WO2014156383A1 - Autofocus device and method of controlling operation thereof - Google Patents

Autofocus device and method of controlling operation thereof Download PDF

Info

Publication number
WO2014156383A1
WO2014156383A1 PCT/JP2014/053970 JP2014053970W WO2014156383A1 WO 2014156383 A1 WO2014156383 A1 WO 2014156383A1 JP 2014053970 W JP2014053970 W JP 2014053970W WO 2014156383 A1 WO2014156383 A1 WO 2014156383A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
evaluation value
lens
image sensor
focus lens
Prior art date
Application number
PCT/JP2014/053970
Other languages
French (fr)
Japanese (ja)
Inventor
愛子 関谷
隆久 佐藤
江波戸 尚
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014156383A1 publication Critical patent/WO2014156383A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/285Systems for automatic generation of focusing signals including two or more different focus detection devices, e.g. both an active and a passive focus detecting device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present invention relates to an auto-focus device and an operation control method thereof.
  • the camera auto focus includes phase difference AF (auto focus), contrast AF, and the like.
  • phase difference AF light entering from a lens is divided into two parts and guided to a sensor for phase difference AF, and the direction and amount of focus are determined from two intervals formed.
  • Contrast AF searches for a place where the contrast is high while moving the focus lens based on the image captured on the image sensor, and focuses.
  • contrast AF there are two imaging elements arranged at different optical path lengths, one that searches for the focus / lens position that maximizes the contrast of the image formed on one imaging element (focus evaluation AF).
  • contrast AF optical path length difference AF
  • images a subject and focuses on the image signal obtained from each image sensor and both are used as AF of a television camera
  • phase difference AF the amount of lens movement until the subject is in focus can be obtained directly, which is high speed, but there is a problem that the distance measurement accuracy is poor and the subject cannot be fully focused.
  • contrast AF the subject image is used. Since the focus evaluation is performed, the accuracy of focusing on the subject is high, but there is a problem that it takes a long time to focus to move the lens while searching for the focus position.
  • the focus lens moving speed is set by amplifying the focus evaluation value signal indicating the amount of focus deviation by applying a gain coefficient. Although it is possible to reduce the time to focus, increasing the gain factor increases the moving speed of the focus lens, but it becomes difficult to stop at the focus position. A phenomenon called hunting in which the lens touches back and forth may occur.
  • Patent Document 1 the frequency characteristic of a video signal used for auto-focusing is changed according to the focus accuracy priority mode and the stability priority mode.
  • Patent Document 2 a diaphragm is used for the contrast AF optical system. In this case, the characteristics near the peak of the focus evaluation value are adjusted, and any of the problems that occur when both the phase difference AF and the contrast AF are used are not considered.
  • An object of the present invention is to solve the problems that occur when both phase difference AF and contrast AF are used.
  • the autofocus device is based on the amount of focus deviation in the pupil division direction of the two subject images formed by dividing the light incident through the focus lens into two by pupil division.
  • a first focus evaluation value output unit that outputs a first focus evaluation value signal indicating a position where light path lengths are different from each other in an optical path of light incident through the focus lens (images are formed by the focus lens)
  • the first image sensor and the second image sensor which are optically arranged at equal intervals in front and rear with respect to the position of the subject image, the output signals of the first image sensor and the output signals of the second image sensor
  • a second focus evaluation value output unit for outputting a second focus evaluation value signal indicating the amount of focus shift based on the first focus evaluation value signal, and a focus position calculated based on the first focus evaluation value signal.
  • Focusing the first image sensor If it is not between the focusing position and the second imaging element focusing position, the focus lens is moved at the first moving speed based on the first focusing evaluation value signal output from the first focusing evaluation value output unit. If the in-focus position calculated based on the first in-focus evaluation value signal is between the in-focus position of the first image sensor and the in-focus position of the second image sensor, the second in-focus position is obtained. A second moving speed that is slower than the first moving speed based on the second focus evaluation value signal output from the evaluation value output unit, and becomes slower as the focus lens is closer to the position where the subject image is in focus.
  • the focus lens is controlled so that the focus lens is moved by the first focus evaluation value output unit until the position of the focus lens is near the threshold position near the position where the subject image is in focus.
  • the focus lens is moved at a moving speed of, and the focus lens is moved at a third moving speed that is slower than the threshold moving speed as the subject lens approaches the position where the subject image is in focus. It is characterized by having a focus / lens controller for controlling the lens.
  • the present invention also provides an operation control method suitable for an autofocus device. That is, in this method, the first focus evaluation value output unit shifts the position in the pupil division direction of two subject images formed by dividing the light incident through the focus lens into two by pupil division.
  • the first focus evaluation value signal indicating the amount of focus shift is output based on the amount
  • the second focus evaluation value output unit has optical path lengths in the optical paths of light incident through the focus lens.
  • a second focus evaluation value signal indicating a focus shift amount is output, and the focus / lens controller
  • the focus position calculated based on the first focus evaluation value signal is not between the focus position of the first image sensor and the second image sensor focus position, the first focus evaluation value is output.
  • the in-focus position calculated based on the first focus evaluation value signal is the in-focus position of the first image sensor and the in-focus position of the second image sensor. If it is in between, the position is slower than the first moving speed based on the second focus evaluation value signal output from the second focus evaluation value output unit, and the focus lens is in a position where the subject image is in focus
  • the focus lens is controlled so as to move the focus lens at a second moving speed that becomes slower as the distance from the second lens moves closer.
  • the first focus position is calculated.
  • the focus lens is moved at the first moving speed based on the first focus evaluation value signal output from the focus evaluation value output unit.
  • the focus lens can be moved quickly.
  • the in-focus position calculated based on the first focus evaluation value signal is between the in-focus position and the second in-focus position of the first image sensor, the first movement speed is used.
  • the focus lens is moved at a second moving speed that becomes closer as the focus lens is closer to the position where the subject image is in focus.
  • the first focus evaluation value output unit Immediately after switching from the movement of the focus lens based on the first focus evaluation value signal output from the first focus evaluation value output unit, the first focus evaluation value output unit outputs from the first focus evaluation value output unit. Since the focus lens is moved at a speed not much different from the movement speed of the focus lens based on the focus evaluation value signal of 1, the movement speed of the focus lens does not change so much and the user does not feel uncomfortable.
  • the focus / lens control unit for example, when the focus position calculated based on the first focus evaluation value signal is between the focus position of the first image sensor and the focus position of the second image sensor And the focus lens is switched to a movement at the second movement speed from a movement at the first movement speed when the subject lens is close to a position where the subject image is focused. It may be controlled.
  • the focus / lens control unit includes a focus motor that moves the focus / lens in accordance with a given focus control signal, a first focus evaluation value signal output from the first focus evaluation value output unit, and a second focus evaluation value signal.
  • the second focus evaluation value signal output from the focus evaluation value output unit is input, and the input first focus evaluation value signal or second focus evaluation value signal is input in accordance with a given gain coefficient.
  • a gain control amplification circuit that amplifies the level and gives the focus motor control signal as a focus motor control signal, and a focus position calculated based on the first focus evaluation value signal are the focus position of the first image sensor.
  • the focus lens is moved at the first moving speed based on the first focus evaluation value signal output from the first focus evaluation value output unit. , 1st
  • the second focus evaluation value output unit outputs it.
  • the focus lens is moved at a second movement speed that is slower than the first movement speed based on the focus evaluation value signal 2 and slower as the focus lens is closer to the position where the subject image is in focus.
  • a gain coefficient control unit that provides a large gain coefficient to the gain control amplifier circuit may be provided.
  • the structure of an imaging lens unit is shown.
  • the relationship between the image sensor for optical path length difference AF and the imaging position of a subject image is shown.
  • the relationship between the AF evaluation value and the focus / lens position is shown.
  • the relationship between the phase difference AF evaluation value and the focus / lens position is shown.
  • the relationship between the differential AF evaluation value and the focus / lens position is shown. It is a flowchart which shows a focusing process procedure. It is a flowchart which shows a focusing process procedure. It is a flowchart which shows a focusing process procedure. It is a flowchart which shows a focusing process procedure.
  • the relationship between the movement time and position of the focus lens is shown.
  • FIG. 1 shows an embodiment of the present invention, and shows an optical configuration of a part of a photographing lens unit 1 and a camera body 20 used for broadcasting or the like.
  • the taking lens unit 1 is detachably attached to the camera body 20.
  • the photographic lens unit 1 includes a focus lens (focus lens group) 2, a zoom lens (zoom lens group) 3, and a front relay so as to have an optical axis common to the optical axis O1 of the photographic lens unit 1
  • a lens (front relay / lens group) 5 and a rear relay / lens (rear relay / lens group) 7 are included.
  • a diaphragm 4 is arranged between the zoom lens 3 and the front relay lens 5 so that the optical axis O1 of the photographing lens unit 1 passes through the center.
  • a half mirror 6 is arranged between the front relay lens 5 and the rear relay lens 7.
  • the camera body 20 is provided with a color separation prism 21 having an optical axis common to the optical axis O1 of the photographing lens unit 1 when the photographing lens unit 1 is mounted.
  • the color separation prism 21 includes a first prism 22, a second prism 23, and a third prism 24, and incident light is separated into a red component, a green component, and a blue component.
  • An imaging CCD 26 and a third imaging CCD 27 are arranged.
  • the photographing lens unit 1 includes an AF relay lens (AF relay lens) that uses a part of the light reflected at the center of the half mirror 6 as an optical axis [optical axis for AF (auto focus)] O2.
  • Lens group 8 is provided.
  • a half mirror 40 (which may be a reflecting prism) is provided downstream of the AF relay lens 8.
  • a total reflection mirror 9 is provided after the half mirror 40.
  • An optical path length difference AF sensor 55 is provided in the total reflection direction of the total reflection mirror 9.
  • the optical path length difference AF sensor 55 includes a split prism 10 composed of a first prism 11 and a second prism 12.
  • a first AF CCD 13 and a second AF CCD 14 are provided on the exit surface of the first prism 11 and the exit surface of the second prism 12, respectively.
  • the light beam incident on the photographic lens unit 1 passes through the focus lens 2, zoom lens 3, aperture 4, front relay lens 5, half mirror 6 and rear relay lens 7, and enters the camera body 20. Led.
  • the light beam is decomposed into a red light component, a green light component, and a blue light component, respectively, and the first image pickup CCD 25, the second image pickup CCD 26, and the third image pickup device.
  • a subject image is formed on each of the CCDs 27 for use.
  • Video signals representing subject images of the red light component, the green light component, and the blue light component are output from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27, respectively.
  • the light beam incident on the taking lens unit 1 is partially reflected by the half mirror 6.
  • the light beam reflected by the half mirror 6 passes through the AF relay lens 8 and is guided to the half mirror 40.
  • a part of the light incident on the half mirror 40 is reflected and incident on the phase difference sensor 41 included in the phase difference AF sensor 45.
  • the phase difference sensor 41 includes a condenser lens, a separator lens, and an image sensor (all not shown).
  • the light incident on the phase difference sensor 41 is condensed by the condenser lens and divided into two by the separator lens.
  • the light divided into two forms an image on the image sensor as two images.
  • the focus lens 2 can be controlled so that the focus lens 2 is focused from the interval between the two images.
  • the phase difference sensor 41 outputs video signals representing two images, and the evaluation value calculation circuit 42 generates a phase difference AF evaluation value representing the degree of focusing of the subject image obtained by imaging.
  • a signal representing the phase difference AF evaluation value is input to the selector 33 via the amplifier circuit 43.
  • the light transmitted through the half mirror 40 is totally reflected by the total reflection mirror 9.
  • the light beam totally reflected by the total reflection mirror 9 is incident on the splitting prism 10, a part of which is incident on the first optical path length difference AF CCD 13, and the other is incident on the second optical path length difference AF CCD 14.
  • An AF signal is output from each of the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14.
  • Signals output from the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14 are input to the evaluation value calculation circuits 51 and 52, respectively, and indicate the degree of focusing of the focus lens 2. Is evaluated. Signals representing the evaluation values calculated in the evaluation value calculation circuits 51 and 52 are supplied to the subtraction circuit 53. The signal representing the evaluation value calculated in the evaluation value calculating circuit 52 is subtracted in the subtracting circuit 53 from the signal representing the evaluation value calculated in the evaluation value calculating circuit 51 to obtain a differential AF evaluation value. A signal representing the difference AF evaluation value is amplified by the amplifier circuit 54 and is supplied to the selector 33.
  • the phase difference AF evaluation value signal output from the amplifier circuit 43 and the difference AF evaluation value signal output from the amplifier circuit 54 are also input to the focus control circuit 31.
