WO2014156953A1 - Photoelectric conversion element, dye-sensitized solar cell, and metal-complex dye used in same - Google Patents

Photoelectric conversion element, dye-sensitized solar cell, and metal-complex dye used in same Download PDF

Info

Publication number
WO2014156953A1
WO2014156953A1 PCT/JP2014/057758 JP2014057758W WO2014156953A1 WO 2014156953 A1 WO2014156953 A1 WO 2014156953A1 JP 2014057758 W JP2014057758 W JP 2014057758W WO 2014156953 A1 WO2014156953 A1 WO 2014156953A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
dye
photoelectric conversion
hydrogen atom
Prior art date
Application number
PCT/JP2014/057758
Other languages
French (fr)
Japanese (ja)
Inventor
征夫 谷
小林 克
渡辺 康介
寛記 杉浦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014156953A1 publication Critical patent/WO2014156953A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/002Osmium compounds
    • C07F15/0026Osmium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, a dye-sensitized battery, and a metal complex dye used therefor.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof.
  • a solar cell using non-depleting solar energy does not require fuel, and its full-scale practical use is expected as an inexhaustible clean energy.
  • silicon solar cells have been researched and developed for a long time. It is spreading due to the policy considerations of each country.
  • silicon is an inorganic material and naturally has limitations in throughput and molecular modification.
  • Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique. Furthermore, the development of ruthenium complex-based sensitizing dyes continues to improve the photoelectric conversion efficiency (see Patent Document 2).
  • N749 is often used as a terpyridyl pigment.
  • the above-mentioned Patent Document 2 is an improvement of this.
  • the present invention provides a photoelectric conversion element, a dye-sensitized solar cell, and a metal complex dye used therefor that can achieve both high photoelectric conversion efficiency and high heat durability.
  • the present invention uses the above-described dye, achieves high photoelectric conversion efficiency, and has a high molar extinction coefficient ⁇ and IPCE (Incident Photo-to-Current Efficiency) in the long wavelength region of the absorption spectrum, and dye enhancement.
  • An object is to provide a solar cell and a metal complex dye used for them.
  • M 1 represents a metal atom and Z 1 represents a monodentate ligand.
  • LA represents a tridentate ligand represented by the following formula (AL-1).
  • LD represents a bidentate ligand represented by the following formula (DL-1).
  • R A1 , R A2 and R A3 each independently represent a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. However, at least one of R A1 , R A2 and R A3 is an acidic group.
  • R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group.
  • m1 represents an integer of 0 to 3.
  • na represents 0 or 1.
  • G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0.
  • E represents a group represented by any of the following formulas (E-1) to (E-6).
  • X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ).
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring.
  • R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group.
  • m represents an integer of 0 or more.
  • * indicates a bonding position for bonding to the 2-position of the pyridine ring.
  • Ra and Rb are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkylthio group, an arylthio group, an amino group or an aryl group
  • Rc is a hydrogen atom
  • the photoelectric conversion device according to (1) which is an atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, or an amino group.
  • R A1 ⁇ R A3 have the same meanings as R A1 ⁇ R A3 in the formula (AL-1).
  • Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group.
  • R 10 represents a hydrogen atom, an aryl group, a heterocyclic group or an alkyl group which may be substituted with a halogen atom.
  • X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1).
  • na has the same meaning as na in formula (DL-1).
  • R C1 represents a substituent having an acidic group.
  • R C2 represents a substituent.
  • lc represents an integer of 0 or more.
  • a dye-sensitized solar cell comprising the photoelectric conversion element according to any one of (1) to (9).
  • M 1 represents a metal atom and Z 1 represents a monodentate ligand.
  • LA represents a tridentate ligand represented by the following formula (AL-1).
  • LD represents a bidentate ligand represented by the following formula (DL-1).
  • R A1 , R A2 and R A3 each independently represent a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. However, at least one of R A1 , R A2 and R A3 is an acidic group.
  • R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group.
  • m1 represents an integer of 0 to 3.
  • na represents 0 or 1.
  • G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0.
  • E represents a group represented by any of the following formulas (E-1) to (E-6).
  • X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ).
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring.
  • R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group.
  • m represents an integer of 0 or more.
  • * indicates a bonding position for bonding to the 2-position of the pyridine ring.
  • Ra and Rb are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkylthio group, an arylthio group, an amino group or an aryl group
  • Rc is a hydrogen atom
  • R A1 ⁇ R A3 have the same meanings as R A1 ⁇ R A3 in the formula (AL-1).
  • Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group.
  • R 10 represents a hydrogen atom, an aryl group, a heterocyclic group or an alkyl group which may be substituted with a halogen atom.
  • X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1).
  • na has the same meaning as na in formula (DL-1).
  • aromatic ring is used to mean an aromatic ring and a heterocycle (aromatic heterocycle and non-aromatic heterocycle), and may be monocyclic or multicyclic.
  • the carbon-carbon double bond may be any of E type and Z type in the molecule.
  • the photoelectric conversion element, the dye-sensitized solar cell of the present invention, and the metal complex dye used therein can improve the molar extinction coefficient ⁇ in the long wavelength region of the absorption spectrum, and can realize high heat resistance. Furthermore, according to the present invention, high photoelectric conversion efficiency is achieved, and excellent device performance with high ⁇ and IPCE (incident photo-to-current efficiency) in a long wavelength region is exhibited.
  • FIG. 2 is a cross-sectional view schematically showing a dye-sensitized solar cell produced in Example 1.
  • the metal complex dye of the present invention has a structure in which a tridentate ligand containing nitrogen and a bidentate ligand containing nitrogen are coordinated with a central metal, and thereby, high photoelectric conversion of a photoelectric conversion element. Achieves both efficiency and high heat resistance. This reason includes unclear points, but can be explained as follows, including estimation.
  • the metal complex dye of the present invention has a group having a high LogP value.
  • the LogP value is known as an index of the fat solubility of the compound.
  • the lipid solubility is improved and the hydrophobicity is improved, and the deterioration of the photoelectric conversion element due to moisture is suppressed.
  • the structure has a thiophene ring, the one-electron oxidation state is stabilized by delocalization, so that an effect of further improving durability can be expected.
  • this invention is demonstrated in detail based on the preferable embodiment.
  • a photoelectric conversion element 10 includes a photosensitive support including a conductive support 1 and semiconductor fine particles 22 sensitized by supporting a dye (metal complex dye) 21. It has a body layer 2, a charge transfer body layer 3 that is a hole transport layer, and a counter electrode 4.
  • the conductive support 1 provided with the photoreceptor layer 2 functions as a working electrode in the photoelectric conversion element 10.
  • this photoelectric conversion element 10 is included in a system 100 using a dye-sensitized solar cell.
  • the system 100 using the dye-sensitized solar cell can be used as a battery for causing the operating means M (electric motor) to work in the external circuit 6.
  • the light receiving electrode 5 includes a photosensitive layer 2 including a conductive support 1 and semiconductor fine particles 22 to which a dye (metal complex dye) 21 is adsorbed.
  • the photoreceptor layer 2 is designed according to the purpose, and may be a single layer structure or a multilayer structure.
  • the dye (metal complex dye) 21 in one layer of the photoreceptor layer may be one kind or a mixture of many kinds, and at least one of them is the metal complex dye of the present invention described later.
  • the light incident on the photoreceptor layer 2 excites the dye (metal complex dye) 21.
  • the excited dye has high energy electrons, and the electrons are transferred from the dye (metal complex dye) 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion.
  • the dye (metal complex dye) 21 is an oxidant. Electrons on the electrodes work in the external circuit 6 and return to the photoreceptor layer 2 where the oxidant and electrolyte of the dye (metal complex dye) 21 are present via the counter electrode 4 to work as a solar cell.
  • the upper and lower sides of the photoelectric conversion element do not need to be defined in particular, but in this specification, based on what is illustrated, the support body serving as the light receiving side with the counter electrode 4 side as the upper (top) direction
  • the side of 1 is the lower (bottom) direction.
  • a manufacturing method usually used for the photoelectric conversion element or the dye-sensitized solar cell may be employed.
  • a manufacturing method usually used for the photoelectric conversion element or the dye-sensitized solar cell may be employed.
  • US Pat. No. 4,927,721, US Pat. No. 4,684,537, US Pat. No. 5,084,365, US Pat. No. 5,350, No. 644, U.S. Pat. No. 5,463,057, U.S. Pat. No. 5,525,440, JP-A-7-249790, JP-A-2004-220974, JP-A-2008-135197 Reference can be made to the official gazette.
  • an outline of the main members will be described.
  • the photoreceptor layer is a layer containing semiconductor fine particles containing an electrolyte described later and carrying a sensitizing dye containing the metal complex dye of the present invention described below. Some sensitizing dyes may be dissociated in the electrolyte.
  • the photoreceptor layer is designed according to the purpose, and may be a single layer structure or a multilayer structure. In this invention, since it contains the semiconductor fine particle which the metal complex dye of this invention adsorb
  • the metal complex dye of the present invention is represented by the following formula (I).
  • M 1 represents a metal atom.
  • M 1 is preferably a metal capable of tetracoordination or hexacoordination, and more preferably Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn or Zn. Particularly preferred is Ru, Os, Zn or Cu, and most preferred is Ru.
  • ⁇ LA> LA is represented by the following formula (AL-1).
  • R A1 , R A2 , R A3 R A1 to R A3 each independently represents a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. These alkyl groups, heteroaryl groups, and aryl groups are preferably the groups listed for the substituent T described later.
  • the heteroaryl group is preferably a 5- or 6-membered ring, and the ring-constituting atom is preferably a heteroatom selected from an oxygen atom, a sulfur atom, a nitrogen atom, and a selenium atom, and includes a benzene ring and a heteroaryl ring. It may be condensed with a ring.
  • the acid group is preferably a group listed as the following acid group Ac.
  • At least one of R A1 to R A3 is an acidic group, preferably two are acidic groups, and more preferably three are acidic groups.
  • the acidic group is a substituent having a dissociative proton, and examples thereof include a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, a boric acid group, and a group having any one of these, A carboxy group or a group having this is preferred.
  • the acidic group may take a form of releasing a proton and dissociating, or may be a salt. Although it does not specifically limit as a counter ion when becoming a salt, For example, the example of the positive ion in the following counter ion CI is mentioned.
  • the acidic group may be a group bonded via a linking group.
  • a carboxyvinylene group, a dicarboxyvinylene group, a cyanocarboxyvinylene group, a carboxyphenyl group, and the like can be given as preferable acidic groups.
  • the acidic group mentioned here and its preferable range may be called acidic group Ac.
  • LA LA Specific examples are shown below, but the present invention is not construed as being limited thereto.
  • ⁇ LD> LD is represented by the following formula (DL-1).
  • R 1 R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group. Each of these groups is preferably a corresponding group exemplified in the substituent T described later.
  • ⁇ M1 m1 represents an integer of 0 to 3.
  • the plurality of R 1 may be the same or different and may be bonded to each other to form a ring.
  • m1 is preferably 0 or 1, and more preferably 0.
  • ⁇ E E represents a group represented by any of the following formulas (E-1) to (E-6).
  • R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group. Each of these groups is preferably a group corresponding to the substituent T described later. Among them, R is preferably a halogen atom or an alkyl group which may be substituted with a halogen atom.
  • the alkyl group substituted with a halogen atom is preferably an alkyl group substituted with a fluorine atom. Further, from the number of halogen atom substitutions, a perhalogenated alkyl group is preferable, a perfluoroalkyl group is more preferable, and a perfluoromethyl group is particularly preferable.
  • n represents an integer of 0 or more.
  • the upper limit of m is the number that can be substituted in each formula. For example, it is 3 in the formula (E-1).
  • m is preferably 0 or 1, and more preferably 1.
  • * shows the coupling
  • formulas (E-1) to (E-6) the formulas (E-1), (E-2) and (E-4) to (E-6) are preferred, and the formulas (E-1), (E-6) E-2), (E-4), and (E-5) are more preferred, formulas (E-2), (E-4), and (E-5) are more preferred, and formula (E-2) is particularly preferred. preferable.
  • ⁇ Na na represents 0 or 1. na is preferably 1.
  • ⁇ G G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0.
  • X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ).
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring.
  • the formed ring is preferably a 5- or 6-membered ring, and may be a saturated hydrocarbon ring, an unsaturated hydrocarbon ring, a saturated hetero ring or an unsaturated hetero ring, and may be an aromatic ring or a heteroaromatic ring.
  • Preferred rings include a cyclohexane ring, a dioxane ring, a dithiodioxane ring, a benzene ring and the like.
  • X is preferably an oxygen atom, a sulfur atom, N (R 2 ), or C (R 2 ) (R 3 ), more preferably an oxygen atom, a sulfur atom, or C (R 2 ) (R 3 ), and particularly a sulfur atom. preferable.
  • G has a LogP value of 3.0 to 20.0.
  • LogP means the common logarithm of the partition coefficient P (Partition Coefficient), and quantitatively shows how a chemical substance is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a numerical value, and is expressed by the following formula.
  • C oil represents the molar concentration in the oil phase
  • C water represents the molar concentration in the aqueous phase.
  • the oil solubility increases when the LogP value increases to a positive value across 0, and the water solubility increases when the absolute value increases with a negative value.
  • LogP has a negative correlation with the water solubility of chemical substances, and is widely used as a parameter for estimating hydrophilicity and hydrophobicity. In principle, it is actually measured by a distribution experiment in view of its definition, but the experiment itself is quite troublesome, so estimation from the structural formula is an effective means.
  • the Log P value estimated by calculation is frequently used.
  • the LogP value is determined by ChemDrawProver., Manufactured by CambridgeSoft. It is a value calculated by 12.0.
  • the Log P value of G is 3.0 to 20.0, preferably 3.5 to 15.0, more preferably 4.0 to 14.0, still more preferably 4.2 to 12.0. .3 to 10.0 is particularly preferable, and 4.4 to 9.0 is most preferable.
  • the metal complex dye represented by the formula (I) is preferably a metal complex dye represented by the following formula (II).
  • R A1 ⁇ R A3 have the same meanings as R A1 ⁇ R A3 in the formula (AL-1), and the preferred range is also the same.
  • Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group.
  • R 10 represents a hydrogen atom, an aryl group, a heterocyclic group, or an alkyl group that may be substituted with a halogen atom.
  • X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1), and the preferred ranges are also the same.
  • na has the same meaning as na in formula (DL-1), and the preferred range is also the same. A common description will be given below.
  • the metal complex dye represented by the formula (I) and the metal complex dye represented by the formula (II) have a group represented by the formula (G-1) in common.
  • the group represented by the formula (G-1) is preferably any one of the following embodiments A to C, more preferably embodiment A or embodiment B, from the viewpoint of photoelectric conversion efficiency and durability. More preferably, it is embodiment A.
  • Ra and Rb are each independently a hydrogen atom, an alkyl group, an amino group, an alkylthio group, an arylthio group, an alkenyl group, an alkynyl group, or an aryl group
  • Rc is a hydrogen atom, an alkyl group, an alkylamino group, A group, an arylamino group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • Rc is a hydrogen atom, alkylamino group, arylamino group, alkoxy group, aryloxy group, alkylthio group, arylthio group, heteroaryl group, alkenyl. Group or an alkynyl group.
  • Ra and Rb are preferably each independently a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, an alkenyl group, an alkynyl group, or an aryl group, and a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, or an aryl group. More preferably, it is a hydrogen atom, an alkyl group, an alkylthio group, or an aryl group.
  • Rc is preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkenyl group or a heteroaryl group, and a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, an alkenyl group or a heteroaryl group It is more preferably a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, or a heteroaryl group, and particularly preferably a hydrogen atom, an alkyl group, an alkylthio group, or a heteroaryl group.
  • Ra is a substituent
  • Rb is preferably a hydrogen atom
  • Rc is preferably a hydrogen atom, an alkoxy group, an alkylthio group, an arylthio group or a heteroaryl group, and is a hydrogen atom or a heteroaryl group. Is more preferable.
  • Ra and Rc are preferably hydrogen atoms.
  • the heterocycle of the heteroaryl group is preferably a 5-membered aromatic ring, more preferably a thiophene ring, a furan ring, or a pyrrole ring, and most preferably a thiophene ring.
  • Ra and Rb are any one of a hydrogen atom, an alkyl group, an amino group, an alkylthio group, and an arylthio group, and Rc is an aryl group.
  • Ra and Rb are preferably a hydrogen atom, an alkyl group, an alkylthio group, or an arylthio group, and Rc is preferably an aryl group, Ra and Rb are either a hydrogen atom or an alkyl group, and More preferably, Rc is an aryl group.
  • the aryl group of Rc is a phenyl group which may have a substituent, an aryl group in which a 5- or 6-membered cycloalkane, a 5- or 6-membered heterocyclic ring is condensed, such as a fluorene ring group or a carbazole ring Groups.
  • the substituent is preferably a halogen atom or an alkyl group, and the alkyl group is preferably an alkyl group substituted with a fluorine atom (for example, a trifluoromethyl group).
  • Ra and Rb are chain alkoxy groups or aryloxy groups
  • Rc is a hydrogen atom, alkyl group, alkylamino group, arylamino group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkenyl group, Either an aryl group or a heteroaryl group.
  • the chain-like alkoxy group or aryloxy group in Ra and Rb is a substituted or unsubstituted linear or branched alkoxy group having 5 to 30 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms.
  • It is preferably a substituted or unsubstituted linear or branched alkoxy group having 5 to 20 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, more preferably a substituted or unsubstituted carbon number.
  • a straight chain or branched alkoxy group having 5 to 15 or a substituted or unsubstituted aryloxy group having 6 to 15 carbon atoms is more preferable.
  • G is also preferably represented by any of the following formulas (G1-1) to (G1-5).
  • X, Ra, Rb, Rc and na have the same meanings as X, Ra, Rb, Rc and na in the formula (G-1), and preferred ranges are also the same.
  • Rd and Re are synonymous with Ra and Rb, and their preferred ranges are also the same.
  • the substituent is preferably a preferable substituent in Ra.
  • (G1-1), (G1-3), (G1-4), and (G1-5) are preferred, and (G1-1) and (G1-4) are more preferred.
  • the ligand represented by the formula (DL-1) is Chem. Commun. , 2009, 5844-5846.
  • Z 1 represents a monodentate ligand.
  • Z 1 is, for example, acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group, thiocarbonate group, dithiocarbonate group, trithiocarbonate group, acyl group , Thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, selenate group, isoselenate group, isoselenocyanate group, cyano group, alkylthio group, arylthio group, alkoxy group and aryloxy group.
  • a monodentate ligand selected from the group consisting of a halogen atom, a phosphine ligand, carbonyl, dialkyl ketone, carbonamide, thiocarbonamide and thiourea.
  • Z 1 is preferably an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group.
  • ligand Z 1 is the alkyl moiety, alkenyl part, alkynyl site, if it contains alkylene moiety such as, they may be linear or branched, may be either unsubstituted substituted. Further, when an aryl moiety, a heterocyclic moiety, a cycloalkyl moiety and the like are included, they may be substituted or unsubstituted, and may be monocyclic or condensed.
  • metal complex dye represented by the formula (I) of the present invention are shown below, but the present invention is not limited thereto.
  • the metal complex dye represented by the formula (I) of the present invention is disclosed in US Patent Application Publication No. 2010 / 0258175A1, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. , 2011, 50, 2054-2058, Chem. Commun. , 2009, 5844-5846, the method described in the reference cited in the literature, or a method analogous thereto.
  • the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • the metal complex dye of the present invention may be used in combination with another dye.
  • the dye used in combination include Ru complex dyes described in JP-A-7-500630 (particularly the dyes synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). ), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 from the third line to the 29th page and the 23rd line from the bottom of page 20), JP-A-2001- Ru complex dyes described in Japanese Patent No. 59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in Japanese Patent Application Laid-Open No.
  • the dye used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
  • the ratio of the mass of the metal complex dye of the present invention to the mass of the other dye is preferably 95/5 to 10/90, and 95/5 to 50/50. Is more preferable, 95/5 to 60/40 is further preferable, 95/5 to 65/35 is particularly preferable, and 95/5 to 70/30 is most preferable.
  • the conductive support is preferably a support made of glass or plastic having a conductive film layer on the surface, such as a metal, which is conductive in itself.
  • the plastic support include a transparent polymer film described in paragraph No. 0153 of JP-A No. 2001-291534.
  • the support in addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) may be used.
  • the surface may be provided with a light management function. For example, an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated Or a light guide function described in JP-A-2002-260746.
  • the thickness of the conductive film layer is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the conductive support is substantially transparent.
  • substantially transparent means that the light transmittance is 10% or more.
  • the light transmittance of the conductive support is preferably 50% or more, and particularly preferably 80% or more.
  • a glass or plastic coated with a conductive metal oxide is preferable.
  • the metal oxide tin oxide is preferable, and indium-tin oxide and fluorine-doped oxide are particularly preferable.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the glass or plastic support. When a transparent conductive support is used, light is preferably incident from the support side.
  • the semiconductor fine particles are preferably metal chalcogenide (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles.
  • the metal chalcogenide is preferably titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, or tantalum or an oxide thereof, cadmium sulfide, cadmium selenide, or the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, titania nanowires, or nanorods may be mixed with titania microparticles or used as semiconductor electrodes.
  • the particle size of the semiconductor fine particles is 0.001 to 1 ⁇ m as the primary particle and 0.01 to 100 ⁇ m as the average particle size of the dispersion in the average particle size using the diameter when the projected area is converted into a circle. Is preferred.
  • Examples of the method for coating the semiconductor fine particles on the conductive support include a wet method, a dry method, and other methods.
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area.
  • the preferred thickness of the photoreceptor layer which is a semiconductor layer, varies depending on the use of the device, but is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, the thickness of the photoreceptor layer is preferably 1 to 50 ⁇ m, and more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles may be fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 60 to 400 ° C.
  • the coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support.
  • the amount of the metal complex dye of the present invention is preferably 5 mol% or more.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles. By using such a dye amount, the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
  • the counter ion of the specific metal complex dye is not particularly limited, and examples thereof include alkali metal ions and quaternary ammonium ions.
  • the surface of the semiconductor fine particles may be treated with amines.
  • amines include pyridines (for example, 4-t-butylpyridine, polyvinylpyridine) and the like. In the case of a liquid, these may be used as they are, or may be used after being dissolved in an organic solvent.
  • the photoelectric conversion element for example, the photoelectric conversion element 10
  • the dye-sensitized solar cell for example, the dye-sensitized solar cell 20
  • at least the metal complex dye of the present invention is used.
  • the charge transfer layer used in the photoelectric conversion element of the present invention is a layer having a function of replenishing electrons to the oxidant of the dye, and is provided between the light receiving electrode (photoelectrode) and the counter electrode (counter electrode).
  • the charge transfer layer includes an electrolyte.
  • electrolytes include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, an electrolyte in which a liquid in which a redox couple is dissolved in an organic solvent is impregnated in a polymer matrix (so-called gel electrolyte), a molten salt containing the redox couple, and the like Is mentioned.
  • a liquid electrolyte is preferable.
  • a nitrile compound, an ether compound, an ester compound or the like is used.
  • a solvent for the liquid electrolyte a nitrile compound is preferable, and acetonitrile and methoxypropionitrile are particularly preferable.
  • iodine and iodide iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable
  • alkyl viologen for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzenes for example, hydroquinone, naphthohydroquinone, etc.
  • divalent And trivalent iron complexes for example, red blood salt and yellow blood salt
  • divalent and trivalent cobalt complexes and the like.
  • the cobalt complex is preferably a complex represented by the following formula (CC).
  • LL represents a bidentate or tridentate ligand.
  • X represents a monodentate ligand.
  • ma represents an integer of 0 to 3.
  • mb represents an integer of 0-6.
  • CI represents a counter ion when a counter ion is required to neutralize the charge.
  • the counter ion CI represents a counter ion when a counter ion is required to neutralize the charge. In general, whether a complex is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the complex.
  • the counter ion CI is a positive counter ion, for example, the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), an alkali metal ion, or a proton.
  • the counter ion CI is a negative counter ion, for example, the counter ion CI may be an inorganic anion or an organic anion.
  • a halogen anion eg, fluoride ion, chloride ion, bromide ion, iodide ion, etc.
  • substituted aryl sulfonate ion eg, p-toluene sulfonate ion, p-chlorobenzene sulfonate ion, etc.
  • aryl disulfone Acid ions for example, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion, etc.
  • alkyl sulfate ions for example, methyl sulfate ion
  • sulfate ions thiocyanate ions
  • charge balance counter ion an ionic polymer or another complex having a charge opposite to that of the complex may be used, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
  • CI may be contained if necessary.
  • LL is preferably a ligand represented by the following formula (LC).
  • X LC1 and X LC3 each independently represent a carbon atom or a nitrogen atom.
  • XLC1 N
  • XLC3 N
  • XLC3 N
  • X LC3 N
  • Z LC1 , Z LC2 and Z LC3 each independently represent a nonmetallic atom group necessary for forming a 5-membered ring or a 6-membered ring.
  • Z LC1 , Z LC2 and Z LC3 may have a substituent and may be closed with an adjacent ring via the substituent. Examples of the substituent include the substituent T described later.
  • q represents 0 or 1; In addition, when q is 0, the carbon atom at the position where X LC3 is bonded to the 5-membered ring or 6-membered ring formed by Z LC2 is a hydrogen atom or a substituent other than the heterocyclic group formed by Z LC3 Join.
  • X includes Z 1 in the formula (I), and among these, a halogen ion is preferable.
  • the ligand represented by the above formula (LC) is more preferably a ligand represented by the following formulas (LC-1) to (LC-4).
  • R LC1 to R LC11 each independently represents a substituent.
  • q1, q2, q6 and q7 each independently represents an integer of 0 to 4.
  • q3, q5, q10 and q11 each independently represents an integer of 0 to 3.
  • q4 represents an integer of 0-2.
  • examples of the substituent in R LC1 to R LC11 include an aliphatic group, an aromatic group, and a heterocyclic group.
  • Specific examples of the substituent include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, and heterocyclic rings.
  • Preferred examples include alkyl groups (eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.), aryl groups (eg phenyl, tolyl, naphthyl).
  • alkyl groups eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.
  • aryl groups eg phenyl, tolyl, naphthyl
  • alkoxy groups eg methoxy, ethoxy, isopropoxy, butoxy etc.
  • alkylthio groups eg methylthio, n-butylthio, n-hexylthio, 2-ethylhexylthio etc.
  • aryloxy groups eg phenoxy, naphthoxy etc.
  • arylthio groups eg, phenylthio, naphthylthio, etc.
  • heterocyclic groups eg, 2-thienyl, 2-furyl, etc.
  • cobalt complex having a ligand represented by the formula (LC) include the following complexes.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the organic solvent that dissolves the redox couple is preferably an aprotic polar solvent (eg acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.).
  • aprotic polar solvent eg acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.
  • the polymer (polymer matrix) used in the gel electrolyte matrix include polyacrylonitrile and polyvinylidene fluoride.
  • the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlorate). It is done.
  • aminopyridine compounds As an additive to the electrolyte, in addition to the aforementioned 4-t-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine compounds and nitrogen-free heterocycles can be added.
  • a method of controlling the moisture of the electrolytic solution may be taken.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist.
  • an inclusion compound of iodine and cyclodextrin may be used, or a method of constantly supplying water may be used.
  • Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • a molten salt may be used as the electrolyte, and preferred molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. These cationic systems may be combined with specific anions. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
  • molten salt other than these for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
  • the electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter).
  • the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • the matrix polymer is preferably a polymer having a nitrogen-containing heterocycle in the repeating unit of the main chain or side chain, a crosslinked product obtained by reacting these nitrogen-containing heterocycle with an electrophilic compound, or a polymer having a triazine structure , Polymer having ureido structure, liquid crystal compound-containing polymer, ether-bonded polymer, polyvinylidene fluoride, methacrylate / acrylate, thermosetting resin, crosslinked polysiloxane, polyvinyl alcohol (PVA), polyalkylene glycol And inclusion compounds such as dextrin, oxygen-containing or sulfur-containing polymers, and natural polymers.
  • a system containing a crosslinked polymer obtained by reacting a bifunctional or higher functional isocyanate with a functional group such as a hydroxy group, an amino group, or a carboxy group may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher-valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, a solvent having a specific dielectric constant, and the like.
  • the liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth-like solids such as filters.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole, or polysilane, a spiro compound in which two rings share a tetrahedral structure such as C or Si, and an aromatic such as triarylamine. Group amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • a preferable concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more.
  • the upper limit in this case is not particularly limited, but is usually about 5 mol / L.
  • a coadsorbent In the photoelectric conversion element of this invention, it is preferable to use a coadsorbent with the metal complex dye of this invention or the pigment
  • a co-adsorbent a co-adsorbent having at least one acidic group (preferably a carboxy group or a salt thereof) is preferable, and examples thereof include compounds having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R C1 represents a substituent having an acidic group.
  • R C2 represents a substituent.
  • lc represents an integer of 0 or more.
  • R C1 is preferably a carboxy group or an alkyl group substituted with a sulfo group or a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2 More preferred is CONHCH 2 CH 2 SO 3 H.
  • R C2 examples include the substituent T described later, and among them, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group, and an arylaminocarbonyloxy group are preferable, and an alkyl group, a hydroxy group, and an acyloxy group are more preferable.
  • lc represents an integer of 0 or more, and when lc is 2 or more, a plurality of RC2s may be the same as or different from each other. lc is preferably 2-4.
  • Examples of these specific compounds include the compounds having the above-mentioned steroid skeleton.
  • the co-adsorbent of the present invention has an effect of suppressing inefficient association of dyes by adsorbing to semiconductor fine particles and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte.
  • the amount of the coadsorbent used is not particularly limited, but is preferably 1 to 200 mol, more preferably 10 to 150 mol, and particularly preferably 20 to 50 mol with respect to 1 mol of the dye. Is effectively expressed, and is preferable.
  • ⁇ Substituent T> In this specification, about the display of a compound (a complex and a pigment
  • a substituent that does not specify substitution or non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted.
  • Preferred substituents include the following substituent T. Further, in the present specification, when it is described only as a substituent, it refers to this substituent T, and each group, for example, an alkyl group, is only described. The preferred range and specific examples of the corresponding group of the substituent T are applied.
  • substituent T examples include the following groups.
  • An alkyl group preferably having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, trifluoromethyl, etc.
  • Alkenyl groups preferably having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl groups preferably having 2 to 20 carbon atoms, such as ethynyl, 2-propynyl, 2-butynyl, phenylethynyl, etc.
  • a cycloalkyl group preferably having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • Aryl groups preferably having 6 to 26 carbon atoms, eg , Phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.
  • heterocyclic group preferably having 2 to 20 carbon atoms and having at least one oxygen atom, sulfur atom, nitrogen atom
  • More preferred are membered or six-membered heterocyclic groups such as 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, etc., alkoxy groups (preferably having 1 carbon atom) -20, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), alkenyloxy groups (preferably having 2-20 carbon atoms, eg, vinyloxy, allyloxy, etc.), alkynyloxy groups (preferably having 2-20 carbon atoms).
  • cycloalkyloxy A group preferably having 3 to 20 carbon atoms such as cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, 4-methylcyclohexyloxy, etc.
  • an aryloxy group preferably having 6 to 26 carbon atoms such as phenoxy, 1- Naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • heterocyclic oxy groups eg, imidazolyloxy, benzoimidazolyloxy, thiazolyloxy, benzothiazolyloxy, triazinyloxy, purinyloxy
  • alkoxycarbonyl group preferably having 2 to 20 carbon atoms such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • a cycloalkoxycarbonyl group preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl, etc.
  • Cyclohexyloxycarbonyl, etc. aryloxycarbonyl groups (preferably having 6 to 20 carbon atoms, such as phenyloxycarbonyl, naphthyloxycarbonyl, etc.)
  • amino groups preferably having 0 to 20 carbon atoms, alkylamino groups, alkenyls
  • An acyl group preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl, benzoyl, etc.
  • an acyloxy group preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexylcarbonyloxy).
  • Benzoyloxy, etc. carbamoyl group (preferably an carbamoyl group having 1 to 20 carbon atoms, alkyl, cycloalkyl or aryl, such as N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.)
  • N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, benzoylamino, etc.), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably having 1 to 20 carbon atoms, eg, methylthio , Ethylthio, isopropylthio, benzylthio, etc.), cycloalkylthio groups (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopent
  • a silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted by alkyl, aryl, alkoxy and aryloxy, such as triethylsilyl, triphenylsilyl, diethylbenzylsilyl, dimethylphenylsilyl, etc.), silyloxy group ( Preferably, it is a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, dimethylphenylsilyloxy, etc.), hydroxy group , Cyano group, nitro group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), carboxy group, sulfo group, phosphonyl group, phosphoryl group, boric acid group, more
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the counter electrode is preferably a positive electrode of a dye-sensitized solar cell (photoelectrochemical cell).
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • at least one of the conductive support and the counter electrode described above must be substantially transparent.
  • the conductive support is preferably transparent, and sunlight is preferably incident from the support side. In this case, it is more preferable that the counter electrode has a property of reflecting light.
  • a counter electrode of the dye-sensitized solar cell glass or plastic on which metal or conductive oxide is vapor-deposited is preferable, and glass on which platinum is vapor-deposited is particularly preferable.
  • the dye-sensitized solar cell it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating.
  • the present invention is disclosed in Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can apply to the described photoelectric conversion element and a dye-sensitized solar cell.
  • the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
  • the solvent to be used include, but are not particularly limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and alcohols, amides, nitriles, hydrocarbons, and a mixed solvent of two or more of these are preferable.
  • a mixed solvent of an alcohol and a solvent selected from amides, nitriles or hydrocarbons is preferable. Further preferred are alcohols and amides, mixed solvents of alcohols and hydrocarbons, and particularly preferred are mixed solvents of alcohols and amides. Specifically, methanol, ethanol, propanol, butanol, dimethylformamide, and dimethylacetamide are preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the formula (CA) is preferable.
  • dye or a coadsorbent is adjusted so that the pigment
  • a dye solution is preferred.
  • the metal complex dye of the present invention is preferably contained in an amount of 0.001 to 0.1% by mass.
  • the water content of the dye solution is particularly preferably adjusted. Therefore, in the present invention, the water content (content ratio) is preferably adjusted to 0 to 0.1% by mass. Similarly, the adjustment of the water content of the electrolyte in the photoelectric conversion element or the dye-sensitized solar cell is also preferable in order to effectively exhibit the effect of the present invention. For this reason, the water content (content rate) of the electrolyte solution is It is preferable to adjust to 0 to 0.1% by mass.
  • the electrolyte is particularly preferably adjusted with a dye solution.
  • a dye adsorption electrode which is a semiconductor electrode for a dye-sensitized solar cell in which a metal complex dye is supported on the surface of a semiconductor fine particle provided in a semiconductor electrode using the dye solution is preferable. That is, a dye-adsorbing electrode for a dye-sensitized solar cell is obtained by applying a composition obtained from the dye solution onto a conductive support provided with semiconductor fine particles, and curing the composition after application. What was made into the photoreceptor layer is preferable.
  • a dye-sensitized solar cell by using the dye-adsorbing electrode for the dye-sensitized solar cell, preparing an electrolyte and a counter electrode, and assembling them using these.
  • a metal complex dye Ru-17A was synthesized according to the method of the following scheme.
  • the metal complex dyes Ru-7A, Ru-8A, Ru-9A, Ru-18A, Ru-24A, Ru-29A, Ru- 30A, Ru-43A to Ru-49A, metal complex dyes Ru-1B, Ru-16B, and metal complex dyes Ru-1C were synthesized.
  • the obtained metal complex dye was identified by ESI-MS.
  • the synthesized metal complex dyes are shown below.
  • the following metal complex dyes were used as comparative compounds.
  • the comparative compound (2) is a compound described in US Patent Application Publication No. 2010/0258175 (Cited document 2).
  • Example 1 [Preparation of dye-sensitized solar cell]
  • a photoelectrode having the same configuration as the photoelectrode 12 shown in FIG. 5 described in JP-A-2002-289274 is prepared by the following procedure, and further replaced with the photoelectrode shown in FIG.
  • the specific configuration is shown in FIG.
  • 41 is a transparent electrode
  • 42 is a semiconductor electrode
  • 43 is a transparent conductive film
  • 44 is a substrate
  • 45 is a semiconductor layer
  • 46 is a light scattering layer
  • 40 is a photoelectrode
  • 20 is a dye-sensitized solar cell
  • CE is a counter electrode
  • E is The electrolyte, S, is a spacer.
  • Paste A A titania slurry was prepared by putting spherical TiO 2 particles (anatase, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles A) into a nitric acid solution and stirring. Next, a cellulosic binder was added to the titania slurry as a thickener and kneaded to prepare paste A.
  • a titania slurry was prepared by stirring spherical TiO 2 particles A and spherical TiO 2 particles (anatase, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles B) in a nitric acid solution.
  • rod-like TiO 2 particles C anatase, diameter: 100 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles C
  • a transparent electrode 41 (conductive support) in which a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44) was prepared. Then, the SnO 2 conductive film, a paste 1 of the above screen printing and then dried. Then, it baked on the conditions of 450 degreeC in the air. Further, by repeating this screen printing and baking using the paste 2, a semiconductor electrode having the same configuration as the semiconductor electrode 42 shown in FIG. 2 (light-receiving surface area; 10 mm ⁇ 10 mm, layer) is formed on the SnO 2 conductive film.
  • Thickness 10 ⁇ m
  • layer thickness of semiconductor layer 6 ⁇ m
  • layer thickness of light scattering layer 4 ⁇ m
  • content of rod-like TiO 2 particles C contained in the light scattering layer 30% by mass
  • dye was made to adsorb
  • the metal complex dyes shown in Table 2 below were used at a concentration of 3 ⁇ 10 ⁇ 4 mol / L.
  • 20 mol of an equimolar mixture of chenodeoxycholic acid and cholic acid was added to 1 mol of the metal complex dye to prepare each dye solution.
  • this dye solution When the water content of this dye solution was measured by Karl Fischer titration, the water content was less than 0.01% by mass.
  • the semiconductor electrode is immersed in this solution at 40 ° C. for 10 hours, and then pulled up and dried at 50 ° C., thereby completing the photoelectrode 40 in which the dye is adsorbed to the semiconductor electrode by about 2 ⁇ 10 ⁇ 7 mol / cm 2. It was.
  • a DuPont spacer S (trade name: “Surlin”) having a shape corresponding to the size of the semiconductor electrode is prepared, the photoelectrode 40 and the counter electrode CE are opposed to each other through the spacer S, and the above-mentioned inside
  • the outer periphery of the dye-sensitized solar cell and the electrolyte inlet were sealed and cured with Nagase Chemtech resin XNR-5516, and each dye was cured.
  • Sensitized solar cells (sample numbers 101 to 119, c11 and c12) were completed. The performance of the obtained dye-sensitized solar cell was evaluated as follows.
  • the battery characteristic test was performed by using a solar simulator (WAXS, WXS-85H), irradiating 1000 W / m 2 pseudo-sunlight obtained from a xenon lamp through an AM1.5 filter, and using an IV tester. The measurement was performed by measuring the voltage characteristics and obtaining the photoelectric conversion efficiency. In comparison with the photoelectric conversion efficiency of the comparative compound (2), the following criteria were evaluated.
  • A The photoelectric conversion efficiency is 1.05 times or more of the photoelectric conversion efficiency of the comparative compound (2)
  • the produced dye-sensitized solar cell was put into a 40 degreeC thermostat and the heat test was done. With respect to the dye-sensitized solar cell before the heat test and the dye-sensitized solar cell after 12 hours of the heat test, the current value was measured to evaluate the thermal deterioration rate. The thermal deterioration rate was calculated by multiplying the value obtained by dividing the decrease in the current value before and after the heat resistance test by the current value before the heat resistance test by 100. The obtained thermal degradation rate was compared with the thermal degradation rate of the comparative compound (2) and evaluated according to the following criteria.
  • ⁇ Heat cycle test> The prepared dye-sensitized solar cell was alternately put into a ⁇ 10 ° C. freezer and a 40 ° C. constant temperature bath every 2 hours, and cooling and heating were repeated to conduct a heat cycle test.
  • the electric current value was measured and the deterioration rate was evaluated.
  • the deterioration rate was calculated by multiplying 100 by the value obtained by dividing the decrease in the current value before and after the heat cycle test by the current value before the heat cycle test.
  • the obtained deterioration rate was compared with the deterioration rate of the comparative compound (1) and evaluated according to the following criteria.
  • the deterioration rate is less than 0.9 times the deterioration rate of the comparative compound (1)
  • the dye-sensitized solar cells each including the photoelectric conversion element using the metal complex dye of the present invention are excellent in photoelectric conversion efficiency, are not easily deteriorated by heat, and have excellent battery characteristics.
  • the Log P value of G is 2.94
  • the Log P value of G in the comparative compound (2) is 3.0 or more, but the structure of G is represented by the formula ( It does not have the structure represented by G-1).
  • the structure of G in the metal complex dye of the present invention and the Log P value of G in the range of 3.0 to 20.0 improve the photoelectric conversion efficiency and the heat deterioration resistance. It can be seen that it plays an important role.

Abstract

This metal-complex dye can be represented by formula (I). (I) M1(LA)(LD)Z1 In formula (I), M1 represents a metal atom; Z1 represents a monodentate ligand; LA represents a tridentate ligand that can be represented by formula (AL-1); LD represents a bidentate ligand that can be represented by formula (DL-1); RA1 through RA3 each represent a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group, or an acidic group; at least one of RA1, RA2, and RA3 represents an acidic group; R1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom, or an aryl group; m1 represents an integer from 0 to 3; na represents either 0 or 1; and G represents a group that can be represented by formula (G-1) and exhibits a log P between 3.0 to 20.0, inclusive.

Description

光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
 本発明は、光電変換素子、色素増感電池およびこれに用いる金属錯体色素に関する。 The present invention relates to a photoelectric conversion element, a dye-sensitized battery, and a metal complex dye used therefor.
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。この中でも、シリコン系太陽電池は古くから研究開発が進められてきた。各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよび分子修飾には自ずと限界がある。 Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof. A solar cell using non-depleting solar energy does not require fuel, and its full-scale practical use is expected as an inexhaustible clean energy. Among these, silicon solar cells have been researched and developed for a long time. It is spreading due to the policy considerations of each country. However, silicon is an inorganic material and naturally has limitations in throughput and molecular modification.
 そこで色素増感太陽電池の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。 Therefore, research on dye-sensitized solar cells has been conducted energetically. In particular, it was the research results of Graetzel, etc., Lausanne University of Technology, Switzerland. They adopted a structure in which a dye composed of a ruthenium complex was fixed on the surface of a porous titanium oxide thin film, realizing photoelectric conversion efficiency comparable to that of amorphous silicon. As a result, dye-sensitized solar cells have attracted attention from researchers all over the world.
 特許文献1には、この技術を応用し、ルテニウム錯体色素によって増感された半導体微粒子を用いた色素増感光電変換素子が記載されている。さらに、その後も光電変換効率の向上に向け、ルテニウム錯体系増感色素の開発が継続されている(特許文献2参照)。 Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique. Furthermore, the development of ruthenium complex-based sensitizing dyes continues to improve the photoelectric conversion efficiency (see Patent Document 2).
米国特許第5,463,057号明細書US Pat. No. 5,463,057 米国特許出願公開第2010/0258175号明細書US Patent Application Publication No. 2010/0258175
 ターピリジル系の色素としてN749が多く用いられている。上記特許文献2はこれを改良したものである。これらにおいては、光電変換効率の向上が認められたものの、耐久性、特に耐熱性においては改良の余地が残されていた。
 上記本技術分野の現状に鑑み、本発明は、高い光電変換効率と高い耐熱耐久性を両立することができる光電変換素子、色素増感太陽電池およびこれに用いられる金属錯体色素を提供することを目的とする。さらに、本発明は、上記色素を用い、高い光電変換効率を達成し、吸収スペクトルの長波長領域でのモル吸光係数εとIPCE(Incident Photon-to-Current Efficiency)の高い光電変換素子、色素増感太陽電池およびそれらに用いられる金属錯体色素の提供を目的とする。
N749 is often used as a terpyridyl pigment. The above-mentioned Patent Document 2 is an improvement of this. In these, although the improvement of photoelectric conversion efficiency was recognized, the room for improvement was left in durability, especially heat resistance.
In view of the present state of the present technical field, the present invention provides a photoelectric conversion element, a dye-sensitized solar cell, and a metal complex dye used therefor that can achieve both high photoelectric conversion efficiency and high heat durability. Objective. Furthermore, the present invention uses the above-described dye, achieves high photoelectric conversion efficiency, and has a high molar extinction coefficient ε and IPCE (Incident Photo-to-Current Efficiency) in the long wavelength region of the absorption spectrum, and dye enhancement. An object is to provide a solar cell and a metal complex dye used for them.
 上記の課題は以下の手段により解決された。
(1)導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
The above problem has been solved by the following means.
(1) A photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, wherein the photoreceptor layer is represented by the following formula (I) A photoelectric conversion element having semiconductor fine particles on which is supported.
   M(LA)(LD)Z        式(I) M 1 (LA) (LD) Z Formula 1 (I)
 式(I)において、Mは金属原子を表し、Zは1座の配位子を表す。LAは下記式(AL-1)で表される3座の配位子を表す。LDは下記式(DL-1)で表される2座の配位子を表す。 In the formula (I), M 1 represents a metal atom and Z 1 represents a monodentate ligand. LA represents a tridentate ligand represented by the following formula (AL-1). LD represents a bidentate ligand represented by the following formula (DL-1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(AL-1)において、RA1、RA2およびRA3は各々独立に水素原子、アルキル基、ヘテロアリール基、アリール基または酸性基を表す。ただし、RA1、RA2およびRA3のうち少なくとも1つは酸性基である。
 式(DL-1)において、Rはアルキル基、アルキルチオ基、アルコキシ基、ハロゲン原子またはアリール基を表す。m1は0~3の整数を表す。naは0または1を表す。
Gは下記式(G-1)で表され、かつLogPが3.0~20.0である基を表す。Eは下記式(E-1)~(E-6)のいずれかで表される基を表す。
In the formula (AL-1), R A1 , R A2 and R A3 each independently represent a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. However, at least one of R A1 , R A2 and R A3 is an acidic group.
In the formula (DL-1), R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group. m1 represents an integer of 0 to 3. na represents 0 or 1.
G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0. E represents a group represented by any of the following formulas (E-1) to (E-6).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(G-1)において、Xは酸素原子、硫黄原子、N(R)、C(R)(R)またはSi(R)(R)を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基またはアリール基を表す。Ra、RbおよびRcは各々独立に、水素原子または置換基を表す。RaとRb、RbとRcが互いに結合して環を形成してもよい。 In the formula (G-1), X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ). Here, R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group. Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(E-1)~(E-5)において、Rはハロゲン原子、アルキル基、アルコキシ基、アリール基またはヘテロ環基を表す。mは0以上の整数を表す。ここで、*はピリジン環の2位に結合する結合位置を示す。
(2)前記式(G-1)において、RaおよびRbが各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アルキルチオ基、アリールチオ基、アミノ基またはアリール基であり、かつRcが水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である(1)に記載の光電変換素子。
(3)式(G-1)において、RaおよびRbが水素原子、アルキル基、アルキルチオ基またはアミノ基であり、かつRcがアリール基である(1)に記載の光電変換素子。
(4)式(G-1)において、RaおよびRbが鎖状のアルコキシ基またはアリールオキシ基であり、かつRcが水素原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である(1)に記載の光電変換素子。
(5)MがRuである(1)~(4)のいずれかに記載の光電変換素子。
(6)式(I)で表される金属錯体色素が、下記式(II)で表される(1)~(5)のいずれかに記載の光電変換素子。
In formulas (E-1) to (E-5), R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group. m represents an integer of 0 or more. Here, * indicates a bonding position for bonding to the 2-position of the pyridine ring.
(2) In the formula (G-1), Ra and Rb are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkylthio group, an arylthio group, an amino group or an aryl group, and Rc is a hydrogen atom The photoelectric conversion device according to (1), which is an atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, or an amino group.
(3) The photoelectric conversion device according to (1), wherein in formula (G-1), Ra and Rb are a hydrogen atom, an alkyl group, an alkylthio group, or an amino group, and Rc is an aryl group.
(4) In the formula (G-1), Ra and Rb are chain alkoxy groups or aryloxy groups, and Rc is a hydrogen atom, alkyl group, alkenyl group, aryl group, heteroaryl group, alkoxy group, aryl The photoelectric conversion device according to (1), which is an oxy group, an alkylthio group, an arylthio group, or an amino group.
(5) The photoelectric conversion element according to any one of (1) to (4), wherein M 1 is Ru.
(6) The photoelectric conversion element according to any one of (1) to (5), wherein the metal complex dye represented by the formula (I) is represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(II)において、RA1~RA3は式(AL-1)におけるRA1~RA3と同義である。Zはイソチオシアネート基、イソセレノシアネート基、イソシアネート基、ハロゲン原子またはシアノ基を表す。R10は水素原子、アリール基、ヘテロ環基またはハロゲン原子で置換されてもよいアルキル基を表す。X、Ra~Rcは式(G-1)におけるX、Ra~Rcと同義である。naは式(DL-1)におけるnaと同義である。
(7)半導体微粒子に、複数の色素が担持されている(1)~(6)のいずれかに記載の光電変換素子。
(8)半導体微粒子に、酸性基を1つ以上有する共吸着剤がさらに担持されてなる(1)~(7)のいずれかに記載の光電変換素子。
(9)共吸着剤が下記式(CA)で表される(8)に記載の光電変換素子。
In formula (II), R A1 ~ R A3 have the same meanings as R A1 ~ R A3 in the formula (AL-1). Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group. R 10 represents a hydrogen atom, an aryl group, a heterocyclic group or an alkyl group which may be substituted with a halogen atom. X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1). na has the same meaning as na in formula (DL-1).
(7) The photoelectric conversion element according to any one of (1) to (6), wherein a plurality of dyes are supported on the semiconductor fine particles.
(8) The photoelectric conversion device according to any one of (1) to (7), wherein the semiconductor fine particles are further supported with a co-adsorbent having one or more acidic groups.
(9) The photoelectric conversion element according to (8), wherein the co-adsorbent is represented by the following formula (CA).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(CA)において、RC1は酸性基を有する置換基を表す。RC2は置換基を表す。lcは0以上の整数を表す。
(10)  (1)~(9)のいずれかに記載の光電変換素子を具備する色素増感太陽電池。
(11)下記式(I)で表される金属錯体色素。
In the formula (CA), R C1 represents a substituent having an acidic group. R C2 represents a substituent. lc represents an integer of 0 or more.
(10) A dye-sensitized solar cell comprising the photoelectric conversion element according to any one of (1) to (9).
(11) A metal complex dye represented by the following formula (I).
   M(LA)(LD)Z        式(I) M 1 (LA) (LD) Z Formula 1 (I)
 式(I)において、Mは金属原子を表し、Zは1座の配位子を表す。LAは下記式(AL-1)で表される3座の配位子を表す。LDは下記式(DL-1)で表される2座の配位子を表す。 In the formula (I), M 1 represents a metal atom and Z 1 represents a monodentate ligand. LA represents a tridentate ligand represented by the following formula (AL-1). LD represents a bidentate ligand represented by the following formula (DL-1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(AL-1)において、RA1、RA2およびRA3は各々独立に水素原子、アルキル基、ヘテロアリール基、アリール基または酸性基を表す。ただし、RA1、RA2およびRA3のうち少なくとも1つは酸性基である。
 式(DL-1)において、Rはアルキル基、アルキルチオ基、アルコキシ基、ハロゲン原子またはアリール基を表す。m1は0~3の整数を表す。naは0または1を表す。
Gは下記式(G-1)で表され、かつLogPが3.0~20.0である基を表す。Eは下記式(E-1)~(E-6)のいずれかで表される基を表す。
In the formula (AL-1), R A1 , R A2 and R A3 each independently represent a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. However, at least one of R A1 , R A2 and R A3 is an acidic group.
In the formula (DL-1), R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group. m1 represents an integer of 0 to 3. na represents 0 or 1.
G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0. E represents a group represented by any of the following formulas (E-1) to (E-6).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(G-1)において、Xは酸素原子、硫黄原子、N(R)、C(R)(R)またはSi(R)(R)を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基またはアリール基を表す。Ra、RbおよびRcは各々独立に、水素原子または置換基を表す。RaとRb、RbとRcが互いに結合して環を形成してもよい。 In the formula (G-1), X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ). Here, R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group. Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(E-1)~(E-5)において、Rはハロゲン原子、アルキル基、アルコキシ基、アリール基またはヘテロ環基を表す。mは0以上の整数を表す。ここで、*はピリジン環の2位に結合する結合位置を示す。
(12)式(G-1)において、RaおよびRbが各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アルキルチオ基、アリールチオ基、アミノ基またはアリール基であり、かつRcが水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である(11)に記載の金属錯体色素。
(13)式(G-1)において、RaおよびRbが水素原子、アルキル基、アルキルチオ基またはアミノ基であり、かつRcがアリール基である(11)に記載の金属錯体色素。
(14)式(G-1)において、RaおよびRbが鎖状のアルコキシ基またはアリールオキシ基であり、かつRcが水素原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である(11)に記載の金属錯体色素。
(15)式(I)で表される金属錯体色素が、下記式(II)で表される(11)~(14)のいずれかに記載の金属錯体色素。
In formulas (E-1) to (E-5), R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group. m represents an integer of 0 or more. Here, * indicates a bonding position for bonding to the 2-position of the pyridine ring.
(12) In the formula (G-1), Ra and Rb are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkylthio group, an arylthio group, an amino group or an aryl group, and Rc is a hydrogen atom The metal complex dye according to (11), which is an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group or an amino group.
(13) The metal complex dye according to (11), wherein in formula (G-1), Ra and Rb are a hydrogen atom, an alkyl group, an alkylthio group or an amino group, and Rc is an aryl group.
(14) In the formula (G-1), Ra and Rb are chain alkoxy groups or aryloxy groups, and Rc is a hydrogen atom, alkyl group, alkenyl group, aryl group, heteroaryl group, alkoxy group, aryl The metal complex dye according to (11), which is an oxy group, an alkylthio group, an arylthio group, or an amino group.
(15) The metal complex dye according to any one of (11) to (14), wherein the metal complex dye represented by the formula (I) is represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(II)において、RA1~RA3は式(AL-1)におけるRA1~RA3と同義である。Zはイソチオシアネート基、イソセレノシアネート基、イソシアネート基、ハロゲン原子またはシアノ基を表す。R10は水素原子、アリール基、ヘテロ環基またはハロゲン原子で置換されてもよいアルキル基を表す。X、Ra~Rcは式(G-1)におけるX、Ra~Rcと同義である。naは式(DL-1)におけるnaと同義である。 In formula (II), R A1 ~ R A3 have the same meanings as R A1 ~ R A3 in the formula (AL-1). Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group. R 10 represents a hydrogen atom, an aryl group, a heterocyclic group or an alkyl group which may be substituted with a halogen atom. X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1). na has the same meaning as na in formula (DL-1).
 本明細書において、芳香環とは、芳香族環及び複素環(芳香族複素環および芳香族でない複素環)を含む意味に用い、単環であっても複環であってもよい。炭素-炭素二重結合については、分子内にE型及びZ型が存在する場合、そのいずれであってもよい。特定の符号で表示された置換基が複数あるとき、あるいは複数の置換基や配位子(置換基数を含む)等を同時もしくは択一的に規定するときには、それぞれの置換基ないし配位子等は互いに同一でも異なっていてもよい。また、複数の置換基や配位子が近接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい。 In the present specification, the term “aromatic ring” is used to mean an aromatic ring and a heterocycle (aromatic heterocycle and non-aromatic heterocycle), and may be monocyclic or multicyclic. The carbon-carbon double bond may be any of E type and Z type in the molecule. When there are a plurality of substituents indicated by a specific symbol, or when a plurality of substituents and ligands (including the number of substituents) are specified simultaneously or alternatively, each substituent or ligand, etc. May be the same as or different from each other. Further, when a plurality of substituents or ligands are close to each other, they may be connected to each other or condensed to form a ring.
 本発明の光電変換素子、色素増感太陽電池およびこれに用いられる金属錯体色素により、吸収スペクトルの長波長領域でのモル吸光係数εが向上し、しかも高い耐熱耐久性を実現することができる。さらに本発明によれば、高い光電変換効率を達成し、長波長領域におけるεとIPCE(Incident Photon-to-Current Efficiency)の高い優れた素子性能を発揮する。 The photoelectric conversion element, the dye-sensitized solar cell of the present invention, and the metal complex dye used therein can improve the molar extinction coefficient ε in the long wavelength region of the absorption spectrum, and can realize high heat resistance. Furthermore, according to the present invention, high photoelectric conversion efficiency is achieved, and excellent device performance with high ε and IPCE (incident photo-to-current efficiency) in a long wavelength region is exhibited.
本発明の光電変換素子の一実施態様について模式的に示した断面図である。It is sectional drawing shown typically about one embodiment of the photoelectric conversion element of this invention. 実施例1で作製した色素増感太陽電池を模式的に示す断面図である。2 is a cross-sectional view schematically showing a dye-sensitized solar cell produced in Example 1. FIG.
 本発明の金属錯体色素は、中心金属に対して窒素を含む3座配位子と窒素を含む2座配位子とが配位した構造を有し、これにより、光電変換素子の高い光電変換効率と高い耐熱性の両立を実現した。
 この理由は未解明の点を含むが、推定を含めて下記のように説明できる。
 本発明の金属錯体色素はLogP値の高い基を有する。LogP値は、化合物の脂溶性の指標として知られており、LogP値の高い基を有することにより、脂溶性の向上とともに疎水性が向上し、水分による光電変換素子の劣化が抑えられる。特に、チオフェン環を有する構造であると、一電子酸化状態が非局在化によって安定化されることから、更なる耐久性向上の効果が期待できる。
 以下に、本発明についてその好ましい実施態様に基づき、詳細に説明する。
The metal complex dye of the present invention has a structure in which a tridentate ligand containing nitrogen and a bidentate ligand containing nitrogen are coordinated with a central metal, and thereby, high photoelectric conversion of a photoelectric conversion element. Achieves both efficiency and high heat resistance.
This reason includes unclear points, but can be explained as follows, including estimation.
The metal complex dye of the present invention has a group having a high LogP value. The LogP value is known as an index of the fat solubility of the compound. By having a group having a high LogP value, the lipid solubility is improved and the hydrophobicity is improved, and the deterioration of the photoelectric conversion element due to moisture is suppressed. In particular, when the structure has a thiophene ring, the one-electron oxidation state is stabilized by delocalization, so that an effect of further improving durability can be expected.
Below, this invention is demonstrated in detail based on the preferable embodiment.
<<光電変換素子および色素増感太陽電池>>
 図1に示すように、本発明の一実施態様の光電変換素子10は、導電性支持体1と、色素(金属錯体色素)21が担持されることにより増感された半導体微粒子22を含む感光体層2と、正孔輸送層である電荷移動体層3と、対極4とを有する。感光体層2を設置した導電性支持体1は、光電変換素子10において作用電極として機能する。本実施形態においては、この光電変換素子10は、色素増感太陽電池を利用したシステム100に含まれる。色素増感太陽電池を利用したシステム100は、外部回路6で動作手段M(電動モーター)に仕事をさせる電池用途として使用できるようにしている。
<< Photoelectric conversion element and dye-sensitized solar cell >>
As shown in FIG. 1, a photoelectric conversion element 10 according to an embodiment of the present invention includes a photosensitive support including a conductive support 1 and semiconductor fine particles 22 sensitized by supporting a dye (metal complex dye) 21. It has a body layer 2, a charge transfer body layer 3 that is a hole transport layer, and a counter electrode 4. The conductive support 1 provided with the photoreceptor layer 2 functions as a working electrode in the photoelectric conversion element 10. In this embodiment, this photoelectric conversion element 10 is included in a system 100 using a dye-sensitized solar cell. The system 100 using the dye-sensitized solar cell can be used as a battery for causing the operating means M (electric motor) to work in the external circuit 6.
 本実施形態において受光電極5は、導電性支持体1と、色素(金属錯体色素)21が吸着した半導体微粒子22とを含む感光体層2よりなる。感光体層2は目的に応じて設計され、単層構成でも多層構成でもよい。一層の感光体層中の色素(金属錯体色素)21は一種類でも多種類の混合でもよいが、そのうちの少なくとも1種には、後述する本発明の金属錯体色素を用いる。感光体層2に入射した光は色素(金属錯体色素)21を励起する。励起された色素はエネルギーの高い電子を有しており、この電子が色素(金属錯体色素)21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素(金属錯体色素)21は酸化体となっている。電極上の電子が外部回路6で仕事をしながら、対極4を経由して、色素(金属錯体色素)21の酸化体および電解質が存在する感光体層2に戻ることで太陽電池として働く。
 なお、光電変換素子の上下は特に定めなくてもよいが、本明細書において、図示したものに基づいて言えば、対極4の側を上部(天部)の方向とし、受光側となる支持体1の側を下部(底部)の方向とする。
In the present embodiment, the light receiving electrode 5 includes a photosensitive layer 2 including a conductive support 1 and semiconductor fine particles 22 to which a dye (metal complex dye) 21 is adsorbed. The photoreceptor layer 2 is designed according to the purpose, and may be a single layer structure or a multilayer structure. The dye (metal complex dye) 21 in one layer of the photoreceptor layer may be one kind or a mixture of many kinds, and at least one of them is the metal complex dye of the present invention described later. The light incident on the photoreceptor layer 2 excites the dye (metal complex dye) 21. The excited dye has high energy electrons, and the electrons are transferred from the dye (metal complex dye) 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion. At this time, the dye (metal complex dye) 21 is an oxidant. Electrons on the electrodes work in the external circuit 6 and return to the photoreceptor layer 2 where the oxidant and electrolyte of the dye (metal complex dye) 21 are present via the counter electrode 4 to work as a solar cell.
The upper and lower sides of the photoelectric conversion element do not need to be defined in particular, but in this specification, based on what is illustrated, the support body serving as the light receiving side with the counter electrode 4 side as the upper (top) direction The side of 1 is the lower (bottom) direction.
 本発明において、光電変換素子もしくは色素増感太陽電池に用いられる材料および各部材の作製方法については、光電変換素子もしくは色素増感太陽電池において通常なされる作製方法を採用すればよい。
 この作製方法としては、例えば米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,084,365号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。
 以下、主たる部材について概略を説明する。
In the present invention, as a material used for the photoelectric conversion element or the dye-sensitized solar cell and a method for manufacturing each member, a manufacturing method usually used for the photoelectric conversion element or the dye-sensitized solar cell may be employed.
For example, US Pat. No. 4,927,721, US Pat. No. 4,684,537, US Pat. No. 5,084,365, US Pat. No. 5,350, No. 644, U.S. Pat. No. 5,463,057, U.S. Pat. No. 5,525,440, JP-A-7-249790, JP-A-2004-220974, JP-A-2008-135197. Reference can be made to the official gazette.
Hereinafter, an outline of the main members will be described.
<感光体層>
 感光体層は後述する電解質を含み、下記本発明の金属錯体色素を含む増感色素が担持された半導体微粒子を含む層である。
 増感色素は一部電解質中に解離したもの等があってもよい。感光体層は目的に応じて設計され、単層構成でも多層構成でもよい。本発明では、本発明の金属錯体色素が吸着した半導体微粒子を含むことから、感度が高く、色素増感太陽電池として使用する場合に、高い光電変換効率を得ることができる。
<Photoreceptor layer>
The photoreceptor layer is a layer containing semiconductor fine particles containing an electrolyte described later and carrying a sensitizing dye containing the metal complex dye of the present invention described below.
Some sensitizing dyes may be dissociated in the electrolyte. The photoreceptor layer is designed according to the purpose, and may be a single layer structure or a multilayer structure. In this invention, since it contains the semiconductor fine particle which the metal complex dye of this invention adsorb | sucked, when using it as a dye-sensitized solar cell, high photoelectric conversion efficiency can be obtained.
[式(I)で表される金属錯体色素]
 本発明の金属錯体色素は下記式(I)で表される。
[Metal Complex Dye Represented by Formula (I)]
The metal complex dye of the present invention is represented by the following formula (I).
   M(LA)(LD)Z        式(I) M 1 (LA) (LD) Z Formula 1 (I)
<M
 Mは金属原子を表す。Mは好ましくは4配位または6配位が可能な金属であり、より好ましくはRu、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、MnまたはZnである。特に好ましくは、Ru、Os、ZnまたはCuであり、最も好ましくはRuである。
<M 1 >
M 1 represents a metal atom. M 1 is preferably a metal capable of tetracoordination or hexacoordination, and more preferably Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn or Zn. Particularly preferred is Ru, Os, Zn or Cu, and most preferred is Ru.
<LA>
 LAは下記式(AL-1)で表される。
<LA>
LA is represented by the following formula (AL-1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
・RA1、RA2、RA3
 RA1~RA3は各々独立に、水素原子、アルキル基、ヘテロアリール基、アリール基または酸性基を表す。これらのアルキル基、ヘテロアリール基、アリール基は後述の置換基Tで挙げた基が好ましい。なお、ヘテロアリール基は、5または6員環で、環構成原子が酸素原子、硫黄原子、窒素原子、セレン原子から選択されるヘテロ原子であることが好ましく、ベンゼン環やヘテロアリール環を含むヘテロ環で縮環されていてもよい。酸性基は下記の酸性基Acとして挙げた基が好ましい。
・ R A1 , R A2 , R A3
R A1 to R A3 each independently represents a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. These alkyl groups, heteroaryl groups, and aryl groups are preferably the groups listed for the substituent T described later. The heteroaryl group is preferably a 5- or 6-membered ring, and the ring-constituting atom is preferably a heteroatom selected from an oxygen atom, a sulfur atom, a nitrogen atom, and a selenium atom, and includes a benzene ring and a heteroaryl ring. It may be condensed with a ring. The acid group is preferably a group listed as the following acid group Ac.
 RA1~RA3のうち少なくとも1つは酸性基であり、2つが酸性基であることが好ましく、3つが酸性基であることがより好ましい。 At least one of R A1 to R A3 is an acidic group, preferably two are acidic groups, and more preferably three are acidic groups.
・酸性基Ac
 本発明において酸性基とは、解離性のプロトンを有する置換基であり、例えば、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基など、あるいはこれらのいずれかを有する基が挙げられ、好ましくはカルボキシ基あるいはこれを有する基である。また酸性基はプロトンを放出して解離した形を採っていてもよく、塩であってもよい。塩となるときの対イオンとしては特に限定されないが、例えば、下記対イオンCIにおける正のイオンの例が挙げられる。本発明では、酸性基は、連結基を介して結合した基でもよく、例えば、カルボキシビニレン基、ジカルボキシビニレン基、シアノカルボキシビニレン基、カルボキシフェニル基などを好ましい酸性基として挙げることができる。なお、ここで挙げた酸性基およびその好ましい範囲を酸性基Acということがある。
・ Acid group Ac
In the present invention, the acidic group is a substituent having a dissociative proton, and examples thereof include a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, a boric acid group, and a group having any one of these, A carboxy group or a group having this is preferred. Further, the acidic group may take a form of releasing a proton and dissociating, or may be a salt. Although it does not specifically limit as a counter ion when becoming a salt, For example, the example of the positive ion in the following counter ion CI is mentioned. In the present invention, the acidic group may be a group bonded via a linking group. For example, a carboxyvinylene group, a dicarboxyvinylene group, a cyanocarboxyvinylene group, a carboxyphenyl group, and the like can be given as preferable acidic groups. In addition, the acidic group mentioned here and its preferable range may be called acidic group Ac.
 以下に、LAの具体例を示すが、本発明は、これに限定して解釈されない。 Specific examples of LA are shown below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<LD>
 LDは下記式(DL-1)で表される。
<LD>
LD is represented by the following formula (DL-1).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
・R
 Rはアルキル基、アルキルチオ基、アルコキシ基、ハロゲン原子またはアリール基を表す。これらの各基は後述の置換基Tで挙げられた対応する基が好ましい。
・ R 1
R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group. Each of these groups is preferably a corresponding group exemplified in the substituent T described later.
・m1
 m1は0~3の整数を表す。
 m1が2以上のとき複数のRは同一でも異なっていてもよく、互いに結合して環を形成していてもよい。m1は、0または1が好ましく、0がより好ましい。
・ M1
m1 represents an integer of 0 to 3.
When m1 is 2 or more, the plurality of R 1 may be the same or different and may be bonded to each other to form a ring. m1 is preferably 0 or 1, and more preferably 0.
・E
 Eは下記式(E-1)~(E-6)のいずれかで表される基を表す。
・ E
E represents a group represented by any of the following formulas (E-1) to (E-6).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(E-1)~(E-5)において、Rはハロゲン原子、アルキル基、アルコキシ基、アリール基またはヘテロ環基を表す。
 これらの各基は後述する置換基Tの対応する基が好ましい。
 Rはなかでも、ハロゲン原子、またはハロゲン原子で置換されてもよいアルキル基が好ましい。ハロゲン原子で置換されたアルキル基はフッ素原子で置換されたアルキル基が好ましい。また、ハロゲン原子の置換数からは、パーハロゲン化アルキル基が好ましく、パーフルオロアルキル基がさらに好ましく、なかでもパーフルオロメチル基が特に好ましい。
In formulas (E-1) to (E-5), R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group.
Each of these groups is preferably a group corresponding to the substituent T described later.
Among them, R is preferably a halogen atom or an alkyl group which may be substituted with a halogen atom. The alkyl group substituted with a halogen atom is preferably an alkyl group substituted with a fluorine atom. Further, from the number of halogen atom substitutions, a perhalogenated alkyl group is preferable, a perfluoroalkyl group is more preferable, and a perfluoromethyl group is particularly preferable.
 mは0以上の整数を表す。mの上限は各式中で置換が可能な数であり、例えば、式(E-1)であれば3である。mは0または1が好ましく、1がより好ましい。
 ここで、複数のRが存在する場合、これらは互いに同一でも異なってもよい。
 なお、*はピリジン環の2位に結合する結合位置を示す。
m represents an integer of 0 or more. The upper limit of m is the number that can be substituted in each formula. For example, it is 3 in the formula (E-1). m is preferably 0 or 1, and more preferably 1.
Here, when several R exists, these may mutually be same or different.
In addition, * shows the coupling | bonding position couple | bonded with 2-position of a pyridine ring.
 式(E-1)~(E-6)のうち、式(E-1)、(E-2)、(E-4)~(E-6)が好ましく、式(E-1)、(E-2)、(E-4)、(E-5)がより好ましく、式(E-2)、(E-4)、(E-5)がさらに好ましく、式(E-2)が特に好ましい。 Of the formulas (E-1) to (E-6), the formulas (E-1), (E-2) and (E-4) to (E-6) are preferred, and the formulas (E-1), (E-6) E-2), (E-4), and (E-5) are more preferred, formulas (E-2), (E-4), and (E-5) are more preferred, and formula (E-2) is particularly preferred. preferable.
・na
 naは0または1を表す。naは1が好ましい。
・ Na
na represents 0 or 1. na is preferably 1.
・G
 Gは下記式(G-1)で表され、かつLogPが3.0~20.0である基を表す。
・ G
G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(G-1)において、Xは酸素原子、硫黄原子、N(R)、C(R)(R)またはSi(R)(R)を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基またはアリール基を表す。Ra、RbおよびRcは各々独立に、水素原子または置換基を表す。RaとRb、RbとRcが互いに結合して環を形成してもよい。形成される環は、5または6員環が好ましく、飽和炭化水素環、不飽和炭化水素環、飽和へテロ環、不飽和へテロ環でもよく、芳香環でもヘテロ芳香環でも構わない。好ましい環としては、シクロヘキサン環、ジオキサン環、ジチオジオキサン環、ベンゼン環などが挙げられる。
 Xは、酸素原子、硫黄原子、N(R)、C(R)(R)が好ましく、酸素原子、硫黄原子、C(R)(R)がさらに好ましく、硫黄原子が特に好ましい。
In the formula (G-1), X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ). Here, R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group. Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring. The formed ring is preferably a 5- or 6-membered ring, and may be a saturated hydrocarbon ring, an unsaturated hydrocarbon ring, a saturated hetero ring or an unsaturated hetero ring, and may be an aromatic ring or a heteroaromatic ring. Preferred rings include a cyclohexane ring, a dioxane ring, a dithiodioxane ring, a benzene ring and the like.
X is preferably an oxygen atom, a sulfur atom, N (R 2 ), or C (R 2 ) (R 3 ), more preferably an oxygen atom, a sulfur atom, or C (R 2 ) (R 3 ), and particularly a sulfur atom. preferable.
 GはLogP値が3.0~20.0である。
 LogPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある化学物質が油(一般的に1-オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、次式で表される。
G has a LogP value of 3.0 to 20.0.
LogP means the common logarithm of the partition coefficient P (Partition Coefficient), and quantitatively shows how a chemical substance is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a numerical value, and is expressed by the following formula.
      LogP = Log(Coil/CwaterLogP = Log (C oil / C water )
 上記式において、Coilは油相中のモル濃度を表し、Cwaterは水相中のモル濃度を表す。LogPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増す。LogPは化学物質の水溶性と負の相関があり、親水性および疎水性を見積るパラメータとして広く利用されている。その定義から考えて分配実験で実測するのが原則であるが、実験自体がかなり面倒なため、構造式からの推算は有効な手段である。 In the above formula, C oil represents the molar concentration in the oil phase, and C water represents the molar concentration in the aqueous phase. The oil solubility increases when the LogP value increases to a positive value across 0, and the water solubility increases when the absolute value increases with a negative value. LogP has a negative correlation with the water solubility of chemical substances, and is widely used as a parameter for estimating hydrophilicity and hydrophobicity. In principle, it is actually measured by a distribution experiment in view of its definition, but the experiment itself is quite troublesome, so estimation from the structural formula is an effective means.
 このため、計算による推算のLogP値が多用されている。
 本発明では、LogP値は、CambridgeSoft社製ChemDrawProver.12.0により計算された値である。GのLogP値は、3.0~20.0であるが、3.5~15.0が好ましく、4.0~14.0がより好ましく、4.2~12.0がさらに好ましく、4.3~10.0が特に好ましく、4.4~9.0が最も好ましい。
For this reason, the Log P value estimated by calculation is frequently used.
In the present invention, the LogP value is determined by ChemDrawProver., Manufactured by CambridgeSoft. It is a value calculated by 12.0. The Log P value of G is 3.0 to 20.0, preferably 3.5 to 15.0, more preferably 4.0 to 14.0, still more preferably 4.2 to 12.0. .3 to 10.0 is particularly preferable, and 4.4 to 9.0 is most preferable.
 本発明では、前記式(I)で表される金属錯体色素は、下記式(II)で表される金属錯体色素が好ましい。 In the present invention, the metal complex dye represented by the formula (I) is preferably a metal complex dye represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(II)において、RA1~RA3は前記式(AL-1)におけるRA1~RA3と同義であり、好ましい範囲も同じである。Zはイソチオシアネート基、イソセレノシアネート基、イソシアネート基、ハロゲン原子またはシアノ基を表す。R10は水素原子、アリール基、ヘテロ環基、またはハロゲン原子で置換されてもよいアルキル基を表す。X、Ra~Rcは前記式(G-1)におけるX、Ra~Rcと同義であり、好ましい範囲も同じである。naは式(DL-1)におけるnaと同義であり、好ましい範囲も同じである。以下に共通に説明する。 In formula (II), R A1 ~ R A3 have the same meanings as R A1 ~ R A3 in the formula (AL-1), and the preferred range is also the same. Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group. R 10 represents a hydrogen atom, an aryl group, a heterocyclic group, or an alkyl group that may be substituted with a halogen atom. X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1), and the preferred ranges are also the same. na has the same meaning as na in formula (DL-1), and the preferred range is also the same. A common description will be given below.
 式(I)で表される金属錯体色素と式(II)で表される金属錯体色素とは、共通して、式(G-1)で表される基を有する。 The metal complex dye represented by the formula (I) and the metal complex dye represented by the formula (II) have a group represented by the formula (G-1) in common.
 式(G-1)で表される基は、光電変換効率および耐久性の観点から、以下の態様A~態様Cのいずれかであることが好ましく、態様Aまたは態様Bであることがより好ましく、態様Aであることがさらに好ましい。 The group represented by the formula (G-1) is preferably any one of the following embodiments A to C, more preferably embodiment A or embodiment B, from the viewpoint of photoelectric conversion efficiency and durability. More preferably, it is embodiment A.
<態様A>
 RaおよびRbは、各々独立に、水素原子、アルキル基、アミノ基、アルキルチオ基、アリールチオ基、アルケニル基、アルキニル基、アリール基のいずれかであり、かつ、Rcが水素原子、アルキル基、アルキルアミノ基、アリールアミノ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリール基、アルケニル基、アルキニル基のいずれかである。ただし、naが0で、かつ、RaおよびRbがともに水素原子のとき、Rcは水素原子、アルキルアミノ基、アリールアミノ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリール基、アルケニル基、アルキニル基のいずれかである。
<Aspect A>
Ra and Rb are each independently a hydrogen atom, an alkyl group, an amino group, an alkylthio group, an arylthio group, an alkenyl group, an alkynyl group, or an aryl group, and Rc is a hydrogen atom, an alkyl group, an alkylamino group, A group, an arylamino group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, a heteroaryl group, an alkenyl group, or an alkynyl group. However, when na is 0 and both Ra and Rb are hydrogen atoms, Rc is a hydrogen atom, alkylamino group, arylamino group, alkoxy group, aryloxy group, alkylthio group, arylthio group, heteroaryl group, alkenyl. Group or an alkynyl group.
 RaおよびRbは、各々独立に、水素原子、アルキル基、アルキルチオ基、アリールチオ基、アルケニル基、アルキニル基、アリール基であることが好ましく、水素原子、アルキル基、アルキルチオ基、アリールチオ基、アリール基であることがより好ましく、水素原子、アルキル基、アルキルチオ基、アリール基であることがさらに好ましい。 Ra and Rb are preferably each independently a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, an alkenyl group, an alkynyl group, or an aryl group, and a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, or an aryl group. More preferably, it is a hydrogen atom, an alkyl group, an alkylthio group, or an aryl group.
 Rcは水素原子、アルキル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルケニル基、ヘテロアリール基であることが好ましく、水素原子、アルキル基、アルキルチオ基、アリールチオ基、アルケニル基、ヘテロアリール基であることがより好ましく、水素原子、アルキル基、アルキルチオ基、アリールチオ基、ヘテロアリール基であることがさらに好ましく、水素原子、アルキル基、アルキルチオ基、ヘテロアリール基であることが特に好ましい。Raが置換基である場合、Rbは水素原子であることが好ましく、Rcは水素原子、アルコキシ基、アルキルチオ基、アリールチオ基またはヘテロアリール基であることが好ましく、水素原子またはヘテロアリール基であることがより好ましい。Rbが前述の置換基である場合、Ra、Rcは水素原子であることが好ましい。 Rc is preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkenyl group or a heteroaryl group, and a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, an alkenyl group or a heteroaryl group It is more preferably a hydrogen atom, an alkyl group, an alkylthio group, an arylthio group, or a heteroaryl group, and particularly preferably a hydrogen atom, an alkyl group, an alkylthio group, or a heteroaryl group. When Ra is a substituent, Rb is preferably a hydrogen atom, Rc is preferably a hydrogen atom, an alkoxy group, an alkylthio group, an arylthio group or a heteroaryl group, and is a hydrogen atom or a heteroaryl group. Is more preferable. When Rb is the aforementioned substituent, Ra and Rc are preferably hydrogen atoms.
 ここで、ヘテロアリール基のヘテロ環は、5員環の芳香環が好ましく、チオフェン環、フラン環、ピロール環がより好ましく、チオフェン環が最も好ましい。 Here, the heterocycle of the heteroaryl group is preferably a 5-membered aromatic ring, more preferably a thiophene ring, a furan ring, or a pyrrole ring, and most preferably a thiophene ring.
 態様AにおけるGの具体例とともに、-(CH=CH)na-Gの具体例を以下に示す。ただし、本発明の範囲は、これにより限定されない。
 なお、naが0のとき、*の位置において、Eで置換されたピリジン環に結合し、naが1のとき、*の位置で-(CH=CH)-と結合する。
A specific example of-(CH = CH) na-G is shown below together with a specific example of G in Aspect A. However, the scope of the present invention is not limited thereby.
When na is 0, it is bonded to the pyridine ring substituted with E at the position of *, and when na is 1, it is bonded to — (CH═CH) — at the position of *.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
<態様B>
 RaおよびRbは、水素原子、アルキル基、アミノ基、アルキルチオ基、アリールチオ基のいずれかであり、かつ、Rcがアリール基である。RaおよびRbが水素原子、アルキル基、アルキルチオ基、アリールチオ基のいずれかであり、かつ、Rcがアリール基であることが好ましく、RaおよびRbが水素原子、アルキル基のいずれかであり、かつ、Rcがアリール基であることがより好ましい。
<Aspect B>
Ra and Rb are any one of a hydrogen atom, an alkyl group, an amino group, an alkylthio group, and an arylthio group, and Rc is an aryl group. Ra and Rb are preferably a hydrogen atom, an alkyl group, an alkylthio group, or an arylthio group, and Rc is preferably an aryl group, Ra and Rb are either a hydrogen atom or an alkyl group, and More preferably, Rc is an aryl group.
 Rcのアリール基は、置換基を有してもよいフェニル基、5または6員環のシクロアルカン、5または6員環のヘテロ環などが縮環したアリール基、例えば、フルオレン環基やカルバゾール環基が挙げられる。なお、置換基としては、ハロゲン原子、アルキル基が好ましく、アルキル基はフッ素原子で置換されたアルキル基(例えば、トリフルオロメチル基)が好ましい。 The aryl group of Rc is a phenyl group which may have a substituent, an aryl group in which a 5- or 6-membered cycloalkane, a 5- or 6-membered heterocyclic ring is condensed, such as a fluorene ring group or a carbazole ring Groups. The substituent is preferably a halogen atom or an alkyl group, and the alkyl group is preferably an alkyl group substituted with a fluorine atom (for example, a trifluoromethyl group).
 態様BにおけるGの具体例とともに、-(CH=CH)na-Gの具体例を以下に示す。ただし、本発明の範囲は、これにより限定されない。
 なお、naが0のとき、*の位置において、Eで置換されたピリジン環に結合し、naが1のとき、*の位置で-(CH=CH)-と結合する。
A specific example of-(CH = CH) na-G is shown below together with a specific example of G in Aspect B. However, the scope of the present invention is not limited thereby.
When na is 0, it is bonded to the pyridine ring substituted with E at the position of *, and when na is 1, it is bonded to — (CH═CH) — at the position of *.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
<態様C>
 RaおよびRbが鎖状のアルコキシ基またはアリールオキシ基であり、かつ、Rcが水素原子、アルキル基、アルキルアミノ基、アリールアミノ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルケニル基、アリール基、ヘテロアリール基のいずれかである。RaおよびRbにおける鎖状のアルコキシ基またはアリールオキシ基としては、置換もしくは無置換の炭素数5~30の直鎖または分岐アルコキシ基、置換もしくは無置換の炭素数6~30のアリールオキシ基であることが好ましく、置換もしくは無置換の炭素数5~20の直鎖または分岐アルコキシ基、置換もしくは無置換の炭素数6~20のアリールオキシ基であることがより好ましく、置換もしくは無置換の炭素数5~15の直鎖または分岐アルコキシ基、置換もしくは無置換の炭素数6~15のアリールオキシ基であることが更に好ましい。
<Aspect C>
Ra and Rb are chain alkoxy groups or aryloxy groups, and Rc is a hydrogen atom, alkyl group, alkylamino group, arylamino group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkenyl group, Either an aryl group or a heteroaryl group. The chain-like alkoxy group or aryloxy group in Ra and Rb is a substituted or unsubstituted linear or branched alkoxy group having 5 to 30 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms. It is preferably a substituted or unsubstituted linear or branched alkoxy group having 5 to 20 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, more preferably a substituted or unsubstituted carbon number. A straight chain or branched alkoxy group having 5 to 15 or a substituted or unsubstituted aryloxy group having 6 to 15 carbon atoms is more preferable.
 態様CにおけるGの具体例とともに、-(CH=CH)na-Gの具体例を以下に示す。ただし、本発明の範囲は、これにより限定されない。
 なお、naが0のとき、*の位置において、Eで置換されたピリジン環に結合し、naが1のとき、*の位置で-(CH=CH)-と結合する。
A specific example of-(CH = CH) na-G is shown below together with a specific example of G in Aspect C. However, the scope of the present invention is not limited thereby.
When na is 0, it is bonded to the pyridine ring substituted with E at the position of *, and when na is 1, it is bonded to — (CH═CH) — at the position of *.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 Gは下記式(G1-1)~(G1-5)のいずれかで表される場合も好ましい。 G is also preferably represented by any of the following formulas (G1-1) to (G1-5).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式(G1-1)~(G1-5)において、X、Ra、Rb、Rc、naは式(G-1)におけるX、Ra、Rb、Rc、naと同義であり、好ましい範囲も同じである。Rd、ReはRa、Rbと同義であり、好ましい範囲も同じである。Ra’は置換基を表す。該置換基はRaにおける好ましい置換基が好ましい。 In the formulas (G1-1) to (G1-5), X, Ra, Rb, Rc and na have the same meanings as X, Ra, Rb, Rc and na in the formula (G-1), and preferred ranges are also the same. is there. Rd and Re are synonymous with Ra and Rb, and their preferred ranges are also the same. Ra 'represents a substituent. The substituent is preferably a preferable substituent in Ra.
 これらのうち、好ましくは(G1-1)、(G1-3)、(G1-4)、(G1-5)であり、さらに好ましくは(G1-1)、(G1-4)である。 Of these, (G1-1), (G1-3), (G1-4), and (G1-5) are preferred, and (G1-1) and (G1-4) are more preferred.
 LDの具体例を以下に示すが、本発明は、これらの例に限定して解釈されない。 Specific examples of LD are shown below, but the present invention is not construed as being limited to these examples.
 態様Aの具体例を以下に示す。
 なお、-(CH=CH)na-Gが、Eで置換されたピリジン環に結合する位置を「G含有基の置換位置」として記載した。
The specific example of aspect A is shown below.
In addition, the position where — (CH═CH) na-G is bonded to the pyridine ring substituted with E is described as “substitution position of G-containing group”.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 態様Bの具体例を以下に示す。 Specific examples of aspect B are shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 態様Cの具体例を以下に示す。 Specific examples of aspect C are shown below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(DL-1)で表される配位子は、Chem.Commun.,2009,5844-5846に記載の方法で合成することができる。 The ligand represented by the formula (DL-1) is Chem. Commun. , 2009, 5844-5846.
<Z
 Zは、1座の配位子を表す。Zは、例えば、アシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、セレネート基、イソセレネート基、イソセレノシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群より選ばれた基で配位する1座の配位子、またはハロゲン原子、ホスフィン配位子、カルボニル、ジアルキルケトン、カルボンアミド、チオカルボンアミドおよびチオ尿素からなる群より選ばれる1座の配位子を挙げることができる。
 Zは、好ましくは、イソチオシアネート基、イソセレノシアネート基、イソシアネート基、ハロゲン原子またはシアノ基である。なお配位子Zがアルキル部位、アルケニル部位、アルキニル部位、アルキレン部位等を含む場合、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール部位、ヘテロ環部位、シクロアルキル部位等を含む場合、それらは置換されていても無置換でもよく、単環でも縮環していてもよい。
<Z 1 >
Z 1 represents a monodentate ligand. Z 1 is, for example, acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group, thiocarbonate group, dithiocarbonate group, trithiocarbonate group, acyl group , Thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, selenate group, isoselenate group, isoselenocyanate group, cyano group, alkylthio group, arylthio group, alkoxy group and aryloxy group. And a monodentate ligand selected from the group consisting of a halogen atom, a phosphine ligand, carbonyl, dialkyl ketone, carbonamide, thiocarbonamide and thiourea.
Z 1 is preferably an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group. Note ligand Z 1 is the alkyl moiety, alkenyl part, alkynyl site, if it contains alkylene moiety such as, they may be linear or branched, may be either unsubstituted substituted. Further, when an aryl moiety, a heterocyclic moiety, a cycloalkyl moiety and the like are included, they may be substituted or unsubstituted, and may be monocyclic or condensed.
 以下に、本発明の式(I)で表される金属錯体色素の具体例を示すが、本発明は、これに限定されない。 Specific examples of the metal complex dye represented by the formula (I) of the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 本発明の式(I)で表される金属錯体色素は、米国特許出願公開第2010/0258175A1号明細書、特許第4298799号公報、Angew.Chem.Int.Ed.,2011,50,2054-2058、Chem.Commun.,2009,5844-5846に記載の方法、該文献で挙げられている参照文献に記載の方法、またはこれらに準じた方法で合成することができる。 The metal complex dye represented by the formula (I) of the present invention is disclosed in US Patent Application Publication No. 2010 / 0258175A1, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. , 2011, 50, 2054-2058, Chem. Commun. , 2009, 5844-5846, the method described in the reference cited in the literature, or a method analogous thereto.
 本発明の金属錯体色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。 In the metal complex dye of the present invention, the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
 本発明においては、本発明の金属錯体色素と他の色素を併用してもよい。
 併用する色素としては、特表平7-500630号公報に記載のRu錯体色素(特に第5頁左下欄5行目~第7頁右上欄7行目に例1~例19で合成された色素)、特表2002-512729号公報に記載のRu錯体色素(特に第20頁の下から3行目~第29頁23行目に例1~例16で合成された色素)、特開2001-59062号公報に記載のRu錯体色素(特に、段落番号0087~0104に記載の色素)、特開2001-6760号公報に記載のRu錯体色素(特に、段落番号0093~0102に記載の色素)、特開2001-253894号公報に記載のRu錯体色素(特に、段落番号0009~0010に記載の色素)、特開2003-212851号公報に記載のRu錯体色素(特に、段落番号0005に記載の色素)、国際公開第2007/91525号パンフレットに記載のRu錯体色素(特に、[0067]に記載の色素)、特開2001-291534号公報に記載のRu錯体色素(特に、段落番号0120~0144に記載の色素)、特開2012-012570号公報に記載のRu錯体色素(特に、段落番号0095~0103に記載の色素)、特開平11-214730号公報に記載のスクアリリウムシアニン色素(特に、段落番号0036~0047に記載の色素)、特開2012-144688号公報に記載のスクアリリウムシアニン色素(特に、段落番号0039~0046および段落番号0054~0060に記載の色素)、特開2012-84503号公報に記載のスクアリリウムシアニン色素(特に、段落番号0066~0076などに記載の色素)、特開2004-063274号公報に記載の有機色素(特に、段落番号0017~0021に記載の色素)、特開2005-123033号公報に記載の有機色素(特に、段落番号0021~0028に記載の色素)、特開2007-287694号公報に記載の有機色素(特に、段落番号0091~0096に記載の色素)、特開2008-71648号公報に記載の有機色素(特に、段落番号0030~0034に記載の色素)、国際公開第2007/119525号パンフレットに記載の有機色素(特に、[0024]に記載の色素)、Angew.Chem.Int.Ed.,49,1~5(2010)等に記載のポルフィリン色素、Angew.Chem.Int.Ed.,46,8358(2007)等に記載のフタロシアニン色素が挙げられる。
 併用する色素として好ましくは、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が挙げられる。
In the present invention, the metal complex dye of the present invention may be used in combination with another dye.
Examples of the dye used in combination include Ru complex dyes described in JP-A-7-500630 (particularly the dyes synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). ), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 from the third line to the 29th page and the 23rd line from the bottom of page 20), JP-A-2001- Ru complex dyes described in Japanese Patent No. 59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in Japanese Patent Application Laid-Open No. 2001-6760 (particularly dyes described in paragraph numbers 0093 to 0102), Ru complex dyes described in JP-A No. 2001-253894 (especially dyes described in paragraph Nos. 0009 to 0010), Ru complex dyes described in JP-A No. 2003-212851 (particularly colors described in paragraph No. 0005) ), Ru complex dyes described in International Publication No. 2007/91525 pamphlet (particularly the dye described in [0067]), Ru complex dyes described in Japanese Patent Application Laid-Open No. 2001-291534 (particularly in paragraphs 0120 to 0144). Described), Ru complex dyes described in JP2012-012570A (in particular, dyes described in paragraph Nos. 0095 to 0103), squarylium cyanine dyes described in JP11-214730A (particularly paragraph numbers). Dyes described in JP-A-2012-144688, squarylium cyanine dyes described in JP 2012-144688 (in particular, the dyes described in paragraphs 0039-0046 and paragraphs 0054-0060), JP-A 2012-84503 The squarylium cyanine dyes described (particularly paragraphs 0066-00 6), organic dyes described in JP-A-2004-063274 (especially dyes described in paragraphs 0017 to 0021), and organic dyes described in JP-A-2005-123033 (particularly paragraphs). Nos. 0021 to 0028), organic dyes described in JP-A No. 2007-287694 (particularly dyes described in paragraphs 0091 to 0096), organic dyes described in JP-A No. 2008-71648 (particularly) , Paragraphs 0030 to 0034), organic dyes described in WO 2007/119525 pamphlet (particularly, the dye described in [0024]), Angew. Chem. Int. Ed. , 49, 1-5 (2010), etc., Angew. Chem. Int. Ed. , 46, 8358 (2007), and the like.
The dye used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
 本発明の金属錯体色素と他の色素を併用する場合、本発明の金属錯体色素の質量/他の色素の質量の比は、95/5~10/90が好ましく、95/5~50/50がより好ましく、95/5~60/40がさらに好ましく、95/5~65/35が特に好ましく、95/5~70/30が最も好ましい。 When the metal complex dye of the present invention is used in combination with another dye, the ratio of the mass of the metal complex dye of the present invention to the mass of the other dye is preferably 95/5 to 10/90, and 95/5 to 50/50. Is more preferable, 95/5 to 60/40 is further preferable, 95/5 to 65/35 is particularly preferable, and 95/5 to 70/30 is most preferable.
- 導電性支持体 -
 導電性支持体は、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスもしくはプラスチックの支持体であるのが好ましい。プラスチックの支持体としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体としては、ガラスおよびプラスチックの他、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いてもよい。導電性支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859号公報に記載の高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。
-Conductive support-
The conductive support is preferably a support made of glass or plastic having a conductive film layer on the surface, such as a metal, which is conductive in itself. Examples of the plastic support include a transparent polymer film described in paragraph No. 0153 of JP-A No. 2001-291534. As the support, in addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) may be used. On the conductive support, the surface may be provided with a light management function. For example, an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated Or a light guide function described in JP-A-2002-260746.
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることが更に好ましく、特に好ましくは0.05~20μmである。 The thickness of the conductive film layer is preferably 0.01 to 30 μm, more preferably 0.03 to 25 μm, and particularly preferably 0.05 to 20 μm.
 導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味する。導電性支持体の光の透過率は、50%以上であることが好ましく、80%以上であることが特に好ましい。透明導電性支持体としては、ガラスもしくはプラスチックに導電性の金属酸化物を塗設したものが好ましい。金属酸化物としてはスズ酸化物が好ましく、インジウム-スズ酸化物、フッ素ドープド酸化物が特に好ましい。このときの導電性の金属酸化物の塗布量は、ガラスもしくはプラスチックの支持体1m当たり0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。 It is preferable that the conductive support is substantially transparent. Substantially transparent means that the light transmittance is 10% or more. The light transmittance of the conductive support is preferably 50% or more, and particularly preferably 80% or more. As the transparent conductive support, a glass or plastic coated with a conductive metal oxide is preferable. As the metal oxide, tin oxide is preferable, and indium-tin oxide and fluorine-doped oxide are particularly preferable. The coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the glass or plastic support. When a transparent conductive support is used, light is preferably incident from the support side.
- 半導体微粒子 -
 半導体微粒子は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、またはタンタルもしくはこれらの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
-Semiconductor fine particles-
The semiconductor fine particles are preferably metal chalcogenide (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles. The metal chalcogenide is preferably titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, or tantalum or an oxide thereof, cadmium sulfide, cadmium selenide, or the like. Can be mentioned. Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ、チタニアナノワイヤー、またはナノロッドをチタニア微粒子に混合するか、または半導体電極として用いてもよい。 Examples of the crystal structure of titania include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, titania nanowires, or nanorods may be mixed with titania microparticles or used as semiconductor electrodes.
 半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径において、1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子を導電性支持体上に塗設する方法として、湿式法、乾式法、その他の方法が挙げられる。 The particle size of the semiconductor fine particles is 0.001 to 1 μm as the primary particle and 0.01 to 100 μm as the average particle size of the dispersion in the average particle size using the diameter when the projected area is converted into a circle. Is preferred. Examples of the method for coating the semiconductor fine particles on the conductive support include a wet method, a dry method, and other methods.
 透明導電膜と半導体層(感光体層)の間には、電解質と電極が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。光電極と対極の接触を防ぐために、スペーサーやセパレータを用いることが好ましい。半導体微粒子は、多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。一般に、半導体微粒子を含む層(感光体層)の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体層である感光体層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は、感光体層の厚みは1~50μmが好ましく、3~30μmがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間焼成してもよい。支持体としてガラスを用いる場合、製膜温度は60~400℃が好ましい。 It is preferable to form a short-circuit prevention layer between the transparent conductive film and the semiconductor layer (photoreceptor layer) in order to prevent reverse current due to direct contact between the electrolyte and the electrode. In order to prevent contact between the photoelectrode and the counter electrode, it is preferable to use a spacer or a separator. The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. For example, in a state where the semiconductor fine particles are coated on the support, the surface area is preferably 10 times or more, more preferably 100 times or more the projected area. Although there is no restriction | limiting in particular in this upper limit, Usually, it is about 5000 times. In general, the greater the thickness of the layer containing the semiconductor fine particles (photoreceptor layer), the greater the amount of dye that can be carried per unit area and the higher the light absorption efficiency, but the longer the diffusion distance of the generated electrons, the greater the charge recombination. The loss due to will also increase. The preferred thickness of the photoreceptor layer, which is a semiconductor layer, varies depending on the use of the device, but is typically 0.1 to 100 μm. When used as a dye-sensitized solar cell, the thickness of the photoreceptor layer is preferably 1 to 50 μm, and more preferably 3 to 30 μm. The semiconductor fine particles may be fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 60 to 400 ° C.
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の金属錯体色素の使用量は5モル%以上とすることが好ましい。また、色素の半導体微粒子に対する吸着量は、半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。
 色素が塩である場合、特定の金属錯体色素の対イオンは特に限定されず、例えばアルカリ金属イオンまたは4級アンモニウムイオン等が挙げられる。
The coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g. The total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. In this case, the amount of the metal complex dye of the present invention is preferably 5 mol% or more. Further, the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles. By using such a dye amount, the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
When the dye is a salt, the counter ion of the specific metal complex dye is not particularly limited, and examples thereof include alkali metal ions and quaternary ammonium ions.
 色素を吸着させた後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてピリジン類(例えば4-t-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用いてもよい。 After adsorbing the dye, the surface of the semiconductor fine particles may be treated with amines. Preferable amines include pyridines (for example, 4-t-butylpyridine, polyvinylpyridine) and the like. In the case of a liquid, these may be used as they are, or may be used after being dissolved in an organic solvent.
 本発明の光電変換素子(例えば光電変換素子10)および色素増感太陽電池(例えば色素増感太陽電池20)においては、少なくとも上記の本発明の金属錯体色素を使用する。 In the photoelectric conversion element (for example, the photoelectric conversion element 10) and the dye-sensitized solar cell (for example, the dye-sensitized solar cell 20) of the present invention, at least the metal complex dye of the present invention is used.
- 電荷移動体層 -
 本発明の光電変換素子に用いられる電荷移動体層は、色素の酸化体に電子を補充する機能を有する層であり、受光電極(光電極)と対極(対向電極)との間に設けられる。電荷移動体層は電解質を含む。電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸した電解質(いわゆるゲル電解質)、酸化還元対を含有する溶融塩などが挙げられる。光電変換効率を高めるためには液体電解質が好ましい。液体電解質の溶媒はニトリル化合物、エーテル化合物、エステル化合物等が用いられる。液体電解質の溶媒としては、ニトリル化合物が好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
-Charge transfer layer-
The charge transfer layer used in the photoelectric conversion element of the present invention is a layer having a function of replenishing electrons to the oxidant of the dye, and is provided between the light receiving electrode (photoelectrode) and the counter electrode (counter electrode). The charge transfer layer includes an electrolyte. Examples of electrolytes include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, an electrolyte in which a liquid in which a redox couple is dissolved in an organic solvent is impregnated in a polymer matrix (so-called gel electrolyte), a molten salt containing the redox couple, and the like Is mentioned. In order to increase the photoelectric conversion efficiency, a liquid electrolyte is preferable. As the solvent for the liquid electrolyte, a nitrile compound, an ether compound, an ester compound or the like is used. As a solvent for the liquid electrolyte, a nitrile compound is preferable, and acetonitrile and methoxypropionitrile are particularly preferable.
 酸化還元対として、例えばヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合せ(例えば赤血塩と黄血塩の組み合せ)、2価と3価のコバルト錯体の組み合わせ等が挙げられる。酸化還元対としては、これらのうち、ヨウ素とヨウ化物との組み合わせまたは2価と3価のコバルト錯体の組み合わせが好ましい。 As an oxidation-reduction pair, for example, iodine and iodide (iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable) Combination, combination of alkyl viologen (for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate) and its reduced form, combination of polyhydroxybenzenes (for example, hydroquinone, naphthohydroquinone, etc.) and oxidized form thereof, divalent And trivalent iron complexes (for example, red blood salt and yellow blood salt), divalent and trivalent cobalt complexes, and the like. Of these, a combination of iodine and iodide or a combination of divalent and trivalent cobalt complexes is preferable as the redox pair.
 コバルト錯体は、なかでも下記式(CC)で表される錯体が好ましい。 The cobalt complex is preferably a complex represented by the following formula (CC).
  Co(LL)ma(X)mb・CI      式(CC) Co (LL) ma (X) mb · CI Formula (CC)
 式(CC)において、LLは2座または3座の配位子を表す。Xは1座の配位子を表す。maは0~3の整数を表す。mbは0~6の整数を表す。CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。 In the formula (CC), LL represents a bidentate or tridentate ligand. X represents a monodentate ligand. ma represents an integer of 0 to 3. mb represents an integer of 0-6. CI represents a counter ion when a counter ion is required to neutralize the charge.
 CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。
 一般に、錯体が陽イオンまたは陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、錯体中の金属、配位子および置換基に依存する。
 対イオンCIが正の対イオンの場合、例えば、対イオンCIは、無機または有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、アルカリ金属イオンまたはプロトンである。
 対イオンCIが負の対イオンの場合、例えば、対イオンCIは、無機陰イオンでも有機陰イオンでもよい。例えば、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換アリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン等が挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは錯体と逆電荷を有する他の錯体を用いてもよく、金属錯イオン(例えばビスベンゼン-1,2-ジチオラトニッケル(III)等)も使用可能である。
CI represents a counter ion when a counter ion is required to neutralize the charge.
In general, whether a complex is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the complex.
When the counter ion CI is a positive counter ion, for example, the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), an alkali metal ion, or a proton.
When the counter ion CI is a negative counter ion, for example, the counter ion CI may be an inorganic anion or an organic anion. For example, a halogen anion (eg, fluoride ion, chloride ion, bromide ion, iodide ion, etc.), substituted aryl sulfonate ion (eg, p-toluene sulfonate ion, p-chlorobenzene sulfonate ion, etc.), aryl disulfone Acid ions (for example, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion, etc.), alkyl sulfate ions (for example, methyl sulfate ion), sulfate ions, thiocyanate ions Perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, picrate ion, acetate ion, trifluoromethanesulfonate ion and the like. Furthermore, as the charge balance counter ion, an ionic polymer or another complex having a charge opposite to that of the complex may be used, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
 なお、本発明の金属錯体色素においても必要な場合はCIを含んでもよい。 In the metal complex dye of the present invention, CI may be contained if necessary.
 LLは下記式(LC)で表される配位子が好ましい。 LL is preferably a ligand represented by the following formula (LC).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 式(LC)において、XLC1およびXLC3は各々独立に炭素原子または窒素原子を表す。ここで、XLC1が炭素原子の場合、XLC1と隣接するN原子の結合は二重結合(XLC1=N)を表し、XLC3が炭素原子の場合、XLC3と隣接するN原子の結合は二重結合(XLC3=N)を表し、XLC1が窒素原子の場合、XLC1と隣接するN原子の結合は単結合(XLC1-N)を表し、XLC3が窒素原子の場合、XLC3と隣接するN原子の結合は単結合(XLC3-N)を表す。
 ZLC1、ZLC2およびZLC3は各々独立に、5員環または6員環を形成するのに必要な非金属原子群を表す。ZLC1、ZLC2およびZLC3は置換基を有していてもよく、置換基を介して隣接する環と閉環していてもよい。該置換基としては、後述の置換基Tが挙げられる。qは0または1を表す。なお、qが0の場合、XLC3がZLC2で形成される5員環または6員環に結合する位置の炭素原子は、水素原子、またはZLC3で形成されるヘテロ環基以外の置換基が結合する。
In the formula (LC), X LC1 and X LC3 each independently represent a carbon atom or a nitrogen atom. Here, when XLC1 is a carbon atom, the bond of NLC adjacent to XLC1 represents a double bond ( XLC1 = N), and when XLC3 is a carbon atom, the bond of N atom adjacent to XLC3 represents a double bond (X LC3 = N), when X LC1 is a nitrogen atom, bonded N atom adjacent to X LC1 represents a single bond (X LC1 -N), if X LC3 is a nitrogen atom, binding of N atoms adjacent to X LC3 represents a single bond (X LC3 -N).
Z LC1 , Z LC2 and Z LC3 each independently represent a nonmetallic atom group necessary for forming a 5-membered ring or a 6-membered ring. Z LC1 , Z LC2 and Z LC3 may have a substituent and may be closed with an adjacent ring via the substituent. Examples of the substituent include the substituent T described later. q represents 0 or 1; In addition, when q is 0, the carbon atom at the position where X LC3 is bonded to the 5-membered ring or 6-membered ring formed by Z LC2 is a hydrogen atom or a substituent other than the heterocyclic group formed by Z LC3 Join.
 式(CC)中、Xは前記式(I)におけるZが挙げられ、このなかでもハロゲンイオンが好ましい。 In the formula (CC), X includes Z 1 in the formula (I), and among these, a halogen ion is preferable.
 上記式(LC)で表される配位子は、下記式(LC-1)~(LC-4)で表される配位子がより好ましい。 The ligand represented by the above formula (LC) is more preferably a ligand represented by the following formulas (LC-1) to (LC-4).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 RLC1~RLC11は各々独立に置換基を表す。q1、q2、q6およびq7は各々独立に、0~4の整数を表す。q3、q5、q10およびq11は各々独立に、0~3の整数を表す。q4は0~2の整数を表す。 R LC1 to R LC11 each independently represents a substituent. q1, q2, q6 and q7 each independently represents an integer of 0 to 4. q3, q5, q10 and q11 each independently represents an integer of 0 to 3. q4 represents an integer of 0-2.
 式(LC-1)~(LC-4)において、RLC1~RLC11における置換基は、例えば、脂肪族基、芳香族基、複素環基等が挙げられる。置換基の具体的な例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ヘテロ環等を挙げることができる。好ましい例としては、アルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、アリール基(例えばフェニル、トリル、ナフチル等)、アルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、ブトキシ等)、アルキルチオ基(例えば、メチルチオ、n-ブチルチオ、n-ヘキシルチオ、2-エチルヘキシルチオ等)、アリールオキシ基(例えば、フェノキシ、ナフトキシ等)、アリールチオ基(例えば、フェニルチオ、ナフチルチオ等)、ヘテロ環基(例えば、2-チエニル、2-フリル等)を挙げることができる。 In the formulas (LC-1) to (LC-4), examples of the substituent in R LC1 to R LC11 include an aliphatic group, an aromatic group, and a heterocyclic group. Specific examples of the substituent include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, and heterocyclic rings. Preferred examples include alkyl groups (eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.), aryl groups (eg phenyl, tolyl, naphthyl). Etc.), alkoxy groups (eg methoxy, ethoxy, isopropoxy, butoxy etc.), alkylthio groups (eg methylthio, n-butylthio, n-hexylthio, 2-ethylhexylthio etc.), aryloxy groups (eg phenoxy, naphthoxy etc.) Etc.), arylthio groups (eg, phenylthio, naphthylthio, etc.), and heterocyclic groups (eg, 2-thienyl, 2-furyl, etc.).
 式(LC)で表される配位子を有するコバルト錯体の具体例としては、例えば以下の錯体が挙げられる。 Specific examples of the cobalt complex having a ligand represented by the formula (LC) include the following complexes.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 電解質として、ヨウ素とヨウ化物との組み合せを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。 When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
 酸化還元対を溶かす有機溶媒としては、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。ゲル電解質のマトリクスに使用されるポリマー(ポリマーマトリクス)としては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。溶融塩としては、例えばヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり変換効率が向上する。 The organic solvent that dissolves the redox couple is preferably an aprotic polar solvent (eg acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.). . Examples of the polymer (polymer matrix) used in the gel electrolyte matrix include polyacrylonitrile and polyvinylidene fluoride. Examples of the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlorate). It is done. In this case, the amount of the polymer added is 1 to 50% by mass. In addition, γ-butyrolactone may be included in the electrolyte, which increases the diffusion efficiency of iodide ions and improves the conversion efficiency.
 電解質への添加物として、前述の4-t-ブチルピリジンのほか、アミノピリジン系化合物、ベンズイミダゾール系化合物、アミノトリアゾール系化合物およびアミノチアゾール系化合物、イミダゾール系化合物、アミノトリアジン系化合物、尿素誘導体、アミド化合物、ピリミジン系化合物および窒素を含まない複素環を加えることができる。 As an additive to the electrolyte, in addition to the aforementioned 4-t-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine compounds and nitrogen-free heterocycles can be added.
 また、光電変換効率を向上するために、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。ヨウ素の毒性軽減のために、ヨウ素とシクロデキストリンの包摂化合物の使用をしてもよく、水分を常時補給する方法を用いてもよい。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。 Also, in order to improve the photoelectric conversion efficiency, a method of controlling the moisture of the electrolytic solution may be taken. Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist. In order to reduce the toxicity of iodine, an inclusion compound of iodine and cyclodextrin may be used, or a method of constantly supplying water may be used. Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
 電解質として溶融塩を用いてもよく、好ましい溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム系、ピリジニウム系、グアニジウム系およびこれらの組み合わせが挙げられる。これらカチオン系に対して特定のアニオンと組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。液晶性の置換基を持っていてもよい。また、四級アンモニウム塩系の溶融塩を用いてもよい。 A molten salt may be used as the electrolyte, and preferred molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. These cationic systems may be combined with specific anions. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。 As a molten salt other than these, for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい(擬固体化された電解質を、以下、「擬固体電解質」ともいう。)。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からできる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。 The electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter). Examples of the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
 また、マトリックス高分子、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いてもよい。
 マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の繰り返し単位中に持つ高分子およびこれらの含窒素複素環を求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造をもつ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン系、メタクリレート・アクリレート系、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリコールとデキストリンなどの包摂化合物、含酸素または含硫黄高分子を添加した系、天然高分子などが挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子などを添加してもよい。
Alternatively, a method of confining the matrix polymer, the crosslinkable polymer compound or monomer, the crosslinking agent, the electrolyte, and the solvent in the polymer may be used.
The matrix polymer is preferably a polymer having a nitrogen-containing heterocycle in the repeating unit of the main chain or side chain, a crosslinked product obtained by reacting these nitrogen-containing heterocycle with an electrophilic compound, or a polymer having a triazine structure , Polymer having ureido structure, liquid crystal compound-containing polymer, ether-bonded polymer, polyvinylidene fluoride, methacrylate / acrylate, thermosetting resin, crosslinked polysiloxane, polyvinyl alcohol (PVA), polyalkylene glycol And inclusion compounds such as dextrin, oxygen-containing or sulfur-containing polymers, and natural polymers. An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex between a cation moiety and iodine in one polymer, and the like may be added thereto.
 マトリックス高分子としては、2官能以上のイソシアネートと、ヒドロキシ基、アミノ基、カルボキシ基などの官能基とを反応させた架橋ポリマーを含む系を用いてもよい。また、ヒドロシリル基と二重結合性化合物とによる架橋高分子、ポリスルホン酸またはポリカルボン酸などを2価以上の金属イオン化合物と反応させる架橋方法などを用いてもよい。 As the matrix polymer, a system containing a crosslinked polymer obtained by reacting a bifunctional or higher functional isocyanate with a functional group such as a hydroxy group, an amino group, or a carboxy group may be used. In addition, a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher-valent metal ion compound may be used.
 上記擬固体電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒等が挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させてもよく、その方法として好ましくは、導電性高分子膜、繊維状固体、フィルタなどの布状固体が挙げられる。 Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, a solvent having a specific dielectric constant, and the like. The liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth-like solids such as filters.
 以上の液体電解質および擬固体電解質の代わりに、p型半導体あるいはホール輸送材料などの固体電荷輸送層、例えば、CuI、CuNCSなどを用いることができる。また、Nature,vol.486,p.487(2012)等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いてもよい。有機ホール輸送材料として好ましくは、ポリチオフェン、ポリアニリン、ポリピロール、ポリシランなどの導電性高分子、2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミンなどの芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。 Instead of the above liquid electrolyte and quasi-solid electrolyte, a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used. An organic hole transport material may be used as the solid charge transport layer. The organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole, or polysilane, a spiro compound in which two rings share a tetrahedral structure such as C or Si, and an aromatic such as triarylamine. Group amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
 酸化還元対は、電子のキャリアになるので、ある程度の濃度が必要である。好ましい濃度としては合計で0.01モル/L以上であり、より好ましくは0.1モル/L以上であり、特に好ましくは0.3モル/L以上である。この場合の上限は特に制限はないが、通常5モル/L程度である。 Since the redox couple is an electron carrier, a certain concentration is required. A preferable concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more. The upper limit in this case is not particularly limited, but is usually about 5 mol / L.
[共吸着剤]
 本発明の光電変換素子においては、本発明の金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシ基もしくはその塩)を1つ以上有する共吸着剤が好ましく、例えば、脂肪酸やステロイド骨格を有する化合物が挙げられる。脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えばブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
[Co-adsorbent]
In the photoelectric conversion element of this invention, it is preferable to use a coadsorbent with the metal complex dye of this invention or the pigment | dye used together if necessary. As such a co-adsorbent, a co-adsorbent having at least one acidic group (preferably a carboxy group or a salt thereof) is preferable, and examples thereof include compounds having a fatty acid or a steroid skeleton. The fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
 好ましい共吸着剤は、下記式(CA)で表される化合物である。 A preferred co-adsorbent is a compound represented by the following formula (CA).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 式(CA)において、RC1は酸性基を有する置換基を表す。RC2は置換基を表す。lcは0以上の整数を表す。 In the formula (CA), R C1 represents a substituent having an acidic group. R C2 represents a substituent. lc represents an integer of 0 or more.
 酸性基は、前記式(I)における酸性基、Acと同義であり、好ましい範囲も同じである。
 RC1は、これらの中でも、カルボキシ基またはスルホ基もしくはそれらの塩で置換されたアルキル基が好ましく、-CH(CH)CHCHCOH、-CH(CH)CHCHCONHCHCHSOHがさらに好ましい。
An acidic group is synonymous with the acidic group and Ac in said Formula (I), and its preferable range is also the same.
Among these, R C1 is preferably a carboxy group or an alkyl group substituted with a sulfo group or a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2 More preferred is CONHCH 2 CH 2 SO 3 H.
 RC2としては、後述の置換基Tが挙げられるが、中でもアルキル基、ヒドロキシ基、アシルオキシ基、アルキルアミノカルボニルオキシ基、アリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基、アシルオキシ基がより好ましい。 Examples of R C2 include the substituent T described later, and among them, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group, and an arylaminocarbonyloxy group are preferable, and an alkyl group, a hydroxy group, and an acyloxy group are more preferable. .
 lcは0以上の整数を表し、lcが2以上の時、複数のRC2は互いに同一でも異なっていてもよい。lcは2~4が好ましい。 lc represents an integer of 0 or more, and when lc is 2 or more, a plurality of RC2s may be the same as or different from each other. lc is preferably 2-4.
 これらの具体的化合物は、上述のステロイド骨格を有する化合物としてした化合物が挙げられる。 Examples of these specific compounds include the compounds having the above-mentioned steroid skeleton.
 本発明の共吸着剤は、半導体微粒子に吸着させることにより、色素の非効率な会合を抑制する効果および半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は特に限定されないが、上記色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルであることが、上記の作用を効果的に発現させられ、好ましい。 The co-adsorbent of the present invention has an effect of suppressing inefficient association of dyes by adsorbing to semiconductor fine particles and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte. The amount of the coadsorbent used is not particularly limited, but is preferably 1 to 200 mol, more preferably 10 to 150 mol, and particularly preferably 20 to 50 mol with respect to 1 mol of the dye. Is effectively expressed, and is preferable.
<置換基T>
 本明細書において化合物(錯体、色素を含む)の表示については、当該化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本明細書において置換または無置換を明記していない置換基(連結基および配位子についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換または無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 また、本明細書において、単に置換基としてしか記載されていない場合は、この置換基Tを参照するものであり、また、各々の基、例えば、アルキル基、が記載されているのみの場合は、この置換基Tの対応する基における好ましい範囲、具体例が適用される。
<Substituent T>
In this specification, about the display of a compound (a complex and a pigment | dye are included), it uses for the meaning containing the salt and its ion besides the said compound itself. In addition, in the present specification, a substituent that does not specify substitution or non-substitution (the same applies to a linking group and a ligand) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted. Preferred substituents include the following substituent T.
Further, in the present specification, when it is described only as a substituent, it refers to this substituent T, and each group, for example, an alkyl group, is only described. The preferred range and specific examples of the corresponding group of the substituent T are applied.
 置換基Tとしては、下記の基が挙げられる。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル、トリフルオロメチル等)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、2-プロピニル、2-ブチニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、シクロアルケニル基(好ましくは炭素数5~20で、例えばシクロペンテニル、シクロヘキセニル等)、アリール基(好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20で、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5員環または6員環のヘテロ環基がより好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシ、アリルオキシ等)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロピニルオキシ、4-ブチニルオキシ等)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、4-メチルシクロヘキシルオキシ等)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシ、プリニルオキシ)、
Examples of the substituent T include the following groups.
An alkyl group (preferably having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, trifluoromethyl, etc.), Alkenyl groups (preferably having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.), alkynyl groups (preferably having 2 to 20 carbon atoms, such as ethynyl, 2-propynyl, 2-butynyl, phenylethynyl, etc.) A cycloalkyl group (preferably having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), a cycloalkenyl group (preferably having 5 to 20 carbon atoms such as cyclopentenyl, cyclohexenyl, etc. ), Aryl groups (preferably having 6 to 26 carbon atoms, eg , Phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), heterocyclic group (preferably having 2 to 20 carbon atoms and having at least one oxygen atom, sulfur atom, nitrogen atom) More preferred are membered or six-membered heterocyclic groups such as 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, etc., alkoxy groups (preferably having 1 carbon atom) -20, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), alkenyloxy groups (preferably having 2-20 carbon atoms, eg, vinyloxy, allyloxy, etc.), alkynyloxy groups (preferably having 2-20 carbon atoms). And, for example, 2-propynyloxy, 4-butynyloxy, etc.), cycloalkyloxy A group (preferably having 3 to 20 carbon atoms such as cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, 4-methylcyclohexyloxy, etc.), an aryloxy group (preferably having 6 to 26 carbon atoms such as phenoxy, 1- Naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), heterocyclic oxy groups (eg, imidazolyloxy, benzoimidazolyloxy, thiazolyloxy, benzothiazolyloxy, triazinyloxy, purinyloxy),
アルコキシカルボニル基(好ましくは炭素数2~20で、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、シクロアルコキシカルボニル基(好ましくは炭素数4~20で、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニル、シクロヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノ、トリアジニルアミノ等)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニル、ベンゾイル等)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイル、N-フェニルカルバモイル等)、 An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.), a cycloalkoxycarbonyl group (preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl, etc.) , Cyclohexyloxycarbonyl, etc.), aryloxycarbonyl groups (preferably having 6 to 20 carbon atoms, such as phenyloxycarbonyl, naphthyloxycarbonyl, etc.), amino groups (preferably having 0 to 20 carbon atoms, alkylamino groups, alkenyls) Including amino group, alkynylamino group, cycloalkylamino group, cycloalkenylamino group, arylamino group, heterocyclic amino group, for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethyl Amino, N-allylamino, N- (2-propynyl) amino, N-cyclohexylamino, N-cyclohexenylamino, anilino, pyridylamino, imidazolylamino, benzoimidazolylamino, thiazolylamino, benzothiazolylamino, triazinylamino, etc.) A sulfamoyl group (preferably an alkyl, cycloalkyl or aryl sulfamoyl group having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-cyclohexylsulfamoyl, N-phenylsulfamoyl, etc. ), An acyl group (preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl, benzoyl, etc.), an acyloxy group (preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexylcarbonyloxy). , Benzoyloxy, etc.), carbamoyl group (preferably an carbamoyl group having 1 to 20 carbon atoms, alkyl, cycloalkyl or aryl, such as N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc.) ,
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオ、4-メチルシクロヘキシルチオ等)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニル、ベンゼンスルホニル等)、 An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, benzoylamino, etc.), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably having 1 to 20 carbon atoms, eg, methylthio , Ethylthio, isopropylthio, benzylthio, etc.), cycloalkylthio groups (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopentylthio, cyclohexylthio, 4-methylcyclohexylthio) Etc.), arylthio groups (preferably having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), alkyl, cycloalkyl or arylsulfonyl groups (preferably having carbon numbers) 1-20, for example, methylsulfonyl, ethylsulfonyl, cyclohexylsulfonyl, benzenesulfonyl, etc.),
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリエチルシリル、トリフェニルシリル、ジエチルベンジルシリル、ジメチルフェニルシリル等)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシ、ジメチルフェニルシリルオキシ等)、ヒドロキシ基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)、カルボキシ基、スルホ基、ホスホニル基、ホスホリル基、ホウ酸基であり、より好ましくはアルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルコキシカルボニル基、シクロアルコキシカルボニル基、上記アミノ基、アシルアミノ基、シアノ基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはシアノ基が挙げられる。 A silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted by alkyl, aryl, alkoxy and aryloxy, such as triethylsilyl, triphenylsilyl, diethylbenzylsilyl, dimethylphenylsilyl, etc.), silyloxy group ( Preferably, it is a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, dimethylphenylsilyloxy, etc.), hydroxy group , Cyano group, nitro group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), carboxy group, sulfo group, phosphonyl group, phosphoryl group, boric acid group, more preferably alkyl group, A kenyl group, cycloalkyl group, aryl group, heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkoxycarbonyl group, cycloalkoxycarbonyl group, the above amino group, acylamino group, cyano group or halogen atom, An alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group, or a cyano group is preferable.
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。 When a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
<対極(対向電極)>
 対極は、色素増感太陽電池(光電気化学電池)の正極として働くものであることが好ましい。対極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。対極の構造としては、集電効果が高い構造が好ましい。感光体層に光が到達するためには、前述の導電性支持体と対極との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体が透明であって太陽光を支持体側から入射させるのが好ましい。この場合、対極は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対極としては、金属もしくは導電性の酸化物を蒸着したガラス、またはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。
<Counter electrode (counter electrode)>
The counter electrode is preferably a positive electrode of a dye-sensitized solar cell (photoelectrochemical cell). The counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. As the structure of the counter electrode, a structure having a high current collecting effect is preferable. In order for light to reach the photoreceptor layer, at least one of the conductive support and the counter electrode described above must be substantially transparent. In the dye-sensitized solar cell of the present invention, the conductive support is preferably transparent, and sunlight is preferably incident from the support side. In this case, it is more preferable that the counter electrode has a property of reflecting light. As a counter electrode of the dye-sensitized solar cell, glass or plastic on which metal or conductive oxide is vapor-deposited is preferable, and glass on which platinum is vapor-deposited is particularly preferable. In the dye-sensitized solar cell, it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating.
 本発明は、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-152613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報等に記載の光電変換素子、色素増感太陽電池に適用することができる。 The present invention is disclosed in Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can apply to the described photoelectric conversion element and a dye-sensitized solar cell. Also, JP 2004-152613 A, JP 2000-90989 A, JP 2003-217688 A, JP 2002-367686 A, JP 2003-323818 A, JP 2001-43907 A, JP 2000-340269, JP 2005-85500, JP 2004-273272, JP 2000-323190, JP 2000-228234, JP 2001-266963, JP 2001-185244, JP-T-2001-525108, JP-A-2001-203377, JP-A-2000-1000048, JP-A-2001-210390, JP-A-2002-280857, JP-A-2001-2001. No. 273937, JP-A 2000-285 77 No. photoelectric conversion device described in JP 2001-320068 Patent Publication can be applied to a dye-sensitized solar cell.
<<色素溶液、それを用いた色素吸着電極および色素増感太陽電池の製造方法>>
 本発明においては、本発明の金属錯体色素を含有する色素溶液を使用して色素吸着電極を製造することが好ましい。
 このような色素溶液には、本発明の金属錯体色素が溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが特に限定されない。本発明においては有機溶媒が好ましく、さらにアルコール類、アミド類、ニトリル類、炭化水素類、および、これらの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール類と、アミド類、ニトリル類または炭化水素類から選択される溶媒との混合溶媒が好ましい。さらに好ましくはアルコール類とアミド類、アルコール類と炭化水素類の混合溶媒、特に好ましくはアルコール類とアミド類の混合溶媒である。具体的にはメタノール、エタノール、プロパノール、ブタノール、ジメチルホルムアミド、ジメチルアセトアミドが好ましい。
<< Dye Solution, Dye-Adsorbing Electrode and Dye-Sensitized Solar Cell Manufacturing Method Using It >>
In the present invention, it is preferable to produce a dye adsorption electrode using a dye solution containing the metal complex dye of the present invention.
In such a dye solution, the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
Examples of the solvent to be used include, but are not particularly limited to, the solvents described in JP-A No. 2001-291534. In the present invention, an organic solvent is preferable, and alcohols, amides, nitriles, hydrocarbons, and a mixed solvent of two or more of these are preferable. As the mixed solvent, a mixed solvent of an alcohol and a solvent selected from amides, nitriles or hydrocarbons is preferable. Further preferred are alcohols and amides, mixed solvents of alcohols and hydrocarbons, and particularly preferred are mixed solvents of alcohols and amides. Specifically, methanol, ethanol, propanol, butanol, dimethylformamide, and dimethylacetamide are preferable.
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、前述の共吸着剤が好ましく、なかでも前記式(CA)で表される化合物が好ましい。
 ここで、本発明に用いられる色素溶液は、光電変換素子や色素増感太陽電池を製造する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤の濃度が調整されている色素溶液が好ましい。本発明においては、本発明の金属錯体色素を0.001~0.1質量%含有することが好ましい。
The dye solution preferably contains a co-adsorbent. As the co-adsorbent, the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the formula (CA) is preferable.
Here, the density | concentration of a metal complex pigment | dye or a coadsorbent is adjusted so that the pigment | dye solution used for this invention can use this solution as it is, when manufacturing a photoelectric conversion element and a dye-sensitized solar cell. A dye solution is preferred. In the present invention, the metal complex dye of the present invention is preferably contained in an amount of 0.001 to 0.1% by mass.
 色素溶液は、水分含有量を調整することが特に好ましく、従って、本発明では水の含有量(含有率)を0~0.1質量%に調整することが好ましい。
 同様に、光電変換素子や色素増感太陽電池における電解質の水分含有量の調整も、本発明の効果を効果的に奏するために好ましく、このため、この電解液の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。この電解質の調整は、色素溶液で行なうのが特に好ましい。
The water content of the dye solution is particularly preferably adjusted. Therefore, in the present invention, the water content (content ratio) is preferably adjusted to 0 to 0.1% by mass.
Similarly, the adjustment of the water content of the electrolyte in the photoelectric conversion element or the dye-sensitized solar cell is also preferable in order to effectively exhibit the effect of the present invention. For this reason, the water content (content rate) of the electrolyte solution is It is preferable to adjust to 0 to 0.1% by mass. The electrolyte is particularly preferably adjusted with a dye solution.
 本発明では、上記色素溶液を用いて、半導体電極が備える半導体微粒子表面に金属錯体色素を担持させてなる色素増感太陽電池用の半導体電極である色素吸着電極が好ましい。
 すなわち、色素増感太陽電池用の色素吸着電極は、上記色素溶液から得られてなる組成物を、半導体微粒子を付与した導電性支持体上に塗布し、塗布後の該組成物を硬化させて感光体層としたものが好ましい。
 本発明では、この色素増感太陽電池用の色素吸着電極を使用し、電解質、および対極を準備し、これらを用いて組み立てることで、色素増感太陽電池を製造することが好ましい。
In the present invention, a dye adsorption electrode which is a semiconductor electrode for a dye-sensitized solar cell in which a metal complex dye is supported on the surface of a semiconductor fine particle provided in a semiconductor electrode using the dye solution is preferable.
That is, a dye-adsorbing electrode for a dye-sensitized solar cell is obtained by applying a composition obtained from the dye solution onto a conductive support provided with semiconductor fine particles, and curing the composition after application. What was made into the photoreceptor layer is preferable.
In the present invention, it is preferable to produce a dye-sensitized solar cell by using the dye-adsorbing electrode for the dye-sensitized solar cell, preparing an electrolyte and a counter electrode, and assembling them using these.
 以下に実施例に基づき、本発明について更に詳細に説明するが、本発明がこれに限定して解釈されない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
<金属錯体色素の合成>
 以下に、実施例により本発明の色素の合成法を詳しく説明するが、出発物質、色素中間体および合成ルートについて、なんら限定されない。
<Synthesis of metal complex dye>
Hereinafter, the synthesis method of the dye of the present invention will be described in detail by way of examples, but the starting material, the dye intermediate and the synthesis route are not limited at all.
(金属錯体色素Ru-17Aの合成)
 下記のスキームの方法に従って金属錯体色素Ru-17Aを合成した。
(Synthesis of metal complex dye Ru-17A)
A metal complex dye Ru-17A was synthesized according to the method of the following scheme.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(i)化合物d-1-2の合成
 化合物d-1-1(2-アセチル-4-メチルピリジン)25gをTHF(テトラヒドロフラン)200mlに溶解し、窒素雰囲気下、0℃で撹拌しながら、ナトリウムエトキシド18.9gを添加し15分間撹拌した。その後、攪拌後の溶液にトリフルオロ酢酸エチル28.9gを滴下し、外温70℃で20時間撹拌した。室温に戻した後、そこへ塩化アンモニウム水溶液を滴下して、分液した。有機相を濃縮し、72.6gの粗精製物d-1-2を得た。
(I) Synthesis of Compound d-1-2 25 g of Compound d-1-1 (2-acetyl-4-methylpyridine) was dissolved in 200 ml of THF (tetrahydrofuran) and sodium agitation was performed at 0 ° C. under a nitrogen atmosphere. 18.9 g of ethoxide was added and stirred for 15 minutes. Thereafter, 28.9 g of ethyl trifluoroacetate was added dropwise to the stirred solution, followed by stirring at an external temperature of 70 ° C. for 20 hours. After returning to room temperature, an aqueous ammonium chloride solution was added dropwise to separate the solution. The organic phase was concentrated to obtain 72.6 g of a crude product d-1-2.
(ii)化合物d-1-3の合成
 72.6gの化合物d-1-2をエタノール220mlに溶解した後、窒素雰囲気下、室温で撹拌しながら、ヒドラジン1水和物5.6mlを添加し、外温90℃で12時間加熱した。その後、そこへ濃塩酸5mlを添加し、1時間撹拌した。攪拌後の溶液を濃縮した後、重曹水150mlと酢酸エチル150mlを加えて反応生成物を抽出し、有機相を濃縮した。アセトニトリルで再結晶後、31.5gの化合物d-1-3を得た。
(Ii) Synthesis of Compound d-1-3 After dissolving 72.6 g of Compound d-1-2 in 220 ml of ethanol, 5.6 ml of hydrazine monohydrate was added while stirring at room temperature under a nitrogen atmosphere. The mixture was heated at an external temperature of 90 ° C. for 12 hours. Thereafter, 5 ml of concentrated hydrochloric acid was added thereto and stirred for 1 hour. After the stirred solution was concentrated, 150 ml of sodium bicarbonate water and 150 ml of ethyl acetate were added to extract the reaction product, and the organic phase was concentrated. After recrystallization from acetonitrile, 31.5 g of compound d-1-3 was obtained.
(iii)化合物d-1-5の合成
 ジイソプロピルアミン 4.1gとテトラヒドロフラン30mlを窒素雰囲気下、-40℃で撹拌しながら、1.6Mのn-ブチルリチウムヘキサン溶液を23.1ml滴下した後、2時間撹拌した。次いで、そこに、4.0gの化合物d-1-3を添加し、0℃で80分間撹拌した後、Journal of the Chemical Society,Perkin Transactions 2:Physical Organic Chemistry(1972-1999),1992,#11,p.959~1963に記載の方法で合成した5.00gの化合物d-1-4をテトラヒドロフラン15mlに溶解した溶液を滴下した。さらに、滴下後の溶液を0℃で80分間撹拌し、室温で5時間撹拌した。その後、反応液に塩化アンモニウム溶液を添加し、反応生成物を酢酸エチルで抽出した。有機相を濃縮し、シリカゲルカラムクロマトグラフィーで精製後、5.0gの化合物d-1-5を得た。
(Iii) Synthesis of Compound d-1-5 After dropwise addition of 23.1 ml of 1.6M n-butyllithium hexane solution, 4.1 g of diisopropylamine and 30 ml of tetrahydrofuran were stirred at −40 ° C. in a nitrogen atmosphere. Stir for 2 hours. Next, 4.0 g of the compound d-1-3 was added thereto, and the mixture was stirred at 0 ° C. for 80 minutes, and then Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999), 1992, # 11, p. A solution of 5.00 g of compound d-1-4 synthesized by the method described in 959-1963 in 15 ml of tetrahydrofuran was added dropwise. Furthermore, the solution after dropping was stirred at 0 ° C. for 80 minutes and then at room temperature for 5 hours. Thereafter, an ammonium chloride solution was added to the reaction solution, and the reaction product was extracted with ethyl acetate. The organic phase was concentrated and purified by silica gel column chromatography to obtain 5.0 g of compound d-1-5.
(iv)化合物d-1-6の合成
 4.9gの化合物d-1-5とPPTS(ピリジニウムパラトルエンスルホン酸)4.1gを、トルエン50mlに加え、窒素雰囲気下で5時間加熱還流を行った。還流後の溶液を濃縮後、飽和重曹水および塩化メチレンを加え分液し、有機相を濃縮した。得られた結晶はメタノール及び塩化メチレンを用いて再結晶後、3.2gの化合物d-1-6を得た。
(Iv) Synthesis of compound d-1-6 4.9 g of compound d-1-5 and 4.1 g of PPTS (pyridinium paratoluenesulfonic acid) were added to 50 ml of toluene, and the mixture was heated to reflux for 5 hours in a nitrogen atmosphere. It was. After the refluxed solution was concentrated, saturated aqueous sodium hydrogen carbonate and methylene chloride were added for liquid separation, and the organic phase was concentrated. The obtained crystals were recrystallized from methanol and methylene chloride to obtain 3.2 g of compound d-1-6.
(v)金属錯体色素Ru-17Aの合成
 1.22gの化合物d-1-7、1.62gの化合物d-1-6、をN,N-ジメチルホルムアミド150mlに加え、窒素雰囲気下、70℃で3時間撹拌した。次いで、そこに、1.99gの化合物d-1-8を加え、160℃で8時間加熱撹拌した。その後チオシアン酸アンモニウム 10.7gを加え、160℃で8時間撹拌した。攪拌後の溶液を濃縮した後、水を加えろ過した。ろ物を、シリカゲルカラムクロマトグラフィーで精製した後、テトラヒドロフラン15ml、メタノール15ml、および1N水酸化ナトリウム水溶液40mlの混合溶媒に加え、外温40℃で24時間撹拌した。反応後の溶液を室温に戻し、トリフルオロメタンスルホン酸0.1M溶液を加えて、pHを3に調整した。生じた析出物をろ過することにより、0.3gの金属錯体色素Ru-17Aを得た。
 得られた金属錯体色素Ru-17Aの構造はMS測定により確認した。
ESI-MS m/z=1018(M-H)
(V) Synthesis of metal complex dye Ru-17A 1.22 g of compound d-1-7 and 1.62 g of compound d-1-6 were added to 150 ml of N, N-dimethylformamide, and the reaction was performed at 70 ° C. under a nitrogen atmosphere. For 3 hours. Next, 1.99 g of compound d-1-8 was added thereto, and the mixture was heated with stirring at 160 ° C. for 8 hours. Thereafter, 10.7 g of ammonium thiocyanate was added, and the mixture was stirred at 160 ° C. for 8 hours. After the stirred solution was concentrated, water was added and filtered. The residue was purified by silica gel column chromatography, then added to a mixed solvent of 15 ml of tetrahydrofuran, 15 ml of methanol, and 40 ml of 1N aqueous sodium hydroxide solution, and stirred at an external temperature of 40 ° C. for 24 hours. The solution after the reaction was returned to room temperature, and the pH was adjusted to 3 by adding a 0.1 M solution of trifluoromethanesulfonic acid. The resulting precipitate was filtered to obtain 0.3 g of a metal complex dye Ru-17A.
The structure of the obtained metal complex dye Ru-17A was confirmed by MS measurement.
ESI-MS m / z = 1018 (M−H) +
(色素Ru-31Aの合成) (Synthesis of dye Ru-31A)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 1.0gの化合物d-2-1、2.4gの化合物d-2-2、化合物S-Phos 0.4g、リン酸三カリウム 5.5g、テトラヒドロフラン10ml、およびメタノール5mlを100mlの3つ口フラスコにいれ、脱気を施した。窒素置換し、そこへ酢酸パラジウムを0.07g加え、80℃のオイルバスを用いて12時間加熱還流させた。還流後の溶液を室温に戻した後、そこに蒸留水を加え、反応生成物を酢酸エチルで抽出した。有機相から溶媒を留去した後、シリカゲルカラムクロマトグラフィーで精製することにより、1gの化合物d-2-3を得た。
 金属錯体色素Ru-17Aの合成における、化合物d-1-1を化合物d-2-3に変更した以外は、金属錯体色素Ru-17Aの合成と同様にして、金属錯体色素Ru-31Aを合成した。
 得られた金属錯体色素Ru-31Aの構造はMS測定により確認した。
ESI-MS m/z=1070(M-H)
Three 100 ml portions of 1.0 g of compound d-2-1, 2.4 g of compound d-2-2, compound S-Phos 0.4 g, tripotassium phosphate 5.5 g, tetrahydrofuran 10 ml, and methanol 5 ml The flask was placed and degassed. The atmosphere was replaced with nitrogen, 0.07 g of palladium acetate was added thereto, and the mixture was refluxed for 12 hours using an oil bath at 80 ° C. After the refluxed solution was returned to room temperature, distilled water was added thereto, and the reaction product was extracted with ethyl acetate. After the solvent was distilled off from the organic phase, purification was performed by silica gel column chromatography to obtain 1 g of compound d-2-3.
A metal complex dye Ru-31A was synthesized in the same manner as the metal complex dye Ru-17A except that compound d-1-1 was changed to compound d-2-3 in the synthesis of metal complex dye Ru-17A. did.
The structure of the obtained metal complex dye Ru-31A was confirmed by MS measurement.
ESI-MS m / z = 1070 (M−H) +
(vi)金属錯体色素Ru-8Bの合成 (Vi) Synthesis of metal complex dye Ru-8B
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 Medicinal Chemistry letters,2011,vol.2,#1、p.2~6に記載の方法を用いて化合物d-3-2を合成した。次いで、金属錯体色素Ru-17Aの合成における、化合物d-1-6を化合物d-3-2に変更した以外は、金属錯体色素Ru-17Aの合成と同様にして、金属錯体色素Ru-8Bを合成した。
 得られた金属錯体色素Ru-8Bの構造はMS測定により確認した。
ESI-MS m/z=964(M-H)
Medicinal Chemistry letters, 2011, vol. 2, # 1, p. Compound d-3-2 was synthesized using the methods described in 2-6. Next, a metal complex dye Ru-8B was synthesized in the same manner as the metal complex dye Ru-17A except that the compound d-1-6 was changed to the compound d-3-2 in the synthesis of the metal complex dye Ru-17A. Was synthesized.
The structure of the obtained metal complex dye Ru-8B was confirmed by MS measurement.
ESI-MS m / z = 964 (M−H) +
 金属錯体色素Ru-17A、Ru-31A、Ru-8Bの合成と同様にして、金属錯体色素Ru-7A、Ru-8A、Ru-9A、Ru-18A、Ru-24A、Ru-29A、Ru-30A、Ru-43A~Ru-49A、金属錯体色素Ru-1B、Ru-16B、金属錯体色素Ru-1Cを合成した。得られた金属錯体色素の同定はESI-MSにより行った。 In the same manner as the synthesis of the metal complex dyes Ru-17A, Ru-31A, and Ru-8B, the metal complex dyes Ru-7A, Ru-8A, Ru-9A, Ru-18A, Ru-24A, Ru-29A, Ru- 30A, Ru-43A to Ru-49A, metal complex dyes Ru-1B, Ru-16B, and metal complex dyes Ru-1C were synthesized. The obtained metal complex dye was identified by ESI-MS.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 合成した金属錯体色素を以下に示す。 The synthesized metal complex dyes are shown below.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 比較化合物として、下記の金属錯体色素を用いた。
 なお、比較化合物(2)は米国特許出願公開第2010/0258175号明細書(引用文献2)に記載の化合物である。
The following metal complex dyes were used as comparative compounds.
The comparative compound (2) is a compound described in US Patent Application Publication No. 2010/0258175 (Cited document 2).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(実施例1)
[色素増感太陽電池の作製]
 以下に示す手順により、特開2002-289274号公報に記載の図5に示されている光電極12と同様の構成を有する光電極を作製し、更に、同公報の図3の光電極に代えてこの光電極を用いた以外は図3の色素増感太陽電池20と同様の構成を有する10mm×10mmのスケールの色素増感太陽電池1を作製した。具体的な構成は図2に示した。41が透明電極、42が半導体電極、43が透明導電膜、44が基板、45が半導体層、46が光散乱層、40が光電極、20が色素増感太陽電池、CEが対極、Eが電解質、Sがスペーサーである。
(Example 1)
[Preparation of dye-sensitized solar cell]
A photoelectrode having the same configuration as the photoelectrode 12 shown in FIG. 5 described in JP-A-2002-289274 is prepared by the following procedure, and further replaced with the photoelectrode shown in FIG. A dye-sensitized solar cell 1 having a scale of 10 mm × 10 mm having the same configuration as that of the dye-sensitized solar cell 20 of FIG. 3 except that the lever photoelectrode was used was produced. The specific configuration is shown in FIG. 41 is a transparent electrode, 42 is a semiconductor electrode, 43 is a transparent conductive film, 44 is a substrate, 45 is a semiconductor layer, 46 is a light scattering layer, 40 is a photoelectrode, 20 is a dye-sensitized solar cell, CE is a counter electrode, and E is The electrolyte, S, is a spacer.
(ペーストの調製)
 (ペーストA)
 球形のTiO粒子(アナターゼ、平均粒径;25nm、以下、球形TiO粒子Aという)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストAを調製した。
 (ペースト1)
 球形TiO粒子Aと、球形のTiO粒子(アナターゼ、平均粒径;200nm、以下、球形TiO粒子Bという)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト1(TiO粒子Aの質量:TiO粒子Bの質量=30:70)を調製した。
 (ペースト2)
 ペーストAに、棒状TiO粒子(アナターゼ、直径;100nm、アスペクト比;5、以下、棒状TiO粒子Cという)を混合し、棒状TiO粒子Cの質量:ペーストAの質量=30:70のペースト2を調製した。
(Preparation of paste)
(Paste A)
A titania slurry was prepared by putting spherical TiO 2 particles (anatase, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles A) into a nitric acid solution and stirring. Next, a cellulosic binder was added to the titania slurry as a thickener and kneaded to prepare paste A.
(Paste 1)
A titania slurry was prepared by stirring spherical TiO 2 particles A and spherical TiO 2 particles (anatase, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles B) in a nitric acid solution. Next, a cellulose binder as a thickener was added to the titania slurry and kneaded to prepare paste 1 (mass of TiO 2 particles A: mass of TiO 2 particles B = 30: 70).
(Paste 2)
The paste A was mixed with rod-like TiO 2 particles (anatase, diameter: 100 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles C), and the mass of the rod-like TiO 2 particles C: the mass of the paste A = 30: 70 Paste 2 was prepared.
(半導体電極の作成)
 ガラス基板(基板44)上にフッ素ドープされたSnO導電膜(透明導電膜43、膜厚;500nm)を形成した透明電極41(導電性支持体)を準備した。そして、このSnO導電膜上に、上述のペースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト2を用いてこのスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に、図2に示す半導体電極42と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子Cの含有率;30質量%)(感光体層)を形成し、色素を含有していない光電極を作製した。
(Creation of semiconductor electrodes)
A transparent electrode 41 (conductive support) in which a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44) was prepared. Then, the SnO 2 conductive film, a paste 1 of the above screen printing and then dried. Then, it baked on the conditions of 450 degreeC in the air. Further, by repeating this screen printing and baking using the paste 2, a semiconductor electrode having the same configuration as the semiconductor electrode 42 shown in FIG. 2 (light-receiving surface area; 10 mm × 10 mm, layer) is formed on the SnO 2 conductive film. Thickness: 10 μm, layer thickness of semiconductor layer: 6 μm, layer thickness of light scattering layer: 4 μm, content of rod-like TiO 2 particles C contained in the light scattering layer; 30% by mass) (photoreceptor layer), A photoelectrode containing no dye was prepared.
(色素吸着)
 次に、半導体電極(色素を含有していない光電極)に色素を以下のようにして吸着させた。先ず、マグネシウムエトキシドで脱水した無水t-ブタノールとジメチルホルムアミドの1:1(体積比)の混合物を溶媒として、下記表2に記載の金属錯体色素を、濃度が3×10-4モル/Lとなるように溶解し、さらに共吸着剤として、ケノデオキシコール酸とコール酸の等モル混合物を金属錯体色素1モルに対して20モル加え、各色素溶液を調製した。この色素溶液をカール・フィッシャー滴定により水分量を測定したところ、水分量は0.01質量%未満であった。次に、この溶液に半導体電極を40℃10時間浸漬し、引き上げ後50℃で乾燥させることにより、半導体電極に色素が約2×10-7mol/cm吸着した光電極40をそれぞれ完成させた。
(Dye adsorption)
Next, the pigment | dye was made to adsorb | suck to a semiconductor electrode (photoelectrode which does not contain pigment | dye) as follows. First, using a 1: 1 (volume ratio) mixture of anhydrous t-butanol and dimethylformamide dehydrated with magnesium ethoxide, the metal complex dyes shown in Table 2 below were used at a concentration of 3 × 10 −4 mol / L. Furthermore, as a co-adsorbent, 20 mol of an equimolar mixture of chenodeoxycholic acid and cholic acid was added to 1 mol of the metal complex dye to prepare each dye solution. When the water content of this dye solution was measured by Karl Fischer titration, the water content was less than 0.01% by mass. Next, the semiconductor electrode is immersed in this solution at 40 ° C. for 10 hours, and then pulled up and dried at 50 ° C., thereby completing the photoelectrode 40 in which the dye is adsorbed to the semiconductor electrode by about 2 × 10 −7 mol / cm 2. It was.
(太陽電池の組み立て)
 次に、対極CEとして上記の光電極40と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解液として、ヨウ素0.1M、ヨウ化リチウム0.05M、4-t-ブチルピリジン0.25Mを含むヨウ素系レドックスアセトニトリル溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備し、光電極40と対極CEを、スペーサーSを介して対向させ、内部に上記の電解質を充填し(電荷移動体層を形成し)、作製した色素増感太陽電池の外周および電解液注入口を、ナガセケムテック製レジンXNR-5516を用いて封止、硬化し、各色素増感太陽電池(試料番号101~119、c11およびc12)をそれぞれ完成させた。得られた色素増感太陽電池の性能を下記のようにして評価した。
(Assembling solar cells)
Next, a platinum electrode (thickness of Pt thin film; 100 nm) having the same shape and size as the above-mentioned photoelectrode 40 as the counter electrode CE, 0.1M iodine as an electrolyte, 0.05M lithium iodide, 4- An iodine-based redox acetonitrile solution containing 0.25M t-butylpyridine was prepared. Further, a DuPont spacer S (trade name: “Surlin”) having a shape corresponding to the size of the semiconductor electrode is prepared, the photoelectrode 40 and the counter electrode CE are opposed to each other through the spacer S, and the above-mentioned inside The outer periphery of the dye-sensitized solar cell and the electrolyte inlet were sealed and cured with Nagase Chemtech resin XNR-5516, and each dye was cured. Sensitized solar cells (sample numbers 101 to 119, c11 and c12) were completed. The performance of the obtained dye-sensitized solar cell was evaluated as follows.
<光電変換効率の評価>
 電池特性試験は、ソーラーシミュレーター(WACOM製、WXS-85H)を用い、キセノンランプからAM1.5フィルターを通して得られた1000W/mの擬似太陽光を照射し、I-Vテスターを用いて電流-電圧特性を測定し、光電変換効率を求めることにより行った。上記比較化合物(2)の光電変換効率と比較し、下記基準で評価した。
<Evaluation of photoelectric conversion efficiency>
The battery characteristic test was performed by using a solar simulator (WAXS, WXS-85H), irradiating 1000 W / m 2 pseudo-sunlight obtained from a xenon lamp through an AM1.5 filter, and using an IV tester. The measurement was performed by measuring the voltage characteristics and obtaining the photoelectric conversion efficiency. In comparison with the photoelectric conversion efficiency of the comparative compound (2), the following criteria were evaluated.
 A:光電変換効率が比較化合物(2)の光電変換効率の1.05倍以上
 B:光電変換効率が比較化合物(2)の光電変換効率の1.01倍以上1.05倍未満
 C:光電変換効率が比較化合物(2)の光電変換効率の1.01倍未満
A: The photoelectric conversion efficiency is 1.05 times or more of the photoelectric conversion efficiency of the comparative compound (2) B: The photoelectric conversion efficiency is 1.01 times or more and less than 1.05 times the photoelectric conversion efficiency of the comparative compound (2) C: Photoelectric Conversion efficiency is less than 1.01 times the photoelectric conversion efficiency of comparative compound (2)
<熱劣化の評価>
 作製した色素増感太陽電池を、40℃の恒温槽に入れて耐熱試験を行った。耐熱試験前の色素増感太陽電池および耐熱試験12時間後の色素増感太陽電池について、電流値を測定し、熱劣化率を評価した。熱劣化率は、耐熱試験前後の電流値の減少分を、耐熱試験前の電流値で割った値に100を掛けることにより算出した。得られた熱劣化率を、上記比較化合物(2)の熱劣化率と比較し、以下の基準で評価した。
<Evaluation of thermal degradation>
The produced dye-sensitized solar cell was put into a 40 degreeC thermostat and the heat test was done. With respect to the dye-sensitized solar cell before the heat test and the dye-sensitized solar cell after 12 hours of the heat test, the current value was measured to evaluate the thermal deterioration rate. The thermal deterioration rate was calculated by multiplying the value obtained by dividing the decrease in the current value before and after the heat resistance test by the current value before the heat resistance test by 100. The obtained thermal degradation rate was compared with the thermal degradation rate of the comparative compound (2) and evaluated according to the following criteria.
 A:熱劣化率が比較化合物(2)の熱劣化率の0.9倍未満
 B:熱劣化率が比較化合物(2)の熱劣化率の0.9倍以上1倍未満
 C:熱劣化率が比較化合物(2)の熱劣化率の1倍以上
A: Thermal degradation rate is less than 0.9 times the thermal degradation rate of the comparative compound (2) B: Thermal degradation rate is 0.9 times or more and less than 1 times the thermal degradation rate of the comparative compound (2) C: Thermal degradation rate Is more than 1 times the thermal degradation rate of the comparative compound (2)
 下記表2には熱劣化として示す。 In Table 2 below, it is shown as thermal degradation.
<ヒートサイクル試験>
 作製した色素増感太陽電池を、-10℃の冷凍庫と40℃の恒温槽へ2時間毎に交互に入れて冷却と加温を繰り返し、ヒートサイクル試験を行った。ヒートサイクル試験前の色素増感太陽電池およびヒートサイクル試験24時間後の色素増感太陽電池について、電流値を測定し、劣化率を評価した。劣化率は、ヒートサイクル試験前後の電流値の減少分を、ヒートサイクル試験前の電流値で割った値に100を掛けることにより算出した。得られた劣化率を、上記比較化合物(1)の劣化率と比較し、以下の基準で評価した。
<Heat cycle test>
The prepared dye-sensitized solar cell was alternately put into a −10 ° C. freezer and a 40 ° C. constant temperature bath every 2 hours, and cooling and heating were repeated to conduct a heat cycle test. About the dye-sensitized solar cell before a heat cycle test, and the dye-sensitized solar cell 24 hours after a heat cycle test, the electric current value was measured and the deterioration rate was evaluated. The deterioration rate was calculated by multiplying 100 by the value obtained by dividing the decrease in the current value before and after the heat cycle test by the current value before the heat cycle test. The obtained deterioration rate was compared with the deterioration rate of the comparative compound (1) and evaluated according to the following criteria.
 A:劣化率が比較化合物(1)の劣化率の0.9倍未満
 B:劣化率が比較化合物(1)の劣化率の0.9倍以上1倍未満
 C:劣化率が比較化合物(1)の劣化率の1倍以上
A: The deterioration rate is less than 0.9 times the deterioration rate of the comparative compound (1) B: The deterioration rate is 0.9 times or more and less than 1 time the deterioration rate of the comparative compound (1) C: The deterioration rate is the comparative compound (1 ) Degradation rate of 1) or more
 下記表2にはヒートサイクルとして示す。 Table 2 below shows the heat cycle.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 上記の結果から明らかなように、本発明の金属錯体色素を使用した光電変換素子を具備する色素増感太陽電池は、いずれも光電変換効率に優れ、しかも熱劣化しにくく、電池特性が優れていることがわかる。
 比較化合物(1)における、GのLogP値は、2.94であり、比較化合物(2)における、GのLogP値は、3.0以上であるものの、Gの構造が、本発明における式(G-1)で表される構造を有しない。
 このことから明らかなように、本発明の金属錯体色素におけるGの構造と、該GのLogP値を3.0~20.0の範囲とすることが、光電変換効率向上と耐熱劣化性を向上させる上で重要な役割を果たしていることがわかる。
As is clear from the above results, the dye-sensitized solar cells each including the photoelectric conversion element using the metal complex dye of the present invention are excellent in photoelectric conversion efficiency, are not easily deteriorated by heat, and have excellent battery characteristics. I understand that.
In the comparative compound (1), the Log P value of G is 2.94, and the Log P value of G in the comparative compound (2) is 3.0 or more, but the structure of G is represented by the formula ( It does not have the structure represented by G-1).
As is clear from this, the structure of G in the metal complex dye of the present invention and the Log P value of G in the range of 3.0 to 20.0 improve the photoelectric conversion efficiency and the heat deterioration resistance. It can be seen that it plays an important role.
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 色素増感太陽電池を利用したシステム
M 電動モーター
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Photoconductor layer 21 Dye 22 Semiconductor fine particle 3 Charge transfer body layer 4 Counter electrode 5 Photosensitive electrode 6 Circuit 10 Photoelectric conversion element 100 System M using dye-sensitized solar cell Electric motor
41 透明電極
42 半導体電極
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
40 光電極
20 色素増感太陽電池
CE 対極
E 電解質
S スペーサー
41 Transparent electrode 42 Semiconductor electrode 43 Transparent conductive film 44 Substrate 45 Semiconductor layer 46 Light scattering layer 40 Photoelectrode 20 Dye-sensitized solar cell CE Counter electrode E Electrolyte S Spacer

Claims (15)

  1.  導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
       M(LA)(LD)Z        式(I)
     式(I)において、Mは金属原子を表し、Zは1座の配位子を表す。LAは下記式(AL-1)で表される3座の配位子を表す。LDは下記式(DL-1)で表される2座の配位子を表す。
    Figure JPOXMLDOC01-appb-C000001
     式(AL-1)において、RA1、RA2およびRA3は各々独立に水素原子、アルキル基、ヘテロアリール基、アリール基または酸性基を表す。ただし、RA1、RA2およびRA3のうち少なくとも1つは酸性基である。
     式(DL-1)において、Rはアルキル基、アルキルチオ基、アルコキシ基、ハロゲン原子またはアリール基を表す。m1は0~3の整数を表す。naは0または1を表す。
    Gは下記式(G-1)で表され、かつLogPが3.0~20.0である基を表す。Eは下記式(E-1)~(E-6)のいずれかで表される基を表す。
    Figure JPOXMLDOC01-appb-C000002
     式(G-1)において、Xは酸素原子、硫黄原子、N(R)、C(R)(R)またはSi(R)(R)を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基またはアリール基を表す。Ra、RbおよびRcは各々独立に、水素原子または置換基を表す。RaとRb、RbとRcが互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000003
     式(E-1)~(E-5)において、Rはハロゲン原子、アルキル基、アルコキシ基、アリール基またはヘテロ環基を表す。mは0以上の整数を表す。ここで、*はピリジン環の2位に結合する結合位置を示す。
    A photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, wherein the photoreceptor layer carries a metal complex dye represented by the following formula (I) A photoelectric conversion element having the formed semiconductor fine particles.
    M 1 (LA) (LD) Z Formula 1 (I)
    In the formula (I), M 1 represents a metal atom and Z 1 represents a monodentate ligand. LA represents a tridentate ligand represented by the following formula (AL-1). LD represents a bidentate ligand represented by the following formula (DL-1).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (AL-1), R A1 , R A2 and R A3 each independently represent a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. However, at least one of R A1 , R A2 and R A3 is an acidic group.
    In the formula (DL-1), R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group. m1 represents an integer of 0 to 3. na represents 0 or 1.
    G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0. E represents a group represented by any of the following formulas (E-1) to (E-6).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (G-1), X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ). Here, R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group. Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring.
    Figure JPOXMLDOC01-appb-C000003
    In formulas (E-1) to (E-5), R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group. m represents an integer of 0 or more. Here, * indicates a bonding position for bonding to the 2-position of the pyridine ring.
  2.  前記式(G-1)において、RaおよびRbが各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アルキルチオ基、アリールチオ基、アミノ基またはアリール基であり、かつRcが水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である請求項1に記載の光電変換素子。 In the formula (G-1), Ra and Rb are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkylthio group, an arylthio group, an amino group or an aryl group, and Rc is a hydrogen atom, an alkyl group The photoelectric conversion device according to claim 1, which is a group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, or an amino group.
  3.  前記式(G-1)において、RaおよびRbが水素原子、アルキル基、アルキルチオ基またはアミノ基であり、かつRcがアリール基である請求項1に記載の光電変換素子。 The photoelectric conversion device according to claim 1, wherein, in the formula (G-1), Ra and Rb are a hydrogen atom, an alkyl group, an alkylthio group, or an amino group, and Rc is an aryl group.
  4.  前記式(G-1)において、RaおよびRbが鎖状のアルコキシ基またはアリールオキシ基であり、かつRcが水素原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である請求項1に記載の光電変換素子。 In the formula (G-1), Ra and Rb are chain alkoxy groups or aryloxy groups, and Rc is a hydrogen atom, alkyl group, alkenyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group The photoelectric conversion element according to claim 1, which is an alkylthio group, an arylthio group, or an amino group.
  5.  前記MがRuである請求項1~4のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 4, wherein the M 1 is Ru.
  6.  前記式(I)で表される金属錯体色素が、下記式(II)で表される請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
     式(II)において、RA1~RA3は式(AL-1)におけるRA1~RA3と同義である。Zはイソチオシアネート基、イソセレノシアネート基、イソシアネート基、ハロゲン原子またはシアノ基を表す。R10は水素原子、アリール基、ヘテロ環基またはハロゲン原子で置換されてもよいアルキル基を表す。X、Ra~Rcは式(G-1)におけるX、Ra~Rcと同義である。naは式(DL-1)におけるnaと同義である。
    The photoelectric conversion element according to any one of claims 1 to 5, wherein the metal complex dye represented by the formula (I) is represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000004
    In formula (II), R A1 ~ R A3 have the same meanings as R A1 ~ R A3 in the formula (AL-1). Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group. R 10 represents a hydrogen atom, an aryl group, a heterocyclic group or an alkyl group which may be substituted with a halogen atom. X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1). na has the same meaning as na in formula (DL-1).
  7.  前記半導体微粒子に、複数の色素が担持されている請求項1~6のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 6, wherein a plurality of dyes are supported on the semiconductor fine particles.
  8.  前記半導体微粒子に、酸性基を1つ以上有する共吸着剤がさらに担持されてなる請求項1~7のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 7, wherein a co-adsorbent having one or more acidic groups is further supported on the semiconductor fine particles.
  9.  前記共吸着剤が下記式(CA)で表される請求項8に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
     式(CA)において、RC1は酸性基を有する置換基を表す。RC2は置換基を表す。lcは0以上の整数を表す。
    The photoelectric conversion element according to claim 8, wherein the co-adsorbent is represented by the following formula (CA).
    Figure JPOXMLDOC01-appb-C000005
    In the formula (CA), R C1 represents a substituent having an acidic group. R C2 represents a substituent. lc represents an integer of 0 or more.
  10.  請求項1~9のいずれか1項に記載の光電変換素子を具備する色素増感太陽電池。 A dye-sensitized solar cell comprising the photoelectric conversion device according to any one of claims 1 to 9.
  11.  下記式(I)で表される金属錯体色素。
       M(LA)(LD)Z        式(I)
     式(I)において、Mは金属原子を表し、Zは1座の配位子を表す。LAは下記式(AL-1)で表される3座の配位子を表す。LDは下記式(DL-1)で表される2座の配位子を表す。
    Figure JPOXMLDOC01-appb-C000006
     式(AL-1)において、RA1、RA2およびRA3は各々独立に水素原子、アルキル基、ヘテロアリール基、アリール基または酸性基を表す。ただし、RA1、RA2およびRA3のうち少なくとも1つは酸性基である。
     式(DL-1)において、Rはアルキル基、アルキルチオ基、アルコキシ基、ハロゲン原子またはアリール基を表す。m1は0~3の整数を表す。naは0または1を表す。
    Gは下記式(G-1)で表され、かつLogPが3.0~20.0である基を表す。Eは下記式(E-1)~(E-6)のいずれかで表される基を表す。
    Figure JPOXMLDOC01-appb-C000007
     式(G-1)において、Xは酸素原子、硫黄原子、N(R)、C(R)(R)またはSi(R)(R)を表す。ここで、RおよびRは各々独立に、水素原子、アルキル基またはアリール基を表す。Ra、RbおよびRcは各々独立に、水素原子または置換基を表す。RaとRb、RbとRcが互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000008
     式(E-1)~(E-5)において、Rはハロゲン原子、アルキル基、アルコキシ基、アリール基またはヘテロ環基を表す。mは0以上の整数を表す。ここで、*はピリジン環の2位に結合する結合位置を示す。
    A metal complex dye represented by the following formula (I).
    M 1 (LA) (LD) Z Formula 1 (I)
    In the formula (I), M 1 represents a metal atom and Z 1 represents a monodentate ligand. LA represents a tridentate ligand represented by the following formula (AL-1). LD represents a bidentate ligand represented by the following formula (DL-1).
    Figure JPOXMLDOC01-appb-C000006
    In the formula (AL-1), R A1 , R A2 and R A3 each independently represent a hydrogen atom, an alkyl group, a heteroaryl group, an aryl group or an acidic group. However, at least one of R A1 , R A2 and R A3 is an acidic group.
    In the formula (DL-1), R 1 represents an alkyl group, an alkylthio group, an alkoxy group, a halogen atom or an aryl group. m1 represents an integer of 0 to 3. na represents 0 or 1.
    G represents a group represented by the following formula (G-1) and having Log P of 3.0 to 20.0. E represents a group represented by any of the following formulas (E-1) to (E-6).
    Figure JPOXMLDOC01-appb-C000007
    In the formula (G-1), X represents an oxygen atom, a sulfur atom, N (R 2 ), C (R 2 ) (R 3 ), or Si (R 2 ) (R 3 ). Here, R 2 and R 3 each independently represents a hydrogen atom, an alkyl group or an aryl group. Ra, Rb and Rc each independently represents a hydrogen atom or a substituent. Ra and Rb, or Rb and Rc may be bonded to each other to form a ring.
    Figure JPOXMLDOC01-appb-C000008
    In formulas (E-1) to (E-5), R represents a halogen atom, an alkyl group, an alkoxy group, an aryl group or a heterocyclic group. m represents an integer of 0 or more. Here, * indicates a bonding position for bonding to the 2-position of the pyridine ring.
  12.  前記式(G-1)において、RaおよびRbが各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アルキルチオ基、アリールチオ基、アミノ基またはアリール基であり、かつRcが水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である請求項11に記載の金属錯体色素。 In the formula (G-1), Ra and Rb are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkylthio group, an arylthio group, an amino group or an aryl group, and Rc is a hydrogen atom, an alkyl group The metal complex dye according to claim 11, which is a group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group or an amino group.
  13.  前記式(G-1)において、RaおよびRbが水素原子、アルキル基、アルキルチオ基またはアミノ基であり、かつRcがアリール基である請求項11に記載の金属錯体色素。 The metal complex dye according to claim 11, wherein in the formula (G-1), Ra and Rb are a hydrogen atom, an alkyl group, an alkylthio group or an amino group, and Rc is an aryl group.
  14.  前記式(G-1)において、RaおよびRbが鎖状のアルコキシ基またはアリールオキシ基であり、かつRcが水素原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基またはアミノ基である請求項11に記載の金属錯体色素。 In the formula (G-1), Ra and Rb are chain alkoxy groups or aryloxy groups, and Rc is a hydrogen atom, alkyl group, alkenyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group The metal complex dye according to claim 11, which is an alkylthio group, an arylthio group, or an amino group.
  15.  前記式(I)で表される金属錯体色素が、下記式(II)で表される請求項11~14のいずれか1項に記載の金属錯体色素。
    Figure JPOXMLDOC01-appb-C000009
     式(II)において、RA1~RA3は式(AL-1)におけるRA1~RA3と同義である。Zはイソチオシアネート基、イソセレノシアネート基、イソシアネート基、ハロゲン原子またはシアノ基を表す。R10は水素原子、アリール基、ヘテロ環基またはハロゲン原子で置換されてもよいアルキル基を表す。X、Ra~Rcは式(G-1)におけるX、Ra~Rcと同義である。naは式(DL-1)におけるnaと同義である。
    The metal complex dye according to any one of claims 11 to 14, wherein the metal complex dye represented by the formula (I) is represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000009
    In formula (II), R A1 ~ R A3 have the same meanings as R A1 ~ R A3 in the formula (AL-1). Z 2 represents an isothiocyanate group, an isoselenocyanate group, an isocyanate group, a halogen atom or a cyano group. R 10 represents a hydrogen atom, an aryl group, a heterocyclic group or an alkyl group which may be substituted with a halogen atom. X and Ra to Rc have the same meanings as X and Ra to Rc in formula (G-1). na has the same meaning as na in formula (DL-1).
PCT/JP2014/057758 2013-03-25 2014-03-20 Photoelectric conversion element, dye-sensitized solar cell, and metal-complex dye used in same WO2014156953A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013062893 2013-03-25
JP2013-062893 2013-03-25
JP2014050910A JP6009484B2 (en) 2013-03-25 2014-03-13 Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
JP2014-050910 2014-03-13

Publications (1)

Publication Number Publication Date
WO2014156953A1 true WO2014156953A1 (en) 2014-10-02

Family

ID=51623932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057758 WO2014156953A1 (en) 2013-03-25 2014-03-20 Photoelectric conversion element, dye-sensitized solar cell, and metal-complex dye used in same

Country Status (3)

Country Link
JP (1) JP6009484B2 (en)
TW (1) TW201442322A (en)
WO (1) WO2014156953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3157026A1 (en) * 2014-06-11 2017-04-19 Fujifilm Corporation Photoelectric conversion element, dye-sensitized solar cell, metal-complex pigment, pigment solution, and terpyridine compound or esterified terpyridine compound

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3270391A4 (en) * 2015-03-09 2018-04-11 FUJIFILM Corporation Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution
WO2016190192A1 (en) * 2015-05-25 2016-12-01 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036237A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012036239A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012216496A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Photoelectric conversion element and dye-sensitization solar battery
WO2013047614A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex dye used in photoelectric conversion element
JP2013125711A (en) * 2011-12-15 2013-06-24 Fujifilm Corp Photoelectric conversion element and dye-sensitized solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036237A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012036239A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012216496A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Photoelectric conversion element and dye-sensitization solar battery
WO2013047614A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex dye used in photoelectric conversion element
JP2013125711A (en) * 2011-12-15 2013-06-24 Fujifilm Corp Photoelectric conversion element and dye-sensitized solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3157026A1 (en) * 2014-06-11 2017-04-19 Fujifilm Corporation Photoelectric conversion element, dye-sensitized solar cell, metal-complex pigment, pigment solution, and terpyridine compound or esterified terpyridine compound
EP3157026A4 (en) * 2014-06-11 2017-05-03 Fujifilm Corporation Photoelectric conversion element, dye-sensitized solar cell, metal-complex pigment, pigment solution, and terpyridine compound or esterified terpyridine compound

Also Published As

Publication number Publication date
TW201442322A (en) 2014-11-01
JP2014209588A (en) 2014-11-06
JP6009484B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5992389B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP6047513B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal complex dye
WO2014168165A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal-complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
JP5972849B2 (en) Metal complex, metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar cell
JP6005678B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal complex dye
JP6009484B2 (en) Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
WO2014050527A1 (en) Photoelectric conversion element and dye-sensitized solar cell
JP2014209606A (en) Photoelectric conversion element, dye-sensitized solar cell, dye adsorption solution containing metal complex pigment, and process of manufacturing photoelectric conversion element
JP5913223B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution and dye-adsorbing electrode
JP6026236B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar cell
JP5913222B2 (en) Photoelectric conversion element and dye-sensitized solar cell
JP6063359B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution formed by dissolving metal complex dye
JP6154177B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP2014186976A (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex, metal complex dye, dye solution, dye attraction electrode, and manufacturing method of dye-sensitized solar cell
JP6144619B2 (en) Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
JP6204603B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
JP6005682B2 (en) Photoelectric conversion element, dye-sensitized solar cell and metal complex dye used therefor
WO2014168119A1 (en) Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
JP2015220262A (en) Photoelectric conversion device and dye-sensitized solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773915

Country of ref document: EP

Kind code of ref document: A1