WO2014155705A1 - Cooling control system, cooling control device, and cooling control method - Google Patents

Cooling control system, cooling control device, and cooling control method Download PDF

Info

Publication number
WO2014155705A1
WO2014155705A1 PCT/JP2013/059624 JP2013059624W WO2014155705A1 WO 2014155705 A1 WO2014155705 A1 WO 2014155705A1 JP 2013059624 W JP2013059624 W JP 2013059624W WO 2014155705 A1 WO2014155705 A1 WO 2014155705A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
fan
power consumption
server
Prior art date
Application number
PCT/JP2013/059624
Other languages
French (fr)
Japanese (ja)
Inventor
森戸啓至
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2013/059624 priority Critical patent/WO2014155705A1/en
Publication of WO2014155705A1 publication Critical patent/WO2014155705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control

Definitions

  • the present invention relates to server cooling control.
  • Data center is a facility that manages and manages multiple servers.
  • the data center is a facility equipped with a high-speed communication line, power generation equipment, and air conditioning equipment and capable of centrally managing a plurality of servers.
  • Many servers and air conditioners consume enormous amounts of power. Therefore, a data center that can realize power saving is desired.
  • FIG. 1 shows an example of a container-type data center as viewed from above.
  • the container type data center in FIG. 1 includes a container 100 and air conditioners 101a to 101d.
  • the container 100 has a server rack.
  • the server 102 is stored in the server rack.
  • the air conditioner 101 is provided outside the container 100 and cools the inside of the data center.
  • a direct outside air cooling method in which outside air is directly taken into the room and the inside of the data center is cooled is known.
  • an indirect outside air cooling method is known in which indoor air is cooled by heat exchange using outside air temperature.
  • Container-type data centers reduce the power consumption of air conditioners by cooling the data center using outside air and outside air temperature.
  • Patent Document 1 has a problem that it is not effective in a space-saving and highly airtight space such as a container-type data center.
  • the present invention provides a cooling control system and method for easily determining a set temperature of an air conditioner.
  • the cooling control system is a system that controls the set temperature of the air conditioner that cools the server.
  • the cooling control system specifies a temperature range that is a candidate to be set for the air conditioner from a recommended temperature range in which a server within a temperature range that can be set for the air conditioner may be installed.
  • the cooling control system adds the power consumption amount of the air conditioner and the power consumption amount of the fan of the server, which is expected when a temperature that is a candidate to be set for the air conditioner is set in the air conditioner.
  • the cooling control system creates information associating the candidate temperature to be set to the air conditioner with the added value.
  • the cooling control system selects a set temperature with a relatively small value from among the information in which the temperature that is a candidate to be set in the air conditioner is associated with the added value.
  • the cooling control device sets the selected selected temperature in the air conditioner.
  • FIG. 2 is a diagram illustrating an example of a data center according to the first embodiment.
  • the same components as those in FIG. 1 are denoted by the same reference numerals.
  • the data center in FIG. 2 includes an air conditioner 101, a plurality of servers 102, and a cooling control device 201.
  • the cooling control device 201 includes a temperature determination unit 202, a processing unit 205, a setting unit 208, and a memory 209.
  • the temperature determination unit 202 implements an acquisition unit 203 and a specification unit 204.
  • the acquisition unit 203 acquires setting information of the air conditioner 101 from the air conditioner 101.
  • the setting information of the air conditioner 101 is information related to the specifications of the air conditioner 101.
  • Information related to specifications includes information on a temperature range that can be set in the air conditioner 101, information on a setting unit indicating how many times the temperature can be set in the air conditioner 101, and a temperature set in the air conditioner 101 Information.
  • the acquisition unit 203 acquires specification information from the server 102.
  • the specification information of the server 102 includes information of a temperature recommended that the server 102 may be installed.
  • the example of the cooling control system according to the first embodiment does not limit the number of air conditioners 101 and servers 102.
  • the acquisition unit 203 acquires setting information from each of the air conditioners 101.
  • the specifying unit 204 uses the setting information of the air conditioner 101 acquired by the acquiring unit 203 and the temperature information recommended to install the server 102 to specify a temperature that is a candidate to be set in the air conditioner. To do.
  • the processing unit 205 implements a creation unit 206 and a selection unit 207.
  • the creation unit 206 creates a table in which temperatures that are candidates for the air conditioner identified by the identifying unit 204 are associated with the total power consumption used for cooling the data center.
  • the total power consumption used for cooling the data center is the amount of power consumed by the air conditioner to bring the data center temperature to the temperature set for the air conditioner, and the server fan at the temperature set for the air conditioner. Power consumption.
  • the selection unit 207 selects the temperature with the lowest power consumption amount from the table created by the creation unit 206.
  • the setting unit 208 sets the temperature with the smallest power consumption selected by the selection unit 207 in the air conditioner 101.
  • the air conditioner 101 includes a management unit 210, a temperature control unit 211, an extraction unit 212, a notification unit 213, and a memory 214.
  • the management unit 210 manages information on the amount of power consumed by the air conditioner 101 and stores it in the memory 214.
  • the temperature control unit 211 controls the air flow rate of the air conditioner 101 so that the room temperature of the data center becomes the set temperature of the air conditioner set in the air conditioner 101.
  • the memory 214 stores setting information and power consumption information of the air conditioner 101.
  • the extraction unit 212 associates such information with a temperature that is a candidate for setting the air conditioner. And extracted from the power consumption information of the memory 214.
  • the notification unit 213 notifies the cooling control apparatus 201 of information on the power consumption that is expected to be consumed by the air conditioner 101 extracted by the extraction unit 212.
  • the server 102 includes a measurement unit 215, a rotation control unit 216, a recording unit 217, a calculation unit 218, a transmission unit 219, and a memory 220.
  • the measurement unit 215 measures the temperature of the server 102.
  • the rotation control unit 216 controls the number of rotations of the built-in fan and the fan to be rotated in accordance with the temperature of the server 102 measured by the measurement unit 215.
  • the built-in fan increases the number of rotations and cools the server 102 when the temperature of the server 102 rises.
  • the recording unit 217 records information on the amount of power consumed by the built-in fan.
  • the calculation unit 218 performs a predetermined process and calculates the expected fan power consumption when a request is received from the creation unit 206 to transmit information on the expected fan power consumption.
  • the transmission unit 219 transmits information on the expected fan power consumption to the cooling control apparatus 201.
  • the memory 220 stores, as the specification information of the server 102, information on the temperature recommended to install the server 102 and information on the power consumption of the fan used in the calculation unit 218.
  • FIG. 3 is an example showing the relationship between the set temperature of the air conditioner and the power consumption.
  • the vertical axis in FIG. 3 represents the power consumption
  • the horizontal axis in FIG. 3 represents the set temperature of the air conditioner.
  • FIG. 3 is shown by a graph A, a graph B, and a graph C.
  • Graph A is a graph showing the power consumption expected to be consumed by the air conditioner in the temperature range that can be set for the air conditioner.
  • Graph A is a graph of power consumption information stored in the memory 214 of the air conditioner.
  • Graph B is a graph showing the expected fan power consumption in the temperature range where it is recommended that the server be installed.
  • Graph B is a graph of the fan power consumption calculated by the calculation unit 218.
  • Graph C is a graph showing the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner.
  • a graph C is a graph of the information of the table created by the creation unit 206.
  • Graph C is a graph obtained using Graph A and Graph B.
  • the processing of the cooling control apparatus 201 will be described using graphs A to C.
  • the acquisition unit 203 acquires information on the temperature range that can be set for the air conditioner shown in the graph A from the air conditioner 101.
  • the acquisition unit 203 acquires, from the server 102, information on the temperature range recommended that the server shown in the graph B may be installed.
  • the specifying unit 204 specifies a temperature range in which a temperature range that can be set in the air conditioner and a temperature range that is recommended to install a server overlap as a temperature range that is a candidate to be set in the air conditioner. To do.
  • Graph C shows the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner specified by the specifying unit 204.
  • the creation unit 206 acquires, from the air conditioner 101, information on the power consumption that is expected to be consumed by the air conditioner shown in the graph A in a temperature range that is a candidate to be set for the air conditioner.
  • the creation unit 206 acquires, from the server 102, information on the expected fan power consumption shown in the graph B in the temperature range that is a candidate to be set for the air conditioner.
  • the creation unit 206 adds the power consumption amount expected to be consumed by the air conditioner and the expected fan power consumption amount, and calculates the power consumption amount of the data center shown in the graph C.
  • the selection unit 207 selects the temperature at which the power consumption of the data center shown in the graph C is the smallest.
  • the temperature with the lowest power consumption is near the center in the graph C of FIG.
  • the setting unit 208 sets the temperature with the smallest power consumption selected by the selection unit 207 in the air conditioner 101.
  • FIG. 4 shows an example of the hardware configuration of the cooling control system.
  • the cooling control system of FIG. 4 includes a cooling control device 201, an air conditioner 101, and a server 102.
  • the cooling control apparatus 201 includes a CPU (Central Processing Unit), a memory, and a storage device. Moreover, the cooling control apparatus 201 may include a dedicated monitor and input means.
  • the CPU of the cooling control apparatus 201 in FIG. 4 implements the acquisition unit 203, the identification unit 204, the creation unit 206, the selection unit 207, and the setting unit 208 in FIG. Information used by the CPU of the cooling control device 201 is stored in a memory or a storage device of the cooling control device 201.
  • the air conditioner 101 has a CPU, a memory, and a storage device.
  • the CPU of the air conditioner 101 implements the management unit 210, the temperature control unit 211, the extraction unit 212, and the notification unit 213 in FIG.
  • Information processed by the CPU of the air conditioner 101 is stored in the memory or storage device of the air conditioner 101.
  • the CPU of the server 102 implements the measurement unit 215, the rotation control unit 216, the recording unit 217, the calculation unit 218, and the transmission unit 219 in FIG.
  • Information processed by the CPU of the server 102 is stored in the memory or storage device of the server 102.
  • FIG. 5 is a flowchart for explaining an example of processing of the cooling control device.
  • the temperature determination unit 202 of the cooling control apparatus 201 includes an acquisition unit 203 and a specification unit 204, and processes step S101 and step S102.
  • the acquisition unit 203 acquires the setting information of the air conditioner 101 from the memory 214 of the air conditioner 101, and acquires the specification information of the server 102 from the memory 220 of the server 102.
  • the setting information to be acquired is information on a temperature range that can be set in the air conditioner.
  • the acquired specification information of the server 102 is information on a temperature range recommended for server installation (step S101).
  • the identifying unit 204 identifies a temperature range that is a candidate to be set for the air conditioner.
  • the specifying unit 204 sets a temperature range that can be set in the air conditioner and a temperature range that is recommended to be installed as a server as a temperature range that is a candidate to be set in the air conditioner. Identify.
  • the specifying unit 204 compares the upper limit temperature of the temperature range that can be set in the air conditioner 101 with the upper limit temperature of the temperature recommended to install the server 102. When there are a plurality of air conditioners 101 and servers 102, the specifying unit 204 determines the upper limit temperature of the temperature range that can be set for each air conditioner 101 and the upper limit temperature that is recommended to install each server 102. Compare.
  • the specifying unit 204 specifies the lowest temperature among the compared upper limit temperatures as the upper limit temperature that is a candidate for setting the air conditioner.
  • the specifying unit 204 compares the lower limit temperature of the temperature range that can be set in the air conditioner 101 with the lower limit temperature of the recommended temperature at which the server 102 may be installed.
  • the specifying unit 204 determines a lower limit temperature of a temperature range that can be set for each air conditioner 101 and a lower limit temperature that is recommended to install each server 102. Compare.
  • the identifying unit 204 identifies the highest temperature among the compared lower limit temperatures as the lower limit temperature that is a candidate for setting the air conditioner (step S102).
  • the processing unit 205 of the cooling control apparatus 201 includes a creation unit 206 and a selection unit 207, and processes step S103 and step S104.
  • the creation unit 206 creates a table in which temperatures that are candidates for the air conditioner identified by the identifying unit 204 are associated with the total power consumption used for cooling the data center.
  • the creation unit 206 requests the air conditioner 101 to notify the information on the power consumption that is expected to be consumed by the air conditioner, corresponding to the temperature that is a candidate to be set for the air conditioner.
  • the request to the air conditioner 101 includes information on a temperature range that is a candidate to be set for the air conditioner.
  • the creation unit 206 requests the server 102 to transmit information on the predicted fan power consumption corresponding to the temperature that is a candidate to be set in the air conditioner.
  • the creation unit 206 calculates a differential temperature that is scheduled to be changed from the current set temperature of the air conditioner, from information on the temperature range that is a candidate for setting to the air conditioner.
  • the differential temperature scheduled to be changed from the current set temperature of the air conditioner refers to the temperature of how many times it is planned to change from the current set temperature of the air conditioner.
  • the request to the server 102 includes information on the differential temperature scheduled to be changed from the current set temperature of the air conditioner (step S103).
  • the air conditioner 101 includes an extraction unit 212 and a notification unit 213, and performs Step S104 and Step S105.
  • the extraction unit 212 receives a request from the cooling control apparatus 201 for notification of information on the power consumption that is expected to be consumed by the air conditioner.
  • the extraction unit 212 extracts information on the power consumption that is expected to be consumed by the air conditioner from the information on the power consumption in the memory 214 of the air conditioner 101 in association with the temperature that is a candidate to be set in the air conditioner (step S104). ).
  • Step S104 will be described in detail later (FIG. 6).
  • the notification unit 213 notifies the creation unit 206 of the extracted power consumption information (step S105).
  • the server 102 includes a calculation unit 218 and a transmission unit 219, and performs Step S106 and Step S107.
  • the calculation unit 218 calculates an expected fan power consumption corresponding to a temperature that is a candidate to be set in the air conditioner.
  • the calculation unit 218 receives a request from the creation unit 206 to transmit information on the expected power consumption of the fan corresponding to the temperature that is a candidate to be set for the air conditioner.
  • the calculation unit 218 receives information on the differential temperature scheduled to be changed from the current set temperature of the air conditioner.
  • the calculation unit 218 calculates the expected fan rotation speed when the average temperature, CPU temperature, and memory temperature of the air inside the server 102 change by the difference temperature.
  • the information on the power consumption of the fan stored in the memory 220 of the server 102 includes information on the fan rotation speed corresponding to the average air temperature, CPU temperature, and memory temperature in the server 102.
  • the calculation unit 218 calculates an expected fan power consumption corresponding to the expected fan rotation speed (step S106). Step S106 will be described in detail later (FIGS. 7 to 10).
  • the transmission unit 219 transmits the calculated expected fan power consumption information to the creation unit 206 (step S107).
  • the creation unit 206 of the cooling control apparatus 201 obtains a response to the request issued to the air conditioner 101 and the server 102, it sums the power consumption expected to be consumed by the air conditioner and the expected fan power consumption, Determine the total power consumption used to cool the data center.
  • the creating unit 206 creates a table A that associates the temperatures that are candidates for the air conditioner identified by the identifying unit 204 with the total power consumption used for cooling the data center (step S103).
  • Table A is an example of a table in which temperatures that are candidates for setting to the air conditioners that are the upper limit temperature and the lower limit temperature specified in S102 are associated with the total power consumption used for cooling the data center.
  • the selection unit 207 of the cooling control apparatus 201 selects a temperature with the smallest total power consumption used for cooling the data center from the table A (step S108).
  • the setting unit 208 performs setting processing for setting the temperature with the smallest total power consumption selected by the selection unit 207 in the air conditioner (step S109).
  • the cooling control device waits for a predetermined time and repeats the processing from S101.
  • the fixed time may be regular or irregular, and may be set by the user.
  • the processing of S101 to S109 may be repeatedly executed when the amount of change in power consumption in the air conditioner due to a change in temperature outside the room in the data center becomes greater than a predetermined threshold.
  • FIG. 6 is an example showing information of power consumption expected to be consumed by the air conditioner 101.
  • the information on the predicted power consumption is information on the power consumption that is expected to be consumed by the air conditioner 101 when a temperature that is a candidate for the air conditioner is set in the air conditioner.
  • the expected power consumption information in FIG. 6 is information used by the extraction unit 212 in step S106.
  • the power consumption information in FIG. 6 predicts how much power is consumed when a predetermined temperature is set for the air conditioner 101 based on the amount of power consumed that the air conditioner 101 is expected to consume. Is shown for each outside air temperature. For example, when the outside air temperature is 5 degrees and 25 degrees is set for the air conditioner, it is expected that the air conditioner 101 consumes 1.64 KW of power.
  • Information on the power consumption of the air conditioner 101 is used by the creation unit 206.
  • the creation unit 206 sends a request to the air conditioner 101 to notify the information on the power consumption that is expected to be consumed by the air conditioner 101, corresponding to the temperature that is a candidate to be set for the air conditioner.
  • the creation unit 206 sends information on the temperature range that is a candidate to be set to the air conditioner specified by the specifying unit 204 to the air conditioner 101.
  • the extraction unit 212 receives the information Is extracted from the power consumption information stored in the memory 214 of the air conditioner.
  • the outside air temperature is 20 degrees
  • the creation unit 206 requests the air conditioner 101 to notify the information of the power consumption that is expected to be consumed by the air conditioners having the temperatures of 25 degrees to 29 degrees that are candidates for setting to the air conditioners.
  • the extraction unit 212 extracts the power consumption amount equivalent to the set temperature of 25 to 29 degrees from the power consumption information in the memory 214 in a row where the outside air temperature is 20 degrees. In the example of FIG. 6, the information is 3.30 KW (25 degrees), 3.44 KW (26 degrees), ... 3.82 KW (29 degrees).
  • the notification unit 213 notifies the cooling control apparatus 201 of information on the power consumption that is expected to be consumed by the air conditioner 101 extracted by the extraction unit 212.
  • FIG. 7 is an example of a hardware configuration of the server 102. 7 includes a CPU 301, a memory 220, and fans 302-1 to 302-6.
  • the measurement unit 215 of the server 102 measures the average temperature of the air inside the server 102, the temperature of the CPU 301, and the temperature of the memory 220.
  • the rotation control unit 216 increases the number of rotations of the fans 302-1 to 302-6 and cools the server 102.
  • the fan 302-2 and the fan 302-3 are installed to face the CPU 301 and are used to cool the CPU 301.
  • the rotation control unit 216 increases the rotation speed of the fan 302-2 and the fan 302-3 and cools the CPU 301.
  • the fan 302-4 and the fan 302-5 are installed facing the memory 220 and are used for cooling the memory 220. Therefore, when the temperature of the memory 220 is high, the rotation control unit 216 increases the number of rotations of the fan 302-4 and the fan 302-5 and cools the memory 220.
  • FIG. 8 is an example showing processing of the rotation control unit 216.
  • Reference numeral 801 in FIG. 8 denotes an example of processing in which the rotation control unit 216 controls the rotation speed of the fan in accordance with the average temperature of the air inside the server 102.
  • a graph 801 in FIG. 8 shows the current temperature of the average temperature of the air inside the server 102 and the rotation speed A of the fan corresponding to the average temperature of the air inside the server 102.
  • the rotation control unit 216 sets the number of rotations of the fans 302-1 to 302-6 corresponding to the average temperature of the air inside the server 102.
  • the rotation control unit 216 sets the rotation speed A corresponding to the average temperature of the air inside the server 102 for the fans 302-1 to 302-6.
  • FIG. 8 is an example of processing in which the rotation control unit 216 controls the fan rotation speed in accordance with the temperature of the CPU 301.