  • the selector 33 is controlled based on the input phase difference AF evaluation value signal and the difference AF evaluation value signal, and the phase difference AF evaluation value signal output from the amplifier circuit 43 or the difference AF evaluation value signal output from the amplifier circuit 54 Either one is supplied to the gain control amplification circuit 34.
  • the gain coefficient is calculated in the focus control circuit 31, and data representing the calculated gain coefficient is supplied to the gain control amplification circuit.
  • the input signal is amplified using the given gain coefficient, and is supplied to the focus motor 35 as a control signal representing the rotation direction and rotation speed.
  • the focus lens 2 is moved by the focus motor 35.
  • the moving direction of the focus lens 2 represented by the phase difference AF evaluation value signal output from the amplification circuit 43 and the focus represented by the difference AF evaluation value signal output from the amplification circuit 54.
  • the focus control circuit 31 controls the warning device 32 to warn when the moving direction of the lens 2 does not match.
  • the warning device 32 gives a warning to the cameraman who uses the photographing lens unit 1 by, for example, sound, light, vibration, etc., and the cameraman will manually focus in response to the warning. This prevents the loss of photographing opportunities.
  • control device 30 is provided in the photographing lens unit 1 in order to control the above-described circuits and the like.
  • FIG. 2 shows the relationship between the optical distances of the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14. Is shown.
  • An optical system for causing light to enter the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14 is provided. Represented by lens 30.
  • the optical distances until the light enters the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27 are all equal.
  • the optical distance until the light enters the first optical path length difference AF CCD 13 is a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • the optical distance until the light enters the second optical path length difference AF CCD 14 is equal to a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference so as to be equal when they are arranged after a distance.
  • the positional relationship of the AF CCD 14 (optically equidistantly spaced positions) is defined. Temporarily, the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14 are arranged on the same optical axis. The first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14 are arranged at equally spaced positions before and after the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. It is equivalent to what is done.
  • FIG. 3 shows the relationship between the AF evaluation value and the position of the focus lens 2.
  • a graph G51 is obtained from the evaluation value signal calculated by the evaluation value calculation circuit 51 based on the signal output from the first optical path length difference AF CCD 13, and the signal output from the second optical path length difference AF CCD 14 is obtained.
  • a graph G52 is obtained from the evaluation value signal calculated by the evaluation value calculation circuit 52 based on the above.
  • the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF are assumed to be on the same optical axis.
  • the first optical path length difference AF CCD 13 and the second optical path length difference are arranged at equal intervals before and after the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. Since this is equivalent to the arrangement of the AF CCD 14, at the intersections of the graphs G51 and G52 obtained from the signals of the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14, respectively.
  • a certain focus lens position P0 is the position of the focus lens 2 where the subject image is focused on the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • FIG. 4 shows the relationship between the phase difference AF evaluation value and the position of the focus lens 2.
  • the horizontal axis indicates the position of the focus lens 2, and the vertical axis indicates the phase difference AF evaluation value.
  • the position of the focus lens 2 is determined from the relationship between the calculated phase difference AF evaluation value and the graph G0. For example, if the phase difference AF evaluation value calculated by the evaluation value calculation circuit 42 is D1, D2 or D3, the position of the focus lens 2 is P1, P2 or P3. If the phase difference AF evaluation value is 0, the position P0 of the focus lens 2 is substantially equal to the in-focus position at which the subject image is in focus.
  • the graph G0 is indicated by a straight line.
  • the position of the focus lens 2 that is actually obtained is the position of the AF sensor. It becomes a discrete numerical value according to the resolution, and when the phase difference AF evaluation value is 0, the focus position P0 may not correspond completely.
  • FIG. 5 is a graph G53 showing the relationship between the differential AF evaluation value signal output from the subtraction circuit 53 and the position of the focus lens 2.
  • the horizontal axis is the focus lens position, and the vertical axis is the differential AF evaluation value.
  • the positional relationship between the differential AF evaluation value and the focus lens 2 corresponds one to one. If the differential AF evaluation value is known, the position P11 of the focus lens 2 corresponding to the positive peak value D11 [the in-focus position of the first optical path length difference CCD 13 (first imaging element)] and the negative peak The position of the focus lens 2 between the position P12 of the focus lens 2 corresponding to the value D12 and the in-focus position of the second optical path length difference CCD 14 (second image sensor) is also known. The position of the focus lens 2 at which the differential AF evaluation value is 0 is the in-focus position.
  • the amount of displacement from the focus position P0 of the focus lens 2 is calculated from the phase difference AF evaluation value, and the focus lens 2 is directly moved to the target position. Even when the lens is moved at high speed, so-called hunting does not occur because there is no operation for searching for the in-focus position P0.
  • the focus lens 2 is positioned at the focus position P0 using the differential AF evaluation value, as shown in FIG. 5, the change in the evaluation value with respect to the lens movement near the focus position P0 is large. Even if the lens slightly exceeds the in-focus position P0, the evaluation value fluctuates greatly. Therefore, if the moving speed of the focus lens 2 is fast, the focus lens 2 is moved and the focus position P0 is moved. While determining whether or not the focus position has been reached, the in-focus position P0 is exceeded, and the operation of reversing and reversing the in-focus position is repeated, thereby causing hunting.
  • the focus lens 2 when the focus lens 2 is positioned at the focus position P0 using the differential AF evaluation value, the focus lens 2 must be moved relatively slowly. However, after calculating the position shift amount with respect to the focus position P0 of the focus lens 2 from the phase difference AF evaluation value and moving the focus lens 2 so that the calculated position shift amount disappears, the focus lens is thereafter moved. When the moving speed of the focus lens 2 is changed so that the focus lens 2 is moved relatively slowly so that hunting does not occur using the differential AF evaluation value in order to position 2 at an accurate in-focus position, When it changes, a sense of incongruity occurs.
  • the gain coefficient of the gain control amplification circuit 34 is determined (defined) so that the moving speed of the lens 2 becomes slow.
  • FIG. 6 to 8 are flowcharts showing the focusing processing procedure.
  • FIG. 9 shows the relationship between the position of the focus lens 2 and the time until the focus lens 2 is positioned at the in-focus position.
  • phase difference AF sensor 45 is driven, and based on the phase difference AF, the phase difference AF evaluation value indicating the amount of displacement from the in-focus position of the focus lens 2 and the optical path length difference AF sensor 55 are driven.
  • a difference AF evaluation value based on the difference AF is calculated (step 61).
  • the selector is switched by the focus control circuit 31 so that a phase difference AF evaluation value signal indicating the amount of positional deviation from the focus position of the focus lens 2 based on the phase difference AF is given to the gain control amplification circuit 34.
  • the gain control amplification circuit 34 is given a predetermined gain coefficient G.
  • a signal obtained by multiplying the input AF evaluation value signal by the gain coefficient G is generated, and the generated signal is sent to the focus motor 35 as a signal for controlling the rotation speed of the focus motor 35.
  • the focus lens 2 is moved based on the phase difference AF evaluation value (step 62).
  • the difference AF evaluation value signal obtained based on the optical path length difference AF image pickup devices 13, 14 and the like is input to the focus control circuit 31, and the moving direction of the focus lens 2 and the step which can be understood based on the graph G53 shown in FIG.
  • step 64 If the moving direction of the focus lens 2 is correct (YES in step 64), whether or not the position of the focus lens 2 is closer to the focus position P0 than the first threshold position P1 in the vicinity of the focus position P0. Confirmed (step 65). As shown in FIG. 9, the focus lens 2 is driven based on the evaluation value of the phase difference AF until the position of the focus lens 2 reaches the first threshold position P1 (NO in step 65). Therefore, the moving speed of the focus lens 2 is high, and the time t1 until the focus lens 2 reaches the first threshold position P1 is short (the gain G is determined in advance).
  • the selector 33 is switched so that the evaluation value signal output from the amplifier circuit 54 is supplied to the gain control amplifier circuit 34.
  • the moving speed of the focus lens 2 is slower than the first moving speed before the focus lens 2 moves to the first threshold position P1, but is close to the first moving speed, and A gain coefficient G1 that gives a second moving speed faster than the threshold moving speed is given to the gain control amplification circuit 34.
  • Such a gain coefficient G1 (predetermined) is multiplied by the differential AF evaluation value signal output from the amplifier circuit 54 and given as a control signal to the focus motor 35.
  • the lens 2 is moved (step 66).
  • step 66 is repeated until the focus lens 2 is closer to the focus position P0 than the second threshold position P2 that is closer to the focus position P0 than the first threshold position P1 ( Step 67).
  • the gain coefficient of the gain control amplification circuit 34 is determined so that the focus lens 2 moves at a second moving speed that is not much different from the speed, from the movement control of the focus lens 2 based on the evaluation value of the phase difference AF. , There is no sense of incompatibility even when switching to the movement control of the focus lens 2 based on the differential AF evaluation value.
  • the moving speed of the focus lens is relatively fast until the position of the focus lens 2 reaches the second threshold position P2, the focus lens 2 has the second threshold value.
  • the time t2 until the position P2 is reached is also relatively short.
  • a gain coefficient smaller than the gain coefficient G1 is set so that the moving speed of the focus lens 2 becomes slower.
  • G2 (this gain coefficient G2 is also predetermined) is applied to the gain control amplification circuit 34.
  • the gain coefficient G2 is multiplied by the differential AF evaluation value signal output from the amplifying circuit 54 and provided to the focus motor 35 as a control signal.
  • the focus lens 2 is moved at a third moving speed that is slower than the second moving speed (step 68).
  • the process of step 68 is repeated until the focus lens 2 is closer to the focus position P0 than the third threshold position P3 (step 69). As shown in FIG. 9, the focus lens 2 is moved at a third movement speed that is slower than the second movement speed until the position of the focus lens 2 reaches the third threshold position P3. .
  • the moving speed of the focus lens 2 is further decreased.
  • a gain coefficient G3 smaller than the gain coefficient G2 (this gain coefficient G3 is also predetermined) is applied to the gain control amplification circuit 34.
  • the gain coefficient G3 is multiplied by the differential AF evaluation value signal output from the amplifier circuit 54, and is provided to the focus motor 35 as a control signal.
  • the focus lens 2 is moved at a fourth moving speed that is slower than the third moving speed (step 70).
  • the focus lens 2 is moved at the third moving speed, the position of the focus lens 2 when the differential AF evaluation value becomes 0 as shown in FIG. The movement of the lens 2 is stopped (step 71).
  • the phase difference AF evaluation value obtained based on the phase difference sensor 41 is used until the focus lens 2 reaches the first threshold position P1 in the vicinity of the position where the subject image is focused. Then, the focus lens 2 is moved at the first moving speed (gain coefficient G). When the focus lens 2 is closer to the position where the subject image is in focus than the first threshold position P1, the first moving speed is based on the differential AF evaluation value obtained based on the optical path length difference image sensors 13 and 14. The focus lens 2 is moved at a second moving speed slower than the first moving speed and faster than the threshold moving speed (gain coefficient G1).
  • the focus lens is gradually moved at a third movement speed that is slower than the threshold movement speed (gain coefficients G2, G3). Since the focus lens 2 is moved in this manner, even when two types of AF sensors are switched and used, a sense of incongruity does not occur and hunting can be prevented.
  • the focus lens 2 is driven at the first moving speed using the phase difference AF evaluation value signal until the focus lens 2 is between the positions P11 and P12 shown in FIG.
  • the focus lens 2 is driven at a moving speed slower than the first moving speed by using the differential AF evaluation value signal. Also good. In this case, the focus lens 2 becomes slower as it approaches the position P0 where the subject image is focused.
  • the movement speed of the focus lens 2 is not switched from the first movement speed to the second movement speed, but more accurately.
  • the first movement speed using the phase difference AF evaluation value signal may be switched to the second movement speed using the difference AF evaluation value signal.
  • control may be performed as follows.
  • the target position of the focus lens 2 is calculated based on the phase difference AF evaluation value signal indicating the amount of displacement from the focus position of the focus lens 2 based on the phase difference AF, and driving to move the lens toward the target position is started.
  • the focus determination is performed with the differential AF evaluation value by the second AF sensor, and when it is determined that the subject image is closer to the in-focus position than the first threshold position P1,
  • the difference AF evaluation value signal obtained based on the optical path length difference AF image pickup devices 13, 14 and the like is input to the focus control circuit 31, and the moving direction of the focus lens 2 and the step which can be understood based on the graph G53 shown in FIG.
  • step 62 it is determined whether or not the moving direction of the focus lens 2 moved based on the phase difference AF evaluation value matches. If they match, it is confirmed that the moving direction of the focus lens 2 is correct. If they do not match, the moving direction of the focus lens 2 is incorrect. If the moving direction of the focus lens 2 is wrong (NO in step 64), the warning device 32 warns (step 60).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

The purpose of the present invention is to preemptively prevent hunting, and a feeling of strangeness when using both an optical path-length difference AF and a phase difference AF. A focus lens is moved at a first relatively high speed using the phase difference AF until a focus lens is moved to a first threshold position (P1) near the focusing position (P0). When the position of the focus lens is closer to the focusing point (P0) than the first threshold position (P1), the focus lens is moved at a second speed which is almost imperceptibly slower than the first moving speed using the optical path-length difference AF. The speed the focus lens moves gradually slows as the focus lens approaches the focusing position (P0).

Description

オート・フォーカス装置およびその動作制御方法Auto-focus device and operation control method thereof
 この発明は,オート・フォーカス装置およびその動作制御方法に関する。 The present invention relates to an auto-focus device and an operation control method thereof.
 カメラのオート・フォーカスには,位相差AF(オート・フォーカス),コントラストAFなどがある。位相差AFは,レンズから入った光を二つに分けて位相差AF用のセンサに導き,結像した二つの間隔からピントの方向と量を判断するものである。コントラストAFは,撮像素子に写った画像をもとにフォーカス・レンズを動かしながらコントラストが大きいところを探してピントを合わせるものである。コントラストAFには、ひとつの撮像素子に結像する画像のコントラストが最大となるフォーカス・レンズ位置を探るもの(合焦評価AF)と,光路長差が異なる位置に配置された二つの撮像素子で被写体を撮像し,それぞれの撮像素子から得られた画像信号にもとづいてピントを合わせるコントラストAF(光路長差AF)の2種類があり、どちらもテレビ・カメラのAFとして利用される(特許文献1,2)。 The camera auto focus includes phase difference AF (auto focus), contrast AF, and the like. In the phase difference AF, light entering from a lens is divided into two parts and guided to a sensor for phase difference AF, and the direction and amount of focus are determined from two intervals formed. Contrast AF searches for a place where the contrast is high while moving the focus lens based on the image captured on the image sensor, and focuses. In contrast AF, there are two imaging elements arranged at different optical path lengths, one that searches for the focus / lens position that maximizes the contrast of the image formed on one imaging element (focus evaluation AF). There are two types of contrast AF (optical path length difference AF) that images a subject and focuses on the image signal obtained from each image sensor, and both are used as AF of a television camera (Patent Document 1). , 2).
特許第4189674号Patent No.4189674 特開2004-212458号公報JP 2004-212458 A
 位相差AFでは、被写体が合焦するまでのレンズの移動量を直接得られるため高速である反面、測距精度が粗く被写体に合焦しきらない問題があり、コントラストAFでは被写体の画像を使った合焦評価をすることから、被写体への合焦精度は高いが、合焦位置を探りながらレンズを動かすために合焦するまでの時間が長いという問題がある。一方で、コントラストAFでは、ピントのずれ量を示す合焦評価値信号に対してゲイン係数をかけて増幅することによりフォーカス・レンズの移動速度を設定しているので、このゲイン係数を大きくすることにより、合焦までの時間を短縮することが可能だが、ゲイン係数を大きくするとフォーカス・レンズの移動速度が速くなる反面,合焦位置に停止させることが難しくなるので合焦位置を挟んでフォーカス・レンズが前後に触れてしまうハンチングと呼ばれる現象が起きてしまうことがある。 In phase difference AF, the amount of lens movement until the subject is in focus can be obtained directly, which is high speed, but there is a problem that the distance measurement accuracy is poor and the subject cannot be fully focused. In contrast AF, the subject image is used. Since the focus evaluation is performed, the accuracy of focusing on the subject is high, but there is a problem that it takes a long time to focus to move the lens while searching for the focus position. On the other hand, in contrast AF, the focus lens moving speed is set by amplifying the focus evaluation value signal indicating the amount of focus deviation by applying a gain coefficient. Although it is possible to reduce the time to focus, increasing the gain factor increases the moving speed of the focus lens, but it becomes difficult to stop at the focus position. A phenomenon called hunting in which the lens touches back and forth may occur.
 このため、ピントが大きくずれているときは位相差AFでレンズを動かし、合焦位置に近づいたらコントラストAFで高精度に合焦させるなど、位相差AFの高速性とコントラストAFの高精度を組み合わせた動作をさせるときに、位相差AFとコントラストAFの速度差が大きいと、切替時の急激な速度変化が違和感となって、使用者に不快感を与えてしまう。この違和感を解決するためにコントラストAFのゲイン係数を大きくすると、前記のハンチングを生じ、位相差AFの速度を下げると、AF全体の速度が下がり、製品の性能低下を招いてしまう。 For this reason, combining the high speed of phase difference AF with the high accuracy of contrast AF, such as moving the lens with phase difference AF when the focus is greatly out of focus, and focusing with high precision with contrast AF when approaching the in-focus position When the speed difference between the phase difference AF and the contrast AF is large when the operation is performed, the rapid speed change at the time of switching becomes uncomfortable and gives the user an unpleasant feeling. Increasing the gain factor of contrast AF to solve this sense of incongruity causes the above-described hunting, and decreasing the speed of phase difference AF decreases the speed of the entire AF, leading to a decrease in product performance.
 特許文献1では,フォーカスの精度優先モードと安定度優先モードとに応じて,オート・フォーカスに利用する映像信号の周波数特性を変えるものであり,特許文献2では,コントラストAFの光学系に絞りを入れて合焦評価値のピーク付近での特性を調整するものであり,いずれも位相差AFとコントラストAFとの両方のAFを利用したときに生じる問題は考えられていない。 In Patent Document 1, the frequency characteristic of a video signal used for auto-focusing is changed according to the focus accuracy priority mode and the stability priority mode. In Patent Document 2, a diaphragm is used for the contrast AF optical system. In this case, the characteristics near the peak of the focus evaluation value are adjusted, and any of the problems that occur when both the phase difference AF and the contrast AF are used are not considered.
 この発明は,位相差AFとコントラストAFとの両方のAFを利用したときに生じる問題を解決することを目的とする。 An object of the present invention is to solve the problems that occur when both phase difference AF and contrast AF are used.
 この発明によるオート・フォーカス装置は,フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力する第1の合焦評価値出力部, フォーカス・レンズを通って入射する光の光路において、光路長が互いに異なる位置(フォーカス・レンズにより結像される被写体像の位置に対して光学的に前後等間隔の位置)に配置された第1の撮像素子および第2の撮像素子,第1の撮像素子の出力信号と第2の撮像素子の出力信号とにもとづいてピントのずれ量を示す第2の合焦評価値信号を出力する第2の合焦評価値出力部,ならびに第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にない場合は第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを第1の移動速度で移動し,第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合は第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて第1の移動速度よりも遅く、かつ、フォーカス・レンズが被写体像が合焦する位置に近いほど遅くなる第2の移動速度でフォーカス・レンズを移動するようにフォーカス・レンズを制御する(フォーカス・レンズの位置が,被写体像が合焦する位置近傍のしきい値位置近傍となるまでは第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを第1の移動速度で移動し,フォーカス・レンズの位置が,しきい値位置よりも被写体像が合焦する位置近傍となったことに応じて第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて第1の移動速度よりも遅いしきい値移動速度よりも速く,かつフォーカス・レンズが被写体像が合焦する位置に近いほど遅くなる第2の移動速度でフォーカス・レンズを移動し,フォーカス・レンズが,被写体像が合焦する位置に近づくにつれてしきい値移動速度よりも遅い第3の移動速度でフォーカス・レンズを移動するようにフォーカス・レンズを制御する)フォーカス・レンズ制御部を備えていることを特徴とする。 The autofocus device according to the present invention is based on the amount of focus deviation in the pupil division direction of the two subject images formed by dividing the light incident through the focus lens into two by pupil division. A first focus evaluation value output unit that outputs a first focus evaluation value signal indicating a position where light path lengths are different from each other in an optical path of light incident through the focus lens (images are formed by the focus lens) The first image sensor and the second image sensor, which are optically arranged at equal intervals in front and rear with respect to the position of the subject image, the output signals of the first image sensor and the output signals of the second image sensor And a second focus evaluation value output unit for outputting a second focus evaluation value signal indicating the amount of focus shift based on the first focus evaluation value signal, and a focus position calculated based on the first focus evaluation value signal. Focusing the first image sensor If it is not between the focusing position and the second imaging element focusing position, the focus lens is moved at the first moving speed based on the first focusing evaluation value signal output from the first focusing evaluation value output unit. If the in-focus position calculated based on the first in-focus evaluation value signal is between the in-focus position of the first image sensor and the in-focus position of the second image sensor, the second in-focus position is obtained. A second moving speed that is slower than the first moving speed based on the second focus evaluation value signal output from the evaluation value output unit, and becomes slower as the focus lens is closer to the position where the subject image is in focus. The focus lens is controlled so that the focus lens is moved by the first focus evaluation value output unit until the position of the focus lens is near the threshold position near the position where the subject image is in focus. Based on the first focus evaluation value signal output from A second focus evaluation value output unit when the focus lens is moved closer to the position where the subject image is in focus than the threshold position. Based on the second focus evaluation value signal output from the second focus evaluation speed signal, which is faster than the threshold movement speed slower than the first movement speed, and becomes slower as the focus lens is closer to the position where the subject image is in focus. The focus lens is moved at a moving speed of, and the focus lens is moved at a third moving speed that is slower than the threshold moving speed as the subject lens approaches the position where the subject image is in focus. It is characterized by having a focus / lens controller for controlling the lens.
 この発明は,オート・フォーカス装置に適した動作制御方法も提供している。すなわち,この方法は,第1の合焦評価値出力部が,フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力し,第2の合焦評価値出力部が,フォーカス・レンズを通って入射する光の光路において、光路長が互いに異なる位置に配置された第1の撮像素子および第2の撮像素子のそれぞれの出力信号にもとづいてピントのずれ量を示す第2の合焦評価値信号を出力し,フォーカス・レンズ制御部が,第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にない場合は第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを第1の移動速度で移動し,第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合は第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて第1の移動速度よりも遅く、かつ、フォーカス・レンズが被写体像が合焦する位置に近いほど遅くなる第2の移動速度でフォーカス・レンズを移動するようにフォーカス・レンズを制御するものである。 The present invention also provides an operation control method suitable for an autofocus device. That is, in this method, the first focus evaluation value output unit shifts the position in the pupil division direction of two subject images formed by dividing the light incident through the focus lens into two by pupil division. The first focus evaluation value signal indicating the amount of focus shift is output based on the amount, and the second focus evaluation value output unit has optical path lengths in the optical paths of light incident through the focus lens. Based on the output signals of the first image sensor and the second image sensor arranged at different positions, a second focus evaluation value signal indicating a focus shift amount is output, and the focus / lens controller When the focus position calculated based on the first focus evaluation value signal is not between the focus position of the first image sensor and the second image sensor focus position, the first focus evaluation value is output. Based on the first focus evaluation value signal output from the The in-focus position calculated based on the first focus evaluation value signal is the in-focus position of the first image sensor and the in-focus position of the second image sensor. If it is in between, the position is slower than the first moving speed based on the second focus evaluation value signal output from the second focus evaluation value output unit, and the focus lens is in a position where the subject image is in focus The focus lens is controlled so as to move the focus lens at a second moving speed that becomes slower as the distance from the second lens moves closer.
 この発明によると,第1の合焦評価値信号にもとづいて算出される合焦位置が,第1の撮像素子の合焦位置と第2の合焦位置との間に無い場合には第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズが第1の移動速度で移動させられる。迅速にフォーカス・レンズを移動させることができる。第1の合焦評価値信号にもとづいて算出される合焦位置が,第1の撮像素子の合焦位置と第2の合焦位置との間にある場合には,第1の移動速度よりも遅く,フォーカス・レンズが被写体像が合焦する位置に近いほど近くなる第2の移動速度でフォーカス・レンズが移動させられる。第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづくフォーカス・レンズの移動から切り替えられた直後には,第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづくフォーカス・レンズの移動速度とあまり変わらない速度でフォーカス・レンズが移動させられるので,フォーカス・レンズの移動速度があまり変化なく,ユーザに違和感を与えることがない。 According to the present invention, when the focus position calculated based on the first focus evaluation value signal is not between the focus position of the first image sensor and the second focus position, the first focus position is calculated. The focus lens is moved at the first moving speed based on the first focus evaluation value signal output from the focus evaluation value output unit. The focus lens can be moved quickly. When the in-focus position calculated based on the first focus evaluation value signal is between the in-focus position and the second in-focus position of the first image sensor, the first movement speed is used. However, the focus lens is moved at a second moving speed that becomes closer as the focus lens is closer to the position where the subject image is in focus. Immediately after switching from the movement of the focus lens based on the first focus evaluation value signal output from the first focus evaluation value output unit, the first focus evaluation value output unit outputs from the first focus evaluation value output unit. Since the focus lens is moved at a speed not much different from the movement speed of the focus lens based on the focus evaluation value signal of 1, the movement speed of the focus lens does not change so much and the user does not feel uncomfortable.
 フォーカス・レンズ制御部は,たとえば,第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合であって,フォーカス・レンズが,被写体像が合焦する位置に近い位置となることにより,第1の移動速度での移動から,第2の移動速度での移動に切り替えるようにフォーカス・レンズを制御するものでもよい。 The focus / lens control unit, for example, when the focus position calculated based on the first focus evaluation value signal is between the focus position of the first image sensor and the focus position of the second image sensor And the focus lens is switched to a movement at the second movement speed from a movement at the first movement speed when the subject lens is close to a position where the subject image is focused. It may be controlled.
 フォーカス・レンズ制御部は,与えられるフォーカス制御信号に応じてフォーカス・レンズを移動させるフォーカス・モータ,第1の合焦評価値出力部から出力される第1の合焦評価値信号および第2の合焦評価値出力部から出力される第2の合焦評価値信号を入力し,与えられるゲイン係数に応じて,入力した第1の合焦評価値信号または第2の合焦評価値信号のレベルを増幅してフォーカス・モータ制御信号としてフォーカス・モータに与えるゲイン制御増幅回路,ならびに第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にない場合は第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを第1の移動速度で移動し,第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合は第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて第1の移動速度よりも遅く、かつ、フォーカス・レンズが被写体像が合焦する位置に近いほど遅くなる第2の移動速度でフォーカス・レンズを移動するようなゲイン係数をゲイン制御増幅回路に与えるゲイン係数制御部を備えるようにしてもよい。 The focus / lens control unit includes a focus motor that moves the focus / lens in accordance with a given focus control signal, a first focus evaluation value signal output from the first focus evaluation value output unit, and a second focus evaluation value signal. The second focus evaluation value signal output from the focus evaluation value output unit is input, and the input first focus evaluation value signal or second focus evaluation value signal is input in accordance with a given gain coefficient. A gain control amplification circuit that amplifies the level and gives the focus motor control signal as a focus motor control signal, and a focus position calculated based on the first focus evaluation value signal are the focus position of the first image sensor. If it is not between the focus positions of the second image sensor, the focus lens is moved at the first moving speed based on the first focus evaluation value signal output from the first focus evaluation value output unit. , 1st When the in-focus position calculated based on the evaluation value signal is between the in-focus position of the first image sensor and the in-focus position of the second image sensor, the second focus evaluation value output unit outputs it. The focus lens is moved at a second movement speed that is slower than the first movement speed based on the focus evaluation value signal 2 and slower as the focus lens is closer to the position where the subject image is in focus. A gain coefficient control unit that provides a large gain coefficient to the gain control amplifier circuit may be provided.
撮像レンズ・ユニットの構成を示している。The structure of an imaging lens unit is shown. 光路長差AF用撮像素子と被写体像の結像位置との関係を示している。The relationship between the image sensor for optical path length difference AF and the imaging position of a subject image is shown. AF評価値とフォーカス・レンズ位置との関係を示している。The relationship between the AF evaluation value and the focus / lens position is shown. 位相差AF評価値とフォーカス・レンズ位置との関係を示している。The relationship between the phase difference AF evaluation value and the focus / lens position is shown. 差分AF評価値とフォーカス・レンズ位置との関係を示している。The relationship between the differential AF evaluation value and the focus / lens position is shown. 合焦処理手順を示すフローチャートである。It is a flowchart which shows a focusing process procedure. 合焦処理手順を示すフローチャートである。It is a flowchart which shows a focusing process procedure. 合焦処理手順を示すフローチャートである。It is a flowchart which shows a focusing process procedure. フォーカス・レンズの移動時間と位置との関係を示している。The relationship between the movement time and position of the focus lens is shown.
 図1は,この発明の実施例を示すもので,放送用などに利用される撮影レンズ・ユニット1とカメラ本体20の一部の光学的構成を示している。 FIG. 1 shows an embodiment of the present invention, and shows an optical configuration of a part of a photographing lens unit 1 and a camera body 20 used for broadcasting or the like.
 撮影レンズ・ユニット1は着脱自在にカメラ本体20に装着されている。 The taking lens unit 1 is detachably attached to the camera body 20.
 撮影レンズ・ユニット1には,撮影レンズ・ユニット1の光軸O1と共通の光軸をもつようにフォーカス・レンズ(フォーカス・レンズ群)2,ズーム・レンズ(ズーム・レンズ群)3,前側リレー・レンズ(前側リレー・レンズ群)5および後側リレー・レンズ(後側リレー・レンズ群)7が含まれている。ズーム・レンズ3と前側リレー・レンズ5との間には,撮影レンズ・ユニット1の光軸O1が中心を通るように絞り4が配置されている。また,前側リレー・レンズ5と後側リレー・レンズ7との間にはハーフ・ミラー6が配置されている。 The photographic lens unit 1 includes a focus lens (focus lens group) 2, a zoom lens (zoom lens group) 3, and a front relay so as to have an optical axis common to the optical axis O1 of the photographic lens unit 1 A lens (front relay / lens group) 5 and a rear relay / lens (rear relay / lens group) 7 are included. A diaphragm 4 is arranged between the zoom lens 3 and the front relay lens 5 so that the optical axis O1 of the photographing lens unit 1 passes through the center. A half mirror 6 is arranged between the front relay lens 5 and the rear relay lens 7.
 カメラ本体20には,撮影レンズ・ユニット1が装着されたときに撮影レンズ・ユニット1の光軸O1と共通の光軸をもつ色分解プリズム21が設けられている。この色分解プリズム21には,第1のプリズム22,第2のプリズム23および第3のプリズム24が含まれており,入射した光が赤色成分,緑色成分および青色成分に分解される。第1のプリズム22の出射面に対向する位置,第2のプリズム23の出射面に対向する位置および第3のプリズム24の出射面に対向する位置に,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27がそれぞれ配置されている。 The camera body 20 is provided with a color separation prism 21 having an optical axis common to the optical axis O1 of the photographing lens unit 1 when the photographing lens unit 1 is mounted. The color separation prism 21 includes a first prism 22, a second prism 23, and a third prism 24, and incident light is separated into a red component, a green component, and a blue component. The first imaging CCD 25, the second imaging CCD 25, the second imaging prism 25, the second prism 23, the third prism 24, the second prism 23, the second prism 23, and the third prism 24, respectively. An imaging CCD 26 and a third imaging CCD 27 are arranged.
 さらに,撮影レンズ・ユニット1には,ハーフ・ミラー6の中心で反射した一部の光を光軸[AF(オート・フォーカス)用光軸]O2とするAF用リレー・レンズ(AF用リレー・レンズ群)8が設けられている。AF用リレー・レンズ8の後段にはハーフ・ミラー40(反射プリズムでもよい)が設けられている。また,ハーフ・ミラー40の後段には全反射ミラー9が設けられている。 Further, the photographing lens unit 1 includes an AF relay lens (AF relay lens) that uses a part of the light reflected at the center of the half mirror 6 as an optical axis [optical axis for AF (auto focus)] O2. Lens group) 8 is provided. A half mirror 40 (which may be a reflecting prism) is provided downstream of the AF relay lens 8. A total reflection mirror 9 is provided after the half mirror 40.
 全反射ミラー9の全反射方向には光路長差AFセンサ55が設けられている。光路長差AFセンサ55には第1のプリズム11と第2のプリズム12とから構成される分割プリズム10が含まれている。第1のプリズム11の出射面および第2のプリズム12の出射面には第1のAF用CCD13および第2のAF用CCD14がそれぞれ設けられている。 An optical path length difference AF sensor 55 is provided in the total reflection direction of the total reflection mirror 9. The optical path length difference AF sensor 55 includes a split prism 10 composed of a first prism 11 and a second prism 12. A first AF CCD 13 and a second AF CCD 14 are provided on the exit surface of the first prism 11 and the exit surface of the second prism 12, respectively.
 撮影レンズ・ユニット1に入射した光線束は,フォーカス・レンズ2,ズーム・レンズ3,絞り4,前側リレー・レンズ5,ハーフ・ミラー6および後側リレー・レンズ7を透過してカメラ本体20に導かれる。カメラ本体20に含まれる光分解プリズム21において,光線束は,赤色光成分,緑色光成分および青色光成分にそれぞれ分解され,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27のそれぞれにおいて被写体像が結像する。第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27のそれぞれから赤色光成分,緑色光成分および青色光成分の被写体像を表わす映像信号が出力されることとなる。 The light beam incident on the photographic lens unit 1 passes through the focus lens 2, zoom lens 3, aperture 4, front relay lens 5, half mirror 6 and rear relay lens 7, and enters the camera body 20. Led. In the light decomposing prism 21 included in the camera body 20, the light beam is decomposed into a red light component, a green light component, and a blue light component, respectively, and the first image pickup CCD 25, the second image pickup CCD 26, and the third image pickup device. A subject image is formed on each of the CCDs 27 for use. Video signals representing subject images of the red light component, the green light component, and the blue light component are output from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27, respectively.
 撮影レンズ・ユニット1に入射した光線束は,ハーフ・ミラー6において一部が反射する。ハーフ・ミラー6において反射した光線束は,AF用リレー・レンズ8を透過し,ハーフ・ミラー40に導かれる。 The light beam incident on the taking lens unit 1 is partially reflected by the half mirror 6. The light beam reflected by the half mirror 6 passes through the AF relay lens 8 and is guided to the half mirror 40.
 ハーフ・ミラー40に入射した光の一部は反射して位相差AFセンサ45に含まれる位相差センサ41に入射する。 A part of the light incident on the half mirror 40 is reflected and incident on the phase difference sensor 41 included in the phase difference AF sensor 45.
 位相差センサ41には集光レンズ,セパレータ・レンズおよび撮像素子(いずれも図示略)が含まれている。位相差センサ41に入射した光が集光レンズによって集光され,かつセパレータ・レンズによって二つに分けられる。二つに分けられた光が撮像素子上で二つの画像として結像する。二つの画像の間隔からフォーカス・レンズ2が合焦するようにフォーカス・レンズ2を制御できる。位相差センサ41からは,二つの画像を表わす映像信号が出力され,評価値算出回路42において,撮像によって得られた被写体像の合焦の程度を表わす位相差AF評価値が生成される。位相差AF評価値を表わす信号は増幅回路43を介してセレクタ33に入力する。 The phase difference sensor 41 includes a condenser lens, a separator lens, and an image sensor (all not shown). The light incident on the phase difference sensor 41 is condensed by the condenser lens and divided into two by the separator lens. The light divided into two forms an image on the image sensor as two images. The focus lens 2 can be controlled so that the focus lens 2 is focused from the interval between the two images. The phase difference sensor 41 outputs video signals representing two images, and the evaluation value calculation circuit 42 generates a phase difference AF evaluation value representing the degree of focusing of the subject image obtained by imaging. A signal representing the phase difference AF evaluation value is input to the selector 33 via the amplifier circuit 43.
 ハーフ・ミラー40を透過した光は,全反射ミラー9において全反射する。全反射ミラー9において全反射した光線束は分割プリズム10に入射し,一部が第1の光路長差AF用CCD13に入射し,残りが第2の光路長差AF用CCD14に入射する。第1の光路長差AF用CCD13および第2の光路長差AF用CCD14のそれぞれからAF用の信号が出力することとなる。 The light transmitted through the half mirror 40 is totally reflected by the total reflection mirror 9. The light beam totally reflected by the total reflection mirror 9 is incident on the splitting prism 10, a part of which is incident on the first optical path length difference AF CCD 13, and the other is incident on the second optical path length difference AF CCD 14. An AF signal is output from each of the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14.
 第1の光路長差AF用CCD13および第2の光路長差AF用CCD14からそれぞれ出力した信号は評価値算出回路51および52にそれぞれに入力し,フォーカス・レンズ2の合焦の程度を表わすそれぞれの評価値が算出される。評価値算出回路51および52のそれぞれにおいて算出された評価値を表わす信号は,減算回路53に与えられる。評価値算出回路51において算出された評価値を表わす信号から,評価値算出回路52において算出された評価値を表わす信号が,減算回路53において減算され,差分AF評価値が得られる。差分AF評価値を表わす信号が増幅回路54において増幅されてセレクタ33に与えられる。 Signals output from the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14 are input to the evaluation value calculation circuits 51 and 52, respectively, and indicate the degree of focusing of the focus lens 2. Is evaluated. Signals representing the evaluation values calculated in the evaluation value calculation circuits 51 and 52 are supplied to the subtraction circuit 53. The signal representing the evaluation value calculated in the evaluation value calculating circuit 52 is subtracted in the subtracting circuit 53 from the signal representing the evaluation value calculated in the evaluation value calculating circuit 51 to obtain a differential AF evaluation value. A signal representing the difference AF evaluation value is amplified by the amplifier circuit 54 and is supplied to the selector 33.
 増幅回路43から出力した位相差AF評価値信号および増幅回路54から出力した差分AF評価値信号は,フォーカス制御回路31にも入力する。入力した位相差AF評価値信号および差分AF評価値信号にもとづいてセレクタ33が制御され,増幅回路43から出力される位相差AF評価値信号または増幅回路54から出力される差分AF評価値信号のいずれかがゲイン制御増幅回路34に与えられる。また,フォーカス制御回路31においてゲイン係数が算出され,算出されたゲイン係数を表わすデータがゲイン制御増幅回路34に与えられる。与えられたゲイン係数を用いて入力した信号が増幅されて,回転方向および回転速度を表わす制御信号としてフォーカス・モータ35に与えられる。フォーカス・モータ35によってフォーカス・レンズ2が移動させられる。 The phase difference AF evaluation value signal output from the amplifier circuit 43 and the difference AF evaluation value signal output from the amplifier circuit 54 are also input to the focus control circuit 31. The selector 33 is controlled based on the input phase difference AF evaluation value signal and the difference AF evaluation value signal, and the phase difference AF evaluation value signal output from the amplifier circuit 43 or the difference AF evaluation value signal output from the amplifier circuit 54 Either one is supplied to the gain control amplification circuit 34. The gain coefficient is calculated in the focus control circuit 31, and data representing the calculated gain coefficient is supplied to the gain control amplification circuit. The input signal is amplified using the given gain coefficient, and is supplied to the focus motor 35 as a control signal representing the rotation direction and rotation speed. The focus lens 2 is moved by the focus motor 35.
 また,詳しくは後述するように,増幅回路43から出力した位相差AF評価値信号によって表されるフォーカス・レンズ2の移動方向と増幅回路54から出力される差分AF評価値信号によって表されるフォーカス・レンズ2の移動方向とが不一致の場合には,フォーカス制御回路31によって警告装置32が警告するように制御される。警告装置32は,たとえば,音,光,振動などにより,撮影レンズ・ユニット1を使用するカメラマンに警告を与えるもので,その警告に応じてカメラマンは手動によりフォーカシングすることとなろう。これにより,撮影機会の逸失が未然に防止される。 Further, as will be described in detail later, the moving direction of the focus lens 2 represented by the phase difference AF evaluation value signal output from the amplification circuit 43 and the focus represented by the difference AF evaluation value signal output from the amplification circuit 54. The focus control circuit 31 controls the warning device 32 to warn when the moving direction of the lens 2 does not match. The warning device 32 gives a warning to the cameraman who uses the photographing lens unit 1 by, for example, sound, light, vibration, etc., and the cameraman will manually focus in response to the warning. This prevents the loss of photographing opportunities.
 さらに,上述した各回路等の制御を統括するために撮影レンズ・ユニット1には,制御装置30が設けられている。 Further, a control device 30 is provided in the photographing lens unit 1 in order to control the above-described circuits and the like.
 図2は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14の光学的距離の関係を示している。 FIG. 2 shows the relationship between the optical distances of the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14. Is shown.
 第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14に光を入射させるための光学系がレンズ30によって表わされている。 An optical system for causing light to enter the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14 is provided. Represented by lens 30.
 第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27に入射するまでの光学的距離は,いずれも等しい。これに対して,第1の光路長差AF用CCD13に入射するまでの光学的距離は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27から所定の距離だけ前に配置された場合に等しく,第2の光路長差AF用CCD14に入射するまでの光学的距離は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27から所定の距離だけ後に配置された場合に等しくなるように,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14の位置関係(光学的に前後等間隔の位置)が規定されている。仮に同一光軸上に第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されると,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27の前後等間隔の位置に第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されていることと等価となる。 The optical distances until the light enters the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27 are all equal. On the other hand, the optical distance until the light enters the first optical path length difference AF CCD 13 is a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. The optical distance until the light enters the second optical path length difference AF CCD 14 is equal to a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. The first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference so as to be equal when they are arranged after a distance. The positional relationship of the AF CCD 14 (optically equidistantly spaced positions) is defined. Temporarily, the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14 are arranged on the same optical axis. The first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14 are arranged at equally spaced positions before and after the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. It is equivalent to what is done.
 図3は,AF評価値とフォーカス・レンズ2の位置との関係を示している。 FIG. 3 shows the relationship between the AF evaluation value and the position of the focus lens 2.
 第1の光路長差AF用CCD13から出力される信号にもとづいて評価値算出回路51において算出された評価値信号からグラフG51が得られ,第2の光路長差AF用CCD14から出力される信号にもとづいて評価値算出回路52において算出された評価値信号からグラフG52が得られる。 A graph G51 is obtained from the evaluation value signal calculated by the evaluation value calculation circuit 51 based on the signal output from the first optical path length difference AF CCD 13, and the signal output from the second optical path length difference AF CCD 14 is obtained. A graph G52 is obtained from the evaluation value signal calculated by the evaluation value calculation circuit 52 based on the above.
 上述したように,仮に同一光軸上に第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されると,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27の前後等間隔の位置に第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されていることと等価であるから,第1の光路長差AF用CCD13および第2の光路長差AF用CCD14のそれぞれの信号から得られたグラフG51およびG52との交点であるフォーカス・レンズ位置P0が,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27に被写体像が合焦するフォーカス・レンズ2の位置となる。 As described above, the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF are assumed to be on the same optical axis. When the CCD 14 is arranged, the first optical path length difference AF CCD 13 and the second optical path length difference are arranged at equal intervals before and after the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. Since this is equivalent to the arrangement of the AF CCD 14, at the intersections of the graphs G51 and G52 obtained from the signals of the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14, respectively. A certain focus lens position P0 is the position of the focus lens 2 where the subject image is focused on the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
 図4は,位相差AF評価値とフォーカス・レンズ2の位置との関係を示している。横軸がフォーカス・レンズ2の位置を示し,縦軸が位相差AF評価値を示している。 FIG. 4 shows the relationship between the phase difference AF evaluation value and the position of the focus lens 2. The horizontal axis indicates the position of the focus lens 2, and the vertical axis indicates the phase difference AF evaluation value.
 評価値算出回路42において位相差AF評価値が算出されると,算出された位相差AF評価値とグラフG0との関係からフォーカス・レンズ2の位置が分る。たとえば,評価値算出回路42において算出された位相差AF評価値がD1,D2またはD3であれば,フォーカス・レンズ2の位置は,P1,P2またはP3である。また,位相差AF評価値が0であれば,フォーカス・レンズ2の位置P0は被写体像が合焦する合焦位置とほぼ等しい。 When the phase difference AF evaluation value is calculated in the evaluation value calculation circuit 42, the position of the focus lens 2 is determined from the relationship between the calculated phase difference AF evaluation value and the graph G0. For example, if the phase difference AF evaluation value calculated by the evaluation value calculation circuit 42 is D1, D2 or D3, the position of the focus lens 2 is P1, P2 or P3. If the phase difference AF evaluation value is 0, the position P0 of the focus lens 2 is substantially equal to the in-focus position at which the subject image is in focus.
 図4においては,グラフG0は,直線で示されているが,AF評価値がAFセンサの分解能に応じたステップ状に得られるために、実際に求められるフォーカス・レンズ2の位置はAFセンサの分解能に応じて離散的な数値となり,位相差AF評価値が0のときに合焦位置P0は完全には対応しないことがある。 In FIG. 4, the graph G0 is indicated by a straight line. However, since the AF evaluation value is obtained in steps according to the resolution of the AF sensor, the position of the focus lens 2 that is actually obtained is the position of the AF sensor. It becomes a discrete numerical value according to the resolution, and when the phase difference AF evaluation value is 0, the focus position P0 may not correspond completely.
 図5は,減算回路53から出力される差分AF評価値信号とフォーカス・レンズ2の位置との関係を示すグラフG53である。横軸がフォーカス・レンズ位置であり,縦軸が差分AF評価値である。 FIG. 5 is a graph G53 showing the relationship between the differential AF evaluation value signal output from the subtraction circuit 53 and the position of the focus lens 2. The horizontal axis is the focus lens position, and the vertical axis is the differential AF evaluation value.
 差分AF評価値の正のピーク値D11と負のピーク値D12との間では,差分AF評価値とフォーカス・レンズ2の位置関係は一対一に対応する。差分AF評価値が分れば,正のピーク値D11に対応するフォーカス・レンズ2の位置P11[第1の光路長差AF用CCD13(第1の撮像素子)の合焦位置]と負のピーク値D12に対応するフォーカス・レンズ2の位置P12[第2の光路長差AF用CCD14(第2の撮像素子)の合焦位置]との間におけるフォーカス・レンズ2の位置も分る。差分AF評価値が0となるフォーカス・レンズ2の位置が合焦位置である。 Between the positive peak value D11 and the negative peak value D12 of the differential AF evaluation value, the positional relationship between the differential AF evaluation value and the focus lens 2 corresponds one to one. If the differential AF evaluation value is known, the position P11 of the focus lens 2 corresponding to the positive peak value D11 [the in-focus position of the first optical path length difference CCD 13 (first imaging element)] and the negative peak The position of the focus lens 2 between the position P12 of the focus lens 2 corresponding to the value D12 and the in-focus position of the second optical path length difference CCD 14 (second image sensor) is also known. The position of the focus lens 2 at which the differential AF evaluation value is 0 is the in-focus position.
 図4に示すように,位相差AFでは、位相差AF評価値からフォーカス・レンズ2の合焦位置P0との位置ずれ量を算出し,直接フォーカス・レンズ2を目標位置まで移動させるので,フォーカス・レンズを高速に移動させても,合焦位置P0を探す動作がないためにいわゆるハンチングが起きることはない。これに対して,差分AF評価値を用いてフォーカス・レンズ2を合焦位置P0に位置決めする場合には図5に示すように,合焦位置P0付近でのレンズ移動に対する評価値の変化が大きく、わずかにでもレンズが合焦位置P0を越えてしまうと、評価値が大きく変動してしまうのでフォーカス・レンズ2の移動速度が速いと、フォーカス・レンズ2を移動させつつ、合焦位置P0に達したかどうかを判定する間に合焦位置P0を越えてしまい、合焦位置越えと反転して引き戻す動作を繰り返すことになり、ハンチングが起きてしまう。 As shown in FIG. 4, in the phase difference AF, the amount of displacement from the focus position P0 of the focus lens 2 is calculated from the phase difference AF evaluation value, and the focus lens 2 is directly moved to the target position. Even when the lens is moved at high speed, so-called hunting does not occur because there is no operation for searching for the in-focus position P0. On the other hand, when the focus lens 2 is positioned at the focus position P0 using the differential AF evaluation value, as shown in FIG. 5, the change in the evaluation value with respect to the lens movement near the focus position P0 is large. Even if the lens slightly exceeds the in-focus position P0, the evaluation value fluctuates greatly. Therefore, if the moving speed of the focus lens 2 is fast, the focus lens 2 is moved and the focus position P0 is moved. While determining whether or not the focus position has been reached, the in-focus position P0 is exceeded, and the operation of reversing and reversing the in-focus position is repeated, thereby causing hunting.
 このために,差分AF評価値を用いてフォーカス・レンズ2を合焦位置P0に位置決めする場合には,フォーカス・レンズ2を比較的遅く移動させなければならない。しかしながら,位相差AF評価値からフォーカス・レンズ2の合焦位置P0との位置ずれ量を算出し,算出された位置ずれ量が無くなるようにフォーカス・レンズ2を移動させた後に,その後フォーカス・レンズ2を正確な合焦位置に位置決めするために,差分AF評価値を用いてフォーカス・レンズ2をハンチングが起きないように比較的遅く移動させるようにフォーカス・レンズ2の移動速度が変化すると,その変化したときに違和感が生じてしまう。このために,この実施例では,その変化時点で違和感が生じないように,その変化時点ではフォーカス・レンズ2の移動速度にあまり変化が無く,かつ合焦位置に近づいたら,ハンチングを防ぐためにフォーカス・レンズ2の移動速度が遅くなるように,ゲイン制御増幅回路34のゲイン係数が決定される(規定されている)。 For this reason, when the focus lens 2 is positioned at the focus position P0 using the differential AF evaluation value, the focus lens 2 must be moved relatively slowly. However, after calculating the position shift amount with respect to the focus position P0 of the focus lens 2 from the phase difference AF evaluation value and moving the focus lens 2 so that the calculated position shift amount disappears, the focus lens is thereafter moved. When the moving speed of the focus lens 2 is changed so that the focus lens 2 is moved relatively slowly so that hunting does not occur using the differential AF evaluation value in order to position 2 at an accurate in-focus position, When it changes, a sense of incongruity occurs. For this reason, in this embodiment, in order to prevent a sense of incongruity at the time of the change, if the moving speed of the focus lens 2 does not change much at the time of the change and approaches the in-focus position, focus is prevented to prevent hunting. The gain coefficient of the gain control amplification circuit 34 is determined (defined) so that the moving speed of the lens 2 becomes slow.
 図6から図8は,合焦処理手順を示すフローチャートである。図9は,フォーカス・レンズ2の位置とフォーカス・レンズ2が合焦位置に位置決めされるまでの時間との関係を示している。 6 to 8 are flowcharts showing the focusing processing procedure. FIG. 9 shows the relationship between the position of the focus lens 2 and the time until the focus lens 2 is positioned at the in-focus position.
 まず,位相差AFセンサ45が駆動され,位相差AFにもとづいてフォーカス・レンズ2の合焦位置からの位置ずれ量を示す位相差AF評価値および光路長差AFセンサ55が駆動され,光路長差AFにもとづく差分AF評価値が算出される(ステップ61)。 First, the phase difference AF sensor 45 is driven, and based on the phase difference AF, the phase difference AF evaluation value indicating the amount of displacement from the in-focus position of the focus lens 2 and the optical path length difference AF sensor 55 are driven. A difference AF evaluation value based on the difference AF is calculated (step 61).
 位相差AFにもとづくフォーカス・レンズ2の合焦位置からの位置ずれ量を示す位相差AF評価値信号がゲイン制御増幅回路34に与えられるようにフォーカス制御回路31によってセレクタが切り替えられる。ゲイン制御増幅回路34には所定のゲイン係数Gが与えられる。ゲイン制御増幅回路34において,入力したAF評価値信号に対してゲイン係数Gが乗じられた信号が生成され,その生成された信号がフォーカス・モータ35回転速度を制御する信号としてフォーカス・モータ35に与えられる。位相差AF評価値にもとづいてフォーカス・レンズ2が移動させられる(ステップ62)。光路長差AF用撮像素子13,14等にもとづいて得られる差分AF評価値信号はフォーカス制御回路31に入力し,図5に示すグラフG53にもとづいてわかるフォーカス・レンズ2の移動方向と,ステップ62において位相差AF評価値にもとづいて移動させられているフォーカス・レンズ2の移動方向とが一致しているかどうかが判定される。一致していればフォーカス・レンズ2の移動方向が正しいことが確認され,不一致であればフォーカス・レンズ2の移動方向が誤っていることとなる。フォーカス・レンズ2の移動方向が誤っていると(ステップ64でNO),警告装置32によって警告される(ステップ60)。 The selector is switched by the focus control circuit 31 so that a phase difference AF evaluation value signal indicating the amount of positional deviation from the focus position of the focus lens 2 based on the phase difference AF is given to the gain control amplification circuit 34. The gain control amplification circuit 34 is given a predetermined gain coefficient G. In the gain control amplification circuit 34, a signal obtained by multiplying the input AF evaluation value signal by the gain coefficient G is generated, and the generated signal is sent to the focus motor 35 as a signal for controlling the rotation speed of the focus motor 35. Given. The focus lens 2 is moved based on the phase difference AF evaluation value (step 62). The difference AF evaluation value signal obtained based on the optical path length difference AF image pickup devices 13, 14 and the like is input to the focus control circuit 31, and the moving direction of the focus lens 2 and the step which can be understood based on the graph G53 shown in FIG. In 62, it is determined whether or not the moving direction of the focus lens 2 moved based on the phase difference AF evaluation value matches. If they match, it is confirmed that the moving direction of the focus lens 2 is correct. If they do not match, the moving direction of the focus lens 2 is incorrect. If the moving direction of the focus lens 2 is wrong (NO in step 64), the warning device 32 warns (step 60).
 フォーカス・レンズ2の移動方向が正しければ(ステップ64でYES),フォーカス・レンズ2の位置が合焦位置P0近傍の第1のしきい値位置P1よりも合焦位置P0側となったかどうかが確認される(ステップ65)。図9に示すように,フォーカス・レンズ2の位置が第1のしきい値位置P1となるまでは(ステップ65でNO),位相差AFの評価値にもとづいてフォーカス・レンズ2が駆動させられるので,フォーカス・レンズ2の移動速度は速く,フォーカス・レンズ2が第1のしきい値位置P1となるまでの時間t1も短い(そのようにゲインGがあらかじめ決められている)。 If the moving direction of the focus lens 2 is correct (YES in step 64), whether or not the position of the focus lens 2 is closer to the focus position P0 than the first threshold position P1 in the vicinity of the focus position P0. Confirmed (step 65). As shown in FIG. 9, the focus lens 2 is driven based on the evaluation value of the phase difference AF until the position of the focus lens 2 reaches the first threshold position P1 (NO in step 65). Therefore, the moving speed of the focus lens 2 is high, and the time t1 until the focus lens 2 reaches the first threshold position P1 is short (the gain G is determined in advance).
 フォーカス・レンズ2が第1のしきい値位置P1となると(ステップ65でYES),増幅回路54から出力される評価値信号がゲイン制御増幅回路34に与えられるようにセレクタ33が切り替えられる。また,フォーカス・レンズ2の移動速度が,フォーカス・レンズ2が第1のしきい値位置P1に移動する前までの第1の移動速度よりも遅いが,第1の移動速度に近く、かつしきい値移動速度よりも速い第2の移動速度となるようなゲイン係数G1がゲイン制御増幅回路34に与えられる。そのようなゲイン係数G1(あらかじめ決められている)が増幅回路54から出力された差分AF評価値信号に乗じられて,フォーカス・モータ35に制御信号として与えられることにより,フォーカス・モータ35によってフォーカス・レンズ2が移動させられる(ステップ66)。フォーカス・レンズ2が,第1のしきい値位置P1よりも合焦位置P0側にある第2のしきい値位置P2よりも合焦位置P0側となるまで,ステップ66の処理が繰り返される(ステップ67)。図9に示すように,フォーカス・レンズ2の位置が第2のしきい値位置P2となるまでは,位相差AFの評価値にもとづいてフォーカス・レンズ2が移動されるときの第1の移動速度とあまり変わらない第2の移動速度でフォーカス・レンズ2が移動するようにゲイン制御増幅回路34のゲイン係数が決定されるので,位相差AFの評価値にもとづくフォーカス・レンズ2の移動制御から,差分AF評価値にもとづくフォーカス・レンズ2の移動制御に切り替わっても違和感が無い。また,図9に示すようにフォーカス・レンズ2の位置が第2のしきい値位置P2となるまではフォーカス・レンズの移動速度は比較的速いので,フォーカス・レンズ2が第2のしきい値位置P2となるまでの時間t2も比較的短い。 When the focus lens 2 reaches the first threshold position P1 (YES in step 65), the selector 33 is switched so that the evaluation value signal output from the amplifier circuit 54 is supplied to the gain control amplifier circuit 34. The moving speed of the focus lens 2 is slower than the first moving speed before the focus lens 2 moves to the first threshold position P1, but is close to the first moving speed, and A gain coefficient G1 that gives a second moving speed faster than the threshold moving speed is given to the gain control amplification circuit 34. Such a gain coefficient G1 (predetermined) is multiplied by the differential AF evaluation value signal output from the amplifier circuit 54 and given as a control signal to the focus motor 35. The lens 2 is moved (step 66). The process of step 66 is repeated until the focus lens 2 is closer to the focus position P0 than the second threshold position P2 that is closer to the focus position P0 than the first threshold position P1 ( Step 67). As shown in FIG. 9, the first movement when the focus lens 2 is moved based on the evaluation value of the phase difference AF until the position of the focus lens 2 reaches the second threshold position P2. Since the gain coefficient of the gain control amplification circuit 34 is determined so that the focus lens 2 moves at a second moving speed that is not much different from the speed, from the movement control of the focus lens 2 based on the evaluation value of the phase difference AF. , There is no sense of incompatibility even when switching to the movement control of the focus lens 2 based on the differential AF evaluation value. Further, as shown in FIG. 9, since the moving speed of the focus lens is relatively fast until the position of the focus lens 2 reaches the second threshold position P2, the focus lens 2 has the second threshold value. The time t2 until the position P2 is reached is also relatively short.
 フォーカス・レンズ2が第2のしきい値位置P2よりも合焦位置P0側となると(ステップ67でYES),フォーカス・レンズ2の移動速度が遅くなるように,ゲイン係数G1よりも小さなゲイン係数G2(このゲイン係数G2もあらかじめ決められている)がゲイン制御増幅回路34に与えられる。そのゲイン係数G2が増幅回路54から出力される差分AF評価値信号に乗じられて制御信号としてフォーカス・モータ35に与えられる。フォーカス・レンズ2は,第2の移動速度よりもさらに遅い第3の移動速度で移動させられる(ステップ68)。フォーカス・レンズ2が,第3のしきい値位置P3よりも合焦位置P0側となるまで,ステップ68の処理が繰り返される(ステップ69)。図9に示すように,フォーカス・レンズ2の位置が第3のしきい値位置P3となるまでは,第2の移動速度よりもさらに遅い第3の移動速度でフォーカス・レンズ2が移動させられる。 When the focus lens 2 is closer to the in-focus position P0 than the second threshold position P2 (YES in step 67), a gain coefficient smaller than the gain coefficient G1 is set so that the moving speed of the focus lens 2 becomes slower. G2 (this gain coefficient G2 is also predetermined) is applied to the gain control amplification circuit 34. The gain coefficient G2 is multiplied by the differential AF evaluation value signal output from the amplifying circuit 54 and provided to the focus motor 35 as a control signal. The focus lens 2 is moved at a third moving speed that is slower than the second moving speed (step 68). The process of step 68 is repeated until the focus lens 2 is closer to the focus position P0 than the third threshold position P3 (step 69). As shown in FIG. 9, the focus lens 2 is moved at a third movement speed that is slower than the second movement speed until the position of the focus lens 2 reaches the third threshold position P3. .
 フォーカス・レンズ2が,図9に示す時間t3において第3のしきい値位置P3よりも合焦位置P0側となると(ステップ69でYES),さらにフォーカス・レンズ2の移動速度が遅くなるように,ゲイン係数G2よりもさらに小さなゲイン係数G3(このゲイン係数G3もあらかじめ決められている)がゲイン制御増幅回路34に与えられる。そのゲイン係数G3が増幅回路54から出力される差分AF評価値信号に乗じられて制御信号としてフォーカス・モータ35に与えられる。フォーカス・レンズ2は,第3の移動速度よりもさらに遅い第4の移動速度で移動させられる(ステップ70)。第3の移動速度でフォーカス・レンズ2が移動させられると,図5に示すように差分AF評価値が0となったときのフォーカス・レンズ2の位置は合焦位置P0であるから,フォーカス・レンズ2の移動が停止させられる(ステップ71)。 When the focus lens 2 is closer to the focus position P0 than the third threshold position P3 at time t3 shown in FIG. 9 (YES in step 69), the moving speed of the focus lens 2 is further decreased. , A gain coefficient G3 smaller than the gain coefficient G2 (this gain coefficient G3 is also predetermined) is applied to the gain control amplification circuit 34. The gain coefficient G3 is multiplied by the differential AF evaluation value signal output from the amplifier circuit 54, and is provided to the focus motor 35 as a control signal. The focus lens 2 is moved at a fourth moving speed that is slower than the third moving speed (step 70). When the focus lens 2 is moved at the third moving speed, the position of the focus lens 2 when the differential AF evaluation value becomes 0 as shown in FIG. The movement of the lens 2 is stopped (step 71).
 図9に示すように,フォーカス・レンズ2が,被写体像が合焦する位置近傍の第1のしきい値位置P1となるまでは位相差センサ41にもとづいて得られる位相差AF評価値を利用してフォーカス・レンズ2が第1の移動速度で移動させられる(ゲイン係数G)。フォーカス・レンズ2が第1のしきい値位置P1よりも被写体像が合焦する位置近傍となると光路長差撮像素子13,14にもとづいて得られる差分AF評価値にもとづいて第1の移動速度よりも遅く,かつ第1の移動速度に近く、かつしきい値移動速度よりも速い第2の移動速度でフォーカス・レンズ2が移動させられる(ゲイン係数G1)。さらに,フォーカス・レンズが,被写体像が合焦する位置に近づくにつれてしきい値移動速度よりも遅い第3の移動速度で徐々にフォーカス・レンズが移動させられる(ゲイン係数G2,G3)。このようにフォーカス・レンズ2が移動させられるので,二種類の方式のAFセンサを切り替えて利用しても違和感が生じずに,かつハンチングも未然に防止できる。 As shown in FIG. 9, the phase difference AF evaluation value obtained based on the phase difference sensor 41 is used until the focus lens 2 reaches the first threshold position P1 in the vicinity of the position where the subject image is focused. Then, the focus lens 2 is moved at the first moving speed (gain coefficient G). When the focus lens 2 is closer to the position where the subject image is in focus than the first threshold position P1, the first moving speed is based on the differential AF evaluation value obtained based on the optical path length difference image sensors 13 and 14. The focus lens 2 is moved at a second moving speed slower than the first moving speed and faster than the threshold moving speed (gain coefficient G1). Furthermore, as the focus lens approaches the position where the subject image is in focus, the focus lens is gradually moved at a third movement speed that is slower than the threshold movement speed (gain coefficients G2, G3). Since the focus lens 2 is moved in this manner, even when two types of AF sensors are switched and used, a sense of incongruity does not occur and hunting can be prevented.
 上述の実施例において,フォーカス・レンズ2が,図5に示す位置P11とP12との間となるまでは,位相差AF評価値信号を利用して第1の移動速度でフォーカス・レンズ2を駆動し,フォーカス・レンズ2が,それらの位置P11とP12との間となると差分AF評価値信号を利用して,第1の移動速度よりも遅い移動速度でフォーカス・レンズ2を駆動するようにしてもよい。この場合,フォーカス・レンズ2は,被写体像が合焦する位置P0に近づくほど遅くなる。また,フォーカス・レンズ2が,それらの位置P11とP12との間となったことにより,フォーカス・レンズ2の移動速度を第1の移動速度から第2の移動速度に切り替えるのではなく,より合焦位置P0に近づいた場合に位相差AF評価値信号を利用した第1の移動速度から差分AF評価値信号を利用した第2の移動速度に切り替わるようにしてもよい。 In the above-described embodiment, the focus lens 2 is driven at the first moving speed using the phase difference AF evaluation value signal until the focus lens 2 is between the positions P11 and P12 shown in FIG. When the focus lens 2 is between these positions P11 and P12, the focus lens 2 is driven at a moving speed slower than the first moving speed by using the differential AF evaluation value signal. Also good. In this case, the focus lens 2 becomes slower as it approaches the position P0 where the subject image is focused. In addition, since the focus lens 2 is located between the positions P11 and P12, the movement speed of the focus lens 2 is not switched from the first movement speed to the second movement speed, but more accurately. When approaching the focal position P0, the first movement speed using the phase difference AF evaluation value signal may be switched to the second movement speed using the difference AF evaluation value signal.
 さらに,次のように制御が行われてもよい。位相差AFにもとづくフォーカス・レンズ2の合焦位置からの位置ずれ量を示す位相差AF評価値信号によりフォーカス・レンズ2の目標位置が算出され、この目標位置に向けレンズを移動させる駆動を開始する。レンズの移動と同時に第二のAFセンサによる差分AF評価値での合焦判定を行い、第1のしきい値位置P1よりも被写体像が合焦する位置近傍になったこと判定したときに、光路長差AF用撮像素子13,14等にもとづいて得られる差分AF評価値信号はフォーカス制御回路31に入力し,図5に示すグラフG53にもとづいてわかるフォーカス・レンズ2の移動方向と,ステップ62において位相差AF評価値にもとづいて移動させられているフォーカス・レンズ2の移動方向とが一致しているかどうかが判定される。一致していればフォーカス・レンズ2の移動方向が正しいことが確認され,不一致であればフォーカス・レンズ2の移動方向が誤っていることとなる。フォーカス・レンズ2の移動方向が誤っていると(ステップ64でNO),警告装置32によって警告される(ステップ60)。 Furthermore, control may be performed as follows. The target position of the focus lens 2 is calculated based on the phase difference AF evaluation value signal indicating the amount of displacement from the focus position of the focus lens 2 based on the phase difference AF, and driving to move the lens toward the target position is started. To do. Simultaneously with the movement of the lens, the focus determination is performed with the differential AF evaluation value by the second AF sensor, and when it is determined that the subject image is closer to the in-focus position than the first threshold position P1, The difference AF evaluation value signal obtained based on the optical path length difference AF image pickup devices 13, 14 and the like is input to the focus control circuit 31, and the moving direction of the focus lens 2 and the step which can be understood based on the graph G53 shown in FIG. In 62, it is determined whether or not the moving direction of the focus lens 2 moved based on the phase difference AF evaluation value matches. If they match, it is confirmed that the moving direction of the focus lens 2 is correct. If they do not match, the moving direction of the focus lens 2 is incorrect. If the moving direction of the focus lens 2 is wrong (NO in step 64), the warning device 32 warns (step 60).
13,14 光路長差AF用撮像素子
30 制御装置
31 フォーカス制御回路
33 セレクタ
34 ゲイン制御増幅回路
41 位相差センサ
42,51,52 評価値算出回路
13, 14 Image sensor for optical path length difference AF
30 Control unit
31 Focus control circuit
33 Selector
34 Gain control amplifier circuit
41 Phase difference sensor
42, 51, 52 Evaluation value calculation circuit

Claims (4)

  1.  フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力する第1の合焦評価値出力部,
     前記フォーカス・レンズを通って入射する光の光路において、光路長が互いに異なる位置に配置された第1の撮像素子および第2の撮像素子,
     前記第1の撮像素子の出力信号と前記第2の撮像素子の出力信号とにもとづいてピントのずれ量を示す第2の合焦評価値信号を出力する第2の合焦評価値出力部,ならびに
     前記第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にない場合は前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを第1の移動速度で移動し,前記第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合は前記第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて前記第1の移動速度よりも遅く、かつ、前記フォーカス・レンズが被写体像が合焦する位置に近いほど遅くなる第2の移動速度で前記フォーカス・レンズを移動するように前記フォーカス・レンズを制御するフォーカス・レンズ制御部,
     を備えたオート・フォーカス装置。
    A first focus evaluation value indicating the amount of focus deviation based on the amount of positional deviation in the pupil division direction of two subject images formed by dividing the light incident through the focus lens into two by pupil division. A first focus evaluation value output unit for outputting a signal;
    A first imaging device and a second imaging device arranged in positions where the optical path lengths are different from each other in an optical path of light incident through the focus lens;
    A second focus evaluation value output unit for outputting a second focus evaluation value signal indicating a focus shift amount based on the output signal of the first image sensor and the output signal of the second image sensor; In addition, when the focus position calculated based on the first focus evaluation value signal is not between the focus position of the first image sensor and the second image sensor focus position, the first focus is obtained. Based on the first focus evaluation value signal output from the evaluation value output unit, the focus lens is moved at the first moving speed, and the focus is calculated based on the first focus evaluation value signal. When the position is between the in-focus position of the first image sensor and the in-focus position of the second image sensor, based on the second focus evaluation value signal output from the second focus evaluation value output unit. It is slower than the first moving speed and the focus lens is close to the position where the subject image is in focus. A focus lens control unit for controlling the focus lens so as to move the focus lens at a second moving speed that becomes slower.
    Auto focus device with
  2.  前記フォーカス・レンズ制御部は,
     前記第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合であって,前記フォーカス・レンズが,被写体像が合焦する位置に近い位置となることにより,前記第1の移動速度での移動から,前記第2の移動速度での移動に切り替えるように前記フォーカス・レンズを制御するものである,
     請求項1に記載のオート・フォーカス装置。
    The focus lens control unit
    A focus position calculated based on the first focus evaluation value signal is between the focus position of the first image sensor and the focus position of the second image sensor, and the focus lens; However, the focus lens is controlled so that the movement at the first movement speed is switched to the movement at the second movement speed when the subject image is close to the in-focus position. is there,
    The autofocus device according to claim 1.
  3.  前記フォーカス・レンズ制御部は,
     与えられるフォーカス制御信号に応じて前記フォーカス・レンズを移動させるフォーカス・モータ,
     前記第1の合焦評価値出力部から出力される第1の合焦評価値信号および前記第2の合焦評価値出力部から出力される第2の合焦評価値信号を入力し,与えられるゲイン係数に応じて,入力した第1の合焦評価値信号または第2の合焦評価値信号のレベルを増幅してフォーカス・モータ制御信号として前記フォーカス・モータに与えるゲイン制御増幅回路,ならびに
     前記第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にない場合は前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを第1の移動速度で移動し,前記第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合は前記第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて前記第1の移動速度よりも遅く、かつ、前記フォーカス・レンズが被写体像が合焦する位置に近いほど遅くなる第2の移動速度で前記フォーカス・レンズを移動するようなゲイン係数を前記ゲイン制御増幅回路に与えるゲイン係数制御部,
     を備えている請求項1または2に記載のオート・フォーカス装置。
    The focus lens control unit
    A focus motor for moving the focus lens in accordance with a given focus control signal;
    The first focus evaluation value signal output from the first focus evaluation value output unit and the second focus evaluation value signal output from the second focus evaluation value output unit are input and given. A gain control amplification circuit that amplifies the level of the input first focus evaluation value signal or the second focus evaluation value signal and gives it to the focus motor as a focus motor control signal, When the focus position calculated based on the first focus evaluation value signal is not between the focus position of the first image sensor and the second image sensor focus position, the first focus evaluation is performed. A focus position calculated based on the first focus evaluation value signal by moving the focus lens at a first moving speed based on the first focus evaluation value signal output from the value output unit Is the in-focus position of the first image sensor and the in-focus position of the second image sensor If it is between the positions, it is slower than the first moving speed based on the second focus evaluation value signal output from the second focus evaluation value output unit, and the focus lens is the subject image. A gain coefficient control unit that provides the gain control amplification circuit with a gain coefficient that moves the focus lens at a second moving speed that becomes slower as the position becomes closer to the in-focus position;
    The autofocus device according to claim 1, further comprising:
  4.  第1の合焦評価値出力部が,フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力し,
     第2の合焦評価値出力部が,前記フォーカス・レンズを通って入射する光の光路において、光路長が互いに異なる位置に配置された第1の撮像素子および第2の撮像素子のそれぞれの出力信号にもとづいてピントのずれ量を示す第2の合焦評価値信号を出力し,
     フォーカス・レンズ制御部が,前記第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にない場合は前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを第1の移動速度で移動し,前記第1の合焦評価値信号に基づいて算出される合焦位置が第1の撮像素子の合焦位置と第2の撮像素子合焦位置の間にある場合は前記第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて前記第1の移動速度よりも遅く、かつ、前記フォーカス・レンズが被写体像が合焦する位置に近いほど遅くなる第2の移動速度で前記フォーカス・レンズを移動するように前記フォーカス・レンズを制御する,
     オート・フォーカス装置の動作制御方法。
    The first focus evaluation value output unit is configured to focus on the amount of positional deviation in the pupil division direction of the two subject images formed by dividing the light incident through the focus lens into two by pupil division. Outputting a first focus evaluation value signal indicating the amount of deviation;
    The second focus evaluation value output unit outputs each of the first image sensor and the second image sensor that are arranged at positions having different optical path lengths in the optical path of the light incident through the focus lens. A second focus evaluation value signal indicating the amount of focus deviation is output based on the signal;
    When the focus / lens controller does not have a focus position calculated based on the first focus evaluation value signal between the focus position of the first image sensor and the second image sensor focus position. The focus lens is moved at a first moving speed based on a first focus evaluation value signal output from the first focus evaluation value output unit, and based on the first focus evaluation value signal. Second focus output from the second focus evaluation value output unit when the calculated focus position is between the focus position of the first image sensor and the second image sensor focus position. Based on the evaluation value signal, the focus lens is moved at a second movement speed that is slower than the first movement speed and slower as the focus lens is closer to the position where the subject image is in focus. Control the focus lens;
    Operation control method of auto focus device.
PCT/JP2014/053970 2013-03-29 2014-02-20 Autofocus device and method of controlling operation thereof WO2014156383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-071298 2013-03-29
JP2013071298A JP2016114614A (en) 2013-03-29 2013-03-29 Autofocus unit and method of controlling operation thereof

Publications (1)

Publication Number Publication Date
WO2014156383A1 true WO2014156383A1 (en) 2014-10-02

Family

ID=51623384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053970 WO2014156383A1 (en) 2013-03-29 2014-02-20 Autofocus device and method of controlling operation thereof

Country Status (2)

Country Link
JP (1) JP2016114614A (en)
WO (1) WO2014156383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147848A (en) * 2017-05-23 2017-09-08 杭州度康科技有限公司 Atomatic focusing method and the Real Time Video Acquisition System using this method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7146474B2 (en) 2018-06-20 2022-10-04 キヤノン株式会社 CONTROL DEVICE, IMAGING DEVICE, CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304188A (en) * 2006-05-09 2007-11-22 Sony Corp Imaging apparatus and af module
JP2008203294A (en) * 2007-02-16 2008-09-04 Canon Inc Imaging apparatus
JP2008233668A (en) * 2007-03-22 2008-10-02 Fujinon Corp Autofocus system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304188A (en) * 2006-05-09 2007-11-22 Sony Corp Imaging apparatus and af module
JP2008203294A (en) * 2007-02-16 2008-09-04 Canon Inc Imaging apparatus
JP2008233668A (en) * 2007-03-22 2008-10-02 Fujinon Corp Autofocus system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147848A (en) * 2017-05-23 2017-09-08 杭州度康科技有限公司 Atomatic focusing method and the Real Time Video Acquisition System using this method
CN107147848B (en) * 2017-05-23 2023-08-25 杭州度康科技有限公司 Automatic focusing method and real-time video acquisition system adopting same

Also Published As

Publication number Publication date
JP2016114614A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
US8687284B2 (en) Lens apparatus
US9354487B2 (en) Image-pickup apparatus
JP5919436B2 (en) Auto-focus device and operation control method thereof
US10425571B2 (en) Focusing and image pickup apparatus, storage medium, and method for controlling positioning of a focus lens
US8422878B2 (en) Imaging apparatus performing auto focusing function with plurality of band pass filters and auto focusing method applied to the same
US20160306135A1 (en) Optical apparatus, display controlling method, and display controlling program
JP2011013645A5 (en)
JP2011013645A (en) Imaging device
JP4821506B2 (en) Focus adjustment device and camera
WO2014156383A1 (en) Autofocus device and method of controlling operation thereof
WO2016035642A1 (en) Imaging device, imaging device body, and lens barrel
JP5003121B2 (en) Focus adjustment device, focus adjustment method, and camera
JP2006208703A (en) Electronic camera
JP2006343651A (en) Optical equipment
JP4994733B2 (en) Automatic focusing device and imaging device
JP2008058482A (en) Imaging apparatus and its control method
WO2014156384A1 (en) Autofocus device and method for controlling operation of same
JP2009109792A (en) Autofocusing device and camera using it
JP4900134B2 (en) Focus adjustment device, camera
JP5930979B2 (en) Imaging device
JP5417899B2 (en) Focus detection apparatus and imaging apparatus
JP2007011021A (en) Electronic camera and camera system
KR20140108015A (en) Camera module
JP2014038215A (en) Automatic focusing device, lens device having the same, and imaging apparatus
JP2011118058A (en) Characteristic adjustment method and characteristic adjustment device for imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP