WO2014155848A1 - Manufacturing facility control device - Google Patents

Manufacturing facility control device Download PDF

Info

Publication number
WO2014155848A1
WO2014155848A1 PCT/JP2013/082854 JP2013082854W WO2014155848A1 WO 2014155848 A1 WO2014155848 A1 WO 2014155848A1 JP 2013082854 W JP2013082854 W JP 2013082854W WO 2014155848 A1 WO2014155848 A1 WO 2014155848A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
mode
unit
set value
control device
Prior art date
Application number
PCT/JP2013/082854
Other languages
French (fr)
Japanese (ja)
Inventor
▲隆▼一郎 高市
一志 山▲崎▼
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2014155848A1 publication Critical patent/WO2014155848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/0885Power supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to control of production equipment, and more particularly to technology for reducing energy consumption of production equipment.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for further reducing the energy consumption of production equipment.
  • a further object of the present invention is to provide a technique for automatically setting an appropriate return time according to the operating conditions and installation environment of the production facility.
  • the present invention measures the actual time required for the state to actually return after mode switching, and automatically updates the set value of the return time based on the measured value. adopt.
  • control device includes an operation mode that maintains a first state in which production is possible, and a standby mode that stands by in a second state in which energy consumption is lower than the first state.
  • a storage unit that stores a set value of a return time expected to be required for the production facility to return from the second state to the first state, and the production facility Is switched from the standby mode to the operation mode based on the time when the production facility should be returned to the first state and the set value of the return time stored in the storage unit.
  • the mode switching unit that determines the switching time to be switched and switches from the standby mode to the operation mode when the current time reaches the switching time, and the mode switching unit is switched to the operation mode, Based on the measured value of the return time measured by the measuring unit and the measuring unit that actually measures the return time required for the production facility to return to the first state, And an update unit for updating the set value of the return time.
  • energy includes not only energy (electric power, heat, power, etc.) directly supplied to the production facility, but also energy necessary for operating the production facility, for example, production facility. It may include energy necessary for manufacturing, transporting, storing, and supplying substances (eg, atmospheric gas, cooling liquid, cleaning liquid, and catalyst) used in
  • the mode switching timing (switching time) is determined based on the time at which the production facility should be returned to the first state (hereinafter referred to as the scheduled production start time) and the set value of the return time preset in the storage unit. It is done. Here, by taking a certain margin into the set value of the return time, the production equipment is returned to the first state (a state where production is possible) by the scheduled production start time, and production is resumed. Can be guaranteed.
  • a configuration for automatically optimizing the set value of the return time is adopted. That is, after the mode is switched, the return time actually required until the first state is returned is measured, and the set value of the return time is updated based on the measured value (actually measured value). For example, if the set value is excessive compared to the measured value, the set value can be shortened. If the difference (margin) between the measured value and the set value is too small, the set value can be increased. Good. As long as the set value can be updated to a better value based on the measurement value, the update process may be performed by any algorithm. With this configuration, the set value of the return time can be automatically optimized while the production facility is actually operated (that is, online).
  • the update unit determines a new set value for the return time based on a statistical value of a plurality of measurement values.
  • the recovery time may vary depending on the state of the production equipment and the installation environment at the time of mode switching, but the set value is determined in consideration of the variation in the recovery time by using the statistical values of the measured values for multiple times. It becomes possible to do.
  • the statistical value any value may be used as long as it is an index representing variation (distribution) of measured values, such as an average value, variance, standard deviation, maximum value, and mode value.
  • the control device further includes an input unit that receives an input of an additional time from a user, and when the mode switching unit determines the switching time, or the update unit sets a set value of the return time.
  • the input additional time is added to the set value of the return time.
  • the optimized (learned) return time setting value can be reset as necessary, and the learning can be performed again from the beginning, improving convenience.
  • This function is effective when the recovery time fluctuates for some reason (that is, when the set value learned by the past measurement value becomes invalid).
  • the initialization unit returns the set value of the return time to the initial value when the configuration of the production facility or the operation condition is changed. Thereby, it is possible to prevent mode switching based on an invalid setting value from being performed.
  • the control device can be applied to any kind of production equipment as long as the production equipment has an operation mode and a standby mode.
  • the production equipment refers to equipment related to the production of products, and typically includes manufacturing equipment and processing equipment, but equipment that indirectly contributes to production also corresponds to production equipment.
  • the operation mode is a mode in which nitrogen gas is supplied into the furnace and the oxygen concentration in the furnace is maintained in the first state, and the standby mode is to stop the supply of nitrogen gas. In this mode, the supply amount is reduced.
  • the operation mode is a mode in which electric power is supplied to the heater in the furnace and the temperature in the furnace is maintained in the first state, and the standby mode is to stop or supply electric power to the heater. This mode reduces the amount.
  • one of the production equipment that corresponds to equipment that indirectly contributes to production is a clean room for keeping the production environment clean.
  • the operation mode is a mode in which power is supplied to the fan filter unit and the cleanliness in the clean room is maintained in the first state, and the standby mode is supply of power to the fan filter unit. This mode stops the supply or decreases the supply amount.
  • the present invention can be understood as a control device having at least a part of the above-described configuration or a production facility including the control device.
  • the present invention can also be understood as a control method for a control device including at least a part of the above processing, a program for causing the control device to execute the method, or a computer-readable recording medium on which the program is recorded.
  • Each of the above configurations and processes can be combined with each other as long as no technical contradiction occurs.
  • the energy consumption of the production facility can be further reduced.
  • FIG. 1 is a diagram illustrating an overall configuration of a substrate processing system according to a first embodiment.
  • the figure which shows the structure of a reflow furnace typically.
  • the control block diagram of a reflow furnace. The figure for demonstrating the energy saving control by mode switching.
  • the block diagram which shows the structure of the function in connection with the energy saving control of a controller.
  • the figure which shows the whole flow of the process performed by a controller. The figure which shows the flow of an initialization process.
  • the present invention relates to a control device that performs energy saving control of a production facility and a control method thereof.
  • the control device may be a separate unit or an external unit from the production facility, or may be a unit integrated with or built in the production facility.
  • the control device can be applied to all types of production facilities as long as the production facilities have an operation mode and a standby mode.
  • Production equipment refers to equipment related to product production, typically manufacturing equipment and processing equipment, but equipment that indirectly contributes to production, such as transportation equipment, storage equipment, clean rooms, Air conditioners, lighting devices, etc. also fall under production facilities.
  • energy saving control of a reflow furnace for heating a solder paste on a substrate and energy saving control of a clean room for keeping a production environment clean are exemplified.
  • FIG. 1 is a diagram showing an overall configuration of a substrate processing system
  • FIG. 2 is a diagram schematically showing a configuration of a reflow furnace
  • FIG. 3 is a control block diagram of the reflow furnace of FIG.
  • the substrate processing system in FIG. 1 is a system for mounting electronic components on a printed circuit board.
  • a printed circuit board to be processed is sent in the order of a loader 210, a solder printer 220, an inspection device 230, a high-speed mounter 240, a high-precision mounter 250, an inspection device 260, a reflow furnace 100, and an unloader 310.
  • An arrow D1 in FIG. 1 indicates the conveyance direction of the printed board.
  • Solder paste is printed by the solder printer 220 on the printed circuit board sent from the loader 210. After the quality of the printing is inspected by the inspection device 230, the electronic component is mounted on the printed circuit board by the high-speed mounter 240 and the high-precision mounter 250. After the quality of the mount is inspected by the inspection device 260, the printed circuit board on which the electronic component is mounted is sent to the reflow furnace 100. In this specification, the printed circuit board mounted with the electronic components sent to the reflow furnace 100 is referred to as “work”.
  • the workpiece is sent to various processes via the unloader 310.
  • the loader 210, solder printer 220, inspection device 230, high-speed mounter 240, high-precision mounter 250, inspection device 260, reflow furnace 100, and unloader 310 are emergency lamps 219, 229, 239, 249, 259, and 269. , 109 and 319, and their operations are controlled by respective control devices. And when the emergency occurs in each, the said control apparatus makes the emergency lamp corresponding to each apparatus light.
  • the configuration of the reflow furnace 100 will be described in detail with reference to FIG.
  • the workpiece 90 sent from the inspection apparatus 260 is placed on the conveyor 80 and is conveyed in the reflow furnace 100.
  • An arrow D2 in FIG. 2 indicates the rotation direction of the conveyor 80 (note that the left and right sides of the reflow furnace 100 are reversed in FIGS. 1 and 2 for the purpose of illustration).
  • An inert atmosphere chamber 13 is provided in the reflow furnace.
  • a duct 56A is provided on the upstream side of the inert atmosphere chamber 13, and a duct 56B is provided on the downstream side.
  • the ducts 56A and 56B are provided with fans 50A and 50B and opening / closing plates 52A and 52B, respectively.
  • Fans 50A and 50B are driven by motors 51A and 51B, and motors 51A and 51B are supplied with electric power from inverters 55A and 55B.
  • the opening / closing plates 52A and 52B are provided to adjust the degree of air flow in each of the ducts 56A and 56B.
  • the degree of opening and closing of the air passages in the ducts 56A and 56B by the opening and closing plates 52A and 52B is controlled by damper motors 53A and 53B, respectively.
  • the inert atmosphere chamber 13 is provided with a nitrogen line 14 in order to reduce the oxygen concentration.
  • Nitrogen gas also referred to as inert gas or atmospheric gas
  • the amount of nitrogen gas introduced into the inert atmosphere chamber 13 is controlled by controlling the degree of opening and closing of a nitrogen valve (hereinafter also referred to as “N2 valve”) 16.
  • N2 valve a nitrogen valve
  • the flow rate of nitrogen gas in the nitrogen line 14 is detected by a flow meter 15.
  • the reflow furnace is provided with an oxygen concentration sensor (hereinafter also referred to as “O2 concentration sensor”) 17 for detecting the oxygen concentration in the inert atmosphere chamber 13.
  • O2 concentration sensor oxygen concentration sensor
  • heaters 11A and 11B, heaters 11C and 11D, heaters 11E and 11F, heaters 11G and 11H, heaters 11I and 11J, heaters 11K and 11L, and heater 11M , 11N, 7 sets of heating devices are provided.
  • Each set of heating devices includes a heater disposed above the conveyor 80 and a heater disposed below. In the reflow furnace, the power consumed by the heaters 11A to 11N is measured by the wattmeter 70.
  • the fans 12A and 12B, the fans 12C and 12D, the fans 12E and 12F, the fans 12G and 12H, the fans 12I and 12J, and the fan 12K. , 12L and fans 12M, 12N are provided.
  • the work 90 heated by the heaters 11A and 11B, the heaters 11C and 11D, the heaters 11E and 11F, the heaters 11G and 11H, the heaters 11I and 11J, the heaters 11K and 11L, and the heaters 11M and 11N 56B and cooled by the chiller 60.
  • the chiller 60 includes cooling pipes 61 and 62. Thereafter, the workpiece 90 is sent to the next step (for example, the unloader 310 in FIG. 1).
  • a temperature sensor (not shown) is provided in the inert atmosphere chamber 13 and the duct 56B.
  • the temperature control unit 102 feedback-controls the operation of the heaters 11A to 11N based on the temperature detected by the temperature sensor.
  • the reflow furnace includes a controller (control device) 101 for overall control of the operation of each element such as the heaters 11A to 11N and the nitrogen valve 16 on the basis of detection outputs of the temperature sensor 22 and the oxygen concentration sensor 17. Is provided.
  • the controller 101 is provided in a process prior to the reflow furnace 100 in a substrate processing system (see FIG. 1) such as a personal computer (hereinafter also referred to as “PC”) 300 that functions as a monitor and inspection apparatuses 230 and 260.
  • a device (controller 200) for controlling the connected device is connected.
  • the controller 101 may control the operation of each element such as the heaters 11A to 11N and the nitrogen valve 16 based on information acquired from the PC 300 and the controller 200.
  • FIG. 3 shows a control block of the reflow furnace 100.
  • the controller 101 includes the atmospheric temperature in each of the seven stages of heating processes (each heater group) in the inert atmosphere chamber 13 and the work of the duct 56B. 90, a temperature sensor 22 for detecting the ambient temperature in the vicinity of the passing region, a substrate sensor 21 for detecting the number of substrates introduced into the inert atmosphere chamber 13, a conveyor motor 81 for rotating the conveyor 80, and FIG. 1 is connected to the emergency lamp 109 described with reference to FIG.
  • FIG. 3 shows that the temperature control unit 102 of FIG. 2 is included in the controller 101.
  • the controller 101 Based on the detection output of the temperature sensor 22, the controller 101 maintains the heating operation of the heaters 11A to 11N at a temperature determined for each heating process by feedback control such as PID (Proportional Integral Differential) control. ,Control. Further, the controller 101 feedback-controls the degree of opening and closing of the nitrogen valve 16 based on the detection output of the oxygen concentration sensor 17 so that the oxygen concentration in the inert atmosphere chamber 13 is equal to or lower than a predetermined concentration.
  • PID Proportional Integral Differential
  • the controller 101 controls the cooling mode of the atmosphere in the duct 56 ⁇ / b> B, such as the circulation amount of the refrigerant in the cooling pipes 61 and 62 in the chiller 60 based on the detection output of the ambient temperature in the duct 56 ⁇ / b> B by the temperature sensor 22.
  • Target values (operating conditions) in each control are set in advance in the controller 101.
  • the controller 101 cannot normally execute a scheduled operation in the substrate processing system, such as when the temperature in the inert atmosphere chamber 13 rises abnormally, or when the conveyor 80 transports the work 90.
  • the emergency lamp 109 is turned on after taking known measures such as stopping the heating by the heaters 11A to 11N and stopping the conveyance of the work 90 by the conveyor 80.
  • the worker takes measures such as resetting the controller 101 and restarting the operation of the reflow furnace.
  • the controller 101 is used for communication between an arithmetic unit 101A such as a CPU (Central Processing Unit), a memory 101B for storing various data such as programs, and the PC 300, the controller 200, and the controller 101 described above. And an interface 101C.
  • the interface 101C is realized by a communication device such as a network card.
  • the controller 101 may be realized by including one or more hardware devices (such as LSI (Large Scale Integration)) that realize each function of the controller 101.
  • the memory 101B may be realized by a storage medium that is detachable from the main body of the controller 101.
  • storage media include CD-ROM (Compact Disk--Read-Only Memory), DVD-ROM (Digital Versatile Disk--Read-Only Memory), USB (Universal Serial Bus) memory, memory card, FD (Flexible Disk), Hard disk, magnetic tape, cassette tape, MO (Magnetic Optical Disk), MD (Mini Disk), IC (Integrated ⁇ ⁇ ⁇ Circuit) card (excluding memory card), optical card, mask ROM, EPROM, EEPROM (Electronically Erasable Programmable Read-Only A medium for storing the program in a nonvolatile manner such as Memory).
  • the state of the reflow furnace 100 is a state in which the workpiece 90 can be produced (heat treated) with stable quality (this is referred to as a “manufacturable state” or a “first state”). ) Must be maintained.
  • the workpiece 90 to be processed is not always flowing. For example, when the operator is absent due to a break or shift shift, the time for setup change, or when an abnormality occurs, the workpiece 90 is temporarily put in. Sometimes it stops.
  • the reflow furnace 100 has an operation mode that is a mode for maintaining the production possible state, and a state in which energy consumption is lower than that in the production possible state (referred to as “standby state” or “second state”).
  • the controller 101 switches to the standby mode as necessary to suppress energy consumption during non-production.
  • the standby mode for example, by stopping the supply of nitrogen gas (or reducing the supply amount), stopping the supply of electric power to the heaters 11A to 11N (or reducing the supply amount), etc.
  • energy consumption is reduced. It is suppressed.
  • driving of a fan, a motor, or the like may be stopped.
  • Nitrogen gas itself is not energy, but if the consumption of nitrogen gas is reduced, energy and cost required for production, transportation, storage, supply, etc. of nitrogen gas can be reduced. This is regarded as one of the energy consumed by the reflow furnace 100.
  • Fig. 4 shows an example of energy saving control by mode switching.
  • the upper graph in FIG. 4 shows the change over time in the flow rate of nitrogen gas, and the lower graph shows the change in oxygen concentration in the inert atmosphere chamber 13 over time.
  • the controller 101 adjusts the opening degree of the nitrogen valve 16 (that is, the flow rate of nitrogen gas) based on the output of the oxygen concentration sensor 17, thereby adjusting the oxygen concentration in the inert atmosphere chamber 13 to a predetermined management value ( Here, it is maintained at 4000 ppm). If the oxygen concentration is about 4000 ppm or less, oxidation of metal parts on the workpiece 90 can be prevented, and stable quality can be ensured.
  • the controller 101 switches the mode of the reflow furnace 100 from the operation mode to the standby mode, and stops the supply of nitrogen gas. Thereby, useless consumption of nitrogen gas can be reduced.
  • the controller 101 switches from the standby mode to the operation mode, and resumes supply of nitrogen gas and control of oxygen concentration.
  • the oxygen concentration does not decrease immediately, and it takes a certain amount of time for the oxygen concentration to fall to about 4000 ppm and to be ready for production.
  • return time RT T1-T0
  • a recovery time RT of about several minutes to ten and several minutes is required.
  • the mode switching timing (time T0) so that the difference between the time T1 for returning to the production ready state and the production start scheduled time T2 is as small as possible. Nonetheless, if the oxygen concentration does not recover in time, the resumption of production will be hindered. From the viewpoint of production efficiency, the mode switching timing should be set earlier and the time between times T1 and T2 It is desirable to make a margin. In addition, the recovery time is not always constant, and may vary depending on the state of the furnace (oxygen concentration, temperature, etc.) and the installation environment (ambient temperature, humidity, etc.) at the time of mode switching. Therefore, even for an experienced operator, it is difficult to manually set the mode switching timing to an appropriate value.
  • the actual time required until the controller 101 actually returns to the production-ready state after switching the mode is measured, and the set value of the return time is automatically updated (learned) based on the measured value.
  • the mode switching timing is optimized.
  • FIG. 5 is a block diagram illustrating a configuration of functions related to energy saving control of the controller 101.
  • the functions related to energy saving control include a storage unit 110, a mode switching unit 111, a control unit 112, a measurement unit 113, an update unit 114, an input unit 115, and an initialization unit 116.
  • the storage unit 110 has a function of storing a set value of recovery time, a measured value, a statistical value obtained by calculation, log data, and the like, and is realized using the storage device of the memory 101B or the PC 300.
  • the mode switching unit 111 is a function for switching the operation mode (operation mode / standby mode) of the reflow furnace 100.
  • the control unit 112 has a function of controlling each element of the reflow furnace 100 according to the operation mode instructed from the mode switching unit 111.
  • the measuring unit 113 has a function of measuring the actual time required from the mode switching to returning to the production possible state by using a timer.
  • the update unit 114 is a function for updating the set value of the return time based on the measurement value obtained by the measurement unit 113.
  • the input unit 115 is a function that receives information input from the user. A user interface through which a user inputs information is provided by the PC 300.
  • the initialization unit 116 is a function for initializing data stored in the storage unit 110.
  • FIGS. 6 shows the overall flow of processing executed by the controller 101
  • FIG. 7 shows the flow of initialization processing executed by the initialization unit 116
  • FIG. 8 shows the processing flow in standby mode.
  • Reference numeral 9 denotes a flow of processing for updating the set value of the return time.
  • the initialization unit 116 first determines whether or not an initialization process is necessary (step S60).
  • the initialization process is a process for resetting data stored in the storage unit 110. For example, when the valve of the reflow furnace 100 is replaced or the control target value (management value) is changed, the return time from the mode switching changes due to the influence, and the past measurement values and setting values become invalid. there is a possibility.
  • the initialization process is executed in such a case. Specific implementation methods have an impact on recovery time, such as changes in production equipment configuration (for example, repairs, parts replacement, installation location changes) and operating conditions (for example, control target values or control logic changes).
  • an initialization flag required is set in the controller 101 automatically or manually, and the initialization unit 116 determines whether or not initialization processing is necessary based on the presence or absence of this flag. Or the screen which confirms the necessity of an initialization process may be shown on the monitor of PC300 by the input part 115, and a user may be made to input necessity.
  • step S61 the initialization unit 116 executes the initialization process (step S61). As shown in FIG. 7, the initialization unit 116 resets the counter n indicating the number of measurements to 0 (step S70), and the return time measurement value RT accumulated so far and the average value that is a statistical value thereof. RTA and standard deviation ⁇ are cleared (erased) (step S71). In the following description, the i-th measurement value is expressed as RTi, and the average value and standard deviation obtained from the n-time measurement values RT1 to RTn are expressed as RTAn and ⁇ n, respectively. Further, the initialization unit 116 returns the set value RTS of the return time to the initial value (step S72). The initial value is set to a value sufficiently larger than the assumed recovery time (for example, twice the assumed time). This is because at the initial stage, it is unclear how long the restoration will actually be completed.
  • the assumed recovery time for example, twice the assumed time
  • control unit 112 starts control in the operation mode (step S62).
  • the input of the workpiece is started from the upstream process and reflow processing is performed.
  • the mode switching unit 111 When a command to switch to standby mode (interrupt) occurs during execution of the operation mode (step S63), the mode switching unit 111 performs switching processing to the standby mode (step S64).
  • the standby mode switching command (interrupt) is generated, for example, when a predetermined switch is operated by the user or when a preset time (break start time, shift change time, etc.) is reached. .
  • the mode switching unit 111 reads the return time setting value RTS stored in the storage unit 110 (step S80). Further, the mode switching unit 111 presents an input screen on the monitor of the PC 300 via the input unit 115, and accepts input of the production start scheduled time ST and the allowance time AT (steps S81 and S82).
  • the scheduled production start time ST is a time when the input of the workpiece into the reflow furnace 100 is resumed.
  • the margin time AT is a margin (additional time) added to the return time, and an arbitrary value can be set by the user. Note that it is not essential to input the scheduled production start time ST and the allowance time AT. If these values are set in advance or if no allowance time is provided, the processes in steps S81 and S82 may be omitted. .
  • the mode switching unit 111 compares the mode switching time with the current time. If the mode switching time is earlier than the current time (step S84; NO), the production start scheduled time ST or the margin time AT is input. Is returned to step S81.
  • the mode switching unit 111 instructs the control unit 112 to switch to the standby mode (step S85).
  • the control unit 112 adjusts the opening of the nitrogen valve to stop or reduce the supply of nitrogen gas, and sets the reflow furnace 100 to a standby state. Thereby, useless energy consumption is suppressed.
  • the mode switching unit 111 monitors the current time with a timer and waits until the mode switching time is reached (step S86). When the current time reaches the mode switching time, the mode switching unit 111 instructs the control unit 112 to switch to the operation mode (step S87). Thereby, the return process by the control part 112 is started. In parallel with this, a process for updating the set value RTS of the return time by the measuring unit 113 and the updating unit 114 is executed (step S88).
  • FIG. 9 shows the details of the process for updating the set value RTS of the return time.
  • the measurement unit 113 starts a timer and starts measuring an elapsed time from when the operation mode is switched (step S90). And the measurement part 113 monitors the value of the oxygen concentration which is a management item (step S91). When the value of the management item reaches a predetermined management value (4000 ppm) (step S91; YES), the measurement unit 113 adds 1 to the measurement count n (increment) (step S92), and adds a timer value to the measurement value RTn. Is input (step S93), the timer is stopped and cleared (steps S94 and S95).
  • the updating unit 114 calculates an average value RTAn of n measurement values RT1 to RTn and a standard deviation ⁇ n by the following formula (steps S96 and S97).
  • the standard deviation ⁇ n may be obtained by the following formula.
  • the update unit 114 calculates a new set value RTSn of the return time by the following equation using the average value RTAn and the standard deviation ⁇ n obtained in steps S96 and S97 (step S98).
  • the update unit 114 stores the measured value RTn, average value RTAn, standard deviation ⁇ n, and set value RTSn obtained in the current update process in the storage unit 110 (step S99).
  • a new set value RTSn of the return time is determined based on the statistical values RTAn and ⁇ n of the actual measurement values RT1 to RTn for a plurality of times.
  • the energy saving control of the present embodiment described above has the following advantages. That is, wasteful energy consumption can be suppressed by switching the reflow furnace to the standby mode when the operator is absent due to a break or shift change or when production is temporarily stopped due to setup change or the like. And, since it automatically switches to the operation mode based on the set production start time and return time settings, it is possible to return the reflow furnace to the production ready state by the scheduled production start time and resume production. Become.
  • a function to update (learn) the set value using the measured value of the return time is provided, the set value of the return time can be automatically optimized while the reflow furnace is actually operating (that is, online). Can do. Due to differences in operating conditions, installation environment, aging, etc., the same reflow furnace may cause variations in the return time, but by properly updating the set values based on the measured values as in this embodiment, proper return can be achieved. Time can be set automatically.
  • FIG. 10 shows an example of the mode switching timing when the return time set value RTSn updated (learned) by the method of the present embodiment is used.
  • T2-T1 the idling time
  • the set value RTSn of the return time takes into account the variation of “+ X ⁇ n” obtained from the measured values for n times, in most cases, the state return can be completed by the scheduled production start time T2. it can.
  • margin time (margin for safety) set by the user is also added, even in rare cases such as when the state of the device at the time of mode switching is unusual, the time until the scheduled production start time T2 is reached. It is possible to reliably guarantee the status recovery and the resumption of production.
  • the initialization process is executed when the configuration or operating conditions of the reflow furnace are changed, and the return time is learned again from the beginning. Therefore, mode switching based on an invalid setting value is performed. Can be prevented.
  • step S91 in FIG. 9 is replaced with a determination process for determining whether the furnace temperature (output of the temperature sensor 22), which is a management item, has reached the control value (230 ° C.).
  • step S91 in FIG. 9 it is determined whether both the oxygen concentration and the furnace temperature have reached the control value.
  • the standby mode is started immediately when a command to switch to the standby mode (interrupt) is generated, but it is also preferable to delay the start timing of the standby mode.
  • the mode switching unit 111 switches to the standby mode after a predetermined time (several tens of seconds to several minutes) has elapsed since the occurrence of the interrupt. Assuming an operation in which the user operates the switch at the beginning of a break, etc., there is a possibility that the workpiece remains in the furnace at the time of interrupt occurrence (at the time when the switch operation is performed), so it waits immediately. Switching to mode will produce defective products.
  • the mode switching is delayed for a predetermined time to wait for the processing of the work in progress to be completed.
  • the delay time may be set to the same level as the processing time for one workpiece.
  • the presence or absence of a workpiece in the furnace is determined using the detection result of the substrate sensor 21, and when it is confirmed that there is no work in progress after the occurrence of an interrupt, switching to the standby mode is performed. Also good.
  • the second embodiment of the present invention is an example in which the present invention is applied to energy saving control in a clean room.
  • a clean room has a configuration for cleaning the entire room and a configuration for cleaning a local space surrounded by partitions (also called a clean booth), but the present invention can be applied to any configuration. .
  • FIG. 11 shows the overall configuration of the clean room (clean booth) of the second embodiment.
  • the clean room 400 is a facility for keeping the environment (production environment) around the manufacturing apparatus 401 clean.
  • a transparent sheet (curtain) 403 that forms a manufacturing chamber 402 that is a semi-enclosed space around the manufacturing apparatus 401;
  • a particle sensor 404, a fan filter unit 405, and a controller 406 as a control device are provided.
  • the lower end of the transparent sheet 403 is separated from the floor by a predetermined height, and an opening 407 is formed at the lower end of the manufacturing chamber 402.
  • a fan filter unit 405 is attached to the upper end (ceiling) of the manufacturing chamber 402.
  • the particle sensor 404 is arranged so as to measure the environment near the pass line of the manufacturing apparatus 401.
  • the fan filter unit 405 has a blower that takes in air from the outside of the manufacturing chamber 402 and a HEPA filter that removes dust (particles) from the taken-in air.
  • a blower that takes in air from the outside of the manufacturing chamber 402
  • a HEPA filter that removes dust (particles) from the taken-in air.
  • This clean room 400 can also perform energy saving control by switching between the operation mode and the standby mode, similarly to the reflow furnace of the first embodiment.
  • the controller 406 controls the power supplied to the fan filter unit 405 according to the output of the particle sensor 404, and adjusts the rotational speed of the blower, that is, the inflow amount of air, thereby cleaning the interior of the manufacturing chamber 402. Keep the degree ready for production. For example, when the cleanliness of the production-ready state is “Class 10,000”, the number of particles having a particle size range of 0.5 ⁇ m to 5 ⁇ m is maintained at 10,000 or less per cubic foot (1 cf). Is done.
  • the controller 406 When switched to the standby mode, the controller 406 stops supplying power to the fan filter unit 405 or reduces the supply amount. This reduces energy consumption. However, in the standby mode, the clean air in the manufacturing chamber 402 decreases because the amount of clean air inflow is eliminated or reduced. Therefore, it is necessary to switch to the operation mode before the scheduled production start time and to restore the cleanliness by the scheduled production start time. Therefore, the same control as in the first embodiment and the update process of the set value of the return time can be suitably applied. In this case, the determination process in step S91 in FIG. 9 is replaced with a determination process of whether or not the cleanliness (particle sensor output), which is a management item, has reached a management value (class 10,000).
  • a value obtained by subtracting the sum of the set value RTS and the allowance time AT (RTS + AT) from the scheduled production start time ST is set as the mode switching time.
  • the allowance time AT is added in step S99 of FIG.
  • the statistical values of all (n times) measurement values RT1 to RTn accumulated in the storage unit 110 are used for the update process, but only the measurement values measured in a predetermined period are extracted. Only a part of the extracted measurement values can be used for the update process. For example, as the production facility deteriorates over time, there may be a change that the return time gradually becomes longer (or shorter). In such a case, it is more appropriate to use only the latest measurement values for the most recent one week or one month for updating the set value RTS than to use all the measurement values accumulated in the storage unit 110.
  • the set value can be obtained.
  • the return time may vary depending on the season or time zone. In such a case, for example, it is expected that an appropriate set value RTS can be determined by using the measurement value of the same period last year or using the measurement value of the same time zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • General Factory Administration (AREA)

Abstract

A control device comprises: a storage device which stores a setting value of a return time; a mode switch unit which, when a manufacturing facility is in a standby mode, determines, on the basis of a scheduled manufacturing start time and the setting value of the return time, a switch time whereat a switch from the standby mode to an operation mode is to be carried out, and carries out the switch from the standby mode to the operation mode at the time whereat the present time has reached the switch time; a measurement unit which measures the return time actually required to return to the previous state after the switch to the operation mode by the mode switch unit; and an update unit which, on the basis of the measurement value of the return time which is measured by the measurement unit, updates the setting value of the return time which is stored in the storage unit.

Description

生産設備の制御装置Production equipment control equipment
 本発明は、生産設備の制御に関し、特に生産設備のエネルギ消費量を低減するための技術に関する。 The present invention relates to control of production equipment, and more particularly to technology for reducing energy consumption of production equipment.
 環境問題への対応やコスト低減の要請などから、工場等の生産設備における省エネ技術が注目を集めている。たとえば、製造装置が運転状態にある場合でも常に生産を行っているわけではなく、休憩やシフト交替でオペレータが不在となる時間や、段取り替えの間など、装置が空転している時間も少なくない。とはいえ、製造装置の立ち上げには相当の時間を必要とするため、ライン稼働中に製造装置を完全に停止することはできない。そこで最近では、空転時(非生産時)にはエネルギ消費の少ない状態で装置を待機させ(待機モード、省エネモードなどと呼ばれる)、生産再開に合わせて運転モードへ切り替えることで生産可能な状態に迅速に復帰させる、といった省エネルギ制御が可能な装置が提案されている(たとえば特許文献1~3参照)。 省 エ ネ Energy-saving technologies in production facilities such as factories are attracting attention because of environmental issues and cost reduction requirements. For example, even when the manufacturing equipment is in operation, production is not always performed, and there are many times when the equipment is idle, such as when the operator is absent during breaks and shifts, and during setup changes. . However, since it takes a considerable amount of time to start up the manufacturing apparatus, the manufacturing apparatus cannot be completely stopped during line operation. Therefore, recently, when idling (during non-production), the system is put on standby with low energy consumption (called standby mode, energy-saving mode, etc.), and switched to the operation mode when production resumes, so that production is possible. An apparatus capable of energy saving control such as quick return has been proposed (see, for example, Patent Documents 1 to 3).
特開2010-147112号公報JP 2010-147112 A 特開2010-282392号公報JP 2010-282392 A 特許第5077475号公報Japanese Patent No. 5077475
 上記のような省エネルギ制御にあっては、待機モードから運転モードへの切り替えを行うタイミングをどのように制御するかが、技術上の課題の一つとなっている。運転モードへの切り替えが行われても直ぐに生産を再開することはできず、安定した品質で製造が可能な状態となるまでにはある程度の待ち時間(これを復帰時間と呼ぶ)を要するからである。しかも、復帰時間は常に一定ではなく、モード切替時点での装置の状態(加熱炉の場合であれば、炉内の温度や雰囲気など)や設置環境(周囲温度、湿度など)によってばらつく可能性もある。それゆえ従来は、想定される復帰時間よりもはるかに長い時間を設定値として与え、生産開始予定時刻からその設定値分さかのぼった時点でモード切替を実行することで、生産開始予定時刻までに状態復帰することを確実なものとしていた。しかしながら、この方法では、生産開始予定時刻のかなり前に状態復帰が完了する場合が多く、状態復帰後から生産再開までのあいだに無駄なエネルギ消費が発生してしまうため、さらなる削減の余地がある。 In the energy saving control as described above, how to control the timing for switching from the standby mode to the operation mode is one of the technical problems. Production cannot be resumed immediately after switching to the operation mode, and a certain amount of waiting time (this is called return time) is required before it becomes possible to manufacture with stable quality. is there. Moreover, the recovery time is not always constant, and may vary depending on the state of the equipment at the time of mode switching (in the case of a heating furnace, the temperature and atmosphere in the furnace) and the installation environment (ambient temperature, humidity, etc.). is there. Therefore, in the past, a time much longer than the expected return time is given as a set value, and mode switching is performed when the set value is traced back from the scheduled production start time, so that the status is reached by the scheduled production start time. He was sure to return. However, in this method, the state recovery is often completed well before the scheduled production start time, and wasteful energy consumption occurs between the state recovery and the production restart, so there is room for further reduction. .
 本発明は、上記実情に鑑みてなされたものであり、生産設備のエネルギ消費量を一層低減するための技術を提供することを目的とする。また本発明のさらなる目的は、生産設備の運転条件や設置環境等にあわせた適切な復帰時間を自動で設定するための技術を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for further reducing the energy consumption of production equipment. A further object of the present invention is to provide a technique for automatically setting an appropriate return time according to the operating conditions and installation environment of the production facility.
 上記目的を達成するために本発明では、モード切替後に実際に状態が復帰するまでに要した実時間を計測し、その計測値に基づいて復帰時間の設定値を自動で更新する、という構成を採用する。 In order to achieve the above object, the present invention measures the actual time required for the state to actually return after mode switching, and automatically updates the set value of the return time based on the measured value. adopt.
 具体的には、本発明に係る制御装置は、生産が可能な第1の状態を維持する運転モードと、前記第1の状態よりもエネルギ消費量が低い第2の状態で待機する待機モードとを有する生産設備の制御装置であって、前記生産設備が前記第2の状態から前記第1の状態に復帰するまでに要すると見込まれる復帰時間の設定値を記憶する記憶部と、前記生産設備が待機モードにある場合に、前記生産設備を前記第1の状態に復帰させるべき時刻と前記記憶部に記憶されている復帰時間の設定値に基づいて、待機モードから運転モードへの切り替えを行うべき切替時刻を決定し、現在時刻が前記切替時刻に到達した時点で待機モードから運転モードへの切り替えを行うモード切替部と、前記モード切替部によって運転モードへ切り替えられてから、前記生産設備が前記第1の状態に復帰するまでに実際に要した復帰時間を計測する計測部と、前記計測部によって計測された復帰時間の計測値に基づいて、前記記憶部に記憶されている復帰時間の設定値を更新する更新部と、を有することを特徴とする。 Specifically, the control device according to the present invention includes an operation mode that maintains a first state in which production is possible, and a standby mode that stands by in a second state in which energy consumption is lower than the first state. A storage unit that stores a set value of a return time expected to be required for the production facility to return from the second state to the first state, and the production facility Is switched from the standby mode to the operation mode based on the time when the production facility should be returned to the first state and the set value of the return time stored in the storage unit. The mode switching unit that determines the switching time to be switched and switches from the standby mode to the operation mode when the current time reaches the switching time, and the mode switching unit is switched to the operation mode, Based on the measured value of the return time measured by the measuring unit and the measuring unit that actually measures the return time required for the production facility to return to the first state, And an update unit for updating the set value of the return time.
 この構成によれば、休憩やシフト交替などでオペレータが不在となる場合や段取り替えなどにより生産が一時的に止まる場合に、生産設備を待機モードに切り替えることで、無駄なエネルギ消費を抑えることができる。待機モードへの切り替えはオペレータが手動で指示してもよいし、自動で切り替えてもよい。ここで、「エネルギ」には、生産設備に直接的に供給されるエネルギ(電力、熱、力など)だけでなく、生産設備を動作させるために間接的に必要となるエネルギ、たとえば、生産設備で利用される物質(雰囲気ガス、冷却液、洗浄液、触媒など)を製造、運搬、貯蔵、供給するために必要なエネルギなど、を含んでもよい。 According to this configuration, it is possible to suppress wasteful energy consumption by switching the production facility to the standby mode when the operator is absent due to a break or shift shift, or when production is temporarily stopped due to setup change or the like. it can. Switching to the standby mode may be instructed manually by an operator or may be switched automatically. Here, “energy” includes not only energy (electric power, heat, power, etc.) directly supplied to the production facility, but also energy necessary for operating the production facility, for example, production facility. It may include energy necessary for manufacturing, transporting, storing, and supplying substances (eg, atmospheric gas, cooling liquid, cleaning liquid, and catalyst) used in
 待機モードから運転モードへの切り替えは、モード切替部によって自動的に実行される。モード切り替えのタイミング(切替時刻)は、生産設備を第1の状態に復帰させるべき時刻(以下、生産開始予定時刻と呼ぶ)と記憶部に予め設定されている復帰時間の設定値に基づいて決められる。ここで、復帰時間の設定値にある程度の余裕を見込んでおくことで、生産開始予定時刻までに、生産設備を第1の状態(生産が可能な状態)に復帰させ、生産を再開することを保証できる。 Switching from standby mode to operation mode is automatically executed by the mode switching unit. The mode switching timing (switching time) is determined based on the time at which the production facility should be returned to the first state (hereinafter referred to as the scheduled production start time) and the set value of the return time preset in the storage unit. It is done. Here, by taking a certain margin into the set value of the return time, the production equipment is returned to the first state (a state where production is possible) by the scheduled production start time, and production is resumed. Can be guaranteed.
 さらに本発明では、復帰時間の設定値を自動で最適化するための構成を採用する。すなわち、モード切替後、第1の状態に復帰するまでに実際に要した復帰時間を計測し、その計測値(実測値)に基づいて復帰時間の設定値を更新するのである。たとえば、計測値に比べて設定値が過大であった場合は、設定値を短くすればよいし、計測値と設定値の差(マージン)が過小であった場合は、設定値を長くすればよい。計測値に基づいて設定値をより良い値に更新することができさえすれば、どのようなアルゴリズムで更新処理を行ってもよい。かかる構成により、生産設備を実稼働するなかで(つまり、オンラインで)復帰時間の設定値を自動で最適化することができる。また、運転条件や設置環境の違い、経年劣化などにより、同じ生産設備でも復帰時間にばらつきが生じ得るが、本発明のように計測値に基づいて適宜設定値の更新を行うことで、生産設備毎に適正な復帰時間を自動で設定することができる。よって、第1の状態に復帰してから生産再開までの空転時間を可及的に短縮でき、無駄なエネルギ消費を低減することが可能となる。 Furthermore, in the present invention, a configuration for automatically optimizing the set value of the return time is adopted. That is, after the mode is switched, the return time actually required until the first state is returned is measured, and the set value of the return time is updated based on the measured value (actually measured value). For example, if the set value is excessive compared to the measured value, the set value can be shortened. If the difference (margin) between the measured value and the set value is too small, the set value can be increased. Good. As long as the set value can be updated to a better value based on the measurement value, the update process may be performed by any algorithm. With this configuration, the set value of the return time can be automatically optimized while the production facility is actually operated (that is, online). In addition, due to differences in operating conditions, installation environment, aging, etc., there may be variations in the return time even with the same production equipment, but by updating the set values appropriately based on the measured values as in the present invention, the production equipment An appropriate return time can be set automatically every time. Therefore, the idling time from the return to the first state to the resumption of production can be shortened as much as possible, and wasteful energy consumption can be reduced.
 前記更新部は、複数回分の計測値の統計値に基づいて復帰時間の新たな設定値を決定することが好ましい。モード切替時の生産設備の状態や設置環境などにより復帰時間にばらつきが生じる可能性があるが、複数回分の計測値の統計値を用いることにより、復帰時間のばらつきを考慮して設定値を決定することが可能となる。なお、統計値としては、平均値、分散、標準偏差、最大値、最頻値など、計測値のばらつき(分布)を表す指標であればどのような値を用いてもよい。 It is preferable that the update unit determines a new set value for the return time based on a statistical value of a plurality of measurement values. The recovery time may vary depending on the state of the production equipment and the installation environment at the time of mode switching, but the set value is determined in consideration of the variation in the recovery time by using the statistical values of the measured values for multiple times. It becomes possible to do. As the statistical value, any value may be used as long as it is an index representing variation (distribution) of measured values, such as an average value, variance, standard deviation, maximum value, and mode value.
 前記計測部による計測が行われる毎に前記記憶部に計測値が記録され、前記更新部は、前記記憶部に記録された全ての計測値の内から所定の期間に計測された複数回分の計測値を抽出し、前記抽出された複数回分の計測値の統計値に基づいて復帰時間の新たな設定値を決定することが好ましい。たとえば設備の経年劣化や季節変動などにより復帰時間が変化する場合、過去から蓄積された全ての計測値を用いるよりも、一部の計測値(直近の計測値、同時期の計測値など)だけを用いるほうが、より適切な設定値を求めることが可能となる。 Each time measurement is performed by the measurement unit, a measurement value is recorded in the storage unit, and the update unit measures a plurality of times measured in a predetermined period from all the measurement values recorded in the storage unit. It is preferable to extract a value and determine a new set value for the return time based on the extracted statistical values of the measured values for a plurality of times. For example, when the recovery time changes due to equipment aging, seasonal fluctuations, etc., rather than using all the accumulated measurement values from the past, only some measurement values (most recent measurement values, simultaneous measurement values, etc.) It is possible to obtain a more appropriate set value by using.
 本発明の更新処理により最適化した設定値を用いれば、殆どのケースにおいて、生産開始予定時刻までに状態復帰を完了することができる。しかしながら、稀なケースにおいては、生産開始予定時刻までに状態復帰が間に合わないというリスクがないわけではない。そこで、前記制御装置は、使用者から付加時間の入力を受け付ける入力部をさらに有しており、前記モード切替部が前記切替時刻を決定する際、または、前記更新部が復帰時間の設定値を更新する際に、前記入力された付加時間が復帰時間の設定値に付加されるようにすることが好ましい。これにより、待機モードから運転モードへの切替時刻を付加時間分だけ早めることができる。付加時間の追加によりエネルギ消費量がやや増加するという不利はあるものの、使用者の経験や知識に基づいて適切な付加時間(安全のためのマージン)を設定することで、省エネルギ制御が生産再開に支障を与えるリスクを排除できるという有利な効果が得られる。 If the set value optimized by the update process of the present invention is used, in most cases, the return of the state can be completed by the scheduled production start time. However, in rare cases, it is not without the risk that state recovery will not be in time by the scheduled production start time. Therefore, the control device further includes an input unit that receives an input of an additional time from a user, and when the mode switching unit determines the switching time, or the update unit sets a set value of the return time. When updating, it is preferable that the input additional time is added to the set value of the return time. Thereby, the switching time from the standby mode to the operation mode can be advanced by the additional time. Although there is a disadvantage that energy consumption increases slightly due to the addition of additional time, energy saving control resumes production by setting an appropriate additional time (margin for safety) based on the experience and knowledge of the user. The advantageous effect of eliminating the risk of hindering the operation is obtained.
 前記記憶部に記憶されている復帰時間の設定値を初期値に戻す初期化部をさらに有することが好ましい。これにより、最適化した(学習した)復帰時間の設定値を必要に応じてリセットし、最初から学習しなおすことが可能となり、利便性が向上する。この機能は、何らかの原因によって復帰時間が変動する場合(つまり、過去の計測値により学習した設定値が妥当でなくなる場合)に有効である。 It is preferable to further include an initialization unit for returning the set value of the return time stored in the storage unit to the initial value. As a result, the optimized (learned) return time setting value can be reset as necessary, and the learning can be performed again from the beginning, improving convenience. This function is effective when the recovery time fluctuates for some reason (that is, when the set value learned by the past measurement value becomes invalid).
 たとえば、生産設備の構成を変更(修理、部品交換、設置場所の変更を含む)したり、運転条件(制御の目標値、制御ロジックなど)を変更したりすると、復帰時間が変動し、過去の計測値により学習した設定値が妥当でなくなる可能性が高い。そこで、前記初期化部は、生産設備の構成または運転条件が変更された場合に、復帰時間の設定値を初期値に戻すことが好ましい。これにより、妥当でない設定値に基づくモード切替が行われることを防ぐことができる。 For example, if the production equipment configuration is changed (including repairs, parts replacement, installation location changes) or operating conditions (control target values, control logic, etc.) are changed, There is a high possibility that the set value learned from the measured value is not valid. Therefore, it is preferable that the initialization unit returns the set value of the return time to the initial value when the configuration of the production facility or the operation condition is changed. Thereby, it is possible to prevent mode switching based on an invalid setting value from being performed.
 本発明に係る制御装置は、運転モードと待機モードを有する生産設備であれば、あらゆる種類の生産設備に適用することができる。なお、生産設備とは、製品の生産に関係する設備をいい、典型的には製造装置や加工装置が該当するが、生産に間接的に寄与する設備も生産設備に該当する。 The control device according to the present invention can be applied to any kind of production equipment as long as the production equipment has an operation mode and a standby mode. The production equipment refers to equipment related to the production of products, and typically includes manufacturing equipment and processing equipment, but equipment that indirectly contributes to production also corresponds to production equipment.
 製造装置や加工装置に該当する生産設備の一つとして、基板上の半田ペーストを加熱するリフロー炉が挙げられる。リフロー炉の場合、前記運転モードは、炉内に窒素ガスを供給して、炉内の酸素濃度を前記第1の状態に維持するモードであり、前記待機モードは、窒素ガスの供給を止めるか供給量を低下させるモードである。あるいは、前記運転モードは、炉内のヒータに電力を供給して、炉内の温度を前記第1の状態に維持するモードであり、前記待機モードは、ヒータへの電力の供給を止めるか供給量を低下させるモードである。 As one of the production equipment corresponding to the manufacturing equipment and processing equipment, there is a reflow furnace for heating the solder paste on the substrate. In the case of a reflow furnace, the operation mode is a mode in which nitrogen gas is supplied into the furnace and the oxygen concentration in the furnace is maintained in the first state, and the standby mode is to stop the supply of nitrogen gas. In this mode, the supply amount is reduced. Alternatively, the operation mode is a mode in which electric power is supplied to the heater in the furnace and the temperature in the furnace is maintained in the first state, and the standby mode is to stop or supply electric power to the heater. This mode reduces the amount.
 また、生産に間接的に寄与する設備に該当する生産設備の一つとして、生産環境を清浄に保つためのクリーンルームが挙げられる。クリーンルームの場合、前記運転モードは、ファンフィルターユニットに電力を供給して、クリーンルーム内のクリーン度を前記第1の状態に維持するモードであり、前記待機モードは、ファンフィルターユニットへの電力の供給を止めるか供給量を低下させるモードである。 Also, one of the production equipment that corresponds to equipment that indirectly contributes to production is a clean room for keeping the production environment clean. In the case of a clean room, the operation mode is a mode in which power is supplied to the fan filter unit and the cleanliness in the clean room is maintained in the first state, and the standby mode is supply of power to the fan filter unit. This mode stops the supply or decreases the supply amount.
 なお、本発明は、上記構成の少なくとも一部を有する制御装置、または、その制御装置を備える生産設備として捉えることができる。また、本発明は、上記処理の少なくとも一部を含む制御装置の制御方法、または、かかる方法を制御装置に実行させるためのプログラムやそのプログラムを記録したコンピュータ読取可能な記録媒体として捉えることもできる。上記構成および処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。 Note that the present invention can be understood as a control device having at least a part of the above-described configuration or a production facility including the control device. The present invention can also be understood as a control method for a control device including at least a part of the above processing, a program for causing the control device to execute the method, or a computer-readable recording medium on which the program is recorded. . Each of the above configurations and processes can be combined with each other as long as no technical contradiction occurs.
 本発明によれば、生産設備のエネルギ消費量を一層低減することができる。また、生産設備の運転条件や設置環境等にあわせた適切な復帰時間を自動で設定することができる。 According to the present invention, the energy consumption of the production facility can be further reduced. In addition, it is possible to automatically set an appropriate return time according to the operating conditions of the production equipment, the installation environment, and the like.
第1実施形態の基板処理システムの全体構成を示す図。1 is a diagram illustrating an overall configuration of a substrate processing system according to a first embodiment. リフロー炉の構成を模式的に示す図。The figure which shows the structure of a reflow furnace typically. リフロー炉の制御ブロック図。The control block diagram of a reflow furnace. モード切り替えによる省エネルギ制御を説明するための図。The figure for demonstrating the energy saving control by mode switching. コントローラの省エネルギ制御に関わる機能の構成を示すブロック図。The block diagram which shows the structure of the function in connection with the energy saving control of a controller. コントローラにより実行される処理の全体フローを示す図。The figure which shows the whole flow of the process performed by a controller. 初期化処理のフローを示す図。The figure which shows the flow of an initialization process. 待機モードにおける処理フローを示す図。The figure which shows the processing flow in standby mode. 復帰時間の設定値の更新処理のフローを示す図。The figure which shows the flow of the update process of the setting value of return time. 更新(学習)した復帰時間の設定値を用いた場合のモード切替タイミングの一例を示す図。The figure which shows an example of the mode switching timing at the time of using the set value of the updated (learned) return time. 第2実施形態のクリーンルームの全体構成を示す図。The figure which shows the whole structure of the clean room of 2nd Embodiment.
 本発明は、生産設備の省エネルギ制御を行う制御装置およびその制御方法に関するものである。制御装置は、生産設備と別体もしくは外付けのユニットでもよいし、生産設備と一体もしくは内蔵のユニットでもよい。この制御装置は、運転モードと待機モードを有する生産設備であれば、あらゆる種類の生産設備に適用することができる。なお、生産設備とは、製品の生産に関係する設備をいい、典型的には製造装置や加工装置が該当するが、生産に間接的に寄与する設備、たとえば、運搬装置、貯蔵設備、クリーンルーム、空調装置、照明装置なども生産設備に該当する。以下の実施形態では、本発明の好適な適用例として、基板上の半田ペーストを加熱するリフロー炉の省エネルギ制御と、生産環境を清浄に保つためのクリーンルームの省エネルギ制御を例示する。 The present invention relates to a control device that performs energy saving control of a production facility and a control method thereof. The control device may be a separate unit or an external unit from the production facility, or may be a unit integrated with or built in the production facility. The control device can be applied to all types of production facilities as long as the production facilities have an operation mode and a standby mode. Production equipment refers to equipment related to product production, typically manufacturing equipment and processing equipment, but equipment that indirectly contributes to production, such as transportation equipment, storage equipment, clean rooms, Air conditioners, lighting devices, etc. also fall under production facilities. In the following embodiments, as a preferable application example of the present invention, energy saving control of a reflow furnace for heating a solder paste on a substrate and energy saving control of a clean room for keeping a production environment clean are exemplified.
 <第1実施形態>
 本発明の第1実施形態は、基板処理システムのリフロー炉の省エネルギ制御に本発明を適用した例である。まずは図1、図2、図3を参照してシステムの概略構成を説明する。図1は、基板処理システムの全体構成を示す図であり、図2は、リフロー炉の構成を模式的に示す図であり、図3は、図2のリフロー炉の制御ブロック図である。
<First Embodiment>
1st Embodiment of this invention is an example which applied this invention to the energy saving control of the reflow furnace of a substrate processing system. First, a schematic configuration of the system will be described with reference to FIG. 1, FIG. 2, and FIG. FIG. 1 is a diagram showing an overall configuration of a substrate processing system, FIG. 2 is a diagram schematically showing a configuration of a reflow furnace, and FIG. 3 is a control block diagram of the reflow furnace of FIG.
 (基板処理システム)
 図1の基板処理システムは、プリント基板上に電子部品を実装するためのシステムである。
(Substrate processing system)
The substrate processing system in FIG. 1 is a system for mounting electronic components on a printed circuit board.
 図1の基板処理システムでは、処理されるプリント基板が、ローダ210、半田印刷機220、検査装置230、高速マウンタ240、高精度マウンタ250、検査装置260、リフロー炉100、アンローダ310の順に送られる。図1中の矢印D1は、プリント基板の搬送方向を示している。 In the substrate processing system of FIG. 1, a printed circuit board to be processed is sent in the order of a loader 210, a solder printer 220, an inspection device 230, a high-speed mounter 240, a high-precision mounter 250, an inspection device 260, a reflow furnace 100, and an unloader 310. . An arrow D1 in FIG. 1 indicates the conveyance direction of the printed board.
 ローダ210から送られたプリント基板に対し、半田印刷機220において半田ペーストが印刷される。当該印刷の良否が検査装置230で検査された後、高速マウンタ240および高精度マウンタ250で電子部品がプリント基板上にマウントされる。当該マウントの良否が検査装置260で検査された後、電子部品をマウントされたプリント基板がリフロー炉100に送られる。本明細書では、リフロー炉100に送られた、電子部品をマウントされたプリント基板を、「ワーク」と呼ぶ。 Solder paste is printed by the solder printer 220 on the printed circuit board sent from the loader 210. After the quality of the printing is inspected by the inspection device 230, the electronic component is mounted on the printed circuit board by the high-speed mounter 240 and the high-precision mounter 250. After the quality of the mount is inspected by the inspection device 260, the printed circuit board on which the electronic component is mounted is sent to the reflow furnace 100. In this specification, the printed circuit board mounted with the electronic components sent to the reflow furnace 100 is referred to as “work”.
 そして、リフロー炉100で、半田ペーストを溶解させて電子部品が固定された後、ワークは、アンローダ310を介して、種々の工程に送られる。 Then, after the solder paste is dissolved and the electronic component is fixed in the reflow furnace 100, the workpiece is sent to various processes via the unloader 310.
 なお、ローダ210、半田印刷機220、検査装置230、高速マウンタ240、高精度マウンタ250、検査装置260、リフロー炉100、および、アンローダ310は、非常ランプ219,229,239,249,259,269,109,319をそれぞれ備え、また、その動作がそれぞれの制御装置によって制御される。そして、当該制御装置は、それぞれにおいて非常事態が発生した場合には、各装置に対応する非常ランプを点灯させる。 Note that the loader 210, solder printer 220, inspection device 230, high-speed mounter 240, high-precision mounter 250, inspection device 260, reflow furnace 100, and unloader 310 are emergency lamps 219, 229, 239, 249, 259, and 269. , 109 and 319, and their operations are controlled by respective control devices. And when the emergency occurs in each, the said control apparatus makes the emergency lamp corresponding to each apparatus light.
 (リフロー炉)
 図2を参照して、リフロー炉100の構成を詳しく説明する。リフロー炉100内では、検査装置260から送り込まれたワーク90が、コンベア80上に載置されて、リフロー炉100中で搬送される。図2中の矢印D2は、コンベア80の回転方向を示している(なお、図示の関係で、図1と図2ではリフロー炉100の左右が逆になっているので注意されたい。)。
(Reflow furnace)
The configuration of the reflow furnace 100 will be described in detail with reference to FIG. In the reflow furnace 100, the workpiece 90 sent from the inspection apparatus 260 is placed on the conveyor 80 and is conveyed in the reflow furnace 100. An arrow D2 in FIG. 2 indicates the rotation direction of the conveyor 80 (note that the left and right sides of the reflow furnace 100 are reversed in FIGS. 1 and 2 for the purpose of illustration).
 リフロー炉には、不活性雰囲気室13が設けられている。不活性雰囲気室13の上流側にはダクト56Aが、下流側にはダクト56Bが設けられている。 An inert atmosphere chamber 13 is provided in the reflow furnace. A duct 56A is provided on the upstream side of the inert atmosphere chamber 13, and a duct 56B is provided on the downstream side.
 ダクト56A,56Bには、それぞれ、ファン50A,50B、および、開閉板52A,52Bが設けられている。ファン50A,50Bは、モータ51A,51Bによって駆動され、モータ51A,51Bは、インバータ55A,55Bから電力を供給される。 The ducts 56A and 56B are provided with fans 50A and 50B and opening / closing plates 52A and 52B, respectively. Fans 50A and 50B are driven by motors 51A and 51B, and motors 51A and 51B are supplied with electric power from inverters 55A and 55B.
 開閉板52A,52Bは、ダクト56A,56Bのそれぞれにおいて空気が流れる度合いを調整するために設けられている。開閉板52A,52Bによるダクト56A,56B内の送風路の開閉度合いは、ダンパ用モータ53A,53Bによってそれぞれ制御される。 The opening / closing plates 52A and 52B are provided to adjust the degree of air flow in each of the ducts 56A and 56B. The degree of opening and closing of the air passages in the ducts 56A and 56B by the opening and closing plates 52A and 52B is controlled by damper motors 53A and 53B, respectively.
 ワーク90に使用されている半田が、いわゆる鉛フリーの半田である場合等、酸素濃度を低下させることが望ましい場合、不活性雰囲気室13には、酸素濃度を低下させるために、窒素ライン14を介して窒素ガス(不活性ガス、雰囲気ガスとも称する)が送られる。不活性雰囲気室13への窒素ガスの導入量は、窒素バルブ(以下、「N2バルブ」とも称する)16の開閉度が制御されることによって、制御される。なお、窒素ライン14における窒素ガスの流量は、流量計15によって検出される。また、リフロー炉には、不活性雰囲気室13内の酸素濃度を検出するための酸素濃度センサ(以下、「O2濃度センサ」とも称する)17が設けられている。 When it is desirable to reduce the oxygen concentration, such as when the solder used in the workpiece 90 is a so-called lead-free solder, the inert atmosphere chamber 13 is provided with a nitrogen line 14 in order to reduce the oxygen concentration. Nitrogen gas (also referred to as inert gas or atmospheric gas) is sent through. The amount of nitrogen gas introduced into the inert atmosphere chamber 13 is controlled by controlling the degree of opening and closing of a nitrogen valve (hereinafter also referred to as “N2 valve”) 16. The flow rate of nitrogen gas in the nitrogen line 14 is detected by a flow meter 15. Further, the reflow furnace is provided with an oxygen concentration sensor (hereinafter also referred to as “O2 concentration sensor”) 17 for detecting the oxygen concentration in the inert atmosphere chamber 13.
 不活性雰囲気室13内では、7段階でワークを加熱するために、ヒータ11A,11B、ヒータ11C,11D、ヒータ11E,11F、ヒータ11G,11H、ヒータ11I,11J、ヒータ11K,11L、ヒータ11M,11Nの7組の加熱装置が設けられている。各組の加熱装置は、コンベア80の上方に配置されたヒータと下方に配置されたヒータを含む。リフロー炉では、ヒータ11A~11Nで消費された電力が電力計70によって計測される。 In the inert atmosphere chamber 13, in order to heat the workpiece in seven stages, heaters 11A and 11B, heaters 11C and 11D, heaters 11E and 11F, heaters 11G and 11H, heaters 11I and 11J, heaters 11K and 11L, and heater 11M , 11N, 7 sets of heating devices are provided. Each set of heating devices includes a heater disposed above the conveyor 80 and a heater disposed below. In the reflow furnace, the power consumed by the heaters 11A to 11N is measured by the wattmeter 70.
 また、各ヒータの近傍には、不活性雰囲気室13内の空気を攪拌するために、ファン12A,12B、ファン12C,12D、ファン12E,12F、ファン12G,12H、ファン12I,12J、ファン12K,12L、ファン12M,12Nが設けられている。 Further, in the vicinity of each heater, in order to stir the air in the inert atmosphere chamber 13, the fans 12A and 12B, the fans 12C and 12D, the fans 12E and 12F, the fans 12G and 12H, the fans 12I and 12J, and the fan 12K. , 12L and fans 12M, 12N are provided.
 不活性雰囲気室13において、ヒータ11A,11B、ヒータ11C,11D、ヒータ11E,11F、ヒータ11G,11H、ヒータ11I,11J、ヒータ11K,11L、ヒータ11M,11Nによって加熱されたワーク90は、ダクト56Bに送られ、チラー60によって冷却される。チラー60は、冷却管61,62を備える。その後、ワーク90は、次工程(たとえば、図1のアンローダ310)に送られる。 In the inert atmosphere chamber 13, the work 90 heated by the heaters 11A and 11B, the heaters 11C and 11D, the heaters 11E and 11F, the heaters 11G and 11H, the heaters 11I and 11J, the heaters 11K and 11L, and the heaters 11M and 11N 56B and cooled by the chiller 60. The chiller 60 includes cooling pipes 61 and 62. Thereafter, the workpiece 90 is sent to the next step (for example, the unloader 310 in FIG. 1).
 不活性雰囲気室13およびダクト56Bには、図示せぬ温度センサが設けられている。温調ユニット102は、当該温度センサによって検出される温度に基づいて、ヒータ11A~11Nの動作をフィードバック制御する。また、リフロー炉には、温度センサ22や酸素濃度センサ17の検出出力に基づいて、ヒータ11A~11N、窒素バルブ16等の各要素の動作を全体的に制御するためのコントローラ(制御装置)101が設けられている。 In the inert atmosphere chamber 13 and the duct 56B, a temperature sensor (not shown) is provided. The temperature control unit 102 feedback-controls the operation of the heaters 11A to 11N based on the temperature detected by the temperature sensor. Further, the reflow furnace includes a controller (control device) 101 for overall control of the operation of each element such as the heaters 11A to 11N and the nitrogen valve 16 on the basis of detection outputs of the temperature sensor 22 and the oxygen concentration sensor 17. Is provided.
 コントローラ101には、モニタ等として機能するパーソナルコンピュータ(以下、「PC」とも称する)300や、検査装置230,260等の、基板処理システム(図1参照)においてリフロー炉100より前工程に設けられた装置を制御するための装置(コントローラ200)が接続されている。コントローラ101は、後述するように、PC300やコントローラ200から取得した情報に基づいて、ヒータ11A~11N、窒素バルブ16等の各要素の動作を制御する場合が有り得る。 The controller 101 is provided in a process prior to the reflow furnace 100 in a substrate processing system (see FIG. 1) such as a personal computer (hereinafter also referred to as “PC”) 300 that functions as a monitor and inspection apparatuses 230 and 260. A device (controller 200) for controlling the connected device is connected. As will be described later, the controller 101 may control the operation of each element such as the heaters 11A to 11N and the nitrogen valve 16 based on information acquired from the PC 300 and the controller 200.
 (リフロー炉の制御ブロック)
 図3は、リフロー炉100の制御ブロックを示している。コントローラ101は、図2を参照して説明したヒータ11A~11N等の各要素に加え、不活性雰囲気室13内の7段階の加熱工程(各ヒータ組)のそれぞれにおける雰囲気温度およびダクト56Bのワーク90の通過領域近傍の雰囲気温度を検出するための温度センサ22、不活性雰囲気室13内に導入されている基板の数を検出する基板センサ21、コンベア80を回転させるコンベアモータ81、および、図1を参照して説明した非常ランプ109に接続されている。なお、図3は、図2の温調ユニット102が、コントローラ101内に含まれるものとして記載されている。
(Reflow furnace control block)
FIG. 3 shows a control block of the reflow furnace 100. In addition to the elements such as the heaters 11A to 11N described with reference to FIG. 2, the controller 101 includes the atmospheric temperature in each of the seven stages of heating processes (each heater group) in the inert atmosphere chamber 13 and the work of the duct 56B. 90, a temperature sensor 22 for detecting the ambient temperature in the vicinity of the passing region, a substrate sensor 21 for detecting the number of substrates introduced into the inert atmosphere chamber 13, a conveyor motor 81 for rotating the conveyor 80, and FIG. 1 is connected to the emergency lamp 109 described with reference to FIG. Note that FIG. 3 shows that the temperature control unit 102 of FIG. 2 is included in the controller 101.
 コントローラ101は、温度センサ22の検出出力に基づいて、ヒータ11A~11Nの加熱動作等を、PID(Proportional Integral Differential)制御等のフィードバック制御で、各加熱工程について定められた温度に維持するように、制御する。また、コントローラ101は、不活性雰囲気室13内の酸素濃度が定められた濃度以下となるように、窒素バルブ16の開閉度合いを、酸素濃度センサ17の検出出力に基づいてフィードバック制御する。また、コントローラ101は、温度センサ22によるダクト56B内の雰囲気温度の検出出力に基づいて、チラー60における冷却管61,62における冷媒の循環量等、ダクト56B内の雰囲気の冷却態様を制御する。各制御における目標値(運転条件)についてはコントローラ101に予め設定されている。 Based on the detection output of the temperature sensor 22, the controller 101 maintains the heating operation of the heaters 11A to 11N at a temperature determined for each heating process by feedback control such as PID (Proportional Integral Differential) control. ,Control. Further, the controller 101 feedback-controls the degree of opening and closing of the nitrogen valve 16 based on the detection output of the oxygen concentration sensor 17 so that the oxygen concentration in the inert atmosphere chamber 13 is equal to or lower than a predetermined concentration. Further, the controller 101 controls the cooling mode of the atmosphere in the duct 56 </ b> B, such as the circulation amount of the refrigerant in the cooling pipes 61 and 62 in the chiller 60 based on the detection output of the ambient temperature in the duct 56 </ b> B by the temperature sensor 22. Target values (operating conditions) in each control are set in advance in the controller 101.
 また、コントローラ101は、不活性雰囲気室13内の温度が異常に上昇した場合や、コンベア80によるワーク90の搬送に支障が出た場合等、基板処理システムにおいて予定される動作を正常に実行できない事態が生じた場合には、ヒータ11A~11Nによる加熱を停止する、コンベア80によるワーク90の搬送を停止させる、等の公知の措置を講じた後、非常ランプ109を点灯させる。これに応じて、作業員は、リフロー炉における不具合を除去した後、コントローラ101をリセットさせて、リフロー炉の運転を再開させる、等の措置を講じる。 In addition, the controller 101 cannot normally execute a scheduled operation in the substrate processing system, such as when the temperature in the inert atmosphere chamber 13 rises abnormally, or when the conveyor 80 transports the work 90. When a situation occurs, the emergency lamp 109 is turned on after taking known measures such as stopping the heating by the heaters 11A to 11N and stopping the conveyance of the work 90 by the conveyor 80. In response to this, after removing the trouble in the reflow furnace, the worker takes measures such as resetting the controller 101 and restarting the operation of the reflow furnace.
 コントローラ101は、CPU(Central Processing Unit)等の演算装置101Aと、プログラム等の各種のデータを記憶するためのメモリ101Bと、上記したPC300やコントローラ200とコントローラ101との通信の際に利用されるインターフェース101Cとを備える。インターフェース101Cは、たとえばネットワークカード等の通信装置によって実現される。そして、演算装置101Aが、たとえば当該メモリ101Bに格納されたプログラムを実行することによって、本明細書に記載されるようなコントローラ101による制御動作が実現される。ただし、コントローラ101は、当該コントローラ101の各機能を実現する1以上のハードウェア装置(LSI(Large Scale Integration)等)を備えることによって実現される場合も有り得る。 The controller 101 is used for communication between an arithmetic unit 101A such as a CPU (Central Processing Unit), a memory 101B for storing various data such as programs, and the PC 300, the controller 200, and the controller 101 described above. And an interface 101C. The interface 101C is realized by a communication device such as a network card. Then, when the arithmetic unit 101A executes, for example, a program stored in the memory 101B, a control operation by the controller 101 as described in this specification is realized. However, the controller 101 may be realized by including one or more hardware devices (such as LSI (Large Scale Integration)) that realize each function of the controller 101.
 なお、メモリ101Bは、コントローラ101の本体から着脱可能な記憶媒体によって実現される場合も有り得る。このような記憶媒体としては、CD-ROM(Compact Disk - Read Only Memory)、DVD-ROM(Digital Versatile Disk - Read Only Memory)、USB(Universal Serial Bus)メモリ、メモリカード、FD(Flexible Disk)、ハードディスク、磁気テープ、カセットテープ、MO(Magnetic Optical Disk)、MD(Mini Disk)、IC(Integrated Circuit)カード(メモリカードを除く)、光カード、マスクROM、EPROM、EEPROM(Electronically Erasable Programmable Read-Only Memory)などの、不揮発的にプログラムを格納する媒体が挙げられる。 Note that the memory 101B may be realized by a storage medium that is detachable from the main body of the controller 101. Such storage media include CD-ROM (Compact Disk--Read-Only Memory), DVD-ROM (Digital Versatile Disk--Read-Only Memory), USB (Universal Serial Bus) memory, memory card, FD (Flexible Disk), Hard disk, magnetic tape, cassette tape, MO (Magnetic Optical Disk), MD (Mini Disk), IC (Integrated カ ー ド Circuit) card (excluding memory card), optical card, mask ROM, EPROM, EEPROM (Electronically Erasable Programmable Read-Only A medium for storing the program in a nonvolatile manner such as Memory).
 (リフロー炉の省エネルギ制御)
 基板生産ラインの稼働中は、原則として、リフロー炉100の状態を、安定した品質でワーク90の生産(熱処理)が可能な状態(これを「生産可能状態」または「第1の状態」と称する)に維持する必要がある。とはいえ、処理対象となるワーク90は常に流れているわけではなく、たとえば休憩やシフト交替でオペレータが不在となる時間、段取り替えの時間、異常発生時など、ワーク90の投入が一時的に止まる場合もある。そこで、本実施形態のリフロー炉100は、生産可能状態を維持するモードである運転モードと、生産可能状態に比べてエネルギ消費量の低い状態(これを「待機状態」または「第2の状態」と称する)で待機するモードである待機モードとを有しており、コントローラ101が必要に応じて待機モードに切り替えることで、非生産時のエネルギ消費を抑える。待機モードでは、たとえば、窒素ガスの供給を止める(または供給量を低下させる)、ヒータ11A~11Nへの電力の供給を止める(または供給量を低下させる)等を行うことで、エネルギの消費が抑制される。他にも、ファンやモータ等の駆動を停止してもよい。なお、窒素ガスそのものはエネルギではないが、窒素ガスの消費量が減れば、窒素ガスの製造、運搬、貯蔵、供給などに必要なエネルギやコストを削減できるため、本明細書では、窒素ガスもリフロー炉100が消費するエネルギの一つとして捉えている。
(Energy saving control of reflow furnace)
During the operation of the substrate production line, in principle, the state of the reflow furnace 100 is a state in which the workpiece 90 can be produced (heat treated) with stable quality (this is referred to as a “manufacturable state” or a “first state”). ) Must be maintained. However, the workpiece 90 to be processed is not always flowing. For example, when the operator is absent due to a break or shift shift, the time for setup change, or when an abnormality occurs, the workpiece 90 is temporarily put in. Sometimes it stops. Therefore, the reflow furnace 100 according to the present embodiment has an operation mode that is a mode for maintaining the production possible state, and a state in which energy consumption is lower than that in the production possible state (referred to as “standby state” or “second state”). The controller 101 switches to the standby mode as necessary to suppress energy consumption during non-production. In the standby mode, for example, by stopping the supply of nitrogen gas (or reducing the supply amount), stopping the supply of electric power to the heaters 11A to 11N (or reducing the supply amount), etc., energy consumption is reduced. It is suppressed. In addition, driving of a fan, a motor, or the like may be stopped. Nitrogen gas itself is not energy, but if the consumption of nitrogen gas is reduced, energy and cost required for production, transportation, storage, supply, etc. of nitrogen gas can be reduced. This is regarded as one of the energy consumed by the reflow furnace 100.
 図4に、モード切り替えによる省エネルギ制御の一例を示す。図4の上段のグラフは窒素ガスの流量の時間変化を示しており、下段のグラフは不活性雰囲気室13内の酸素濃度の時間変化を示している。 Fig. 4 shows an example of energy saving control by mode switching. The upper graph in FIG. 4 shows the change over time in the flow rate of nitrogen gas, and the lower graph shows the change in oxygen concentration in the inert atmosphere chamber 13 over time.
 運転モードにおいては、コントローラ101が酸素濃度センサ17の出力に基づき窒素バルブ16の開度(つまり窒素ガスの流量)を調整することにより、不活性雰囲気室13内の酸素濃度を所定の管理値(ここでは4000ppm)に維持する。酸素濃度が約4000ppmかそれ以下であれば、ワーク90上の金属部品の酸化を防止でき、安定した品質を確保できる。 In the operation mode, the controller 101 adjusts the opening degree of the nitrogen valve 16 (that is, the flow rate of nitrogen gas) based on the output of the oxygen concentration sensor 17, thereby adjusting the oxygen concentration in the inert atmosphere chamber 13 to a predetermined management value ( Here, it is maintained at 4000 ppm). If the oxygen concentration is about 4000 ppm or less, oxidation of metal parts on the workpiece 90 can be prevented, and stable quality can be ensured.
 ワーク90の投入が一時的に止まる場合、コントローラ101はリフロー炉100のモードを運転モードから待機モードへと切り替え、窒素ガスの供給を停止する。これにより窒素ガスの無駄な消費を削減できる。 When the work 90 is temporarily stopped, the controller 101 switches the mode of the reflow furnace 100 from the operation mode to the standby mode, and stops the supply of nitrogen gas. Thereby, useless consumption of nitrogen gas can be reduced.
 生産を再開するためには、コントローラ101が待機モードから運転モードへの切り替えを行い、窒素ガスの供給および酸素濃度の制御を再開する。ただし、図4に示すように、窒素ガスの供給を再開したとしても直ちに酸素濃度が低下するわけではなく、酸素濃度が約4000ppmまで下がり生産可能状態となるまでにはある程度の時間を必要とする。運転モードへの切り替えが行われてから(時刻T0)、酸素濃度が生産可能状態に達するまで(時刻T1)に要する時間を、復帰時間RT(=T1-T0)と呼ぶ。装置構成や運転条件にもよるが、おおむね数分から十数分程度の復帰時間RTが必要となる。 In order to resume production, the controller 101 switches from the standby mode to the operation mode, and resumes supply of nitrogen gas and control of oxygen concentration. However, as shown in FIG. 4, even if the supply of nitrogen gas is resumed, the oxygen concentration does not decrease immediately, and it takes a certain amount of time for the oxygen concentration to fall to about 4000 ppm and to be ready for production. . The time required from when the operation mode is switched to (time T0) until the oxygen concentration reaches the production-capable state (time T1) is referred to as return time RT (= T1-T0). Depending on the device configuration and operating conditions, a recovery time RT of about several minutes to ten and several minutes is required.
 省エネルギの観点からは、生産可能状態に復帰する時刻T1と生産開始予定時刻T2の差ができるだけ小さくなるように、モード切替タイミング(時刻T0)を設定することが好ましい。とはいえ、万一、酸素濃度の状態復帰が間に合わなければ生産再開が阻害されてしまうので、生産効率の観点からは、モード切替タイミングを早めに設定し、時刻T1とT2の間に時間的な余裕を作ることが望まれる。しかも、復帰時間は常に一定ではなく、モード切替時点での炉内の状態(酸素濃度、温度など)や設置環境(周囲温度、湿度など)の影響を受けて、ばらつく可能性もある。それゆえ、たとえ熟練のオペレータであっても、マニュアルでモード切替タイミングを適切な値に設定するのは難しい。 From the viewpoint of energy saving, it is preferable to set the mode switching timing (time T0) so that the difference between the time T1 for returning to the production ready state and the production start scheduled time T2 is as small as possible. Nonetheless, if the oxygen concentration does not recover in time, the resumption of production will be hindered. From the viewpoint of production efficiency, the mode switching timing should be set earlier and the time between times T1 and T2 It is desirable to make a margin. In addition, the recovery time is not always constant, and may vary depending on the state of the furnace (oxygen concentration, temperature, etc.) and the installation environment (ambient temperature, humidity, etc.) at the time of mode switching. Therefore, even for an experienced operator, it is difficult to manually set the mode switching timing to an appropriate value.
 そこで本実施形態では、コントローラ101がモード切替後に実際に生産可能状態に復帰するまでに要した実時間を計測し、その計測値に基づいて復帰時間の設定値を自動で更新(学習)することにより、モード切替タイミングの最適化を行う。以下、コントローラ101による省エネルギ制御の具体的な構成について詳しく説明する。 Therefore, in the present embodiment, the actual time required until the controller 101 actually returns to the production-ready state after switching the mode is measured, and the set value of the return time is automatically updated (learned) based on the measured value. Thus, the mode switching timing is optimized. Hereinafter, a specific configuration of energy saving control by the controller 101 will be described in detail.
 (省エネルギ制御の機能ブロック)
 図5は、コントローラ101の省エネルギ制御に関わる機能の構成を示すブロック図である。省エネルギ制御に関わる機能は、記憶部110、モード切替部111、制御部112、計測部113、更新部114、入力部115、初期化部116から構成される。記憶部110は、復帰時間の設定値、計測値、演算により求めた統計値、ログデータなどを記憶する機能であり、メモリ101BまたはPC300の記憶装置を利用して実現される。モード切替部111は、リフロー炉100の動作モード(運転モード/待機モード)の切り替えを行う機能である。制御部112は、モード切替部111から指示された動作モードに応じてリフロー炉100の各要素を制御する機能である。計測部113は、モード切替から生産可能状態に復帰するまでに要した実時間をタイマにより計測する機能である。更新部114は、計測部113で得られた計測値に基づき復帰時間の設定値を更新する機能である。入力部115は、使用者からの情報入力を受け付ける機能である。使用者が情報入力を行うユーザインタフェースはPC300によって提供される。初期化部116は、記憶部110に記憶されているデータの初期化を行う機能である。
(Functional block for energy saving control)
FIG. 5 is a block diagram illustrating a configuration of functions related to energy saving control of the controller 101. The functions related to energy saving control include a storage unit 110, a mode switching unit 111, a control unit 112, a measurement unit 113, an update unit 114, an input unit 115, and an initialization unit 116. The storage unit 110 has a function of storing a set value of recovery time, a measured value, a statistical value obtained by calculation, log data, and the like, and is realized using the storage device of the memory 101B or the PC 300. The mode switching unit 111 is a function for switching the operation mode (operation mode / standby mode) of the reflow furnace 100. The control unit 112 has a function of controlling each element of the reflow furnace 100 according to the operation mode instructed from the mode switching unit 111. The measuring unit 113 has a function of measuring the actual time required from the mode switching to returning to the production possible state by using a timer. The update unit 114 is a function for updating the set value of the return time based on the measurement value obtained by the measurement unit 113. The input unit 115 is a function that receives information input from the user. A user interface through which a user inputs information is provided by the PC 300. The initialization unit 116 is a function for initializing data stored in the storage unit 110.
 これらの機能は、メモリ101Bに記憶されたプログラムを演算装置101Aが実行することにより実現されるものである。ただし、一部または全部の機能をPC300によって実現してもよいし、あるいはロジック回路で実現してもよい。 These functions are realized when the arithmetic unit 101A executes a program stored in the memory 101B. However, part or all of the functions may be realized by the PC 300 or may be realized by a logic circuit.
 (省エネルギ制御のフロー)
 次に、図6~図9を参照して、省エネルギ制御に関わる機能の動作を説明する。図6は、コントローラ101により実行される処理の全体フローを示し、図7は、初期化部116により実行される初期化処理のフローを示し、図8は、待機モードにおける処理フローを示し、図9は、復帰時間の設定値の更新処理のフローを示している。
(Energy saving control flow)
Next, operations of functions related to energy saving control will be described with reference to FIGS. 6 shows the overall flow of processing executed by the controller 101, FIG. 7 shows the flow of initialization processing executed by the initialization unit 116, and FIG. 8 shows the processing flow in standby mode. Reference numeral 9 denotes a flow of processing for updating the set value of the return time.
 図6に示すように、コントローラ101が起動すると、まず初期化部116が初期化処理の要否を判断する(ステップS60)。初期化処理とは、記憶部110に記憶されているデータをリセットする処理である。たとえば、リフロー炉100のバルブが交換されたり、制御の目標値(管理値)が変更されたりすると、その影響でモード切替からの復帰時間が変化し、過去の計測値や設定値は妥当でなくなる可能性がある。初期化処理はそのような場合に実行される。具体的な実現方法としては、生産設備の構成の変更(たとえば修理、部品交換、設置場所の変更)や運転条件の変更(たとえば制御の目標値や制御ロジックの変更)など、復帰時間に影響を与え得る操作が行われた場合に、要初期化フラグを自動またはマニュアルでコントローラ101に設定し、初期化部116がこのフラグの有無で初期化処理の要否を判断する。あるいは、入力部115により、PC300のモニタに初期化処理の要否を確認する画面を提示し、使用者に要否を入力させてもよい。 As shown in FIG. 6, when the controller 101 is activated, the initialization unit 116 first determines whether or not an initialization process is necessary (step S60). The initialization process is a process for resetting data stored in the storage unit 110. For example, when the valve of the reflow furnace 100 is replaced or the control target value (management value) is changed, the return time from the mode switching changes due to the influence, and the past measurement values and setting values become invalid. there is a possibility. The initialization process is executed in such a case. Specific implementation methods have an impact on recovery time, such as changes in production equipment configuration (for example, repairs, parts replacement, installation location changes) and operating conditions (for example, control target values or control logic changes). When an operation that can be given is performed, an initialization flag required is set in the controller 101 automatically or manually, and the initialization unit 116 determines whether or not initialization processing is necessary based on the presence or absence of this flag. Or the screen which confirms the necessity of an initialization process may be shown on the monitor of PC300 by the input part 115, and a user may be made to input necessity.
 ステップS60において初期化処理が必要と判断された場合は、初期化部116が初期化処理を実行する(ステップS61)。図7に示すように、初期化部116は、計測回数を示すカウンタnを0にリセットするとともに(ステップS70)、今までに蓄積された復帰時間の計測値RTとその統計値である平均値RTAおよび標準偏差σとをクリア(消去)する(ステップS71)。なお、以降の説明において、i回目の計測値をRTi、n回分の計測値RT1~RTnから求めた平均値と標準偏差をそれぞれRTAn、σnのように表記する。さらに初期化部116は、復帰時間の設定値RTSを初期値に戻す(ステップS72)。初期値は、想定される復帰時間よりも十分大きな値(たとえば想定される時間の2倍)に設定する。初期段階では実際にどの程度の時間で復帰が完了するか不明だからである。 If it is determined in step S60 that the initialization process is necessary, the initialization unit 116 executes the initialization process (step S61). As shown in FIG. 7, the initialization unit 116 resets the counter n indicating the number of measurements to 0 (step S70), and the return time measurement value RT accumulated so far and the average value that is a statistical value thereof. RTA and standard deviation σ are cleared (erased) (step S71). In the following description, the i-th measurement value is expressed as RTi, and the average value and standard deviation obtained from the n-time measurement values RT1 to RTn are expressed as RTAn and σn, respectively. Further, the initialization unit 116 returns the set value RTS of the return time to the initial value (step S72). The initial value is set to a value sufficiently larger than the assumed recovery time (for example, twice the assumed time). This is because at the initial stage, it is unclear how long the restoration will actually be completed.
 その後、制御部112が、運転モードによる制御を開始する(ステップS62)。炉内温度、酸素濃度、チラー60の冷却温度等が所定の条件を満たし生産可能状態になると、上流工程からワークの投入が開始され、リフロー処理が行われる。 Thereafter, the control unit 112 starts control in the operation mode (step S62). When the in-furnace temperature, oxygen concentration, cooling temperature of the chiller 60, etc. satisfy predetermined conditions and become ready for production, the input of the workpiece is started from the upstream process and reflow processing is performed.
 運転モードの実行中に、待機モードへの切り替え命令(割り込み)が発生すると(ステップS63)、モード切替部111が待機モードへの切り替え処理を行う(ステップS64)。なお、待機モードへの切り替え命令(割り込み)は、たとえば、使用者により所定のスイッチが操作された場合や、予め設定された時刻(休憩開始時刻、シフト交替時刻など)になった場合に発生する。 When a command to switch to standby mode (interrupt) occurs during execution of the operation mode (step S63), the mode switching unit 111 performs switching processing to the standby mode (step S64). The standby mode switching command (interrupt) is generated, for example, when a predetermined switch is operated by the user or when a preset time (break start time, shift change time, etc.) is reached. .
 ステップS64の処理の詳細を図8に示す。モード切替部111は、記憶部110に記憶されている復帰時間の設定値RTSを読み込む(ステップS80)。また、モード切替部111は、入力部115を介して、PC300のモニタに入力画面を提示し、生産開始予定時刻STと余裕時間ATの入力を受け付ける(ステップS81、S82)。生産開始予定時刻STは、リフロー炉100へのワークの投入が再開される時刻である。また、余裕時間ATは、復帰時間に付加されるマージン(付加時間)であり、使用者により任意の値を設定可能である。なお、生産開始予定時刻STと余裕時間ATの入力は必須ではなく、予めこれらの値が設定されている場合や余裕時間を設けない場合にはステップS81、S82の処理は省略してもかまわない。 Details of the processing in step S64 are shown in FIG. The mode switching unit 111 reads the return time setting value RTS stored in the storage unit 110 (step S80). Further, the mode switching unit 111 presents an input screen on the monitor of the PC 300 via the input unit 115, and accepts input of the production start scheduled time ST and the allowance time AT (steps S81 and S82). The scheduled production start time ST is a time when the input of the workpiece into the reflow furnace 100 is resumed. Further, the margin time AT is a margin (additional time) added to the return time, and an arbitrary value can be set by the user. Note that it is not essential to input the scheduled production start time ST and the allowance time AT. If these values are set in advance or if no allowance time is provided, the processes in steps S81 and S82 may be omitted. .
 次に、モード切替部111は、運転モードへの切り替えを行う時刻を下記式のとおり決定する(ステップS83)。余裕時間を設けない場合は、下記式の余裕時間ATにはゼロを代入すればよい。
 
 モード切替時刻=生産開始予定時刻ST-(復帰時間の設定値RTS+余裕時間AT)
 
Next, the mode switching unit 111 determines the time for switching to the operation mode according to the following equation (step S83). If no margin time is provided, zero may be substituted for the margin time AT in the following equation.

Mode switching time = scheduled production start time ST-(set value RTS of recovery time + margin time AT)
 モード切替部111は、モード切替時刻と現在時刻とを比較し、もしモード切替時刻が現在時刻より前の時刻になっていたら(ステップS84;NO)、生産開始予定時刻STか余裕時間ATの入力に誤りがあるものとして、ステップS81に処理を戻す。 The mode switching unit 111 compares the mode switching time with the current time. If the mode switching time is earlier than the current time (step S84; NO), the production start scheduled time ST or the margin time AT is input. Is returned to step S81.
 モード切替時刻が確定したら、モード切替部111は、制御部112に対し待機モードへの切り替え指示を行う(ステップS85)。制御部112は、窒素バルブの開度を調整して窒素ガスの供給を停止または低減し、リフロー炉100を待機状態に設定する。これにより無駄なエネルギ消費が抑えられる。 When the mode switching time is determined, the mode switching unit 111 instructs the control unit 112 to switch to the standby mode (step S85). The control unit 112 adjusts the opening of the nitrogen valve to stop or reduce the supply of nitrogen gas, and sets the reflow furnace 100 to a standby state. Thereby, useless energy consumption is suppressed.
 その後、モード切替部111は、タイマにより現在時刻を監視し、モード切替時刻になるまで待機する(ステップS86)。現在時刻がモード切替時刻に到達した時点で、モード切替部111は、制御部112に対し運転モードへの切り替え指示を行う(ステップS87)。これにより制御部112による復帰処理が開始される。また、これと並列に、計測部113および更新部114による復帰時間の設定値RTSの更新処理が実行される(ステップS88)。 Thereafter, the mode switching unit 111 monitors the current time with a timer and waits until the mode switching time is reached (step S86). When the current time reaches the mode switching time, the mode switching unit 111 instructs the control unit 112 to switch to the operation mode (step S87). Thereby, the return process by the control part 112 is started. In parallel with this, a process for updating the set value RTS of the return time by the measuring unit 113 and the updating unit 114 is executed (step S88).
 図9に、復帰時間の設定値RTSの更新処理の詳細を示す。まず、計測部113は、タイマをスタートさせ、運転モードへの切り替えが行われた時点からの経過時間の計測を開始する(ステップS90)。そして、計測部113は、管理項目である酸素濃度の値を監視する(ステップS91)。管理項目の値が所定の管理値(4000ppm)に到達したら(ステップS91;YES)、計測部113は、計測回数nに1を加算(インクリメント)して(ステップS92)、計測値RTnにタイマ値を入力した後(ステップS93)、タイマを停止しクリアする(ステップS94、S95)。 FIG. 9 shows the details of the process for updating the set value RTS of the return time. First, the measurement unit 113 starts a timer and starts measuring an elapsed time from when the operation mode is switched (step S90). And the measurement part 113 monitors the value of the oxygen concentration which is a management item (step S91). When the value of the management item reaches a predetermined management value (4000 ppm) (step S91; YES), the measurement unit 113 adds 1 to the measurement count n (increment) (step S92), and adds a timer value to the measurement value RTn. Is input (step S93), the timer is stopped and cleared (steps S94 and S95).
 続いて、更新部114が、下記式により、n回分の計測値RT1~RTnの平均値RTAnと、標準偏差σnとを計算する(ステップS96、S97)。
Figure JPOXMLDOC01-appb-M000001

 なお、標準偏差σnは、下記式により求めてもよい。
Figure JPOXMLDOC01-appb-M000002
Subsequently, the updating unit 114 calculates an average value RTAn of n measurement values RT1 to RTn and a standard deviation σn by the following formula (steps S96 and S97).
Figure JPOXMLDOC01-appb-M000001

The standard deviation σn may be obtained by the following formula.
Figure JPOXMLDOC01-appb-M000002
 そして、更新部114は、ステップS96、S97で求めた平均値RTAnと標準偏差σnを用いて、下記式により復帰時間の新たな設定値RTSnを計算する(ステップS98)。Xは、任意に設定可能な定数であり、工程能力(つまりこの生産設備で保証すべき品質レベル)に応じて決定すればよい。本実施形態では、X=3に設定する。
Figure JPOXMLDOC01-appb-M000003
Then, the update unit 114 calculates a new set value RTSn of the return time by the following equation using the average value RTAn and the standard deviation σn obtained in steps S96 and S97 (step S98). X is a constant that can be arbitrarily set, and may be determined according to the process capability (that is, the quality level to be guaranteed in this production facility). In the present embodiment, X = 3 is set.
Figure JPOXMLDOC01-appb-M000003
 最後に、更新部114は、今回の更新処理で得られた計測値RTn、平均値RTAn、標準偏差σn、設定値RTSnを記憶部110に格納する(ステップS99)。以上の処理によって、複数回分の実測値RT1~RTnの統計値RTAn、σnに基づいて、復帰時間の新たな設定値RTSnが決定される。 Finally, the update unit 114 stores the measured value RTn, average value RTAn, standard deviation σn, and set value RTSn obtained in the current update process in the storage unit 110 (step S99). Through the above processing, a new set value RTSn of the return time is determined based on the statistical values RTAn and σn of the actual measurement values RT1 to RTn for a plurality of times.
 (本実施形態の利点)
 以上述べた本実施形態の省エネルギ制御によれば、次のような利点がある。すなわち、休憩やシフト交替などでオペレータが不在となる場合や段取り替えなどにより生産が一時的に止まる場合に、リフロー炉を待機モードに切り替えることで、無駄なエネルギ消費を抑えることができる。そして、生産開始予定時刻と復帰時間の設定値に基づき、運転モードへの切り替えを自動で行うので、生産開始予定時刻までにリフロー炉を生産可能状態に復帰させ、生産を再開することが可能となる。しかも、復帰時間の計測値を使って設定値を更新(学習)する機能を設けたので、リフロー炉を実稼働するなかで(つまり、オンラインで)復帰時間の設定値を自動で最適化することができる。運転条件や設置環境の違い、経年劣化などにより、同じリフロー炉でも復帰時間にばらつきが生じ得るが、本実施形態のように計測値に基づいて適宜設定値の更新を行うことで、適正な復帰時間を自動で設定することができる。
(Advantages of this embodiment)
The energy saving control of the present embodiment described above has the following advantages. That is, wasteful energy consumption can be suppressed by switching the reflow furnace to the standby mode when the operator is absent due to a break or shift change or when production is temporarily stopped due to setup change or the like. And, since it automatically switches to the operation mode based on the set production start time and return time settings, it is possible to return the reflow furnace to the production ready state by the scheduled production start time and resume production. Become. In addition, since a function to update (learn) the set value using the measured value of the return time is provided, the set value of the return time can be automatically optimized while the reflow furnace is actually operating (that is, online). Can do. Due to differences in operating conditions, installation environment, aging, etc., the same reflow furnace may cause variations in the return time, but by properly updating the set values based on the measured values as in this embodiment, proper return can be achieved. Time can be set automatically.
 図10は、本実施形態の方法で更新(学習)した復帰時間の設定値RTSnを用いた場合のモード切替タイミングの一例を示している。図4に比べると、生産可能状態に復帰してから生産再開までの空転時間(T2-T1)が大幅に短縮されており、無駄なエネルギ消費が一層低減されていることがわかる。また、復帰時間の設定値RTSnには、n回分の計測値から求めた「+Xσn」のばらつきが考慮されているので、殆どのケースにおいて、生産開始予定時刻T2までに状態復帰を完了することができる。しかも、使用者により設定された余裕時間(安全のためのマージン)も付加されているので、モード切替時の装置の状態が特異な場合など、稀なケースにおいても、生産開始予定時刻T2までの状態復帰および生産再開を確実に保証できる。 FIG. 10 shows an example of the mode switching timing when the return time set value RTSn updated (learned) by the method of the present embodiment is used. Compared to FIG. 4, it can be seen that the idling time (T2-T1) from the return to the production-ready state to the resumption of production is greatly shortened, and wasteful energy consumption is further reduced. Further, since the set value RTSn of the return time takes into account the variation of “+ Xσn” obtained from the measured values for n times, in most cases, the state return can be completed by the scheduled production start time T2. it can. In addition, since a margin time (margin for safety) set by the user is also added, even in rare cases such as when the state of the device at the time of mode switching is unusual, the time until the scheduled production start time T2 is reached. It is possible to reliably guarantee the status recovery and the resumption of production.
 さらに本実施形態では、リフロー炉の構成や運転条件が変更された場合などに初期化処理を実行し、最初から復帰時間を学習しなおすようにしたので、妥当でない設定値に基づくモード切替が行われることを防ぐことができる。 Furthermore, in this embodiment, the initialization process is executed when the configuration or operating conditions of the reflow furnace are changed, and the return time is learned again from the beginning. Therefore, mode switching based on an invalid setting value is performed. Can be prevented.
 (変形例)
 上記実施形態では、待機モードにおいて窒素ガスの供給を停止もしくは低減する例を説明したが、待機モードにおいてヒータへの供給電力を停止もしくは低減する構成の場合も同様の制御が有効である。ヒータへの供給電力を停止もしくは低減することで炉内温度が低下した状態から、生産可能状態の温度(たとえば230℃)に復帰させるまでにある程度の時間を要するからである。この場合は、図9のステップS91の判定処理は、管理項目である炉内温度(温度センサ22の出力)が管理値(230℃)に到達したかどうかという判定処理に置き換わる。また、待機モードにおいて、窒素ガスの供給とヒータへの電力供給の両方を停止もしくは低減してもよい。この場合、図9のステップS91では、酸素濃度と炉内温度の両方が管理値に到達したかどうかを判定することとなる。
(Modification)
In the above-described embodiment, an example in which the supply of nitrogen gas is stopped or reduced in the standby mode has been described. However, similar control is effective even in a configuration in which the supply power to the heater is stopped or reduced in the standby mode. This is because a certain amount of time is required from the state in which the furnace temperature is lowered by stopping or reducing the power supplied to the heater to the return to the temperature at which the production is possible (for example, 230 ° C.). In this case, the determination process in step S91 in FIG. 9 is replaced with a determination process for determining whether the furnace temperature (output of the temperature sensor 22), which is a management item, has reached the control value (230 ° C.). In the standby mode, both supply of nitrogen gas and power supply to the heater may be stopped or reduced. In this case, in step S91 in FIG. 9, it is determined whether both the oxygen concentration and the furnace temperature have reached the control value.
 上記実施形態では、待機モードへの切り替え命令(割り込み)が発生すると、直ちに待機モードを開始することを想定しているが、待機モードの開始タイミングを遅延させることも好ましい。たとえば、モード切替部111が、割り込みが発生してから所定時間(数十秒から数分程度)経過後に、待機モードへの切り替えを行うのである。休憩の開始時などに使用者にスイッチを操作させるという運用を想定した場合、割り込み発生の時点(スイッチ操作が行われた時点)では炉内にワークが残留している可能性があり、直ぐに待機モードに切り替えると不良品を生んでしまう。そこで、モードの切り替えを所定時間遅延させることで、仕掛中のワークの処理が完了するのを待つのである。遅延時間は、一つのワークに対する処理時間と同程度に設定すればよい。あるいは、基板センサ21の検出結果を用いて炉内のワークの有無を判定し、割り込み発生後に仕掛中のワークが無くなったことが確認された時点で、待機モードへの切り替えを実行するようにしてもよい。 In the above embodiment, it is assumed that the standby mode is started immediately when a command to switch to the standby mode (interrupt) is generated, but it is also preferable to delay the start timing of the standby mode. For example, the mode switching unit 111 switches to the standby mode after a predetermined time (several tens of seconds to several minutes) has elapsed since the occurrence of the interrupt. Assuming an operation in which the user operates the switch at the beginning of a break, etc., there is a possibility that the workpiece remains in the furnace at the time of interrupt occurrence (at the time when the switch operation is performed), so it waits immediately. Switching to mode will produce defective products. Therefore, the mode switching is delayed for a predetermined time to wait for the processing of the work in progress to be completed. The delay time may be set to the same level as the processing time for one workpiece. Alternatively, the presence or absence of a workpiece in the furnace is determined using the detection result of the substrate sensor 21, and when it is confirmed that there is no work in progress after the occurrence of an interrupt, switching to the standby mode is performed. Also good.
 <第2実施形態>
 本発明の第2実施形態は、クリーンルームの省エネルギ制御に本発明を適用した例である。クリーンルームには、部屋全体の清浄を行う構成と、間仕切りにより囲まれた局所的な空間の清浄を行う構成(クリーンブースとも呼ばれる)とがあるが、本発明はいずれの構成にも適用可能である。
Second Embodiment
The second embodiment of the present invention is an example in which the present invention is applied to energy saving control in a clean room. A clean room has a configuration for cleaning the entire room and a configuration for cleaning a local space surrounded by partitions (also called a clean booth), but the present invention can be applied to any configuration. .
 図11は、第2実施形態のクリーンルーム(クリーンブース)の全体構成を示している。クリーンルーム400は、製造装置401の周囲の環境(生産環境)を清浄に保つための設備であり、製造装置401の周囲に半密閉空間である製造室402を形成する透明シート(カーテン)403と、パーティクルセンサ404と、ファンフィルターユニット405と、制御装置としてのコントローラ406を備える。 FIG. 11 shows the overall configuration of the clean room (clean booth) of the second embodiment. The clean room 400 is a facility for keeping the environment (production environment) around the manufacturing apparatus 401 clean. A transparent sheet (curtain) 403 that forms a manufacturing chamber 402 that is a semi-enclosed space around the manufacturing apparatus 401; A particle sensor 404, a fan filter unit 405, and a controller 406 as a control device are provided.
 透明シート403の下端は床面から所定の高さだけ離れており、製造室402の下端に開口部407が形成されている。また製造室402の上端(天井)には、ファンフィルターユニット405が取り付けられている。パーティクルセンサ404は、製造装置401のパスライン付近の環境を測定するように配置される。 The lower end of the transparent sheet 403 is separated from the floor by a predetermined height, and an opening 407 is formed at the lower end of the manufacturing chamber 402. A fan filter unit 405 is attached to the upper end (ceiling) of the manufacturing chamber 402. The particle sensor 404 is arranged so as to measure the environment near the pass line of the manufacturing apparatus 401.
 ファンフィルターユニット405は、製造室402の外部から空気を取り込む送風機と、取り込まれた空気の塵埃(パーティクル)を除去するHEPAフィルタとを有している。ファンフィルターユニット405により製造室402の天井から清浄な空気が供給されると、製造室402内の空気が開口部407から流出する。このような換気によって製造室402の内部にパーティクルが侵入することが防止され、製造室402内の空気が清浄に保たれる。 The fan filter unit 405 has a blower that takes in air from the outside of the manufacturing chamber 402 and a HEPA filter that removes dust (particles) from the taken-in air. When clean air is supplied from the ceiling of the manufacturing chamber 402 by the fan filter unit 405, the air in the manufacturing chamber 402 flows out from the opening 407. Such ventilation prevents particles from entering the manufacturing chamber 402 and keeps the air in the manufacturing chamber 402 clean.
 このクリーンルーム400も、第1実施形態のリフロー炉と同じように、運転モードと待機モードの切り替えによる省エネルギ制御が可能である。運転モードにおいては、コントローラ406がパーティクルセンサ404の出力に応じてファンフィルターユニット405に供給する電力を制御し、送風機の回転数、すなわち空気の流入量を調整することで、製造室402内のクリーン度を生産可能状態に維持する。たとえば、生産可能状態のクリーン度が「クラス10,000」である場合には、粒径範囲0.5μm~5μmであるパーティクルの数が、1立方フィート(1cf)あたり10,000個以下に維持される。 This clean room 400 can also perform energy saving control by switching between the operation mode and the standby mode, similarly to the reflow furnace of the first embodiment. In the operation mode, the controller 406 controls the power supplied to the fan filter unit 405 according to the output of the particle sensor 404, and adjusts the rotational speed of the blower, that is, the inflow amount of air, thereby cleaning the interior of the manufacturing chamber 402. Keep the degree ready for production. For example, when the cleanliness of the production-ready state is “Class 10,000”, the number of particles having a particle size range of 0.5 μm to 5 μm is maintained at 10,000 or less per cubic foot (1 cf). Is done.
 待機モードに切り替えられると、コントローラ406がファンフィルターユニット405への電力の供給を止めるか供給量を低下させる。これによりエネルギ消費が抑えられる。しかし、待機モードにおいては、清浄な空気の流入量が無くなるか減るために、製造室402内のクリーン度が低下する。それゆえ、生産開始予定時刻よりも前に運転モードへの切り替えを行い、生産開始予定時刻までにクリーン度を復帰させる必要がある。したがって、第1実施形態と同様の制御並びに復帰時間の設定値の更新処理を好適に適用可能である。この場合は、図9のステップS91の判定処理は、管理項目であるクリーン度(パーティクルセンサの出力)が管理値(クラス10,000)に到達したかどうかという判定処理に置き換わる。 When switched to the standby mode, the controller 406 stops supplying power to the fan filter unit 405 or reduces the supply amount. This reduces energy consumption. However, in the standby mode, the clean air in the manufacturing chamber 402 decreases because the amount of clean air inflow is eliminated or reduced. Therefore, it is necessary to switch to the operation mode before the scheduled production start time and to restore the cleanliness by the scheduled production start time. Therefore, the same control as in the first embodiment and the update process of the set value of the return time can be suitably applied. In this case, the determination process in step S91 in FIG. 9 is replaced with a determination process of whether or not the cleanliness (particle sensor output), which is a management item, has reached a management value (class 10,000).
 以上述べた第2実施形態の構成の場合も、第1実施形態と同様の作用効果を得ることができる。 In the case of the configuration of the second embodiment described above, the same operational effects as those of the first embodiment can be obtained.
 <その他の実施形態>
 上述した各実施形態の構成は本発明の一具体例を示したものにすぎず、本発明の範囲を限定する趣旨のものではない。本発明はその技術思想を逸脱しない範囲において、種々の具体的構成を採り得るものである。たとえば、上記実施形態では、リフロー炉とクリーンルームの省エネルギ制御を例示したが、これら以外の生産設備(たとえば、製造装置、加工装置、運搬装置、貯蔵装置、空調装置、照明装置など)に対しても本発明を適用することが可能である。また上記実施形態では、運転モードと待機モードの2つの動作モードしか説明していないが、他の動作モードを有していてもよい。また、図8のステップS83では、生産開始予定時刻STから設定値RTSと余裕時間ATの和(RTS+AT)を減じた値をモード切替時刻としたが、図9のステップS99において余裕時間ATが付加された設定値RTS’(=RTS+AT)を記憶部110に格納し、図8のステップS83では生産開始予定時刻STから設定値RTS’を減じることでモード切替時刻を計算しても同じ結果が得られる。
<Other embodiments>
The configuration of each embodiment described above is merely a specific example of the present invention, and is not intended to limit the scope of the present invention. The present invention can take various specific configurations without departing from the technical idea thereof. For example, in the above embodiment, the energy saving control of the reflow furnace and the clean room is exemplified, but for production facilities other than these (for example, a manufacturing apparatus, a processing apparatus, a transport apparatus, a storage apparatus, an air conditioner, a lighting apparatus, etc.) Also, the present invention can be applied. In the above-described embodiment, only two operation modes, that is, an operation mode and a standby mode are described, but other operation modes may be provided. Further, in step S83 of FIG. 8, a value obtained by subtracting the sum of the set value RTS and the allowance time AT (RTS + AT) from the scheduled production start time ST is set as the mode switching time. However, the allowance time AT is added in step S99 of FIG. The set value RTS ′ (= RTS + AT) is stored in the storage unit 110, and the same result is obtained even if the mode switching time is calculated by subtracting the set value RTS ′ from the scheduled production start time ST in step S83 of FIG. It is done.
 また上記実施形態では、記憶部110に蓄積された全ての(n回分の)計測値RT1~RTnの統計値を更新処理に用いているが、所定の期間に計測された計測値だけを抽出し、その抽出された一部の計測値だけを更新処理に用いることもできる。たとえば生産設備が経年劣化するにつれ、復帰時間が徐々に長く(または短く)なるといった変化が生じる可能性がある。そのような場合は、記憶部110に蓄積された全ての計測値を使うよりも、直近の1週間とか1ヶ月の最新の計測値だけを設定値RTSの更新に利用する方が、より適切な設定値を求めることが可能となる。また、気温や湿度、その他の周囲環境が復帰時間に影響を与え得る場合は、季節とか時間帯によって復帰時間が変化する可能性がある。そのような場合には、たとえば、昨年同時期の計測値を利用したり、同じ時間帯の計測値を利用したりすることで、適切な設定値RTSを決定できるものと期待される。 In the above embodiment, the statistical values of all (n times) measurement values RT1 to RTn accumulated in the storage unit 110 are used for the update process, but only the measurement values measured in a predetermined period are extracted. Only a part of the extracted measurement values can be used for the update process. For example, as the production facility deteriorates over time, there may be a change that the return time gradually becomes longer (or shorter). In such a case, it is more appropriate to use only the latest measurement values for the most recent one week or one month for updating the set value RTS than to use all the measurement values accumulated in the storage unit 110. The set value can be obtained. In addition, when the temperature, humidity, or other surrounding environment can affect the return time, the return time may vary depending on the season or time zone. In such a case, for example, it is expected that an appropriate set value RTS can be determined by using the measurement value of the same period last year or using the measurement value of the same time zone.

Claims (9)

  1.  生産が可能な第1の状態を維持する運転モードと、前記第1の状態よりもエネルギ消費量が低い第2の状態で待機する待機モードとを有する生産設備の制御装置であって、
     前記生産設備が前記第2の状態から前記第1の状態に復帰するまでに要すると見込まれる復帰時間の設定値を記憶する記憶部と、
     前記生産設備が待機モードにある場合に、前記生産設備を前記第1の状態に復帰させるべき時刻と前記記憶部に記憶されている復帰時間の設定値に基づいて、待機モードから運転モードへの切り替えを行うべき切替時刻を決定し、現在時刻が前記切替時刻に到達した時点で待機モードから運転モードへの切り替えを行うモード切替部と、
     前記モード切替部によって運転モードへ切り替えられてから、前記生産設備が前記第1の状態に復帰するまでに実際に要した復帰時間を計測する計測部と、
     前記計測部によって計測された復帰時間の計測値に基づいて、前記記憶部に記憶されている復帰時間の設定値を更新する更新部と、を有することを特徴とする制御装置。
    A control device for a production facility having an operation mode for maintaining a first state in which production is possible and a standby mode for standby in a second state in which energy consumption is lower than that in the first state,
    A storage unit for storing a set value of a return time expected to be required for the production facility to return from the second state to the first state;
    When the production facility is in the standby mode, the standby mode is changed from the standby mode to the operation mode based on the time when the production facility should be returned to the first state and the set value of the return time stored in the storage unit. A mode switching unit that determines a switching time to be switched, and switches from the standby mode to the operation mode when the current time reaches the switching time;
    A measurement unit that measures a return time actually required until the production facility returns to the first state after being switched to the operation mode by the mode switching unit;
    A control device comprising: an update unit configured to update a set value of the return time stored in the storage unit based on a measurement value of the return time measured by the measurement unit.
  2.  前記更新部は、複数回分の計測値の統計値に基づいて復帰時間の新たな設定値を決定することを特徴とする請求項1に記載の制御装置。 The control device according to claim 1, wherein the update unit determines a new set value of the return time based on a statistical value of a plurality of measurement values.
  3.  前記計測部による計測が行われる毎に前記記憶部に計測値が記録され、
     前記更新部は、前記記憶部に記録された全ての計測値の内から所定の期間に計測された複数回分の計測値を抽出し、前記抽出された複数回分の計測値の統計値に基づいて復帰時間の新たな設定値を決定することを特徴とする請求項2に記載の制御装置。
    Every time measurement by the measurement unit is performed, a measurement value is recorded in the storage unit,
    The update unit extracts a plurality of measurement values measured in a predetermined period from all the measurement values recorded in the storage unit, and based on the extracted statistical values of the plurality of measurement values The control device according to claim 2, wherein a new set value of the return time is determined.
  4.  前記制御装置は、使用者から付加時間の入力を受け付ける入力部をさらに有しており、
     前記モード切替部が前記切替時刻を決定する際、または、前記更新部が復帰時間の設定値を更新する際に、前記入力された付加時間が復帰時間の設定値に付加されるようにすることを特徴とする請求項1~3のうちいずれか1項に記載の制御装置。
    The control device further includes an input unit that receives an input of additional time from a user,
    When the mode switching unit determines the switching time, or when the updating unit updates the set value of the return time, the input additional time is added to the set value of the return time. The control device according to any one of claims 1 to 3, wherein:
  5.  前記記憶部に記憶されている復帰時間の設定値を初期値に戻す初期化部をさらに有することを特徴とする請求項1~4のうちいずれか1項に記載の制御装置。 The control device according to any one of claims 1 to 4, further comprising an initialization unit that returns a set value of the return time stored in the storage unit to an initial value.
  6.  前記初期化部は、生産設備の構成または動作条件が変更された場合に、復帰時間の設定値を初期値に戻すことを特徴とする請求項5に記載の制御装置。 The control device according to claim 5, wherein the initialization unit returns the set value of the return time to the initial value when the configuration of the production facility or the operation condition is changed.
  7.  前記生産設備は、基板上の半田ペーストを加熱するリフロー炉であり、
     前記運転モードは、炉内に窒素ガスを供給して、炉内の酸素濃度を前記第1の状態に維持するモードであり、
     前記待機モードは、窒素ガスの供給を止めるか供給量を低下させるモードであることを特徴とする請求項1~6のうちいずれか1項に記載の制御装置。
    The production facility is a reflow furnace for heating the solder paste on the substrate,
    The operation mode is a mode in which nitrogen gas is supplied into the furnace and the oxygen concentration in the furnace is maintained in the first state.
    The control device according to any one of claims 1 to 6, wherein the standby mode is a mode in which the supply of nitrogen gas is stopped or the supply amount is reduced.
  8.  前記生産設備は、基板上の半田ペーストを加熱するリフロー炉であり、
     前記運転モードは、炉内のヒータに電力を供給して、炉内の温度を前記第1の状態に維持するモードであり、
     前記待機モードは、ヒータへの電力の供給を止めるか供給量を低下させるモードであることを特徴とする請求項1~6のうちいずれか1項に記載の制御装置。
    The production facility is a reflow furnace for heating the solder paste on the substrate,
    The operation mode is a mode in which power is supplied to a heater in the furnace to maintain the temperature in the furnace in the first state,
    The control device according to any one of claims 1 to 6, wherein the standby mode is a mode in which power supply to the heater is stopped or a supply amount is reduced.
  9.  前記生産設備は、生産環境を清浄に保つためのクリーンルームであり、
     前記運転モードは、ファンフィルターユニットに電力を供給して、クリーンルーム内のクリーン度を前記第1の状態に維持するモードであり、
     前記待機モードは、ファンフィルターユニットへの電力の供給を止めるか供給量を低下させるモードであることを特徴とする請求項1~6のうちいずれか1項に記載の制御装置。
    The production facility is a clean room for keeping the production environment clean,
    The operation mode is a mode in which power is supplied to the fan filter unit and the cleanliness in the clean room is maintained in the first state.
    The control device according to any one of claims 1 to 6, wherein the standby mode is a mode in which power supply to the fan filter unit is stopped or a supply amount is reduced.
PCT/JP2013/082854 2013-03-25 2013-12-06 Manufacturing facility control device WO2014155848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062438A JP6119357B2 (en) 2013-03-25 2013-03-25 Production equipment control equipment
JP2013-062438 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014155848A1 true WO2014155848A1 (en) 2014-10-02

Family

ID=51622882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082854 WO2014155848A1 (en) 2013-03-25 2013-12-06 Manufacturing facility control device

Country Status (2)

Country Link
JP (1) JP6119357B2 (en)
WO (1) WO2014155848A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170595A1 (en) * 2019-02-20 2020-08-27 パナソニックIpマネジメント株式会社 Standby position determination device and standby position determination method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701571B2 (en) * 2016-06-28 2020-05-27 株式会社リコー Evaluation parts, electronic board, and electronic board production system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306439A (en) * 1991-04-02 1992-10-29 Takenaka Komuten Co Ltd Air blowing control system for clean room
JPH06155010A (en) * 1992-11-27 1994-06-03 Hitachi Techno Eng Co Ltd Reflow soldering device
JP2001242943A (en) * 2000-03-02 2001-09-07 Omron Corp Time switch
JP2008099534A (en) * 2006-10-16 2008-04-24 Chugoku Electric Power Co Inc:The Monitoring control unit having automatic reclosed circuit function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306439A (en) * 1991-04-02 1992-10-29 Takenaka Komuten Co Ltd Air blowing control system for clean room
JPH06155010A (en) * 1992-11-27 1994-06-03 Hitachi Techno Eng Co Ltd Reflow soldering device
JP2001242943A (en) * 2000-03-02 2001-09-07 Omron Corp Time switch
JP2008099534A (en) * 2006-10-16 2008-04-24 Chugoku Electric Power Co Inc:The Monitoring control unit having automatic reclosed circuit function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170595A1 (en) * 2019-02-20 2020-08-27 パナソニックIpマネジメント株式会社 Standby position determination device and standby position determination method
JP7482456B2 (en) 2019-02-20 2024-05-14 パナソニックIpマネジメント株式会社 Standby position determining device and standby position determining method

Also Published As

Publication number Publication date
JP6119357B2 (en) 2017-04-26
JP2014186656A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5953792B2 (en) System monitoring apparatus and control method therefor
JP4775516B1 (en) Control device, control method, program, recording medium
JP5842654B2 (en) System control apparatus and system control method
JP6051829B2 (en) Fan control device
JP7171360B2 (en) AIR CONDITIONING DEVICE, SUBSTRATE FLOATING TRANSFER UNIT INCLUDING AIR CONDITIONING DEVICE, AND SUBSTRATE FLOATING TRANSFER AIR SUPPLY METHOD
JP5077475B1 (en) Heating furnace, its control device, its control program, and its control method
JP5267479B2 (en) Air conditioning apparatus and air conditioning system
JP2006310750A (en) Monitoring method and monitoring device
JP6365029B2 (en) Production process analysis system
JP2013224794A (en) Method and device for air conditioning control of clean room
US20210389015A1 (en) Contamination information estimation system and air treatment device
JP6119357B2 (en) Production equipment control equipment
JP2009270733A (en) Equipment
JP2010038386A (en) Equipment monitoring system
JP2013134015A (en) Clean room facility, air volume control device, and air volume control method
US9535433B2 (en) Control device, heating device control system, control method, program, and recording medium
JP2004293886A (en) Operation control method and device for air conditioner
JP5169158B2 (en) Substrate heat treatment equipment
WO2022181198A1 (en) Control device, whole-building air conditioning system, and whole-building air conditioning control method
JP5910670B2 (en) Equipment
JP4492504B2 (en) Precision temperature control device
JP2011187088A (en) Control device, control method, program, recording medium
US20240044536A1 (en) Central air conditioning system and checking method
WO2023089682A1 (en) Substrate treatment system and substrate treatment method
JP5938986B2 (en) Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879838

Country of ref document: EP

Kind code of ref document: A1