  • a graph 802 in FIG. 8 indicates the current temperature of the CPU 301 and the fan rotation speed B corresponding to the temperature of the CPU 301.
  • the rotation control unit 216 sets the rotation speed of the fan 302-2 and the fan 302-3 corresponding to the temperature of the CPU 301.
  • the rotation control unit 216 sets the fan 302-2 and the fan 302-3. Do not change the rotation speed.
  • a graph 803 in FIG. 8 shows the current temperature of the memory 220 and the fan rotation speed C corresponding to the temperature of the memory 220.
  • the rotation control unit 216 sets the rotation speed of the fan 302-4 and the fan 302-5 corresponding to the temperature of the memory 220.
  • the rotation control unit 216 sets the fan 302-4 and the fan 302-5. Do not change the rotation speed.
  • the rotation speed of the fan corresponding to the temperature of the memory 220 is larger than the rotation speed of the fan corresponding to the average temperature of the air in the server 102. 4. Change the rotation speed of the fan 302-5 to C.
  • FIG. 9 is an example of information referred to when the rotation control unit 216 sets the rotation speed of the fan.
  • the example of FIG. 9 is information regarding the rotational speed of the fan stored in the memory 220 of the server.
  • Reference numeral 901 in FIG. 9 is information indicating the number of rotations of the fan corresponding to the average temperature of the air inside the server 102.
  • the information 901 in FIG. 9 is used by the rotation control unit 216 in the process 801 in FIG.
  • the rotation speed of the fan shown by 901 in FIG. 9 is set for the fans 302-1 to 302-6.
  • the rotation control unit 216 sets the rotation speed 5850 rpm for the fans 302-1 to 302-6 when the average temperature of the air inside the server 102 is 25 degrees.
  • the rotation control unit 216 sets the rotation speed 12300 rpm for the fans 302-1 to 302-6.
  • Reference numeral 902 in FIG. 9 is information indicating the rotational speed of the fan corresponding to the temperature of the CPU 301. The information 902 in FIG. 9 is used by the rotation control unit 216 in the process 802 in FIG. The rotation speed of the fan indicated by 902 in FIG. 9 is set for the fans 302-2 to 302-3.
  • the rotation control unit 216 sets the rotation speed 5850 rpm for the fans 302-2 to 302-3.
  • the rotation control unit 216 sets the rotation speed 12300 rpm for the fans 302-2 to 302-3 when the CPU temperature of the server 102 is 93 degrees.
  • Reference numeral 903 in FIG. 9 is information indicating the number of fan rotations corresponding to the memory temperature of the server 102. The information 903 in FIG. 9 is used by the rotation control unit 216 in the process 803 in FIG. The number of fan rotations indicated by reference numeral 903 in FIG. 9 is set for the fans 302-4 to 302-5.
  • the rotation control unit 216 sets the rotation speed 5850 rpm for the fans 302-4 to 302-5.
  • the rotation control unit 216 sets the rotation speed 12300 rpm for the fans 302-4 to 302-5 when the memory temperature of the server 102 is 93 degrees.
  • the processing of the calculation unit 218 of the server 102 will be described below.
  • the calculation unit 218 performs a predetermined process and calculates the expected fan power consumption when a request is received from the creation unit 206 to transmit information on the expected fan power consumption.
  • the creation unit 206 is configured to change a value obtained by subtracting the current set temperature of the air conditioner from the temperature information that is a candidate to be set to the air conditioner specified by the specifying unit 204 from the current set temperature of the air conditioner. And As a specific example, if the temperature that is a candidate for setting the air conditioner is 15 to 20 degrees and the current set temperature of the air conditioner is 18 degrees, the difference temperature that is scheduled to be changed from the current set temperature of the air conditioner is negative. It will be 3 to 2 degrees.
  • the creation unit 206 sends a request to the server 102 to transmit information on the estimated power consumption of the fan together with information on the difference temperature.
  • the calculation unit 218 receives a request from the creation unit 206 to transmit information on the expected power consumption of the fan.
  • the calculation unit 218 calculates a value obtained by adding the difference temperature to each of the average temperature of the air inside the server 102 measured by the measurement unit 215, the temperature of the CPU 301, and the temperature of the memory 220 of the server.
  • the calculation unit 218 sets a value obtained by adding the difference temperature to the average temperature of the air inside the server 102 as the assumed average temperature of the air inside the server 102.
  • the calculation unit 218 sets a value obtained by adding the difference temperature to the temperature of the CPU 301 as the assumed CPU temperature.
  • the calculation unit 218 sets a value obtained by adding the difference temperature to the temperature value of the memory 220 as the assumed memory temperature.
  • the calculation unit 218 causes the rotation control unit 216 to determine the number of rotations of the fan from the information on the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature.
  • the calculating unit 218 calculates the expected fan power consumption from the fan rotation speed corresponding to the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature. Note that the rotation control unit 216 does not actually set the fan rotation speed determined from information on the assumed average air temperature in the server 102, the assumed CPU temperature, and the assumed memory temperature.
  • FIG. 10 is an example showing information on the power consumption corresponding to the rotation speed of the fan.
  • the calculation unit 218 calculates the expected power consumption of the fan based on the information in FIG. 10 from the fan rotation speed corresponding to the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature. Calculate the amount.
  • the fan when the fan is rotating at 5850 rpm, 2 W of electric power is consumed per fan.
  • the fan is rotating at 12300 rpm, 9 W of electric power is consumed per fan.
  • the example of FIG. 10 is an example, and the value is not limited. Information on the power consumption per fan corresponding to the number of rotations of the fan may be provided.
  • the calculation unit 218 acquires the power consumption amount of each fan from the rotational speed of the fan determined from the information of the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature. The calculation unit 218 adds the power consumption of each fan, and calculates the expected fan power consumption. Information on the expected power consumption of the fan is transmitted to the cooling control apparatus 201 by the transmission unit 219.
  • the creation unit 206 When the creation unit 206 receives information on the power consumption expected to be consumed by the air conditioner 101 and the expected fan power consumption, the creation unit 206 obtains the total power consumption used for cooling the data center.
  • the creation unit 206 creates a table in which temperatures that are candidates for the air conditioner identified by the identifying unit 204 are associated with the total power consumption used for cooling the data center.
  • the selection unit 207 selects a temperature with the smallest total power consumption used for cooling the data center from the table.
  • the setting unit 208 sets the temperature with the smallest total power consumption selected by the selection unit 207 in the air conditioner.
  • FIG. 11 is an example showing the relationship between the set temperature of the air conditioner and the power consumption.
  • FIG. 11 a and FIG. 11 b are modifications of FIG. 3.
  • Data center power consumption varies with outside temperature. The power consumption of the data center varies depending on, for example, day and night, weather, season, and the like.
  • FIG. 11A is an example when the outside air temperature is lower than that in FIG. FIG. 11A is indicated by a graph D, a graph E, and a graph F.
  • Graph D is a graph showing the amount of power consumption expected to be consumed by the air conditioner in a temperature range that can be set for the air conditioner.
  • Graph D is a graph of power consumption information stored in the memory 214 of the air conditioner.
  • the graph E is a graph showing the expected power consumption of the server in the temperature range where it is recommended that the server may be installed.
  • the graph E is a graph of the fan power consumption calculated by the calculation unit 218.
  • Graph F is a graph showing the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner.
  • the graph F is a graph of the information of the table created by the creation unit 206.
  • the graph F is a graph obtained using the graph D and the graph E. Since graph D has a lower outside air temperature than graph A in FIG. 3, the amount of power consumption is low when the set temperature of the air conditioner is low. Therefore, the graph F has less power consumption when the set temperature of the air conditioner is lower than the graph C of FIG.
  • the selection unit 207 selects the temperature with the smallest power consumption among the power consumptions of the data center shown in the graph F.
  • the temperature with the lowest power consumption is on the side where the set temperature of the air conditioner is low in the graph F of FIG.
  • FIG. 11B shows an example in which the load on the server 102 is higher than that in FIG. FIG. 11 b is indicated by a graph G, a graph H, and a graph I.
  • the graph G is a graph showing the amount of power consumption expected to be consumed by the air conditioner in a temperature range that can be set for the air conditioner.
  • the graph G is a graph of power consumption information stored in the memory 214.
  • the graph H is a graph showing the expected power consumption of the server in the temperature range where it is recommended that the server be installed.
  • the graph H is a graph of the fan power consumption calculated by the calculation unit 218.
  • Graph I is a graph showing the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner.
  • the graph I is a graph of the information of the table created by the creation unit 206.
  • the graph I is a graph obtained using the graph G and the graph H.
  • the load on the server 102 is high, so that the amount of power consumption is high regardless of the setting temperature of the air conditioner. Therefore, the graph I has higher power consumption when the set temperature of the air conditioner is lower than the graph C of FIG.
  • the selection unit 207 selects the temperature with the lowest power consumption among the power consumptions of the data center shown in the graph I. In graph I in FIG. 11, the temperature with the smallest amount of power consumption is on the side where the set temperature of the air conditioner is higher.
  • FIG. 12 is a flowchart illustrating an example of processing of the acquisition unit of the cooling control device.
  • the acquisition unit 203 acquires information on a temperature range that can be set for the air conditioner from the air conditioner 101 (step S201).
  • the temperature range that can be set in the air conditioner is information on the upper limit temperature and the lower limit temperature that can be set in the air conditioner 101.
  • the acquisition unit 203 confirms responses to all servers connected to the cooling control apparatus 201 (step S202).
  • the acquisition unit 203 acquires information on a temperature range recommended for server installation from the server 102 (step S203).
  • the temperature range recommended for installation of the server is information on the upper limit temperature and the lower limit temperature of the temperature recommended for installation of the server 102.
  • the acquisition unit 203 determines whether the information of S203 has been acquired from all servers connected to the cooling control apparatus 201 (step S204). If the information of S203 has not been acquired from all servers, the process is repeated from S203. If the information of S203 has been acquired from all servers, the process proceeds to S102.
  • FIG. 13 is a flowchart for explaining an example of processing of a specific unit of the cooling control device.
  • the specifying unit 204 selects the lowest temperature from the upper limit temperature acquired in S201 and the upper limit temperature acquired in S203 (step S301).
  • the specifying unit 204 selects the highest temperature from the lower limit temperature acquired in S201 and the lower limit temperature acquired in S203 (step S302).
  • the specifying unit 204 specifies that the temperature that is a candidate to be set for the air conditioner is within the range between the upper limit temperature selected in S301 and the lower limit temperature selected in S302 (step S303). When S303 ends, the process proceeds to S103.
  • FIG. 14 is a flowchart for explaining an example of processing of the creation unit of the cooling control device.
  • the creation unit 206 acquires information on a setting unit indicating how many times the temperature can be set in the air conditioner 101 from the air conditioner 101 (step S401).
  • the creation unit 206 acquires information about the current set temperature of the air conditioner 101 from the air conditioner 101 (step S402).
  • the creation unit 206 sets the lower limit temperature selected in S302 as a candidate temperature to be set in the air conditioner (step S403).
  • the creation unit 206 acquires, from the air conditioner 101, information on the power consumption that is expected to be consumed by the air conditioner 101 when a temperature that is a candidate to be set for the air conditioner is set in the air conditioner 101 (step S404).
  • the creation unit 206 determines whether information on the amount of power consumption expected to be consumed by the air conditioner 101 in S404 has been acquired from all the air conditioners (step S405). If information on the amount of power consumption expected to be consumed by the air conditioners from all the air conditioners has not been acquired, the process is repeated from S404.
  • the creation unit 206 calculates, as a difference temperature, a value obtained by subtracting the current set temperature of the air conditioner from the temperature that is a candidate to be set for the air conditioner (YES in step S405, step S406).
  • the creation unit 206 acquires information on the expected power consumption of the fan when the average temperature, CPU temperature, and memory temperature of the air inside the server 102 change by the difference temperature (step S407).
  • the creation unit 206 adds the power consumption expected to be consumed by the air conditioner and the fan power consumption expected to obtain the total power consumption used for cooling the data center.
  • the creation unit 206 creates a table that describes information associating temperatures that are candidates for setting to the air conditioner with the total power consumption used for cooling the data center (step S409).
  • the creation unit 206 adds the value of the setting unit acquired in S401 to the temperature that is a candidate to be set in the air conditioner (step S410).
  • the creation unit 206 determines whether or not the temperature that is a candidate to be set for the air conditioner is higher than the upper limit temperature selected in S301 (step S411).
  • the process proceeds to S404. If the temperature that is a candidate to be set for the air conditioner is higher than the upper limit temperature selected in S301, the process proceeds to S104.
  • FIG. 15 is a flowchart illustrating an example of processing of the selection unit of the cooling control device.
  • the selection unit 207 selects a temperature at which power consumption is minimized from the table created by the creation unit 206 (step S501). When there are a plurality of temperatures at which the power consumption is minimized in the process of S501, the selection unit 207 selects the lowest temperature among the temperatures at which the power consumption is minimized (step S502).
  • FIG. 16 is a flowchart for explaining an example of processing of the setting unit of the cooling control device.
  • the setting unit 208 acquires the current set temperature of the air conditioner and the temperature information selected in S502 from the processing unit 205 (step S601).
  • the setting unit 208 determines whether or not the current set temperature of the air conditioner and the temperature selected in S502 are the same value (step S602). If the current set temperature of the air conditioner and the temperature selected in S502 are the same value, the setting process ends.
  • the setting unit 208 sets the temperature selected in S502 to the air conditioner (NO in step S602, step S603).
  • the setting unit 208 determines whether the temperature selected in S502 has been set for all the air conditioners (step S604). If the temperature selected in S502 is not set for all the air conditioners, the process repeats S603. When the temperature selected in S502 is set for all the air conditioners, the setting process ends.
  • FIG. 17 is a flowchart illustrating an example of processing of the extraction unit and the notification unit of the air conditioner.
  • the extraction unit 212 acquires information related to the outside air temperature from the memory 214 of the air conditioner (step S701).
  • the outside air temperature is measured by the air conditioner 101, and information on the outside air temperature is stored in the memory 214.
  • the extraction unit 212 extracts, from the memory 214, information on the power consumption that is expected to be consumed by the air conditioner, corresponding to the information on the outside air temperature and the temperature that is a candidate to be set in the air conditioner (step S702).
  • the notification unit 213 notifies the creation unit 206 of information on the power consumption that is expected to be consumed by the extracted air conditioner (step S703).
  • FIG. 18 is a flowchart illustrating an example of processing performed by the calculation unit and the transmission unit of the server.
  • the calculation unit 218 acquires information about the current average temperature, CPU temperature, and memory temperature of the air inside the server 102 from the measurement unit 215 (step S801).
  • the calculation unit 218 adds the difference temperature to the current average temperature of the air inside the server 102 to calculate the assumed average temperature of the air inside the server 102.
  • the calculation unit 218 calculates the assumed CPU temperature by adding the difference temperature to the current CPU temperature.
  • the calculation unit 218 adds the difference temperature to the current memory temperature and calculates the assumed memory temperature (step S802).
  • the calculating unit 218 calculates the expected fan rotation speed corresponding to the average temperature of the air inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature (step S803).
  • the calculation unit 218 calculates an expected fan power consumption corresponding to the expected fan speed (step S804).
  • the calculation unit 218 determines whether the processes of S803 and S804 have been performed on all the fans (step S805). If processing has not been performed for all fans, the processing is repeated from S803.
  • the calculation unit 218 adds the expected fan power consumption amounts of all the fans (step S806).
  • the transmission unit 219 transmits information on the expected power consumption of the fan to the cooling control device (step S807).
  • the temperature with low power consumption can be automatically changed to the set temperature of the air conditioner.
  • the embodiment is not limited to the above, and can be variously modified. Some examples are described below.
  • FIG. 19 is a diagram illustrating an example of a data center according to the second embodiment.
  • the same components as those in FIG. 2 are denoted by the same reference numerals.
  • the data center according to the second embodiment is a diagram in which the cooling control device 201 is mounted on the air conditioner 101 as the cooling control unit 401.
  • the cooling control unit 401 may be installed as a program in the air conditioner 101.
  • the cooling control unit 401 performs the same processing as the cooling control device 201.
  • FIG. 20 is a diagram illustrating an example of a data center according to the third embodiment.
  • the data center according to the third embodiment has the cooling control device 201 mounted on the air conditioner 101 as the cooling control unit 401, and the fan mounted on the server 102.
  • the power consumption information and calculation unit 218 is mounted on the air conditioner 101.
  • the server 102 includes fan identification information 501.
  • each server consumes different electric power corresponding to the rotation speed of the fan.
  • the data center according to the third embodiment has information including fan identification information in addition to the information on the power consumption corresponding to the rotational speed of the fan in FIG. FIG.
  • 21 is an example of information on power consumption corresponding to the number of rotations of a fan having fan identification information.
  • Information regarding the rotational speed of the fan shown in FIG. 9 is stored in the memory 220 of the server 102 and is notified to the air conditioner 101 in response to a request.
  • FIG. 22 is a flowchart illustrating an example of processing of the creation unit according to the third embodiment.
  • the creation unit 206 acquires information about the current average air temperature, CPU temperature, and memory temperature inside the server 102 from the measurement unit 215 (step S901).
  • the creation unit 206 acquires information on the number of built-in fans, the current number of rotations of each built-in fan, fan identification information, and the number of fan rotations from the server memory 220 (step S902).
  • the creation unit 206 determines whether the information acquired in S902 has been acquired from all servers (step S903). If the information acquired in S902 has not been acquired from all servers, the process is repeated from S901. If the information acquired in S902 has been acquired from all servers, the process proceeds to S904.
  • Steps S904 to S909 are the same as steps S401 to S406 in FIG. The process of step S910 will be described in detail later (FIG. 23). Steps S911 to S914 are the same as steps S408 to S411 in FIG.
  • FIG. 23 is a flowchart illustrating an example of calculation processing according to the third embodiment.
  • the air conditioner 101 includes a calculation unit 218.
  • FIG. 18 is modified as shown in FIG. 23 to perform calculation processing.
  • the calculation processing in FIG. 23 corresponds to the processing in step S910 in FIG.
  • the calculation unit 218 adds the difference temperature to the current average temperature of the air inside the server 102 to calculate the assumed average temperature of the air inside the server 102.
  • the calculation unit 218 calculates the assumed CPU temperature by adding the difference temperature to the current CPU temperature.
  • the calculation unit 218 adds the difference temperature to the current memory temperature and calculates the assumed memory temperature (step S1001).
  • the calculation unit 218 calculates the expected fan rotation speed corresponding to the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature (step S1002).
  • the calculation unit 218 calculates the expected fan power consumption corresponding to the expected fan speed from the information regarding the fan speed that matches the fan identification information (step S1003).
  • the information regarding the rotational speed of the fan used in S1003 is information illustrated in FIG.
  • the calculation unit 218 determines whether or not the processing of S1002 and S1003 has been performed for all fans (step S1004). If processing has not been performed for all fans, the processing is repeated from S1002.
  • the calculation unit 218 adds the expected fan power consumption of all the fans (step S1005). When S1005 ends, the process proceeds to S911.
  • the information on the power consumption of the air conditioner 101 shown in FIG. 5 may be information set in advance by an administrator. Further, the air conditioner 101 may measure the outside air temperature and the amount of power consumption during operation, and update the power consumption information of the air conditioner 101 shown in FIG. 5 using actual data.
  • the duty ratio of the fan corresponding to the average temperature of the air inside the server 102, the CPU temperature, and the memory temperature.
  • the information on the power consumption corresponding to the rotational speed of the fan shown in FIG. 10 may be used in association with the duty ratio instead of the information on the power consumption instead of the rotational speed of the fan.

Abstract

The purpose of this invention is to easily determine the setting temperature for an air conditioner. A cooling control system controls the setting temperature for an air conditioner that cools a server. The cooling control system first specifies a candidate temperature range for setting in the air conditioner from a temperature range that is recommended for installing a server and that is within the range of temperatures that the air conditioner can be set to. Next, the cooling control system adds the power consumption of the air conditioner and the power consumption of a server fan that are expected when the air conditioner is set to a candidate temperature for setting in the air conditioner. The cooling control system creates information wherein temperature candidates for setting in the air conditioner and respective added values are associated. From the information wherein the temperature candidates for setting in the air conditioner and respective added values are associated, the cooling control system selects the setting temperature with the relatively smallest added value. The cooling control device sets the selected temperature in the air conditioner.

Description

冷却制御システム、冷却制御装置及び冷却制御方法COOLING CONTROL SYSTEM, COOLING CONTROL DEVICE, AND COOLING CONTROL METHOD
 本発明は、サーバの冷却制御に関する。 The present invention relates to server cooling control.
 データセンターは、複数のサーバを預かり、管理する施設である。データセンターは、高速な通信回線や発電設備、空調設備を備え、複数のサーバを集中的に管理できる施設である。多数のサーバ及び空調機は、膨大な電力を消費する。そのため、省電力が実現できるデータセンターが望まれる。 Data center is a facility that manages and manages multiple servers. The data center is a facility equipped with a high-speed communication line, power generation equipment, and air conditioning equipment and capable of centrally managing a plurality of servers. Many servers and air conditioners consume enormous amounts of power. Therefore, a data center that can realize power saving is desired.
 近年、データセンターの省電力を実現するコンテナ型データセンターが開発されている。図1は、コンテナ型データセンターを上から見た例である。図1のコンテナ型データセンターは、コンテナ100と空調機101a~空調機101dとを有する。コンテナ100は、サーバラックを有する。サーバラックには、サーバ102が収められる。空調機101は、コンテナ100の外部に備えられており、データセンター内を冷却する。空調機101がデータセンター内を冷却する手段として、直接外気を室内に取り入れてデータセンター内を冷却する直接外気冷却方式が知られている。また、データセンターを冷却する手段は、外気温度を利用し熱交換で室内の空気を冷却する間接外気冷却方式が知られている。コンテナ型データセンターは、外気・外気温度を利用してデータセンターを冷却することで空調機の消費電力量を減らす。 In recent years, container-type data centers have been developed that realize power saving in data centers. FIG. 1 shows an example of a container-type data center as viewed from above. The container type data center in FIG. 1 includes a container 100 and air conditioners 101a to 101d. The container 100 has a server rack. The server 102 is stored in the server rack. The air conditioner 101 is provided outside the container 100 and cools the inside of the data center. As a means for the air conditioner 101 to cool the inside of the data center, a direct outside air cooling method in which outside air is directly taken into the room and the inside of the data center is cooled is known. As a means for cooling the data center, an indirect outside air cooling method is known in which indoor air is cooled by heat exchange using outside air temperature. Container-type data centers reduce the power consumption of air conditioners by cooling the data center using outside air and outside air temperature.
 また、データセンターの消費電力量を減らす技術として、空調機の送風量とサーバのファンとを制御して、冷気の漏れを防止する技術が知られている。(例えば特許文献1参照)。 Also, as a technique for reducing the power consumption of the data center, a technique for preventing the leakage of cold air by controlling the airflow of the air conditioner and the server fan is known. (For example, refer to Patent Document 1).
特開2012-172853号公報JP 2012-172853 A
 上述した背景技術では以下のような問題がある。
 特許文献1の技術は、コンテナ型データセンターのような省スペースで、気密性の高い空間では有効ではないという問題を持つ。
The background art described above has the following problems.
The technique of Patent Document 1 has a problem that it is not effective in a space-saving and highly airtight space such as a container-type data center.
 データセンターでの消費電力を削減することが望ましい。コンテナ型データセンターは、外気・外気温度を利用してデータセンターを冷却することで空調機の消費電力量を減らすので外気の温度によっては、設定温度を変更したほうがよい場合がある。本発明は、一つの側面では、空調機の設定温度を簡便に決定する冷却制御システム及び方法を提供する。 It is desirable to reduce power consumption in the data center. In a container type data center, the power consumption of the air conditioner is reduced by cooling the data center using the outside air / outside air temperature, so it may be better to change the set temperature depending on the outside air temperature. In one aspect, the present invention provides a cooling control system and method for easily determining a set temperature of an air conditioner.
 冷却制御システムは、サーバを冷却する空調機の設定温度を制御するシステムである。冷却制御システムは、まず、空調機に設定する候補となる温度範囲を、空調機に設定可能な温度の範囲内のサーバを設置してもよいと推奨される温度範囲から特定する。次に、冷却制御システムは、空調機に設定する候補となる温度を空調機に設定した場合に予想される、空調機の消費電力量とサーバのファンの消費電力量とを加算する。冷却制御システムは、空調機に設定する候補となる温度と加算した値とを対応づけた情報を作成する。冷却制御システムは、空調機に設定する候補となる温度と加算した値とを対応づけた情報のうち、加算した値が相対的に小さい設定温度を選択する。冷却制御装置は、選択した選択温度を空調機に設定する。 The cooling control system is a system that controls the set temperature of the air conditioner that cools the server. First, the cooling control system specifies a temperature range that is a candidate to be set for the air conditioner from a recommended temperature range in which a server within a temperature range that can be set for the air conditioner may be installed. Next, the cooling control system adds the power consumption amount of the air conditioner and the power consumption amount of the fan of the server, which is expected when a temperature that is a candidate to be set for the air conditioner is set in the air conditioner. The cooling control system creates information associating the candidate temperature to be set to the air conditioner with the added value. The cooling control system selects a set temperature with a relatively small value from among the information in which the temperature that is a candidate to be set in the air conditioner is associated with the added value. The cooling control device sets the selected selected temperature in the air conditioner.
 空調機の設定温度を簡便に決定する。 Easily determine the set temperature of the air conditioner.
コンテナ型データセンターを上から見た例である。This is an example of a container type data center as seen from above. 第1の実施形態に係るデータセンターの例を示す図である。It is a figure which shows the example of the data center which concerns on 1st Embodiment. 空調機の設定温度と、消費電力量との関係を示した例である。It is the example which showed the relationship between the preset temperature of an air conditioning machine, and power consumption. 冷却制御システムのハードウェア構成の例である。It is an example of the hardware constitutions of a cooling control system. 冷却制御装置の処理の例を説明するフローチャートである。It is a flowchart explaining the example of a process of a cooling control apparatus. 空調機101が消費すると予想される消費電力の情報を示す例である。It is an example which shows the information of the power consumption estimated that the air conditioner 101 consumes. サーバ102のハードウェア構成の例である。3 is an example of a hardware configuration of a server 102. 回転制御部216の処理を示す例である。It is an example which shows the process of the rotation control part 216. FIG. 回転制御部216がファンの回転数を設定する際に参照する情報の例である。It is an example of the information referred when the rotation control part 216 sets the rotation speed of a fan. ファンの回転数に対応した消費電力量の情報を示す例である。It is an example which shows the information of the power consumption corresponding to the rotation speed of a fan. 空調機の設定温度と、消費電力量との関係を示した例である。It is the example which showed the relationship between the preset temperature of an air conditioning machine, and power consumption. 冷却制御装置の取得部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of a process of the acquisition part of a cooling control apparatus. 冷却制御装置の特定部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of the process of the specific part of a cooling control apparatus. 冷却制御装置の作成部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of a process of the preparation part of a cooling control apparatus. 冷却制御装置の選択部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of the process of the selection part of a cooling control apparatus. 冷却制御装置の設定部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of a process of the setting part of a cooling control apparatus. 空調機の抽出部及び通知部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of the process of the extraction part of an air conditioning machine, and a notification part. サーバの算出部及び送信部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of the process of the calculation part of a server, and a transmission part. 第2の実施形態に係るデータセンターの例を示す図である。It is a figure which shows the example of the data center which concerns on 2nd Embodiment. 第3の実施形態に係るデータセンターの例を示す図である。It is a figure which shows the example of the data center which concerns on 3rd Embodiment. ファン識別情報を有するファンの回転数に対応した消費電力量の情報の例である。It is an example of the information of the power consumption corresponding to the rotation speed of the fan which has fan identification information. 第3の実施形態の作成部の処理の例を説明するフローチャートである。It is a flowchart explaining the example of the process of the preparation part of 3rd Embodiment. 第3の実施形態での算出処理の例を説明するフローチャートである。It is a flowchart explaining the example of the calculation process in 3rd Embodiment.
 以下、本実施形態について、図面を参照しながら詳細に説明する。
 図2は、第1の実施形態に係るデータセンターの例を示す図である。図1と同一のものは、同一の符号を付して示す。図2のデータセンターは、空調機101と、複数のサーバ102と、冷却制御装置201とを有する。
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
FIG. 2 is a diagram illustrating an example of a data center according to the first embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals. The data center in FIG. 2 includes an air conditioner 101, a plurality of servers 102, and a cooling control device 201.
 冷却制御装置201は、温度判定部202、処理部205、設定部208、メモリ209を有する。温度判定部202は、取得部203と特定部204とを実現する。取得部203は、空調機101から空調機101の設定情報を取得する。空調機101の設定情報は、空調機101の仕様に関する情報である。仕様に関する情報とは、空調機101に設定可能な温度の範囲の情報や、何度刻みで空調機101に温度設定が可能であるかの設定単位の情報、空調機101に設定されている温度の情報である。並列して取得部203は、サーバ102から仕様の情報を取得する。サーバ102の仕様情報は、サーバ102を設置してもよいと推奨される温度の情報を含む。第1の実施形態に係る冷却制御システムの例は、空調機101や、サーバ102の数を限定するものではない。取得部203は、空調機101が複数ある場合、空調機101の各々から設定情報を取得する。空調機101は、複数ある場合、同一の機種でなくてもよい。サーバ102も、複数ある場合、同一の機種でなくてもよい。特定部204は、取得部203が取得した空調機101の設定情報とサーバ102を設置してもよいと推奨される温度の情報とを利用して、空調機に設定する候補となる温度を特定する。 The cooling control device 201 includes a temperature determination unit 202, a processing unit 205, a setting unit 208, and a memory 209. The temperature determination unit 202 implements an acquisition unit 203 and a specification unit 204. The acquisition unit 203 acquires setting information of the air conditioner 101 from the air conditioner 101. The setting information of the air conditioner 101 is information related to the specifications of the air conditioner 101. Information related to specifications includes information on a temperature range that can be set in the air conditioner 101, information on a setting unit indicating how many times the temperature can be set in the air conditioner 101, and a temperature set in the air conditioner 101 Information. In parallel, the acquisition unit 203 acquires specification information from the server 102. The specification information of the server 102 includes information of a temperature recommended that the server 102 may be installed. The example of the cooling control system according to the first embodiment does not limit the number of air conditioners 101 and servers 102. When there are a plurality of air conditioners 101, the acquisition unit 203 acquires setting information from each of the air conditioners 101. When there are a plurality of air conditioners 101, they may not be the same model. If there are a plurality of servers 102, they may not be the same model. The specifying unit 204 uses the setting information of the air conditioner 101 acquired by the acquiring unit 203 and the temperature information recommended to install the server 102 to specify a temperature that is a candidate to be set in the air conditioner. To do.
 処理部205は、作成部206と選択部207とを実現する。作成部206は、特定部204で特定した空調機に設定する候補となる温度と、データセンターの冷却に使用する総消費電力量とを対応づけたテーブルを作成する。データセンターの冷却に使用する総消費電力量は、データセンターの温度を空調機に設定された温度にするための空調機が消費する電力量と、空調機に設定された温度でのサーバのファンの消費電力量とを含む。選択部207は、作成部206で作成されたテーブルから、消費電力量の最も小さい温度を選択する。設定部208は、選択部207で選択された消費電力量の最も小さい温度を空調機101に設定する。 The processing unit 205 implements a creation unit 206 and a selection unit 207. The creation unit 206 creates a table in which temperatures that are candidates for the air conditioner identified by the identifying unit 204 are associated with the total power consumption used for cooling the data center. The total power consumption used for cooling the data center is the amount of power consumed by the air conditioner to bring the data center temperature to the temperature set for the air conditioner, and the server fan at the temperature set for the air conditioner. Power consumption. The selection unit 207 selects the temperature with the lowest power consumption amount from the table created by the creation unit 206. The setting unit 208 sets the temperature with the smallest power consumption selected by the selection unit 207 in the air conditioner 101.
 空調機101は、管理部210、温度制御部211、抽出部212、通知部213、メモリ214を有する。管理部210は、空調機101が消費する電力量の情報を管理し、メモリ214に保存する。温度制御部211は、データセンターの室温が空調機101に設定されている空調機の設定温度となるよう、空調機101の送風量を制御する。メモリ214は、空調機101の設定情報及び消費電力の情報を保存している。抽出部212は、空調機101が消費すると予想される消費電力量の情報の通知を冷却制御装置201から要求された場合に、該等する情報を空調機に設定する候補となる温度に対応づけてメモリ214の消費電力の情報から抽出する。通知部213は、抽出部212が抽出した空調機101が消費すると予想される消費電力量の情報を冷却制御装置201に通知する。 The air conditioner 101 includes a management unit 210, a temperature control unit 211, an extraction unit 212, a notification unit 213, and a memory 214. The management unit 210 manages information on the amount of power consumed by the air conditioner 101 and stores it in the memory 214. The temperature control unit 211 controls the air flow rate of the air conditioner 101 so that the room temperature of the data center becomes the set temperature of the air conditioner set in the air conditioner 101. The memory 214 stores setting information and power consumption information of the air conditioner 101. When the cooling control apparatus 201 requests notification of power consumption information that the air conditioner 101 is expected to consume, the extraction unit 212 associates such information with a temperature that is a candidate for setting the air conditioner. And extracted from the power consumption information of the memory 214. The notification unit 213 notifies the cooling control apparatus 201 of information on the power consumption that is expected to be consumed by the air conditioner 101 extracted by the extraction unit 212.
 サーバ102は、測定部215、回転制御部216、記録部217、算出部218、送信部219、メモリ220を有する。測定部215は、サーバ102の温度を測定する。回転制御部216は、測定部215で測定されたサーバ102の温度にあわせて、内蔵ファンの回転数や回転させるファンを制御する。内蔵ファンは、サーバ102の温度が上昇すると、回転数を増やし、サーバ102を冷却する。記録部217は、内蔵ファンが消費する電力量の情報を記録する。算出部218は、作成部206から、予想されるファン消費電力量の情報を送信するよう要求がきた場合に、所定の処理を実行し、予想されるファン消費電力量を算出する。送信部219は、予想されるファン消費電力量の情報を冷却制御装置201に送信する。メモリ220は、サーバ102の仕様情報として、サーバ102を設置してもよいと推奨される温度の情報や、算出部218で使用されるファン消費電力に関する情報を保存している。 The server 102 includes a measurement unit 215, a rotation control unit 216, a recording unit 217, a calculation unit 218, a transmission unit 219, and a memory 220. The measurement unit 215 measures the temperature of the server 102. The rotation control unit 216 controls the number of rotations of the built-in fan and the fan to be rotated in accordance with the temperature of the server 102 measured by the measurement unit 215. The built-in fan increases the number of rotations and cools the server 102 when the temperature of the server 102 rises. The recording unit 217 records information on the amount of power consumed by the built-in fan. The calculation unit 218 performs a predetermined process and calculates the expected fan power consumption when a request is received from the creation unit 206 to transmit information on the expected fan power consumption. The transmission unit 219 transmits information on the expected fan power consumption to the cooling control apparatus 201. The memory 220 stores, as the specification information of the server 102, information on the temperature recommended to install the server 102 and information on the power consumption of the fan used in the calculation unit 218.
 図3は、空調機の設定温度と、消費電力量との関係を示した例である。図3の縦軸は、消費電力量を表し、図3の横軸は、空調機の設定温度を表す。図3は、グラフA、グラフB、グラフCで示される。グラフAは、空調機に設定可能な温度範囲での、空調機が消費すると予想される消費電力量を示したグラフである。グラフAは、空調機のメモリ214に保存されている消費電力の情報をグラフ化したものである。グラフBは、サーバを設置してもよいと推奨される温度範囲での、予想されるファン消費電力量を示したグラフである。グラフBは、算出部218が算出するファン消費電力量をグラフ化したものである。グラフCは、空調機に設定する候補となる温度範囲での、データセンターの消費電力量を示したグラフである。グラフCは、作成部206が作成したテーブルの情報をグラフ化したものである。 FIG. 3 is an example showing the relationship between the set temperature of the air conditioner and the power consumption. The vertical axis in FIG. 3 represents the power consumption, and the horizontal axis in FIG. 3 represents the set temperature of the air conditioner. FIG. 3 is shown by a graph A, a graph B, and a graph C. Graph A is a graph showing the power consumption expected to be consumed by the air conditioner in the temperature range that can be set for the air conditioner. Graph A is a graph of power consumption information stored in the memory 214 of the air conditioner. Graph B is a graph showing the expected fan power consumption in the temperature range where it is recommended that the server be installed. Graph B is a graph of the fan power consumption calculated by the calculation unit 218. Graph C is a graph showing the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner. A graph C is a graph of the information of the table created by the creation unit 206.
 グラフCは、グラフAとグラフBとを利用して求められるグラフである。グラフA~グラフCを使用して、冷却制御装置201の処理を説明する。取得部203は、グラフAに示す空調機に設定可能な温度の範囲の情報を、空調機101から取得する。取得部203は、グラフBに示すサーバを設置してもよいと推奨される温度範囲の情報を、サーバ102から取得する。特定部204は、空調機に設定可能な温度の範囲とサーバを設置してもよいと推奨される温度範囲が重複している温度の範囲を、空調機に設定する候補となる温度範囲として特定する。グラフCは、特定部204が特定した空調機に設定する候補となる温度範囲で、データセンターの消費電力量を示す。作成部206は、空調機に設定する候補となる温度範囲で、グラフAに示す空調機が消費すると予想される消費電力量の情報を、空調機101から取得する。作成部206は、空調機に設定する候補となる温度範囲で、グラフBに示す予想されるファン消費電力量の情報を、サーバ102から取得する。作成部206は、空調機が消費すると予想される消費電力量と予想されるファン消費電力量とを加算し、グラフCに示すデータセンターの消費電力量を算出する。選択部207は、グラフCに示されるデータセンターの消費電力量が最も小さい温度を選択する。消費電力量の最も小さい温度は、図3のグラフCでは、中央付近である。設定部208は、選択部207で選択された消費電力量の最も小さい温度を空調機101に設定する。 Graph C is a graph obtained using Graph A and Graph B. The processing of the cooling control apparatus 201 will be described using graphs A to C. The acquisition unit 203 acquires information on the temperature range that can be set for the air conditioner shown in the graph A from the air conditioner 101. The acquisition unit 203 acquires, from the server 102, information on the temperature range recommended that the server shown in the graph B may be installed. The specifying unit 204 specifies a temperature range in which a temperature range that can be set in the air conditioner and a temperature range that is recommended to install a server overlap as a temperature range that is a candidate to be set in the air conditioner. To do. Graph C shows the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner specified by the specifying unit 204. The creation unit 206 acquires, from the air conditioner 101, information on the power consumption that is expected to be consumed by the air conditioner shown in the graph A in a temperature range that is a candidate to be set for the air conditioner. The creation unit 206 acquires, from the server 102, information on the expected fan power consumption shown in the graph B in the temperature range that is a candidate to be set for the air conditioner. The creation unit 206 adds the power consumption amount expected to be consumed by the air conditioner and the expected fan power consumption amount, and calculates the power consumption amount of the data center shown in the graph C. The selection unit 207 selects the temperature at which the power consumption of the data center shown in the graph C is the smallest. The temperature with the lowest power consumption is near the center in the graph C of FIG. The setting unit 208 sets the temperature with the smallest power consumption selected by the selection unit 207 in the air conditioner 101.
 図4は、冷却制御システムのハードウェア構成の例である。図4の冷却制御システムは、冷却制御装置201、空調機101、サーバ102を備える。冷却制御装置201は、CPU(Central Processing Unit)、メモリ、記憶装置を有する。また、冷却制御装置201は、専用のモニタ及び入力手段を備えていてもよい。図4の冷却制御装置201のCPUは、図2の取得部203、特定部204、作成部206、選択部207、設定部208を実現する。冷却制御装置201のCPUで使用される情報は、冷却制御装置201のメモリ又は記憶装置に保存される。空調機101は、CPU、メモリ、記憶装置を有する。空調機101のCPUは、図2の管理部210、温度制御部211、抽出部212、通知部213を実現する。空調機101のCPUで処理される情報は、空調機101のメモリ又は記憶装置に保存される。サーバ102のCPUは、図2の測定部215、回転制御部216、記録部217、算出部218、送信部219、を実現する。サーバ102のCPUで処理される情報は、サーバ102のメモリ又は記憶装置に保存される。 FIG. 4 shows an example of the hardware configuration of the cooling control system. The cooling control system of FIG. 4 includes a cooling control device 201, an air conditioner 101, and a server 102. The cooling control apparatus 201 includes a CPU (Central Processing Unit), a memory, and a storage device. Moreover, the cooling control apparatus 201 may include a dedicated monitor and input means. The CPU of the cooling control apparatus 201 in FIG. 4 implements the acquisition unit 203, the identification unit 204, the creation unit 206, the selection unit 207, and the setting unit 208 in FIG. Information used by the CPU of the cooling control device 201 is stored in a memory or a storage device of the cooling control device 201. The air conditioner 101 has a CPU, a memory, and a storage device. The CPU of the air conditioner 101 implements the management unit 210, the temperature control unit 211, the extraction unit 212, and the notification unit 213 in FIG. Information processed by the CPU of the air conditioner 101 is stored in the memory or storage device of the air conditioner 101. The CPU of the server 102 implements the measurement unit 215, the rotation control unit 216, the recording unit 217, the calculation unit 218, and the transmission unit 219 in FIG. Information processed by the CPU of the server 102 is stored in the memory or storage device of the server 102.
 図5は、冷却制御装置の処理の例を説明するフローチャートである。冷却制御装置201の温度判定部202は、取得部203と特定部204とを備え、ステップS101とステップS102とを処理する。取得部203は、空調機101のメモリ214から空調機101の設定情報を取得し、サーバ102のメモリ220からサーバ102の仕様情報を取得する。取得する設定情報は、空調機に設定可能な温度範囲の情報である。取得するサーバ102の仕様情報は、サーバの設置に推奨される温度範囲の情報である(ステップS101)。 FIG. 5 is a flowchart for explaining an example of processing of the cooling control device. The temperature determination unit 202 of the cooling control apparatus 201 includes an acquisition unit 203 and a specification unit 204, and processes step S101 and step S102. The acquisition unit 203 acquires the setting information of the air conditioner 101 from the memory 214 of the air conditioner 101, and acquires the specification information of the server 102 from the memory 220 of the server 102. The setting information to be acquired is information on a temperature range that can be set in the air conditioner. The acquired specification information of the server 102 is information on a temperature range recommended for server installation (step S101).
 特定部204は、空調機に設定する候補となる温度範囲を特定する。特定部204は、空調機に設定可能な温度の範囲とサーバを設置してもよいと推奨される温度の範囲が重複している温度の範囲を、空調機に設定する候補となる温度範囲として特定する。特定部204は、空調機101に設定可能な温度の範囲の上限温度と、サーバ102を設置してもよいと推奨される温度の上限温度とを比較する。空調機101とサーバ102が複数ある場合、特定部204は、各空調機101に設定可能な温度の範囲の上限温度と各サーバ102を設置してもよいと推奨される温度の上限温度とを比較する。特定部204は、比較した上限温度のうち、一番低い温度を空調機に設定する候補となる温度の上限温度として特定する。特定部204は、空調機101に設定可能な温度の範囲の下限温度と、サーバ102を設置してもよいと推奨される温度の下限温度とを比較する。空調機101とサーバ102が複数ある場合、特定部204は、各空調機101に設定可能な温度の範囲の下限温度と各サーバ102を設置してもよいと推奨される温度の下限温度とを比較する。特定部204は、比較した下限温度のうち、一番高い温度を空調機に設定する候補となる温度の下限温度として特定する(ステップS102)。 The identifying unit 204 identifies a temperature range that is a candidate to be set for the air conditioner. The specifying unit 204 sets a temperature range that can be set in the air conditioner and a temperature range that is recommended to be installed as a server as a temperature range that is a candidate to be set in the air conditioner. Identify. The specifying unit 204 compares the upper limit temperature of the temperature range that can be set in the air conditioner 101 with the upper limit temperature of the temperature recommended to install the server 102. When there are a plurality of air conditioners 101 and servers 102, the specifying unit 204 determines the upper limit temperature of the temperature range that can be set for each air conditioner 101 and the upper limit temperature that is recommended to install each server 102. Compare. The specifying unit 204 specifies the lowest temperature among the compared upper limit temperatures as the upper limit temperature that is a candidate for setting the air conditioner. The specifying unit 204 compares the lower limit temperature of the temperature range that can be set in the air conditioner 101 with the lower limit temperature of the recommended temperature at which the server 102 may be installed. When there are a plurality of air conditioners 101 and servers 102, the specifying unit 204 determines a lower limit temperature of a temperature range that can be set for each air conditioner 101 and a lower limit temperature that is recommended to install each server 102. Compare. The identifying unit 204 identifies the highest temperature among the compared lower limit temperatures as the lower limit temperature that is a candidate for setting the air conditioner (step S102).
 冷却制御装置201の処理部205は、作成部206と選択部207とを備え、ステップS103とステップS104とを処理する。作成部206は、特定部204で特定した空調機に設定する候補となる温度と、データセンターの冷却に使用する総消費電力量とを対応づけたテーブルを作成する。ステップS103では、作成部206は、空調機に設定する候補となる温度に対応した、空調機が消費すると予想される消費電力量の情報を通知するよう、空調機101に要求する。空調機101への要求は、空調機に設定する候補となる温度範囲の情報を含む。並列して、作成部206は、空調機に設定する候補となる温度に対応した、予想されるファン消費電力量の情報を送信するよう、サーバ102に要求する。作成部206は、サーバ102に要求を送信する際、空調機に設定する候補となる温度範囲の情報から、空調機の現在の設定温度から変更する予定の差分温度を計算する。空調機の現在の設定温度から変更する予定の差分温度とは、空調機の現在の設定温度から何度変化させる予定であるかの温度を指す。サーバ102への要求には、空調機の現在の設定温度から変更する予定の差分温度の情報が含まれる(ステップS103)。 The processing unit 205 of the cooling control apparatus 201 includes a creation unit 206 and a selection unit 207, and processes step S103 and step S104. The creation unit 206 creates a table in which temperatures that are candidates for the air conditioner identified by the identifying unit 204 are associated with the total power consumption used for cooling the data center. In step S <b> 103, the creation unit 206 requests the air conditioner 101 to notify the information on the power consumption that is expected to be consumed by the air conditioner, corresponding to the temperature that is a candidate to be set for the air conditioner. The request to the air conditioner 101 includes information on a temperature range that is a candidate to be set for the air conditioner. In parallel, the creation unit 206 requests the server 102 to transmit information on the predicted fan power consumption corresponding to the temperature that is a candidate to be set in the air conditioner. When transmitting a request to the server 102, the creation unit 206 calculates a differential temperature that is scheduled to be changed from the current set temperature of the air conditioner, from information on the temperature range that is a candidate for setting to the air conditioner. The differential temperature scheduled to be changed from the current set temperature of the air conditioner refers to the temperature of how many times it is planned to change from the current set temperature of the air conditioner. The request to the server 102 includes information on the differential temperature scheduled to be changed from the current set temperature of the air conditioner (step S103).
 空調機101は、抽出部212と通知部213とを備え、ステップS104とステップS105とを行う。抽出部212は、空調機が消費すると予想される消費電力量の情報の通知を冷却制御装置201から要求を受け取る。抽出部212は、空調機が消費すると予想される消費電力量の情報を、空調機に設定する候補となる温度に対応づけて空調機101のメモリ214の消費電力の情報から抽出する(ステップS104)。ステップS104は、後で詳しく説明する(図6)。通知部213は、抽出した消費電力の情報を作成部206に通知する(ステップS105)。 The air conditioner 101 includes an extraction unit 212 and a notification unit 213, and performs Step S104 and Step S105. The extraction unit 212 receives a request from the cooling control apparatus 201 for notification of information on the power consumption that is expected to be consumed by the air conditioner. The extraction unit 212 extracts information on the power consumption that is expected to be consumed by the air conditioner from the information on the power consumption in the memory 214 of the air conditioner 101 in association with the temperature that is a candidate to be set in the air conditioner (step S104). ). Step S104 will be described in detail later (FIG. 6). The notification unit 213 notifies the creation unit 206 of the extracted power consumption information (step S105).
 サーバ102は、算出部218と送信部219とを備え、ステップS106とステップS107とを行う。算出部218は、空調機に設定する候補となる温度に対応した、予想されるファン消費電力量を算出する。算出部218は、空調機に設定する候補となる温度に対応した、予想されるファン消費電力量の情報を送信するよう作成部206から要求を受け取る。併せて、算出部218は、空調機の現在の設定温度から変更する予定の差分温度の情報を受け取る。算出部218は、サーバ102内部の空気の平均温度・CPU温度・メモリ温度が差分温度分変化した場合の、予想されるファンの回転数を算出する。サーバ102のメモリ220に保存されているファンの消費電力に関する情報は、サーバ102内部の空気の平均温度・CPU温度・メモリ温度に対応したファンの回転数の情報を含んでいる。算出部218は、予想されるファンの回転数に対応した予想されるファン消費電力量を算出する(ステップS106)。ステップS106は、後で詳しく説明する(図7~図10)。送信部219は、算出された予想されるファン消費電力量の情報を作成部206に送信する(ステップS107)。 The server 102 includes a calculation unit 218 and a transmission unit 219, and performs Step S106 and Step S107. The calculation unit 218 calculates an expected fan power consumption corresponding to a temperature that is a candidate to be set in the air conditioner. The calculation unit 218 receives a request from the creation unit 206 to transmit information on the expected power consumption of the fan corresponding to the temperature that is a candidate to be set for the air conditioner. In addition, the calculation unit 218 receives information on the differential temperature scheduled to be changed from the current set temperature of the air conditioner. The calculation unit 218 calculates the expected fan rotation speed when the average temperature, CPU temperature, and memory temperature of the air inside the server 102 change by the difference temperature. The information on the power consumption of the fan stored in the memory 220 of the server 102 includes information on the fan rotation speed corresponding to the average air temperature, CPU temperature, and memory temperature in the server 102. The calculation unit 218 calculates an expected fan power consumption corresponding to the expected fan rotation speed (step S106). Step S106 will be described in detail later (FIGS. 7 to 10). The transmission unit 219 transmits the calculated expected fan power consumption information to the creation unit 206 (step S107).
 冷却制御装置201の作成部206は、空調機101とサーバ102に出した要求に対する応答を取得すると、空調機が消費すると予想される消費電力量と予想されるファン消費電力量とを合計し、データセンターの冷却に使用する総消費電力量を求める。作成部206は、特定部204で特定した空調機に設定する候補となる温度と、データセンターの冷却に使用する総消費電力量とを対応づけたテーブルAを作成する(ステップS103)。テーブルAは、S102で特定された上限温度と下限温度である空調機に設定する候補となる温度と、データセンターの冷却に使用する総消費電力量とを対応づけたテーブルの例である。 When the creation unit 206 of the cooling control apparatus 201 obtains a response to the request issued to the air conditioner 101 and the server 102, it sums the power consumption expected to be consumed by the air conditioner and the expected fan power consumption, Determine the total power consumption used to cool the data center. The creating unit 206 creates a table A that associates the temperatures that are candidates for the air conditioner identified by the identifying unit 204 with the total power consumption used for cooling the data center (step S103). Table A is an example of a table in which temperatures that are candidates for setting to the air conditioners that are the upper limit temperature and the lower limit temperature specified in S102 are associated with the total power consumption used for cooling the data center.
 冷却制御装置201の選択部207は、テーブルAから、データセンターの冷却に使用する総消費電力量が最も少ない温度を選択する(ステップS108)。設定部208は、選択部207で選ばれた総消費電力量が最も少ない温度を、空調機に設定する設定処理を行う(ステップS109)。冷却制御装置は、S109が終了すると、一定時間待機し、S101から処理を繰り返す。一定時間は、定期的・不定期であってもよく、ユーザが設定してもよい。また、S101~S109の処理は、データセンターの部屋の外の温度の変化による空調機での消費電力量の変化量が、所定の閾値よりも大きくなった場合に、繰り返し実行されてもよい。 The selection unit 207 of the cooling control apparatus 201 selects a temperature with the smallest total power consumption used for cooling the data center from the table A (step S108). The setting unit 208 performs setting processing for setting the temperature with the smallest total power consumption selected by the selection unit 207 in the air conditioner (step S109). When S109 ends, the cooling control device waits for a predetermined time and repeats the processing from S101. The fixed time may be regular or irregular, and may be set by the user. Further, the processing of S101 to S109 may be repeatedly executed when the amount of change in power consumption in the air conditioner due to a change in temperature outside the room in the data center becomes greater than a predetermined threshold.
 図6は、空調機101が消費すると予想される消費電力の情報を示す例である。予想される消費電力の情報は、空調機に設定する候補となる温度を空調機に設定した場合に、空調機101が消費すると予想される消費電力量の情報である。図6の予想される消費電力の情報は、ステップS106において、抽出部212が使用する情報である。図6の消費電力の情報は、空調機101が消費すると予想される消費電力量を、空調機101に所定の温度を設定した場合に、どの程度電力が消費されるかを予想し、予想値を外気温度毎に示している。例えば、外気温度が5度で、空調機に25度を設定した場合、1.64KWの電力を空調機101が消費すると予想される。空調機101の消費電力の情報は、作成部206で使用される。作成部206は、空調機に設定する候補となる温度に対応した、空調機101が消費すると予想される消費電力量の情報を通知するよう要求を空調機101に送る。並列して、作成部206は、特定部204で特定した空調機に設定する候補となる温度範囲の情報を空調機101に送る。抽出部212は、作成部206から、空調機に設定する候補となる温度に対応した空調機101が消費すると予想される消費電力量の情報を通知するよう要求がきた場合に、該等する情報を空調機のメモリ214に保存されている消費電力の情報から抽出する。外気温度が20度であり、作成部206が、空調機に設定する候補となる温度25度~29度の空調機が消費すると予想される消費電力量の情報を通知するよう空調機101に要求した場合の例をあげる。抽出部212は、外気温度が20度の行で、設定温度が25度~29度に該等する消費電力量をメモリ214の消費電力の情報から抽出する。図6の例では、3.30KW(25度)、3.44KW(26度)・・・3.82KW(29度)の情報である。通知部213は、抽出部212が抽出した空調機101が消費すると予想される消費電力量の情報を冷却制御装置201に通知する。 FIG. 6 is an example showing information of power consumption expected to be consumed by the air conditioner 101. The information on the predicted power consumption is information on the power consumption that is expected to be consumed by the air conditioner 101 when a temperature that is a candidate for the air conditioner is set in the air conditioner. The expected power consumption information in FIG. 6 is information used by the extraction unit 212 in step S106. The power consumption information in FIG. 6 predicts how much power is consumed when a predetermined temperature is set for the air conditioner 101 based on the amount of power consumed that the air conditioner 101 is expected to consume. Is shown for each outside air temperature. For example, when the outside air temperature is 5 degrees and 25 degrees is set for the air conditioner, it is expected that the air conditioner 101 consumes 1.64 KW of power. Information on the power consumption of the air conditioner 101 is used by the creation unit 206. The creation unit 206 sends a request to the air conditioner 101 to notify the information on the power consumption that is expected to be consumed by the air conditioner 101, corresponding to the temperature that is a candidate to be set for the air conditioner. In parallel, the creation unit 206 sends information on the temperature range that is a candidate to be set to the air conditioner specified by the specifying unit 204 to the air conditioner 101. When the creation unit 206 requests that the air conditioner 101 corresponding to the temperature that is a candidate to be set for the air conditioner to notify the information about the power consumption that is expected to be consumed, the extraction unit 212 receives the information Is extracted from the power consumption information stored in the memory 214 of the air conditioner. The outside air temperature is 20 degrees, and the creation unit 206 requests the air conditioner 101 to notify the information of the power consumption that is expected to be consumed by the air conditioners having the temperatures of 25 degrees to 29 degrees that are candidates for setting to the air conditioners. Here are some examples: The extraction unit 212 extracts the power consumption amount equivalent to the set temperature of 25 to 29 degrees from the power consumption information in the memory 214 in a row where the outside air temperature is 20 degrees. In the example of FIG. 6, the information is 3.30 KW (25 degrees), 3.44 KW (26 degrees), ... 3.82 KW (29 degrees). The notification unit 213 notifies the cooling control apparatus 201 of information on the power consumption that is expected to be consumed by the air conditioner 101 extracted by the extraction unit 212.
 サーバ102の測定部215、回転制御部216がファンを制御する処理について図7~図9を使用して説明する。図7は、サーバ102のハードウェア構成の例である。図7のサーバ102は、CPU301、メモリ220、ファン302-1~ファン302-6を有する。サーバ102の測定部215は、サーバ102内部の空気の平均温度、CPU301の温度、メモリ220の温度を測定する。サーバ102内部の空気の平均温度が高い場合、回転制御部216は、ファン302-1~ファン302-6の回転数を上げ、サーバ102を冷却させる。ファン302-2、ファン302-3は、CPU301に対面して設置され、CPU301を冷却するために使用される。CPU301の温度が高い場合、回転制御部216は、ファン302-2、ファン302-3の回転数を上げ、CPU301を冷却させる。ファン302-4、ファン302-5は、メモリ220に対面して設置され、メモリ220を冷却するために使用される。そのため、メモリ220の温度が高い場合、回転制御部216は、ファン302-4、ファン302-5の回転数を上げ、メモリ220を冷却させる。 A process in which the measurement unit 215 and the rotation control unit 216 of the server 102 control the fan will be described with reference to FIGS. FIG. 7 is an example of a hardware configuration of the server 102. 7 includes a CPU 301, a memory 220, and fans 302-1 to 302-6. The measurement unit 215 of the server 102 measures the average temperature of the air inside the server 102, the temperature of the CPU 301, and the temperature of the memory 220. When the average temperature of the air inside the server 102 is high, the rotation control unit 216 increases the number of rotations of the fans 302-1 to 302-6 and cools the server 102. The fan 302-2 and the fan 302-3 are installed to face the CPU 301 and are used to cool the CPU 301. When the temperature of the CPU 301 is high, the rotation control unit 216 increases the rotation speed of the fan 302-2 and the fan 302-3 and cools the CPU 301. The fan 302-4 and the fan 302-5 are installed facing the memory 220 and are used for cooling the memory 220. Therefore, when the temperature of the memory 220 is high, the rotation control unit 216 increases the number of rotations of the fan 302-4 and the fan 302-5 and cools the memory 220.
 図8は、回転制御部216の処理を示す例である。図8の801は、回転制御部216がファンの回転数を、サーバ102内部の空気の平均温度に対応させて制御する処理を示す例である。図8の801のグラフは、サーバ102内部の空気の平均温度の現在の温度と、サーバ102内部の空気の平均温度に対応したファンの回転数Aを示している。回転制御部216は、サーバ102内部の空気の平均温度に対応した、ファン302-1~ファン302-6の回転数を設定する。回転制御部216は、ファン302-1~ファン302-6に、サーバ102内部の空気の平均温度に対応した回転数Aを設定する。次に、図8の802は、回転制御部216がファンの回転数を、CPU301の温度に対応させて制御する処理を示す例である。図8の802のグラフは、CPU301の温度の現在の温度と、CPU301の温度に対応したファンの回転数Bを示している。回転制御部216は、CPU301の温度に対応した、ファン302-2、ファン302-3の回転数を設定する。ただし、CPU301の温度に対応したファンの回転数が、サーバ102内部の空気の平均温度に対応したファンの回転数よりも少ない場合、回転制御部216は、ファン302-2、ファン302-3の回転数を変更しない。図8の803は、回転制御部216がファンの回転数を、サーバのメモリ220の温度に対応させて制御する処理を示す例である。図8の803のグラフは、メモリ220の温度の現在の温度と、メモリ220の温度に対応したファンの回転数Cを示している。回転制御部216は、メモリ220の温度に対応した、ファン302-4、ファン302-5の回転数を設定する。ただし、メモリ220の温度に対応したファンの回転数が、サーバ102内部の空気の平均温度に対応したファンの回転数よりも少ない場合、回転制御部216は、ファン302-4、ファン302-5の回転数を変更しない。図8の803の例では、メモリ220の温度に対応したファンの回転数が、サーバ102内部の空気の平均温度に対応したファンの回転数よりも大きいため、回転制御部216は、ファン302-4、ファン302-5の回転数をCに変更する。 FIG. 8 is an example showing processing of the rotation control unit 216. Reference numeral 801 in FIG. 8 denotes an example of processing in which the rotation control unit 216 controls the rotation speed of the fan in accordance with the average temperature of the air inside the server 102. A graph 801 in FIG. 8 shows the current temperature of the average temperature of the air inside the server 102 and the rotation speed A of the fan corresponding to the average temperature of the air inside the server 102. The rotation control unit 216 sets the number of rotations of the fans 302-1 to 302-6 corresponding to the average temperature of the air inside the server 102. The rotation control unit 216 sets the rotation speed A corresponding to the average temperature of the air inside the server 102 for the fans 302-1 to 302-6. Next, reference numeral 802 in FIG. 8 is an example of processing in which the rotation control unit 216 controls the fan rotation speed in accordance with the temperature of the CPU 301. A graph 802 in FIG. 8 indicates the current temperature of the CPU 301 and the fan rotation speed B corresponding to the temperature of the CPU 301. The rotation control unit 216 sets the rotation speed of the fan 302-2 and the fan 302-3 corresponding to the temperature of the CPU 301. However, when the number of fan rotations corresponding to the temperature of the CPU 301 is less than the number of fan rotations corresponding to the average temperature of the air inside the server 102, the rotation control unit 216 sets the fan 302-2 and the fan 302-3. Do not change the rotation speed. Reference numeral 803 in FIG. 8 denotes an example of processing in which the rotation control unit 216 controls the fan rotation speed in accordance with the temperature of the server memory 220. A graph 803 in FIG. 8 shows the current temperature of the memory 220 and the fan rotation speed C corresponding to the temperature of the memory 220. The rotation control unit 216 sets the rotation speed of the fan 302-4 and the fan 302-5 corresponding to the temperature of the memory 220. However, when the number of fan rotations corresponding to the temperature of the memory 220 is smaller than the number of fan rotations corresponding to the average temperature of the air inside the server 102, the rotation control unit 216 sets the fan 302-4 and the fan 302-5. Do not change the rotation speed. In the example of 803 in FIG. 8, the rotation speed of the fan corresponding to the temperature of the memory 220 is larger than the rotation speed of the fan corresponding to the average temperature of the air in the server 102. 4. Change the rotation speed of the fan 302-5 to C.
 図9は、回転制御部216がファンの回転数を設定する際に参照する情報の例である。図9の例は、サーバのメモリ220に保存されているファンの回転数に関する情報である。図9の901は、サーバ102内部の空気の平均温度に対応したファンの回転数を示した情報である。図9の901の情報は、回転制御部216によって図8の801の処理で使用される。図9の901に示されるファンの回転数は、ファン302-1~ファン302-6に対して設定される。回転制御部216は、サーバ102内部の空気の平均温度が25度の場合、回転数5850rpmをファン302-1~ファン302-6に対して設定する。また、回転制御部216は、サーバ102内部の空気の平均温度が35度の場合、回転数12300rpmをファン302-1~ファン302-6に対して設定する。図9の902は、CPU301の温度に対応したファンの回転数を示した情報である。図9の902の情報は、回転制御部216によって図8の802の処理で使用される。図9の902に示されるファンの回転数は、ファン302-2~ファン302-3に対して設定される。回転制御部216は、サーバ102のCPU温度が83度の場合、回転数5850rpmをファン302-2~ファン302-3に対して設定する。また、回転制御部216は、サーバ102のCPU温度が93度の場合、回転数12300rpmをファン302-2~ファン302-3に対して設定する。図9の903は、サーバ102のメモリ温度に対応したファンの回転数を示した情報である。図9の903の情報は、回転制御部216によって図8の803の処理で使用される。図9の903に示されるファンの回転数は、ファン302-4~ファン302-5に対して設定される。回転制御部216は、サーバ102のメモリ温度が83度の場合、回転数5850rpmをファン302-4~ファン302-5に対して設定する。また、回転制御部216は、サーバ102のメモリ温度が93度の場合、回転数12300rpmをファン302-4~ファン302-5に対して設定する。 FIG. 9 is an example of information referred to when the rotation control unit 216 sets the rotation speed of the fan. The example of FIG. 9 is information regarding the rotational speed of the fan stored in the memory 220 of the server. Reference numeral 901 in FIG. 9 is information indicating the number of rotations of the fan corresponding to the average temperature of the air inside the server 102. The information 901 in FIG. 9 is used by the rotation control unit 216 in the process 801 in FIG. The rotation speed of the fan shown by 901 in FIG. 9 is set for the fans 302-1 to 302-6. The rotation control unit 216 sets the rotation speed 5850 rpm for the fans 302-1 to 302-6 when the average temperature of the air inside the server 102 is 25 degrees. Further, when the average temperature of the air inside the server 102 is 35 degrees, the rotation control unit 216 sets the rotation speed 12300 rpm for the fans 302-1 to 302-6. Reference numeral 902 in FIG. 9 is information indicating the rotational speed of the fan corresponding to the temperature of the CPU 301. The information 902 in FIG. 9 is used by the rotation control unit 216 in the process 802 in FIG. The rotation speed of the fan indicated by 902 in FIG. 9 is set for the fans 302-2 to 302-3. When the CPU temperature of the server 102 is 83 degrees, the rotation control unit 216 sets the rotation speed 5850 rpm for the fans 302-2 to 302-3. Further, the rotation control unit 216 sets the rotation speed 12300 rpm for the fans 302-2 to 302-3 when the CPU temperature of the server 102 is 93 degrees. Reference numeral 903 in FIG. 9 is information indicating the number of fan rotations corresponding to the memory temperature of the server 102. The information 903 in FIG. 9 is used by the rotation control unit 216 in the process 803 in FIG. The number of fan rotations indicated by reference numeral 903 in FIG. 9 is set for the fans 302-4 to 302-5. When the memory temperature of the server 102 is 83 degrees, the rotation control unit 216 sets the rotation speed 5850 rpm for the fans 302-4 to 302-5. Further, the rotation control unit 216 sets the rotation speed 12300 rpm for the fans 302-4 to 302-5 when the memory temperature of the server 102 is 93 degrees.
 サーバ102の算出部218の処理を以下に説明する。算出部218は、作成部206から、予想されるファン消費電力量の情報を送信するよう要求がきた場合に、所定の処理を実行し、予想されるファン消費電力量を算出する。作成部206は、特定部204で特定した空調機に設定する候補となる温度の情報から空調機の現在の設定温度を減算した値を、空調機の現在の設定温度から変更する予定の差分温度とする。具体例として、空調機に設定する候補となる温度が15~20度で、空調機の現在の設定温度が18度だった場合、空調機の現在の設定温度から変更する予定の差分温度はマイナス3度~2度となる。作成部206は、差分温度の情報とともに予想されるファン消費電力量の情報を送信するよう要求をサーバ102に送る。算出部218は、作成部206から予想されるファン消費電力量の情報を送信するよう要求を受け取る。算出部218は、測定部215が測定したサーバ102内部の空気の平均温度と、CPU301の温度と、サーバのメモリ220の温度のそれぞれに差分温度を加算した値を算出する。算出部218は、サーバ102内部の空気の平均温度に差分温度を加算した値を、仮定のサーバ102内部の空気の平均温度とする。算出部218は、CPU301の温度に差分温度を加算した値を、仮定のCPUの温度とする。算出部218は、メモリ220の温度の値に差分温度を加算した値を、仮定のメモリの温度とする。算出部218は、仮定のサーバ102内部の空気の平均温度・仮定のCPUの温度・仮定のメモリの温度の情報から、回転制御部216にファンの回転数を決定させる。算出部218は、仮定のサーバ102内部の空気の平均温度・仮定のCPUの温度・仮定のメモリの温度に対応したファンの回転数から、予想されるファン消費電力量を算出する。なお、回転制御部216は、仮定のサーバ102内部の空気の平均温度・仮定のCPUの温度・仮定のメモリの温度の情報から決定したファンの回転数を、実際には設定しない。 The processing of the calculation unit 218 of the server 102 will be described below. The calculation unit 218 performs a predetermined process and calculates the expected fan power consumption when a request is received from the creation unit 206 to transmit information on the expected fan power consumption. The creation unit 206 is configured to change a value obtained by subtracting the current set temperature of the air conditioner from the temperature information that is a candidate to be set to the air conditioner specified by the specifying unit 204 from the current set temperature of the air conditioner. And As a specific example, if the temperature that is a candidate for setting the air conditioner is 15 to 20 degrees and the current set temperature of the air conditioner is 18 degrees, the difference temperature that is scheduled to be changed from the current set temperature of the air conditioner is negative. It will be 3 to 2 degrees. The creation unit 206 sends a request to the server 102 to transmit information on the estimated power consumption of the fan together with information on the difference temperature. The calculation unit 218 receives a request from the creation unit 206 to transmit information on the expected power consumption of the fan. The calculation unit 218 calculates a value obtained by adding the difference temperature to each of the average temperature of the air inside the server 102 measured by the measurement unit 215, the temperature of the CPU 301, and the temperature of the memory 220 of the server. The calculation unit 218 sets a value obtained by adding the difference temperature to the average temperature of the air inside the server 102 as the assumed average temperature of the air inside the server 102. The calculation unit 218 sets a value obtained by adding the difference temperature to the temperature of the CPU 301 as the assumed CPU temperature. The calculation unit 218 sets a value obtained by adding the difference temperature to the temperature value of the memory 220 as the assumed memory temperature. The calculation unit 218 causes the rotation control unit 216 to determine the number of rotations of the fan from the information on the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature. The calculating unit 218 calculates the expected fan power consumption from the fan rotation speed corresponding to the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature. Note that the rotation control unit 216 does not actually set the fan rotation speed determined from information on the assumed average air temperature in the server 102, the assumed CPU temperature, and the assumed memory temperature.
 図10は、ファンの回転数に対応した消費電力量の情報を示す例である。算出部218は、仮定のサーバ102内部の空気の平均温度・仮定のCPUの温度・仮定のメモリの温度に対応したファンの回転数から、図10の情報に基づいて、予想されるファン消費電力量を算出する。図10の例では、ファンが5850rpmで回転している場合、ファン一台につき2Wの電力を消費する。ファンが12300rpmで回転している場合、ファン一台につき9Wの電力を消費する。図10の例は、一例であり、値を限定するものではなく、ファンの回転数に対応してファン一台あたりの消費電力量の情報を備えていればよい。算出部218は、仮定のサーバ102内部の空気の平均温度・仮定のCPUの温度・仮定のメモリの温度の情報から決定したファンの回転数から、各ファンの消費電力量を取得する。算出部218は、各ファンの消費電力量を加算し、予想されるファン消費電力量を算出する。予想されるファン消費電力量の情報は、送信部219によって冷却制御装置201に送信される。 FIG. 10 is an example showing information on the power consumption corresponding to the rotation speed of the fan. The calculation unit 218 calculates the expected power consumption of the fan based on the information in FIG. 10 from the fan rotation speed corresponding to the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature. Calculate the amount. In the example of FIG. 10, when the fan is rotating at 5850 rpm, 2 W of electric power is consumed per fan. When the fan is rotating at 12300 rpm, 9 W of electric power is consumed per fan. The example of FIG. 10 is an example, and the value is not limited. Information on the power consumption per fan corresponding to the number of rotations of the fan may be provided. The calculation unit 218 acquires the power consumption amount of each fan from the rotational speed of the fan determined from the information of the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature. The calculation unit 218 adds the power consumption of each fan, and calculates the expected fan power consumption. Information on the expected power consumption of the fan is transmitted to the cooling control apparatus 201 by the transmission unit 219.
 作成部206は、空調機101が消費すると予想される消費電力量と予想されるファン消費電力量の情報を受け取ると、データセンターの冷却に使用する総消費電力量を求める。作成部206は、特定部204で特定した空調機に設定する候補となる温度と、データセンターの冷却に使用する総消費電力量とを対応づけたテーブルを作成する。選択部207は、テーブルから、データセンターの冷却に使用する総消費電力量が最も少ない温度を選択する。設定部208は、選択部207で選ばれた総消費電力量が最も少ない温度を、空調機に設定する。 When the creation unit 206 receives information on the power consumption expected to be consumed by the air conditioner 101 and the expected fan power consumption, the creation unit 206 obtains the total power consumption used for cooling the data center. The creation unit 206 creates a table in which temperatures that are candidates for the air conditioner identified by the identifying unit 204 are associated with the total power consumption used for cooling the data center. The selection unit 207 selects a temperature with the smallest total power consumption used for cooling the data center from the table. The setting unit 208 sets the temperature with the smallest total power consumption selected by the selection unit 207 in the air conditioner.
 図11は、空調機の設定温度と、消費電力量との関係を示した例である。図11のaと図11のbは、図3の変形例である。データセンターの消費電力量は、外気温度によって変化する。データセンターの消費電力量は、例えば、昼夜、天気、季節等によって変化する。図11のaは、図3に比べて、外気温度が低い場合の例である。図11のaは、グラフD、グラフE、グラフFで示される。グラフDは、空調機に設定可能な温度範囲での、空調機が消費すると予想される消費電力量を示したグラフである。グラフDは、空調機のメモリ214に保存されている消費電力の情報をグラフ化したものである。グラフEは、サーバを設置してもよいと推奨される温度範囲での、予想されるサーバの消費電力量を示したグラフである。グラフEは、算出部218が算出するファン消費電力量をグラフ化したものである。グラフFは、空調機に設定する候補となる温度範囲での、データセンターの消費電力量を示したグラフである。グラフFは、作成部206が作成したテーブルの情報をグラフ化したものである。グラフFは、グラフDとグラフEとを利用して求められるグラフである。グラフDは、図3のグラフAと比べて、外気温度が低いため、空調機の設定温度が低い場合の、消費電力量が少なくなっている。そのため、グラフFは、図3のグラフCと比べて、空調機の設定温度が低い場合の、消費電力量が少なくなっている。選択部207は、グラフFに示されるデータセンターの消費電力量のうち、消費電力量の最も小さい温度を選択する。消費電力量の最も小さい温度は、図11のグラフFでは、空調機の設定温度が低い側となる。図11のbは、図3に比べて、サーバ102の負荷が高い場合の例である。図11のbは、グラフG、グラフH、グラフIで示される。グラフGは、空調機に設定可能な温度範囲での、空調機が消費すると予想される消費電力量を示したグラフである。グラフGは、メモリ214に保存されている消費電力の情報をグラフ化したものである。グラフHは、サーバを設置してもよいと推奨される温度範囲での、予想されるサーバの消費電力量を示したグラフである。グラフHは、算出部218が算出するファン消費電力量をグラフ化したものである。グラフIは、空調機に設定する候補となる温度範囲での、データセンターの消費電力量を示したグラフである。グラフIは、作成部206が作成したテーブルの情報をグラフ化したものである。グラフIは、グラフGとグラフHとを利用して求められるグラフである。グラフHは、サーバ102の負荷が高いため、空調機の設定温度の設定に関わらず、消費電力量が高い状態となる。そのため、グラフIは、図3のグラフCと比べて、空調機の設定温度が低い場合の、消費電力量が高くなっている。選択部207は、グラフIに示されるデータセンターの消費電力量のうち、消費電力量の最も小さい温度を選択する。消費電力量の最も小さい温度は、図11のグラフIでは、空調機の設定温度が高い側となる。 FIG. 11 is an example showing the relationship between the set temperature of the air conditioner and the power consumption. FIG. 11 a and FIG. 11 b are modifications of FIG. 3. Data center power consumption varies with outside temperature. The power consumption of the data center varies depending on, for example, day and night, weather, season, and the like. FIG. 11A is an example when the outside air temperature is lower than that in FIG. FIG. 11A is indicated by a graph D, a graph E, and a graph F. Graph D is a graph showing the amount of power consumption expected to be consumed by the air conditioner in a temperature range that can be set for the air conditioner. Graph D is a graph of power consumption information stored in the memory 214 of the air conditioner. The graph E is a graph showing the expected power consumption of the server in the temperature range where it is recommended that the server may be installed. The graph E is a graph of the fan power consumption calculated by the calculation unit 218. Graph F is a graph showing the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner. The graph F is a graph of the information of the table created by the creation unit 206. The graph F is a graph obtained using the graph D and the graph E. Since graph D has a lower outside air temperature than graph A in FIG. 3, the amount of power consumption is low when the set temperature of the air conditioner is low. Therefore, the graph F has less power consumption when the set temperature of the air conditioner is lower than the graph C of FIG. The selection unit 207 selects the temperature with the smallest power consumption among the power consumptions of the data center shown in the graph F. The temperature with the lowest power consumption is on the side where the set temperature of the air conditioner is low in the graph F of FIG. FIG. 11B shows an example in which the load on the server 102 is higher than that in FIG. FIG. 11 b is indicated by a graph G, a graph H, and a graph I. The graph G is a graph showing the amount of power consumption expected to be consumed by the air conditioner in a temperature range that can be set for the air conditioner. The graph G is a graph of power consumption information stored in the memory 214. The graph H is a graph showing the expected power consumption of the server in the temperature range where it is recommended that the server be installed. The graph H is a graph of the fan power consumption calculated by the calculation unit 218. Graph I is a graph showing the power consumption of the data center in a temperature range that is a candidate to be set for the air conditioner. The graph I is a graph of the information of the table created by the creation unit 206. The graph I is a graph obtained using the graph G and the graph H. In graph H, the load on the server 102 is high, so that the amount of power consumption is high regardless of the setting temperature of the air conditioner. Therefore, the graph I has higher power consumption when the set temperature of the air conditioner is lower than the graph C of FIG. The selection unit 207 selects the temperature with the lowest power consumption among the power consumptions of the data center shown in the graph I. In graph I in FIG. 11, the temperature with the smallest amount of power consumption is on the side where the set temperature of the air conditioner is higher.
 図12は、冷却制御装置の取得部の処理の例を説明するフローチャートである。取得部203は、空調機101から空調機に設定可能な温度範囲の情報を取得する(ステップS201)。空調機に設定可能な温度範囲とは、空調機101に設定可能な上限温度と下限温度の情報である。取得部203は、冷却制御装置201に接続された全サーバに応答確認を行う(ステップS202)。取得部203は、サーバ102からサーバの設置に推奨される温度範囲の情報を取得する(ステップS203)。サーバの設置に推奨される温度範囲とは、サーバ102の設置に推奨される温度の上限温度と下限温度の情報である。取得部203は、S203の情報を冷却制御装置201に接続された全サーバから取得したかを判断する(ステップS204)。全サーバからS203の情報を取得されていない場合、処理はS203から繰り返される。全サーバからS203の情報を取得していた場合、処理はS102に移る。 FIG. 12 is a flowchart illustrating an example of processing of the acquisition unit of the cooling control device. The acquisition unit 203 acquires information on a temperature range that can be set for the air conditioner from the air conditioner 101 (step S201). The temperature range that can be set in the air conditioner is information on the upper limit temperature and the lower limit temperature that can be set in the air conditioner 101. The acquisition unit 203 confirms responses to all servers connected to the cooling control apparatus 201 (step S202). The acquisition unit 203 acquires information on a temperature range recommended for server installation from the server 102 (step S203). The temperature range recommended for installation of the server is information on the upper limit temperature and the lower limit temperature of the temperature recommended for installation of the server 102. The acquisition unit 203 determines whether the information of S203 has been acquired from all servers connected to the cooling control apparatus 201 (step S204). If the information of S203 has not been acquired from all servers, the process is repeated from S203. If the information of S203 has been acquired from all servers, the process proceeds to S102.
 図13は、冷却制御装置の特定部の処理の例を説明するフローチャートである。特定部204は、S201で取得した上限温度と、S203で取得した上限温度から、最も低い温度を選択する(ステップS301)。特定部204は、S201で取得した下限温度と、S203で取得した下限温度から、最も高い温度を選択する(ステップS302)。特定部204は、空調機に設定する候補となる温度をS301で選択された上限温度と、S302で選択された下限温度の範囲であると特定する(ステップS303)。S303が終了すると、処理はS103に移る。 FIG. 13 is a flowchart for explaining an example of processing of a specific unit of the cooling control device. The specifying unit 204 selects the lowest temperature from the upper limit temperature acquired in S201 and the upper limit temperature acquired in S203 (step S301). The specifying unit 204 selects the highest temperature from the lower limit temperature acquired in S201 and the lower limit temperature acquired in S203 (step S302). The specifying unit 204 specifies that the temperature that is a candidate to be set for the air conditioner is within the range between the upper limit temperature selected in S301 and the lower limit temperature selected in S302 (step S303). When S303 ends, the process proceeds to S103.
 図14は、冷却制御装置の作成部の処理の例を説明するフローチャートである。作成部206は、何度刻みで空調機101に温度設定が可能であるかの設定単位の情報を空調機101より取得する(ステップS401)。作成部206は、空調機101の現在の設定温度の情報を空調機101より取得する(ステップS402)。作成部206は、空調機に設定する候補となる温度にS302で選択された下限温度を設定する(ステップS403)。作成部206は、空調機に設定する候補となる温度を空調機101に設定した場合に空調機101が消費すると予想される消費電力量の情報を、空調機101から取得する(ステップS404)。作成部206は、S404の空調機101が消費すると予想される消費電力量の情報を全空調機より取得したかを判断する(ステップS405)。全空調機から空調機が消費すると予想される消費電力量の情報を取得できていない場合、処理はS404から繰り返される。作成部206は、空調機に設定する候補となる温度から空調機の現在の設定温度を減算した値を、差分温度として算出する(ステップS405でYES、ステップS406)。作成部206は、サーバ102内部の空気の平均温度・CPU温度・メモリ温度が差分温度分変化した場合の、予想されるファン消費電力量の情報を取得する(ステップS407)。全サーバから予想されるファン消費電力量の情報を取得できていない場合、処理はS407から繰り返される。作成部206は、空調機が消費すると予想される消費電力量と予想されるファン消費電力量とを加算し、データセンターの冷却に使用する総消費電力量を求める。作成部206は、空調機に設定する候補となる温度とデータセンターの冷却に使用する総消費電力量とを対応づけた情報を記載したテーブルを作成する(ステップS409)。作成部206は、空調機に設定する候補となる温度に、S401で取得した設定単位の値を加算する(ステップS410)。作成部206は、空調機に設定する候補となる温度が、S301で選択した上限温度よりも大きいかどうかを判断する(ステップS411)。空調機に設定する候補となる温度が、S301で選択した上限温度以下の場合、処理はS404に移る。空調機に設定する候補となる温度が、S301で選択した上限温度よりも大きい場合、処理はS104に移る。 FIG. 14 is a flowchart for explaining an example of processing of the creation unit of the cooling control device. The creation unit 206 acquires information on a setting unit indicating how many times the temperature can be set in the air conditioner 101 from the air conditioner 101 (step S401). The creation unit 206 acquires information about the current set temperature of the air conditioner 101 from the air conditioner 101 (step S402). The creation unit 206 sets the lower limit temperature selected in S302 as a candidate temperature to be set in the air conditioner (step S403). The creation unit 206 acquires, from the air conditioner 101, information on the power consumption that is expected to be consumed by the air conditioner 101 when a temperature that is a candidate to be set for the air conditioner is set in the air conditioner 101 (step S404). The creation unit 206 determines whether information on the amount of power consumption expected to be consumed by the air conditioner 101 in S404 has been acquired from all the air conditioners (step S405). If information on the amount of power consumption expected to be consumed by the air conditioners from all the air conditioners has not been acquired, the process is repeated from S404. The creation unit 206 calculates, as a difference temperature, a value obtained by subtracting the current set temperature of the air conditioner from the temperature that is a candidate to be set for the air conditioner (YES in step S405, step S406). The creation unit 206 acquires information on the expected power consumption of the fan when the average temperature, CPU temperature, and memory temperature of the air inside the server 102 change by the difference temperature (step S407). If the information about the expected power consumption of the fans from all the servers has not been acquired, the process is repeated from S407. The creation unit 206 adds the power consumption expected to be consumed by the air conditioner and the fan power consumption expected to obtain the total power consumption used for cooling the data center. The creation unit 206 creates a table that describes information associating temperatures that are candidates for setting to the air conditioner with the total power consumption used for cooling the data center (step S409). The creation unit 206 adds the value of the setting unit acquired in S401 to the temperature that is a candidate to be set in the air conditioner (step S410). The creation unit 206 determines whether or not the temperature that is a candidate to be set for the air conditioner is higher than the upper limit temperature selected in S301 (step S411). If the temperature that is a candidate to be set in the air conditioner is equal to or lower than the upper limit temperature selected in S301, the process proceeds to S404. If the temperature that is a candidate to be set for the air conditioner is higher than the upper limit temperature selected in S301, the process proceeds to S104.
 図15は、冷却制御装置の選択部の処理の例を説明するフローチャートである。選択部207は、作成部206が作成したテーブルから消費電力が最小となる温度を選択する(ステップS501)。選択部207は、S501の処理で消費電力が最小となる温度が複数あった場合、消費電力が最小となる温度のうち一番温度が低い温度を選択する(ステップS502)。 FIG. 15 is a flowchart illustrating an example of processing of the selection unit of the cooling control device. The selection unit 207 selects a temperature at which power consumption is minimized from the table created by the creation unit 206 (step S501). When there are a plurality of temperatures at which the power consumption is minimized in the process of S501, the selection unit 207 selects the lowest temperature among the temperatures at which the power consumption is minimized (step S502).
 図16は、冷却制御装置の設定部の処理の例を説明するフローチャートである。設定部208は、処理部205から空調機の現在の設定温度と、S502で選択した温度情報を取得する(ステップS601)。設定部208は、空調機の現在の設定温度とS502で選択した温度とが同じ値かを判断する(ステップS602)。空調機の現在の設定温度とS502で選択した温度とが同じ値であった場合、設定処理は終了する。空調機の現在の設定温度とS502で選択した温度とが違う値の場合、設定部208は、S502で選択した温度を空調機に設定する(ステップS602でNO、ステップS603)。設定部208は、S502で選択した温度を全空調機に設定したかを判断する(ステップS604)。S502で選択した温度を全空調機に設定されていない場合、処理はS603を繰り返す。S502で選択した温度を全空調機に設定されている場合、設定処理は終了する。 FIG. 16 is a flowchart for explaining an example of processing of the setting unit of the cooling control device. The setting unit 208 acquires the current set temperature of the air conditioner and the temperature information selected in S502 from the processing unit 205 (step S601). The setting unit 208 determines whether or not the current set temperature of the air conditioner and the temperature selected in S502 are the same value (step S602). If the current set temperature of the air conditioner and the temperature selected in S502 are the same value, the setting process ends. When the current set temperature of the air conditioner is different from the temperature selected in S502, the setting unit 208 sets the temperature selected in S502 to the air conditioner (NO in step S602, step S603). The setting unit 208 determines whether the temperature selected in S502 has been set for all the air conditioners (step S604). If the temperature selected in S502 is not set for all the air conditioners, the process repeats S603. When the temperature selected in S502 is set for all the air conditioners, the setting process ends.
 図17は、空調機の抽出部及び通知部の処理の例を説明するフローチャートである。抽出部212は、外気温度に関する情報を空調機のメモリ214より取得する(ステップS701)。外気温度は、空調機101によって測定され、外気温度の情報はメモリ214に保存されている。抽出部212は、外気温度の情報と空調機に設定する候補となる温度とに対応した、空調機が消費すると予想される消費電力量の情報を、メモリ214から抽出する(ステップS702)。通知部213は、抽出した空調機が消費すると予想される消費電力量の情報を作成部206に通知する(ステップS703)。 FIG. 17 is a flowchart illustrating an example of processing of the extraction unit and the notification unit of the air conditioner. The extraction unit 212 acquires information related to the outside air temperature from the memory 214 of the air conditioner (step S701). The outside air temperature is measured by the air conditioner 101, and information on the outside air temperature is stored in the memory 214. The extraction unit 212 extracts, from the memory 214, information on the power consumption that is expected to be consumed by the air conditioner, corresponding to the information on the outside air temperature and the temperature that is a candidate to be set in the air conditioner (step S702). The notification unit 213 notifies the creation unit 206 of information on the power consumption that is expected to be consumed by the extracted air conditioner (step S703).
 図18は、サーバの算出部及び送信部の処理の例を説明するフローチャートである。算出部218は、測定部215より現在のサーバ102内部の空気の平均温度、CPU温度、メモリ温度の情報を取得する(ステップS801)。算出部218は、現在のサーバ102内部の空気の平均温度に差分温度を加算し、仮定のサーバ102内部の空気の平均温度を算出する。算出部218は、現在のCPU温度に差分温度を加算し、仮定のCPU温度を算出する。算出部218は、現在のメモリ温度に差分温度を加算し、仮定のメモリ温度を算出する(ステップS802)。算出部218は、仮定のサーバ102内部の空気の平均温度と仮定のCPU温度と仮定のメモリ温度に対応した予想されるファンの回転数を算出する(ステップS803)。算出部218は、予想されるファンの回転数に対応する予想されるファン消費電力量を算出する(ステップS804)。算出部218は、全ファンに対してS803、S804の処理が行われたかを判断する(ステップS805)。全ファンに対して処理が行われていない場合は、S803から処理は繰り返される。算出部218は、全ファンの予想されるファン消費電力量を加算する(ステップS806)。送信部219は、予想されるファン消費電力量の情報を冷却制御装置に送信する(ステップS807)。 FIG. 18 is a flowchart illustrating an example of processing performed by the calculation unit and the transmission unit of the server. The calculation unit 218 acquires information about the current average temperature, CPU temperature, and memory temperature of the air inside the server 102 from the measurement unit 215 (step S801). The calculation unit 218 adds the difference temperature to the current average temperature of the air inside the server 102 to calculate the assumed average temperature of the air inside the server 102. The calculation unit 218 calculates the assumed CPU temperature by adding the difference temperature to the current CPU temperature. The calculation unit 218 adds the difference temperature to the current memory temperature and calculates the assumed memory temperature (step S802). The calculating unit 218 calculates the expected fan rotation speed corresponding to the average temperature of the air inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature (step S803). The calculation unit 218 calculates an expected fan power consumption corresponding to the expected fan speed (step S804). The calculation unit 218 determines whether the processes of S803 and S804 have been performed on all the fans (step S805). If processing has not been performed for all fans, the processing is repeated from S803. The calculation unit 218 adds the expected fan power consumption amounts of all the fans (step S806). The transmission unit 219 transmits information on the expected power consumption of the fan to the cooling control device (step S807).
 以上、説明したように、実施形態にかかる方法では、消費電力量の少ない温度を、空調機の設定温度に自動的に設定変更できる。
 なお、実施形態は上記に限られるものではなく、様々に変形可能である。以下にその例をいくつか述べる。
As described above, in the method according to the embodiment, the temperature with low power consumption can be automatically changed to the set temperature of the air conditioner.
The embodiment is not limited to the above, and can be variously modified. Some examples are described below.
 図19は、第2の実施形態に係るデータセンターの例を示す図である。図2と同一のものは、同一の符号を付して示す。第2の実施形態に係るデータセンターは、冷却制御装置201を冷却制御部401として空調機101に搭載している図である。冷却制御部401は、空調機101にプログラムとして搭載されていてもよい。冷却制御部401は、冷却制御装置201と同様の処理を行う。 FIG. 19 is a diagram illustrating an example of a data center according to the second embodiment. The same components as those in FIG. 2 are denoted by the same reference numerals. The data center according to the second embodiment is a diagram in which the cooling control device 201 is mounted on the air conditioner 101 as the cooling control unit 401. The cooling control unit 401 may be installed as a program in the air conditioner 101. The cooling control unit 401 performs the same processing as the cooling control device 201.
 図20は、第3の実施形態に係るデータセンターの例を示す図である。図19と同一のものは、同一の符号を付して示す。第3の実施形態に係るデータセンターは、第1の実施形態と比較して、冷却制御装置201を冷却制御部401として空調機101に搭載しており、更に、サーバ102に搭載されていたファン消費電力情報と算出部218を空調機101に搭載している。サーバ102は、ファン識別情報501を備える。サーバ102が同一の機種でない場合に、各サーバは、ファンの回転数に対応して異なる電力を消費する。そのため、第3の実施形態に係るデータセンターでは、図10のファンの回転数に対応した消費電力量の情報に更にファン識別情報を有する情報を持つ。図21は、ファン識別情報を有するファンの回転数に対応した消費電力量の情報の例である。図9に示すファンの回転数に関する情報は、サーバ102のメモリ220に保存されており、要求に応じて、空調機101に通知される。 FIG. 20 is a diagram illustrating an example of a data center according to the third embodiment. The same components as those in FIG. 19 are denoted by the same reference numerals. Compared with the first embodiment, the data center according to the third embodiment has the cooling control device 201 mounted on the air conditioner 101 as the cooling control unit 401, and the fan mounted on the server 102. The power consumption information and calculation unit 218 is mounted on the air conditioner 101. The server 102 includes fan identification information 501. When the server 102 is not the same model, each server consumes different electric power corresponding to the rotation speed of the fan. For this reason, the data center according to the third embodiment has information including fan identification information in addition to the information on the power consumption corresponding to the rotational speed of the fan in FIG. FIG. 21 is an example of information on power consumption corresponding to the number of rotations of a fan having fan identification information. Information regarding the rotational speed of the fan shown in FIG. 9 is stored in the memory 220 of the server 102 and is notified to the air conditioner 101 in response to a request.
 図22は、第3の実施形態の作成部の処理の例を説明するフローチャートである。作成部206は、測定部215から現在のサーバ102内部の空気の平均温度、CPU温度、メモリ温度の情報を取得する(ステップS901)。作成部206は、サーバのメモリ220から内蔵ファンの数、各内蔵ファンの現在の回転数、ファン識別情報、ファンの回転数に関する情報を取得する(ステップS902)。作成部206は、S902で取得する情報を全サーバから取得したかを判断する(ステップS903)。S902で取得する情報を全サーバから取得していない場合は、処理はS901から繰り返される。S902で取得する情報を全サーバから取得している場合は、処理はS904へ移る。ステップS904~ステップS909は、図14のステップS401~ステップS406と同じ処理をする。ステップS910の処理は、後で詳しく説明する(図23)。ステップS911~ステップS914は、図14のステップS408~ステップS411と同じ処理をする。 FIG. 22 is a flowchart illustrating an example of processing of the creation unit according to the third embodiment. The creation unit 206 acquires information about the current average air temperature, CPU temperature, and memory temperature inside the server 102 from the measurement unit 215 (step S901). The creation unit 206 acquires information on the number of built-in fans, the current number of rotations of each built-in fan, fan identification information, and the number of fan rotations from the server memory 220 (step S902). The creation unit 206 determines whether the information acquired in S902 has been acquired from all servers (step S903). If the information acquired in S902 has not been acquired from all servers, the process is repeated from S901. If the information acquired in S902 has been acquired from all servers, the process proceeds to S904. Steps S904 to S909 are the same as steps S401 to S406 in FIG. The process of step S910 will be described in detail later (FIG. 23). Steps S911 to S914 are the same as steps S408 to S411 in FIG.
 図23は、第3の実施形態での算出処理の例を説明するフローチャートである。第3の実施形態では、空調機101が算出部218を備え、図18は、図23のように変形して算出処理を行う。図23の算出処理は、図22のステップS910の処理に該等する。算出部218は、現在のサーバ102内部の空気の平均温度に差分温度を加算し、仮定のサーバ102内部の空気の平均温度を算出する。算出部218は、現在のCPU温度に差分温度を加算し、仮定のCPU温度を算出する。算出部218は、現在のメモリ温度に差分温度を加算し、仮定のメモリ温度を算出する(ステップS1001)。算出部218は、仮定のサーバ102内部の空気の平均温度と仮定のCPU温度と仮定のメモリ温度に対応した予想されるファンの回転数を算出する(ステップS1002)。ファンの識別情報が一致するファンの回転数に関する情報から、算出部218は、予想されるファンの回転数に対応する予想されるファン消費電力量を算出する(ステップS1003)。S1003で使用されるファンの回転数に関する情報は、図21に例示されている情報である。算出部218は、全ファンに対してS1002、S1003の処理が行われたかを判断する(ステップS1004)。全ファンに対して処理が行われていない場合は、S1002から処理は繰り返される。算出部218は、全ファンの予想されるファン消費電力量を加算する(ステップS1005)。S1005が終了すると、処理はS911に移る。 FIG. 23 is a flowchart illustrating an example of calculation processing according to the third embodiment. In the third embodiment, the air conditioner 101 includes a calculation unit 218. FIG. 18 is modified as shown in FIG. 23 to perform calculation processing. The calculation processing in FIG. 23 corresponds to the processing in step S910 in FIG. The calculation unit 218 adds the difference temperature to the current average temperature of the air inside the server 102 to calculate the assumed average temperature of the air inside the server 102. The calculation unit 218 calculates the assumed CPU temperature by adding the difference temperature to the current CPU temperature. The calculation unit 218 adds the difference temperature to the current memory temperature and calculates the assumed memory temperature (step S1001). The calculation unit 218 calculates the expected fan rotation speed corresponding to the average air temperature inside the assumed server 102, the assumed CPU temperature, and the assumed memory temperature (step S1002). The calculation unit 218 calculates the expected fan power consumption corresponding to the expected fan speed from the information regarding the fan speed that matches the fan identification information (step S1003). The information regarding the rotational speed of the fan used in S1003 is information illustrated in FIG. The calculation unit 218 determines whether or not the processing of S1002 and S1003 has been performed for all fans (step S1004). If processing has not been performed for all fans, the processing is repeated from S1002. The calculation unit 218 adds the expected fan power consumption of all the fans (step S1005). When S1005 ends, the process proceeds to S911.
 図5に示す空調機101の消費電力の情報は、管理者が予め設定した情報であってもよい。また、空調機101は、運用中に外気温度と消費電力量を測定し、実際のデータを使用し、図5に示す空調機101の消費電力の情報を更新してもよい。 The information on the power consumption of the air conditioner 101 shown in FIG. 5 may be information set in advance by an administrator. Further, the air conditioner 101 may measure the outside air temperature and the amount of power consumption during operation, and update the power consumption information of the air conditioner 101 shown in FIG. 5 using actual data.
 図9に示すファンの回転数に関する情報は、サーバ102内部の空気の平均温度、CPU温度、メモリ温度に対応したファンのDuty比であってもよい。また、図10に示すファンの回転数に対応した消費電力量の情報も、ファンの回転数ではなく、消費電力量の情報をDuty比に対応づけて使用してもよい。 9 may be the duty ratio of the fan corresponding to the average temperature of the air inside the server 102, the CPU temperature, and the memory temperature. Also, the information on the power consumption corresponding to the rotational speed of the fan shown in FIG. 10 may be used in association with the duty ratio instead of the information on the power consumption instead of the rotational speed of the fan.
100 コンテナ
101 空調機
101 現在空調機
102 サーバ
201 冷却制御装置
202 温度判定部
203 取得部
204 特定部
205 処理部
206 作成部
207 選択部
208 設定部
209 メモリ
210 管理部
211 温度制御部
212 抽出部
213 通知部
214 メモリ
215 測定部
216 回転制御部
217 記録部
218 算出部
219 送信部
220 メモリ
302 ファン
401 冷却制御部
501 ファン識別情報
DESCRIPTION OF SYMBOLS 100 Container 101 Air conditioner 101 Present air conditioner 102 Server 201 Cooling control apparatus 202 Temperature determination part 203 Acquisition part 204 Identification part 205 Processing part 206 Creation part 207 Selection part 208 Setting part 209 Memory 210 Management part 211 Temperature control part 212 Extraction part 213 Notification unit 214 Memory 215 Measurement unit 216 Rotation control unit 217 Recording unit 218 Calculation unit 219 Transmission unit 220 Memory 302 Fan 401 Cooling control unit 501 Fan identification information

