WO2014156083A1 - Vibration classification system, vibration determination device, vibration determination condition setting device, vibration classification method, and readable medium - Google Patents

Vibration classification system, vibration determination device, vibration determination condition setting device, vibration classification method, and readable medium Download PDF

Info

Publication number
WO2014156083A1
WO2014156083A1 PCT/JP2014/001604 JP2014001604W WO2014156083A1 WO 2014156083 A1 WO2014156083 A1 WO 2014156083A1 JP 2014001604 W JP2014001604 W JP 2014001604W WO 2014156083 A1 WO2014156083 A1 WO 2014156083A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
class
waveform data
determination
determination condition
Prior art date
Application number
PCT/JP2014/001604
Other languages
French (fr)
Japanese (ja)
Inventor
宗一朗 高田
茂 葛西
三上 伸弘
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015508046A priority Critical patent/JPWO2014156083A1/en
Publication of WO2014156083A1 publication Critical patent/WO2014156083A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/28Other arrangements on doors or windows, e.g. door-plates, windows adapted to carry plants, hooks for window cleaners
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/11Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes against burglary

Definitions

  • the present invention relates to a vibration classification system, a vibration determination device, a vibration determination condition setting device, a vibration classification method, and a program, and in particular, a vibration classification system, a vibration determination device, a vibration determination condition setting device suitable for detection of an intruder by an intruder,
  • the present invention relates to a vibration classification method and a program.
  • Patent document 1 is a glass breakage detector for crime prevention that is attached to a glass plate that partitions the outside of the room, such as a window glass and a glass door, and detects when a breaker breaks the glass plate and notifies by sound or light. Disclosure.
  • the glass breakage detector disclosed in Patent Document 1 includes a vibration sensor unit that converts vibration of a glass plate into a voltage signal, an amplification unit that amplifies the voltage signal, and an amplitude of a predetermined frequency component extracted from the amplified voltage signal. And a vibration analysis unit that outputs a warning signal to a CPU (Central Processing Unit) when glass breakage is detected by comparing with a threshold value. When the alarm signal is input, the CPU notifies the glass breakage alarm at the output unit.
  • a CPU Central Processing Unit
  • Patent Document 2 discloses a crime prevention system capable of detecting locking / unlocking of an entrance door.
  • the security system includes a detection device and a determination device.
  • the detection device is attached to the inner key knob portion (thumbturn) of the entrance door.
  • the detection device incorporates an acceleration sensor that detects acceleration in the directions of three axes (X axis, Y axis, and Z axis).
  • the acceleration sensor detects the acceleration of the inner key.
  • the detection device notifies the determination device of the thumb turn acceleration by wireless communication.
  • the determination device is installed in the same room or in the same building as the entrance door to which the detection device is mounted, receives a signal transmitted from the detection device, determines whether there has been an unauthorized intrusion, and the user or security company Notice.
  • the determination device determines the state of the thumbturn to which the detection device is attached based on the acceleration data received from the detection device.
  • the determination device calculates the tilt angle of the thumb turn from the acceleration of the thumb turn on which the detection device is mounted, and determines whether the key is locked or unlocked based on the tilt angle. .
  • Patent Document 3 discloses a crime prevention device that detects unauthorized opening by an intruder based on vibration generated in a door body.
  • the security device is provided on the indoor side surface of the door body provided at the entrance of the house.
  • the security device includes a triaxial vibration detection sensor, a security control unit, an indicator lamp, a buzzer device, and an auxiliary lock device.
  • the three-axis vibration detection sensor detects a vibration component in the three-dimensional direction of the vibration generated in the door body, and outputs the detection signal to the crime prevention control unit.
  • the security control unit determines whether or not the vibration generated in the door body is an unauthorized opening vibration compared with a vibration pattern registered in advance. .
  • an abnormality detection signal is output, the indicator lamp is turned on, the buzzer device is sounded, and the thumb turn of the door body is rotated from the locked posture to the unlocked posture in the auxiliary lock device. To restrict what to do.
  • the vibration pattern generated in the door body when a normal opening / closing operation is performed on the crime prevention control unit the vibration pattern generated in the door body when wind pressure is applied, and the vibration generated in the door body when the vehicle travels in the vicinity.
  • the vibration generated in the door body by the installation environment such as a pattern, is registered in advance as a normal vibration pattern.
  • the security control unit determines whether or not the detection signal (vibration pattern) from the triaxial vibration detection sensor is a normal vibration pattern registered in advance, and if it is determined that the vibration is other than the normal vibration pattern Then, an abnormality detection signal is output as a vibration caused by unauthorized opening, that is, an abnormal vibration pattern.
  • the registration of the vibration pattern to the security control unit is performed in advance when the security device is shipped from the factory, but new registration or deletion can be freely performed by a contractor or user at the installation site. As a result, a normal vibration pattern suitable for the installation environment can be registered in the security control unit, and malfunction of the security device can be reduced.
  • Patent Document 4 discloses a window opening / closing detection system capable of detecting the opening / closing and locking state of a window using an acceleration sensor.
  • the window opening / closing detection system includes an opening / closing detector attached to the window, and a management device connected to the opening / closing detector so as to be capable of wireless communication.
  • the open / close detector includes: an acceleration sensor that detects movement of the window; waveform detection means that detects an output waveform of the acceleration sensor; storage means that associates and stores the output waveform of the acceleration sensor and the open / closed state of the window; and the acceleration sensor Open / close determining means for comparing the output waveform and a pre-stored waveform to determine the open / closed state of the window, and a transmission unit for transmitting the open / close information of the window to the management device.
  • the acceleration sensor is a two-dimensional acceleration sensor and can detect the window acceleration in the opening / closing direction of the window and the direction orthogonal thereto.
  • the storage means stores the locking operation when locking the crescent lock on the window and the output waveform of the acceleration sensor in association with each other.
  • the open / close detector detects the state of the crescent lock from the output waveform of the acceleration sensor.
  • Patent Document 3 discloses that the malfunction of the security device can be reduced by registering the normal vibration pattern at the installation site.
  • the techniques disclosed in Patent Documents 3 and 4 detect the detected vibration pattern.
  • the detected vibration pattern (waveform) is determined based on the (waveform) and the vibration pattern (waveform) registered in advance.
  • a high processing capability is required for an apparatus that performs the determination. Since a device having a high processing capability consumes a large amount of power, there is a problem that it is not preferable to use a device having a high processing capability as a determination device that requires constant power supply.
  • the present invention has been made in order to solve such problems, and it is possible to set the determination condition according to the installation environment, and a simple configuration with low power consumption for a device that requires constant power supply. It is an object of the present invention to provide a vibration classification system, a vibration determination device, a vibration determination condition setting device, a vibration classification method, and a program.
  • the vibration classification system includes a determination device and a determination condition setting device.
  • the determination device detects a first vibration and transmits first vibration waveform data representing the first vibration to the determination condition setting device.
  • the determination condition setting device calculates a determination condition for determining a vibration classification using the first vibration waveform data as teacher data, and transmits the determination condition to the determination device.
  • the determination device detects a second vibration, determines a classification of the second vibration based on the determination condition, and transmits a determination result regarding the second vibration to the outside.
  • a vibration determination device transmits vibration detection means for detecting a first vibration and first vibration waveform data representing the first vibration to a determination condition setting device to determine a vibration classification.
  • Communication means for receiving a judgment condition for doing so from the judgment condition setting device, and an arithmetic means.
  • the vibration detection means detects a second vibration.
  • the computing means determines the classification of the second vibration based on the determination condition.
  • the communication means transmits a determination result regarding the second vibration to the outside.
  • a vibration determination condition setting device determines a vibration classification by using communication means for receiving first vibration waveform data from the vibration determination device, and using the first vibration waveform data as teacher data. Calculating means for calculating a determination condition for this.
  • the communication means transmits the determination condition to the vibration determination device.
  • the determination device detects the first vibration, transmits first vibration waveform data representing the first vibration to the determination condition setting device, and the determination condition setting device. Calculates a determination condition for determining a vibration classification using the first vibration waveform data as teacher data, transmits the determination condition to the determination device, and the determination device detects a second vibration. The classification of the second vibration is determined based on the determination condition, and the determination result for the second vibration is transmitted to the outside.
  • the vibration classification method detects a first vibration, transmits first vibration waveform data representing the first vibration to a determination condition setting device, detects a second vibration, and performs the determination.
  • the classification of the second vibration is determined based on the determination condition received from the condition setting device, and the determination result for the second vibration is transmitted to the outside.
  • a program transmits first vibration waveform data representing a first vibration to a determination condition setting device, and classifies a second vibration based on the determination condition received from the determination condition setting device. Determine and transmit the determination result for the second vibration to the outside.
  • the vibration classification system, the vibration determination device, and the vibration that can set the determination condition according to the installation environment and can make the device that needs constant power supply have a simple configuration with low power consumption.
  • a determination condition setting device, a vibration classification method, and a program are provided.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vibration classification system according to a first exemplary embodiment.
  • FIG. 3 is a time sequence diagram illustrating a vibration classification method according to the first exemplary embodiment. It is the schematic which shows the structure of the vibration classification system concerning Embodiment 2.
  • FIG. It is a block diagram of the IIR type digital filter which the frequency band limitation part with which the vibration classification system concerning Embodiment 2 is provided is realized.
  • FIG. 10 is a time sequence diagram illustrating a vibration classification method according to the second exemplary embodiment. It is the schematic which shows the state which installed the determination apparatus concerning Embodiment 2 in the generation
  • 10 is a flowchart of a determination condition calculation step included in the vibration classification method according to the second exemplary embodiment. It is a conceptual diagram of unlocking vibration. It is a conceptual diagram of a locking vibration spectrum. It is a conceptual diagram of a difference spectrum. It is a conceptual diagram of linear discriminant analysis.
  • the dividing number k is a conceptual view of a linear discriminant analysis when set to k 1.
  • the dividing number k is a conceptual view of a linear discriminant analysis when set to k 2.
  • 10 is a flowchart of a vibration determination process included in the vibration classification method according to the second exemplary embodiment. It is a difference spectrum in the case of measuring data.
  • the vibration classification system 1 includes a determination device 10 and a determination condition setting device 50.
  • the determination device 10 includes a vibration detection unit 11, a communication unit 24, and a calculation unit 25.
  • the vibration detection unit 11 is, for example, a vibration sensor.
  • the communication unit 24 is a wired communication device that performs wired communication or a wireless communication device that performs wireless communication.
  • the calculation unit 25 is a calculation device such as a CPU (Central Processing Unit), for example.
  • the determination condition setting device 50 includes a communication unit 54 and a calculation unit 55.
  • the communication unit 54 is a wired communication device that performs wired communication or a wireless communication device that performs wireless communication.
  • the calculation unit 55 is a calculation device such as a CPU, for example.
  • Determining device 10 detects vibration, determines vibration classification, and transmits the determination result to the outside.
  • the determination condition setting device 50 calculates a determination condition for the determination device 10 to determine the vibration classification.
  • the vibration classification system 1 is suitable for a crime prevention application that detects an intruding action by an intruder based on mechanical vibrations such as an entrance door or a window glass.
  • the vibration classification method includes step 10 for initial setting of determination device 10 and step S20 for operating determination device 10.
  • the initial setting step S10 includes steps S120, S130, S140, and S170.
  • Operation step S20 includes steps S200, S210, and S220.
  • step S120 the vibration detection unit 11 of the determination device 10 detects vibration.
  • step S ⁇ b> 130 the communication unit 24 of the determination device 10 transmits vibration waveform data representing the vibration detected in step S ⁇ b> 120 to the determination condition setting device 50.
  • step S ⁇ b> 130 the communication unit 54 of the determination condition setting device 50 receives vibration waveform data from the determination device 10.
  • step S140 the calculation unit 55 of the determination condition setting device 50 calculates a determination condition for determining a vibration classification by using the vibration waveform data as teacher data.
  • step S ⁇ b> 170 the communication unit 54 of the determination condition setting device 50 transmits the determination condition to the determination device 10.
  • the communication unit 24 of the determination device 10 receives the determination condition from the determination condition setting device 50.
  • each step included in the operation step S20 will be described. Each step included in the operation step S20 is executed by the determination apparatus 10. In the operation step S20, the determination condition setting device 50 is not necessary. In step S200, the vibration detection unit 11 detects vibration. In step S210, the calculation unit 25 determines the classification of vibration detected in step S200 based on the determination condition. In step S220, the communication unit 24 transmits the determination result regarding the vibration detected in step S200 to the outside.
  • the determination condition setting device 50 calculates the determination condition based on the vibration detected by the determination device 10 in step S120, and the determination device 10 classifies the vibration detected in step S200 based on the determination condition. Determine. Therefore, the determination condition can be set according to the installation environment of the determination apparatus 10. Therefore, erroneous determination due to the influence of disturbance vibration factors is prevented.
  • the determination device 10 and the determination condition setting device 50 are separate devices, and it is necessary to always install and always supply power at the generation site of the vibration to be determined. Only the determination device 10 is provided. Since it is not necessary to always supply power, the determination condition setting device 50 with a small power consumption constraint calculates the determination condition. Therefore, the determination condition can be calculated using a complicated algorithm. By using a complicated algorithm, the determination condition can be set so that high-precision determination can be performed without requiring high processing capability. Therefore, it is possible to make the determination device 10 that needs to constantly supply power have a simple configuration with low power consumption. As a result, it becomes easy to install the determination apparatus 10 in a general house.
  • the functions of the vibration detection unit 11, the communication unit 24, and the calculation unit 25 may be realized by a dedicated circuit or a dedicated device, but may be realized by a computer CPU executing a program.
  • the functions of the communication unit 54 and the calculation unit 55 may be realized by a dedicated circuit or a dedicated device, but may also be realized by a CPU of a computer executing a program.
  • the vibration classification system 1 includes a determination device 10 and a determination condition setting device 50.
  • the determination condition setting device 50 includes a storage unit 53, a communication unit 54, and a calculation unit 55.
  • the calculation unit 55 includes a frequency band limiting unit 56, a feature amount extraction unit 57, a discriminant analysis unit 58, and an optimization calculation unit 59.
  • the frequency band limiting unit 56 performs frequency band limitation using a digital filter.
  • the discriminant analysis unit 58 performs linear discriminant analysis.
  • the optimization calculator 59 cooperates with the frequency band limiting unit 56, the feature amount extraction unit 57, and the discriminant analysis unit 58 to perform optimization calculation of determination conditions for the determination device 10 to determine the vibration classification.
  • the optimization calculation unit 59 can perform matrix calculation and statistical analysis calculation.
  • the storage unit 53 is a storage device such as a hard disk drive or a semiconductor memory.
  • the determination device 10 includes a vibration detection unit 11 and a main unit 20.
  • the vibration detection unit 11 and the main unit 20 have separate casings.
  • the main unit 20 includes an unnecessary response removal unit 21, an analog-digital (A / D) conversion unit 22, a storage unit 23, a communication unit 24, and a calculation unit 25.
  • the calculation unit 25 includes a frequency band limiting unit 26, a feature amount extraction unit 27, and a discriminant analysis unit 28.
  • the frequency band limiting unit 26 performs frequency band limitation using a digital filter.
  • the discriminant analysis unit 28 performs linear discriminant analysis.
  • the vibration detection unit 11 is, for example, a piezoelectric acceleration sensor with a built-in signal amplification circuit.
  • the unnecessary response removing unit 21 is, for example, a bandpass filter including a resistor and a capacitor.
  • the unnecessary response removal unit 21 is provided between the vibration detection unit 11 and the A / D conversion unit 22.
  • the A / D converter 22 is, for example, a ⁇ - ⁇ type A / D converter.
  • the storage unit 23 is a storage device such as a hard disk drive or a semiconductor memory.
  • the analog-digital conversion bit number of the A / D conversion unit 22 is 12 bits, and the sampling frequency of the A / D conversion unit 22 is 5 kHz.
  • the number of analog-digital conversion bits of the A / D converter 22 is 12 bits or less, and the sampling frequency of the A / D converter 22 is 6 kHz or more.
  • the vibration classification system 1 is used, for example, for a crime prevention application that detects an intruder act by an intruder based on vibration caused by locking and unlocking the front door.
  • the vibration classification system 1 may be referred to as a front door lock / unlock detection system.
  • the determination device 10 may be referred to as a lock / unlock detection device.
  • the determination condition setting device 50 may be referred to as an initial setting terminal.
  • the digital filter generates output vibration waveform data y [n] by limiting the frequency band of the input vibration waveform data u [n].
  • the input / output relationship of discrete time data is expressed by the following equation.
  • FIG. 4 shows a block diagram corresponding to this input / output relationship.
  • the delay element z ⁇ 1 delays the time data by one step.
  • the order of the digital filter represents the number of delay elements z ⁇ 1 and represents the use of past discrete time data corresponding to this number.
  • a digital filter is expressed by z-converting the input / output relationship, it is expressed by the following equation. Where the symbol n a, n b represents the order of the digital filter.
  • the frequency band limiting unit 26 provides a digital filter of the number of dimensions of the feature amount used by the discrimination analysis unit 28 to determine the vibration classification. When the number of dimensions of the feature quantity is L, j takes 1,.
  • a monitoring frequency band can be cited as a design factor of the digital filter.
  • the monitoring frequency band is a limited frequency band, that is, a frequency band of the output vibration waveform data y [n].
  • the monitoring frequency band may be referred to as a pass frequency band.
  • the digital filter filter coefficient is shown below.
  • the digital filter orders n a and nb are preset by the manufacturer or user of the vibration classification system 1.
  • the digital filter coefficient is calculated by the determination condition setting device 50 when the determination device 10 is initially set.
  • the configuration and operation of the frequency band limiting unit 56 are the same as the configuration and operation of the frequency band limiting unit 26.
  • the frequency band limiting unit 56 and the frequency band limiting unit 26 share the same digital filter order.
  • the vibration classification method according to the second embodiment includes step 10 for initial setting of determination device 10 and step S20 for operating determination device 10.
  • the initial setting step S10 includes steps S100, S110, S120, S130, S140, S170, and S180.
  • Operation step S20 includes steps S200, S210, and S220.
  • FIG. 6 shows a site where the vibration to be determined is generated.
  • the user installs the determination device 10 at the site where the vibration to be determined is generated.
  • the vibration detection unit 11 is fixed to the outer frame 110 of the entrance door 100 with a double-sided tape or the like in order to detect vibration due to locking and unlocking of the lock 104 provided on the entrance door 100.
  • the main unit 20 connected to the vibration detection unit 11 via the signal cable is fixed near the vibration detection unit 11.
  • the user connects the determination condition setting device 50 to the determination device 10 (specifically, the main unit 20) using a USB (Universal Serial Bus) cable 80.
  • USB Universal Serial Bus
  • the determination condition setting device 50 is preferably, for example, a notebook personal computer or a tablet terminal that has high processing capability and is suitable for carrying. Instead of performing wired communication between the determination device 10 and the determination condition setting device 50, wireless communication may be performed. When performing wireless communication, the determination condition setting device 50 is installed within a range where wireless communication with the determination device 10 is possible.
  • the vibration detection unit 11 detects vibration due to locking and unlocking of the lock 104 provided in the entrance door 100. Specifically, the vibration detection unit 11 converts the vibration due to the lock of the lock 104 into an electric signal (hereinafter referred to as a lock electric signal), and the vibration due to the unlocking of the lock 104 as an electric signal (hereinafter referred to as an unlock electric signal). ).
  • the unnecessary response removing unit 21 removes noise from the lock electric signal and the unlock electric signal by a band pass filter.
  • the A / D converter 22 performs analog-to-digital conversion of the locked electrical signal after passing through the unnecessary response removing unit 21 (bandpass filter) into vibration waveform data (hereinafter also referred to as locked vibration waveform data).
  • the A / D conversion unit 22 performs analog-digital conversion of the unlocked electrical signal after passing through the unnecessary response removing unit 21 (bandpass filter) into vibration waveform data (hereinafter also referred to as unlocked vibration waveform data).
  • Locking vibration waveform data represents vibration due to locking.
  • the unlocking vibration waveform data represents vibration due to unlocking.
  • step S ⁇ b> 130 the communication unit 24 of the determination device 10 transmits the lock vibration waveform data and the unlock vibration waveform data to the determination condition setting device 50.
  • the receiving unit 54 of the determination condition setting device 50 receives the locking vibration waveform data and the unlocking vibration waveform data from the determination device 10.
  • step S140 the calculation unit 55 of the determination condition setting device 50 calculates a determination condition for determining the vibration classification using the lock vibration waveform data and the unlock vibration waveform data as teacher data.
  • step S140 includes steps S141 to S160.
  • M represents the number of classes in the discriminant analysis.
  • M 2.
  • i represents a class
  • the optimization calculation unit 59 inputs the lock vibration waveform data (step S141), executes FFT (Fast Fourier Transform), and obtains spectrum data (hereinafter referred to as lock vibration spectrum data) from the lock vibration waveform data. Is calculated (S142).
  • FFT Fast Fourier Transform
  • the optimization calculation unit 59 inputs the unlocking vibration waveform data (step S141), executes FFT, and calculates spectrum data (hereinafter referred to as unlocking vibration spectrum data) from the unlocking vibration waveform data (S142). In step S143, the optimization calculation unit 59 calculates difference spectrum data from the lock vibration spectrum data and the unlock vibration spectrum data.
  • step S144 the optimization calculation unit 59 performs a peak search on the difference spectrum data, and detects peaks 71 and 72.
  • step S145 the optimization calculation unit 59 extracts the feature frequency candidates f 0 , f 1 , f 2 ,... As the candidate of the center frequency of the feature amount extraction frequency band from which the feature amount is extracted from the difference spectrum data.
  • the characteristic frequency candidate f 0 is the center frequency of the frequency band 70 in which there is no difference between the unlocking vibration spectrum and the locking vibration spectrum.
  • the characteristic frequency candidate f 1 is the frequency at the apex of the peak 71.
  • the feature frequency candidate f 2 is the frequency at the apex of the peak 72.
  • the computing unit 55 optimizes the bandwidth of the feature amount extraction frequency band by executing steps S147 to S154.
  • k is the number of divisions
  • N is a natural number set by the manufacturer or user of the vibration classification system 1.
  • the relationship between the detuning parameter ⁇ k for setting the bandwidth of the feature quantity extraction frequency band and the division number k is expressed by the following equation.
  • step S147 the optimization calculation unit 59 calculates digital filter coefficients corresponding to the feature amount extraction frequency band F j ⁇ k to F j + ⁇ k .
  • the frequency band limiting unit 56 limits the frequency band of the vibration waveform data to the feature amount extraction frequency band F j ⁇ k to F j + ⁇ k based on the digital filter coefficient.
  • the monitoring frequency band of the digital filter is set to the feature amount extraction frequency band.
  • the feature quantity extraction unit 57 extracts the maximum amplitude of the vibration waveform data in the feature quantity extraction frequency band F j ⁇ k to F j + ⁇ k as the feature quantity X i, j, k .
  • step S ⁇ b> 149 the calculation unit 55 stores the feature amounts X i, j, k in the storage unit 53.
  • the class i is 1 (locked)
  • the locked vibration waveform data is used as the vibration waveform data.
  • the class i is 2 (unlocked)
  • unlocked vibration waveform data is used as the vibration waveform data.
  • FIG. 9 is a conceptual diagram of the linear discriminant analysis method used in the present embodiment.
  • the horizontal axis of the feature space in the upper right in FIG. 9 indicates the feature quantity X 1 obtained from the feature quantity extraction frequency band F 1 ⁇ k to F 1 + ⁇ k, and the vertical axis of the feature space represents the feature quantity extraction frequency.
  • the feature amount X 2 obtained from the band F 2 ⁇ k to F 2 + ⁇ k is shown.
  • the dimension number L of the feature quantity is 2
  • the feature space is referred to as a feature plane
  • the discriminant function is a straight line.
  • the discriminant function is a hyperplane.
  • the triangle symbol corresponds to the case where the class i is 1 (locked).
  • the circle symbol corresponds to the case where the class i is 2 (unlocked).
  • the distribution corresponding to the case where the class i is 1 (locked) and the distribution corresponding to the case where the class i is 2 (unlocked) are roughly separated, but misidentification occurs due to a slight overlap.
  • variable conversion from the feature amounts X 1 and X 2 to the determination index z is performed so that the misclassification is minimized.
  • the following formula is used as the conversion formula.
  • ⁇ 0 , ⁇ 1 , and ⁇ 2 are referred to as linear discrimination coefficients.
  • ⁇ 1 is the weight (coefficient) of X 1 .
  • ⁇ 2 is a weight (coefficient) of X 2 .
  • the above equation (6) may be referred to as a linear discriminant.
  • the feature amounts X 1 and X 2 are aggregated into the determination index z by the conversion of the above expression, and a new distribution corresponding to the case where the class i is 1 (locked) and a new distribution corresponding to the case where the class i is 2 (unlocked) Is generated.
  • the new distribution is shown at the lower left in FIG.
  • the division number k is k 1 has a large overlap of the distribution
  • the division number k is k 2 is small overlap distribution.
  • the distribution separation changes.
  • the difference spectrum component included in the feature amount extraction frequency band is small, the overlap between the distribution corresponding to the locking and the distribution corresponding to the unlocking increases, and the risk of erroneous determination increases.
  • the detuning parameter ⁇ k is too large, noise is extracted as a feature amount, which increases the risk of erroneous determination. Therefore, the division number k and the detuning parameter ⁇ k are optimized so that the risk of erroneous determination is minimized.
  • the optimization calculation unit 59 calculates linear discrimination coefficients ⁇ 0 , ⁇ 1 to ⁇ L based on the feature amounts X i, j, k extracted in step S148.
  • the linear discrimination coefficients ⁇ 0 and ⁇ 1 to ⁇ L calculated in step S150 may be referred to as linear discrimination coefficient candidates.
  • the discriminant analysis unit 58 inputs in step S141 based on the feature quantities X i, j, k extracted in step S148 and the linear discriminant coefficients ⁇ 0 , ⁇ 1 to ⁇ L calculated in step S150. The classification of the obtained vibration waveform data is determined.
  • i 1) are calculated for each case where k is 1 to N.
  • FIG. 11 is a graph showing the relationship between the evaluation function J and the division number k.
  • the evaluation function J is minimized.
  • step S157 the calculation unit 55 stores the feature amounts X i, j, k * in the storage unit 53.
  • the class i is 1 (locked)
  • the locked vibration waveform data is used as the vibration waveform data.
  • the class i is 2 (unlocked)
  • unlocked vibration waveform data is used as the vibration waveform data.
  • step S158 the optimization calculation unit 59 calculates linear discrimination coefficients ⁇ 0 , ⁇ 1 to ⁇ L based on the feature amounts X i, j, k * extracted in step S156.
  • step S159 the discriminant analysis unit 58 uses the feature quantities X i, j, k * extracted in step S156 and the linear discriminant coefficients ⁇ 0 , ⁇ 1 to ⁇ L calculated in step S158, in step S141.
  • the classification of the input vibration waveform data is determined.
  • step S159 the optimization calculation unit 59 calculates a false detection rate in the determination result.
  • i 1).
  • i 1) are not smaller than the target value (NO in step S160), the process returns to step S146.
  • i 1) is compared with a target value, and a step is performed based on the comparison result. You may determine whether it complete
  • step S ⁇ b> 170 the communication unit 54 of the determination condition setting device 50 transmits the determination condition to the determination device 10.
  • the determination condition includes the digital filter coefficient calculated in step S154 and the linear discrimination coefficient calculated in step S158.
  • the communication unit 24 of the determination device 10 receives the determination condition from the determination condition setting device 50.
  • step S180 the user releases the connection between the determination device 10 and the determination condition setting device 10.
  • step S20 Each step included in the operation step S20 is executed by the determination apparatus 10.
  • the determination condition setting device 50 is not necessary.
  • step S200 the vibration detection unit 11 detects vibration. Specifically, the vibration detection unit 11 converts vibration due to locking or unlocking of the lock 104 into an electric signal.
  • the unnecessary response removing unit 21 removes noise from the electric signal by a bandpass filter.
  • the A / D converter 22 performs analog-digital conversion of the electrical signal after passing through the unnecessary response removing unit 21 (bandpass filter) into vibration waveform data.
  • the calculation unit 25 determines the classification of vibration detected in step S200 based on the determination condition.
  • step S210 includes steps S211 to S217.
  • the frequency band limiting unit 26 uses the frequency band of the vibration waveform data obtained in step S200 based on the digital filter coefficient transmitted by the determination condition setting device 50 as the feature amount extraction frequency band F j - ⁇ k *. Limited to ⁇ F j + ⁇ k * .
  • the feature amount extraction unit 27 extracts the maximum amplitude in the feature amount extraction frequency band F j ⁇ k * to F j + ⁇ k * of the vibration waveform data as the feature amount X j .
  • the feature amount extraction processing includes step S211 in which the vibration waveform data is band-limited by the digital filter, and step S212 in which the feature amount is extracted from the vibration waveform data after the band limitation.
  • step S212 the absolute value of the amplitude is extracted.
  • step S ⁇ b> 213 the calculation unit 25 stores the feature amount X j in the storage unit 23.
  • step S215 the discriminant analysis unit 28 compares the determination index z calculated in step S214 with the boundary threshold “0”. When the determination index z is larger than the boundary threshold (YES in step S215), the discriminant analysis unit 28 determines that the vibration classification detected in step S200 is class 1 (locked) (step S216). When the determination index z is not greater than the boundary threshold (NO in step S215), the discriminant analysis unit 28 determines that the vibration classification detected in step S200 is class 2 (unlocked) (step S217).
  • step S220 communication unit 24 transmits a determination result regarding the vibration detected in step S200 to the outside.
  • vibration classification is determined based on a plurality of feature amounts (steps S214 to S217). Therefore, the determination accuracy is improved.
  • the vibration classification is determined based on the maximum amplitude in the feature amount extraction frequency band F j ⁇ k * to F j + ⁇ k * in step S211. Therefore, the determination accuracy is maintained even if the frequency at which the amplitude is maximum changes slightly.
  • the bandwidth of the feature amount extraction frequency band is set so that the false detection rate is minimized (step S153). Therefore, the determination accuracy is improved.
  • feature frequencies F 1 to F L are selected from the feature frequency candidates f 0 , f 1 , f 2 ,... So that the false detection rate is smaller than the target value (steps S160 and S146). Therefore, a certain determination accuracy is guaranteed.
  • noise is removed from the electrical signal representing vibration by the unnecessary response removing unit 21 (bandpass filter). Therefore, unnecessary responses (unnecessary external communication) are reduced.
  • step S210 does not include calculations with large load and power consumption such as matrix calculation, statistical analysis calculation, fast Fourier transform, peak search calculation, and digital filter iterative calculation. Therefore, step S210 can be executed by a general-purpose microcontroller without using a CPU with high power consumption such as a DSP (Digital Signal Processor). Therefore, the power consumption of the determination apparatus 10 that needs to be constantly supplied can be suppressed.
  • a general-purpose microcontroller without using a CPU with high power consumption such as a DSP (Digital Signal Processor). Therefore, the power consumption of the determination apparatus 10 that needs to be constantly supplied can be suppressed.
  • DSP Digital Signal Processor
  • FIG. 13 shows a difference spectrum between the locking vibration spectrum and the unlocking vibration spectrum obtained by actual measurement.
  • the peak search detected two or more distinct peaks including the first peak and the second peak. 731 Hz was extracted as the frequency f 1 of the apex of the first peak, and 1040 Hz was extracted as the frequency f 2 of the apex of the second peak. Further, since it is also characterized by no peak, 150 Hz was extracted as the center frequency f 0 in a frequency band in which there is no difference between the unlocking vibration spectrum and the locking vibration spectrum.
  • FIG. 14A to 14C show the division number k dependency of the feature space.
  • the horizontal axis of the feature space represents a feature value X 1 obtained from the feature amount extraction frequency band around the frequency f 1, the longitudinal axis of the feature space obtained from the feature extraction frequency band around the frequency f 2 and indicating the feature quantity X 2.
  • FIG. 14A shows a distribution (triangle symbol) corresponding to locking and a distribution (circle symbol) corresponding to unlocking when the division number k is 10.
  • FIG. 14B shows a distribution (triangle symbol) corresponding to locking and a distribution (circle symbol) corresponding to unlocking when the division number k is 18.
  • 14C shows a distribution (triangle symbol) corresponding to locking and a distribution (circle symbol) corresponding to unlocking when the division number k is 30.
  • the broken line in the figure shows a straight line when the left side of the linear discriminant (6) is 0.
  • the division number k is 10 and 30, the distribution corresponding to locking and the distribution corresponding to unlocking overlap each other, but when the division number k is 18, the distribution corresponding to locking and the distribution corresponding to unlocking are clear. Isolated on.
  • FIG. 15 is a graph showing the relationship between the evaluation function J and the division number k.
  • the division number k was optimized using the evaluation function J.
  • the optimal number of divisions k * that minimizes the evaluation function J was 15.
  • the digital filter in this test was a secondary bandpass filter.
  • a digital filter coefficient corresponding to the feature amount extraction frequency band 710 to 750 Hz centered on the frequency f 1 was calculated as follows.
  • the digital filter coefficient corresponding to the feature amount extraction frequency band 1020 to 1060 Hz centered on the frequency f 2 was calculated as follows.
  • the linear discriminant coefficient was calculated as follows.
  • the determination condition setting device 50 transmits the above parameters to the determination device 10 by wired communication.
  • the determination device 10 writes the parameter in the storage unit 23 and determines vibration waveform data representing vibration based on the parameter.
  • FIG. 16 shows a comparison between the determination result obtained by the present embodiment and the determination result according to the comparative example.
  • the amplitude of a predetermined frequency component is extracted from the vibration waveform data, and the determination is performed based on a comparison between the amplitude and a threshold value.
  • the detection rate for unlocking vibration was 89.6%
  • the false detection rate was 24.8%
  • the false alarm rate was 10.4%
  • the detection rate for locking vibration was 75.2%
  • the detection rate was 10.4% and the false alarm rate was 24.8%.
  • the detection rate for unlocking vibration is 99.8%
  • the false detection rate is 0.8%
  • the false alarm rate is 0.2%
  • the detection rate for locking vibration is It was 99.2%, the false detection rate was 0.2%, and the false alarm rate was 0.8%.
  • high-precision detection is possible.
  • the average time required from vibration detection (step S200) to determination (step S210) was 90 ms. From detection of vibration to determination could be performed within 1 minute.
  • the vibration classification system 1 according to the present embodiment can be applied to detection of locking and unlocking of the entrance door 100 in the security system. Therefore, the industrial value of the vibration classification system 1 is high.
  • the function of the unit 28 may be realized by a dedicated circuit or a dedicated device, but may also be realized by a CPU of a computer executing a program.
  • the functions of the storage unit 53, the communication unit 54, the calculation unit 55, the frequency band limiting unit 56, the feature amount extraction unit 57, the discriminant analysis unit 58, and the optimization calculation unit 59 are a dedicated circuit or a dedicated device. However, it may be realized by the CPU of the computer executing the program.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
  • the present invention can be applied to vibration classification other than vibration due to locking or unlocking of a lock. For example, it is possible to classify vibrations to be measured and vibrations other than noise.
  • a vibration classification system including a determination device and a determination condition setting device.
  • the determination device detects a first vibration and transmits first vibration waveform data representing the first vibration to the determination condition setting device.
  • the determination condition setting device calculates a determination condition for determining a vibration classification using the first vibration waveform data as teacher data, and transmits the determination condition to the determination device.
  • the determination device detects a second vibration, determines a classification of the second vibration based on the determination condition, and transmits a determination result regarding the second vibration to the outside.
  • the vibration classification system according to supplementary note 1, wherein the determination condition includes a digital filter coefficient and a linear discrimination coefficient.
  • the determination device converts the first vibration into a first electric signal, converts the second vibration into a second electric signal, and converts the first electric signal into the first vibration waveform data.
  • Analog-to-digital conversion means for converting the second electric signal into second vibration waveform data; and determination apparatus side communication means for transmitting the first vibration waveform data to the determination condition setting device and receiving the determination conditions;
  • a determination device-side frequency band limiting unit that limits a frequency band of the second vibration waveform data to a plurality of feature quantity extraction frequency bands based on the digital filter coefficient; and a plurality of feature quantities from the plurality of feature quantity extraction frequency bands
  • Determination device side feature amount extraction means, and determination device side discrimination analysis means for determining the classification of the second vibration based on the linear discrimination coefficient and the plurality of feature amounts.
  • the determination device-side communication unit transmits the determination result for the second vibration to the outside.
  • the vibration classification system includes a first class vibration belonging to a first class and a second class vibration belonging to a second class.
  • the first vibration waveform data includes first class vibration waveform data representing the first class vibration and second class vibration waveform data representing the second class vibration.
  • the determination condition setting device includes: a setting device side frequency band limiting unit that limits a frequency band of the first class vibration waveform data and the second class vibration waveform data to a plurality of frequency bands; Setting device side feature quantity extraction means for extracting a plurality of first class feature quantities from the plurality of frequency bands and extracting a plurality of second class feature quantities from the plurality of frequency bands of the second class vibration waveform data, respectively.
  • a setting device-side discriminating / analyzing means for determining a classification of the first class vibration waveform data and the second class vibration waveform data based on the plurality of first class feature quantities and the plurality of second class feature quantities, Optimizing the determination condition in cooperation with the setting device side frequency band limiting unit, the setting device side feature amount extraction unit, and the setting device side discriminant analysis unit Comprising the optimization calculation means for performing calculation to receive the first vibration waveform data, and a setting device side communication means for transmitting the determination condition in the determination device.
  • the vibration classification system according to supplementary note 4, wherein the determination condition includes a digital filter coefficient and a linear determination coefficient.
  • the optimization calculation means calculates first class spectrum data from the first class vibration waveform data, calculates second class spectrum data from the second class vibration waveform data, and calculates the first class spectrum data and the first class spectrum data. Difference spectrum data is calculated from the two-class spectrum data, and a plurality of characteristic frequencies are extracted from the difference spectrum data.
  • the setting device side frequency band limiting means limits the frequency bands of the first class vibration waveform data and the second class vibration waveform data to a plurality of first frequency bands centered on the plurality of characteristic frequencies, respectively.
  • the setting device-side feature amount extraction unit extracts a plurality of first class first feature amounts from the plurality of first frequency bands of the first class vibration waveform data, and the plurality of second class vibration waveform data. A plurality of second class first feature values are respectively extracted from the first frequency band.
  • the optimization calculation unit calculates a linear discriminant coefficient candidate based on the plurality of first class first feature values and the plurality of second class first feature values.
  • the setting device side discriminating / analyzing unit determines a classification of the first class vibration waveform data and the second class vibration waveform data based on the linear discriminant coefficient candidates.
  • the optimization calculation means calculates an optimum bandwidth as a bandwidth of the plurality of first frequency bands that minimizes the false detection rate based on a determination result based on the linear discrimination coefficient candidate, and The digital filter coefficient is calculated based on the characteristic frequency and the optimum bandwidth.
  • the setting device side frequency band limiting means limits the frequency band of the first class vibration waveform data and the first class vibration waveform data to a plurality of second frequency bands based on the digital filter coefficient.
  • the setting device-side feature quantity extraction unit extracts a plurality of first class second feature quantities from the plurality of second frequency bands of the first class vibration waveform data, and the plurality of second class vibration waveform data. A plurality of second class second feature quantities are respectively extracted from the second frequency band.
  • the optimization calculation means calculates the linear discrimination coefficient based on the plurality of first class second feature values and the plurality of second class second feature values.
  • the vibration classification system according to supplementary note 5, wherein the optimization calculating unit extracts a plurality of feature frequency candidates including the plurality of feature frequencies from the difference spectrum data, and the plurality of feature frequency candidates. To select the plurality of characteristic frequencies.
  • the setting device side discriminating / analyzing unit determines a classification of the first class vibration waveform data and the second class vibration waveform data based on the linear discrimination coefficient.
  • the optimization calculation means changes the way of selecting the plurality of feature frequencies from the plurality of feature frequency candidates when the false detection rate in the classification determination based on the linear discrimination coefficient is not lower than a target value, and changes the digital frequency The calculation of the filter coefficient and the linear discrimination coefficient is performed again.
  • the said determination apparatus is provided with a band pass filter.
  • the analog-to-digital conversion means converts the first electric signal after passing through the band-pass filter into the first vibration waveform data, and converts the second electric signal after passing through the band-pass filter into the second vibration waveform data. Convert to
  • the said determination apparatus determines the classification
  • Vibration detection means for detecting a first vibration and first vibration waveform data representing the first vibration are transmitted to a determination condition setting device, and a determination condition for determining a vibration classification is set as the determination condition.
  • a vibration determination apparatus comprising communication means for receiving from an apparatus and calculation means.
  • the vibration detection means detects a second vibration.
  • the computing means determines the classification of the second vibration based on the determination condition.
  • the communication means transmits a determination result regarding the second vibration to the outside.
  • Communication means for receiving first vibration waveform data from the vibration determination device and calculation means for calculating a determination condition for determining a vibration classification using the first vibration waveform data as teacher data. Vibration determination condition setting device. The communication means transmits the determination condition to the vibration determination device.
  • the vibration determination condition setting device belongs to a first class vibration waveform data representing a first class vibration belonging to a first class and a second class.
  • Second-class vibration waveform data representing second-class vibration.
  • the computing means includes frequency band limiting means for limiting the frequency bands of the first class vibration waveform data and the second class vibration waveform data to a plurality of frequency bands, and the plurality of frequency bands of the first class vibration waveform data.
  • Discriminant analysis means for determining a classification of the first class vibration waveform data and the second class vibration waveform data based on the feature quantity and the plurality of second class feature quantities, the frequency band limiting means, and the feature quantity extraction means
  • optimization calculation means for performing optimization calculation of the determination condition in cooperation with the discriminant analysis means.
  • the determination device detects the first vibration, the determination device transmits first vibration waveform data representing the first vibration to the determination condition setting device, and the determination condition setting device transmits the first vibration waveform data. Is used as teacher data to calculate a determination condition for determining a vibration classification, the determination condition setting device transmits the determination condition to the determination device, the determination device detects a second vibration, and the determination A vibration classification method in which an apparatus determines a classification of the second vibration based on the determination condition, and the determination apparatus transmits a determination result regarding the second vibration to the outside.
  • the first vibration is detected, the first vibration waveform data representing the first vibration is transmitted to the determination condition setting device, the second vibration is detected. And determining a classification of the second vibration, and transmitting a determination result of the second vibration to the outside.
  • a vibration classification method for calculating a determination condition for determining a vibration classification using first vibration waveform data received from a vibration determination apparatus as teacher data and transmitting the determination condition to the vibration determination apparatus .
  • the first vibration waveform data representing the first vibration is transmitted to the determination condition setting device, the classification of the second vibration is determined based on the determination condition received from the determination condition setting device, and the second vibration is determined.
  • a computer that calculates determination conditions for determining vibration classification using first vibration waveform data received from a vibration determination apparatus as teacher data, and transmits the determination conditions to the vibration determination apparatus.

Abstract

A vibration classification system (1) is equipped with a determination device (10) and a determination condition setting device (50). The determination device (10) detects a first vibration and transmits first vibration waveform data representing the first vibration to the determination condition setting device (50). The determination condition setting device (50) uses the first vibration waveform data as learning data to calculate a determination condition for determining the class of the vibration, and transmits the determination condition to the determination device (10). The determination device (10) detects a second vibration, determines the class of the second vibration on the basis of the determination condition, and transmits the determination result for the second vibration to the outside.

Description

振動分類システム、振動判定装置、振動判定条件設定装置、振動分類方法、及び可読媒体Vibration classification system, vibration determination device, vibration determination condition setting device, vibration classification method, and readable medium
 本発明は振動分類システム、振動判定装置、振動判定条件設定装置、振動分類方法、及びプログラムに関し、特に侵入者による侵入行為の検出に好適な振動分類システム、振動判定装置、振動判定条件設定装置、振動分類方法、及びプログラムに関する。 The present invention relates to a vibration classification system, a vibration determination device, a vibration determination condition setting device, a vibration classification method, and a program, and in particular, a vibration classification system, a vibration determination device, a vibration determination condition setting device suitable for detection of an intruder by an intruder, The present invention relates to a vibration classification method and a program.
 特許文献1は、窓ガラスやガラス扉など室内外を仕切るガラス板に取り付けられ、侵入者がガラス板を破壊したときにこれを検知して音や光によって報知する防犯用のガラス破壊検出器を開示している。特許文献1に開示されたガラス破壊検出器は、ガラス板の振動を電圧信号に変換する振動センサ部と、電圧信号を増幅する増幅部と、増幅した電圧信号から抽出した所定の周波数成分の振幅を閾値と比較してガラス破壊を検知すると警報信号をCPU(Central Processing Unit)へ出力する振動解析部とを備える。CPUは警報信号が入力されると出力部でガラス破壊の警報を報知する。 Patent document 1 is a glass breakage detector for crime prevention that is attached to a glass plate that partitions the outside of the room, such as a window glass and a glass door, and detects when a breaker breaks the glass plate and notifies by sound or light. Disclosure. The glass breakage detector disclosed in Patent Document 1 includes a vibration sensor unit that converts vibration of a glass plate into a voltage signal, an amplification unit that amplifies the voltage signal, and an amplitude of a predetermined frequency component extracted from the amplified voltage signal. And a vibration analysis unit that outputs a warning signal to a CPU (Central Processing Unit) when glass breakage is detected by comparing with a threshold value. When the alarm signal is input, the CPU notifies the glass breakage alarm at the output unit.
 特許文献2は、玄関ドアの施開錠を検知することが可能な防犯システムを開示している。防犯システムは、検知装置と、判定装置とを備える。検知装置は、玄関ドアの内鍵のつまみ部分(サムターン)に装着される。検知装置には、3軸(X軸、Y軸、Z軸)方向の加速度を検知する加速度センサが内蔵されている。加速度センサは内鍵の加速度を検出する。検知装置は、サムターンの動きを加速度センサによって検知したら、無線通信により判定装置にサムターンの加速度を通知する。 Patent Document 2 discloses a crime prevention system capable of detecting locking / unlocking of an entrance door. The security system includes a detection device and a determination device. The detection device is attached to the inner key knob portion (thumbturn) of the entrance door. The detection device incorporates an acceleration sensor that detects acceleration in the directions of three axes (X axis, Y axis, and Z axis). The acceleration sensor detects the acceleration of the inner key. When the motion of the thumb turn is detected by the acceleration sensor, the detection device notifies the determination device of the thumb turn acceleration by wireless communication.
 判定装置は、検知装置が装着された玄関ドアと同じ部屋あるいは同じ建物内に設置され、検知装置から送信される信号を受信して不正な侵入があったかどうかを判定し、ユーザや警備会社等に通知する。判定装置は、検知装置から受信した加速度データに基づいて、検知装置が装着されたサムターンの状態を判断する。判定装置は、検知装置が装着されたサムターンの加速度からサムターンの傾斜角を算出し、その傾斜角に基づいて鍵が施錠された状態であるか、または開錠された状態であるかを判断する。 The determination device is installed in the same room or in the same building as the entrance door to which the detection device is mounted, receives a signal transmitted from the detection device, determines whether there has been an unauthorized intrusion, and the user or security company Notice. The determination device determines the state of the thumbturn to which the detection device is attached based on the acceleration data received from the detection device. The determination device calculates the tilt angle of the thumb turn from the acceleration of the thumb turn on which the detection device is mounted, and determines whether the key is locked or unlocked based on the tilt angle. .
 特許文献3は、ドア体に生じる振動に基づいて侵入者による不正開放を検知する防犯装置を開示している。防犯装置は、住宅の玄関に設けられたドア体の屋内側面に設けられる。防犯装置は、三軸振動検知センサ、防犯制御部、表示灯、ブザー装置、及び補助ロック装置を備える。三軸振動検知センサは、ドア体に発生した振動の三次元方向の振動成分を検知して、該検知信号を防犯制御部に出力する。三軸振動検知センサからの検知信号が入力されると、防犯制御部は、予め登録されている振動パターンと比較して、ドア体に生じる振動が不正開放の振動であるか否かを判断する。そして、検知信号が不正であると判断した場合では異常検知信号を出力して、表示灯を点灯、ブザー装置を鳴動させるとともに、補助ロック装置にドア体のサムターンが施錠姿勢から開錠姿勢に回転することを規制させる。 Patent Document 3 discloses a crime prevention device that detects unauthorized opening by an intruder based on vibration generated in a door body. The security device is provided on the indoor side surface of the door body provided at the entrance of the house. The security device includes a triaxial vibration detection sensor, a security control unit, an indicator lamp, a buzzer device, and an auxiliary lock device. The three-axis vibration detection sensor detects a vibration component in the three-dimensional direction of the vibration generated in the door body, and outputs the detection signal to the crime prevention control unit. When the detection signal from the triaxial vibration detection sensor is input, the security control unit determines whether or not the vibration generated in the door body is an unauthorized opening vibration compared with a vibration pattern registered in advance. . If it is determined that the detection signal is illegal, an abnormality detection signal is output, the indicator lamp is turned on, the buzzer device is sounded, and the thumb turn of the door body is rotated from the locked posture to the unlocked posture in the auxiliary lock device. To restrict what to do.
 尚、防犯制御部に、正常に開閉作動したときにドア体に生じる振動パターン、風圧が作用したときにドア体に生じる振動パターン、さらには、近隣を車両が走行したときにドア体に生じる振動パターン等、予め設置環境によりドア体に生じる振動が正常な振動パターンとして登録されている。防犯制御部は、三軸振動検知センサからの検知信号(振動パターン)が予め登録されている正常な振動パターンであるか否かを判断し、正常振動パターン以外の振動であると判断した場合に、不正開放により生じた振動、即ち、異常振動パターンであるとして異常検知信号を出力する。 It should be noted that the vibration pattern generated in the door body when a normal opening / closing operation is performed on the crime prevention control unit, the vibration pattern generated in the door body when wind pressure is applied, and the vibration generated in the door body when the vehicle travels in the vicinity. The vibration generated in the door body by the installation environment, such as a pattern, is registered in advance as a normal vibration pattern. The security control unit determines whether or not the detection signal (vibration pattern) from the triaxial vibration detection sensor is a normal vibration pattern registered in advance, and if it is determined that the vibration is other than the normal vibration pattern Then, an abnormality detection signal is output as a vibration caused by unauthorized opening, that is, an abnormal vibration pattern.
 振動パターンの防犯制御部への登録は、防犯装置を工場出荷する際に予めなされているが、設置現場において業者や使用者により新たな登録や削除を自由に行なうことができる。これによって、防犯制御部に設置環境に合わせた正常振動パターンを登録することができて、防犯装置の誤作動を低減することができる。 The registration of the vibration pattern to the security control unit is performed in advance when the security device is shipped from the factory, but new registration or deletion can be freely performed by a contractor or user at the installation site. As a result, a normal vibration pattern suitable for the installation environment can be registered in the security control unit, and malfunction of the security device can be reduced.
 特許文献4は、加速度センサを用いて窓の開閉や施錠の状態を検出することができる窓の開閉検出システムを開示している。窓の開閉検出システムは、窓に取り付けられた開閉検出器と、開閉検出器と無線通信可能に接続された管理装置とを備える。開閉検出器は、窓の移動を検出する加速度センサと、加速度センサの出力波形を検出する波形検出手段と、加速度センサの出力波形と窓の開閉状態とを関連付けて記憶する記憶手段と、加速度センサの出力波形と、予め記憶した波形を比較して窓の開閉状態を判断する開閉判断手段と、窓の開閉情報を前記管理装置に送信する送信部と、を備える。 Patent Document 4 discloses a window opening / closing detection system capable of detecting the opening / closing and locking state of a window using an acceleration sensor. The window opening / closing detection system includes an opening / closing detector attached to the window, and a management device connected to the opening / closing detector so as to be capable of wireless communication. The open / close detector includes: an acceleration sensor that detects movement of the window; waveform detection means that detects an output waveform of the acceleration sensor; storage means that associates and stores the output waveform of the acceleration sensor and the open / closed state of the window; and the acceleration sensor Open / close determining means for comparing the output waveform and a pre-stored waveform to determine the open / closed state of the window, and a transmission unit for transmitting the open / close information of the window to the management device.
 加速度センサは二次元加速度センサであり、窓の開閉方向及びそれに直交する方向における窓の加速度が検知可能である。記憶手段には、窓にクレセント錠を施錠するときの施錠動作と加速度センサの出力波形とが関連付けて記憶されている。開閉検出器は、加速度センサの出力波形からクレセント錠の状態を検知する。 The acceleration sensor is a two-dimensional acceleration sensor and can detect the window acceleration in the opening / closing direction of the window and the direction orthogonal thereto. The storage means stores the locking operation when locking the crescent lock on the window and the output waveform of the acceleration sensor in association with each other. The open / close detector detects the state of the crescent lock from the output waveform of the acceleration sensor.
特開2005- 78500号公報JP-A-2005-78500 特開2009- 93470号公報JP 2009-93470 A 特開2009-102904号公報JP 2009-102904 A 特開2011-169041号公報JP 2011-169041 A
 しかしながら、特許文献1及び2に開示された技術のいずれも判定条件を設置環境に合わせて設定していないため、外乱振動要因の影響により誤判定が生じやすいという問題があった。特許文献3は設置現場において正常振動パターンを登録することで、防犯装置の誤作動を低減することができることを開示しているが、特許文献3及び4に開示された技術では、検出した振動パターン(波形)と予め登録した振動パターン(波形)とに基づいて検出した振動パターン(波形)を判定している。このような判定方法を高い精度で実行するためには、判定を行う装置に高い処理能力が必要とされる。高い処理能力を持つ装置は消費電力が大きいため、高い処理能力を持つ装置を常時給電が必要とされる判定装置として用いることは好ましくないという問題があった。 However, since neither of the techniques disclosed in Patent Documents 1 and 2 sets the determination conditions according to the installation environment, there is a problem that erroneous determination is likely to occur due to the influence of disturbance vibration factors. Patent Document 3 discloses that the malfunction of the security device can be reduced by registering the normal vibration pattern at the installation site. However, the techniques disclosed in Patent Documents 3 and 4 detect the detected vibration pattern. The detected vibration pattern (waveform) is determined based on the (waveform) and the vibration pattern (waveform) registered in advance. In order to execute such a determination method with high accuracy, a high processing capability is required for an apparatus that performs the determination. Since a device having a high processing capability consumes a large amount of power, there is a problem that it is not preferable to use a device having a high processing capability as a determination device that requires constant power supply.
 本発明は、このような問題点を解決するためになされたものであり、判定条件を設置環境に合わせて設定することができ、且つ、常時給電が必要な装置を消費電力の少ない簡素な構成とすることができる振動分類システム、振動判定装置、振動判定条件設定装置、振動分類方法、及びプログラムを提供することを目的とする。 The present invention has been made in order to solve such problems, and it is possible to set the determination condition according to the installation environment, and a simple configuration with low power consumption for a device that requires constant power supply. It is an object of the present invention to provide a vibration classification system, a vibration determination device, a vibration determination condition setting device, a vibration classification method, and a program.
 本発明の第1の観点にかかる振動分類システムは、判定装置と、判定条件設定装置とを具備する。前記判定装置は、第1振動を検出し、前記第1振動をあらわす第1振動波形データを前記判定条件設定装置に送信する。前記判定条件設定装置は、前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、前記判定条件を前記判定装置に送信する。前記判定装置は、第2振動を検出し、前記判定条件に基づいて前記第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する。 The vibration classification system according to the first aspect of the present invention includes a determination device and a determination condition setting device. The determination device detects a first vibration and transmits first vibration waveform data representing the first vibration to the determination condition setting device. The determination condition setting device calculates a determination condition for determining a vibration classification using the first vibration waveform data as teacher data, and transmits the determination condition to the determination device. The determination device detects a second vibration, determines a classification of the second vibration based on the determination condition, and transmits a determination result regarding the second vibration to the outside.
 本発明の第2の観点にかかる振動判定装置は、第1振動を検出する振動検出手段と、前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、振動の分類を判定するための判定条件を前記判定条件設定装置から受信する通信手段と、演算手段とを具備する。前記振動検出手段は、第2振動を検出する。前記演算手段は、前記判定条件に基づいて前記第2振動の分類を判定する。前記通信手段は、前記第2振動についての判定結果を外部へ送信する。 A vibration determination device according to a second aspect of the present invention transmits vibration detection means for detecting a first vibration and first vibration waveform data representing the first vibration to a determination condition setting device to determine a vibration classification. Communication means for receiving a judgment condition for doing so from the judgment condition setting device, and an arithmetic means. The vibration detection means detects a second vibration. The computing means determines the classification of the second vibration based on the determination condition. The communication means transmits a determination result regarding the second vibration to the outside.
 本発明の第3の観点にかかる振動判定条件設定装置は、振動判定装置から第1振動波形データを受信する通信手段と、前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出する演算手段とを具備する。前記通信手段は、前記判定条件を前記振動判定装置へ送信する。 A vibration determination condition setting device according to a third aspect of the present invention determines a vibration classification by using communication means for receiving first vibration waveform data from the vibration determination device, and using the first vibration waveform data as teacher data. Calculating means for calculating a determination condition for this. The communication means transmits the determination condition to the vibration determination device.
 本発明の第4の観点にかかる振動分類方法は、判定装置が、第1振動を検出し、前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、前記判定条件設定装置が、前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、前記判定条件を前記判定装置に送信し、前記判定装置が、第2振動を検出し、前記判定条件に基づいて前記第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する。 In the vibration classification method according to the fourth aspect of the present invention, the determination device detects the first vibration, transmits first vibration waveform data representing the first vibration to the determination condition setting device, and the determination condition setting device. Calculates a determination condition for determining a vibration classification using the first vibration waveform data as teacher data, transmits the determination condition to the determination device, and the determination device detects a second vibration. The classification of the second vibration is determined based on the determination condition, and the determination result for the second vibration is transmitted to the outside.
 本発明の第5の観点にかかる振動分類方法は、第1振動を検出し、前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、第2振動を検出し、前記判定条件設定装置から受信した判定条件に基づいて前記第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する。 The vibration classification method according to the fifth aspect of the present invention detects a first vibration, transmits first vibration waveform data representing the first vibration to a determination condition setting device, detects a second vibration, and performs the determination. The classification of the second vibration is determined based on the determination condition received from the condition setting device, and the determination result for the second vibration is transmitted to the outside.
 本発明の第6の観点にかかるプログラムは、第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、前記判定条件設定装置から受信した判定条件に基づいて第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する、ことをコンピュータに実行させる。 A program according to a sixth aspect of the present invention transmits first vibration waveform data representing a first vibration to a determination condition setting device, and classifies a second vibration based on the determination condition received from the determination condition setting device. Determine and transmit the determination result for the second vibration to the outside.
 本発明によれば、判定条件を設置環境に合わせて設定することができ、且つ、常時給電が必要な装置を消費電力の少ない簡素な構成とすることができる振動分類システム、振動判定装置、振動判定条件設定装置、振動分類方法、及びプログラムが提供される。 According to the present invention, the vibration classification system, the vibration determination device, and the vibration that can set the determination condition according to the installation environment and can make the device that needs constant power supply have a simple configuration with low power consumption. A determination condition setting device, a vibration classification method, and a program are provided.
実施の形態1にかかる振動分類システムの構成を示す概略図である。1 is a schematic diagram illustrating a configuration of a vibration classification system according to a first exemplary embodiment. 実施の形態1にかかる振動分類方法を示すタイムシーケンス図である。FIG. 3 is a time sequence diagram illustrating a vibration classification method according to the first exemplary embodiment. 実施の形態2にかかる振動分類システムの構成を示す概略図である。It is the schematic which shows the structure of the vibration classification system concerning Embodiment 2. FIG. 実施の形態2にかかる振動分類システムが備える周波数帯域制限部が実現するIIR型デジタルフィルタのブロック線図である。It is a block diagram of the IIR type digital filter which the frequency band limitation part with which the vibration classification system concerning Embodiment 2 is provided is realized. 実施の形態2にかかる振動分類方法を示すタイムシーケンス図である。FIG. 10 is a time sequence diagram illustrating a vibration classification method according to the second exemplary embodiment. 実施の形態2にかかる判定装置を振動の発生現場に設置し、判定装置に判定条件設定装置を接続した状態を示す概略図である。It is the schematic which shows the state which installed the determination apparatus concerning Embodiment 2 in the generation | occurrence | production site of vibration, and connected the determination condition setting apparatus to the determination apparatus. 実施の形態2にかかる振動分類方法に含まれる判定条件算出工程のフローチャートである。10 is a flowchart of a determination condition calculation step included in the vibration classification method according to the second exemplary embodiment. 開錠振動の概念図である。It is a conceptual diagram of unlocking vibration. 施錠振動スペクトルの概念図である。It is a conceptual diagram of a locking vibration spectrum. 差分スペクトルの概念図である。It is a conceptual diagram of a difference spectrum. 線形判別分析の概念図である。It is a conceptual diagram of linear discriminant analysis. 分割数kをkに設定した場合における線形判別分析の概念図である。The dividing number k is a conceptual view of a linear discriminant analysis when set to k 1. 分割数kをkに設定した場合における線形判別分析の概念図である。The dividing number k is a conceptual view of a linear discriminant analysis when set to k 2. 評価関数Jと分割数kの関係を示すグラフである。It is a graph which shows the relationship between the evaluation function J and the division number k. 実施の形態2にかかる振動分類方法に含まれる振動判定工程のフローチャートである。10 is a flowchart of a vibration determination process included in the vibration classification method according to the second exemplary embodiment. 実測データを対象とした場合における差分スペクトルである。It is a difference spectrum in the case of measuring data. 実測データを対象として分割数kを10に設定した場合における特徴空間である。This is a feature space when the division number k is set to 10 for actually measured data. 実測データを対象として分割数kを18に設定した場合における特徴空間である。This is a feature space when the division number k is set to 18 for actually measured data. 実測データを対象として分割数kを30に設定した場合における特徴空間である。This is a feature space when the division number k is set to 30 for actually measured data. 実測データを対象とした場合における評価関数Jと分割数kの関係を示すグラフである。It is a graph which shows the relationship between the evaluation function J and the division | segmentation number k when measuring data is made into object. 比較例による判定結果と実施の形態2による判定結果を比較するテーブルである。10 is a table for comparing a determination result according to a comparative example and a determination result according to Embodiment 2.
 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態1)
 図1を参照して、実施の形態1にかかる振動分類システム1は、判定装置10と、判定条件設定装置50とを備える。判定装置10は、振動検出部11と、通信部24と、演算部25とを備える。振動検出部11は、例えば、振動センサである。通信部24は、有線通信を行う有線通信装置又は無線通信を行う無線通信装置である。演算部25は、例えば、CPU(Central Processing Unit)のような演算装置である。判定条件設定装置50は、通信部54と、演算部55とを備える。通信部54は、有線通信を行う有線通信装置又は無線通信を行う無線通信装置である。演算部55は、例えば、CPUのような演算装置である。
(Embodiment 1)
With reference to FIG. 1, the vibration classification system 1 according to the first exemplary embodiment includes a determination device 10 and a determination condition setting device 50. The determination device 10 includes a vibration detection unit 11, a communication unit 24, and a calculation unit 25. The vibration detection unit 11 is, for example, a vibration sensor. The communication unit 24 is a wired communication device that performs wired communication or a wireless communication device that performs wireless communication. The calculation unit 25 is a calculation device such as a CPU (Central Processing Unit), for example. The determination condition setting device 50 includes a communication unit 54 and a calculation unit 55. The communication unit 54 is a wired communication device that performs wired communication or a wireless communication device that performs wireless communication. The calculation unit 55 is a calculation device such as a CPU, for example.
 判定装置10は、振動を検出し、振動の分類を判定し、判定結果を外部へ送信する。判定条件設定装置50は、判定装置10が振動の分類を判定するための判定条件を算出する。振動分類システム1は、例えば、玄関扉や窓ガラスなどの機械的な振動に基づいて侵入者による侵入行為を検出する防犯用途に好適である。 判定 Determining device 10 detects vibration, determines vibration classification, and transmits the determination result to the outside. The determination condition setting device 50 calculates a determination condition for the determination device 10 to determine the vibration classification. The vibration classification system 1 is suitable for a crime prevention application that detects an intruding action by an intruder based on mechanical vibrations such as an entrance door or a window glass.
 図2を参照して、実施の形態1にかかる振動分類方法は、判定装置10の初期設定を行うステップ10と、判定装置10を運用するステップS20とを含む。初期設定ステップS10は、ステップS120、S130、S140、及びS170を含む。運用ステップS20は、ステップS200、S210、及びS220を含む。 Referring to FIG. 2, the vibration classification method according to the first exemplary embodiment includes step 10 for initial setting of determination device 10 and step S20 for operating determination device 10. The initial setting step S10 includes steps S120, S130, S140, and S170. Operation step S20 includes steps S200, S210, and S220.
 初期設定ステップS10に含まれる各ステップを説明する。ステップS120において、判定装置10の振動検出部11は、振動を検出する。ステップS130において、判定装置10の通信部24は、ステップS120において検出された振動をあらわす振動波形データを判定条件設定装置50に送信する。ステップS130において、判定条件設定装置50の通信部54は、判定装置10から振動波形データを受信する。ステップS140において、判定条件設定装置50の演算部55は、振動波形データを教師データとして用いて、振動の分類を判定するための判定条件を算出する。ステップS170において、判定条件設定装置50の通信部54は、判定条件を判定装置10に送信する。判定装置10の通信部24は、判定条件を判定条件設定装置50から受信する。 Each step included in the initial setting step S10 will be described. In step S120, the vibration detection unit 11 of the determination device 10 detects vibration. In step S <b> 130, the communication unit 24 of the determination device 10 transmits vibration waveform data representing the vibration detected in step S <b> 120 to the determination condition setting device 50. In step S <b> 130, the communication unit 54 of the determination condition setting device 50 receives vibration waveform data from the determination device 10. In step S140, the calculation unit 55 of the determination condition setting device 50 calculates a determination condition for determining a vibration classification by using the vibration waveform data as teacher data. In step S <b> 170, the communication unit 54 of the determination condition setting device 50 transmits the determination condition to the determination device 10. The communication unit 24 of the determination device 10 receives the determination condition from the determination condition setting device 50.
 運用ステップS20に含まれる各ステップを説明する。運用ステップS20に含まれる各ステップは、判定装置10によって実行される。運用ステップS20において、判定条件設定装置50は必要ではない。ステップS200において、振動検出部11は、振動を検出する。ステップS210において、演算部25は、判定条件に基づいてステップS200において検出された振動の分類を判定する。ステップS220において、通信部24は、ステップS200において検出された振動についての判定結果を外部へ送信する。 Each step included in the operation step S20 will be described. Each step included in the operation step S20 is executed by the determination apparatus 10. In the operation step S20, the determination condition setting device 50 is not necessary. In step S200, the vibration detection unit 11 detects vibration. In step S210, the calculation unit 25 determines the classification of vibration detected in step S200 based on the determination condition. In step S220, the communication unit 24 transmits the determination result regarding the vibration detected in step S200 to the outside.
 本実施の形態によれば、判定装置10がステップS120で検出した振動に基づいて判定条件設定装置50が判定条件を算出し、判定装置10は判定条件に基づいてステップS200で検出した振動の分類を判定する。したがって、判定条件を判定装置10の設置環境に合わせて設定することができる。そのため、外乱振動要因の影響による誤判定が防止される。 According to the present embodiment, the determination condition setting device 50 calculates the determination condition based on the vibration detected by the determination device 10 in step S120, and the determination device 10 classifies the vibration detected in step S200 based on the determination condition. Determine. Therefore, the determination condition can be set according to the installation environment of the determination apparatus 10. Therefore, erroneous determination due to the influence of disturbance vibration factors is prevented.
 更に、本実施の形態によれば、判定装置10と判定条件設定装置50とが別々の装置となっており、判定対象となる振動の発生現場に常時設置して常時給電する必要があるのは判定装置10のみである。常時給電する必要がないために消費電力の制約が小さい判定条件設定装置50が判定条件を算出するため、複雑なアルゴリズムを用いて判定条件を算出することができる。複雑なアルゴリズムを用いることで、高い処理能力を必要とせずに高精度の判定を行うことができるように判定条件を設定することができる。そのため、常時給電する必要がある判定装置10を消費電力の少ない簡素な構成とすることができる。その結果、判定装置10を一般住宅に設置することが容易になる。 Furthermore, according to the present embodiment, the determination device 10 and the determination condition setting device 50 are separate devices, and it is necessary to always install and always supply power at the generation site of the vibration to be determined. Only the determination device 10 is provided. Since it is not necessary to always supply power, the determination condition setting device 50 with a small power consumption constraint calculates the determination condition. Therefore, the determination condition can be calculated using a complicated algorithm. By using a complicated algorithm, the determination condition can be set so that high-precision determination can be performed without requiring high processing capability. Therefore, it is possible to make the determination device 10 that needs to constantly supply power have a simple configuration with low power consumption. As a result, it becomes easy to install the determination apparatus 10 in a general house.
 判定装置10において、振動検出部11、通信部24、及び演算部25の機能は、専用回路又は専用装置により実現されてもよいが、コンピュータのCPUがプログラムを実行することにより実現されてもよい。判定条件設定装置50において、通信部54及び演算部55の機能は、専用回路又は専用装置により実現されてもよいが、コンピュータのCPUがプログラムを実行することにより実現されてもよい。 In the determination device 10, the functions of the vibration detection unit 11, the communication unit 24, and the calculation unit 25 may be realized by a dedicated circuit or a dedicated device, but may be realized by a computer CPU executing a program. . In the determination condition setting device 50, the functions of the communication unit 54 and the calculation unit 55 may be realized by a dedicated circuit or a dedicated device, but may also be realized by a CPU of a computer executing a program.
(実施の形態2)
 次に、実施の形態2について説明する。以下の説明において、実施の形態1と共通する事項及び実施の形態1から自明な事項の説明は省略される場合がある。
(Embodiment 2)
Next, a second embodiment will be described. In the following description, descriptions of matters common to the first embodiment and matters obvious from the first embodiment may be omitted.
 図3を参照して、実施の形態2にかかる振動分類システム1は、判定装置10と、判定条件設定装置50とを備える。判定条件設定装置50は、記憶部53と、通信部54と、演算部55とを備える。演算部55は、周波数帯域制限部56と、特徴量抽出部57と、判別分析部58と、最適化計算部59とを備える。周波数帯域制限部56は、デジタルフィルタによる周波数帯域制限を実行する。判別分析部58は、線形判別分析を実行する。最適化計算部59は、周波数帯域制限部56、特徴量抽出部57、及び判別分析部58と連携して、判定装置10が振動の分類を判定するための判定条件の最適化計算を行う。最適化計算部59は、行列計算及び統計解析計算を行うことができる。記憶部53は、例えば、ハードディスクドライブや半導体メモリのような記憶装置である。 Referring to FIG. 3, the vibration classification system 1 according to the second exemplary embodiment includes a determination device 10 and a determination condition setting device 50. The determination condition setting device 50 includes a storage unit 53, a communication unit 54, and a calculation unit 55. The calculation unit 55 includes a frequency band limiting unit 56, a feature amount extraction unit 57, a discriminant analysis unit 58, and an optimization calculation unit 59. The frequency band limiting unit 56 performs frequency band limitation using a digital filter. The discriminant analysis unit 58 performs linear discriminant analysis. The optimization calculator 59 cooperates with the frequency band limiting unit 56, the feature amount extraction unit 57, and the discriminant analysis unit 58 to perform optimization calculation of determination conditions for the determination device 10 to determine the vibration classification. The optimization calculation unit 59 can perform matrix calculation and statistical analysis calculation. The storage unit 53 is a storage device such as a hard disk drive or a semiconductor memory.
 判定装置10は、振動検出部11と、メインユニット20とを備える。振動検出部11及びメインユニット20は、筐体が別々になっている。メインユニット20は、不要応答除去部21と、アナログ-デジタル(A/D)変換部22と、記憶部23と、通信部24と、演算部25とを備える。演算部25は、周波数帯域制限部26と、特徴量抽出部27と、判別分析部28とを備える。周波数帯域制限部26は、デジタルフィルタによる周波数帯域制限を実行する。判別分析部28は、線形判別分析を実行する。振動検出部11は、例えば、信号増幅回路が内蔵された圧電型加速度センサである。不要応答除去部21は、例えば、抵抗器及びキャパシタを備えたバンドパスフィルタである。不要応答除去部21は、振動検出部11とA/D変換部22の間に設けられる。A/D変換部22は、例えば、Σ-Δ型のA/D変換器である。記憶部23は、例えば、ハードディスクドライブや半導体メモリのような記憶装置である。 The determination device 10 includes a vibration detection unit 11 and a main unit 20. The vibration detection unit 11 and the main unit 20 have separate casings. The main unit 20 includes an unnecessary response removal unit 21, an analog-digital (A / D) conversion unit 22, a storage unit 23, a communication unit 24, and a calculation unit 25. The calculation unit 25 includes a frequency band limiting unit 26, a feature amount extraction unit 27, and a discriminant analysis unit 28. The frequency band limiting unit 26 performs frequency band limitation using a digital filter. The discriminant analysis unit 28 performs linear discriminant analysis. The vibration detection unit 11 is, for example, a piezoelectric acceleration sensor with a built-in signal amplification circuit. The unnecessary response removing unit 21 is, for example, a bandpass filter including a resistor and a capacitor. The unnecessary response removal unit 21 is provided between the vibration detection unit 11 and the A / D conversion unit 22. The A / D converter 22 is, for example, a Σ-Δ type A / D converter. The storage unit 23 is a storage device such as a hard disk drive or a semiconductor memory.
 例えば、A/D変換部22のアナログ-デジタル変換ビット数は12bit、A/D変換部22のサンプリング周波数は5kHzである。好ましくは、A/D変換部22のアナログ-デジタル変換ビット数は12bit以下、A/D変換部22のサンプリング周波数は6kHz以上である。 For example, the analog-digital conversion bit number of the A / D conversion unit 22 is 12 bits, and the sampling frequency of the A / D conversion unit 22 is 5 kHz. Preferably, the number of analog-digital conversion bits of the A / D converter 22 is 12 bits or less, and the sampling frequency of the A / D converter 22 is 6 kHz or more.
 振動分類システム1は、例えば、玄関扉の施錠及び開錠による振動に基づいて侵入者による侵入行為を検出する防犯用途に用いられる。振動分類システム1は、玄関扉の施錠・開錠検知システムと称される場合がある。判定装置10は、施錠・開錠検知装置と称される場合がある。判定条件設定装置50は、初期設定用端末と称される場合がある。 The vibration classification system 1 is used, for example, for a crime prevention application that detects an intruder act by an intruder based on vibration caused by locking and unlocking the front door. The vibration classification system 1 may be referred to as a front door lock / unlock detection system. The determination device 10 may be referred to as a lock / unlock detection device. The determination condition setting device 50 may be referred to as an initial setting terminal.
 周波数帯域制限部26が実現するIIR(Infinite Impulse Response)型デジタルフィルタを説明する。デジタルフィルタは、入力振動波形データu[n]の周波数帯域を制限して出力振動波形データy[n]を生成する。離散時間データの入出力関係は下記式で表される。
Figure JPOXMLDOC01-appb-M000001
An IIR (Infinite Impulse Response) type digital filter realized by the frequency band limiting unit 26 will be described. The digital filter generates output vibration waveform data y [n] by limiting the frequency band of the input vibration waveform data u [n]. The input / output relationship of discrete time data is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
 図4は、この入出力関係に対応するブロック線図を示す。遅れ要素z-1は、時間データを1ステップ遅らせる。デジタルフィルタの次数は、遅れ要素z-1の数を表し、この数に対応する過去の離散時間データを用いることを表している。入出力関係をz変換してデジタルフィルタを表現すると、下記式で表される。
Figure JPOXMLDOC01-appb-M000002
ここで、記号n、nは、デジタルフィルタの次数を表している。尚、周波数帯域制限部26は、判別分析部28が振動の分類を判定するために用いる特徴量の次元数のデジタルフィルタを提供する。特徴量の次元数がLの場合、jは1、…、Lをとる。
FIG. 4 shows a block diagram corresponding to this input / output relationship. The delay element z −1 delays the time data by one step. The order of the digital filter represents the number of delay elements z −1 and represents the use of past discrete time data corresponding to this number. When a digital filter is expressed by z-converting the input / output relationship, it is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Where the symbol n a, n b represents the order of the digital filter. The frequency band limiting unit 26 provides a digital filter of the number of dimensions of the feature amount used by the discrimination analysis unit 28 to determine the vibration classification. When the number of dimensions of the feature quantity is L, j takes 1,.
 デジタルフィルタの設計因子として監視周波数帯域が挙げられる。監視周波数帯域は、制限後の周波数帯域、すなわち、出力振動波形データy[n]の周波数帯域である。監視周波数帯域は、通過周波数帯域と称される場合がある。監視周波数帯域は、上記式(2)中のデジタルフィルタ係数及びデジタルフィルタ次数n、nにより定められる。デジタルフィルタフィルタ係数を以下に示す。
Figure JPOXMLDOC01-appb-M000003
デジタルフィルタ次数n、nは、振動分類システム1の製造者又はユーザによって予め設定される。デジタルフィルタ係数は、判定装置10の初期設定時に判定条件設定装置50によって算出される。
A monitoring frequency band can be cited as a design factor of the digital filter. The monitoring frequency band is a limited frequency band, that is, a frequency band of the output vibration waveform data y [n]. The monitoring frequency band may be referred to as a pass frequency band. Monitoring frequency bands, digital filter coefficient in the formula (2) and the digital filter order n a, defined by n b. The digital filter filter coefficient is shown below.
Figure JPOXMLDOC01-appb-M000003
The digital filter orders n a and nb are preset by the manufacturer or user of the vibration classification system 1. The digital filter coefficient is calculated by the determination condition setting device 50 when the determination device 10 is initially set.
 周波数帯域制限部56の構成及び動作は、周波数帯域制限部26の構成及び動作と同様である。周波数帯域制限部56と周波数帯域制限部26とでデジタルフィルタ次数は共通である。 The configuration and operation of the frequency band limiting unit 56 are the same as the configuration and operation of the frequency band limiting unit 26. The frequency band limiting unit 56 and the frequency band limiting unit 26 share the same digital filter order.
 図5を参照して、実施の形態2にかかる振動分類方法は、判定装置10の初期設定を行うステップ10と、判定装置10を運用するステップS20とを含む。初期設定ステップS10は、ステップS100、S110、S120、S130、S140、S170、及びS180を含む。運用ステップS20は、ステップS200、S210、及びS220を含む。 Referring to FIG. 5, the vibration classification method according to the second embodiment includes step 10 for initial setting of determination device 10 and step S20 for operating determination device 10. The initial setting step S10 includes steps S100, S110, S120, S130, S140, S170, and S180. Operation step S20 includes steps S200, S210, and S220.
 図6は、判定対象となる振動の発生現場を示している。ステップS100において、ユーザは、判定対象となる振動の発生現場に判定装置10を設置する。具体的には、玄関扉100に設けられた錠前104の施錠及び開錠による振動を検出するために、振動検出部11を両面テープ等によって玄関扉100の外枠110に固定する。信号ケーブルを介して振動検出部11に接続されたメインユニット20を振動検出部11の近くに固定する。ステップS110において、ユーザは、USB(Universal Serial Bus)ケーブル80を用いて、判定装置10(具体的にはメインユニット20)に判定条件設定装置50を接続する。判定条件設定装置50は、例えば、処理能力が高く、持ち運びに適したノート型パーソナルコンピュータやタブレット端末であることが好ましい。尚、判定装置10と判定条件設定装置50の間で有線通信を行うかわりに無線通信を行ってもよい。無線通信を行う場合は、判定装置10との無線通信が可能な範囲内に判定条件設定装置50を設置する。 FIG. 6 shows a site where the vibration to be determined is generated. In step S <b> 100, the user installs the determination device 10 at the site where the vibration to be determined is generated. Specifically, the vibration detection unit 11 is fixed to the outer frame 110 of the entrance door 100 with a double-sided tape or the like in order to detect vibration due to locking and unlocking of the lock 104 provided on the entrance door 100. The main unit 20 connected to the vibration detection unit 11 via the signal cable is fixed near the vibration detection unit 11. In step S 110, the user connects the determination condition setting device 50 to the determination device 10 (specifically, the main unit 20) using a USB (Universal Serial Bus) cable 80. The determination condition setting device 50 is preferably, for example, a notebook personal computer or a tablet terminal that has high processing capability and is suitable for carrying. Instead of performing wired communication between the determination device 10 and the determination condition setting device 50, wireless communication may be performed. When performing wireless communication, the determination condition setting device 50 is installed within a range where wireless communication with the determination device 10 is possible.
 ステップS120において、振動検出部11は、玄関扉100に設けられた錠前104の施錠及び開錠による振動を検出する。具体的には、振動検出部11は、錠前104の施錠による振動を電気信号(以下、施錠電気信号という)に変換し、錠前104の開錠による振動を電気信号(以下、開錠電気信号という)に変換する。不要応答除去部21は、バンドパスフィルタにより施錠電気信号及び開錠電気信号からノイズを除去する。A/D変換部22は、不要応答除去部21(バンドパスフィルタ)通過後の施錠電気信号を振動波形データ(以下、施錠振動波形データという場合がある)にアナログ-デジタル変換する。A/D変換部22は、不要応答除去部21(バンドパスフィルタ)通過後の開錠電気信号を振動波形データ(以下、開錠振動波形データという場合がある)にアナログ-デジタル変換する。施錠振動波形データは、施錠による振動をあらわす。開錠振動波形データは、開錠による振動をあらわす。 In step S120, the vibration detection unit 11 detects vibration due to locking and unlocking of the lock 104 provided in the entrance door 100. Specifically, the vibration detection unit 11 converts the vibration due to the lock of the lock 104 into an electric signal (hereinafter referred to as a lock electric signal), and the vibration due to the unlocking of the lock 104 as an electric signal (hereinafter referred to as an unlock electric signal). ). The unnecessary response removing unit 21 removes noise from the lock electric signal and the unlock electric signal by a band pass filter. The A / D converter 22 performs analog-to-digital conversion of the locked electrical signal after passing through the unnecessary response removing unit 21 (bandpass filter) into vibration waveform data (hereinafter also referred to as locked vibration waveform data). The A / D conversion unit 22 performs analog-digital conversion of the unlocked electrical signal after passing through the unnecessary response removing unit 21 (bandpass filter) into vibration waveform data (hereinafter also referred to as unlocked vibration waveform data). Locking vibration waveform data represents vibration due to locking. The unlocking vibration waveform data represents vibration due to unlocking.
 ステップS130において、判定装置10の通信部24は、施錠振動波形データ及び開錠振動波形データを判定条件設定装置50に送信する。判定条件設定装置50の受信部54は、判定装置10から施錠振動波形データ及び開錠振動波形データを受信する。 In step S <b> 130, the communication unit 24 of the determination device 10 transmits the lock vibration waveform data and the unlock vibration waveform data to the determination condition setting device 50. The receiving unit 54 of the determination condition setting device 50 receives the locking vibration waveform data and the unlocking vibration waveform data from the determination device 10.
 次に、ステップS140を説明する。ステップS140において、判定条件設定装置50の演算部55は、施錠振動波形データ及び開錠振動波形データを教師データとして用いて、振動の分類を判定するための判定条件を算出する。 Next, step S140 will be described. In step S140, the calculation unit 55 of the determination condition setting device 50 calculates a determination condition for determining the vibration classification using the lock vibration waveform data and the unlock vibration waveform data as teacher data.
 図7を参照して、ステップS140は、ステップS141~S160を含む。最適化計算部59は、i=1~MについてステップS141及びS142を実行する。ここで、Mは判別分析におけるクラスの数を表す。本実施の形態において具体例を示す場合、M=2である。ここで、iはクラスを表し、クラスi=1は施錠(事象A)を表し、クラスi=2は開錠(事象B)を表す。具体的には、最適化計算部59は、施錠振動波形データを入力し(ステップS141)、FFT(高速フーリエ変換)を実行して施錠振動波形データからスペクトルデータ(以下、施錠振動スペクトルデータという)を算出する(S142)。最適化計算部59は、開錠振動波形データを入力し(ステップS141)、FFTを実行して開錠振動波形データからスペクトルデータ(以下、開錠振動スペクトルデータという)を算出する(S142)。ステップS143において、最適化計算部59は、施錠振動スペクトルデータ及び開錠振動スペクトルデータから差分スペクトルデータを算出する。 Referring to FIG. 7, step S140 includes steps S141 to S160. The optimization calculation unit 59 executes steps S141 and S142 for i = 1 to M. Here, M represents the number of classes in the discriminant analysis. When a specific example is shown in the present embodiment, M = 2. Here, i represents a class, class i = 1 represents locking (event A), and class i = 2 represents unlocking (event B). Specifically, the optimization calculation unit 59 inputs the lock vibration waveform data (step S141), executes FFT (Fast Fourier Transform), and obtains spectrum data (hereinafter referred to as lock vibration spectrum data) from the lock vibration waveform data. Is calculated (S142). The optimization calculation unit 59 inputs the unlocking vibration waveform data (step S141), executes FFT, and calculates spectrum data (hereinafter referred to as unlocking vibration spectrum data) from the unlocking vibration waveform data (S142). In step S143, the optimization calculation unit 59 calculates difference spectrum data from the lock vibration spectrum data and the unlock vibration spectrum data.
 図8A、8B、及び8Cは、それぞれ、開錠振動スペクトルデータが表す開錠振動スペクトル、施錠振動スペクトルデータが表す施錠振動スペクトル、及び差分スペクトルデータが表す差分スペクトルを示す。ステップS144において、最適化計算部59は、差分スペクトルデータに対してピークサーチを実行し、ピーク71及び72を検出する。ステップS145において、最適化計算部59は、特徴量が抽出される特徴量抽出周波数帯域の中心周波数の候補としての特徴周波数候補f、f、f、…を差分スペクトルデータから抽出する。特徴周波数候補fは、開錠振動スペクトルと施錠振動スペクトルに差のない周波数帯域70の中心周波数である。特徴周波数候補fは、ピーク71の頂点の周波数である。特徴周波数候補fは、ピーク72の頂点の周波数である。ステップS146において、最適化計算部59は、特徴量が抽出される特徴量抽出周波数帯域の中心周波数としての特徴周波数F(j=1~L)を特徴周波数候補f、f、f、…から選択する。具体的には、最適化計算部59は、特徴周波数候補f、f、f、…からL個を選択し、それらを特徴周波数F~Fとおく。ここで、Lは、判別分析部28が振動の分類を判定するために用いる特徴量の次元数である。本実施の形態において具体例を示す場合、L=2である。 8A, 8B, and 8C show the unlocking vibration spectrum represented by the unlocking vibration spectrum data, the locking vibration spectrum represented by the locking vibration spectrum data, and the difference spectrum represented by the difference spectrum data, respectively. In step S144, the optimization calculation unit 59 performs a peak search on the difference spectrum data, and detects peaks 71 and 72. In step S145, the optimization calculation unit 59 extracts the feature frequency candidates f 0 , f 1 , f 2 ,... As the candidate of the center frequency of the feature amount extraction frequency band from which the feature amount is extracted from the difference spectrum data. The characteristic frequency candidate f 0 is the center frequency of the frequency band 70 in which there is no difference between the unlocking vibration spectrum and the locking vibration spectrum. The characteristic frequency candidate f 1 is the frequency at the apex of the peak 71. The feature frequency candidate f 2 is the frequency at the apex of the peak 72. In step S146, the optimization calculation unit 59 uses the feature frequency F j (j = 1 to L) as the center frequency of the feature quantity extraction frequency band from which the feature quantity is extracted as the feature frequency candidates f 0 , f 1 , f 2. Select from ... Specifically, the optimization calculation unit 59 selects L feature frequency candidates from f 0 , f 1 , f 2 ,... And sets them as feature frequencies F 1 to F L. Here, L is the number of dimensions of the feature quantity used by the discriminant analysis unit 28 to determine the vibration classification. When a specific example is shown in the present embodiment, L = 2.
 演算部55は、ステップS147~S154を実行することで、特徴量抽出周波数帯域の帯域幅を最適化する。演算部55は、i=1~M、j=1~L、k=1~NについてステップS147~S149を実行する。ここで、kは分割数、Nは振動分類システム1の製造者又はユーザが設定する自然数である。特徴量抽出周波数帯域の帯域幅を設定する離調パラメータμと分割数kの関係は、下記式で表される。
Figure JPOXMLDOC01-appb-M000004
ここで、Bは離調パラメータμの上限であり、過去の経験に基づいて定められる。B=300、N=30とすると、離調パラメータμは、下記式の範囲で値を持つ。
Figure JPOXMLDOC01-appb-M000005
The computing unit 55 optimizes the bandwidth of the feature amount extraction frequency band by executing steps S147 to S154. The computing unit 55 executes Steps S147 to S149 for i = 1 to M, j = 1 to L, and k = 1 to N. Here, k is the number of divisions, and N is a natural number set by the manufacturer or user of the vibration classification system 1. The relationship between the detuning parameter μ k for setting the bandwidth of the feature quantity extraction frequency band and the division number k is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000004
Here, B is an upper limit of the detuning parameter μ k and is determined based on past experience. When B = 300 and N = 30, the detuning parameter μ k has a value within the range of the following equation.
Figure JPOXMLDOC01-appb-M000005
 ステップS147において、最適化計算部59は、特徴量抽出周波数帯域F-μ~F+μに対応するデジタルフィルタ係数を算出する。周波数帯域制限部56は、デジタルフィルタ係数に基づいて、振動波形データの周波数帯域を特徴量抽出周波数帯域F-μ~F+μに制限する。このとき、デジタルフィルタの監視周波数帯域が特徴量抽出周波数帯域に設定される。ステップS148において、特徴量抽出部57は、振動波形データの特徴量抽出周波数帯域F-μ~F+μにおける最大振幅を特徴量Xi,j,kとして抽出する。ステップS149において、演算部55は特徴量Xi,j,kを記憶部53に保存する。ここで、クラスiが1(施錠)の場合、振動波形データとして施錠振動波形データが用いられる。クラスiが2(開錠)の場合、振動波形データとして開錠振動波形データが用いられる。 In step S147, the optimization calculation unit 59 calculates digital filter coefficients corresponding to the feature amount extraction frequency band F j −μ k to F j + μ k . The frequency band limiting unit 56 limits the frequency band of the vibration waveform data to the feature amount extraction frequency band F j −μ k to F j + μ k based on the digital filter coefficient. At this time, the monitoring frequency band of the digital filter is set to the feature amount extraction frequency band. In step S148, the feature quantity extraction unit 57 extracts the maximum amplitude of the vibration waveform data in the feature quantity extraction frequency band F j −μ k to F j + μ k as the feature quantity X i, j, k . In step S < b> 149, the calculation unit 55 stores the feature amounts X i, j, k in the storage unit 53. Here, when the class i is 1 (locked), the locked vibration waveform data is used as the vibration waveform data. When the class i is 2 (unlocked), unlocked vibration waveform data is used as the vibration waveform data.
 ここで、図9を参照して、判別分析について説明する。図9は、本実施の形態で用いる線形判別分析法の概念図である。図9中の右上の特徴空間の横軸は、特徴量抽出周波数帯域F-μ~F+μから得られた特徴量Xを示し、特徴空間の縦軸は、特徴量抽出周波数帯域F-μ~F+μから得られた特徴量Xを示す。ここで、特徴量の次元数Lが2である場合、特徴空間は特徴平面と称され、判別関数は直線である。特徴量が多次元である場合、判別関数は超平面である。三角記号は、クラスiが1(施錠)の場合に対応する。丸記号は、クラスiが2(開錠)の場合に対応する。クラスiが1(施錠)の場合に対応する分布とクラスiが2(開錠)の場合に対応する分布はおおむね離れているが、若干の重なりがあるために誤判別が発生する。線形判別分析法では、誤判別が最少となるように特徴量X,Xから判定指標zへの変数変換をおこなう。変換式として下記式を用いる。
Figure JPOXMLDOC01-appb-M000006
ここで、λ,λ,λは線形判別係数と称される。λはXの重み(係数)である。λはXの重み(係数)である。上記式(6)は、線形判別式と称される場合がある。上式の変換により特徴量X,Xは判定指標zへ集約され、クラスiが1(施錠)の場合に対応する新しい分布及びクラスiが2(開錠)の場合に対応する新しい分布が生成される。新しい分布は、図9中の左下に示されている。ここで、z=0が新しい二つの分布の境界閾値である。誤判別が最も小さくなることは、これら二つの分布の重なりが最も小さくなることとして理解できる。
Here, the discriminant analysis will be described with reference to FIG. FIG. 9 is a conceptual diagram of the linear discriminant analysis method used in the present embodiment. The horizontal axis of the feature space in the upper right in FIG. 9 indicates the feature quantity X 1 obtained from the feature quantity extraction frequency band F 1 −μ k to F 1 + μ k, and the vertical axis of the feature space represents the feature quantity extraction frequency. The feature amount X 2 obtained from the band F 2 −μ k to F 2 + μ k is shown. Here, when the dimension number L of the feature quantity is 2, the feature space is referred to as a feature plane, and the discriminant function is a straight line. When the feature quantity is multidimensional, the discriminant function is a hyperplane. The triangle symbol corresponds to the case where the class i is 1 (locked). The circle symbol corresponds to the case where the class i is 2 (unlocked). The distribution corresponding to the case where the class i is 1 (locked) and the distribution corresponding to the case where the class i is 2 (unlocked) are roughly separated, but misidentification occurs due to a slight overlap. In the linear discriminant analysis method, variable conversion from the feature amounts X 1 and X 2 to the determination index z is performed so that the misclassification is minimized. The following formula is used as the conversion formula.
Figure JPOXMLDOC01-appb-M000006
Here, λ 0 , λ 1 , and λ 2 are referred to as linear discrimination coefficients. λ 1 is the weight (coefficient) of X 1 . λ 2 is a weight (coefficient) of X 2 . The above equation (6) may be referred to as a linear discriminant. The feature amounts X 1 and X 2 are aggregated into the determination index z by the conversion of the above expression, and a new distribution corresponding to the case where the class i is 1 (locked) and a new distribution corresponding to the case where the class i is 2 (unlocked) Is generated. The new distribution is shown at the lower left in FIG. Here, z = 0 is a boundary threshold value between the two new distributions. The smallest misclassification can be understood as the smallest overlap between these two distributions.
 図10A及び10Bを参照して、分割数kが線形判別分析に及ぼす効果を説明する。離調パラメータμは分割数kに依存するから、分割数kが変化すると離調パラメータμが変化する。離調パラメータμを変化させることは、特徴量抽出周波数帯域(監視周波数帯域)の帯域幅を変化させることである。図10Aは、分割数kがkの場合において、クラスiが1(施錠)の場合に対応する分布及びクラスiが2(開錠)の場合に対応する分布を示す。図10Bは、分割数kがkの場合において、クラスiが1(施錠)の場合に対応する分布及びクラスiが2(開錠)の場合に対応する分布を示す。分割数kがkの場合は分布の重なりが大きく、分割数kがkの場合は分布の重なりが小さい。分割数kが変化して離調パラメータμが変化すると、分布の分離が変化する。分割数k及び離調パラメータμを適切に設定することで、差分スペクトルに含まれるピークの幅が広い場合やピークの幅が狭い場合に対し、ロバストな対応が可能となる。特徴量抽出周波数帯域に含まれる差分スペクトル成分が多ければ、質の高い特徴量を抽出することができ、分布の分離が大きくなる。一方、特徴量抽出周波数帯域に含まれる差分スペクトル成分が少なければ、施錠に対応する分布と開錠に対応する分布の重なりが大きくなり、誤判別の危険性が高まる。しかしながら、離調パラメータμが大きすぎると、ノイズを特徴量として抽出してしまい、誤判別の危険性が高まる。そこで、誤判別の危険性が最も小さくなるように分割数k及び離調パラメータμを最適化する。 With reference to FIGS. 10A and 10B, the effect of the division number k on the linear discriminant analysis will be described. Since the detuning parameter μ k depends on the division number k, the detuning parameter μ k changes when the division number k changes. Changing the detuning parameter μ k is changing the bandwidth of the feature amount extraction frequency band (monitoring frequency band). Figure 10A, in a case the division number k is k 1, shows the corresponding distribution when the distribution and class i class i corresponds to the case of 1 (locked) 2 (unlocked). Figure 10B, in a case the division number k is k 2, shows the corresponding distribution when the distribution and class i class i corresponds to the case of 1 (locked) 2 (unlocked). If the division number k is k 1 has a large overlap of the distribution, when the division number k is k 2 is small overlap distribution. When the division number k changes and the detuning parameter μ k changes, the distribution separation changes. By appropriately setting the division number k and the detuning parameter μ k , it is possible to respond robustly to cases where the peak width included in the difference spectrum is wide or the peak width is narrow. If there are many difference spectrum components included in the feature quantity extraction frequency band, high quality feature quantities can be extracted, and separation of distribution becomes large. On the other hand, if the difference spectrum component included in the feature amount extraction frequency band is small, the overlap between the distribution corresponding to the locking and the distribution corresponding to the unlocking increases, and the risk of erroneous determination increases. However, if the detuning parameter μ k is too large, noise is extracted as a feature amount, which increases the risk of erroneous determination. Therefore, the division number k and the detuning parameter μ k are optimized so that the risk of erroneous determination is minimized.
 図7を参照して、演算部55は、k=1~NについてステップS150~S151を実行する。ステップS150において、最適化計算部59は、ステップS148で抽出された特徴量Xi,j,kに基づいて線形判別係数λ,λ~λを算出する。ステップS150で算出される線形判別係数λ,λ~λは、線形判別係数候補と称される場合がある。ステップS151において、判別分析部58は、ステップS148で抽出された特徴量Xi,j,kとステップS150で算出された線形判別係数λ,λ~λに基づいて、ステップS141で入力された振動波形データの分類を判定する。ステップS151において、最適化計算部151は、判定結果における誤検知率を算出する。具体的には、最適化計算部151は、開錠振動波形データのクラスiを1(施錠)と判定した誤検知率P(i=1|i=2)と、施錠振動波形データのクラスiを2(開錠)と判定した誤検知率P(i=2|i=1)とを算出する。これにより、kが1~Nの各々の場合について、誤検知率P(i=1|i=2)と誤検知率P(i=2|i=1)とが算出される。 Referring to FIG. 7, calculation unit 55 executes steps S150 to S151 for k = 1 to N. In step S150, the optimization calculation unit 59 calculates linear discrimination coefficients λ 0 , λ 1 to λ L based on the feature amounts X i, j, k extracted in step S148. The linear discrimination coefficients λ 0 and λ 1 to λ L calculated in step S150 may be referred to as linear discrimination coefficient candidates. In step S151, the discriminant analysis unit 58 inputs in step S141 based on the feature quantities X i, j, k extracted in step S148 and the linear discriminant coefficients λ 0 , λ 1 to λ L calculated in step S150. The classification of the obtained vibration waveform data is determined. In step S151, the optimization calculation unit 151 calculates a false detection rate in the determination result. Specifically, the optimization calculation unit 151 detects the detection error rate P (i = 1 | i = 2) in which the class i of the unlocking vibration waveform data is 1 (locking), and the class i of the locking vibration waveform data. 2 is calculated as an erroneous detection rate P (i = 2 | i = 1). As a result, the false detection rate P (i = 1 | i = 2) and the false detection rate P (i = 2 | i = 1) are calculated for each case where k is 1 to N.
 ステップS152において、最適化計算部59は、下記式で表される評価関数Jが最小となる最適分割数kを算出する。最適化計算部59は、例えば、最小二乗推定法を用いて最適分割数kを推定する。
Figure JPOXMLDOC01-appb-M000007
評価関数Jは、誤検知率P(i=2|i=1)と誤検知率P(i=2|i=1)の平均値である。
In step S152, the optimization calculation unit 59 calculates the optimal division number k * that minimizes the evaluation function J represented by the following equation. The optimization calculation unit 59 estimates the optimal division number k * using, for example, a least square estimation method.
Figure JPOXMLDOC01-appb-M000007
The evaluation function J is an average value of the false detection rate P (i = 2 | i = 1) and the false detection rate P (i = 2 | i = 1).
 図11は、評価関数Jと分割数kの関係を示すグラフである。分割数kが最適分割数kのとき、評価関数Jが最小となる。 FIG. 11 is a graph showing the relationship between the evaluation function J and the division number k. When the division number k is the optimum division number k * , the evaluation function J is minimized.
 ステップS153において、最適化計算部59は、最適分割数k及び式(4)に基づいて、最適離調パラメータμk*を算出する。すなわち、最適化計算部59は、ステップS150で算出された線形判別係数λ,λ~λに基づく判定の結果に基づいて、誤検知率(具体的には評価関数J)が最小となる特徴量抽出周波数帯域の帯域幅としての最適帯域幅を算出する。 In step S153, the optimization calculation unit 59 calculates the optimal detuning parameter μ k * based on the optimal division number k * and the equation (4). That is, the optimization calculation unit 59 determines that the false detection rate (specifically, the evaluation function J) is minimum based on the determination result based on the linear discrimination coefficients λ 0 , λ 1 to λ L calculated in step S150. The optimum bandwidth as the bandwidth of the feature quantity extraction frequency band is calculated.
 ステップS154において、最適化計算部59は、j=1~Lの各々について、特徴量抽出周波数帯域F-μk*~F+μk*に対応するデジタルフィルタ係数を算出する。すなわち、最適化計算部59は、ステップS146で選択された特徴周波数F~FとステップS153で算出された最適離調パラメータμk*(最適帯域幅)に基づいてデジタルフィルタ係数を算出する。 In step S154, the optimization calculation unit 59 calculates digital filter coefficients corresponding to the feature amount extraction frequency bands F j −μ k * to F j + μ k * for each of j = 1 to L. That is, the optimization calculation unit 59 calculates the digital filter coefficient based on the feature frequencies F 1 to F L selected in step S146 and the optimal detuning parameter μ k * (optimum bandwidth) calculated in step S153. .
 演算部55は、i=1~M、j=1~LについてステップS155~S157を実行する。ステップS155において、周波数帯域制限部56は、ステップS154で算出されたデジタルフィルタ係数に基づいて、ステップS141で入力された振動波形データの周波数帯域を特徴量抽出周波数帯域F-μk*~F+μk*に制限する。ステップS156において、特徴量抽出部57は、振動波形データの特徴量抽出周波数帯域F-μk*~F+μk*における最大振幅を特徴量Xi,j,k*として抽出する。ステップS157において、演算部55は、特徴量Xi,j,k*を記憶部53に保存する。ここで、クラスiが1(施錠)の場合、振動波形データとして施錠振動波形データが用いられる。クラスiが2(開錠)の場合、振動波形データとして開錠振動波形データが用いられる。 The computing unit 55 executes steps S155 to S157 for i = 1 to M and j = 1 to L. In step S155, the frequency band limiting unit 56 determines the frequency band of the vibration waveform data input in step S141 based on the digital filter coefficient calculated in step S154 as the feature amount extraction frequency band F j −μ k * to F. Limit to j + μ k * . In step S156, the feature amount extraction unit 57 extracts the maximum amplitude in the feature amount extraction frequency band F j −μ k * to F j + μ k * of the vibration waveform data as the feature amount X i, j, k * . In step S157, the calculation unit 55 stores the feature amounts X i, j, k * in the storage unit 53. Here, when the class i is 1 (locked), the locked vibration waveform data is used as the vibration waveform data. When the class i is 2 (unlocked), unlocked vibration waveform data is used as the vibration waveform data.
 ステップS158において、最適化計算部59は、ステップS156で抽出された特徴量Xi,j,k*に基づいて線形判別係数λ,λ~λを算出する。ステップS159において、判別分析部58は、ステップS156で抽出された特徴量Xi,j,k*とステップS158で算出された線形判別係数λ,λ~λに基づいて、ステップS141で入力された振動波形データの分類を判定する。ステップS159において、最適化計算部59は、判定結果おける誤検知率を算出する。具体的には、最適化計算部59は、開錠振動波形データのクラスiを1(施錠)と判定した誤検知率P(i=1|i=2)と、施錠振動波形データのクラスiを2(開錠)と判定した誤検知率P(i=2|i=1)とを算出する。 In step S158, the optimization calculation unit 59 calculates linear discrimination coefficients λ 0 , λ 1 to λ L based on the feature amounts X i, j, k * extracted in step S156. In step S159, the discriminant analysis unit 58 uses the feature quantities X i, j, k * extracted in step S156 and the linear discriminant coefficients λ 0 , λ 1 to λ L calculated in step S158, in step S141. The classification of the input vibration waveform data is determined. In step S159, the optimization calculation unit 59 calculates a false detection rate in the determination result. Specifically, the optimization calculation unit 59 detects the detection error rate P (i = 1 | i = 2) in which the class i of the unlocking vibration waveform data is 1 (locking), and the class i of the locking vibration waveform data. 2 is calculated as an erroneous detection rate P (i = 2 | i = 1).
 ステップS160において、最適化計算部59は、ステップS159における判定における誤検知率を目標値と比較する。例えば、誤検知率P(i=1|i=2)と誤検知率P(i=2|i=1)の両方が目標値より小さいとき(ステップS160においてYES)、ステップS140を終了してステップS170に進む。誤検知率P(i=1|i=2)と誤検知率P(i=2|i=1)の両方が目標値より小さくないとき(ステップS160においてNO)、ステップS146に戻る。尚、誤検知率P(i=1|i=2)と誤検知率P(i=2|i=1)の平均値としての評価関数Jを目標値と比較し、比較結果に基づいてステップS140を終了してステップS170に進むかステップS146に戻るかを決定してもよい。 In step S160, the optimization calculation unit 59 compares the false detection rate in the determination in step S159 with the target value. For example, when both the false detection rate P (i = 1 | i = 2) and the false detection rate P (i = 2 | i = 1) are smaller than the target values (YES in step S160), step S140 is ended. Proceed to step S170. When both the false detection rate P (i = 1 | i = 2) and the false detection rate P (i = 2 | i = 1) are not smaller than the target value (NO in step S160), the process returns to step S146. Note that the evaluation function J as an average value of the false detection rate P (i = 1 | i = 2) and the false detection rate P (i = 2 | i = 1) is compared with a target value, and a step is performed based on the comparison result. You may determine whether it complete | finishes S140 and progresses to step S170 or returns to step S146.
 ステップS146に戻った場合、特徴周波数候補f、f、f、…から特徴周波数F~Fを選択するやり方を変更してステップS147~S160をやり直す。ステップS140により、最適なデジタルフィルタ係数と最適な線形判別係数が得られる。 When returning to step S146, the method of selecting the feature frequencies F 1 to F L from the feature frequency candidates f 0 , f 1 , f 2 ,... Is changed, and steps S147 to S160 are performed again. By step S140, an optimal digital filter coefficient and an optimal linear discrimination coefficient are obtained.
 図5を参照して、ステップS170において、判定条件設定装置50の通信部54は、判定条件を判定装置10に送信する。判定条件は、ステップS154において算出されたデジタルフィルタ係数とステップS158において算出された線形判別係数とを含む。判定装置10の通信部24は、判定条件を判定条件設定装置50から受信する。ステップS180において、ユーザは、判定装置10と判定条件設定装置10の接続を解除する。 Referring to FIG. 5, in step S <b> 170, the communication unit 54 of the determination condition setting device 50 transmits the determination condition to the determination device 10. The determination condition includes the digital filter coefficient calculated in step S154 and the linear discrimination coefficient calculated in step S158. The communication unit 24 of the determination device 10 receives the determination condition from the determination condition setting device 50. In step S180, the user releases the connection between the determination device 10 and the determination condition setting device 10.
 次に、運用ステップS20に含まれる各ステップを説明する。運用ステップS20に含まれる各ステップは、判定装置10によって実行される。運用ステップS20において、判定条件設定装置50は必要ではない。ステップS200において、振動検出部11は、振動を検出する。具体的には、振動検出部11は、錠前104の施錠又は開錠による振動を電気信号に変換する。不要応答除去部21は、バンドパスフィルタにより電気信号からノイズを除去する。A/D変換部22は、不要応答除去部21(バンドパスフィルタ)通過後の電気信号を振動波形データにアナログ-デジタル変換する。ステップS210において、演算部25は、判定条件に基づいてステップS200において検出された振動の分類を判定する。 Next, each step included in the operation step S20 will be described. Each step included in the operation step S20 is executed by the determination apparatus 10. In the operation step S20, the determination condition setting device 50 is not necessary. In step S200, the vibration detection unit 11 detects vibration. Specifically, the vibration detection unit 11 converts vibration due to locking or unlocking of the lock 104 into an electric signal. The unnecessary response removing unit 21 removes noise from the electric signal by a bandpass filter. The A / D converter 22 performs analog-digital conversion of the electrical signal after passing through the unnecessary response removing unit 21 (bandpass filter) into vibration waveform data. In step S210, the calculation unit 25 determines the classification of vibration detected in step S200 based on the determination condition.
 図12を参照して、ステップS210は、ステップS211~S217を含む。演算部25は、j=1~LについてステップS211~S213を実行する。ステップS211において、周波数帯域制限部26は、判定条件設定装置50が送信したデジタルフィルタ係数に基づいて、ステップS200において得られた振動波形データの周波数帯域を特徴量抽出周波数帯域F-μk*~F+μk*に制限する。ステップS212において、特徴量抽出部27は、振動波形データの特徴量抽出周波数帯域F-μk*~F+μk*における最大振幅を特徴量Xとして抽出する。このように、本実施の形態にかかる特徴量抽出処理は、振動波形データをデジタルフィルタにより帯域制限するステップS211と、帯域制限後の振動波形データから特徴量を抽出するステップS212を備える。ステップS212において、振幅の絶対値を抽出する。ステップS213において、演算部25は、特徴量Xを記憶部23に保存する。 Referring to FIG. 12, step S210 includes steps S211 to S217. The computing unit 25 executes steps S211 to S213 for j = 1 to L. In step S211, the frequency band limiting unit 26 uses the frequency band of the vibration waveform data obtained in step S200 based on the digital filter coefficient transmitted by the determination condition setting device 50 as the feature amount extraction frequency band F jk *. Limited to ~ F j + μ k * . In step S212, the feature amount extraction unit 27 extracts the maximum amplitude in the feature amount extraction frequency band F j −μ k * to F j + μ k * of the vibration waveform data as the feature amount X j . As described above, the feature amount extraction processing according to the present embodiment includes step S211 in which the vibration waveform data is band-limited by the digital filter, and step S212 in which the feature amount is extracted from the vibration waveform data after the band limitation. In step S212, the absolute value of the amplitude is extracted. In step S < b> 213, the calculation unit 25 stores the feature amount X j in the storage unit 23.
 ステップS214において、判別分析部28は、判定条件設定装置50が送信した線形判別係数及びステップS212において抽出された特徴量X(j=1~L)に基づいて、判定指標zを算出する。ステップS215において、判別分析部28は、ステップS214において算出された判定指標zと境界閾値"0"を比較する。判定指標zが境界閾値より大きい場合(ステップS215においてYES)、判別分析部28はステップS200において検出された振動の分類をクラス1(施錠)と判定する(ステップS216)。判定指標zが境界閾値より大きくない場合(ステップS215においてNO)、判別分析部28はステップS200において検出された振動の分類をクラス2(開錠)と判定する(ステップS217)。 In step S214, the discriminant analysis unit 28 calculates a determination index z based on the linear discrimination coefficient transmitted by the determination condition setting device 50 and the feature quantity X j (j = 1 to L) extracted in step S212. In step S215, the discriminant analysis unit 28 compares the determination index z calculated in step S214 with the boundary threshold “0”. When the determination index z is larger than the boundary threshold (YES in step S215), the discriminant analysis unit 28 determines that the vibration classification detected in step S200 is class 1 (locked) (step S216). When the determination index z is not greater than the boundary threshold (NO in step S215), the discriminant analysis unit 28 determines that the vibration classification detected in step S200 is class 2 (unlocked) (step S217).
 図5を参照して、ステップS220において、通信部24は、ステップS200において検出された振動についての判定結果を外部へ送信する。 Referring to FIG. 5, in step S220, communication unit 24 transmits a determination result regarding the vibration detected in step S200 to the outside.
 本実施の形態においては、複数の特徴量に基づいて振動の分類を判定している(ステップS214~S217)。そのため、判定精度が向上する。本実施の形態においては、ステップS211において特徴量抽出周波数帯域F-μk*~F+μk*における最大振幅に基づいて振動の分類を判定している。そのため、振幅が最大となる周波数が多少変化しても判定精度が維持される。 In the present embodiment, vibration classification is determined based on a plurality of feature amounts (steps S214 to S217). Therefore, the determination accuracy is improved. In the present embodiment, the vibration classification is determined based on the maximum amplitude in the feature amount extraction frequency band F j −μ k * to F j + μ k * in step S211. Therefore, the determination accuracy is maintained even if the frequency at which the amplitude is maximum changes slightly.
 本実施の形態においては、誤検知率が最小となるように特徴量抽出周波数帯域の帯域幅を設定している(ステップS153)。そのため、判定精度が向上する。本実施形態においては、誤検知率が目標値より小さくなるように、特徴周波数候補f、f、f、…から特徴周波数F~Fを選択する(ステップS160、S146)。そのため、一定の判定精度が保証される。本実施の形態においては、不要応答除去部21(バンドパスフィルタ)により振動を表す電気信号からノイズが除去される。そのため、不要な応答(不要な外部への連絡)が低減する。 In the present embodiment, the bandwidth of the feature amount extraction frequency band is set so that the false detection rate is minimized (step S153). Therefore, the determination accuracy is improved. In the present embodiment, feature frequencies F 1 to F L are selected from the feature frequency candidates f 0 , f 1 , f 2 ,... So that the false detection rate is smaller than the target value (steps S160 and S146). Therefore, a certain determination accuracy is guaranteed. In the present embodiment, noise is removed from the electrical signal representing vibration by the unnecessary response removing unit 21 (bandpass filter). Therefore, unnecessary responses (unnecessary external communication) are reduced.
 また、ステップS210は、行列計算、統計解析計算、高速フーリエ変換、ピークサーチ計算、デジタルフィルタの繰り返し計算のような負荷及び電力消費の大きい計算を含んでいない。したがって、DSP(Digital Signal Processor)のような消費電力の大きいCPUを用いなくても汎用マイクロコントローラによりステップS210を実行できる。したがって、常時給電する必要がある判定装置10の消費電力を抑制することができる。 Also, step S210 does not include calculations with large load and power consumption such as matrix calculation, statistical analysis calculation, fast Fourier transform, peak search calculation, and digital filter iterative calculation. Therefore, step S210 can be executed by a general-purpose microcontroller without using a CPU with high power consumption such as a DSP (Digital Signal Processor). Therefore, the power consumption of the determination apparatus 10 that needs to be constantly supplied can be suppressed.
 次に、本実施形態にかかる振動分類システム1を用いて判定条件を自動設定し、判定条件に基づいて振動を判定し、検知率を評価する試験を行ったので、その結果を説明する。 Next, a test for automatically setting determination conditions using the vibration classification system 1 according to the present embodiment, determining vibrations based on the determination conditions, and evaluating the detection rate will be described.
 図13は、実測により得られた施錠振動スペクトルと開錠振動スペクトルの差分スペクトルを示す。ピークサーチにより、第1のピーク及び第2のピークを含む二つ以上の明瞭なピークが検出された。第1のピークの頂点の周波数fとして731Hzが抽出され、第2のピークの頂点の周波数fとして1040Hzが抽出された。また、ピークがないことも特徴であるので、開錠振動スペクトルと施錠振動スペクトルに差のない周波数帯域の中心周波数fとして150Hzが抽出された。 FIG. 13 shows a difference spectrum between the locking vibration spectrum and the unlocking vibration spectrum obtained by actual measurement. The peak search detected two or more distinct peaks including the first peak and the second peak. 731 Hz was extracted as the frequency f 1 of the apex of the first peak, and 1040 Hz was extracted as the frequency f 2 of the apex of the second peak. Further, since it is also characterized by no peak, 150 Hz was extracted as the center frequency f 0 in a frequency band in which there is no difference between the unlocking vibration spectrum and the locking vibration spectrum.
 図14A~14Cは、特徴空間の分割数k依存性を示す。特徴空間の横軸は周波数fを中心とする特徴量抽出周波数帯域から得られた特徴量Xを示し、特徴空間の縦軸は周波数fを中心とする特徴量抽出周波数帯域から得られた特徴量Xを示す。図14Aは、分割数kが10の場合において、施錠に対応する分布(三角記号)及び開錠に対応する分布(丸記号)を示す。図14Bは、分割数kが18の場合において、施錠に対応する分布(三角記号)及び開錠に対応する分布(丸記号)を示す。図14Cは、分割数kが30の場合において、施錠に対応する分布(三角記号)及び開錠に対応する分布(丸記号)を示す。図中の破線は、線形判別式である式(6)の左辺を0とした場合の直線を示している。分割数kが10及び30の場合は施錠に対応する分布と開錠に対応する分布が互いに重なったが、分割数kが18の場合は施錠に対応する分布と開錠に対応する分布が明瞭に分離された。 14A to 14C show the division number k dependency of the feature space. The horizontal axis of the feature space represents a feature value X 1 obtained from the feature amount extraction frequency band around the frequency f 1, the longitudinal axis of the feature space obtained from the feature extraction frequency band around the frequency f 2 and indicating the feature quantity X 2. FIG. 14A shows a distribution (triangle symbol) corresponding to locking and a distribution (circle symbol) corresponding to unlocking when the division number k is 10. FIG. FIG. 14B shows a distribution (triangle symbol) corresponding to locking and a distribution (circle symbol) corresponding to unlocking when the division number k is 18. FIG. 14C shows a distribution (triangle symbol) corresponding to locking and a distribution (circle symbol) corresponding to unlocking when the division number k is 30. The broken line in the figure shows a straight line when the left side of the linear discriminant (6) is 0. When the division number k is 10 and 30, the distribution corresponding to locking and the distribution corresponding to unlocking overlap each other, but when the division number k is 18, the distribution corresponding to locking and the distribution corresponding to unlocking are clear. Isolated on.
 図15は、評価関数Jと分割数kの関係を示すグラフである。評価関数Jを用いて分割数kを最適化した。評価関数Jが最小となる最適分割数kは15であった。この試験におけるデジタルフィルタは、2次のバンドパスフィルタであった。周波数fを中心とする特徴量抽出周波数帯域710~750Hzに対応するデジタルフィルタ係数が下記式のように算出された。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
周波数fを中心とする特徴量抽出周波数帯域1020~1060Hzに対応するデジタルフィルタ係数が下記式のように算出された。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
線形判別係数は下記式のように算出された。
Figure JPOXMLDOC01-appb-M000012
FIG. 15 is a graph showing the relationship between the evaluation function J and the division number k. The division number k was optimized using the evaluation function J. The optimal number of divisions k * that minimizes the evaluation function J was 15. The digital filter in this test was a secondary bandpass filter. A digital filter coefficient corresponding to the feature amount extraction frequency band 710 to 750 Hz centered on the frequency f 1 was calculated as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
The digital filter coefficient corresponding to the feature amount extraction frequency band 1020 to 1060 Hz centered on the frequency f 2 was calculated as follows.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
The linear discriminant coefficient was calculated as follows.
Figure JPOXMLDOC01-appb-M000012
 判定条件設定装置50は、上記パラメータを有線通信により判定装置10に送信した。判定装置10は、上記パラメータを記憶部23に書き込み、上記パラメータに基づいて振動を表す振動波形データを判定した。 The determination condition setting device 50 transmits the above parameters to the determination device 10 by wired communication. The determination device 10 writes the parameter in the storage unit 23 and determines vibration waveform data representing vibration based on the parameter.
 図16は、本実施の形態により得られた判定結果と比較例にかかる判定結果との比較を示す。ここで、比較例においては、振動波形データから所定の周波数成分の振幅を抽出し、その振幅と閾値との比較に基づいて判定を行った。比較例によれば、開錠の振動に対する検知率が89.6%、誤検知率が24.8%、失報率が10.4%、施錠の振動に対する検知率が75.2%、誤検知率が10.4%、失報率が24.8%であった。これに対し、本実施の形態によれば、開錠の振動に対する検知率が99.8%、誤検知率が0.8%、失報率が0.2%、施錠の振動に対する検知率が99.2%、誤検知率が0.2%、失報率が0.8%であった。本実施の形態によれば高精度検知が可能である。 FIG. 16 shows a comparison between the determination result obtained by the present embodiment and the determination result according to the comparative example. Here, in the comparative example, the amplitude of a predetermined frequency component is extracted from the vibration waveform data, and the determination is performed based on a comparison between the amplitude and a threshold value. According to the comparative example, the detection rate for unlocking vibration was 89.6%, the false detection rate was 24.8%, the false alarm rate was 10.4%, the detection rate for locking vibration was 75.2%, The detection rate was 10.4% and the false alarm rate was 24.8%. In contrast, according to the present embodiment, the detection rate for unlocking vibration is 99.8%, the false detection rate is 0.8%, the false alarm rate is 0.2%, and the detection rate for locking vibration is It was 99.2%, the false detection rate was 0.2%, and the false alarm rate was 0.8%. According to the present embodiment, high-precision detection is possible.
 また、本実施の形態によれば、振動の検出(ステップS200)から判定(ステップS210)までに要した平均時間は90msであった。振動の検出から判定までを1分以内に行うことができた。 Moreover, according to the present embodiment, the average time required from vibration detection (step S200) to determination (step S210) was 90 ms. From detection of vibration to determination could be performed within 1 minute.
 本実施の形態にかかる振動分類システム1は、防犯システムにおける玄関扉100の施錠及び開錠の検知に適用可能である。したがって、振動分類システム1の工業的価値は高い。 The vibration classification system 1 according to the present embodiment can be applied to detection of locking and unlocking of the entrance door 100 in the security system. Therefore, the industrial value of the vibration classification system 1 is high.
 判定装置10において、振動検出部11、不要応答除去部21、A/D変換部22、記憶部23、通信部24、演算部25、周波数帯域制限部26、特徴量抽出部27、及び判別分析部28の機能は、専用回路又は専用装置により実現されてもよいが、コンピュータのCPUがプログラムを実行することにより実現されてもよい。判定条件設定装置50において、記憶部53、通信部54、演算部55、周波数帯域制限部56、特徴量抽出部57、判別分析部58、最適化計算部59の機能は、専用回路又は専用装置により実現されてもよいが、コンピュータのCPUがプログラムを実行することにより実現されてもよい。 In the determination apparatus 10, the vibration detection unit 11, the unnecessary response removal unit 21, the A / D conversion unit 22, the storage unit 23, the communication unit 24, the calculation unit 25, the frequency band limiting unit 26, the feature amount extraction unit 27, and the discriminant analysis The function of the unit 28 may be realized by a dedicated circuit or a dedicated device, but may also be realized by a CPU of a computer executing a program. In the determination condition setting device 50, the functions of the storage unit 53, the communication unit 54, the calculation unit 55, the frequency band limiting unit 56, the feature amount extraction unit 57, the discriminant analysis unit 58, and the optimization calculation unit 59 are a dedicated circuit or a dedicated device. However, it may be realized by the CPU of the computer executing the program.
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In the above example, the program can be stored using various types of non-transitory computer readable media and supplied to the computer. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). In addition, the program may be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本発明は、錠前の施錠又は開錠による振動以外の振動の分類に適用することができる。例えば、測定対象となる振動と、それ以外のノイズとなる振動を分類することができる。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. The present invention can be applied to vibration classification other than vibration due to locking or unlocking of a lock. For example, it is possible to classify vibrations to be measured and vibrations other than noise.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments can be described as in the following supplementary notes, but are not limited thereto.
(付記1)判定装置と、判定条件設定装置とを具備する振動分類システム。前記判定装置は、第1振動を検出し、前記第1振動をあらわす第1振動波形データを前記判定条件設定装置に送信する。前記判定条件設定装置は、前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、前記判定条件を前記判定装置に送信する。前記判定装置は、第2振動を検出し、前記判定条件に基づいて前記第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する。 (Supplementary note 1) A vibration classification system including a determination device and a determination condition setting device. The determination device detects a first vibration and transmits first vibration waveform data representing the first vibration to the determination condition setting device. The determination condition setting device calculates a determination condition for determining a vibration classification using the first vibration waveform data as teacher data, and transmits the determination condition to the determination device. The determination device detects a second vibration, determines a classification of the second vibration based on the determination condition, and transmits a determination result regarding the second vibration to the outside.
(付記2)付記1に記載の振動分類システムであって、前記判定条件は、デジタルフィルタ係数と、線形判別係数とを含む。前記判定装置は、前記第1振動を第1電気信号に変換し、前記第2振動を第2電気信号に変換する振動検出手段と、前記第1電気信号を前記第1振動波形データに変換し、前記第2電気信号を第2振動波形データに変換するアナログ-デジタル変換手段と、前記第1振動波形データを前記判定条件設定装置に送信し、前記判定条件を受信する判定装置側通信手段と、前記デジタルフィルタ係数に基づいて前記第2振動波形データの周波数帯域を複数の特徴量抽出周波数帯域に制限する判定装置側周波数帯域制限手段と、前記複数の特徴量抽出周波数帯域から複数の特徴量をそれぞれ抽出する判定装置側特徴量抽出手段と、前記線形判別係数及び前記複数の特徴量に基づいて前記第2振動の分類を判定する判定装置側判別分析手段とを備える。前記判定装置側通信手段は、前記第2振動についての前記判定結果を前記外部へ送信する。 (Supplementary note 2) The vibration classification system according to supplementary note 1, wherein the determination condition includes a digital filter coefficient and a linear discrimination coefficient. The determination device converts the first vibration into a first electric signal, converts the second vibration into a second electric signal, and converts the first electric signal into the first vibration waveform data. Analog-to-digital conversion means for converting the second electric signal into second vibration waveform data; and determination apparatus side communication means for transmitting the first vibration waveform data to the determination condition setting device and receiving the determination conditions; A determination device-side frequency band limiting unit that limits a frequency band of the second vibration waveform data to a plurality of feature quantity extraction frequency bands based on the digital filter coefficient; and a plurality of feature quantities from the plurality of feature quantity extraction frequency bands Determination device side feature amount extraction means, and determination device side discrimination analysis means for determining the classification of the second vibration based on the linear discrimination coefficient and the plurality of feature amounts. The determination device-side communication unit transmits the determination result for the second vibration to the outside.
(付記3)付記2に記載の振動分類システムであって、前記判定装置側特徴量抽出手段は、前記複数の周波数帯域それぞれにおける複数の最大振幅を前記複数の特徴量として抽出する。 (Additional remark 3) It is a vibration classification system of Additional remark 2, Comprising: The said determination apparatus side feature-value extraction means extracts the some maximum amplitude in each of these frequency bands as said some feature-value.
(付記4)付記1に記載の振動分類システムであって、前記第1振動は、第1クラスに属する第1クラス振動と、第2クラスに属する第2クラス振動とを含む。前記第1振動波形データは、前記第1クラス振動をあらわす第1クラス振動波形データと、前記第2クラス振動をあらわす第2クラス振動波形データとを含む。前記判定条件設定装置は、前記第1クラス振動波形データ及び前記第2クラス振動波形データの周波数帯域を複数の周波数帯域に制限する設定装置側周波数帯域制限手段と、前記第1クラス振動波形データの前記複数の周波数帯域から複数の第1クラス特徴量をそれぞれ抽出し、前記第2クラス振動波形データの前記複数の周波数帯域から複数の第2クラス特徴量をそれぞれ抽出する設定装置側特徴量抽出手段と、前記複数の第1クラス特徴量及び前記複数の第2クラス特徴量に基づいて前記第1クラス振動波形データ及び前記第2クラス振動波形データの分類を判定する設定装置側判別分析手段と、前記設定装置側周波数帯域制限手段、前記設定装置側特徴量抽出手段、及び前記設定装置側判別分析手段と連携して、前記判定条件の最適化計算を行う最適化計算手段と、前記第1振動波形データを受信し、前記判定条件を前記判定装置に送信する設定装置側通信手段とを備える。 (Supplementary note 4) The vibration classification system according to supplementary note 1, wherein the first vibration includes a first class vibration belonging to a first class and a second class vibration belonging to a second class. The first vibration waveform data includes first class vibration waveform data representing the first class vibration and second class vibration waveform data representing the second class vibration. The determination condition setting device includes: a setting device side frequency band limiting unit that limits a frequency band of the first class vibration waveform data and the second class vibration waveform data to a plurality of frequency bands; Setting device side feature quantity extraction means for extracting a plurality of first class feature quantities from the plurality of frequency bands and extracting a plurality of second class feature quantities from the plurality of frequency bands of the second class vibration waveform data, respectively. And a setting device-side discriminating / analyzing means for determining a classification of the first class vibration waveform data and the second class vibration waveform data based on the plurality of first class feature quantities and the plurality of second class feature quantities, Optimizing the determination condition in cooperation with the setting device side frequency band limiting unit, the setting device side feature amount extraction unit, and the setting device side discriminant analysis unit Comprising the optimization calculation means for performing calculation to receive the first vibration waveform data, and a setting device side communication means for transmitting the determination condition in the determination device.
(付記5)付記4に記載の振動分類システムであって、前記判定条件は、デジタルフィルタ係数と、線形判別係数とを含む。前記最適化計算手段は、前記第1クラス振動波形データから第1クラススペクトルデータを算出し、前記第2クラス振動波形データから第2クラススペクトルデータを算出し、前記第1クラススペクトルデータ及び前記第2クラススペクトルデータから差分スペクトルデータを算出し、前記差分スペクトルデータから複数の特徴周波数を抽出する。前記設定装置側周波数帯域制限手段は、前記第1クラス振動波形データ及び前記第2クラス振動波形データの周波数帯域を前記複数の特徴周波数をそれぞれ中心とする複数の第1周波数帯域に制限する。前記設定装置側特徴量抽出手段は、前記第1クラス振動波形データの前記複数の第1周波数帯域から複数の第1クラス第1特徴量をそれぞれ抽出し、前記第2クラス振動波形データの前記複数の第1周波数帯域から複数の第2クラス第1特徴量をそれぞれ抽出する。前記最適化計算手段は、前記複数の第1クラス第1特徴量及び前記複数の第2クラス第1特徴量に基づいて線形判別係数候補を算出する。前記設定装置側判別分析手段は、前記線形判別係数候補に基づいて前記第1クラス振動波形データ及び前記第2クラス振動波形データの分類を判定する。前記最適化計算手段は、前記線形判別係数候補に基づく判定の結果に基づいて、誤検知率が最小となる前記複数の第1周波数帯域の帯域幅としての最適帯域幅を算出し、前記複数の特徴周波数及び前記最適帯域幅に基づいて前記デジタルフィルタ係数を算出する。前記設定装置側周波数帯域制限手段は、前記デジタルフィルタ係数に基づいて、前記第1クラス振動波形データ及び前記第1クラス振動波形データの周波数帯域を複数の第2周波数帯域に制限する。前記設定装置側特徴量抽出手段は、前記第1クラス振動波形データの前記複数の第2周波数帯域から複数の第1クラス第2特徴量をそれぞれ抽出し、前記第2クラス振動波形データの前記複数の第2周波数帯域から複数の第2クラス第2特徴量をそれぞれ抽出する。前記最適化計算手段は、前記複数の第1クラス第2特徴量及び前記複数の第2クラス第2特徴量に基づいて前記線形判別係数を算出する。 (Supplementary note 5) The vibration classification system according to supplementary note 4, wherein the determination condition includes a digital filter coefficient and a linear determination coefficient. The optimization calculation means calculates first class spectrum data from the first class vibration waveform data, calculates second class spectrum data from the second class vibration waveform data, and calculates the first class spectrum data and the first class spectrum data. Difference spectrum data is calculated from the two-class spectrum data, and a plurality of characteristic frequencies are extracted from the difference spectrum data. The setting device side frequency band limiting means limits the frequency bands of the first class vibration waveform data and the second class vibration waveform data to a plurality of first frequency bands centered on the plurality of characteristic frequencies, respectively. The setting device-side feature amount extraction unit extracts a plurality of first class first feature amounts from the plurality of first frequency bands of the first class vibration waveform data, and the plurality of second class vibration waveform data. A plurality of second class first feature values are respectively extracted from the first frequency band. The optimization calculation unit calculates a linear discriminant coefficient candidate based on the plurality of first class first feature values and the plurality of second class first feature values. The setting device side discriminating / analyzing unit determines a classification of the first class vibration waveform data and the second class vibration waveform data based on the linear discriminant coefficient candidates. The optimization calculation means calculates an optimum bandwidth as a bandwidth of the plurality of first frequency bands that minimizes the false detection rate based on a determination result based on the linear discrimination coefficient candidate, and The digital filter coefficient is calculated based on the characteristic frequency and the optimum bandwidth. The setting device side frequency band limiting means limits the frequency band of the first class vibration waveform data and the first class vibration waveform data to a plurality of second frequency bands based on the digital filter coefficient. The setting device-side feature quantity extraction unit extracts a plurality of first class second feature quantities from the plurality of second frequency bands of the first class vibration waveform data, and the plurality of second class vibration waveform data. A plurality of second class second feature quantities are respectively extracted from the second frequency band. The optimization calculation means calculates the linear discrimination coefficient based on the plurality of first class second feature values and the plurality of second class second feature values.
(付記6)付記5に記載の振動分類システムであって、前記最適化計算手段は、前記差分スペクトルデータから前記複数の特徴周波数を含む複数の特徴周波数候補を抽出し、前記複数の特徴周波数候補から前記複数の特徴周波数を選択する。前記設定装置側判別分析手段は、前記線形判別係数に基づいて前記第1クラス振動波形データ及び前記第2クラス振動波形データの分類を判定する。前記最適化計算手段は、前記線形判別係数に基づく分類の判定における誤検知率が目標値より低くない場合に前記複数の特徴周波数候補から前記複数の特徴周波数を選択するやり方を変更して前記デジタルフィルタ係数及び前記線形判別係数の算出をやり直す。 (Supplementary note 6) The vibration classification system according to supplementary note 5, wherein the optimization calculating unit extracts a plurality of feature frequency candidates including the plurality of feature frequencies from the difference spectrum data, and the plurality of feature frequency candidates. To select the plurality of characteristic frequencies. The setting device side discriminating / analyzing unit determines a classification of the first class vibration waveform data and the second class vibration waveform data based on the linear discrimination coefficient. The optimization calculation means changes the way of selecting the plurality of feature frequencies from the plurality of feature frequency candidates when the false detection rate in the classification determination based on the linear discrimination coefficient is not lower than a target value, and changes the digital frequency The calculation of the filter coefficient and the linear discrimination coefficient is performed again.
(付記7)付記2又は3に記載の振動分類システムであって、前記判定装置は、バンドパスフィルタを備える。前記アナログ-デジタル変換手段は、前記バンドパスフィルタ通過後の前記第1電気信号を前記第1振動波形データに変換し、前記バンドパスフィルタ通過後の前記第2電気信号を前記第2振動波形データに変換する。 (Additional remark 7) It is a vibration classification system of Additional remark 2 or 3, Comprising: The said determination apparatus is provided with a band pass filter. The analog-to-digital conversion means converts the first electric signal after passing through the band-pass filter into the first vibration waveform data, and converts the second electric signal after passing through the band-pass filter into the second vibration waveform data. Convert to
(付記8)付記2又は3に記載の振動分類システムであって、前記アナログ-デジタル変換手段のアナログ-デジタル変換ビット数は12bit以下、前記アナログ-デジタル変換手段のサンプリング周波数は6kHz以上である。 (Supplementary note 8) The vibration classification system according to supplementary note 2 or 3, wherein the analog-digital conversion means has an analog-digital conversion bit number of 12 bits or less, and the analog-digital conversion means has a sampling frequency of 6 kHz or more.
(付記9)付記1乃至8のいずれかに記載の振動分類システムであって、前記判定装置は、前記第2振動の検出から1分以内に前記第2振動の分類を判定する。 (Additional remark 9) It is a vibration classification system in any one of additional remarks 1 thru | or 8, Comprising: The said determination apparatus determines the classification | category of the said 2nd vibration within 1 minute from the detection of the said 2nd vibration.
(付記10)第1振動を検出する振動検出手段と、前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、振動の分類を判定するための判定条件を前記判定条件設定装置から受信する通信手段と、演算手段とを具備する振動判定装置。前記振動検出手段は、第2振動を検出する。前記演算手段は、前記判定条件に基づいて前記第2振動の分類を判定する。前記通信手段は、前記第2振動についての判定結果を外部へ送信する。 (Supplementary Note 10) Vibration detection means for detecting a first vibration and first vibration waveform data representing the first vibration are transmitted to a determination condition setting device, and a determination condition for determining a vibration classification is set as the determination condition. A vibration determination apparatus comprising communication means for receiving from an apparatus and calculation means. The vibration detection means detects a second vibration. The computing means determines the classification of the second vibration based on the determination condition. The communication means transmits a determination result regarding the second vibration to the outside.
(付記11)振動判定装置から第1振動波形データを受信する通信手段と、前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出する演算手段とを具備する振動判定条件設定装置。前記通信手段は、前記判定条件を前記振動判定装置へ送信する。 (Supplementary Note 11) Communication means for receiving first vibration waveform data from the vibration determination device and calculation means for calculating a determination condition for determining a vibration classification using the first vibration waveform data as teacher data. Vibration determination condition setting device. The communication means transmits the determination condition to the vibration determination device.
(付記12)付記11に記載の振動判定条件設定装置であって、前記第1振動波形データは、第1クラスに属する第1クラス振動をあらわす第1クラス振動波形データと、第2クラスに属する第2クラス振動をあらわす第2クラス振動波形データとを含む。前記演算手段は、前記第1クラス振動波形データ及び前記第2クラス振動波形データの周波数帯域を複数の周波数帯域に制限する周波数帯域制限手段と、前記第1クラス振動波形データの前記複数の周波数帯域から複数の第1クラス特徴量をそれぞれ抽出し、前記第2クラス振動波形データの前記複数の周波数帯域から複数の第2クラス特徴量をそれぞれ抽出する特徴量抽出手段と、前記複数の第1クラス特徴量及び前記複数の第2クラス特徴量に基づいて前記第1クラス振動波形データ及び前記第2クラス振動波形データの分類を判定する判別分析手段と、前記周波数帯域制限手段、前記特徴量抽出手段、及び判別分析手段と連携して、前記判定条件の最適化計算を行う最適化計算手段とを備える。 (Supplementary note 12) The vibration determination condition setting device according to supplementary note 11, wherein the first vibration waveform data belongs to a first class vibration waveform data representing a first class vibration belonging to a first class and a second class. Second-class vibration waveform data representing second-class vibration. The computing means includes frequency band limiting means for limiting the frequency bands of the first class vibration waveform data and the second class vibration waveform data to a plurality of frequency bands, and the plurality of frequency bands of the first class vibration waveform data. A plurality of first class feature quantities respectively extracted from the plurality of frequency bands of the second class vibration waveform data, and a plurality of second class feature quantities respectively. Discriminant analysis means for determining a classification of the first class vibration waveform data and the second class vibration waveform data based on the feature quantity and the plurality of second class feature quantities, the frequency band limiting means, and the feature quantity extraction means And optimization calculation means for performing optimization calculation of the determination condition in cooperation with the discriminant analysis means.
(付記13)判定装置が第1振動を検出し、前記判定装置が前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、前記判定条件設定装置が前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、前記判定条件設定装置が前記判定条件を前記判定装置に送信し、前記判定装置が第2振動を検出し、前記判定装置が前記判定条件に基づいて前記第2振動の分類を判定し、前記判定装置が前記第2振動についての判定結果を外部へ送信する、振動分類方法。 (Supplementary Note 13) The determination device detects the first vibration, the determination device transmits first vibration waveform data representing the first vibration to the determination condition setting device, and the determination condition setting device transmits the first vibration waveform data. Is used as teacher data to calculate a determination condition for determining a vibration classification, the determination condition setting device transmits the determination condition to the determination device, the determination device detects a second vibration, and the determination A vibration classification method in which an apparatus determines a classification of the second vibration based on the determination condition, and the determination apparatus transmits a determination result regarding the second vibration to the outside.
(付記14)第1振動を検出し、前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、第2振動を検出し、前記判定条件設定装置から受信した判定条件に基づいて前記第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する、振動分類方法。 (Supplementary Note 14) Based on the determination condition received from the determination condition setting device, the first vibration is detected, the first vibration waveform data representing the first vibration is transmitted to the determination condition setting device, the second vibration is detected. And determining a classification of the second vibration, and transmitting a determination result of the second vibration to the outside.
(付記15)振動判定装置から受信した第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、前記判定条件を前記振動判定装置へ送信する、振動分類方法。 (Supplementary Note 15) A vibration classification method for calculating a determination condition for determining a vibration classification using first vibration waveform data received from a vibration determination apparatus as teacher data and transmitting the determination condition to the vibration determination apparatus .
(付記16)第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、前記判定条件設定装置から受信した判定条件に基づいて第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する、ことをコンピュータに実行させるプログラム。 (Supplementary Note 16) The first vibration waveform data representing the first vibration is transmitted to the determination condition setting device, the classification of the second vibration is determined based on the determination condition received from the determination condition setting device, and the second vibration is determined. A program that causes a computer to send the determination result of the above to the outside.
(付記17)振動判定装置から受信した第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、前記判定条件を前記振動判定装置へ送信する、ことをコンピュータに実行させるプログラム。 (Supplementary Note 17) A computer that calculates determination conditions for determining vibration classification using first vibration waveform data received from a vibration determination apparatus as teacher data, and transmits the determination conditions to the vibration determination apparatus. A program to be executed.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2013年3月29日に出願された日本出願特願2013-073709を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-073709 filed on March 29, 2013, the entire disclosure of which is incorporated herein.
1 振動分類システム
10 判定装置
11 振動検出部
21 不要応答除去部
22 A/D変換部
24 通信部
25 演算部
26 周波数帯域制限部
27 特徴量抽出部
28 判別分析部
50 判定条件設定装置
54 通信部
55 演算部
56 周波数帯域制限部
57 特徴量抽出部
58 判別分析部
59 最適化計算部
DESCRIPTION OF SYMBOLS 1 Vibration classification system 10 Determination apparatus 11 Vibration detection part 21 Unnecessary response removal part 22 A / D conversion part 24 Communication part 25 Calculation part 26 Frequency band restriction part 27 Feature-value extraction part 28 Discriminant analysis part 50 Determination condition setting apparatus 54 Communication part 55 Calculation Unit 56 Frequency Band Limiting Unit 57 Feature Amount Extracting Unit 58 Discriminant Analysis Unit 59 Optimization Calculation Unit

Claims (10)

  1.  判定装置と、
     判定条件設定装置と
    を具備し、
     前記判定装置は、第1振動を検出し、前記第1振動をあらわす第1振動波形データを前記判定条件設定装置に送信し、
     前記判定条件設定装置は、前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、前記判定条件を前記判定装置に送信し、
     前記判定装置は、第2振動を検出し、前記判定条件に基づいて前記第2振動の分類を判定し、前記第2振動についての判定結果を外部へ送信する
     振動分類システム。
    A determination device;
    A judgment condition setting device,
    The determination device detects a first vibration, and transmits first vibration waveform data representing the first vibration to the determination condition setting device;
    The determination condition setting device calculates a determination condition for determining a vibration classification using the first vibration waveform data as teacher data, and transmits the determination condition to the determination device.
    The determination device detects a second vibration, determines a classification of the second vibration based on the determination condition, and transmits a determination result of the second vibration to the outside.
  2.  請求項1に記載の振動分類システムであって、
     前記判定条件は、デジタルフィルタ係数と、線形判別係数とを含み、
     前記判定装置は、
     前記第1振動を第1電気信号に変換し、前記第2振動を第2電気信号に変換する振動検出手段と、
     前記第1電気信号を前記第1振動波形データに変換し、前記第2電気信号を第2振動波形データに変換するアナログ-デジタル変換手段と、
     前記第1振動波形データを前記判定条件設定装置に送信し、前記判定条件を受信する判定装置側通信手段と、
     前記デジタルフィルタ係数に基づいて前記第2振動波形データの周波数帯域を複数の特徴量抽出周波数帯域に制限する判定装置側周波数帯域制限手段と、
     前記複数の特徴量抽出周波数帯域から複数の特徴量をそれぞれ抽出する判定装置側特徴量抽出手段と、
     前記線形判別係数及び前記複数の特徴量に基づいて前記第2振動の分類を判定する判定装置側判別分析手段と
    を備え、
     前記判定装置側通信手段は、前記第2振動についての前記判定結果を前記外部へ送信する
     振動分類システム。
    The vibration classification system according to claim 1,
    The determination condition includes a digital filter coefficient and a linear discrimination coefficient,
    The determination device includes:
    Vibration detecting means for converting the first vibration into a first electric signal and converting the second vibration into a second electric signal;
    Analog-to-digital conversion means for converting the first electric signal into the first vibration waveform data and converting the second electric signal into second vibration waveform data;
    A determination device side communication means for transmitting the first vibration waveform data to the determination condition setting device and receiving the determination condition;
    A determination device-side frequency band limiting unit that limits a frequency band of the second vibration waveform data to a plurality of feature amount extraction frequency bands based on the digital filter coefficient;
    A determination device-side feature quantity extraction means for extracting a plurality of feature quantities from the plurality of feature quantity extraction frequency bands;
    A determination device-side discriminant analysis unit that determines a classification of the second vibration based on the linear discrimination coefficient and the plurality of feature amounts;
    The determination apparatus-side communication unit transmits the determination result for the second vibration to the outside.
  3.  請求項2に記載の振動分類システムであって、
     前記判定装置側特徴量抽出手段は、前記複数の周波数帯域それぞれにおける複数の最大振幅を前記複数の特徴量として抽出する
     振動分類システム。
    The vibration classification system according to claim 2,
    The determination device-side feature quantity extraction unit extracts a plurality of maximum amplitudes in each of the plurality of frequency bands as the plurality of feature quantities.
  4.  請求項1に記載の振動分類システムであって、
     前記第1振動は、第1クラスに属する第1クラス振動と、第2クラスに属する第2クラス振動とを含み、
     前記第1振動波形データは、前記第1クラス振動をあらわす第1クラス振動波形データと、前記第2クラス振動をあらわす第2クラス振動波形データとを含み、
     前記判定条件設定装置は、
     前記第1クラス振動波形データ及び前記第2クラス振動波形データの周波数帯域を複数の周波数帯域に制限する設定装置側周波数帯域制限手段と、
     前記第1クラス振動波形データの前記複数の周波数帯域から複数の第1クラス特徴量をそれぞれ抽出し、前記第2クラス振動波形データの前記複数の周波数帯域から複数の第2クラス特徴量をそれぞれ抽出する設定装置側特徴量抽出手段と、
     前記複数の第1クラス特徴量及び前記複数の第2クラス特徴量に基づいて前記第1クラス振動波形データ及び前記第2クラス振動波形データの分類を判定する設定装置側判別分析手段と、
     前記設定装置側周波数帯域制限手段、前記設定装置側特徴量抽出手段、及び前記設定装置側判別分析手段と連携して、前記判定条件の最適化計算を行う最適化計算手段と、
     前記第1振動波形データを受信し、前記判定条件を前記判定装置に送信する設定装置側通信手段と
    を備える
     振動分類システム。
    The vibration classification system according to claim 1,
    The first vibration includes a first class vibration belonging to a first class and a second class vibration belonging to a second class,
    The first vibration waveform data includes first class vibration waveform data representing the first class vibration, and second class vibration waveform data representing the second class vibration,
    The determination condition setting device includes:
    Setting device side frequency band limiting means for limiting the frequency bands of the first class vibration waveform data and the second class vibration waveform data to a plurality of frequency bands;
    A plurality of first class feature amounts are extracted from the plurality of frequency bands of the first class vibration waveform data, respectively, and a plurality of second class feature amounts are extracted from the plurality of frequency bands of the second class vibration waveform data, respectively. A setting device-side feature amount extraction means to perform,
    A setting device-side discriminating / analyzing unit that determines a classification of the first class vibration waveform data and the second class vibration waveform data based on the plurality of first class feature quantities and the plurality of second class feature quantities;
    In conjunction with the setting device side frequency band limiting means, the setting device side feature amount extraction means, and the setting device side discriminant analysis means, optimization calculation means for performing optimization calculation of the determination condition;
    A vibration classification system comprising: a setting device-side communication unit that receives the first vibration waveform data and transmits the determination condition to the determination device.
  5.  請求項4に記載の振動分類システムであって、
     前記判定条件は、デジタルフィルタ係数と、線形判別係数とを含み、
     前記最適化計算手段は、
     前記第1クラス振動波形データから第1クラススペクトルデータを算出し、
     前記第2クラス振動波形データから第2クラススペクトルデータを算出し、
     前記第1クラススペクトルデータ及び前記第2クラススペクトルデータから差分スペクトルデータを算出し、
     前記差分スペクトルデータから複数の特徴周波数を抽出し、
     前記設定装置側周波数帯域制限手段は、前記第1クラス振動波形データ及び前記第2クラス振動波形データの周波数帯域を前記複数の特徴周波数をそれぞれ中心とする複数の第1周波数帯域に制限し、
     前記設定装置側特徴量抽出手段は、
     前記第1クラス振動波形データの前記複数の第1周波数帯域から複数の第1クラス第1特徴量をそれぞれ抽出し、
     前記第2クラス振動波形データの前記複数の第1周波数帯域から複数の第2クラス第1特徴量をそれぞれ抽出し、
     前記最適化計算手段は、前記複数の第1クラス第1特徴量及び前記複数の第2クラス第1特徴量に基づいて線形判別係数候補を算出し、
     前記設定装置側判別分析手段は、前記線形判別係数候補に基づいて前記第1クラス振動波形データ及び前記第2クラス振動波形データの分類を判定し、
     前記最適化計算手段は、
     前記線形判別係数候補に基づく判定の結果に基づいて、誤検知率が最小となる前記複数の第1周波数帯域の帯域幅としての最適帯域幅を算出し、
     前記複数の特徴周波数及び前記最適帯域幅に基づいて前記デジタルフィルタ係数を算出し、
     前記設定装置側周波数帯域制限手段は、前記デジタルフィルタ係数に基づいて、前記第1クラス振動波形データ及び前記第1クラス振動波形データの周波数帯域を複数の第2周波数帯域に制限し、
     前記設定装置側特徴量抽出手段は、
     前記第1クラス振動波形データの前記複数の第2周波数帯域から複数の第1クラス第2特徴量をそれぞれ抽出し、
     前記第2クラス振動波形データの前記複数の第2周波数帯域から複数の第2クラス第2特徴量をそれぞれ抽出し、
     前記最適化計算手段は、前記複数の第1クラス第2特徴量及び前記複数の第2クラス第2特徴量に基づいて前記線形判別係数を算出する
     振動分類システム。
    The vibration classification system according to claim 4,
    The determination condition includes a digital filter coefficient and a linear discrimination coefficient,
    The optimization calculation means includes:
    Calculating first class spectrum data from the first class vibration waveform data;
    Calculating second class spectrum data from the second class vibration waveform data;
    Calculating difference spectrum data from the first class spectrum data and the second class spectrum data;
    Extracting a plurality of characteristic frequencies from the difference spectrum data;
    The setting device-side frequency band limiting means limits the frequency bands of the first class vibration waveform data and the second class vibration waveform data to a plurality of first frequency bands centered on the plurality of characteristic frequencies, respectively.
    The setting device side feature amount extraction means includes:
    Extracting a plurality of first class first feature values from the plurality of first frequency bands of the first class vibration waveform data,
    Extracting a plurality of second class first feature values from the plurality of first frequency bands of the second class vibration waveform data,
    The optimization calculation means calculates linear discriminant coefficient candidates based on the plurality of first class first feature values and the plurality of second class first feature values,
    The setting device side discriminant analysis means determines the classification of the first class vibration waveform data and the second class vibration waveform data based on the linear discriminant coefficient candidates,
    The optimization calculation means includes:
    Based on the determination result based on the linear discriminant coefficient candidate, calculate the optimum bandwidth as the bandwidth of the plurality of first frequency bands that minimize the false detection rate,
    Calculating the digital filter coefficient based on the plurality of characteristic frequencies and the optimum bandwidth;
    The setting device side frequency band limiting means limits the frequency band of the first class vibration waveform data and the first class vibration waveform data to a plurality of second frequency bands based on the digital filter coefficient,
    The setting device side feature amount extraction means includes:
    Extracting a plurality of first class second feature values from the plurality of second frequency bands of the first class vibration waveform data,
    Extracting a plurality of second class second feature values from the plurality of second frequency bands of the second class vibration waveform data,
    The optimization calculation means calculates the linear discrimination coefficient based on the plurality of first class second feature values and the plurality of second class second feature values.
  6.  第1振動を検出する振動検出手段と、
     前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、振動の分類を判定するための判定条件を前記判定条件設定装置から受信する通信手段と、
     演算手段と
    を具備し、
     前記振動検出手段は、第2振動を検出し、
     前記演算手段は、前記判定条件に基づいて前記第2振動の分類を判定し、
     前記通信手段は、前記第2振動についての判定結果を外部へ送信する
     振動判定装置。
    Vibration detecting means for detecting the first vibration;
    Communication means for transmitting first vibration waveform data representing the first vibration to a determination condition setting device and receiving a determination condition for determining a vibration classification from the determination condition setting device;
    An arithmetic means,
    The vibration detecting means detects the second vibration;
    The calculation means determines the classification of the second vibration based on the determination condition,
    The said communication means transmits the determination result about the said 2nd vibration to the exterior. Vibration determination apparatus.
  7.  振動判定装置から第1振動波形データを受信する通信手段と、
     前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出する演算手段と
    を具備し、
     前記通信手段は、前記判定条件を前記振動判定装置へ送信する
     振動判定条件設定装置。
    Communication means for receiving first vibration waveform data from the vibration determination device;
    Computing means for calculating a determination condition for determining a vibration classification using the first vibration waveform data as teacher data;
    The communication means transmits the determination condition to the vibration determination device.
  8.  請求項7に記載の振動判定条件設定装置であって、
     前記第1振動波形データは、第1クラスに属する第1クラス振動をあらわす第1クラス振動波形データと、第2クラスに属する第2クラス振動をあらわす第2クラス振動波形データとを含み、
     前記演算手段は、
     前記第1クラス振動波形データ及び前記第2クラス振動波形データの周波数帯域を複数の周波数帯域に制限する周波数帯域制限手段と、
     前記第1クラス振動波形データの前記複数の周波数帯域から複数の第1クラス特徴量をそれぞれ抽出し、前記第2クラス振動波形データの前記複数の周波数帯域から複数の第2クラス特徴量をそれぞれ抽出する特徴量抽出手段と、
     前記複数の第1クラス特徴量及び前記複数の第2クラス特徴量に基づいて前記第1クラス振動波形データ及び前記第2クラス振動波形データの分類を判定する判別分析手段と、
     前記周波数帯域制限手段、前記特徴量抽出手段、及び判別分析手段と連携して、前記判定条件の最適化計算を行う最適化計算手段と
    を備える
     振動判定条件設定装置。
    The vibration determination condition setting device according to claim 7,
    The first vibration waveform data includes first class vibration waveform data representing a first class vibration belonging to a first class and second class vibration waveform data representing a second class vibration belonging to a second class,
    The computing means is
    Frequency band limiting means for limiting a frequency band of the first class vibration waveform data and the second class vibration waveform data to a plurality of frequency bands;
    A plurality of first class feature amounts are extracted from the plurality of frequency bands of the first class vibration waveform data, respectively, and a plurality of second class feature amounts are extracted from the plurality of frequency bands of the second class vibration waveform data, respectively. Feature quantity extraction means for
    Discriminant analysis means for determining a classification of the first class vibration waveform data and the second class vibration waveform data based on the plurality of first class feature quantities and the plurality of second class feature quantities;
    A vibration determination condition setting device comprising: an optimization calculation unit that performs optimization calculation of the determination condition in cooperation with the frequency band limiting unit, the feature amount extraction unit, and the discriminant analysis unit.
  9.  判定装置が、
     第1振動を検出し、
     前記第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、
     前記判定条件設定装置が、
     前記第1振動波形データを教師データとして用いて振動の分類を判定するための判定条件を算出し、
     前記判定条件を前記判定装置に送信し、
     前記判定装置が、
     第2振動を検出し、
     前記判定条件に基づいて前記第2振動の分類を判定し、
     前記第2振動についての判定結果を外部へ送信する
     振動分類方法。
    Judgment device
    Detecting the first vibration,
    Transmitting first vibration waveform data representing the first vibration to a determination condition setting device;
    The determination condition setting device comprises:
    Calculating a determination condition for determining a vibration classification using the first vibration waveform data as teacher data;
    Transmitting the determination condition to the determination device;
    The determination device is
    Detecting the second vibration,
    Determining the classification of the second vibration based on the determination condition;
    A vibration classification method of transmitting a determination result about the second vibration to the outside.
  10.  第1振動をあらわす第1振動波形データを判定条件設定装置に送信し、
     前記判定条件設定装置から受信した判定条件に基づいて第2振動の分類を判定し、
     前記第2振動についての判定結果を外部へ送信する
    ことをコンピュータに実行させるプログラムを格納した非一時的なコンピュータ可読媒体。
    Transmitting first vibration waveform data representing the first vibration to the determination condition setting device;
    Determining the classification of the second vibration based on the determination condition received from the determination condition setting device;
    A non-transitory computer-readable medium storing a program for causing a computer to transmit a determination result about the second vibration to the outside.
PCT/JP2014/001604 2013-03-29 2014-03-20 Vibration classification system, vibration determination device, vibration determination condition setting device, vibration classification method, and readable medium WO2014156083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508046A JPWO2014156083A1 (en) 2013-03-29 2014-03-20 Vibration classification system, vibration determination device, vibration determination condition setting device, vibration classification method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073709 2013-03-29
JP2013073709 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156083A1 true WO2014156083A1 (en) 2014-10-02

Family

ID=51623097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001604 WO2014156083A1 (en) 2013-03-29 2014-03-20 Vibration classification system, vibration determination device, vibration determination condition setting device, vibration classification method, and readable medium

Country Status (2)

Country Link
JP (1) JPWO2014156083A1 (en)
WO (1) WO2014156083A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127041A (en) * 2020-04-24 2020-08-20 キオクシア株式会社 Semiconductor device manufacturing method and semiconductor manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063356A (en) * 2001-08-27 2003-03-05 Omron Corp Monitoring system, central monitoring device, and vehicle-mounted monitoring device
JP2007304955A (en) * 2006-05-12 2007-11-22 Kansai Electric Power Co Inc:The Individual specifying system and security system
JP2011044037A (en) * 2009-08-21 2011-03-03 Yupiteru Corp Crime prevention device, program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063356A (en) * 2001-08-27 2003-03-05 Omron Corp Monitoring system, central monitoring device, and vehicle-mounted monitoring device
JP2007304955A (en) * 2006-05-12 2007-11-22 Kansai Electric Power Co Inc:The Individual specifying system and security system
JP2011044037A (en) * 2009-08-21 2011-03-03 Yupiteru Corp Crime prevention device, program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127041A (en) * 2020-04-24 2020-08-20 キオクシア株式会社 Semiconductor device manufacturing method and semiconductor manufacturing device

Also Published As

Publication number Publication date
JPWO2014156083A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
Sarmadi et al. Early damage detection by an innovative unsupervised learning method based on kernel null space and peak‐over‐threshold
EP3680639B1 (en) Abnormality model learning device, method, and program
Wei et al. A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection
Sadreazami et al. Distributed-graph-based statistical approach for intrusion detection in cyber-physical systems
US20190376840A1 (en) Anomalous sound detection apparatus, degree-of-anomaly calculation apparatus, anomalous sound generation apparatus, anomalous sound detection training apparatus, anomalous signal detection apparatus, anomalous signal detection training apparatus, and methods and programs therefor
GB2491564A (en) Method of system monitoring
WO2019133316A1 (en) Reconstruction-based anomaly detection
US11002061B1 (en) Electronic door system
EP3361459B1 (en) Method, apparatus and system for passive infrared sensor framework
CN111538311B (en) Flexible multi-state self-adaptive early warning method and device for mechanical equipment based on data mining
CN106792883A (en) Sensor network abnormal deviation data examination method and system
CN109677341A (en) A kind of information of vehicles blending decision method and device
JP2023031255A (en) Anomaly detection
Ahuja et al. Application of noise-reduction techniques to machine learning algorithms for breast cancer tumor identification
WO2014156083A1 (en) Vibration classification system, vibration determination device, vibration determination condition setting device, vibration classification method, and readable medium
WO2011023924A1 (en) System monitoring
CN113551766B (en) Mechanical equipment working state detection method based on artificial intelligence
Huang et al. A robust anomaly detection algorithm based on principal component analysis
McKenna et al. Testing water quality change detection algorithms
CN117076869A (en) Time-frequency domain fusion fault diagnosis method and system for rotary machine
Wang et al. Adaptive change detection for long-term machinery monitoring using incremental sliding-window
CN113447287A (en) Abnormality detection device and method
EP3627465B1 (en) Method and system for break-in detection
CN112723075A (en) Method for analyzing elevator vibration influence factors with unbalanced data
JP6114507B2 (en) Work result management apparatus, method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772871

Country of ref document: EP

Kind code of ref document: A1