method for protein purification such as ammonium sulfate salting-out, ion exchange chromatography, gel filtration chromatography, affinity chromatography using protein A or protein G binding polymer, or dialysis, is used. They can be used in appropriate combinations.
  • the phage display method is also known per se (for example, Clackson et al., Nature 352: 624-8 (1991)), and will be briefly described below.
  • a phage that displays an antigen recognition site that binds to a TACE peptide epitope is selected from a phage library that displays antigen recognition sites of various antibodies prepared in advance.
  • the antigen recognition site displayed by the selected phage may be used as it is, or a full-length antibody can be obtained by incorporating the full-length antibody into a CHO cell capable of producing the full-length antibody by a genetic engineering technique.
  • Humanized antibody human antibody
  • a humanized antibody is an antibody protein whose origin is other than the minimum necessary region for antigen recognition (complementarity-determining region: CDR). is there.
  • a method for producing a humanized antibody is described in, for example, EP0239400, US5585089, and the like.
  • a human antibody can be obtained from a human antibody-producing mouse having a complete human-derived immunoglobulin gene. Human antibody-producing mice are known and described in WO 97/07671.
  • the antibody of the present invention has a very high ability to neutralize TACE activity. Since TACE plays an important role in RANK-RANKL signaling, the antibody of the present invention is useful for the treatment and prevention of diseases caused by RANK-RANKL signaling.
  • the present invention is a TACE peptide, which is a peptide consisting of at least 7 consecutive amino acids of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ (SEQ ID NO: 9) or a peptide consisting of an amino acid sequence represented by MAKSYPNEEKDAW (SEQ ID NO: 4). Provide an epitope.
  • TACE peptide epitopes a peptide consisting of at least 7 consecutive amino acids in the amino acid sequence represented by SEQ ID NO: 9 is preferred.
  • the TACE peptide epitope is preferably composed of 20 amino acids or less, more preferably 15 amino acids or less, further preferably 10 amino acids or less, and 9 amino acids or less. More preferably.
  • the epitope of the present invention preferably includes the amino acid sequence YPIAVSG (SEQ ID NO: 19) or PIAVSGD (SEQ ID NO: 20).
  • Preferred peptide epitopes include, for example, VMYPIAVSGDHE (SEQ ID NO: 21), MYPIAVSGDHE (SEQ ID NO: 22), VMYPIAVSGDH (SEQ ID NO: 23), YPIAVSGDHE (SEQ ID NO: 24), VMYPIAVSGD (SEQ ID NO: 25), MYPIAVSGDH (SEQ ID NO: 26), YPIAVSGDH (SEQ ID NO: 27), MYPIAVSGD (SEQ ID NO: 28), PIAVSGDHE (SEQ ID NO: 29), VMYPIAVSG (SEQ ID NO: 30), PIAVSGDH (SEQ ID NO: 31), MYPIAVSG (SEQ ID NO: 32), YPIAVSGD (SEQ ID NO: 33), YPIAVSG (SEQ ID NO: 34), PIAVSGD (SEQ ID NO: 35), and the like.
  • YPIAVSGDHE SEQ ID NO: 24
  • VMYPIAVSGD SEQ ID NO: 25
  • MYPIAVSGDH SEQ ID NO: 26
  • YPIAVSGDH SEQ ID NO: 27
  • MYPIAVSGD SEQ ID NO: 28
  • YPIAVSGD SEQ ID NO: 12
  • YPIAVSGD SEQ ID NO: 12
  • the peptide epitope of the present invention can be used for preparing an antibody having the ability to inhibit TACE function.
  • the peptide epitope of the present invention may be bound to an appropriate protein and used as an antigen as described above.
  • Hybridoma also provides a hybridoma that produces an antibody.
  • the method for producing a hybridoma can be carried out according to a method known per se, such as the method of Examples of the present application and the method described above for antibodies.
  • Therapeutic or preventive agent provides a therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling, comprising the aforementioned antibody.
  • the therapeutic or prophylactic agent for diseases caused by RANKL-RANK signaling of the present invention is formulated with various pharmaceutically acceptable carriers (including vaginal excipients, binders, disintegrants, lubricants, etc.) in the antibody. It may be a prepared formulation. The formulation may contain conventional additives.
  • the form of the preparation is not particularly limited.
  • tablets, pills, capsules, powders, granules, syrups and the like orally administered vaginal injections (intravenous injection, intramuscular injection, local injection, etc.), mouthwashes, drops
  • various preparation forms such as external preparations and parenteral administration agents such as suppositories.
  • Preferable pharmaceutical forms include, for example, topical injections, coating agents for gingival mucosa, gargles and the like.
  • the content of the antibody of the present invention in the preparation varies depending on the administration route, patient age, body weight, symptoms, etc., and cannot be defined unconditionally.
  • the daily dose of the polypeptide is usually about 10 to 1000 mg, more preferably 100 to 100 mg.
  • the amount may be about 500mg. When it is administered once a day, it is sufficient that this amount is contained in one preparation, and when it is administered three times a day, it is sufficient that this one-third amount is contained in one preparation.
  • the therapeutic or prophylactic agent of the present invention is administered to a patient such as a mammal.
  • mammals include humans, monkeys, mice, rats, rabbits, cats, dogs, pigs, cows, horses, sheep and the like.
  • the disease caused by RANKL-RANK signaling is not particularly limited, and examples thereof include periodontal disease, rheumatoid arthritis (chronic rheumatoid arthritis), osteoarthritis, and metastatic bone tumor.
  • TACE Tumor necrosis factor- alpha-converting enzyme
  • TNF-alpha Tumor necrosis factor-alpha (TNF-alpha) converting enzyme contributes to production of TNF-alpha in synovial tissues from patients with rheumatoid arthritis.
  • TNF-alpha Tumor necrosis factor-alpha
  • Ohta, M, Kawaguchi Y, Sugiura T, Takagi K, Fukasawa C, Hara M, Kamatani N. have been reported.
  • the expression of TNF-alpha in osteoarthritis (Osteoarthritis Cartilage. 1999 Jul; 7 (4): 392-4.
  • TNF-alpha convertase enzyme from human arthritis-affected cartilage: isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-alpha.
  • TACE is released from the osteoclast differentiation-promoting cytokines RANKL and TNF-alpha ⁇ It is assumed that it plays an important role in activation.
  • TACE Interferon gamma
  • TACE whose expression of tumor cells is increased, degrades IFNG produced from peritumoral immune system cells, and further enhances antitumor immunity reduction and osteoclast differentiation activation by host IFNG. Furthermore, it is considered that the bone metastasis of tumor cells is enhanced by further promoting osteoclast differentiation / activation. It has also been reported that TACE expression is increased in tumors (Eur J Cell Biol. 2011; 90 (6-7): 527-35, Curr Pharm Des. 2009; 15 (20): 2319-35, and Semin Cell Dev Biol. 2009; 20 (2): 164-74). Therefore, it is considered that inhibiting TACE expressed by tumor cells can prevent IFNG degradation and thereby suppress reduction of host antitumor immunity and activation of osteoclast differentiation.
  • the present invention provides a diagnostic agent (for example, an in vitro diagnostic agent) for a disease caused by RANKL-RANK signaling, comprising the above-mentioned anti-human TACE protein antibody.
  • human TACE protein is detected in a test sample such as serum of a patient suspected of suffering from a disease caused by the above-mentioned RANKL-RANK signaling (for example, the human TACE protein exceeds a preset threshold value) And the like) can be diagnosed as suffering from the disease or in an advanced stage.
  • a method for detecting human TACE protein a method known per se, such as ELISA, can be appropriately used.
  • Animal 6-week-old male BALB / C mice (18 animals in total) were purchased from Japan SLC (Hamamatsu) and used for experiments.
  • This experimental protocol was planned in compliance with the Tohoku University Animal Experiment Guidelines, and the experiment was conducted after obtaining approval from the University Committee before the experiment was started.
  • Mouse T cell cell line EL4-TK EL4-TK established from mouse T cell lymphoma was used as received from Tohoku University Institute of Aging Medicine, Medical Cell Resource Center. (Http://www2.idac.tohoku.ac.jp/dep/ccr/TKGdate/TKGvo101/0192.html)
  • Mouse myeloma cell line SP-2 Mouse myeloma cell line SP-2 was used as received from Tohoku University Institute of Aging Medicine, Medical Cell Resource Center.
  • Reagents Recombinant human TACE (930-ADB-010) and fluorescent peptide substrate (ES010) were purchased from R & D Systems, Inc. (Minneapolis, Minn.) And used for experiments.
  • An anti-mouse TNF-alpha ELISA kit (430902) was purchased from BioLegend, Inc. (San Diego, Calif.) And used for experiments.
  • the anti-rodent sRANKL ELISA kit (900-K233) was purchased from PeproTech, Inc. (Rocky Hill, NJ) and used for experiments.
  • TACE extracellular domain short polypeptide was synthesized from Life Technologies Japan (Tokyo). The sequence of the synthesized TACE extracellular domain short polypeptide is shown below.
  • FBS Thermoscience, Rockford, IL
  • penicillin / streptomycin-containing ⁇ -MEM penicillin / streptomycin-containing ⁇ -MEM
  • Example 1 Nine TACE extracellular domain short polypeptides synthesized by peptide immunosynthesis in mice were respectively dissociated into Hemocyanin, from Keyhole Limpet (KLH: Wako Pure Chemicals, Tokyo, Japan) using Disuccinimidyl suberate (DSS: Thermoscience, Rockford, IL) And crosslinked. KLH-binding polypeptide was injected subcutaneously with Floyd's adjuvant according to standard procedures. Booster immunizations were performed every 2 weeks. Blood was collected immediately before immunization and during booster immunization, and the antibody titer in the serum was measured by the following method using ELISA.
  • Affinity purification from mouse serum of polyclonal antibody When the serum antibody titer sufficiently increased, about 5 ml of blood was stored, and IgG was purified using Ab-Rapid (Protenova, Takamatsu, Japan) according to the recommended protocol. Each polypeptide is then specifically bound to each TACE extracellular domain short polypeptide in purified IgG using an agarose gel column cross-linked to NHS-Activated agarose gel (Thermoscience, Rockford, IL) IgG was affinity purified. After purification, the solvent was replaced with Phosphate buffered Saline (PBS) using a Vivaspin 500 centrifugal filtration unit (MWCO 10 kDa; Sartorius AG, Goettingen, Germany).
  • PBS Phosphate buffered Saline
  • Purified IgG concentration measurement Normal mouse IgG dilution series with known concentration and sample IgG are coated on ELISA plate, non-specific binding sites are masked with Block Ace, and HRP-labeled anti-mouse IgG antibody is reacted as a detection antibody. After washing, the absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. Using the IgG concentration-absorbance standard curve of a normal mouse IgG dilution series, the IgG concentration of the sample was measured from the absorbance of the sample, and the concentration of each antibody solution was made constant.
  • TACE activity inhibition measurement Recombinant human TACE (R & D Systems, Inc., Minneapolis, MN) 0.4 ⁇ mol (when measuring polyclonal antibody inhibition ability) or 4 ⁇ mol (when measuring monoclonal antibody inhibition ability), 100 ⁇ L of reaction solution (2.5 microM chloride) Dilute in zinc, PBS containing 0.005% Brij35), add small molecule inhibitor TAPI-2 (Santa Cruz, Inc., Santa Cruz, CA) or purified antibody, and add fluorescent peptide substrate (R & D Systems, Inc., Minneapolis) , MN) After adding 0.5 nmol, the fluorescence generated by cleaving the fluorescent peptide substrate by TACE was performed using a SpectraMax M2e fluorescence plate reader (Molecular Device Japan, Tokyo) with excitation light of 320 nm and fluorescence of 405 nm. Measurement and comparison of inhibition of TACE enzyme activity from the fluorescence value. The results are as follows.
  • TACE activity was achieved using recombinant human TACE, fluorescently labeled TACE substrate and equal amounts of affinity purified polyclonal antibody. was measured.
  • the purified antibody obtained by immunizing polypeptide 7 containing the enzyme activity center is When it was allowed to act, the neutralizing ability was not so high (82.1%).
  • affinity purified polyclonal antibodies obtained from animals immunized with polypeptide 9 at the three-dimensional proximity to the enzyme activity center showed the highest neutralizing ability of TACE activity (42.5%).
  • FIGS. 7 to 15 show the three-dimensional structure of TACE and the positions of Peptide-1 to Peptide-9).
  • the affinity-purified polyclonal antibody obtained by immunizing polypeptide 5 at a site close to the enzyme activity center three-dimensionally like polypeptide 9 showed almost no neutralizing ability (94.1%).
  • the affinity-purified polyclonal antibody obtained by immunizing polypeptide 4 which is a three-dimensionally distant site from the enzyme activity center showed the second highest TACE activity neutralizing ability after polypeptide 9 (46.6%).
  • TACE inhibitory ability of affinity purified polyclonal antibody and small molecule inhibitor TAPI-2 Compared to TACE small molecule inhibitor (TAPI-2), the affinity purified polyclonal antibody obtained from polypeptide 9 shows how neutralizing activity is. Concentration-response curves were prepared to evaluate the neutralization activity in order to clarify whether they had the same. The comparison was made by comparing the antibody or inhibitor molar concentration ND50 required to neutralize recombinant human TACE activity by 50%.
  • TACE and affinity purified antibody or TACE small molecule inhibitor (TAPI-2) are reacted for 30 minutes, then fluorescently labeled TACE substrate is added to the reaction system, and fluorescent labeled TACE substrate is decomposed with a fluorescent plate reader. The accompanying increase in fluorescence was observed.
  • Hyb Max Sigma-Aldrich Co. LLC., St. Louis, MO
  • hybridomas When colonies of hybridomas were confirmed to be formed, the culture supernatant was collected and the reactivity of IgG produced by each clone was confirmed using an ELISA plate. TACE extracellular domain short polypeptide, KLH binding TACE extracellular domain short polypeptide, KLH, and recombinant human TACE were used as antigens. Among these, clones showing a high value on the KLH-binding polypeptide-coated plate were primarily selected, and clones showing a high value on the KLH-coated plate were excluded.
  • Example 3 Epitope mapping TACE extracellular domain short polypeptide No. 9 (VMYPIAVSGDHENNKMFSNCSKQ), 8 peptides with 8 amino acid residues shorter than the N-terminal, shifted by 2 amino acid residues, total of 8 types were requested from the Institute of Medical Biology And synthesized.
  • the sequence of the epitope mapping peptide requested for synthesis is shown below.
  • the actually measured purity of each peptide by HPLC was 94.6-99.8%.
  • a sample was prepared by adding each peptide 9A to 9H to the purified monoclonal antibody, and these were added to each well of an ELISA plate coated with recombinant human TACE and blocked with BlockAce and incubated. Thereafter, an HRP-labeled anti-mouse IgG antibody was reacted as a detection antibody, and after further washing the well, absorbance at 650 nm was measured using TMB as a reaction substrate for HRP.
  • the purified monoclonal antibody binds to the peptide that is the epitope and cannot bind to recombinant human TACE. This shows the epitope sequence of the purified monoclonal antibody. Specifically:
  • Epitope mapping TACE extracellular domain short chain polypeptide No. 9 of monoclonal antibodies C6-30 and C6-62 consists of 23 amino acid residues. Among these 23 amino acid residues, 8 amino acids are used for further narrowing down the epitope region.
  • Epitope sequence identification of the monoclonal antibody was carried out by synthesizing 8 types of peptides with a residue length shifted by 2 amino acid residues from the N-terminus, and investigating which peptide the obtained monoclonal antibody bound strongly.
  • samples were prepared by adding each peptide 9A-9H to the purified monoclonal antibody, and they were added to each well of an ELISA plate coated with recombinant human TACE and blocked with BlockAce and incubated. Thereafter, an HRP-labeled anti-mouse IgG antibody was reacted as a detection antibody, and after further washing the well, absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. The data is shown in the upper graph of FIG. In the figure, * indicates that there is a significant difference from the sample in which PBS was added to the monoclonal antibody at p ⁇ 0.05.
  • each peptide 9A-9H is coated on an ELISA plate to directly observe the reactivity of the purified monoclonal antibody to each peptide 9A-9H, and after BlockAce blocking
  • an HRP-labeled anti-mouse IgG antibody was reacted as a detection antibody, and absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. This shows that the peptide coated with the well having a high value in this detection system is the epitope sequence of the purified monoclonal antibody.
  • Example 4 Test of TACE neutralizing ability of purified monoclonal antibody in cell culture system TACE from activated mouse T cells was used to determine whether the monoclonal antibody C6-62 obtained in the cell culture system exhibited a predetermined TACE inhibitory effect in the cell culture system. This was confirmed by measuring the release of bone cell differentiation promoting cytokines.
  • a mouse T cell cell line EL4-TK cell suspension (8 ⁇ 10 4 cells / ml, 1 ml) was seeded in a 24-well plate.
  • Purified monoclonal antibody or normal mouse IgG was added to a final concentration of 0.32 ⁇ g / ml and reacted for 30 minutes.
  • PMA Phorbol-12-Myristate-13-Acetate
  • Ionomycin final concentration 500 ng / ml; Enzo Life Sciences, Inc., Farmingdale, NY
  • mice osteoclast differentiation promoting factor release from stimulated cells The concentrations of mouse TNF- ⁇ and sRANKL in the culture medium were determined using anti-mouse TNF-alpha ELISA kit (BioLegend, Inc., San Diego, Calif.) Rodent sRANKL ELISA kit (PeproTech, Inc., Rocky Hill, NJ) was used as recommended protocol.
  • the statistical significance test was repeated three times for each sample, confirming that similar results were obtained.
  • the statistical significance test of these experimental data was performed using Tukey's multiple comparison method, and a significance level of 5% or less was considered significant.
  • Mouse T cell cell line EL4TK released TNF- ⁇ and free RANKL (soluble RANKL: sRANKL) into the culture supernatant upon stimulation with a combination of PMA and ionomycin.
  • TNF- ⁇ and sRANKL soluble RANKL
  • monoclonal antibody C6-62 was also active in TACE in the cell culture system. It was shown that the release of cytokines promoting osteoclast differentiation from activated T cells can be prevented.
  • Example 5 Animal Experiments 8 week-old female C57BL6 mice were divided into 6 control groups, 6 experimental periodontal disease groups, and 6 experimental periodontal disease + antibody administration groups.
  • experimental periodontal disease group and experimental periodontal disease + antibody administration group according to the method of Kimura et al. (J Periodontol. 2000 Jul; 71 (7): 1167-73.) Bone destruction was induced by inserting 6-0 silk thread between the first and second molars.
  • the antibody according to the present invention has a very high ability to inhibit TACE function and inhibits RANKL-RANK signaling.
  • the diseases resulting from RANKL-RANK signaling are very useful because they are diverse.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing an antibody that has a high ability to inhibit the function of TACE. Provided is an antihuman TACE protein antibody which specifically binds to an amino acid sequence region represented by VMYPIAVSGDHENNKMFSNCSKQ or MAKSYPNEEKDAW.

Description

TACEペプチドエピトープ、抗ヒトTACEタンパク質抗体及び当該抗体を産生するハイブリドーマTACE peptide epitope, anti-human TACE protein antibody, and hybridoma producing the antibody
 [関連出願の相互参照]
 本出願は、2013年3月28日に出願された、日本国特許出願第2013-069544号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
[Cross-reference of related applications]
This application claims priority based on Japanese Patent Application No. 2013-069544 filed on Mar. 28, 2013, the entire disclosure of which is incorporated herein by reference.
 本発明は、TACEペプチドエピトープ、抗ヒトTACEタンパク質抗体及び当該抗体を産生するハイブリドーマに関する。 The present invention relates to a TACE peptide epitope, an anti-human TACE protein antibody, and a hybridoma that produces the antibody.
 歯周病は加齢とともに罹患率が上昇する生活習慣病の一つであり、歯周病原菌感染によって過度の免疫反応が歯周組織で惹起されることで発症する。重度の歯周病では歯槽骨骨破壊により歯の支持組織が失われ咀嚼障害が生じ、著しくQOLが低下する。この骨破壊は破骨細胞による過剰な骨吸収促進によって生じることが知られており、破骨細胞形成と活性化への必須因子であるRANKL(非特許文献1)が歯周病の歯周組織においてmRNAレベルならびにタンパク質レベルで発現が上昇している事も報告されている(非特許文献2及び3)。また歯周病においてどのような細胞がRANKLを発現しているかについては、歯肉組織に浸潤したリンパ球(B細胞やT細胞)がこの上昇したRANKLの主要源になっていることも報告されている(非特許文献2)。 Periodontal disease is one of the lifestyle-related diseases whose morbidity increases with age, and it develops when an excessive immune reaction is induced in the periodontal tissue by infection with periodontal pathogens. In severe periodontal disease, the alveolar bone fracture causes loss of tooth support tissue, resulting in masticatory disorders and markedly lower quality of life. It is known that this bone destruction is caused by excessive bone resorption promotion by osteoclasts, and RANKL (Non-patent Document 1), which is an essential factor for osteoclast formation and activation, is a periodontal tissue of periodontal disease. It has also been reported that expression is increased at the mRNA level and at the protein level (Non-patent Documents 2 and 3). In addition, regarding the type of cells that express RANKL in periodontal disease, it has been reported that lymphocytes (B cells and T cells) infiltrating the gingival tissue are the main source of this increased RANKL. (Non-Patent Document 2).
  歯周病の進行ステップを簡単に説明すると、歯と歯茎の境目の溝(歯周ポケット)にプラークが沈着し、そのプラークの大部分を構成する細菌やそれらの産生物が歯周ポケットから歯肉上皮を通過、歯肉組織内に侵入し、侵入した細菌・産生物が免疫系細胞を刺激し、リンパ球の浸潤、浸潤リンパ球の活性化が引き起こされる。このように、侵入した細菌・産生物に引き寄せられることで歯肉内の毛細血管から遊走したリンパ球は、歯周ポケット近く、つまり歯槽骨から遠く離れた上皮近くに集積することとなる(非特許文献4)
 破骨細胞形成と活性化への必須因子であるRANKL(RANKリガンド)は、破骨細胞形成を支持するリンパ球などの免疫系細胞や、骨芽細胞などの間質細胞に、通常膜結合型タンパク質として合成される(非特許文献1)。そのため、これら破骨細胞形成支持細胞と、破骨細胞前駆細胞・破骨細胞との直接的な細胞間接触が、RANKLシクナル伝達に必須であるとされている(非特許文献5)。膜結合型RANKLは細胞内ドメイン、膜貫通ドメイン、細胞外ドメインの3領域で構成され、破骨細胞分化因子としての機能へは、細胞外ドメインの特定領域のみが必要である。
Briefly describing the progression of periodontal disease, plaque deposits in the groove (periodontal pocket) between the teeth and gums, and the bacteria and their products that make up the majority of the plaque are transferred from the periodontal pocket to the gingiva. It passes through the epithelium, enters the gingival tissue, and the invading bacteria and products stimulate immune system cells, causing infiltration of lymphocytes and activation of infiltrating lymphocytes. In this way, lymphocytes that have migrated from capillaries in the gingiva by being attracted by invading bacteria and products accumulate near the periodontal pocket, that is, near the epithelium far from the alveolar bone (non-patented). Reference 4)
RANKL (RANK ligand), an essential factor for osteoclast formation and activation, is usually membrane-bound on immune cells such as lymphocytes that support osteoclast formation and stromal cells such as osteoblasts. It is synthesized as a protein (Non-patent Document 1). Therefore, direct cell-cell contact between these osteoclast-forming support cells and osteoclast precursor cells / osteoclasts is considered essential for RANKL signal transmission (Non-patent Document 5). Membrane-bound RANKL is composed of three regions, an intracellular domain, a transmembrane domain, and an extracellular domain. Only a specific region of the extracellular domain is required for functioning as an osteoclast differentiation factor.
  ところが、歯周病歯肉組織を考えた場合、前述の通りRANKL発現細胞(浸潤した活性化リンパ球)と、歯槽骨表面に存在し実際に骨吸収を行っている破骨細胞との問には数100マイクロメートルの距離があり(非特許文献7)、破骨細胞形成支持細胞(浸潤した活性化リンパ球)と破骨細胞が細胞間接触でRANKLシグナルを伝達しているとは考えにくい。この現象の乖離への説明として、膜結合型RANKLから遊離型RANKLへの酵素的な切断による変換(shedding)について報告がなされている(非特許文献4、6~8)。RANKLの破骨細胞分化因子としての機能は、細胞外ドメインの特定領域のみが必要であり(非特許文献9)、その領域(soluble RANKL domain)と膜貫通ドメインとの間の特定アミノ酸配列を切断できる酵素であれば、RANKLの破骨細胞分化促進機能を保ったまま、膜結合型から遊離型RANKLへ変換することが可能である。 However, considering periodontal disease gingival tissue, as mentioned above, there are questions about RANKL-expressing cells (infiltrated activated lymphocytes) and osteoclasts that are present on the surface of the alveolar bone and actually resorb bone. There is a distance of several hundred micrometers (Non-patent Document 7), and it is unlikely that osteoclast-forming support cells (infiltrated activated lymphocytes) and osteoclasts transmit RANKL signals through cell-cell contact. As an explanation for the divergence of this phenomenon, reports have been made on the shedding of membrane-bound RANKL to free RANKL by enzymatic cleavage ( Non-Patent Documents 4, 6 to 8). The function of RANKL as an osteoclast differentiation factor requires only a specific region of the extracellular domain (Non-patent Document 9) and cleaves a specific amino acid sequence between that region (soluble RANKL domain) and the transmembrane domain Any enzyme capable of converting from membrane-bound to free RANKL while maintaining the osteoclast differentiation promoting function of RANKL can be achieved.
 本発明は、TACE機能の高い阻害能を有する抗体を提供することを課題とする。 An object of the present invention is to provide an antibody having a high inhibitory ability of TACE function.
 本発明者は、このRANKL sheddaseとして報告されている酵素のうち、活性化リンパ球でRT-PCRによるmRNA発現ならびにフローサイトメトリーを用いてタンパク質レベルでの発現を観察したところ、MMp-7、MMP114、ADAM-10、ADAM-17(TACE:TNF-αconvertingenzyme)の4酵素までRANKL sheddaseを絞り込むことができた。そして、本発明者は、これらのRANKL sheddaseのうちTACEが重要な役割を果たすことを見出した。さらに本発明者は、鋭意研究した結果、IgG抗ヒトTACE中和抗体を作製するに当り、TACEのアミノ酸配列のうち、特定の部分を抗原として用いることでTACE機能の阻害能を有する抗体が作製可能であることを見出した。 Among the enzymes reported as RANKL に よ る sheddase, the present inventor observed mRNA expression by RT-PCR in activated lymphocytes and expression at the protein level using flow cytometry. MMp-7, MMP114 , RANKL sheddase could be narrowed down to 4 enzymes, ADAM-10 and ADAM-17 (TACE: TNF-αconvertingenzyme). The present inventors have found that TACE plays an important role among these RANKLRANsheddases. Furthermore, as a result of earnest research, the present inventor has produced an antibody having the ability to inhibit TACE function by using a specific part of the amino acid sequence of TACE as an antigen in preparing an IgG anti-human TACE neutralizing antibody. I found it possible.
  従って、本発明は以下の項を提供する:
 項1.VMYPIAVSGDHENNKMFSNCSKQ又はMAKSYPNEEKDAWで表されるアミノ酸配列の領域に特異的に結合する抗ヒトTACEタンパク質抗体。
Accordingly, the present invention provides the following sections:
Item 1. An anti-human TACE protein antibody that specifically binds to a region of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ or MAKSYPNEEKDAW.
  項2.YPIAVSGDで表されるアミノ酸配列の領域に特異的に結合する、項1に記載の抗体。 Item 2. Item 2. The antibody according to Item 1, which specifically binds to a region of the amino acid sequence represented by YPIAVSGD.
  項3.モノクローナル抗体である、項1又は2に記載の抗体。 Item 3. Item 3. The antibody according to Item 1 or 2, which is a monoclonal antibody.
  項4.VMYPIAVSGDHENNKMFSNCSKQで表されるアミノ酸配列のうち少なくとも7つの連続するアミノ酸からなるペプチド、又はMAKSYPNEEKDAWで表されるアミノ酸配列からなるペプチドである、TACEペプチドエピトープ。 Item 4. A TACE peptide epitope, which is a peptide consisting of at least 7 consecutive amino acids in the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ, or a peptide consisting of an amino acid sequence represented by MAKSYPNEEKDAW.
  項5.アミノ酸配列YPIAVSG又はPIAVSGDを含む、項4に記載のTACEペプチドエピトープ。 Item 5 Item 5. The TACE peptide epitope according to Item 4, comprising the amino acid sequence YPIAVSG or PIAVSGD.
  項6.項1~3のいずれか一項に記載の抗体を産生するハイブリドーマ。 Item 6 Item 4. A hybridoma that produces the antibody according to any one of Items 1 to 3.
  項7.有効量の項1~3のいずれか一項に記載の抗体を含む、RANKL-RANKシグナル伝達に起因する疾患の治療又は予防薬。 Item 7 A therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling, comprising an effective amount of the antibody according to any one of Items 1 to 3.
  項8.RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、項7に記載の治療又は予防薬。 Item 8 Item 8. The therapeutic or prophylactic agent according to Item 7, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
 項9.有効量の項1~3のいずれか一項に記載の抗体を被験者に投与する工程を含む、RANKL-RANKシグナル伝達に起因する疾患を治療又は予防する方法。 Item 9. A method for treating or preventing a disease caused by RANKL-RANK signaling, comprising a step of administering an effective amount of the antibody according to any one of items 1 to 3 to a subject.
 項10.RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、項9に記載の方法。 Item 10. Item 10. The method according to Item 9, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
 項11.RANKL-RANKシグナル伝達に起因する疾患を治療又は予防するための項1~3のいずれか一項に記載の抗体。 Item 11. Item 4. The antibody according to any one of Items 1 to 3, for treating or preventing a disease caused by RANKL-RANK signaling.
 項12.RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、項11に記載の抗体。 Item 12. Item 12. The antibody according to Item 11, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
 項13.RANKL-RANKシグナル伝達に起因する疾患の治療又は予防薬を製造するための項1~3のいずれか一項に記載の抗体の使用。 Item 13. Item 4. Use of the antibody according to any one of Items 1 to 3 for producing a therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling.
 項14.RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、項13に記載の使用。 Item 14. Item 14. The use according to Item 13, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
 本発明に係る抗体は、非常に高いTACE機能の阻害能を有する。従って、本発明に係る抗体は、RANKL-RANKシグナル伝達を阻害し、当該シグナル伝達に起因する疾患の治療又は予防に非常に有用である。 The antibody according to the present invention has a very high ability to inhibit TACE function. Therefore, the antibody according to the present invention inhibits RANKL-RANK signaling and is very useful for the treatment or prevention of diseases caused by the signaling.
実施例1におけるアフィニティー精製ポリクローナル抗体のTACE阻害能比較の結果を示す。The result of the TACE inhibitory ability comparison of the affinity purified polyclonal antibody in Example 1 is shown. 実施例1におけるアフィニティー精製ポリクローナル抗体と低分子阻害剤TAPI-2のTACE阻害能比較の結果を示す。The result of the TACE inhibitory ability comparison of the affinity purified polyclonal antibody and the small molecule inhibitor TAPI-2 in Example 1 is shown. 実施例2におけるモノクローナル抗体C6-30、C6-62と低分子阻害剤TAPI-2のTACE阻害能比較の結果を示す。The result of the TACE inhibitory ability comparison of the monoclonal antibodies C6-30 and C6-62 and the small molecule inhibitor TAPI-2 in Example 2 is shown. 実施例3における各試験の結果を示す。The result of each test in Example 3 is shown. 実施例4における活性化T細胞からの破骨細胞分化促進サイトカインの測定結果を示す。図5(上)は、刺激後2時間の培養上清について市販のELISAキットを用いてTNF-αの測定を行った結果を示す。図5(下)は刺激後3日目の培養上清について市販のELISAキットを用いてsRANKLの測定を行った結果を示す。The measurement result of the osteoclast differentiation promotion cytokine from the activated T cell in Example 4 is shown. FIG. 5 (upper) shows the results of measuring TNF-α using a commercially available ELISA kit for the culture supernatant 2 hours after stimulation. FIG. 5 (bottom) shows the results of measurement of sRANKL using a commercially available ELISA kit for the culture supernatant on the third day after stimulation. TACEのアミノ酸配列を示す。The amino acid sequence of TACE is shown. TACEの3次元構造及びPeptide-1の位置を示す。The three-dimensional structure of TACE and the position of Peptide-1 are shown. TACEの3次元構造及びPeptide-2の位置を示す。The three-dimensional structure of TACE and the position of Peptide-2 are shown. TACEの3次元構造及びPeptide-3の位置を示す。The three-dimensional structure of TACE and the position of Peptide-3 are shown. TACEの3次元構造及びPeptide-4の位置を示す。The three-dimensional structure of TACE and the position of Peptide-4 are shown. TACEの3次元構造及びPeptide-5の位置を示す。The three-dimensional structure of TACE and the position of Peptide-5 are shown. TACEの3次元構造及びPeptide-6の位置を示す。The three-dimensional structure of TACE and the position of Peptide-6 are shown. TACEの3次元構造及びPeptide-7の位置を示す。The three-dimensional structure of TACE and the position of Peptide-7 are shown. TACEの3次元構造及びPeptide-8の位置を示す。The three-dimensional structure of TACE and the position of Peptide-8 are shown. TACEの3次元構造及びPeptide-9の位置を示す。The three-dimensional structure of TACE and the position of Peptide-9 are shown. 実施例5におけるin vivoでの骨破壊に対するモノクロ抗体の阻止効果を示す。 *:p < 0.05、NS:群間に有為差なしThe inhibitory effect of the monoclonal antibody with respect to the bone destruction in in-vivo in Example 5 is shown. *: P <0.05, NS: no significant difference between groups
 抗体
 本発明の抗体が標的とするTACE (TNF-α converting enzyme, ADAM-17)は特定のアミノ酸配列(VGPQRJFSGAPAMME)を認識し切断する、70kDa(824アミノ酸残基)の酵素であり、ADAMファミリーに属する。ヒトTACEのアミノ酸配列を図6に示す(配列番号10)
。T細胞やB細胞など様々な細胞での発現が報告されている。またTACEは、膜結合型の酵素であり、細胞外ドメイン(215-671)、膜貫通ドメイン(672-692)及び細胞内ドメイン(693-824)の3領域で構成されており、酵素機能を発揮するcatalytic domain(223-474)は細胞外ドメインに存在する(Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, CastnerBJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. 1997 A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 385(6618):729-33. ; Moss ML, Jin SL, MiIIa ME, Bickett DM. Burkhart W, Carter HL, Chen WJ, Clay WC. Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGreehan G, Mitchell J, Moyer M, Pahel G Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Becherer JD, et al. 1997 Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 385(6618):73316)。また、種を越えてアミノ酸配列の高い相同性が維持されており、ヒト-ラット・ヒト-マウス間では95%、ヒト-ウサギ間でも87%配列が一致している。
Antibody TACE (TNF-α converting enzyme, ADAM-17) targeted by the antibody of the present invention is a 70 kDa (824 amino acid residue) enzyme that recognizes and cleaves a specific amino acid sequence (VGPQRJFSGAPAMME). Belongs. The amino acid sequence of human TACE is shown in FIG. 6 (SEQ ID NO: 10).
. Expression in various cells such as T cells and B cells has been reported. TACE is a membrane-bound enzyme that is composed of three domains: the extracellular domain (215-671), the transmembrane domain (672-692), and the intracellular domain (693-824). The catalytic domain (223-474) is present in the extracellular domain (Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, CastnerBJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. 1997 A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 385 (6618): 729- 33.; Moss ML, Jin SL, MiIIa ME, Bickett DM. Burkhart W, Carter HL, Chen WJ, Clay WC. Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGreehan G , Mitchell J, Moyer M, Pahel G Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Becherer JD, et al. 1997 Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alp ha. Nature. 385 (6618): 73316). Furthermore, high homology of amino acid sequences is maintained across species, with 95% sequence matching between human-rat / human-mouse and 87% sequence matching between human-rabbit.
 本発明に係る抗体は、TACEのアミノ酸配列のうち、VMYPIAVSGDHENNKMFSNCSKQ(配列番号9)又はMAKSYPNEEKDAW(配列番号4)で表されるアミノ酸配列の領域に特異的に結合する。本発明に係る抗体のうち、VMYPIAVSGDHENNKMFSNCSKQ(配列番号9)で表されるアミノ酸配列の領域に特異的に結合するものが好ましく、当該アミノ酸領域のうち、YPIAVSGD(配列番号12)で表されるアミノ酸領域に特異的に結合するものがより好ましい。 The antibody according to the present invention specifically binds to a region of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ (SEQ ID NO: 9) or MAKSYPNEEKDAW (SEQ ID NO: 4) in the amino acid sequence of TACE. Among the antibodies according to the present invention, those that specifically bind to the region of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ (SEQ ID NO: 9) are preferable, and among the amino acid regions, the amino acid region represented by YPIAVSGD (SEQ ID NO: 12) Those that specifically bind to are more preferred.
  本発明に係る抗体が上記に示すTACE由来のアミノ酸配列の領域に特異的に結合することは、公知の方法で可視化することができる。例えば、試験管内の試料を対象とするイムノアッセイ法(例えば、ELISA法)、免疫電気泳動法(例えばウェスタンブロット法)、および組織または細胞を対象とする免疫組織化学などが例として挙げられるが、これらに限定されるものではない。可視化にあたっては、本発明の抗体が蛍光物質(例えば、フルオレセインイソチアネート)、放射性同位体(例えば、ヨウ素125)、酵素(例えば、アルカリフォスファターゼ、西洋ワサビペルオキシターゼ)、その他のタンパク質(例えば、アビジン)などの分子によって標識化されていてもよい。あるいは、本発明の抗体を特異的に認識する二次抗体を用いてもよい。 The specific binding of the antibody according to the present invention to the region of the amino acid sequence derived from TACE shown above can be visualized by a known method. Examples include immunoassay methods (for example, ELISA method) for samples in vitro, immunoelectrophoresis methods (for example, Western blot method), and immunohistochemistry for tissues or cells. It is not limited to. For visualization, the antibody of the present invention is a fluorescent substance (for example, fluorescein isothiocyanate), a radioisotope (for example, iodine 125), an enzyme (for example, alkaline phosphatase, horseradish peroxidase), and other proteins (for example, avidin). It may be labeled with a molecule such as Alternatively, a secondary antibody that specifically recognizes the antibody of the present invention may be used.
 本発明の抗体は、上記に示すTACE由来のアミノ酸配列の領域と特異的に結合できる限りその免疫グロブリンクラスについては限定されるものではなく、例えばIgG、IgM、IgA、IgD、IgE、IgYなどが挙げられる。さらに、そのサブクラスも制限されない。好ましくは、IgGである。 The antibody of the present invention is not limited as long as it can specifically bind to the above-mentioned TACE-derived amino acid sequence region. For example, IgG, IgM, IgA, IgD, IgE, IgY and the like can be used. Can be mentioned. Furthermore, the subclass is not limited. Preferably, it is IgG.
 本発明の抗体は、抗体を産生しうる哺乳類(例えば、ヒト、マウス、ラット、ウサギ)または鳥類(例えば、ニワトリ、ダチョウ)由来である。 The antibody of the present invention is derived from a mammal (for example, human, mouse, rat, rabbit) or bird (for example, chicken or ostrich) capable of producing the antibody.
 本発明の抗体は、ポリクローナル抗体であってもよいし、モノクローナル抗体であってもよい。さらには、モノクローナル抗体のうち、キメラ抗体、ヒト化抗体、またはヒト抗体であってもよい。ここで、キメラ抗体およびヒト化抗体とは、免疫グロブリンタンパク質のうち、抗原と結合可能な部位以外がヒト由来である抗体を指す。ヒト抗体は、ヒト由来の抗体、または完全なヒト由来の免疫グロブリン遺伝子を有するヒト抗体産生マウス由来である抗体を指す。キメラ抗体、ヒト化抗体、およびヒト抗体は、ヒトにおける免疫原性が低く、抗体を医療製剤などに用いるに当たって有用である。従って、本発明の抗体を医療製剤などに用いる場合にあっては、モノクローナル抗体が好ましく、ヒト化抗体またはヒト抗体が特に好ましい。 The antibody of the present invention may be a polyclonal antibody or a monoclonal antibody. Furthermore, among monoclonal antibodies, a chimeric antibody, a humanized antibody, or a human antibody may be used. Here, the chimeric antibody and the humanized antibody refer to an antibody derived from a human other than a site capable of binding to an antigen among immunoglobulin proteins. A human antibody refers to a human-derived antibody or an antibody derived from a human antibody-producing mouse having a complete human-derived immunoglobulin gene. Chimeric antibodies, humanized antibodies, and human antibodies have low immunogenicity in humans and are useful in using antibodies in medical preparations and the like. Therefore, when the antibody of the present invention is used for medical preparations, monoclonal antibodies are preferable, and humanized antibodies or human antibodies are particularly preferable.
 本発明の抗体は、免疫グロブリンタンパク質全長であっても、抗原と結合可能な部位を含むそれらの断片(フラグメント)であってもよい。また、抗体を含む組成物、例えば抗血清などであってもよい。 The antibody of the present invention may be a full-length immunoglobulin protein or a fragment thereof containing a site capable of binding to an antigen. It may also be a composition containing an antibody, such as antiserum.
 本発明の抗体は、抗原を免疫動物に投与することで作製することができる。抗原としては、後述する本発明のTACEペプチドエピトープを用いることができる。抗原を免疫動物に投与する場合にあっては、ペプチドは分子量が小さく、免疫応答を十分に起こせない場合があるため、ペプチドを適当なタンパク質(例えば、アルブミン、サイログロブリンヘモシアニン等)に結合させて抗原として用いてもよい。 The antibody of the present invention can be prepared by administering an antigen to an immunized animal. As the antigen, the TACE peptide epitope of the present invention described later can be used. When an antigen is administered to an immunized animal, since the peptide has a small molecular weight and may not cause an immune response sufficiently, the peptide is bound to an appropriate protein (eg, albumin, thyroglobulin hemocyanin, etc.) It may be used as
 あるいは、多様な抗体またはその断片を産出しうる細胞またはファージなどのライブラリから、抗原と結合する抗体またはその断片を産出するものを探索することで、本発明の抗体を入手することもできる。この場合、抗原としては、後述する本発明のTACEペプチドエピトープを用いることができる。 Alternatively, the antibody of the present invention can also be obtained by searching for an antibody that binds to an antigen or a fragment thereof from a library such as a cell or phage that can produce various antibodies or fragments thereof. In this case, the TACE peptide epitope of the present invention described later can be used as the antigen.
 抗原として用いるペプチドの入手方法は、特に制限されず公知の方法によることができ、例えば天然由来、化学合成、無細胞系合成、組換えペプチドであってもよい。 The method for obtaining a peptide used as an antigen is not particularly limited, and can be a known method. For example, it may be naturally derived, chemically synthesized, cell-free synthesized or recombinant peptide.
 一般的な抗体の作製方法については、例えば、Harlowらの「Using Antibodies : A laboratory manual」(Cold Spring Harbor Laboratory Press, New York(1998))、岩崎らの「単クローン抗体 ハイブリドーマとELISA,講談社(1991)」などに記載されている。以下、ポリクローナル抗体、モノクローナル抗体、およびヒト化抗体の各抗体の作製方法について簡単に説明する。 As for general antibody production methods, for example, Harlow et al., `` Using Antibodies: A laboratory manual '' (Cold Spring Harbor Laboratory Press, New York (1998)), Iwasaki et al. `` Monoclonal Antibody Hybridoma and ELISA, Kodansha ( 1991) ". Hereinafter, a method for producing each of a polyclonal antibody, a monoclonal antibody, and a humanized antibody will be briefly described.
 (1)ポリクローナル抗体
 ポリクローナル抗体は、免疫動物(例えば、マウス、ラット、ウサギ、ニワトリ)を通常の方法により免疫し、血清を調製し、抗血清から抗体を精製することにより得ることができる。免疫は、例えば、免疫原溶液を等量のフロイントの完全アジュバント又は不完全アジュバントと乳化混合したものを接種(初回免疫)し、以後2~4週間の間隔で数回免疫することによって行うことができる。抗血清からのポリクローナル抗体の精製は、DEAEイオン交換クロマトグラフィー又はプロテインGアフィニティークロマトグラフィー等により行うことができる。
(1) Polyclonal antibody A polyclonal antibody can be obtained by immunizing an immunized animal (eg, mouse, rat, rabbit, chicken) by a usual method, preparing serum, and purifying the antibody from antiserum. Immunization can be performed, for example, by inoculating an immunogen solution emulsified with an equal volume of Freund's complete or incomplete adjuvant (primary immunization) and then immunizing several times at intervals of 2 to 4 weeks. it can. Purification of the polyclonal antibody from the antiserum can be performed by DEAE ion exchange chromatography or protein G affinity chromatography.
 (2)モノクローナル抗体
 モノクローナル抗体は、モノクローナル抗体を産生するハイブリドーマを調製し、当該ハイブリドーマが産生した抗体を精製することで作製できる。または、ファージディスプレイ法、すなわち、多様な抗体または抗体断片を発現するファージライブラリより、抗原に対して特異的に結合する抗体または抗体断片を探索する方法によって作製することもできる。
(2) Monoclonal antibody A monoclonal antibody can be prepared by preparing a hybridoma producing a monoclonal antibody and purifying the antibody produced by the hybridoma. Alternatively, it can also be prepared by a phage display method, that is, a method of searching for an antibody or antibody fragment that specifically binds to an antigen from a phage library that expresses various antibodies or antibody fragments.
 ハイブリドーマを分離する方法は、自体公知であり(例えば、Kohlerら, Nature, 256: 495 (1975)など)、例えば、以下の方法により得ることができる。最終免疫して数日後の免疫動物(例えば、マウス)から脾臓を無菌的に摘出し、脾臓から脾臓細胞を調製する。脾臓細胞は、ミエローマ細胞(骨髄腫細胞)とともに、細胞融合工程に用いる。ミエローマ細胞としては例えば、NS-1、P3U1、SP2/0などを使用することができ、細胞融合の方法としては、例えばPEG等の融合促進剤を含む培地中で、脾臓細胞とミエローマ細胞とを、常法の混合比率(約1/5~1/10程度の割合)で混合することにより行うことができる。融合後、選択用培地(例えば、HAT培地)を用いて、ハイブリドーマのみを増殖させる。それらの内、培養上清中に目的のモノクローナル抗体を分泌しているハイブリドーマは、例えば、培養上清とTACEペプチドエピトープとの反応性を酵素結合免疫測定法(ELISA)でスクリーニングすることによって確認し、選択することができる。 Methods for separating hybridomas are known per se (for example, Kohler et al., Nature, 256: 495 (1975)), and can be obtained, for example, by the following method. The spleen is aseptically removed from the immunized animal (eg, mouse) several days after the final immunization, and spleen cells are prepared from the spleen. Spleen cells are used in the cell fusion step together with myeloma cells (myeloma cells). For example, NS-1, P3U1, SP2 / 0 and the like can be used as myeloma cells. As a method of cell fusion, for example, spleen cells and myeloma cells are mixed in a medium containing a fusion promoter such as PEG. It can be carried out by mixing at a conventional mixing ratio (a ratio of about 1/5 to 1/10). After the fusion, only the hybridoma is grown using a selection medium (for example, HAT medium). Among them, the hybridoma secreting the target monoclonal antibody in the culture supernatant is confirmed, for example, by screening the reactivity of the culture supernatant with the TACE peptide epitope by enzyme linked immunoassay (ELISA). Can be selected.
 ハイブリドーマの産生するモノクローナル抗体は、これを培養することにより、容易に調製することができる。培養は適切な培地中(例えば、10%ウシ胎児血清を追加したダルベッコ変法イーグル培地(DMEM))で、あるいは生体内(例えば、マウスの腹腔中)で行うことができる。培養上清、あるいは腹水などを出発材料として、抗体を精製することもできる。抗体の精製には、タンパク質の精製に一般的な方法、例えば硫安塩析、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、プロテインAもしくはプロテインG結合ポリマー等を用いるアフィニティークロマトグラフィー、または透析等の方法を適宜組み合わせて用いることができる。 Monoclonal antibodies produced by hybridomas can be easily prepared by culturing them. The culture can be performed in an appropriate medium (for example, Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum) or in vivo (for example, in the peritoneal cavity of a mouse). The antibody can also be purified using the culture supernatant or ascites as a starting material. For antibody purification, a general method for protein purification, such as ammonium sulfate salting-out, ion exchange chromatography, gel filtration chromatography, affinity chromatography using protein A or protein G binding polymer, or dialysis, is used. They can be used in appropriate combinations.
 ファージディスプレイ法も自体公知であるが(例えば、Clacksonら, Nature 352:624-8(1991)等)、以下に簡単に説明する。あらかじめ作製した多様な抗体の抗原認識部位を提示するファージライブラリから、TACEペプチドエピトープと結合する抗原認識部位を提示するファージを選択する。選択されたファージが提示する抗原認識部位をそのまま用いても良いし、遺伝子工学的手法によって完全長の抗体を産出可能なCHO細胞などに組み込むことで、完全長の抗体を得ることもできる。 The phage display method is also known per se (for example, Clackson et al., Nature 352: 624-8 (1991)), and will be briefly described below. A phage that displays an antigen recognition site that binds to a TACE peptide epitope is selected from a phage library that displays antigen recognition sites of various antibodies prepared in advance. The antigen recognition site displayed by the selected phage may be used as it is, or a full-length antibody can be obtained by incorporating the full-length antibody into a CHO cell capable of producing the full-length antibody by a genetic engineering technique.
 (3)ヒト化抗体、ヒト抗体
 ヒト化抗体とは、抗体タンパク質のうち、抗原認識のために必要最小限な領域(相補性決定領域、complementarity-determining region:CDR)以外がヒト由来のものである。ヒト化抗体の製造方法は、例えば、EP0239400、US5585089号などに記載され公知である。
(3) Humanized antibody, human antibody A humanized antibody is an antibody protein whose origin is other than the minimum necessary region for antigen recognition (complementarity-determining region: CDR). is there. A method for producing a humanized antibody is described in, for example, EP0239400, US5585089, and the like.
 ヒト抗体は、完全なヒト由来の免疫グロブリン遺伝子を有するヒト抗体産生マウスから得ることができる。ヒト抗体産生マウスについては、WO97/07671などに記載され公知である。 A human antibody can be obtained from a human antibody-producing mouse having a complete human-derived immunoglobulin gene. Human antibody-producing mice are known and described in WO 97/07671.
  本発明の抗体は、非常に高いTACE活性中和能を有する。TACEはRANK-RANKLシグナル伝達に重要な役割を果たしているため、本発明の抗体は、RANK-RANKLシグナル伝達に起因する疾患の治療、予防などに有用である。 The antibody of the present invention has a very high ability to neutralize TACE activity. Since TACE plays an important role in RANK-RANKL signaling, the antibody of the present invention is useful for the treatment and prevention of diseases caused by RANK-RANKL signaling.
  エピトープ
 本発明は、VMYPIAVSGDHENNKMFSNCSKQ(配列番号9)で表されるアミノ酸配列のうち少なくとも7つの連続するアミノ酸からなるペプチド、又はMAKSYPNEEKDAW(配列番号4)で表されるアミノ酸配列からなるペプチドである、TACEペプチドエピトープを提供する。
Epitope The present invention is a TACE peptide, which is a peptide consisting of at least 7 consecutive amino acids of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ (SEQ ID NO: 9) or a peptide consisting of an amino acid sequence represented by MAKSYPNEEKDAW (SEQ ID NO: 4). Provide an epitope.
  これらのTACEペプチドエピトープのうち、配列番号9で表されるアミノ酸配列のうち少なくとも7つの連続するアミノ酸からなるペプチドが好ましい。当該TACEペプチドエピトープは、好ましくは、20個以下のアミノ酸からなることが好ましく、15個以下のアミノ酸からなることがより好ましく、10個以下のアミノ酸からなることがさらに好ましく、9個以下のアミノ酸からなることがさらに好ましい。また、本発明のエピトープは、アミノ酸配列YPIAVSG(配列番号19)又はPIAVSGD(配列番号20)を含むことが好ましい。好ましいペプチドエピトープとしては、例えば、VMYPIAVSGDHE(配列番号21)、MYPIAVSGDHE(配列番号22)、VMYPIAVSGDH(配列番号23)、YPIAVSGDHE(配列番号24)、VMYPIAVSGD(配列番号25)、MYPIAVSGDH(配列番号26)、YPIAVSGDH(配列番号27)、MYPIAVSGD(配列番号28)、PIAVSGDHE(配列番号29)、VMYPIAVSG(配列番号30)、PIAVSGDH(配列番号31)、MYPIAVSG(配列番号32)、YPIAVSGD(配列番号33)、YPIAVSG(配列番号34)、PIAVSGD(配列番号35)等が挙げられ、YPIAVSGDHE(配列番号24)、VMYPIAVSGD(配列番号25、MYPIAVSGDH(配列番号26)、YPIAVSGDH(配列番号27)、MYPIAVSGD(配列番号28)、YPIAVSGD(配列番号12)等がより好ましく、YPIAVSGD(配列番号12)が最も好ましい。 Of these TACE peptide epitopes, a peptide consisting of at least 7 consecutive amino acids in the amino acid sequence represented by SEQ ID NO: 9 is preferred. The TACE peptide epitope is preferably composed of 20 amino acids or less, more preferably 15 amino acids or less, further preferably 10 amino acids or less, and 9 amino acids or less. More preferably. The epitope of the present invention preferably includes the amino acid sequence YPIAVSG (SEQ ID NO: 19) or PIAVSGD (SEQ ID NO: 20). Preferred peptide epitopes include, for example, VMYPIAVSGDHE (SEQ ID NO: 21), MYPIAVSGDHE (SEQ ID NO: 22), VMYPIAVSGDH (SEQ ID NO: 23), YPIAVSGDHE (SEQ ID NO: 24), VMYPIAVSGD (SEQ ID NO: 25), MYPIAVSGDH (SEQ ID NO: 26), YPIAVSGDH (SEQ ID NO: 27), MYPIAVSGD (SEQ ID NO: 28), PIAVSGDHE (SEQ ID NO: 29), VMYPIAVSG (SEQ ID NO: 30), PIAVSGDH (SEQ ID NO: 31), MYPIAVSG (SEQ ID NO: 32), YPIAVSGD (SEQ ID NO: 33), YPIAVSG (SEQ ID NO: 34), PIAVSGD (SEQ ID NO: 35), and the like. YPIAVSGDHE (SEQ ID NO: 24), VMYPIAVSGD (SEQ ID NO: 25, MYPIAVSGDH (SEQ ID NO: 26), YPIAVSGDH (SEQ ID NO: 27), MYPIAVSGD (SEQ ID NO: 28) , YPIAVSGD (SEQ ID NO: 12) and the like are more preferable, and YPIAVSGD (SEQ ID NO: 12) is most preferable.
 本発明のペプチドエピトープは、TACE機能の阻害能を有する抗体を調製するために用いることができる。本発明のペプチドエピトープを抗原として用いる場合には、前述のように、適当なタンパク質に結合させて抗原として用いてもよい。 The peptide epitope of the present invention can be used for preparing an antibody having the ability to inhibit TACE function. When the peptide epitope of the present invention is used as an antigen, it may be bound to an appropriate protein and used as an antigen as described above.
  ハイブリドーマ
  本発明は、抗体を産生するハイブリドーマも提供する。ハイブリドーマの製造方法は、本願実施例の方法、抗体について前述した方法等、自体公知の方法に準じて行うことができる。
Hybridoma The present invention also provides a hybridoma that produces an antibody. The method for producing a hybridoma can be carried out according to a method known per se, such as the method of Examples of the present application and the method described above for antibodies.
 治療又は予防薬
 本発明は、前述の抗体を含む、RANKL-RANKシグナル伝達に起因する疾患の治療又は予防薬を提供する。
Therapeutic or preventive agent The present invention provides a therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling, comprising the aforementioned antibody.
  本発明のRANKL-RANKシグナル伝達に起因する疾患の治療又は予防薬は、当該抗体に薬学的に許容される各種担体( 賦形剤、結合剤、崩壊剤、潤沢剤等が含まれる)と配合した製剤であってもよい。上記製剤は慣用の添加剤を含んでいてよい。 The therapeutic or prophylactic agent for diseases caused by RANKL-RANK signaling of the present invention is formulated with various pharmaceutically acceptable carriers (including vaginal excipients, binders, disintegrants, lubricants, etc.) in the antibody. It may be a prepared formulation. The formulation may contain conventional additives.
  製剤形態は、特に限定されず、例えば錠剤、丸剤、カプセル剤、散剤、顆粒剤、シロップ剤等の経口投与剤; 注射剤(静脈注射、筋肉注射、局所注射等)、含嗽剤、点滴剤、外用剤、座剤等の非経口投与剤等などの各種製剤形態を挙げることができる。好ましい製剤形態としては、例えば、局所注射剤、歯肉粘膜への塗布剤、含嗽剤等が挙げられる。 The form of the preparation is not particularly limited. For example, tablets, pills, capsules, powders, granules, syrups and the like orally administered; vaginal injections (intravenous injection, intramuscular injection, local injection, etc.), mouthwashes, drops And various preparation forms such as external preparations and parenteral administration agents such as suppositories. Preferable pharmaceutical forms include, for example, topical injections, coating agents for gingival mucosa, gargles and the like.
 製剤中の本発明の抗体の含有量は、投与経路、患者の年齢、体重、症状等によって異なり一概に規定できないが、ポリペプチドの1日投与量が通常10~1000mg程度、より好ましくは100~500mg程度になる量とすればよい。1日1回投与する場合は、1製剤中にこの量が含まれていればよく、1日3回投与する場合は、1製剤中にこの3分の1量が含まれていればよい。 The content of the antibody of the present invention in the preparation varies depending on the administration route, patient age, body weight, symptoms, etc., and cannot be defined unconditionally. However, the daily dose of the polypeptide is usually about 10 to 1000 mg, more preferably 100 to 100 mg. The amount may be about 500mg. When it is administered once a day, it is sufficient that this amount is contained in one preparation, and when it is administered three times a day, it is sufficient that this one-third amount is contained in one preparation.
 本発明の治療又は予防剤は、哺乳動物等の患者に投与される。哺乳動物としては、ヒト、サル、マウス、ラット、ウサギ、ネコ、イヌ、ブタ、ウシ、ウマ、ヒツジ等が挙げられる。 The therapeutic or prophylactic agent of the present invention is administered to a patient such as a mammal. Examples of mammals include humans, monkeys, mice, rats, rabbits, cats, dogs, pigs, cows, horses, sheep and the like.
 RANKL-RANKシグナル伝達に起因する疾患としては、特に限定されないが、例えば、歯周病、関節リウマチ(慢性関節リウマチ)、変形性関節炎、転移性骨腫瘍等が挙げられる。 The disease caused by RANKL-RANK signaling is not particularly limited, and examples thereof include periodontal disease, rheumatoid arthritis (chronic rheumatoid arthritis), osteoarthritis, and metastatic bone tumor.
  歯周病とRANKL-RANKシグナル伝達との関連性は前述した通りである。また、正常と比較して進行状態にある歯周病でTACEの発現が上昇していることが報告されている(J Dent Res. 2008 Mar;87(3):273-7. Tumor necrosis factor-alpha-converting enzyme (TACE) levels in periodontal diseases. Bostanci N, Emingil G, Afacan B, Han B, Ilgenli T, Atilla G, Hughes FJ, Belibasakis GN.)。 関 連 The association between periodontal disease and RANKL-RANK signaling is as described above. In addition, it has been reported that TACE expression is increased in periodontal disease in an advanced state compared with normal (J Dent Res. 2008 Mar; 87 (3): 273-7. Tumor necrosis factor- alpha-converting enzyme (TACE) levels in periodontal diseases. Bostanci N, Emingil G, Afacan B, Han B, Ilgenli T, Atilla G, Hughes FJ, Belibasakis GN.).
 また、慢性関節リウマチ及び変形性関節炎での骨破壊病態と歯周病における病態の類似性が指摘されており(Inflamm Res. 2004 Nov;53(11):596-600. Bone lysis and inflammation. Haynes DR.)、慢性関節リウマチにおいて、活性化リンパ球がRANKLを発現しRANKLやTNF-alphaが関節破壊に重要な役割を果たしていること(Bone. 2002 Feb;30(2):340-6. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Romas E, Gillespie MT, Martin TJ.)や、慢性関節リウマチにおいてTACEがTNF-alpha産生に重要な役割を果たしていること(J Rheumatol. 2001 Aug;28(8):1756-63. Tumor necrosis factor-alpha (TNF-alpha) converting enzyme contributes to production of TNF-alpha in synovial tissues from patients with rheumatoid arthritis. Ohta S, Harigai M, Tanaka M, Kawaguchi Y, Sugiura T, Takagi K, Fukasawa C, Hara M, Kamatani N.)が報告されている。さらに変形性関節炎でTNF-alphaの発現や(Osteoarthritis Cartilage. 1999 Jul;7(4):392-4. Regulation of tumor necrosis factor-alpha and tumor necrosis factor converting enzyme in human osteoarthritis. Amin AR.)、TACEの発現が上昇していること(J Immunol. 1998 May 1;160(9):4570-9. TNF-alpha convertase enzyme from human arthritis-affected cartilage: isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-alpha. Patel IR, Attur MG, Patel RN, Stuchin SA, Abagyan RA, Abramson SB, Amin AR.)が報告されており、TACEが破骨細胞分化促進サイトカインRANKLとTNF-alphaの遊離・活性化に重要な役割を果たしていることが推察される。そのため現在までにTACE阻害剤の慢性関節リウマチへの応用が試みられている(Bioorg Med Chem. 2009 Jan 15;17(2):444-59. doi: 10.1016/j.bmc.2008.11.067. Epub 2008 Dec 3. Current perspective of TACE inhibitors: a review. DasGupta S, Murumkar PR, Giridhar R, Yadav MR.)。 In addition, similarities between bone destruction and periodontal disease in rheumatoid arthritis and osteoarthritis have been pointed out (Inflamm Res. 2004 Nov; 53 (11): 596-600. Bone lysis and inflammation. Haynes DR.) In rheumatoid arthritis, activated lymphocytes express RANKL and RANKL and TNF-alpha play an important role in joint destruction (Bone. 2002 Feb; 30 (2): 340-6. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Romas E, Gillespie MT, Martin TJ. and TACE plays an important role in the production of TNF-alpha in rheumatoid arthritis J Rheumatol. 2001 Aug; 28 (8): 1756-63. Tumor necrosis factor-alpha (TNF-alpha) converting enzyme contributes to production of TNF-alpha in synovial tissues from patients with rheumatoid arthritis. Ohta, M, Kawaguchi Y, Sugiura T, Takagi K, Fukasawa C, Hara M, Kamatani N.) have been reported. Furthermore, the expression of TNF-alpha in osteoarthritis (Osteoarthritis Cartilage. 1999 Jul; 7 (4): 392-4. Regulation of tumor necrosis factor-alpha and tumor necrosis factor converting enzyme in human osteoarthritis. Amin AR.), TACE (J Immunol. 1998 May 1; 160 (9): 4570-9. TNF-alpha convertase enzyme from human arthritis-affected cartilage: isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-alpha. Patel IR, Attur MG, Patel RN, Stuchin SA, Abagyan RA, Abramson SB, Amin AR.) and TACE is released from the osteoclast differentiation-promoting cytokines RANKL and TNF-alpha・ It is assumed that it plays an important role in activation. Therefore, the application of TACE inhibitors to rheumatoid arthritis has been attempted to date (Bioorg Med Chem. 2009 Jan 15; 17 (2): 444-59. Doi: 10.1016 / j.bmc.2008.11.067. Epub 2008 Dec 3. Current perspective of TACE inhibitors: a review. DasGupta S, Murumkar PR, Giridhar R, Yadav MR.).
 また、腫瘍の骨転移の阻害に関しては、1) TACEが様々な腫瘍で発現が上昇していること(Eur J Cell Biol. 2011;90(6-7) :527-35, Curr Pharm Des. 2009;15(20):2319-35, Semin Cell Dev Biol. 2009;20(2):164-74)、2)インターフェロンガンマ(IFNG)は破骨細胞分化因子RANKLの細胞内シグナルを干渉することで破骨細胞分化を阻止する能力を有することが報告されている(Nature 2000,408(6812):600-5.)。また、本発明者は、TACEがIFNGを分解できることを見出している。また、腫瘍細胞がRANKLを発現し、破骨細胞分化・活性化を促進させそれによって骨転移をおこなうことも知られている。以上から腫瘍細胞が発現を上昇させているTACEによって、腫瘍周囲免疫系細胞から産生されるIFNGを分解し、ホストのIFNGによる抗腫瘍免疫の低下や破骨細胞分化活性化をより増強させることにより、さらに破骨細胞分化・活性化を促進させることで腫瘍細胞の骨転移を増強していることが考えられる。また、腫瘍でTACE発現が上昇することも報告されている(Eur J Cell Biol. 2011;90(6-7):527-35, Curr Pharm Des. 2009;15(20):2319-35,及びSemin Cell Dev Biol. 2009;20(2):164-74)。よって腫瘍細胞の発現するTACEを阻害することで、IFNG分解を阻止し、それによってホストの抗腫瘍免疫の低下や破骨細胞分化活性化を抑制できることが考えられる。 Regarding the inhibition of tumor bone metastasis, 1) TACE is upregulated in various tumors (Eur J Cell Biol. 2011; 90 (6-7): 527-35, Curr Pharm Des. 2009 ; 15 (20): 2319-35, Semin Cell Dev Biol. 2009; 20 (2): 164-74), 2) Interferon gamma (IFNG) interferes with intracellular signal of osteoclast differentiation factor RANKL It has been reported to have the ability to block osteoclast differentiation (Nature 2000, 408 (6812): 600-5.). The inventor has also found that TACE can decompose IFNG. It is also known that tumor cells express RANKL and promote osteoclast differentiation and activation, thereby causing bone metastasis. From the above, TACE, whose expression of tumor cells is increased, degrades IFNG produced from peritumoral immune system cells, and further enhances antitumor immunity reduction and osteoclast differentiation activation by host IFNG. Furthermore, it is considered that the bone metastasis of tumor cells is enhanced by further promoting osteoclast differentiation / activation. It has also been reported that TACE expression is increased in tumors (Eur J Cell Biol. 2011; 90 (6-7): 527-35, Curr Pharm Des. 2009; 15 (20): 2319-35, and Semin Cell Dev Biol. 2009; 20 (2): 164-74). Therefore, it is considered that inhibiting TACE expressed by tumor cells can prevent IFNG degradation and thereby suppress reduction of host antitumor immunity and activation of osteoclast differentiation.
 診断剤
 前述のTACEの発現と病態の進行が相関しているため、本発明の抗体を用いて病理組織標本や血清サンプル・組織液サンプルなどでTACEの増加を検出することで病態の進行を予測することができる。従って、本発明は、前述の抗ヒトTACEタンパク質抗体を含有する、RANKL-RANKシグナル伝達に起因する疾患の診断剤(例えば、体外診断剤)を提供する。前述のRANKL-RANKシグナル伝達に起因する疾患に罹患していることが疑われる患者の血清等の被験試料中にヒトTACEタンパク質が検出されれば(例えば、ヒトTACEタンパク質があらかじめ設定した閾値以上であった場合等)、当該疾患に罹患している、またはその疾患が進行期にあると診断することができる。ヒトTACEタンパク質の検出方法としては、ELISA等、自体公知の方法を適宜使用することができる。
Diagnostic agent Since the above-mentioned expression of TACE correlates with the progression of the disease state, the progression of the disease state is predicted by detecting an increase in TACE in the pathological tissue specimen, serum sample, tissue fluid sample, etc. using the antibody of the present invention. be able to. Therefore, the present invention provides a diagnostic agent (for example, an in vitro diagnostic agent) for a disease caused by RANKL-RANK signaling, comprising the above-mentioned anti-human TACE protein antibody. If human TACE protein is detected in a test sample such as serum of a patient suspected of suffering from a disease caused by the above-mentioned RANKL-RANK signaling (for example, the human TACE protein exceeds a preset threshold value) And the like) can be diagnosed as suffering from the disease or in an advanced stage. As a method for detecting human TACE protein, a method known per se, such as ELISA, can be appropriately used.
 以下に、実施例等に基づいて本発明を詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples and the like, but the present invention is not limited thereto.
  本実施例においては、下記の動物、細胞、試薬等を使用した:
 動物
 6週齢雄性BALB/C マウス(総数18匹)は日本SLC(浜松)から購入し実験に用いた。本実験プロトコールは東北大学動物実験指針を遵守して計画し、実験開始前に学内委員会の承認を得た上で実験を遂行した。
In this example, the following animals, cells, reagents, etc. were used:
Animal 6-week-old male BALB / C mice (18 animals in total) were purchased from Japan SLC (Hamamatsu) and used for experiments. This experimental protocol was planned in compliance with the Tohoku University Animal Experiment Guidelines, and the experiment was conducted after obtaining approval from the University Committee before the experiment was started.
  細胞
 マウスT細胞セルラインEL4-TK
 マウスT細胞リンパ腫から樹立されたEL4-TKを東北大学加齢医学研究所医用細胞資源センターから提供を受けて用いた。
(http://www2.idac.tohoku.ac.jp/dep/ccr/TKGdate/TKGvo101/0192.html)
 マウスミエローマセルラインSP-2
 マウスミエローマセルラインSP-2は東北大学加齢医学研究所医用細胞資源センターから提供を受けて用いた。
(http://www2.idac.tohoku.ac.jp/dep/ccr/TKGdate/TKGvo102/0248.html)
 試薬
 リコンビナントヒトTACE(930-ADB-010)、蛍光ペプチド基質(ES010)はR&D Systems, Inc. (Minneapolis, MN)から購入し実験に用いた。抗マウスTNF-alpha ELISAキット(430902)はBioLegend, Inc. (San Diego, CA) から購入し実験に用いた。抗げっ歯類sRANKL ELISAキット(900-K233)はPeproTech, Inc. (Rocky Hill, NJ) から購入し実験に用いた。
HRP標識抗マウスIgG抗体(710-1332)はRockland Immunochemicals Inc. (Gilbertsville, PA) から購入し実験に用いた。TMB(860336)はSigma-Aldrich Co. LLC. (St. Louis, MO) から購入し実験に用いた。TACE細胞外ドメイン短鎖ポリペプチドはライフテクノロジーズジャパン(東京)へ依頼し合成した。以下合成したTACE細胞外ドメイン短鎖ポリペプチドの配列を示す。
Cell mouse T cell cell line EL4-TK
EL4-TK established from mouse T cell lymphoma was used as received from Tohoku University Institute of Aging Medicine, Medical Cell Resource Center.
(Http://www2.idac.tohoku.ac.jp/dep/ccr/TKGdate/TKGvo101/0192.html)
Mouse myeloma cell line SP-2
Mouse myeloma cell line SP-2 was used as received from Tohoku University Institute of Aging Medicine, Medical Cell Resource Center.
(Http://www2.idac.tohoku.ac.jp/dep/ccr/TKGdate/TKGvo102/0248.html)
Reagents Recombinant human TACE (930-ADB-010) and fluorescent peptide substrate (ES010) were purchased from R & D Systems, Inc. (Minneapolis, Minn.) And used for experiments. An anti-mouse TNF-alpha ELISA kit (430902) was purchased from BioLegend, Inc. (San Diego, Calif.) And used for experiments. The anti-rodent sRANKL ELISA kit (900-K233) was purchased from PeproTech, Inc. (Rocky Hill, NJ) and used for experiments.
HRP-labeled anti-mouse IgG antibody (710-1332) was purchased from Rockland Immunochemicals Inc. (Gilbertsville, PA) and used in the experiments. TMB (860336) was purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO) and used for experiments. TACE extracellular domain short polypeptide was synthesized from Life Technologies Japan (Tokyo). The sequence of the synthesized TACE extracellular domain short polypeptide is shown below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 細胞培養
 各細胞は他にことわりが無い限り10%FBS(HyClone:サーモサイエンス、Rockford, IL)、ペニシリン・ストレプトマイシン含有α-MEMを培養液として用いた。また37℃、5%CO2下で培養を行った。
Cell culture Unless otherwise stated, 10% FBS (HyClone: Thermoscience, Rockford, IL) and penicillin / streptomycin-containing α-MEM were used as the culture solution. The culture was performed at 37 ° C. and 5% CO 2 .
  実施例1
 マウスへのペプチド免疫
 合成したTACE細胞外ドメイン短鎖ポリペプチド9種をそれぞれHemocyanin, from Keyhole Limpet (KLH:和光純薬、東京、日本)へDisuccinimidyl suberate(DSS: サーモサイエンス、Rockford, IL)を用いて架橋した。KLH結合ポリペプチドを通法に従いフロイドのアジュバントとともに皮下組織に注射した。2週毎に追加免疫を行った。免疫直前ならびに追加免疫時に採血を行い、血清中の抗体力価をELISAを用いた下記方法にて測定した。
Example 1
Nine TACE extracellular domain short polypeptides synthesized by peptide immunosynthesis in mice were respectively dissociated into Hemocyanin, from Keyhole Limpet (KLH: Wako Pure Chemicals, Tokyo, Japan) using Disuccinimidyl suberate (DSS: Thermoscience, Rockford, IL) And crosslinked. KLH-binding polypeptide was injected subcutaneously with Floyd's adjuvant according to standard procedures. Booster immunizations were performed every 2 weeks. Blood was collected immediately before immunization and during booster immunization, and the antibody titer in the serum was measured by the following method using ELISA.
  血清中の抗体力価測定
 TACE細胞外ドメイン短鎖ポリペプチドまたはリコンビナントヒトTACE(R&D Systems, Inc. (Minneapolis, MN))をコートしたELISA plateをブロックエース(DSファーマバイオメディカル、大阪、日本)で非特異結合部位をマスク後に1000倍希釈した血清サンプルを各ウェル100マイクロL添加した。ウェルを洗浄後、検出抗体としてHRP標識抗マウスIgG抗体(Rockland Immunochemicals Inc. 、Gilbertsville、PA)を反応させ、さらにウェルを洗浄後にHRPの反応基質としてTMB(Sigma-Aldrich Co. LLC. 、St. Louis、MO)を用いて650nmの吸光度を測定し各抗原へ結合した血清IgG量を相対評価した。
Antibody titer measurement in serum ELISA plate coated with TACE extracellular domain short polypeptide or recombinant human TACE (R & D Systems, Inc. (Minneapolis, Minn.)) At Block Ace (DS Pharma Biomedical, Osaka, Japan) Serum samples diluted 1000-fold after masking non-specific binding sites were added to 100 microL of each well. After washing the wells, an HRP-labeled anti-mouse IgG antibody (Rockland Immunochemicals Inc., Gilbertsville, PA) was reacted as a detection antibody. Further, after washing the wells, TMB (Sigma-Aldrich Co. LLC., St. The absorbance at 650 nm was measured using Louis, MO), and the amount of serum IgG bound to each antigen was relatively evaluated.
  ポリクローナル抗体のマウス血清からのアフィニティー精製
 十分に血清抗体価が上昇したところで血液を5ml程度貯蔵し、Ab-Rapid(プロテノバ、高松、日本)を推奨プロトコールに準じてIgGを精製した。その後、各ポリペプチドをNHS-Activated アガロースゲル(サーモサイエンス、Rockford, IL)へクロスリンクしたアガロースゲルカラムを用いて、精製したIgG中の各TACE細胞外ドメイン短鎖ポリペプチドに特異的に結合するIgGをアフィニティー精製した。精製後、ビバスピン500 遠心濾過ユニット(MWCO 10kDa;Sartorius AG、Goettingen、Germany)を用いてPhosphate buffered Saline (PBS)へ溶媒を置換した。
Affinity purification from mouse serum of polyclonal antibody When the serum antibody titer sufficiently increased, about 5 ml of blood was stored, and IgG was purified using Ab-Rapid (Protenova, Takamatsu, Japan) according to the recommended protocol. Each polypeptide is then specifically bound to each TACE extracellular domain short polypeptide in purified IgG using an agarose gel column cross-linked to NHS-Activated agarose gel (Thermoscience, Rockford, IL) IgG was affinity purified. After purification, the solvent was replaced with Phosphate buffered Saline (PBS) using a Vivaspin 500 centrifugal filtration unit (MWCO 10 kDa; Sartorius AG, Goettingen, Germany).
  精製したIgG濃度測定
 あらかじめ濃度が既知のノーマルマウスIgG希釈系列ならびにサンプルIgGをELISAプレートへコートし、ブロックエースで非特異結合部位をマスク後に検出抗体としてHRP標識抗マウスIgG抗体を反応させ、さらにウェルを洗浄後にHRPの反応基質としてTMBを用いて650nmの吸光度を測定した。ノーマルマウスIgG希釈系列のIgG濃度-吸光度標準曲線を用いて、サンプルの吸光度からサンプルのIgG濃度を計測し、各抗体溶液の濃度を一定とした。
Purified IgG concentration measurement Normal mouse IgG dilution series with known concentration and sample IgG are coated on ELISA plate, non-specific binding sites are masked with Block Ace, and HRP-labeled anti-mouse IgG antibody is reacted as a detection antibody. After washing, the absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. Using the IgG concentration-absorbance standard curve of a normal mouse IgG dilution series, the IgG concentration of the sample was measured from the absorbance of the sample, and the concentration of each antibody solution was made constant.
  TACE活性阻害測定
 リコンビナントヒトTACE (R&D Systems, Inc. 、Minneapolis、MN) 0.4 μmol(ポリクローナル抗体の阻害能測定時)あるいは4μmol(モノクローナル抗体の阻害能測定時)を、100μLの反応液(2.5 microM 塩化亜鉛、0.005% Brij35含有PBS)に希釈し、低分子阻害剤TAPI-2 (Santa Cruz, Inc.、Santa Cruz、CA)または精製した抗体を添加し、蛍光ペプチド基質(R&D Systems, Inc. 、Minneapolis、MN) 0.5nmolを添加した後に、TACEによって蛍光ペプチド基質が切断されることで生ずる蛍光を励起光320nm、蛍光405nmの設定でSpectraMax M2e蛍光プレートリーダー(モレキュラーデバイス ジャパン株式会社、東京)を用いて測定し、その蛍光値からTACE酵素活性阻害を比較した。結果は以下の通り。
TACE activity inhibition measurement Recombinant human TACE (R & D Systems, Inc., Minneapolis, MN) 0.4 μmol (when measuring polyclonal antibody inhibition ability) or 4 μmol (when measuring monoclonal antibody inhibition ability), 100 μL of reaction solution (2.5 microM chloride) Dilute in zinc, PBS containing 0.005% Brij35), add small molecule inhibitor TAPI-2 (Santa Cruz, Inc., Santa Cruz, CA) or purified antibody, and add fluorescent peptide substrate (R & D Systems, Inc., Minneapolis) , MN) After adding 0.5 nmol, the fluorescence generated by cleaving the fluorescent peptide substrate by TACE was performed using a SpectraMax M2e fluorescence plate reader (Molecular Device Japan, Tokyo) with excitation light of 320 nm and fluorescence of 405 nm. Measurement and comparison of inhibition of TACE enzyme activity from the fluorescence value. The results are as follows.
  各アフィニティー精製ポリクローナル抗体のTACE阻害能比較
 得られたアフィニティー精製ポリクローナル抗体のTACE中和能を評価すべく、リコンビナントヒトTACEと蛍光標識TACE基質ならびにそれぞれ等量のアフィニティー精製ポリクローナル抗体を用いて、TACE活性の測定を行った。
Comparison of TACE inhibitory ability of each affinity purified polyclonal antibody In order to evaluate the TACE neutralizing ability of the affinity purified polyclonal antibody obtained , TACE activity was achieved using recombinant human TACE, fluorescently labeled TACE substrate and equal amounts of affinity purified polyclonal antibody. Was measured.
  具体的には、リコンビナントヒトTACEとアフィニティー精製抗体を30分反応後、蛍光標識TACE基質を反応系に添加し、蛍光プレートリーダーで蛍光標識TACE基質分解に伴う蛍光の上昇を観察した。結果を図1に示す。グラフは数値が高いほどその精製抗体がTACE酵素活性阻害能が低く、グラフの数値が低いほどTACE酵素活性阻害能が高いことを示す。
データは平均値ならびにSDバーを示す。
*: 群間にp< 0.05 で有意差があることを示す。
Specifically, after reacting recombinant human TACE and affinity purified antibody for 30 minutes, a fluorescently labeled TACE substrate was added to the reaction system, and an increase in fluorescence associated with the degradation of the fluorescently labeled TACE substrate was observed with a fluorescent plate reader. The results are shown in FIG. The graph shows that the higher the value, the lower the ability of the purified antibody to inhibit TACE enzyme activity, and the lower the value of the graph, the higher the ability to inhibit TACE enzyme activity.
Data show mean values as well as SD bars.
*: Significant difference between groups with p <0.05.
  図1に示すように、そのままのTACE活性を100%、完全なTACE活性阻害が得られた場合を0%とすると、酵素活性中心を含むポリペプチド7を免疫することで得られた精製抗体を作用させた場合はそれほど高い中和能は示さなかった(82.1%)。得られた精製抗体のうち、酵素活性中心に3次元的に近接する部位のポリペプチド9を免疫した動物から得られたアフィニティー精製ポリクローナル抗体が最も高いTACE活性中和能を示した(42.5%)(図7~15に、TACEの3次元構造及びPeptide-1~Peptide-9の位置を示す)。しかしながらポリペプチド9と同様に3次元的に酵素活性中心に近接する部位のポリペプチド5を免疫することで得られたアフィニティー精製ポリクローナル抗体はほとんど中和能を示さなかった(94.1%)。酵素活性中心から3次元的に遠い部位であるポリペプチド4を免疫することで得られたアフィニティー精製ポリクローナル抗体はポリペプチド9に次ぐ高いTACE活性中和能を示した(46.6%)。 As shown in FIG. 1, when the intact TACE activity is 100% and complete TACE activity inhibition is 0%, the purified antibody obtained by immunizing polypeptide 7 containing the enzyme activity center is When it was allowed to act, the neutralizing ability was not so high (82.1%). Among the obtained purified antibodies, affinity purified polyclonal antibodies obtained from animals immunized with polypeptide 9 at the three-dimensional proximity to the enzyme activity center showed the highest neutralizing ability of TACE activity (42.5%). (FIGS. 7 to 15 show the three-dimensional structure of TACE and the positions of Peptide-1 to Peptide-9). However, the affinity-purified polyclonal antibody obtained by immunizing polypeptide 5 at a site close to the enzyme activity center three-dimensionally like polypeptide 9 showed almost no neutralizing ability (94.1%). The affinity-purified polyclonal antibody obtained by immunizing polypeptide 4 which is a three-dimensionally distant site from the enzyme activity center showed the second highest TACE activity neutralizing ability after polypeptide 9 (46.6%).
  アフィニティー精製ポリクローナル抗体と低分子阻害剤TAPI-2のTACE阻害能比較
 ポリペプチド9から得られたアフィニティー精製ポリクローナル抗体が、TACE低分子阻害剤(TAPI-2)と比較してどの程度中和活性を有しているかを明らかとすべく、濃度-反応曲線をそれぞれ作成し、中和活性の評価を行った。比較は、リコンビナントヒトTACE活性を50%中和するのに必要な抗体あるいは阻害剤のモル濃度ND50を比較することで行った。
Comparison of TACE inhibitory ability of affinity purified polyclonal antibody and small molecule inhibitor TAPI-2 Compared to TACE small molecule inhibitor (TAPI-2), the affinity purified polyclonal antibody obtained from polypeptide 9 shows how neutralizing activity is. Concentration-response curves were prepared to evaluate the neutralization activity in order to clarify whether they had the same. The comparison was made by comparing the antibody or inhibitor molar concentration ND50 required to neutralize recombinant human TACE activity by 50%.
  具体的には、ヒトリコンビナントTACEとアフィニティー精製抗体またはTACE低分子阻害剤(TAPI-2)を30分反応後、蛍光標識TACE基質を反応系に添加し、蛍光プレートリーダーで蛍光標識TACE基質分解に伴う蛍光の上昇を観察した。 Specifically, human recombinant TACE and affinity purified antibody or TACE small molecule inhibitor (TAPI-2) are reacted for 30 minutes, then fluorescently labeled TACE substrate is added to the reaction system, and fluorescent labeled TACE substrate is decomposed with a fluorescent plate reader. The accompanying increase in fluorescence was observed.
  抗体・低分子阻害剤ともに5倍希釈系を5点作製し、TACE酵素活性阻害能を評価した。結果を図2に示す。赤い横線はTACE活性50%阻害を示し、各グラフとの交点がND50を示す。グラフの曲線が左にあればあるほど低濃度で高い中和能を有することを示す。TAPI-2(3500nM)と比較して今回得られたアフィニティー精製ポリクローナル抗体(0.02nM)は、6桁低いND50値を示した。 5) Five points of 5-fold dilution systems were prepared for both antibodies and small molecule inhibitors, and the ability to inhibit TACE enzyme activity was evaluated. The results are shown in FIG. The red horizontal line indicates 50% inhibition of TACE activity, and the intersection with each graph indicates ND50. The more the curve of the graph is on the left, the higher the neutralization ability at a lower concentration. Compared with TAPI-2 (3500 nM), the affinity purified polyclonal antibody (0.02 nM) obtained this time showed an ND50 value 6 digits lower.
  実施例2
 ハイブリドーマ作製
 TACE細胞外ドメイン短鎖ポリペプチド最終免疫日から4日後に免疫したマウスを屠殺し、脾臓を摘出した。脾細胞懸濁液を調整後、赤血球を0.75% 塩化アンモニウム含有0.017M トリス緩衝液(pH = 7.65)を用いて溶血し、PBS洗浄後に無血清培地に懸濁し細胞懸濁液を調製した。細胞融合試薬GenomOne-CF(石原産業、大阪)を推奨プロトコールに準じて用いて、脾細胞とマウスミエローマSP-2細胞を融合させた。96ウェルプレートへ播種し、細胞融合の翌日にHTメディアサプリメント Hyb Max(Sigma-Aldrich Co. LLC. 、St. Louis、MO)含有培地で培養を開始した。
Example 2
Hybridoma preparation TACE extracellular domain short polypeptide 4 days after the final immunization, the immunized mice were sacrificed, and the spleen was removed. After preparing the spleen cell suspension, the erythrocytes were hemolyzed using 0.017M Tris buffer (pH = 7.65) containing 0.75% ammonium chloride, washed with PBS and suspended in a serum-free medium to prepare a cell suspension. Spleen cells and mouse myeloma SP-2 cells were fused using the cell fusion reagent GenomOne-CF (Ishihara Sangyo, Osaka) according to the recommended protocol. The cells were seeded in a 96-well plate, and the culture was started on the medium containing HT media supplement Hyb Max (Sigma-Aldrich Co. LLC., St. Louis, MO) the day after cell fusion.
  ハイブリドーマの選択
 ハイブリドーマのコロニー形成が確認された段階で培養上清を回収しELISAプレートを用いて各クローンの産生するIgGの反応性を確認した。抗原としてTACE細胞外ドメイン短鎖ポリペプチド、KLH結合TACE細胞外ドメイン短鎖ポリペプチド、KLH、リコンビナントヒトTACEを用いた。この中でKLH結合ポリペプチドコートプレートで高値を示すクローンを1次選択し、その中でKLHコートプレートで高値を示すクローンを除外した。次にそれら選択されたクローンの中からTACE細胞外ドメイン短鎖ポリペプチド、リコンビナントヒトTACEコートプレートで高値を示すクローンを選択し、等量の精製モノクローナルIgG抗体を用いてTACE酵素活性阻害試験を行った。
Selection of hybridomas When colonies of hybridomas were confirmed to be formed, the culture supernatant was collected and the reactivity of IgG produced by each clone was confirmed using an ELISA plate. TACE extracellular domain short polypeptide, KLH binding TACE extracellular domain short polypeptide, KLH, and recombinant human TACE were used as antigens. Among these, clones showing a high value on the KLH-binding polypeptide-coated plate were primarily selected, and clones showing a high value on the KLH-coated plate were excluded. Next, from those selected clones, clones showing high values with TACE extracellular domain short polypeptide and recombinant human TACE coated plate were selected, and TACE enzyme activity inhibition test was performed using an equal amount of purified monoclonal IgG antibody. It was.
  モノクローナル抗体C6-30、C6-62と低分子阻害剤TAPI-2のTACE阻害能比較
 ポリペプチド9から得られたモノクローナル抗体が、TACE低分子阻害剤(TAPI-2)と比較してどの程度中和活性を有しているかを明らかとすべく、濃度-反応曲線をそれぞれ作成し、中和活性の評価を行った。比較は、リコンビナントヒトTACE活性を50%中和するのに必要な抗体あるいは阻害剤のモル濃度ND50を比較することで行った。
Comparison of monoclonal antibody C6-30, C6-62 and small molecule inhibitor TAPI-2 TACE inhibitory ability Polypeptide 9 compared to TACE small molecule inhibitor (TAPI-2) In order to clarify whether it has a sum activity, a concentration-response curve was prepared and the neutralization activity was evaluated. The comparison was made by comparing the antibody or inhibitor molar concentration ND50 required to neutralize recombinant human TACE activity by 50%.
  具体的には、モノクローナル抗体を用いる以外、前記実施例1の「アフィニティー精製ポリクローナル抗体と低分子阻害剤TAPI-2のTACE阻害能比較」と同様にして測定を行った。 Specifically, measurement was performed in the same manner as in “ Comparison of TACE inhibitory ability of affinity purified polyclonal antibody and low molecular weight inhibitor TAPI-2 ” in Example 1 except that a monoclonal antibody was used.
  結果を図3に示す。TAPI-2 (385252 pM) と比較してモノクローナル抗体C6-30 (2094 pM)、C6-62 (728 pM)ともに3桁低いND50値を示し、非常に高いTACE活性阻害能を有していた。 The results are shown in Fig. 3. Compared to TAPI-2 (385252 pM), both monoclonal antibodies C6-30 (2094 pM) and C6-62 (728 pM) exhibited ND50 values that were three orders of magnitude lower and had a very high ability to inhibit TACE activity.
  実施例3
エピトープマッピング
 TACE細胞外ドメイン短鎖ポリペプチドNo.9(VMYPIAVSGDHENNKMFSNCSKQ)のうち、N末端から8アミノ酸残基のより短いペプチドを2アミノ酸残基ずつずらして計8種類、医学生物学研究所に依頼して合成した。以下合成依頼したエピトープマッピング用ペプチドの配列を示す。各ペプチドのHPLCによる実測純度は、94.6~99.8%であった。
Example 3
Epitope mapping TACE extracellular domain short polypeptide No. 9 (VMYPIAVSGDHENNKMFSNCSKQ), 8 peptides with 8 amino acid residues shorter than the N-terminal, shifted by 2 amino acid residues, total of 8 types were requested from the Institute of Medical Biology And synthesized. The sequence of the epitope mapping peptide requested for synthesis is shown below. The actually measured purity of each peptide by HPLC was 94.6-99.8%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 精製モノクローナル抗体に各ペプチド9A~9Hをそれぞれ添加したサンプルを準備し、それらをリコンビナントヒトTACEをコート、BlockAceブロッキングしたELISAプレートの各ウェルへ添加し、インキュベートした。その後検出抗体としてHRP標識抗マウスIgG抗体を反応させ、さらにウェルを洗浄後にHRPの反応基質としてTMBを用いて650nmの吸光度を測定した。各ペプチド9A~9Hを精製モノクローナル抗体に添加することで精製モノクローナル抗体がエピトープであるペプチドに結合し、リコンビナントヒトTACEに結合できなくなる性質を利用し、本検出系で数値が低くなった添加ペプチドが精製モノクローナル抗体のエピトープ配列であることを示している。具体的には以下の通り: A sample was prepared by adding each peptide 9A to 9H to the purified monoclonal antibody, and these were added to each well of an ELISA plate coated with recombinant human TACE and blocked with BlockAce and incubated. Thereafter, an HRP-labeled anti-mouse IgG antibody was reacted as a detection antibody, and after further washing the well, absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. By adding each peptide 9A to 9H to the purified monoclonal antibody, the purified monoclonal antibody binds to the peptide that is the epitope and cannot bind to recombinant human TACE. This shows the epitope sequence of the purified monoclonal antibody. Specifically:
 モノクローナル抗体C6-30、C6-62のエピトープマッピング
 TACE細胞外ドメイン短鎖ポリペプチドNo.9は23アミノ酸残基であり、この23アミノ酸残基のなかでエピトープ領域をさらに絞り込むことを目的として8アミノ酸残基長でN末端から2アミノ酸残基づつずらしたペプチドを8種類合成し、得られたモノクローナル抗体がどのペプチドと強く結合するかを調べることでモノクローナル抗体のエピトープ配列同定を行った。
Epitope mapping TACE extracellular domain short chain polypeptide No. 9 of monoclonal antibodies C6-30 and C6-62 consists of 23 amino acid residues. Among these 23 amino acid residues, 8 amino acids are used for further narrowing down the epitope region. Epitope sequence identification of the monoclonal antibody was carried out by synthesizing 8 types of peptides with a residue length shifted by 2 amino acid residues from the N-terminus, and investigating which peptide the obtained monoclonal antibody bound strongly.
  はじめに、8アミノ酸残基長ペプチドがELISAプレートに十分結合しないことを懸念し、あらかじめ等量の8アミノ酸残基長ペプチドをモノクローナル抗体溶液中にそれぞれ添加して反応させた後に、そのペプチドと反応させた抗体溶液をリコンビナントヒトTACEをコートしたELISAプレートへ添加し、モノクローナル抗体のリコンビナントヒトTACEへの結合量が減少するペプチドをエピトープ配列とする方法でエピトープの同定を行った。 First, we were concerned that the 8 amino acid residue-length peptide would not bind to the ELISA plate sufficiently, and after adding an equal amount of each 8 amino acid residue peptide to the monoclonal antibody solution and reacting with the peptide, react with the peptide. The antibody was added to an ELISA plate coated with recombinant human TACE, and the epitope was identified by using a peptide that reduces the amount of monoclonal antibody bound to recombinant human TACE as an epitope sequence.
  より具体的には、精製モノクローナル抗体に各ペプチド9A~9Hをそれぞれ添加したサンプルを準備し、それらをリコンビナントヒトTACEをコート、BlockAceブロッキングしたELISAプレートの各ウェルへ添加し、インキュベートした。その後検出抗体としてHRP標識抗マウスIgG抗体を反応させ、さらにウェルを洗浄後にHRPの反応基質としてTMBを用いて650nmの吸光度を測定した。データを図4の上のグラフに示す。
図中、*は p < 0.05でモノクローナル抗体にPBSを添加したサンプルに対して有意差あり、を示す。
ペプチド9Bを添加したモノクローナル抗体サンプルで著しい数値の減少が観察されたことから、ペプチド9Bが得られたモノクローナル抗体のエピトープであることが示唆された。尚、データはモノクローナル抗体C6-30の結果を示しているが、C6-62でも同様の結果が得られた(Data not shown)。
More specifically, samples were prepared by adding each peptide 9A-9H to the purified monoclonal antibody, and they were added to each well of an ELISA plate coated with recombinant human TACE and blocked with BlockAce and incubated. Thereafter, an HRP-labeled anti-mouse IgG antibody was reacted as a detection antibody, and after further washing the well, absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. The data is shown in the upper graph of FIG.
In the figure, * indicates that there is a significant difference from the sample in which PBS was added to the monoclonal antibody at p <0.05.
A significant decrease in the numerical value was observed in the monoclonal antibody sample to which peptide 9B was added, suggesting that peptide 9B is an epitope of the obtained monoclonal antibody. The data shows the result of monoclonal antibody C6-30, but the same result was obtained with C6-62 (Data not shown).
  また、精製モノクローナル抗体エピトープ配列の別な検出方法として、精製モノクローナル抗体の各ペプチド9A~9Hへの反応性を直接的に観察すべく、各ペプチド9A~9HをELISAプレートにコートし、BlockAceブロッキング後に精製モノクローナルIgGサンプルを各ウェルに添加・インキュベート後、検出抗体としてHRP標識抗マウスIgG抗体を反応させ、HRPの反応基質としてTMBを用いて650nmの吸光度を測定した。本検出系で数値が高くなったウェルをコートしたペプチドが精製モノクローナル抗体のエピトープ配列であることを示している。 As another method for detecting a purified monoclonal antibody epitope sequence, each peptide 9A-9H is coated on an ELISA plate to directly observe the reactivity of the purified monoclonal antibody to each peptide 9A-9H, and after BlockAce blocking After adding and incubating the purified monoclonal IgG sample to each well, an HRP-labeled anti-mouse IgG antibody was reacted as a detection antibody, and absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. This shows that the peptide coated with the well having a high value in this detection system is the epitope sequence of the purified monoclonal antibody.
  具体的には、精製モノクローナル抗体の各ペプチド9A~9Hへの反応性を直接的に観察すべく、各ペプチド9A~9HをELISAプレートにコートし、BlockAceブロッキング後に精製モノクローナルIgGサンプルを各ウェルに添加・インキュベート後、検出抗体としてHRP標識抗マウスIgG抗体を反応させ、HRPの反応基質としてTMBを用いて650nmの吸光度を測定した。本検出系で数値が高くなったウェルをコートしたペプチドが精製モノクローナル抗体のエピトープ配列であることを示している。結果を図4 上から2つめのグラフに示す。
図中、*は、p < 0.05 でノンコートウェルに対して有意差あり、を示す。
Specifically, in order to directly observe the reactivity of the purified monoclonal antibody to each peptide 9A-9H, coat each peptide 9A-9H on an ELISA plate and add the purified monoclonal IgG sample to each well after BlockAce blocking After incubation, an HRP-labeled anti-mouse IgG antibody was reacted as a detection antibody, and absorbance at 650 nm was measured using TMB as a reaction substrate for HRP. This shows that the peptide coated with the well having a high value in this detection system is the epitope sequence of the purified monoclonal antibody. The results are shown in the second graph from the top of FIG.
In the figure, * indicates that there is a significant difference from non-coated wells at p <0.05.
  ペプチドをコートしないウェルに比較してペプチド9Bをコートしたウェルにおいてのみ高い吸光度が観察されたことから、得られたモノクローナル抗体はペプチド9Bにのみ結合していることが示された。尚、データはモノクローナル抗体C6-30の結果を示しているが、C6-62でも同様の結果が得られた(Data not shown)。 High absorbance was observed only in wells coated with peptide 9B compared to wells not coated with peptide, indicating that the obtained monoclonal antibody was bound only to peptide 9B. The data show the result of monoclonal antibody C6-30, but the same result was obtained with C6-62 (Data not shown).
 以上のことから、得られたモノクローナル抗体のエピトープ配列は“YPIAVSGD”であることが示された。 From the above, it was shown that the epitope sequence of the obtained monoclonal antibody was “YPIAVSGD”.
  実施例4
 細胞培養系における精製モノクローナル抗体のTACE中和能試験
 次に得られたモノクローナル抗体C6-62が細胞培養系においても所定のTACE阻害効果を示すかどうかを、活性化マウスT細胞からのTACEによる破骨細胞分化促進サイトカイン遊離を測定することで確認した。
Example 4
Test of TACE neutralizing ability of purified monoclonal antibody in cell culture system TACE from activated mouse T cells was used to determine whether the monoclonal antibody C6-62 obtained in the cell culture system exhibited a predetermined TACE inhibitory effect in the cell culture system. This was confirmed by measuring the release of bone cell differentiation promoting cytokines.
  具体的には、マウスT細胞セルラインEL4-TK細胞懸濁液(8×104 cells/ml、1ml)を24ウェルプレートへ播種した。精製モノクローナル抗体または正常マウスIgGを終濃度0.32 μg/mlとなるように添加し30分間反応後、刺激群ではPhorbol-12-Myristate-13-Acetate (PMA) (終濃度25ng/ml;LC Laboratories、Woburn、MA)とIonomycin(終濃度500 ng/ml;Enzo Life Sciences, Inc.、Farmingdale、NY)を培養系に添加し細胞を刺激した。2時間後に培養液中のTNF-α測定用に培養液を回収した。また培養液中のsRANKL測定用に、刺激開始3日後に培養液を回収した。下記の方法により、TNF-α、sRANKL濃度を測定、評価した。 Specifically, a mouse T cell cell line EL4-TK cell suspension (8 × 10 4 cells / ml, 1 ml) was seeded in a 24-well plate. Purified monoclonal antibody or normal mouse IgG was added to a final concentration of 0.32 μg / ml and reacted for 30 minutes. In the stimulation group, Phorbol-12-Myristate-13-Acetate (PMA) (final concentration 25 ng / ml; LC Laboratories, Woburn, MA) and Ionomycin (final concentration 500 ng / ml; Enzo Life Sciences, Inc., Farmingdale, NY) were added to the culture system to stimulate the cells. After 2 hours, the culture solution was collected for measuring TNF-α in the culture solution. For measurement of sRANKL in the culture solution, the culture solution was collected 3 days after the start of stimulation. TNF-α and sRANKL concentrations were measured and evaluated by the following method.
  刺激された細胞からのマウス破骨細胞分化促進因子遊離量の測定
 培養液中のマウスTNF-α、sRANKL濃度は、抗マウスTNF-alpha ELISAキット(BioLegend, Inc. 、San Diego、CA) ならびに抗げっ歯類sRANKL ELISAキット(PeproTech, Inc. 、Rocky Hill、NJ)を推奨プロトコール通り用いて測定した。
Measurement of mouse osteoclast differentiation promoting factor release from stimulated cells The concentrations of mouse TNF-α and sRANKL in the culture medium were determined using anti-mouse TNF-alpha ELISA kit (BioLegend, Inc., San Diego, Calif.) Rodent sRANKL ELISA kit (PeproTech, Inc., Rocky Hill, NJ) was used as recommended protocol.
  統計学的有意差の検定
 実験は各サンプルを三回計測する実験を3度繰り返し、同様な結果を得られていることを確認している。それら実験データの統計学的有意差検定施行は、Tukeyの多重比較法を用いて行い、有意水準5%以下を有意差ありと見なした。
The statistical significance test was repeated three times for each sample, confirming that similar results were obtained. The statistical significance test of these experimental data was performed using Tukey's multiple comparison method, and a significance level of 5% or less was considered significant.
  結果を図5に示す。図中、*は、p < 0.05でコントロールと刺激群間で有意差あり、を示す。マウスT細胞セルラインEL4TKはPMAとIonomycinの組み合わせによる刺激でTNF-αと遊離型RANKL(soluble RANKL: sRANKL)を培養上清中に遊離した。モノクローナル抗体C6-62を培養系に添加した状態で細胞を刺激した場合には、培養上清中のTNF-α・sRANKLともに著しく減少し、モノクローナル抗体C6-62が細胞培養系においてもTACEの活性を阻害し、活性化T細胞からの破骨細胞分化促進サイトカイン遊離を阻止できることが示された。 The results are shown in FIG. In the figure, * indicates that p <コ ン ト ロ ー ル 0.05 and there is a significant difference between the control and stimulation groups. Mouse T cell cell line EL4TK released TNF-α and free RANKL (soluble RANKL: sRANKL) into the culture supernatant upon stimulation with a combination of PMA and ionomycin. When cells were stimulated with monoclonal antibody C6-62 added to the culture system, both TNF-α and sRANKL in the culture supernatant decreased markedly, and monoclonal antibody C6-62 was also active in TACE in the cell culture system. It was shown that the release of cytokines promoting osteoclast differentiation from activated T cells can be prevented.
 実施例5
 動物実験
 8週齢の雌性C57BL6マウスを対照群6匹、実験的歯周病群6匹、実験的歯周病+抗体投与群6匹に分けて実験に用いた。
実験的歯周病群及び実験的歯周病+抗体投与群については、Kimuraらの方法に準じ(J Periodontol. 2000 Jul;71(7):1167-73.)、実験開始日にマウス上顎第一・二臼歯間に6-0絹糸を挿入することで骨破壊を惹起した。骨破壊に対して樹立した抗TACEモノクローナル抗体がどの程度抑制効果を示すかを探索すべく、対照群・実験的歯周病群では上顎第一・二臼歯間の口蓋側歯間乳頭歯肉にPBSを、実験的歯周病+抗体投与群では抗TACEモノクローナル抗体(C6-62)をそれぞれ2マイクロLを実験開始日に(実験的歯周病群及び実験的歯周病+抗体投与群においては、上記絹糸を挿入した後5分以内に)局所注射した。各群のマウスを実験開始5日目に屠殺、マイクロCTを撮影し骨破壊の程度を評価した。
Example 5
Animal Experiments 8 week-old female C57BL6 mice were divided into 6 control groups, 6 experimental periodontal disease groups, and 6 experimental periodontal disease + antibody administration groups.
For experimental periodontal disease group and experimental periodontal disease + antibody administration group, according to the method of Kimura et al. (J Periodontol. 2000 Jul; 71 (7): 1167-73.) Bone destruction was induced by inserting 6-0 silk thread between the first and second molars. In order to investigate how much the anti-TACE monoclonal antibody established against bone destruction shows the inhibitory effect, PBS in the palatal interdental papillary gingiva between the maxillary first and second molars in the control group and experimental periodontal disease group In the experimental periodontal disease + antibody administration group, 2 microL each of the anti-TACE monoclonal antibody (C6-62) was given on the day of the experiment (in the experimental periodontal disease group and experimental periodontal disease + antibody administration group) (Within 5 minutes after inserting the silk thread). The mice in each group were sacrificed on the 5th day from the start of the experiment, and micro CT was taken to evaluate the degree of bone destruction.
 マイクロCTによる骨破壊評価
 屠殺後の各マウス頭蓋サンプルを1晩ホルムアルデヒド浸積固定後、ScanXmate-E090(コムスキャンテクノ社)にてマイクロCT像を撮影した。撮影したマイクロCT像はConeCTexpress(コムスキャンテクノ社)にて再構築しDICOMファイル化した後、3次元レンダリング処理をPluto(http://pluto.newves.org/trac)を用いて行い3次元像上で第一臼歯遠心口蓋根の歯槽骨破壊の程度をセメントエナメルジャンクションから歯槽骨表層までの距離を算出することで比較検討した。
Evaluation of bone destruction by micro CT Each mouse skull sample after sacrifice was fixed with formaldehyde soaking overnight, and then micro CT images were taken with ScanXmate-E090 (Comscan Techno). The captured micro CT image is reconstructed with ConeCTexpress (com scan techno) and converted into a DICOM file, then 3D rendering processing is performed using Pluto (http://pluto.newves.org/trac). Above, we compared the degree of alveolar bone destruction of the first molar distal palate by calculating the distance from the cement enamel junction to the alveolar bone surface.
 統計処理
他群間比較はTukeyテスト(MEPHAS; http://www.gen-info.osaka-u.ac.jp/testdocs/tomocom/tukey-e.html)を用いて有為差の検定を行った。p < 0.05 を有為差ありと判定した。結果を図16に示す。具体的には、各グループの代表的な3次元レンダリング処理像を図16左に示す。白線はセメントエナメルジャンクションから歯槽骨表層までの距離を示す。セメントエナメルジャンクションから歯槽骨表層までの距離についてのグループ間比較として、対照群における平均距離を0%、実験的歯周病群における平均距離を100%とした場合の実験的歯周病+抗体投与群の平均距離を%へ換算し、図16右に示す。100%に近いほど骨破壊量が多く、0%に近いほど骨破壊が阻止されていることを示す。図16から明らかなように、本実施例で用いたモノクローナル抗体が骨破壊を阻止したことが分かる。
Statistical processing <br/> Comparison between other groups is based on Tukey test (MEPHAS; http://www.gen-info.osaka-u.ac.jp/testdocs/tomocom/tukey-e.html) Was tested. p <0.05 was determined to be significant. The results are shown in FIG. Specifically, a representative three-dimensional rendering image of each group is shown on the left of FIG. The white line indicates the distance from the cement enamel junction to the alveolar bone surface. As an inter-group comparison of the distance from cement enamel junction to the alveolar bone surface, experimental periodontal disease + antibody administration when the average distance in the control group is 0% and the average distance in the experimental periodontal disease group is 100% The average distance of the group is converted to% and shown on the right side of FIG. The closer to 100%, the greater the amount of bone destruction, and the closer to 0%, the more bone destruction is prevented. As is apparent from FIG. 16, it can be seen that the monoclonal antibody used in this example prevented bone destruction.
 本発明に係る抗体は、非常に高いTACE機能の阻害能を有し、RANKL-RANKシグナル伝達を阻害する。RANKL-RANKシグナル伝達に起因する疾患は多岐にわたっているため、非常に有用である。 The antibody according to the present invention has a very high ability to inhibit TACE function and inhibits RANKL-RANK signaling. The diseases resulting from RANKL-RANK signaling are very useful because they are diverse.

Claims (14)

  1.  VMYPIAVSGDHENNKMFSNCSKQ又はMAKSYPNEEKDAWで表されるアミノ酸配列の領域に特異的に結合する抗ヒトTACEタンパク質抗体。 An anti-human TACE protein antibody that specifically binds to a region of the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ or MAKSYPNEEKDAW.
  2.  YPIAVSGDで表されるアミノ酸配列の領域に特異的に結合する、請求項1に記載の抗体。 The antibody according to claim 1, which specifically binds to a region of the amino acid sequence represented by YPIAVSGD.
  3.  モノクローナル抗体である、請求項1又は2に記載の抗体。 The antibody according to claim 1 or 2, which is a monoclonal antibody.
  4.  VMYPIAVSGDHENNKMFSNCSKQで表されるアミノ酸配列のうち少なくとも7つの連続するアミノ酸からなるペプチド、又はMAKSYPNEEKDAWで表されるアミノ酸配列からなるペプチドである、TACEペプチドエピトープ。 TACE peptide epitope which is a peptide consisting of at least 7 consecutive amino acids in the amino acid sequence represented by VMYPIAVSGDHENNKMFSNCSKQ or a peptide consisting of an amino acid sequence represented by MAKSYPNEEKDAW.
  5.  アミノ酸配列YPIAVSG又はPIAVSGDを含む、請求項4に記載のTACEペプチドエピトープ。 The TACE peptide epitope according to claim 4, comprising the amino acid sequence YPIAVSG or PIAVSGD.
  6.  請求項1~3のいずれか一項に記載の抗体を産生するハイブリドーマ。 A hybridoma producing the antibody according to any one of claims 1 to 3.
  7. 有効量の請求項1~3のいずれか一項に記載の抗体を含む、RANKL-RANKシグナル伝達に起因する疾患の治療又は予防薬。 A therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling, comprising an effective amount of the antibody according to any one of claims 1 to 3.
  8. RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、請求項7に記載の治療又は予防薬。 The therapeutic or prophylactic agent according to claim 7, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis and metastatic bone tumor.
  9. 有効量の請求項1~3のいずれか一項に記載の抗体を被験者に投与する工程を含む、RANKL-RANKシグナル伝達に起因する疾患を治療又は予防する方法。 A method for treating or preventing a disease caused by RANKL-RANK signaling, comprising a step of administering an effective amount of the antibody according to any one of claims 1 to 3 to a subject.
  10. RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、請求項9に記載の方法。 The method according to claim 9, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
  11. RANKL-RANKシグナル伝達に起因する疾患を治療又は予防するための請求項1~3のいずれか一項に記載の抗体。 The antibody according to any one of claims 1 to 3, for treating or preventing a disease caused by RANKL-RANK signaling.
  12. RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、請求項11に記載の抗体。 The antibody according to claim 11, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis, and metastatic bone tumor.
  13. RANKL-RANKシグナル伝達に起因する疾患の治療又は予防薬を製造するための請求項1~3のいずれか一項に記載の抗体の使用。 Use of the antibody according to any one of claims 1 to 3 for producing a therapeutic or prophylactic agent for a disease caused by RANKL-RANK signaling.
  14. RANKL-RANKシグナル伝達に起因する疾患が、歯周病、関節リウマチ及び転移性骨腫瘍からなる群より選択される少なくとも一種である、請求項13に記載の使用。
     
    The use according to claim 13, wherein the disease caused by RANKL-RANK signaling is at least one selected from the group consisting of periodontal disease, rheumatoid arthritis and metastatic bone tumor.
PCT/JP2014/058328 2013-03-28 2014-03-25 Tace peptide epitope, antihuman tace protein antibody and hybridoma producing antibody WO2014157229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508553A JPWO2014157229A1 (en) 2013-03-28 2014-03-25 TACE peptide epitope, anti-human TACE protein antibody, and hybridoma producing the antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069544 2013-03-28
JP2013069544 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157229A1 true WO2014157229A1 (en) 2014-10-02

Family

ID=51624198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058328 WO2014157229A1 (en) 2013-03-28 2014-03-25 Tace peptide epitope, antihuman tace protein antibody and hybridoma producing antibody

Country Status (2)

Country Link
JP (1) JPWO2014157229A1 (en)
WO (1) WO2014157229A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016102716A1 (en) * 2014-12-24 2016-06-30 Pierre Fabre Medicament Novel humanized adam17 antibody
WO2016102715A1 (en) * 2014-12-24 2016-06-30 Pierre Fabre Medicament Pharmaceutical compostion for the treatment of adam17 substrate dependant cancers
EP4031160A4 (en) * 2019-09-19 2023-10-11 New York Society for the Relief of the Ruptured and Crippled, Maintaining the Hospital for Special Surgery Stabilized c-fms intracellular fragments (ficd) promote osteoclast differentiation and arthritic bone erosion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518352A (en) * 2003-02-21 2006-08-10 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Inhibition of TACE or amphiregulin for modulation of EGF receptor signaling
WO2010037395A2 (en) * 2008-10-01 2010-04-08 Dako Denmark A/S Mhc multimers in cancer vaccines and immune monitoring
WO2012104581A1 (en) * 2011-02-01 2012-08-09 Cancer Research Technology Limited Anti-tace antibody molecules and their uses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518352A (en) * 2003-02-21 2006-08-10 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Inhibition of TACE or amphiregulin for modulation of EGF receptor signaling
WO2010037395A2 (en) * 2008-10-01 2010-04-08 Dako Denmark A/S Mhc multimers in cancer vaccines and immune monitoring
WO2012104581A1 (en) * 2011-02-01 2012-08-09 Cancer Research Technology Limited Anti-tace antibody molecules and their uses

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAKOZAKI A. ET AL.: "Receptor Activator of NF-kB (RANK) Ligand Induces Ectodomain Shedding of RANK in Murine RAW264.7", MACROPHAGES. JOURNAL OF IMMUNOLOGY, vol. 184, 2010, pages 2442 - 2448 *
TAPE C.J. ET AL.: "Cross-domain inhibition of TACE ectodomain", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 108, no. 14, 2011, pages 5578 - 5583 *
YAMAMOTO K. ET AL.: "A novel bispecific single- chain antibody for ADAM17 and CD 3 induces T- cell -mediated lysis of prostate cancer cells.", BIOCHEMICAL JOURNAL, vol. 445, 2012, pages 135 - 144 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016102716A1 (en) * 2014-12-24 2016-06-30 Pierre Fabre Medicament Novel humanized adam17 antibody
WO2016102715A1 (en) * 2014-12-24 2016-06-30 Pierre Fabre Medicament Pharmaceutical compostion for the treatment of adam17 substrate dependant cancers
CN107250162A (en) * 2014-12-24 2017-10-13 皮埃尔法布雷医药公司 New humanization ADAM17 antibody
EP4031160A4 (en) * 2019-09-19 2023-10-11 New York Society for the Relief of the Ruptured and Crippled, Maintaining the Hospital for Special Surgery Stabilized c-fms intracellular fragments (ficd) promote osteoclast differentiation and arthritic bone erosion

Also Published As

Publication number Publication date
JPWO2014157229A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
KR102339315B1 (en) Compositions and methods of inhibiting masp-1 and/or masp-2 and/or masp-3 for the treatment of various diseases and disorders
JP6591272B2 (en) Anti-C5a binding moiety with high blocking activity
WO2020252264A1 (en) Novel il-15 prodrugs and methods of use thereof
US20190270817A1 (en) Anti-PD-1 Antibodies and Methods of Treatment
CN118126157A (en) Interleukin-21 muteins and methods of treatment
JP6671069B2 (en) Agent for preventing or treating inflammatory diseases
JP2020516638A (en) Interleukin 2 immunoconjugates, CD40 agonists, and optional PD-1 axis binding antagonists for use in a method of treating cancer
EP2832857B1 (en) Cdr-modified anti-siglec-15 antibody
TW202334243A (en) Compositions and methods of inhibiting masp-3 for the treatment of various diseases and disorders
JP5511684B2 (en) Cadherin-11 ECL domain antagonist for treating inflammatory joint disorders
JP7502865B2 (en) Treatment of inflammatory diseases with inhibitors of C5A activity
CN110770250A (en) IL4/IL13 receptor molecules for veterinary use
CA2813203A1 (en) Anti-human ccr7 antibody, hybridoma, nucleic acid, vector, cell, pharmaceutical composition, and antibody-immobilized carrier
CN115335120A (en) Method for inhibiting MASP-2 for the treatment and/or prevention of coronavirus induced acute respiratory distress syndrome
WO2014157229A1 (en) Tace peptide epitope, antihuman tace protein antibody and hybridoma producing antibody
US20170152490A9 (en) Use of activin receptor-like kinase 1 (alk-1) antagonists in the treatment of cancer
Zeng et al. IgG immunocomplexes drive the differentiation of a novel subset of osteoclasts independent of RANKL and inflammatory cytokines
KR20210108972A (en) Antiperiostin antibodies and uses thereof
TW202144420A (en) Development and application of immune cell activator
KR20180098570A (en) Anti-MYL9 antibody
WO2023148894A1 (en) Usag-1 molecule-targeting neutralizing antibody for tooth regeneration treatment
CN113015746A (en) PTPRS and proteoglycans in rheumatoid arthritis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773972

Country of ref document: EP

Kind code of ref document: A1