Claims (8)

  1.  サーバを設置している部屋と、前記サーバとを冷却する空調機の設定温度を制御する冷却制御システムであって、
     前記空調機に設定する候補となる温度範囲を、前記空調機に設定可能な温度の範囲内であり、かつ、前記サーバを設置してもよいと推奨される温度範囲から特定する特定部と、
     前記空調機に設定する候補となる温度を前記空調機に設定した場合の、前記空調機の消費電力量の予測値と前記サーバのファンの消費電力量の予測値とを合計し、前記空調機に設定する候補となる温度と前記合計した値とを対応づけた情報を作成する作成部と、
     前記情報から、対応づけられた前記合計した値が相対的に小さい設定温度を選択する選択部と、
     前記相対的に小さい設定温度を前記空調機に設定する設定部と、
    を有する
    ことを特徴とする冷却制御システム。
    A cooling control system for controlling a set temperature of an air conditioner that cools a room in which a server is installed and the server,
    A temperature range that is a candidate for setting the air conditioner is within a temperature range that can be set for the air conditioner, and a specific unit that specifies from a recommended temperature range that the server may be installed, and
    The predicted value of the power consumption amount of the air conditioner and the predicted value of the power consumption amount of the fan of the server when a temperature that is a candidate to be set in the air conditioner is set in the air conditioner, A creation unit that creates information associating the temperature that is a candidate to be set with the total value;
    From the information, a selection unit that selects a set temperature with which the total value associated is relatively small; and
    A setting unit for setting the relatively small set temperature in the air conditioner;
    A cooling control system comprising:
  2.  前記冷却制御システムは、
     一定時間毎に前記空調機の設定温度を制御し、
     前記一定時間は、前記部屋の外の温度の変化による前記空調機での消費電力量の変化量が閾値未満となるように設定されている
     ことを特徴とする請求項1記載の冷却制御システム。
    The cooling control system includes:
    Control the set temperature of the air conditioner at regular intervals,
    The cooling control system according to claim 1, wherein the fixed time is set such that a change amount of power consumption in the air conditioner due to a change in temperature outside the room is less than a threshold value.
  3.  前記空調機は、前記空調機に設定する候補となる温度を前記空調機に設定した場合に予想される、空調機の消費電力量を、前記部屋の外の気温に対応づけて情報を保持している
     ことを特徴とする請求項2記載の冷却制御システム。
    The air conditioner retains information by associating the power consumption amount of the air conditioner, which is expected when the temperature to be a candidate to be set in the air conditioner is set in the air conditioner, with the temperature outside the room. The cooling control system according to claim 2, wherein:
  4.  前記サーバは、CPUの冷却に用いる第1のファンと、メモリの冷却に用いる第2のファンと、第3のファンを備え、
     前記サーバは、前記空調機に設定する候補となる温度を前記空調機に設定した場合の、前記サーバ内部の空気の平均温度を用いて前記第3のファンの回転数として予想される第1の予想値を求め、
     前記第1の予想値と、前記CPUの温度を用いて求めた前記第1のファンの回転数である第2の予想値とを比較し、前記第1および前記第2の予測値のうち、値の大きい方を第1の回転数とし、
     前記第1の予想値と、前記メモリの温度を用いて求めた前記第2のファンの回転数である第3の予想値とを比較し、前記第1および前記第3の予測値のうち、値の大きい方を第2の回転数とし、
     前記第1のファンが前記第1の回転数で動作し、前記第2のファンが前記第2の回転数で動作し、前記第3のファンが前記第1の予想値で動作するための消費電力量の合計値を、前記ファンの消費電力量の予測値を算出する算出部を有する
     ことを特徴とする請求項2又は3記載の冷却制御システム。
    The server includes a first fan used for cooling the CPU, a second fan used for cooling the memory, and a third fan.
    The server uses the average temperature of the air inside the server when the candidate temperature to be set for the air conditioner is set for the air conditioner. Find the expected value,
    The first predicted value is compared with a second predicted value that is the number of rotations of the first fan obtained using the temperature of the CPU, and among the first and second predicted values, The one with the larger value is the first rotation speed,
    The first predicted value is compared with a third predicted value that is the number of rotations of the second fan obtained using the temperature of the memory, and among the first and third predicted values, The one with the larger value is the second rotation speed,
    Consumption for the first fan to operate at the first rotational speed, the second fan to operate at the second rotational speed, and the third fan to operate at the first expected value 4. The cooling control system according to claim 2, further comprising a calculation unit that calculates a predicted value of the power consumption amount of the fan as a total value of the power amount. 5.
  5.  サーバを冷却する空調機の設定温度を制御する冷却制御方法であって、
     前記空調機に設定する候補となる温度範囲を、前記空調機に設定可能な温度の範囲内であり、かつ、前記サーバを設置してもよいと推奨される温度範囲から特定し、
     前記空調機に設定する候補となる温度を前記空調機に設定した場合に予想される、前記空調機の消費電力量と前記サーバのファンの消費電力量とを加算し、前記空調機に設定する候補となる温度と前記加算した値とを対応づけた情報を作成し、
     前記情報から、前記加算した値が相対的に小さい設定温度を選択し、
     前記相対的に小さい設定温度を前記空調機に設定する
     ことを特徴とする冷却制御方法。
    A cooling control method for controlling a set temperature of an air conditioner for cooling a server,
    A temperature range that is a candidate to be set in the air conditioner is within a temperature range that can be set in the air conditioner, and is specified from a recommended temperature range that the server may be installed,
    Add the power consumption amount of the air conditioner and the power consumption amount of the fan of the server, which is expected when the temperature that is a candidate for setting to the air conditioner is set to the air conditioner, and set the air conditioner Create information associating the candidate temperature with the added value,
    From the information, select a set temperature where the added value is relatively small,
    The cooling control method, wherein the relatively small set temperature is set in the air conditioner.
  6.  前記冷却制御方法は、
     一定時間毎に前記空調機の設定温度を制御し、
     前記一定時間は、前記部屋の外の温度の変化による前記空調機での消費電力量の変化量が閾値未満となるように設定されている
     ことを特徴とする請求項5記載の冷却制御方法。
    The cooling control method includes:
    Control the set temperature of the air conditioner at regular intervals,
    The cooling control method according to claim 5, wherein the predetermined time is set such that a change amount of power consumption in the air conditioner due to a change in temperature outside the room is less than a threshold value.
  7.  前記空調機は、前記空調機に設定する候補となる温度を前記空調機に設定した場合に予想される、前記部屋の外の気温に対応づけて情報を保持している
     ことを特徴とする請求項6記載の冷却制御方法。
    The air conditioner holds information in association with the temperature outside the room, which is expected when a temperature that is a candidate to be set in the air conditioner is set in the air conditioner. Item 7. The cooling control method according to Item 6.
  8.  前記サーバは、CPUの冷却に用いる第1のファンと、メモリの冷却に用いる第2のファンと、第3のファンを備え、
     前記サーバは、前記空調機に設定する候補となる温度を前記空調機に設定した場合の、前記サーバ内部の空気の平均温度を用いて前記第3のファンの回転数として予想される第1の予想値を求め、
     前記第1の予想値と、前記CPUの温度を用いて求めた前記第1のファンの回転数である第2の予想値とを比較し、前記第1および前記第2の予測値のうち、値の大きい方を第1の回転数とし、
     前記第1の予想値と、前記メモリの温度を用いて求めた前記第2のファンの回転数である第3の予想値とを比較し、前記第1および前記第3の予測値のうち、値の大きい方を第2の回転数とし、
     前記第1のファンが前記第1の回転数で動作し、前記第2のファンが前記第2の回転数で動作し、前記第3のファンが前記第1の予想値で動作するための消費電力量の合計値を、前記ファンの消費電力量の予測値を算出する
     ことを特徴とする請求項6又は7記載の冷却制御方法。
    The server includes a first fan used for cooling the CPU, a second fan used for cooling the memory, and a third fan.
    The server uses the average temperature of the air inside the server when the candidate temperature to be set for the air conditioner is set for the air conditioner. Find the expected value,
    The first predicted value is compared with a second predicted value that is the number of rotations of the first fan obtained using the temperature of the CPU, and among the first and second predicted values, The one with the larger value is the first rotation speed,
    The first predicted value is compared with a third predicted value that is the number of rotations of the second fan obtained using the temperature of the memory, and among the first and third predicted values, The one with the larger value is the second rotation speed,
    Consumption for the first fan to operate at the first rotational speed, the second fan to operate at the second rotational speed, and the third fan to operate at the first expected value The cooling control method according to claim 6 or 7, wherein a predicted value of power consumption of the fan is calculated from a total value of power consumption.
PCT/JP2013/059624 2013-03-29 2013-03-29 Cooling control system, cooling control device, and cooling control method WO2014155705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059624 WO2014155705A1 (en) 2013-03-29 2013-03-29 Cooling control system, cooling control device, and cooling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059624 WO2014155705A1 (en) 2013-03-29 2013-03-29 Cooling control system, cooling control device, and cooling control method

Publications (1)

Publication Number Publication Date
WO2014155705A1 true WO2014155705A1 (en) 2014-10-02

Family

ID=51622753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059624 WO2014155705A1 (en) 2013-03-29 2013-03-29 Cooling control system, cooling control device, and cooling control method

Country Status (1)

Country Link
WO (1) WO2014155705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005494A (en) * 2016-06-30 2018-01-11 株式会社Nttファシリティーズ Air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321162A (en) * 2004-05-11 2005-11-17 Hitachi Ltd Air conditioning equipment for computer system and its temperature control method
JP2012172853A (en) * 2011-02-17 2012-09-10 Fujitsu Ltd Air conditioning system and air conditioning method
JP2012193903A (en) * 2011-03-16 2012-10-11 Fuji Electric Co Ltd Air conditioning system using outside air, and outside air heat exchange system of the same
JP2013040715A (en) * 2011-08-16 2013-02-28 Fujitsu Ltd Method of controlling air conditioning, air conditioning control system and air conditioning control apparatus
WO2013038470A1 (en) * 2011-09-12 2013-03-21 富士通株式会社 Cooling system, cooling method, and cooling control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321162A (en) * 2004-05-11 2005-11-17 Hitachi Ltd Air conditioning equipment for computer system and its temperature control method
JP2012172853A (en) * 2011-02-17 2012-09-10 Fujitsu Ltd Air conditioning system and air conditioning method
JP2012193903A (en) * 2011-03-16 2012-10-11 Fuji Electric Co Ltd Air conditioning system using outside air, and outside air heat exchange system of the same
JP2013040715A (en) * 2011-08-16 2013-02-28 Fujitsu Ltd Method of controlling air conditioning, air conditioning control system and air conditioning control apparatus
WO2013038470A1 (en) * 2011-09-12 2013-03-21 富士通株式会社 Cooling system, cooling method, and cooling control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005494A (en) * 2016-06-30 2018-01-11 株式会社Nttファシリティーズ Air conditioning system

Similar Documents

Publication Publication Date Title
JP6295867B2 (en) Air conditioning control system and air conditioning control method
US10228292B2 (en) Virtual data center environmental monitoring system
CN107750323B (en) Method for controlling start of air conditioner and apparatus thereof
JP5835465B2 (en) Information processing apparatus, control method, and program
US20170146260A1 (en) Modular multi-function thermostat
US10136560B2 (en) Server rack-dedicated vertical vortex airflow server cooling
JP2016522467A5 (en)
WO2015174176A1 (en) Ventilation controller and method for controlling ventilation
CN102340977A (en) Heat dissipation device for cabinet and method for heat dissipation of cabinet
JP6191718B1 (en) Server device, server control method, program
JP2005182814A (en) Equipment rack load adjustment system and method
JP2018132230A (en) Temperature predication system and temperature prediction method
JP6096560B2 (en) Equipment cooling system
JP5403674B2 (en) Air conditioning management method and air conditioning management device in data center
KR20150025828A (en) Intelligent system for integrated operation of data center and method for operation thereof
WO2014155705A1 (en) Cooling control system, cooling control device, and cooling control method
JP5469850B2 (en) Air conditioner control device and air conditioner control method
US20130025314A1 (en) Method and Cabinet for Controlling Temperature in the Cabinet
JP6106019B2 (en) Business allocation optimization system and optimization method
JP6117583B2 (en) Air conditioning system
EP2620836A1 (en) Controller, resource management apparatus, and computing environment for controlling fan speeds
JP6982146B2 (en) Air conditioning system controls, control methods, control programs and air conditioning systems
Kowsigan et al. An optimal automatic cooling system in cloud data center
JP2016053443A (en) Temperature distribution prediction method and air conditioning management system
JP6002098B2 (en) Air conditioning control method and air conditioning control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP