WO2014155622A1 - Heat pump device, air conditioner, and freezer - Google Patents

Heat pump device, air conditioner, and freezer Download PDF

Info

Publication number
WO2014155622A1
WO2014155622A1 PCT/JP2013/059350 JP2013059350W WO2014155622A1 WO 2014155622 A1 WO2014155622 A1 WO 2014155622A1 JP 2013059350 W JP2013059350 W JP 2013059350W WO 2014155622 A1 WO2014155622 A1 WO 2014155622A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor
heat pump
circuit
pump device
Prior art date
Application number
PCT/JP2013/059350
Other languages
French (fr)
Japanese (ja)
Inventor
庄太 神谷
和徳 畠山
勝之 天野
典和 伊藤
雅史 冨田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015507817A priority Critical patent/JP6480859B2/en
Priority to PCT/JP2013/059350 priority patent/WO2014155622A1/en
Publication of WO2014155622A1 publication Critical patent/WO2014155622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat pump device, an air conditioner, and a refrigerator using a compressor.
  • vector control is generally used when controlling the magnetic pole position of a permanent magnet synchronous motor provided in the compressor without a sensor.
  • the motor current is separated into a d-axis component and a q-axis component, and an optimal current value corresponding to the position of the rotor is calculated, so that highly efficient control with little torque fluctuation can be performed.
  • the magnetic pole position is estimated from the current (motor current) value flowing through the motor. That is, the motor current is detected by a current sensor, and the detected current is separated into an excitation current (d-axis current I d ) and a torque current (q-axis current I q ) to estimate the magnetic pole position.
  • a dc-qc rotational coordinate system having an estimated angle ⁇ dc in the control system is assumed with respect to a dq rotational coordinate system in which the magnetic pole position of the rotor is a rotational position of the actual angle ⁇ d.
  • the axis error ⁇ is estimated and calculated. Then, the voltage command value of the inverter is feedback-corrected so that the axis error ⁇ is zero, thereby controlling the actual magnetic pole position to coincide with the control magnetic pole position.
  • the magnitude and phase of the current that drives the motor are ideally controlled by the inverter according to the motor rotation speed (number of rotations) or the load level, resulting in high torque, high response, and high Performance and high precision can be controlled.
  • sensorless vector control cannot be used during startup when the current flowing through the motor cannot be used. Therefore, a method of switching the control method between a section from start to low speed operation and a section exceeding low speed operation has been studied.
  • V / F constant control that does not require magnetic pole position detection is performed during low-speed operation from startup, and is set in advance when high-speed operation exceeds a predetermined rotation speed (number of rotations) or load.
  • a technique for shifting to vector control using the initial magnetic pole position is disclosed.
  • the motor current (the sum of the torque current component and the field current component) is also reduced. Therefore, the magnetomotive force of the output of the current sensor that detects the motor current is weakened, the output waveform is distorted, or the phase of the detected motor current is advanced with respect to the phase of the actual current. Also in a detection circuit that detects a signal from a current sensor, a detection error due to a component difference or the like increases due to a small detection current. If these output waveforms input to the microcomputer are distorted with respect to the actual output waveform and the phase advances, estimation of the magnetic pole position will fail, causing step-out and forcibly stopping the motor.
  • V / F constant control and vector control can be used properly, but the motor is operated at a low rotational speed (small rotational speed) or is in a low load state. It is difficult to perform sensorless vector control.
  • the present invention has been made in view of the above, and is capable of performing sensorless vector control by performing accurate current detection even at a low rotation speed (small rotation speed) or a low load while suppressing an increase in cost.
  • the object is to obtain a possible heat pump device.
  • the heat pump device of the present invention is driven by a motor and compresses a refrigerant, an inverter for applying a voltage to the motor, and a current flowing through the motor.
  • a current sensor including two secondary resistances having different resistance values, and an inverter control unit that outputs a drive signal to the inverter unit, wherein the inverter control unit detects a current detected by the current sensor.
  • a voltage detection unit that calculates a voltage command value based on a signal from the current detection unit, a drive signal generation unit that generates the drive signal based on the voltage command value, A rotation number and a load for calculating a rotation number and a load of the motor, and the drive signal generation unit determines a necessary refrigerant compression amount of the compressor based on a signal from the current sensor
  • An amplitude phase determination unit that determines an amplitude and phase from the necessary refrigerant compression amount and causes the drive signal generation unit to generate the drive signal
  • the current detection unit including a filter circuit and a detection circuit, and harmonic noise And a detection circuit with a filter function
  • the rotation speed and load calculation unit determines whether the rotation speed or load of the motor is equal to or less than a set value.
  • the filter circuit and the detection circuit of the detection circuit with function are switched, and when the rotation speed or load of the motor is not more than a set value, the phase difference of the output signal of the detection circuit with filter function is corrected.
  • a compressor equipped with a motor capable of sensorless vector control by performing accurate current detection even at a low rotation speed (small rotation speed) or a low load while suppressing an increase in cost.
  • FIG. 1 is a diagram illustrating a configuration example of a heat pump device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of an inverter unit, an inverter control unit, and a compressor that form part of the heat pump device according to the first embodiment.
  • FIG. 3 is a comparison diagram showing the relationship between the motor current waveform and the output waveform of the current sensor (ACCT) when the motor according to the first embodiment has a low rotation speed (small rotation speed) or a low load.
  • FIG. 4 is a diagram illustrating a motor current waveform and a detection circuit output waveform when the detection circuit resistance value is 1 k ⁇ according to the first embodiment.
  • FIG. 5 is a diagram illustrating a motor current waveform and a detection circuit output waveform when the detection circuit resistance value is 10 ⁇ , according to the first embodiment.
  • FIG. 6 is a flowchart for explaining the operation of the rotation speed and load calculation unit according to the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of the current sensor and the peripheral circuit according to the first embodiment.
  • FIG. 8 is a diagram showing the relationship between the breakdown voltage and the on-resistance of the Si device and the SiC device according to the second embodiment.
  • FIG. 9-1 is a diagram illustrating a configuration example of a device including the heat pump device according to Embodiment 3 during heating operation.
  • FIG. 9-2 is a diagram illustrating a configuration example of a device including the heat pump device according to the third embodiment during the cooling operation.
  • FIG. 10 is a Mollier diagram of the refrigerant of the heat pump apparatus shown in FIGS. 9-1 and 9-2 according to the third embodiment.
  • Embodiment 1 FIG. In the present embodiment, the configuration and operation of the heat pump device of the present invention will be described with reference to FIGS.
  • FIG. 1 is a diagram showing a heat pump device 100 which is a configuration example of the heat pump device of the present embodiment.
  • a heat pump device 100 shown in FIG. 1 includes a refrigeration cycle unit 20, an inverter unit 9, and an inverter control unit 10.
  • the heat pump device 100 is applied to, for example, an air conditioner or a refrigerator.
  • the refrigeration cycle unit 20 includes a compressor 1, a four-way valve 2, a heat exchanger 3, an expansion mechanism 4, and a heat exchanger 5, which are connected via a refrigerant pipe 6.
  • the compressor 1 includes a compression mechanism 7 and a motor 8 inside.
  • the compression mechanism 7 compresses the refrigerant.
  • the motor 8 is a three-phase motor having three-phase windings of U phase, V phase, and W phase, and operates the compression mechanism 7.
  • the inverter unit 9 connected to the DC power (bus voltage Vdc) as a power source includes current sensors 26a and 26b.
  • the power supply connected to the inverter part 9 should just be a thing which can supply direct-current power, and is not limited to a specific thing.
  • Examples of the power source connected to the inverter unit 9 include a solar cell and an AC power source to which a rectifier is added.
  • the inverter control unit 10 includes a refrigerant compression operation mode control unit 11 and a drive signal generation unit 14.
  • the refrigerant compression operation mode control unit 11 includes a d-axis and q-axis current detection unit 12, a voltage command calculation unit 13, and a rotation speed and load calculation unit 16.
  • the drive signal generation unit 14 includes an amplitude phase determination unit 15 and a PWM signal generation unit 24.
  • the inverter unit 9 supplies AC power to the electrically connected motor 8 to drive the motor 8.
  • the inverter unit 9 applies the U-phase voltage Vu, the V-phase voltage Vv, and the W-phase voltage Vw to the U-phase, V-phase, and W-phase windings of the motor 8, respectively.
  • Current sensors 26a and 26b provided in the inverter unit 9 detect a current (motor current) flowing through the motor 8 in order to estimate the magnetic pole position.
  • the currents (signals) detected by the current sensors 26 a and 26 b are output to the d-axis and q-axis current detection unit 12.
  • the inverter control unit 10 generates an inverter drive signal (for example, a PWM (Pulse Width Modulation) signal) from the necessary refrigerant compression amount of the compressor 1 and outputs it to the electrically connected inverter unit 9.
  • an inverter drive signal for example, a PWM (Pulse Width Modulation) signal
  • the refrigerant compression operation mode control unit 11 controls the refrigerant compression operation of the heat pump device 100.
  • the refrigerant compression operation mode control unit 11 controls the drive signal generation unit 14 to output an inverter drive signal (for example, a PWM signal) for driving the motor 8 from the inverter control unit 10.
  • the voltage command calculation unit 13 determines the magnetic pole position of the motor 8 based on the d-axis current signal (I d ) and the q-axis current signal (I q ) output from the d-axis and q-axis current detection unit 12. And a control signal is output to the drive signal generator 14.
  • the d-axis current signal (I d ) and the q-axis current signal (I q ) are based on the motor current of the motor 8 detected by the current sensors 26 a and 26 b of the inverter unit 9.
  • the drive signal generation unit 14 generates and outputs a signal (for example, a PWM signal) for driving the inverter unit 9 based on the control signal output from the voltage command calculation unit 13.
  • FIG. 2 is a diagram illustrating a configuration example of the compressor 1, the inverter unit 9, and the inverter control unit 10 included in the heat pump device 100.
  • the inverter unit 9 includes six switching elements 27a to 27f, and three series connection units including two switching elements are connected in parallel. Each of the switching elements 27a to 27f is provided with a diode element.
  • the inverter unit 9 drives the switching elements corresponding to the PWM signals (UP, UN, VP, VN, WP, WN) as drive signals input from the inverter control unit 10 to thereby drive the three-phase voltage Vu. , Vv, and Vw are generated, and voltages corresponding to the U-phase, V-phase, and W-phase windings of the motor 8 are applied.
  • PWM signals UP, UN, VP, VN, WP, WN
  • the d-axis and q-axis current detection unit 12 includes a detection circuit 17 with a filter function, a phase current calculation unit 18, and a three-phase two-phase conversion unit 19.
  • the detection circuit 17 with a filter function removes harmonic noise from the signal output by the current sensors 26a and 26b detecting the motor current.
  • the detection circuit 17 with a filter function may be an analog filter or a digital filter.
  • the phase current calculation unit 18 uses the U-phase current I U , V-phase current I V, and W based on the signals from the current sensors 26 a and 26 b (the signals from which harmonic noise has been removed by the detection circuit 17 with a filter function).
  • the phase current IW is calculated and output to the three-phase / two-phase converter 19.
  • the signal obtained by the phase current calculation unit 18 from the current sensors 26a and 26b may be at least for two phases. This is because the phase current calculation unit 18 can calculate the current values of the remaining phases by utilizing the fact that the phase of each phase current is shifted by 120 °.
  • the three-phase to two-phase converter 19 converts the U-phase current I U , V-phase current I V and W-phase current I W obtained by the phase current calculator 18 into an excitation current (d-axis current I d ) and a torque current ( The coordinate is converted to q-axis current I q ) and output to voltage command calculation unit 13.
  • the rotation speed and load calculation unit 16 includes a detection circuit switching unit 30 with a filter function and a secondary resistance switching unit 31.
  • the detection circuit switching unit 30 with a filter function switches the filter circuit according to the rotational speed (the number of rotations) of the motor 8 or the load level.
  • the secondary side resistance switching unit 31 switches the detection circuit (secondary side resistance) in the current sensors 26a and 26b according to the rotational speed (the number of rotations) of the motor 8 or the load level.
  • the rotation speed and load calculation unit 16 preferably has a storage area, and the storage area includes a filter circuit and a detection circuit to be selected corresponding to the rotation speed (rotation speed) of the motor 8 or the load level.
  • the correction signal value corresponding to the resistance value of the secondary resistance may be stored as table data (table 16a).
  • the value stored as the table 16a is a value measured in advance.
  • the drive signal generation unit 14 includes a two-phase / three-phase conversion unit 25.
  • the two-phase / three-phase conversion unit 25 converts the two-phase signal from the voltage command calculation unit 13 into a three-phase signal and outputs the three-phase signal to the PWM signal generation unit 24. That is, the d-axis voltage command value Vd * and the q-axis voltage command value Vq * are converted into a U-phase voltage command value Vu * , a V-phase voltage command value Vv *, and a W-phase voltage command value Vw * to generate a PWM signal generator. 24.
  • the PWM signal generation unit 24 generates a PWM signal for driving the inverter unit 9 based on the three-phase voltage command value from the two-phase / three-phase conversion unit 25.
  • the inverter unit 9 drives the motor 8 based on the PWM signal generated and output by the PWM signal generation unit 24.
  • FIG. 4 and 5 show detection waveforms of the detection circuit (ACCT) when the motor 8 is at a low rotation speed (small rotation speed) or a low load.
  • FIG. 4 shows an amplifier output waveform 40 when the secondary resistance is 1 k ⁇ , an actual current waveform 41, and an ACCT output waveform 42
  • FIG. 5 shows an amplifier when the secondary resistance is 10 ⁇ .
  • An output waveform 40a, an actual current waveform 41a, and an ACCT output waveform 42a are shown.
  • the secondary resistance value is an appropriate value of 10 ⁇
  • the current does not saturate in the ACCT, and the ACCT output waveform 42a and the actual current waveform 40a substantially coincide with each other.
  • the phase difference of the ACCT output waveform 42a is reduced to about 1.2 ms (13.0 deg).
  • the secondary resistance value is set to an appropriate value, the phase difference is compensated, and the magnetic pole position of the motor 8 can be accurately estimated.
  • the rotation speed and load calculation unit 16 switches the filter circuit and the detection circuit so that the magnetic pole position of the motor 8 can be accurately estimated.
  • the switching timing of the filter circuit and the detection circuit is determined with reference to the rotation speed and the table 16 a provided in the load calculation unit 16.
  • the values in the table 16a are values measured in advance.
  • FIG. 6 is a flowchart for explaining the operation of the rotation speed and load calculation unit 16.
  • the operation when the operation is started, it is determined whether or not the rotation speed (number of rotations or frequency) of the motor 8 is equal to or less than a set value, or whether or not the load of the motor 8 is equal to or less than the set value (S1).
  • the switching control is performed (S2)
  • the sensorless vector control is performed (S3). Without performing the sensorless vector control (S3).
  • step (S1) After performing the sensorless vector control in this way, it is determined again whether or not the rotational speed (the number of rotations) of the motor 8 is less than or equal to the set value, or whether or not the load on the motor 8 is less than or equal to the set value. Return to step (S1).
  • each current sensor can accurately detect the current flowing through the motor 8 without using a high-turn current sensor for the current sensors 26a and 26b. That is, the current flowing through the motor 8 can be accurately detected while suppressing an increase in cost, and the magnetic pole position of the motor 8 can be accurately estimated. Therefore, it is possible to prevent or suppress the step-out phenomenon due to the failure or deviation of the magnetic pole position detection.
  • the motor 8 can be driven without problems at a lower rotational speed (number of rotations) or lower load than before, and the power consumption of the heat pump apparatus 100 can be reduced.
  • FIG. 7 is a diagram illustrating a configuration example of the current sensor and its peripheral circuits.
  • the current sensors 26 a and 26 b include a detection circuit, and a signal output through the detection circuit is input to the microcomputer 45 through the filter circuit.
  • the current sensors 26a and 26b shown in FIG. 7 have a secondary resistance of ACCT that is a low resistance resistance element 43a (for example, 10 ⁇ ) included in the current sensors 26a and 26b or a high resistance included in the detection circuit 17 with a filter function.
  • the resistance element 43b eg, 1 k ⁇
  • the microcomputer 45 corresponds to the phase current calculation unit 18 in FIG.
  • the amplifier 44 When the resistance value of the secondary side resistance of the ACCT is low (Ra), the output voltage becomes low, so the amplifier 44 is provided in the secondary output stage. This is because the voltage input to the microcomputer 45 is amplified to a voltage that can be input.
  • the operational amplifier is illustrated in FIG. 7 as the amplifier 44, it is not limited to this.
  • FIG. 3 is a diagram showing a relationship between the motor current waveform 34 (sinusoidal actual current waveform) and the output waveform 35 of the ACCT when the motor 8 is at a low rotation speed (small rotation speed) or a low load.
  • the motor current waveform 34 is indicated by a solid line
  • the output waveform 35 of the ACCT is indicated by a broken line.
  • the detection circuit with the filter function is switched by the rotation speed and load calculation unit 16.
  • a value corresponding to the rotation speed (number of rotations) or load when the resistance element 43b having a high resistance value is applied is acquired in advance and stored as table data.
  • the configuration of the storage area for storing the switching signal is not particularly limited. For example, if a storage area is provided in the refrigerant compression operation mode control unit 11 and values used for switching are stored as table data in the storage area. Good.
  • the value used for the switching control is determined by the rotation speed and the load.
  • a filter circuit including a resistor element and a capacitor element is provided after the secondary output of the ACCT, and the filter circuit can reduce or remove harmonic components.
  • the filter circuit may not be provided. If the filter circuit is not provided, after the current value is taken into the microcomputer 45, the harmonic component may be reduced or removed by averaging with reference to the previous value.
  • the motor 8 can be driven more stably by performing highly accurate current detection while suppressing an increase in cost due to an increase in the number of turns of the ACCT.
  • the heat pump device 100 includes the filter circuit and the detection circuit, includes the detection circuit 17 with the filter function that removes harmonic noise, and the rotation speed and load calculation unit 16 includes the motor 8.
  • the filter circuit and the detection circuit of the detection circuit with filter function 17 are switched according to whether the rotation speed or load of the motor 8 is equal to or less than a set value, and the rotation speed or load of the motor 8 is equal to or less than the set value In this case, the phase difference of the output signal of the detection circuit 17 with a filter function is corrected.
  • FIG. 1 a preferred embodiment of the heat pump device 100 of the present invention will be described.
  • wide band gap semiconductors are used for the switching elements 27a to 27f (FIG. 2) provided in the heat pump apparatus 100.
  • examples of the wide band gap semiconductor that can be used in this embodiment include silicon carbide (also referred to as silicon carbide or SiC), diamond, or a gallium nitride-based material (a material containing gallium nitride as a main component). be able to.
  • FIG. 8 is a diagram showing the relationship between the breakdown voltage and the on-resistance of the silicon device (Si device) and the silicon carbide device (SiC device).
  • Si device silicon device
  • SiC device silicon carbide device
  • a current induction heating cooker using a Si device requires a cooling device or a heat radiating fin, but the element loss can be greatly reduced by using a SiC device. It is possible to reduce the size of the heat dissipating fins or to remove them. Therefore, the cost of the device itself can be greatly reduced.
  • the switching elements 27a to 27f since wide band gap semiconductors are used for the switching elements 27a to 27f, switching at a high frequency is possible, so that a higher frequency current can be supplied to the motor 8. Therefore, the current flowing into the inverter unit 9 can be reduced by reducing the winding current due to the increase in the winding impedance of the motor 8, and a more efficient heat pump device can be obtained.
  • the heat pump device can operate stably even during low-speed operation by correction control by the switching unit. In the case of a load, if a large amount of current flows, the element loss increases, resulting in high temperature operation.
  • Examples of the configuration of the switching elements 27a to 27f include an IGBT (Insulated Gate Bipolar Transistor), a power MOSFET having a super junction structure, and the like, but are not limited thereto, and other insulated gate semiconductor elements or bipolar transistors May be used.
  • IGBT Insulated Gate Bipolar Transistor
  • the diodes of the switching elements 27a to 27f provided in the inverter unit 9 may be wide band gap semiconductors. Further, a wide band gap semiconductor may be used for only a part (at least one) of the switching elements provided in the switching elements 27a to 27f. The above effect can also be obtained when a wide bandgap semiconductor is applied to only some elements.
  • Embodiment 3 FIG.
  • a device such as an air conditioner or a refrigerator to which the heat pump device 100 described in Embodiments 1 and 2 is applied will be described.
  • FIGS. 9-1 and 9-2 are diagrams illustrating a configuration example of a device including the heat pump device 100.
  • FIG. FIG. 9-1 shows a configuration example during heating operation
  • FIG. 9-2 shows a configuration example during cooling operation. Note that the refrigerant circulation direction is different between FIGS. 9-1 and 9-2, and this switching is performed by a four-way valve 57 described later.
  • FIG. 10 is a diagram illustrating a Mollier diagram regarding the state of the refrigerant in the heat pump apparatus 100 illustrated in FIGS. 9-1 and 9-2.
  • the horizontal axis is the specific enthalpy h
  • the vertical axis is the refrigerant pressure P.
  • the compressor 49, the heat exchanger 50, the expansion mechanism 51, the receiver 52, the internal heat exchanger 53, the expansion mechanism 54, and the heat exchanger 55 are connected to each other by a pipe, and a main refrigerant circuit in which the refrigerant circulates through the pipe. Is configured.
  • the main refrigerant circuit is divided into main refrigerant circuits 56a to 56k in FIGS. 9-1 and 9-2, respectively.
  • a four-way valve 57 is provided on the discharge side of the compressor 49, and the refrigerant circulation direction can be switched.
  • a fan 58 is provided in the vicinity of the heat exchanger 55.
  • the compressor 49 corresponds to the compressor 1 in the first and second embodiments (see FIG. 1), and includes a motor 8 and a compression mechanism 7 driven by the inverter unit 9. Furthermore, the heat pump device 100 is provided with injection circuits 60a to 60c (shown by bold lines) that connect between the receiver 52 and the internal heat exchanger 53 to the injection pipe of the compressor 49. An expansion mechanism 59 and an internal heat exchanger 53 are connected to the injection circuits 60a to 60c.
  • a water circuit (represented by a thick line) composed of a water circuit 61a and a water circuit 61b is connected to the heat exchanger 50, and water is circulated.
  • the water circuit 61a and the water circuit 61b are connected to a device that uses water, such as a radiator provided in a water heater, a radiator, or floor heating.
  • the refrigerant in the gas phase is compressed by the compressor 49 to be in a high temperature and high pressure state (point A in FIG. 10).
  • the high-temperature and high-pressure refrigerant is discharged from the compressor 49 to the main refrigerant circuit 56a.
  • the refrigerant in the main refrigerant circuit 56 a is transferred to the four-way valve 57, and the refrigerant in the main refrigerant circuit 56 b that passes through the four-way valve 57 is transferred to the heat exchanger 50.
  • the transferred refrigerant in the main refrigerant circuit 56b is cooled and liquefied by heat exchange in the heat exchanger 50 (point B in FIG. 10). That is, the heat exchanger 50 is a condenser and functions as a radiator in the main refrigerant circuit.
  • the water in the water circuit 61a is warmed by the heat radiated from the refrigerant in the main refrigerant circuit.
  • the water in the heated water circuit 61b is used for heating or hot water supply.
  • the refrigerant in the main refrigerant circuit 56c liquefied by the heat exchanger 50 is transferred to the expansion mechanism 51, and is decompressed by the expansion mechanism 51 to be in a gas-liquid two-phase state (point C in FIG. 10).
  • the refrigerant in the main refrigerant circuit 56d in the gas-liquid two-phase state is transferred to the receiver 52, transferred to the compressor 49 by the receiver 52 (refrigerant transferred from the main refrigerant circuit 56j to the main refrigerant circuit 56k), and heat. It is exchanged, cooled and liquefied (point D in FIG. 10).
  • the refrigerant in the main refrigerant circuit 56e liquefied by the receiver 52 branches to the main refrigerant circuit 56f and the injection circuit 60a at a point P in FIG.
  • the refrigerant flowing from the main refrigerant circuit 56f to the internal heat exchanger 53 is further cooled in the internal heat exchanger 53 by heat exchange with the refrigerant transferred from the injection circuit 60b to the injection circuit 60c (point E in FIG. 10).
  • the refrigerant flowing through the injection circuit 60b is decompressed by the expansion mechanism 59 and is in a gas-liquid two-phase state.
  • the refrigerant in the main refrigerant circuit 56g cooled by the internal heat exchanger 53 is transferred to the expansion mechanism 54 and depressurized to be in a gas-liquid two-phase state (point F in FIG. 10).
  • the refrigerant in the main refrigerant circuit 56h which has been in the gas-liquid two-phase state by the expansion mechanism 54, is transferred to the heat exchanger 55, exchanged with the outside air in the heat exchanger 55, and heated (point G in FIG. 10). That is, the heat exchanger 55 functions as an evaporator in the main refrigerant circuit.
  • the refrigerant in the main refrigerant circuit 56 i heated by the heat exchanger 55 is transferred to the four-way valve 57, and the refrigerant in the main refrigerant circuit 56 j passing through the four-way valve 57 is transferred to the receiver 52 and further received by the receiver 52. Heated (point H in FIG. 10), the heated refrigerant in the main refrigerant circuit 56k is transferred to the compressor 49.
  • the refrigerant in the injection circuit 60a branched at the point P is decompressed by the expansion mechanism 59 (point I in FIG. 10), and the decompressed refrigerant in the injection circuit 60b is Heat exchange is performed by the internal heat exchanger 53, and a gas-liquid two-phase state is obtained (point J in FIG. 10).
  • the refrigerant in the injection circuit 60 c heat-exchanged by the internal heat exchanger 53 is transferred from the injection pipe of the compressor 49 into the compressor 49.
  • the refrigerant (point H in FIG. 10) from the main refrigerant circuit 56k is compressed to an intermediate pressure and heated (point K in FIG. 10).
  • the refrigerant from the main refrigerant circuit 56k that has been compressed and heated to the intermediate pressure merges with the refrigerant in the injection circuit 60c (point J in FIG. 10), and the temperature of the refrigerant from the main refrigerant circuit 56k decreases (point in FIG. 10). L).
  • the refrigerant whose temperature has decreased (point L in FIG. 11) is further compressed by the compressor 49, heated to high temperature and high pressure (point A in FIG. 10), and discharged from the compressor 49 to the main refrigerant circuit 56a. .
  • the heat pump apparatus 100 of this invention does not need to perform an injection driving
  • the expansion mechanism 59 should be closed and the refrigerant should not flow into the injection pipe of the compressor 49.
  • the opening degree of the expansion mechanism 59 may be controlled by a microcomputer or the like.
  • the refrigerant in the gas phase is compressed by the compressor 49, resulting in a high temperature and high pressure (point A in FIG. 10).
  • the high-temperature and high-pressure refrigerant is discharged from the compressor 49 to the main refrigerant circuit 56a, passes through the four-way valve 57, and the refrigerant in the main refrigerant circuit 56b that passes through the four-way valve 57 is transferred to the heat exchanger 55. .
  • the transferred refrigerant in the main refrigerant circuit 56b is cooled and liquefied by heat exchange in the heat exchanger 55 (point B in FIG. 10). That is, the heat exchanger 55 functions as a condenser and a radiator in the main refrigerant circuit.
  • the refrigerant in the main refrigerant circuit 56c liquefied by the heat exchanger 55 is transferred to the expansion mechanism 54 and depressurized, so that it enters a gas-liquid two-phase state (point C in FIG. 10).
  • the refrigerant in the main refrigerant circuit 56d in the gas-liquid two-phase state is transferred to the internal heat exchanger 53, and heat is exchanged with the refrigerant transferred from the injection circuit 60b to the injection circuit 60c in the internal heat exchanger 53. It is cooled and liquefied (point D in FIG. 10).
  • the refrigerant transferred from the injection circuit 60b is decompressed by the expansion mechanism 59 and is in a gas-liquid two-phase state (point I in FIG. 10).
  • the refrigerant (point D in FIG. 10) of the main refrigerant circuit 56e heat-exchanged by the internal heat exchanger 53 branches into the main refrigerant circuit 56f and the injection circuit 60a at a point P in FIG. 9-2.
  • the refrigerant in the main refrigerant circuit 56f is heat-exchanged with the refrigerant transferred from the main refrigerant circuit 56j to the main refrigerant circuit 56k and further cooled (point E in FIG. 10).
  • the refrigerant in the main refrigerant circuit 56g cooled by the receiver 52 is decompressed by the expansion mechanism 51 and enters a gas-liquid two-phase state (point F in FIG. 10).
  • the refrigerant in the main refrigerant circuit 56h that has been in the gas-liquid two-phase state by the expansion mechanism 51 is heat-exchanged by the heat exchanger 50 and heated (point G in FIG. 10).
  • the water in the water circuit 61a is cooled, and the cooled water in the water circuit 61b is used for cooling or freezing. That is, the heat exchanger 50 functions as an evaporator in the main refrigerant circuit.
  • the refrigerant in the main refrigerant circuit 56i heated by the heat exchanger 50 passes through the four-way valve 57, and the refrigerant in the main refrigerant circuit 56j that passes through the four-way valve 57 flows into the receiver 52 and is further heated (FIG. 10). Point H).
  • the refrigerant in the main refrigerant circuit 56k heated by the receiver 52 is transferred to the compressor 49.
  • the refrigerant in the injection circuit 60a branched at point P in FIG. 9-2 is decompressed by the expansion mechanism 59 (point I in FIG. 10).
  • the refrigerant in the injection circuit 60b decompressed by the expansion mechanism 59 is heat-exchanged by the internal heat exchanger 53 to be in a gas-liquid two-phase state (point J in FIG. 10).
  • the refrigerant of the injection circuit 60 c heat-exchanged by the internal heat exchanger 53 is transferred from the injection pipe of the compressor 49 into the compressor 49.
  • the subsequent compression operation in the compressor 49 is the same as in the heating operation. That is, the refrigerant that has been compressed and heated to a high temperature and high pressure (point A in FIG. 10) is discharged from the compressor 49 to the main refrigerant circuit 56a.
  • the expansion mechanism 59 should be closed and the refrigerant should not flow into the injection pipe of the compressor 49.
  • the opening degree of the expansion mechanism 59 may be controlled by a microcomputer or the like.
  • the heat exchanger 50 is described as being a heat exchanger (for example, a plate heat exchanger) that exchanges heat between the refrigerant in the main refrigerant circuit and the water in the water circuit.
  • the heat exchanger 50 is not limited to this, and may exchange heat between the refrigerant and the air. Further, other fluid may flow in the water circuit instead of water.
  • the heat pump device according to the present invention can be applied to various heat pump devices using inverter compressors such as air conditioners and refrigerators.
  • inverter compressors such as air conditioners and refrigerators.
  • the heat pump apparatus concerning this invention can also be applied to a heat pump water heater and a refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

In order to provide a heap pump device that suppresses cost increases and is capable of sensorless vector control by accurately detecting current even at low rotational speeds (low rotational frequency) or with low loads, this heat pump device comprises a detection circuit with filter functionality (17) that includes a filter circuit and a detection circuit and that removes harmonic noise, and a rotational frequency and load calculating unit (16) switches between the filter circuit and the detection circuit of the detection circuit with filter functionality (17) according to whether the rotational frequency or the load for a motor (8) is less than or equal to a set value, and corrects the phase difference of the output signal of the detection circuit with filter functionality (17) when the rotational frequency or the load for the motor (8) is less than or equal to the set value.

Description

ヒートポンプ装置、空気調和機及び冷凍機Heat pump device, air conditioner and refrigerator
 本発明は、圧縮機を用いたヒートポンプ装置、空気調和機及び冷凍機に関する。 The present invention relates to a heat pump device, an air conditioner, and a refrigerator using a compressor.
 従来のヒートポンプ装置の圧縮機においては、圧縮機に備えられた永久磁石同期モータの磁極位置をセンサレスで制御するに際して、一般的にベクトル制御が用いられている。ベクトル制御では、モータの電流をd軸成分とq軸成分に分離し、ロータの位置に応じた最適な電流値を算出し、トルク変動の少ない高効率な制御ができる。 In a compressor of a conventional heat pump device, vector control is generally used when controlling the magnetic pole position of a permanent magnet synchronous motor provided in the compressor without a sensor. In the vector control, the motor current is separated into a d-axis component and a q-axis component, and an optimal current value corresponding to the position of the rotor is calculated, so that highly efficient control with little torque fluctuation can be performed.
 このようなベクトル制御を行うためにはロータの磁極位置を把握することを要する。磁極位置センサを用いない高速用センサレスベクトル制御では、モータに流れる電流(モータ電流)値により磁極位置を推定する。すなわち、モータ電流を電流センサにより検出し、検出した電流を励磁電流(d軸電流I)とトルク電流(q軸電流I)とに分離して磁極位置の推定を行う。 In order to perform such vector control, it is necessary to grasp the magnetic pole position of the rotor. In high-speed sensorless vector control that does not use a magnetic pole position sensor, the magnetic pole position is estimated from the current (motor current) value flowing through the motor. That is, the motor current is detected by a current sensor, and the detected current is separated into an excitation current (d-axis current I d ) and a torque current (q-axis current I q ) to estimate the magnetic pole position.
 実際のベクトル制御では、ロータの磁極位置が実角度θdの回転位置となるd-q回転座標系に対して、制御系にて推定角度θdcとなるdc-qc回転座標系を仮定し、それらの軸誤差Δθを推定演算する。そして、この軸誤差Δθをゼロにするようにインバータの電圧指令値をフィードバック修正することにより、実際の磁極位置と制御上の磁極位置を一致させるように制御している。 In actual vector control, a dc-qc rotational coordinate system having an estimated angle θdc in the control system is assumed with respect to a dq rotational coordinate system in which the magnetic pole position of the rotor is a rotational position of the actual angle θd. The axis error Δθ is estimated and calculated. Then, the voltage command value of the inverter is feedback-corrected so that the axis error Δθ is zero, thereby controlling the actual magnetic pole position to coincide with the control magnetic pole position.
 このようなベクトル制御によれば、モータを駆動する電流の大きさ及び位相をモータの回転速度(回転数)または負荷の高低に応じてインバータによって理想的に制御し、高トルク・高応答・高性能・高精度に制御することができる。しかし、モータに流れる電流を利用できない起動時にはセンサレスベクトル制御は利用できない。そこで、起動から低速運転までの区間と低速運転を超える区間とで制御方式を切り替える方式などが検討されている。例えば、特許文献1には、起動時から低速動作時には磁極位置検出が不要なV/F一定制御を行い、所定の回転速度(回転数)または負荷を超えて高速動作する時には予め設定しておいた初期の磁極位置を用いてベクトル制御に移行する技術が開示されている。 According to such vector control, the magnitude and phase of the current that drives the motor are ideally controlled by the inverter according to the motor rotation speed (number of rotations) or the load level, resulting in high torque, high response, and high Performance and high precision can be controlled. However, sensorless vector control cannot be used during startup when the current flowing through the motor cannot be used. Therefore, a method of switching the control method between a section from start to low speed operation and a section exceeding low speed operation has been studied. For example, in Patent Document 1, V / F constant control that does not require magnetic pole position detection is performed during low-speed operation from startup, and is set in advance when high-speed operation exceeds a predetermined rotation speed (number of rotations) or load. A technique for shifting to vector control using the initial magnetic pole position is disclosed.
特開2004-48886号公報JP 2004-48886 A
 モータが低回転速度(小回転数)で運転する場合または低負荷状態である場合には、モータ電流(トルク電流成分と界磁電流成分の総和)も小さくなる。そのため、モータ電流を検出する電流センサの出力の起磁力が弱まり、出力波形に歪みが生じ、または検出したモータ電流の位相が実電流の位相に対して進んでしまう。また、電流センサからの信号を検出する検出回路においても、検出電流が小さいことで部品の較差などによる検出誤差が拡大する。マイコンへと入力されるこれらの出力波形が実際の出力波形に対して歪むこと、また位相が進むことは、磁極位置の推定を失敗させて脱調を引き起こし、モータを強制停止させてしまう。 When the motor is operated at a low rotational speed (small rotational speed) or in a low load state, the motor current (the sum of the torque current component and the field current component) is also reduced. Therefore, the magnetomotive force of the output of the current sensor that detects the motor current is weakened, the output waveform is distorted, or the phase of the detected motor current is advanced with respect to the phase of the actual current. Also in a detection circuit that detects a signal from a current sensor, a detection error due to a component difference or the like increases due to a small detection current. If these output waveforms input to the microcomputer are distorted with respect to the actual output waveform and the phase advances, estimation of the magnetic pole position will fail, causing step-out and forcibly stopping the motor.
 モータ電流が小さい場合であっても十分な起磁力を得るには、変圧器の巻数を増加させればよいが、コストの増加を招いてしまう。従って、従来の技術によれば、コスト増加を抑制しつつ、低速(または低負荷)時にセンサレスベクトル制御を良好に行うことは困難であった。 In order to obtain a sufficient magnetomotive force even when the motor current is small, the number of turns of the transformer may be increased, but the cost will increase. Therefore, according to the conventional technique, it is difficult to satisfactorily perform sensorless vector control at a low speed (or low load) while suppressing an increase in cost.
 なお、特許文献1に開示された技術によれば、V/F一定制御とベクトル制御を使い分けることはできるが、モータが低回転速度(小回転数)で運転する場合または低負荷状態である場合にセンサレスベクトル制御を行うことは困難である。 According to the technique disclosed in Patent Document 1, V / F constant control and vector control can be used properly, but the motor is operated at a low rotational speed (small rotational speed) or is in a low load state. It is difficult to perform sensorless vector control.
 本発明は、上記に鑑みてなされたものであって、コスト増加を抑制しつつ、低回転速度(小回転数)または低負荷であっても、正確な電流検出を行うことによりセンサレスベクトル制御が可能なヒートポンプ装置を得ることを目的とする。 The present invention has been made in view of the above, and is capable of performing sensorless vector control by performing accurate current detection even at a low rotation speed (small rotation speed) or a low load while suppressing an increase in cost. The object is to obtain a possible heat pump device.
 上述した課題を解決し、目的を達成するために、本発明のヒートポンプ装置は、モータにより駆動され、冷媒を圧縮する圧縮機と、前記モータに電圧を印加するインバータ部と、前記モータに流れる電流を検出し、抵抗値の異なる2つの二次側抵抗を含む電流センサと、前記インバータ部へ駆動信号を出力するインバータ制御部と、を備え、前記インバータ制御部は、前記電流センサが検出した電流を入力する電流検出部と、前記電流検出部からの信号に基づいて電圧指令値を算出する電圧指令演算部と、前記電圧指令値に基づいて前記駆動信号を生成する駆動信号生成部と、前記モータの回転数及び負荷を演算する回転数及び負荷と、を備え、前記駆動信号生成部は、前記電流センサからの信号により前記圧縮機の必要冷媒圧縮量を決定し、前記必要冷媒圧縮量から振幅と位相を決定して前記駆動信号生成部に前記駆動信号を生成させる振幅位相決定部を備え、前記電流検出部は、フィルタ回路及び検出回路を含み、高調波ノイズを除去するフィルタ機能付検出回路を備え、フィルタ機能付検出回路を備え、前記回転数及び負荷演算部は、前記モータの回転数または負荷が設定値以下であるか否かに応じて、前記フィルタ機能付検出回路のフィルタ回路及び検出回路の切り換えを行い、前記モータの回転数または負荷が設定値以下である場合には、前記フィルタ機能付検出回路の出力信号の位相差を補正する。 In order to solve the above-described problems and achieve the object, the heat pump device of the present invention is driven by a motor and compresses a refrigerant, an inverter for applying a voltage to the motor, and a current flowing through the motor. A current sensor including two secondary resistances having different resistance values, and an inverter control unit that outputs a drive signal to the inverter unit, wherein the inverter control unit detects a current detected by the current sensor. A voltage detection unit that calculates a voltage command value based on a signal from the current detection unit, a drive signal generation unit that generates the drive signal based on the voltage command value, A rotation number and a load for calculating a rotation number and a load of the motor, and the drive signal generation unit determines a necessary refrigerant compression amount of the compressor based on a signal from the current sensor An amplitude phase determination unit that determines an amplitude and phase from the necessary refrigerant compression amount and causes the drive signal generation unit to generate the drive signal, the current detection unit including a filter circuit and a detection circuit, and harmonic noise And a detection circuit with a filter function, and the rotation speed and load calculation unit determines whether the rotation speed or load of the motor is equal to or less than a set value. The filter circuit and the detection circuit of the detection circuit with function are switched, and when the rotation speed or load of the motor is not more than a set value, the phase difference of the output signal of the detection circuit with filter function is corrected.
 本発明によれば、コスト増加を抑制しつつ、低回転速度(小回転数)または低負荷においても、正確な電流検出を行うことによりセンサレスベクトル制御が可能なモータが備えられた圧縮機を有するヒートポンプ装置を得ることができるという効果を奏する。 According to the present invention, there is provided a compressor equipped with a motor capable of sensorless vector control by performing accurate current detection even at a low rotation speed (small rotation speed) or a low load while suppressing an increase in cost. There is an effect that a heat pump device can be obtained.
図1は、実施の形態1に係るヒートポンプ装置の一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a heat pump device according to the first embodiment. 図2は、実施の形態1に係るヒートポンプ装置の一部を成すインバータ部、インバータ制御部及び圧縮機の一構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of an inverter unit, an inverter control unit, and a compressor that form part of the heat pump device according to the first embodiment. 図3は、実施の形態1に係るモータが低回転速度(小回転数)または低負荷である場合におけるモータ電流波形と電流センサ(ACCT)の出力波形の関係を示す比較図である。FIG. 3 is a comparison diagram showing the relationship between the motor current waveform and the output waveform of the current sensor (ACCT) when the motor according to the first embodiment has a low rotation speed (small rotation speed) or a low load. 図4は、実施の形態1に係る、検出回路抵抗値1kΩ時のモータ電流の波形と検出回路出力の波形を示す図である。FIG. 4 is a diagram illustrating a motor current waveform and a detection circuit output waveform when the detection circuit resistance value is 1 kΩ according to the first embodiment. 図5は、実施の形態1に係る、検出回路抵抗値10Ω時のモータ電流の波形と検出回路出力の波形を示す図である。FIG. 5 is a diagram illustrating a motor current waveform and a detection circuit output waveform when the detection circuit resistance value is 10Ω, according to the first embodiment. 図6は、実施の形態1に係る回転数及び負荷演算部の動作を説明するフローチャートである。FIG. 6 is a flowchart for explaining the operation of the rotation speed and load calculation unit according to the first embodiment. 図7は、実施の形態1に係る、電流センサと周辺回路の一構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of the current sensor and the peripheral circuit according to the first embodiment. 図8は、実施の形態2に係るSiデバイスとSiCデバイスの耐圧とオン抵抗の関係を示す図である。FIG. 8 is a diagram showing the relationship between the breakdown voltage and the on-resistance of the Si device and the SiC device according to the second embodiment. 図9-1は、暖房運転時の実施の形態3に係るヒートポンプ装置を備えた機器の構成例を示す図である。FIG. 9-1 is a diagram illustrating a configuration example of a device including the heat pump device according to Embodiment 3 during heating operation. 図9-2は、冷房運転時の実施の形態3に係るヒートポンプ装置を備えた機器の構成例を示す図である。FIG. 9-2 is a diagram illustrating a configuration example of a device including the heat pump device according to the third embodiment during the cooling operation. 図10は、実施の形態3に係る図9-1及び図9-2に示したヒートポンプ装置の冷媒についてのモリエル線図である。FIG. 10 is a Mollier diagram of the refrigerant of the heat pump apparatus shown in FIGS. 9-1 and 9-2 according to the third embodiment.
 以下に、本発明にかかるヒートポンプ装置、空気調和機及び冷凍機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a heat pump device, an air conditioner, and a refrigerator according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 本実施の形態では、本発明のヒートポンプ装置の構成及び動作について図1乃至図6を参照して説明する。
Embodiment 1 FIG.
In the present embodiment, the configuration and operation of the heat pump device of the present invention will be described with reference to FIGS.
 図1は、本実施の形態のヒートポンプ装置の一構成例であるヒートポンプ装置100を示す図である。図1に示すヒートポンプ装置100は、冷凍サイクル部20と、インバータ部9と、インバータ制御部10と、を備える。ヒートポンプ装置100は、例えば、空気調和機または冷凍機に適用される。 FIG. 1 is a diagram showing a heat pump device 100 which is a configuration example of the heat pump device of the present embodiment. A heat pump device 100 shown in FIG. 1 includes a refrigeration cycle unit 20, an inverter unit 9, and an inverter control unit 10. The heat pump device 100 is applied to, for example, an air conditioner or a refrigerator.
 冷凍サイクル部20は、圧縮機1、四方弁2、熱交換器3、膨張機構4及び熱交換器5を備え、これらが冷媒配管6を介して接続されている。 The refrigeration cycle unit 20 includes a compressor 1, a four-way valve 2, a heat exchanger 3, an expansion mechanism 4, and a heat exchanger 5, which are connected via a refrigerant pipe 6.
 圧縮機1は、圧縮機構7及びモータ8を内部に備える。圧縮機構7は、冷媒を圧縮する。モータ8は、U相,V相,W相の3相の巻線を有する3相モータであり、圧縮機構7を動作させる。 The compressor 1 includes a compression mechanism 7 and a motor 8 inside. The compression mechanism 7 compresses the refrigerant. The motor 8 is a three-phase motor having three-phase windings of U phase, V phase, and W phase, and operates the compression mechanism 7.
 電源である直流電力(母線電圧Vdc)が接続されたインバータ部9は、電流センサ26a,26bを備える。なお、インバータ部9に接続される電源は、直流電力を供給可能なものであればよく、特定のものに限定されない。インバータ部9に接続される電源として、太陽電池、整流器が付加された交流電源などを例示することができる。 The inverter unit 9 connected to the DC power (bus voltage Vdc) as a power source includes current sensors 26a and 26b. In addition, the power supply connected to the inverter part 9 should just be a thing which can supply direct-current power, and is not limited to a specific thing. Examples of the power source connected to the inverter unit 9 include a solar cell and an AC power source to which a rectifier is added.
 インバータ制御部10は、冷媒圧縮運転モード制御部11と駆動信号生成部14を備える。冷媒圧縮運転モード制御部11は、d軸,q軸電流検出部12と、電圧指令演算部13と、回転数及び負荷演算部16と、を備える。駆動信号生成部14は、振幅位相決定部15とPWM信号生成部24を備える。 The inverter control unit 10 includes a refrigerant compression operation mode control unit 11 and a drive signal generation unit 14. The refrigerant compression operation mode control unit 11 includes a d-axis and q-axis current detection unit 12, a voltage command calculation unit 13, and a rotation speed and load calculation unit 16. The drive signal generation unit 14 includes an amplitude phase determination unit 15 and a PWM signal generation unit 24.
 インバータ部9は、電気的に接続されたモータ8に交流電力を供給して、モータ8を駆動する。 The inverter unit 9 supplies AC power to the electrically connected motor 8 to drive the motor 8.
 インバータ部9は、モータ8のU相,V相,W相の巻線のそれぞれに、U相電圧Vu、V相電圧Vv及びW相電圧Vwをそれぞれ印加する。 The inverter unit 9 applies the U-phase voltage Vu, the V-phase voltage Vv, and the W-phase voltage Vw to the U-phase, V-phase, and W-phase windings of the motor 8, respectively.
 インバータ部9が備える電流センサ26a,26bは、磁極位置を推定するために、モータ8に流れる電流(モータ電流)を検出する。電流センサ26a,26bが検出した電流(信号)は、d軸,q軸電流検出部12に出力される。 Current sensors 26a and 26b provided in the inverter unit 9 detect a current (motor current) flowing through the motor 8 in order to estimate the magnetic pole position. The currents (signals) detected by the current sensors 26 a and 26 b are output to the d-axis and q-axis current detection unit 12.
 インバータ制御部10は、圧縮機1の必要冷媒圧縮量からインバータ駆動信号(例えば、PWM(Pulse Width Modulation)信号)を生成し、電気的に接続されたインバータ部9に出力する。 The inverter control unit 10 generates an inverter drive signal (for example, a PWM (Pulse Width Modulation) signal) from the necessary refrigerant compression amount of the compressor 1 and outputs it to the electrically connected inverter unit 9.
 冷媒圧縮運転モード制御部11は、ヒートポンプ装置100の冷媒圧縮動作を制御する。冷媒圧縮運転モード制御部11は、駆動信号生成部14を制御して、モータ8を駆動するインバータ駆動信号(例えばPWM信号)をインバータ制御部10から出力させる。このとき、電圧指令演算部13は、d軸,q軸電流検出部12から出力されたd軸の電流信号(I)とq軸の電流信号(I)に基づいてモータ8の磁極位置を推定し、駆動信号生成部14に制御信号を出力する。なお、d軸の電流信号(I)とq軸の電流信号(I)は、インバータ部9が有する電流センサ26a,26bにて検出されたモータ8のモータ電流に基づくものである。そして、駆動信号生成部14が、電圧指令演算部13から出力された制御信号に基づいて、インバータ部9を駆動する信号(例えばPWM信号)を生成して出力する。 The refrigerant compression operation mode control unit 11 controls the refrigerant compression operation of the heat pump device 100. The refrigerant compression operation mode control unit 11 controls the drive signal generation unit 14 to output an inverter drive signal (for example, a PWM signal) for driving the motor 8 from the inverter control unit 10. At this time, the voltage command calculation unit 13 determines the magnetic pole position of the motor 8 based on the d-axis current signal (I d ) and the q-axis current signal (I q ) output from the d-axis and q-axis current detection unit 12. And a control signal is output to the drive signal generator 14. The d-axis current signal (I d ) and the q-axis current signal (I q ) are based on the motor current of the motor 8 detected by the current sensors 26 a and 26 b of the inverter unit 9. The drive signal generation unit 14 generates and outputs a signal (for example, a PWM signal) for driving the inverter unit 9 based on the control signal output from the voltage command calculation unit 13.
 図2は、ヒートポンプ装置100が備える圧縮機1、インバータ部9及びインバータ制御部10の一構成例を示す図である。 FIG. 2 is a diagram illustrating a configuration example of the compressor 1, the inverter unit 9, and the inverter control unit 10 included in the heat pump device 100.
 インバータ部9は、6つのスイッチング素子27a~27fを備え、2つのスイッチング素子を含む直列接続部が並列に3つ接続されている。スイッチング素子27a~27fのそれぞれには、ダイオード素子が備えられている。インバータ部9は、インバータ制御部10から入力される駆動信号としてのPWM信号(UP,UN,VP,VN,WP,WN)によって、それぞれに対応するスイッチング素子を駆動することで3相の電圧Vu,Vv,Vwを生成し、モータ8のU相,V相,W相の巻線のそれぞれに対応する電圧を印加する。 The inverter unit 9 includes six switching elements 27a to 27f, and three series connection units including two switching elements are connected in parallel. Each of the switching elements 27a to 27f is provided with a diode element. The inverter unit 9 drives the switching elements corresponding to the PWM signals (UP, UN, VP, VN, WP, WN) as drive signals input from the inverter control unit 10 to thereby drive the three-phase voltage Vu. , Vv, and Vw are generated, and voltages corresponding to the U-phase, V-phase, and W-phase windings of the motor 8 are applied.
 d軸,q軸電流検出部12は、フィルタ機能付検出回路17と、相電流演算部18と、3相2相変換部19と、を備える。 The d-axis and q-axis current detection unit 12 includes a detection circuit 17 with a filter function, a phase current calculation unit 18, and a three-phase two-phase conversion unit 19.
 フィルタ機能付検出回路17は、電流センサ26a,26bがモータ電流を検出して出力した信号の高調波ノイズを除去する。フィルタ機能付検出回路17は、アナログフィルタであってもよいし、デジタルフィルタであってもよい。 The detection circuit 17 with a filter function removes harmonic noise from the signal output by the current sensors 26a and 26b detecting the motor current. The detection circuit 17 with a filter function may be an analog filter or a digital filter.
 相電流演算部18は、電流センサ26a,26bからの信号(フィルタ機能付検出回路17にて高調波ノイズを除去された信号)を基に、U相電流I、V相電流I及びW相電流Iを算出し、3相2相変換部19に出力する。ここで、相電流演算部18が電流センサ26a,26bから得る信号は、少なくとも2相分あればよい。それぞれの相電流の位相が120°ずれていることを利用することで、相電流演算部18は、残りの相の電流値を算出できるからである。 The phase current calculation unit 18 uses the U-phase current I U , V-phase current I V, and W based on the signals from the current sensors 26 a and 26 b (the signals from which harmonic noise has been removed by the detection circuit 17 with a filter function). The phase current IW is calculated and output to the three-phase / two-phase converter 19. Here, the signal obtained by the phase current calculation unit 18 from the current sensors 26a and 26b may be at least for two phases. This is because the phase current calculation unit 18 can calculate the current values of the remaining phases by utilizing the fact that the phase of each phase current is shifted by 120 °.
 3相2相変換部19は、相電流演算部18により得られたU相電流I、V相電流I及びW相電流Iを、励磁電流(d軸電流I)とトルク電流(q軸電流I)に座標変換して電圧指令演算部13に出力する。 The three-phase to two-phase converter 19 converts the U-phase current I U , V-phase current I V and W-phase current I W obtained by the phase current calculator 18 into an excitation current (d-axis current I d ) and a torque current ( The coordinate is converted to q-axis current I q ) and output to voltage command calculation unit 13.
 回転数及び負荷演算部16は、フィルタ機能付検出回路切換部30と、二次側抵抗切換部31と、を備える。 The rotation speed and load calculation unit 16 includes a detection circuit switching unit 30 with a filter function and a secondary resistance switching unit 31.
 フィルタ機能付検出回路切換部30は、モータ8の回転速度(回転数)または負荷の高低に応じてフィルタ回路の切り換えを行う。二次側抵抗切換部31は、モータ8の回転速度(回転数)または負荷の高低に応じて電流センサ26a,26b内の検出回路(二次側抵抗)の切り換えを行う。また、回転数及び負荷演算部16は記憶領域を有することが望ましく、該記憶領域にはモータ8の回転速度(回転数)または負荷の高低に対応して、選択すべきフィルタ回路及び検出回路と、二次側抵抗の抵抗値に応じた補正信号値と、をテーブルデータ(テーブル16a)として記憶していればよい。ここで、テーブル16aとして記憶される値は、予め計測した値である。 The detection circuit switching unit 30 with a filter function switches the filter circuit according to the rotational speed (the number of rotations) of the motor 8 or the load level. The secondary side resistance switching unit 31 switches the detection circuit (secondary side resistance) in the current sensors 26a and 26b according to the rotational speed (the number of rotations) of the motor 8 or the load level. The rotation speed and load calculation unit 16 preferably has a storage area, and the storage area includes a filter circuit and a detection circuit to be selected corresponding to the rotation speed (rotation speed) of the motor 8 or the load level. The correction signal value corresponding to the resistance value of the secondary resistance may be stored as table data (table 16a). Here, the value stored as the table 16a is a value measured in advance.
 駆動信号生成部14は、2相3相変換部25を備える。 The drive signal generation unit 14 includes a two-phase / three-phase conversion unit 25.
 2相3相変換部25は、電圧指令演算部13からの2相信号を3相信号に変換してPWM信号生成部24に出力する。すなわち、d軸電圧指令値Vd及びq軸電圧指令値Vqを、U相電圧指令値Vu、V相電圧指令値Vv及びW相電圧指令値Vwに変換してPWM信号生成部24に出力する。 The two-phase / three-phase conversion unit 25 converts the two-phase signal from the voltage command calculation unit 13 into a three-phase signal and outputs the three-phase signal to the PWM signal generation unit 24. That is, the d-axis voltage command value Vd * and the q-axis voltage command value Vq * are converted into a U-phase voltage command value Vu * , a V-phase voltage command value Vv *, and a W-phase voltage command value Vw * to generate a PWM signal generator. 24.
 PWM信号生成部24は、2相3相変換部25からの3相の電圧指令値を基に、インバータ部9を駆動するPWM信号を生成する。インバータ部9は、PWM信号生成部24で生成して出力したPWM信号を基に、モータ8を駆動する。 The PWM signal generation unit 24 generates a PWM signal for driving the inverter unit 9 based on the three-phase voltage command value from the two-phase / three-phase conversion unit 25. The inverter unit 9 drives the motor 8 based on the PWM signal generated and output by the PWM signal generation unit 24.
 ところで、モータ8が低回転速度(小回転数)または低負荷であると、電流センサであるACCT(Alternating Current Current Transducer)の出力波形が歪む現象が確認されている。 Incidentally, it has been confirmed that when the motor 8 has a low rotation speed (small rotation speed) or a low load, the output waveform of an ACCT (Alternating Current Current Transducer) that is a current sensor is distorted.
 図4,5は、モータ8が低回転速度(小回転数)または低負荷の場合の検出回路(ACCT)の検出波形を示す。図4は、二次側抵抗が1kΩであるときのアンプ出力波形40と、実電流波形41と、ACCT出力波形42と、を示し、図5は、二次側抵抗が10Ωであるときのアンプ出力波形40aと、実電流波形41aと、ACCT出力波形42aと、を示す。 4 and 5 show detection waveforms of the detection circuit (ACCT) when the motor 8 is at a low rotation speed (small rotation speed) or a low load. FIG. 4 shows an amplifier output waveform 40 when the secondary resistance is 1 kΩ, an actual current waveform 41, and an ACCT output waveform 42, and FIG. 5 shows an amplifier when the secondary resistance is 10Ω. An output waveform 40a, an actual current waveform 41a, and an ACCT output waveform 42a are shown.
 図4では、二次側抵抗値が1kΩと大きいため、ACCTにて電流が飽和し、実電流波形41に対してACCT出力波形42が歪んでいる。図4では、実電流波形41とACCT出力波形42の位相差は約5.0ms(54.2deg)である。この位相差に起因する電流変動によって、モータ8の磁極位置の推定に誤差が生じることになる。 In FIG. 4, since the secondary resistance value is as large as 1 kΩ, the current is saturated in the ACCT, and the ACCT output waveform 42 is distorted with respect to the actual current waveform 41. In FIG. 4, the phase difference between the actual current waveform 41 and the ACCT output waveform 42 is about 5.0 ms (54.2 deg). An error occurs in the estimation of the magnetic pole position of the motor 8 due to the current fluctuation caused by this phase difference.
 一方、図5では、二次側抵抗値が10Ωと適正値であるため、ACCTにて電流が飽和せず、ACCT出力波形42aと実電流波形40aが概ね一致しており、実電流波形40aとACCT出力波形42aの位相差は約1.2ms(13.0deg)まで低減されている。このように、二次側抵抗値を適正値とすると位相差が補償され、モータ8の磁極位置の正確な推定が可能となる。 On the other hand, in FIG. 5, since the secondary resistance value is an appropriate value of 10Ω, the current does not saturate in the ACCT, and the ACCT output waveform 42a and the actual current waveform 40a substantially coincide with each other. The phase difference of the ACCT output waveform 42a is reduced to about 1.2 ms (13.0 deg). As described above, when the secondary resistance value is set to an appropriate value, the phase difference is compensated, and the magnetic pole position of the motor 8 can be accurately estimated.
 そこで、本実施の形態のヒートポンプ装置では、回転数及び負荷演算部16によって、フィルタ回路と検出回路を切り換えて、モータ8の磁極位置を正確に推定可能とする。ここで、フィルタ回路及び検出回路の切り換えのタイミングは、回転数及び負荷演算部16に設けられたテーブル16aを参照して決定する。テーブル16aの値は、予め計測した値である。 Therefore, in the heat pump device according to the present embodiment, the rotation speed and load calculation unit 16 switches the filter circuit and the detection circuit so that the magnetic pole position of the motor 8 can be accurately estimated. Here, the switching timing of the filter circuit and the detection circuit is determined with reference to the rotation speed and the table 16 a provided in the load calculation unit 16. The values in the table 16a are values measured in advance.
 次に、回転数及び負荷演算部16の動作について、図6を参照して説明する。図6は、回転数及び負荷演算部16の動作を説明するフローチャートである。 Next, the operation of the rotation speed and load calculation unit 16 will be described with reference to FIG. FIG. 6 is a flowchart for explaining the operation of the rotation speed and load calculation unit 16.
 まず、動作を開始すると、モータ8の回転速度(回転数または周波数)が設定値以下かであるか否か、またはモータ8の負荷が設定値以下であるか否かを判定する(S1)。モータ8の回転速度(回転数)または負荷が設定値以下である場合には、切り換え制御を行って(S2)からセンサレスベクトル制御を行い(S3)、設定値以下でない場合には、切り換え制御を行わずにセンサレスベクトル制御を行う(S3)。 First, when the operation is started, it is determined whether or not the rotation speed (number of rotations or frequency) of the motor 8 is equal to or less than a set value, or whether or not the load of the motor 8 is equal to or less than the set value (S1). When the rotational speed (number of rotations) or load of the motor 8 is less than or equal to the set value, the switching control is performed (S2), and then the sensorless vector control is performed (S3). Without performing the sensorless vector control (S3).
 このようにセンサレスベクトル制御を行った後、再び、モータ8の回転速度(回転数)が設定値以下かであるか否か、またはモータ8の負荷が設定値以下であるか否かを判定するステップ(S1)に戻る。 After performing the sensorless vector control in this way, it is determined again whether or not the rotational speed (the number of rotations) of the motor 8 is less than or equal to the set value, or whether or not the load on the motor 8 is less than or equal to the set value. Return to step (S1).
 また、モータ8の回転速度(回転数)または負荷が設定値以下である場合にフィルタ回路及び検出回路の切り換えを行うと、モータ8が低回転速度(小回転数)で運転する場合またはモータ8が低負荷で運転する場合であっても、電流センサ26a,26bに高巻数の電流センサを使用せずとも、各電流センサは、モータ8に流れる電流を正確に検出することができる。すなわち、コストの増加を抑えつつ、モータ8に流れる電流を正確に検出することが可能となり、モータ8の磁極位置の推定を正確に行うことができる。そのため、磁極位置の検出の失敗またはずれに起因する脱調現象を防止または抑制することができる。 Further, when the filter circuit and the detection circuit are switched when the rotation speed (the number of rotations) or the load of the motor 8 is equal to or less than the set value, the motor 8 is operated at a low rotation speed (the small number of rotations) or the motor 8 Even when the motor is operated at a low load, each current sensor can accurately detect the current flowing through the motor 8 without using a high-turn current sensor for the current sensors 26a and 26b. That is, the current flowing through the motor 8 can be accurately detected while suppressing an increase in cost, and the magnetic pole position of the motor 8 can be accurately estimated. Therefore, it is possible to prevent or suppress the step-out phenomenon due to the failure or deviation of the magnetic pole position detection.
 以上説明したように、本発明によって、従来よりも低回転速度(回転数)または低負荷でモータ8を問題なく駆動することができ、ヒートポンプ装置100の消費電力を削減することができる。 As described above, according to the present invention, the motor 8 can be driven without problems at a lower rotational speed (number of rotations) or lower load than before, and the power consumption of the heat pump apparatus 100 can be reduced.
 ここで、本発明のヒートポンプ装置が備える電流センサ26a,26bについて、図7を参照して説明する。 Here, the current sensors 26a and 26b included in the heat pump device of the present invention will be described with reference to FIG.
 図7は、電流センサとその周辺回路の一構成例を示す図である。図7に示す構成では、電流センサ26a,26bは検出回路を備え、該検出回路を経て出力された信号が、フィルタ回路を介してマイコン45に入力される構成である。図7に示す電流センサ26a,26bは、ACCTの二次側抵抗を、電流センサ26a,26bに含まれる低抵抗な抵抗素子43a(例えば10Ω)またはフィルタ機能付検出回路17に含まれる高抵抗な抵抗素子43b(例えば1kΩ)とするよう、切り換え可能な構成である。なお、マイコン45は、図2の相電流演算部18等に相当する。 FIG. 7 is a diagram illustrating a configuration example of the current sensor and its peripheral circuits. In the configuration shown in FIG. 7, the current sensors 26 a and 26 b include a detection circuit, and a signal output through the detection circuit is input to the microcomputer 45 through the filter circuit. The current sensors 26a and 26b shown in FIG. 7 have a secondary resistance of ACCT that is a low resistance resistance element 43a (for example, 10Ω) included in the current sensors 26a and 26b or a high resistance included in the detection circuit 17 with a filter function. The resistance element 43b (eg, 1 kΩ) can be switched. The microcomputer 45 corresponds to the phase current calculation unit 18 in FIG.
 ACCTの二次側抵抗の抵抗値が低い場合(Ra)には出力電圧が低くなるため、増幅器44が二次側出力後段に備えられている。マイコン45に入力する電圧を入力可能な電圧まで増幅するためである。なお、増幅器44として、図7ではオペアンプを例示しているが、これに限定されない。 When the resistance value of the secondary side resistance of the ACCT is low (Ra), the output voltage becomes low, so the amplifier 44 is provided in the secondary output stage. This is because the voltage input to the microcomputer 45 is amplified to a voltage that can be input. In addition, although the operational amplifier is illustrated in FIG. 7 as the amplifier 44, it is not limited to this.
 二次側抵抗の抵抗値が高い場合(Rb)にはマイコン45に入力可能な電圧を出力するため、増幅器44を用いずともマイコン45に入力可能な十分に高い電圧を出力することができる。 When the resistance value of the secondary resistance is high (Rb), a voltage that can be input to the microcomputer 45 is output, so that a sufficiently high voltage that can be input to the microcomputer 45 can be output without using the amplifier 44.
 ここで、起磁力NIは、磁気抵抗Rmと磁束φを用いて、NI=Rmφと表される。二次側抵抗の抵抗値が高いと、同じ磁束(電流)をACCTに与えた場合に起磁力が高く、磁気飽和するため、出力波形が歪んでしまう。 Here, the magnetomotive force NI is expressed as NI = Rmφ using the magnetic resistance Rm and the magnetic flux φ. If the resistance value of the secondary resistance is high, the magnetomotive force is high and magnetic saturation occurs when the same magnetic flux (current) is applied to the ACCT, and the output waveform is distorted.
 図3は、モータ8が低回転速度(小回転数)または低負荷の場合におけるモータ電流波形34(正弦波状の実電流波形)とACCTの出力波形35の関係を示す図である。なお、図3において、モータ電流波形34は実線で示し、ACCTの出力波形35は破線で示している。 FIG. 3 is a diagram showing a relationship between the motor current waveform 34 (sinusoidal actual current waveform) and the output waveform 35 of the ACCT when the motor 8 is at a low rotation speed (small rotation speed) or a low load. In FIG. 3, the motor current waveform 34 is indicated by a solid line, and the output waveform 35 of the ACCT is indicated by a broken line.
 図7に示す構成例では、二次側抵抗の抵抗値が高い場合(Rb)には、一定の磁束(一定の電流)における起磁力NIが高くなってしまい、磁気飽和が生じる。磁気飽和が生じると、出力波形が歪んでしまい、位相誤差が生じることになる。 In the configuration example shown in FIG. 7, when the resistance value of the secondary resistance is high (Rb), the magnetomotive force NI in a constant magnetic flux (constant current) becomes high, and magnetic saturation occurs. When magnetic saturation occurs, the output waveform is distorted and a phase error occurs.
 そこで、図7に示す構成例では、回転数及び負荷演算部16によってフィルタ機能付検出回路を切り換える。切り換えに用いる信号については、抵抗値が高い抵抗素子43bを適用した場合の回転速度(回転数)または負荷に応じた値を予め取得してこれをテーブルデータとして記憶させておき、切り換えを行う際にはこれを参照するとよい。切り換え信号を記憶させる記憶領域の構成などは特に限定されず、例えば、冷媒圧縮運転モード制御部11に記憶領域を設け、該記憶領域には、切り換えに用いる値がテーブルデータとして記憶されていればよい。ここで、切り換え制御に用いる値は回転数及び負荷により決定される。 Therefore, in the configuration example shown in FIG. 7, the detection circuit with the filter function is switched by the rotation speed and load calculation unit 16. For the signal used for switching, a value corresponding to the rotation speed (number of rotations) or load when the resistance element 43b having a high resistance value is applied is acquired in advance and stored as table data. Please refer to this. The configuration of the storage area for storing the switching signal is not particularly limited. For example, if a storage area is provided in the refrigerant compression operation mode control unit 11 and values used for switching are stored as table data in the storage area. Good. Here, the value used for the switching control is determined by the rotation speed and the load.
 なお、磁気飽和が生じる場合には、波形の歪みにより高調波成分が重畳する。そのため、図7の構成例では、ACCTの二次側出力の後段に抵抗素子と容量素子を含むフィルタ回路が設けられており、フィルタ回路は、高調波成分を低減し、または除去することができる。 When magnetic saturation occurs, harmonic components are superimposed due to waveform distortion. Therefore, in the configuration example of FIG. 7, a filter circuit including a resistor element and a capacitor element is provided after the secondary output of the ACCT, and the filter circuit can reduce or remove harmonic components. .
 なお、フィルタ回路が設けられていなくてもよい。フィルタ回路が設けられていない場合には、マイコン45に電流値を取り込んだ後に、前段の値を参考にして平均化を行うことで高調波成分を低減し、または除去すればよい。 Note that the filter circuit may not be provided. If the filter circuit is not provided, after the current value is taken into the microcomputer 45, the harmonic component may be reduced or removed by averaging with reference to the previous value.
 図7の構成を採用すると、回転数、及び負荷に応じて、最適な、フィルタ回路と検出回路を採用可能となり、低負荷及び低回転速度における波形の歪みの問題も解消する。これにより、低回転速度域においても、ACCTの高巻数化によるコスト増加を抑制しながらも精度の高い電流検出を行うことで、より安定的にモータ8を駆動可能となる。 7 adopts the optimum filter circuit and detection circuit according to the rotation speed and load, and solves the problem of waveform distortion at low load and low rotation speed. As a result, even in a low rotational speed range, the motor 8 can be driven more stably by performing highly accurate current detection while suppressing an increase in cost due to an increase in the number of turns of the ACCT.
 以上説明したように、本実施の形態のヒートポンプ装置100は、フィルタ回路及び検出回路を含み、高調波ノイズを除去するフィルタ機能付検出回路17を備え、回転数及び負荷演算部16が、モータ8の回転数または負荷が設定値以下であるか否かに応じて、前記フィルタ機能付検出回路17のフィルタ回路及び検出回路の切り換えを行い、モータ8の回転数または負荷が設定値以下である場合には、フィルタ機能付検出回路17の出力信号の位相差を補正するものである。 As described above, the heat pump device 100 according to the present embodiment includes the filter circuit and the detection circuit, includes the detection circuit 17 with the filter function that removes harmonic noise, and the rotation speed and load calculation unit 16 includes the motor 8. When the filter circuit and the detection circuit of the detection circuit with filter function 17 are switched according to whether the rotation speed or load of the motor 8 is equal to or less than a set value, and the rotation speed or load of the motor 8 is equal to or less than the set value In this case, the phase difference of the output signal of the detection circuit 17 with a filter function is corrected.
実施の形態2.
 本実施の形態では、本発明のヒートポンプ装置100の好ましい形態について説明する。本実施の形態では、ヒートポンプ装置100に設けられるスイッチング素子27a~27f(図2)にワイドバンドギャップ半導体を用いる。
Embodiment 2. FIG.
In the present embodiment, a preferred embodiment of the heat pump device 100 of the present invention will be described. In the present embodiment, wide band gap semiconductors are used for the switching elements 27a to 27f (FIG. 2) provided in the heat pump apparatus 100.
 スイッチング素子27a~27fにワイドバンドギャップ半導体を用いることで、スイッチング素子27a~27fにおける素子損失を低減し、電流を増大させることができる。そのため、ワイドバンドギャップ半導体を用いない場合よりも放熱フィンを小型化または除去することが可能である。 By using wide band gap semiconductors for the switching elements 27a to 27f, it is possible to reduce the element loss in the switching elements 27a to 27f and increase the current. Therefore, it is possible to downsize or remove the radiation fins compared to the case where no wide band gap semiconductor is used.
 なお、本実施の形態において用いることのできるワイドバンドギャップ半導体としては、炭化珪素(シリコンカーバイド、SiCとも呼ぶ。)、ダイヤモンドまたは窒化ガリウム系材料(窒化ガリウムを主成分とする材料)などを例示することができる。 Note that examples of the wide band gap semiconductor that can be used in this embodiment include silicon carbide (also referred to as silicon carbide or SiC), diamond, or a gallium nitride-based material (a material containing gallium nitride as a main component). be able to.
 図8は、シリコンデバイス(Siデバイス)と炭化珪素デバイス(SiCデバイス)の耐圧とオン抵抗の関係を示す図である。耐圧とオン抵抗の間には、耐圧が向上するとオン抵抗が増加し、オン抵抗を低減すると耐圧が低下するというトレードオフの関係がある。しかし、SiCデバイスのバンドギャップはSiデバイスのバンドギャップよりも大きいため、任意のオン抵抗値において比較すると、SiCデバイスの耐圧はSiデバイスの耐圧よりも非常に高いものとなる(図8を参照)。従って、SiCデバイスを用いることで、耐圧とオン抵抗のトレードオフを大幅に改善することができる。例えば、現在のSiデバイスを用いた誘導加熱調理器では冷却装置または放熱フィンが必要であるが、SiCデバイスを用いることにより素子損失を大幅に低減することが可能であるため、従来の冷却装置または放熱フィンを小型化し、または削除することが可能となる。従って、装置自体の大幅な低コスト化も可能となる。 FIG. 8 is a diagram showing the relationship between the breakdown voltage and the on-resistance of the silicon device (Si device) and the silicon carbide device (SiC device). Between the breakdown voltage and the on-resistance, there is a trade-off relationship in which the on-resistance increases as the breakdown voltage increases and the breakdown voltage decreases as the on-resistance decreases. However, since the band gap of the SiC device is larger than the band gap of the Si device, the breakdown voltage of the SiC device is much higher than the breakdown voltage of the Si device when compared at an arbitrary on-resistance value (see FIG. 8). . Therefore, by using the SiC device, the trade-off between the breakdown voltage and the on-resistance can be greatly improved. For example, a current induction heating cooker using a Si device requires a cooling device or a heat radiating fin, but the element loss can be greatly reduced by using a SiC device. It is possible to reduce the size of the heat dissipating fins or to remove them. Therefore, the cost of the device itself can be greatly reduced.
 また、スイッチング素子27a~27fにワイドバンドギャップ半導体を用いることで、高周波でのスイッチングが可能となるため、モータ8に更に高周波の電流を流すことができる。そのため、モータ8の巻線インピーダンス増加による巻線電流の低減によりインバータ部9に流入する電流を低減し、より高効率なヒートポンプ装置を得ることが可能となる。 Further, since wide band gap semiconductors are used for the switching elements 27a to 27f, switching at a high frequency is possible, so that a higher frequency current can be supplied to the motor 8. Therefore, the current flowing into the inverter unit 9 can be reduced by reducing the winding current due to the increase in the winding impedance of the motor 8, and a more efficient heat pump device can be obtained.
 実施の形態1で説明したように本発明のヒートポンプ装置では、切換部による補正制御により低速運転時においても安定した動作が可能であるが、たとえセンサ情報を正確に取得しても、低速、高負荷の場合に、多量の電流が流れると素子損失が増大し、高温動作となってしまう。 As described in the first embodiment, the heat pump device according to the present invention can operate stably even during low-speed operation by correction control by the switching unit. In the case of a load, if a large amount of current flows, the element loss increases, resulting in high temperature operation.
 しかし、スイッチング素子にワイドバンドギャップ半導体、特にSiCデバイスを使用することで、従来のSiデバイスを用いる場合に比べて素子損失を抑制しつつ多量の電流を流すことができる。そのため、温度の上昇を抑制し、冷却装置または放熱フィンを小型化し、または削除することが可能となる。 However, by using a wide bandgap semiconductor, particularly an SiC device, as the switching element, a large amount of current can flow while suppressing element loss as compared with the case of using a conventional Si device. Therefore, the temperature rise can be suppressed, and the cooling device or the heat radiation fin can be downsized or deleted.
 なお、スイッチング素子27a~27fの構成としては、IGBT(Insulated Gate Bipolar Transistor)、スーパージャンクション構造のパワーMOSFETなどを例示することができるが、これらに限定されず、その他の絶縁ゲート半導体素子またはバイポーラトランジスタを用いてもよい。 Examples of the configuration of the switching elements 27a to 27f include an IGBT (Insulated Gate Bipolar Transistor), a power MOSFET having a super junction structure, and the like, but are not limited thereto, and other insulated gate semiconductor elements or bipolar transistors May be used.
 なお、インバータ部9に備えられたスイッチング素子27a~27fのダイオードのみをワイドバンドギャップ半導体としてもよい。また、スイッチング素子27a~27fに設けられるスイッチング素子の一部(少なくとも1つ)のみにワイドバンドギャップ半導体を用いてもよい。一部の素子にのみワイドバンドギャップ半導体を適用した場合にも上記の効果を得ることができる。 Note that only the diodes of the switching elements 27a to 27f provided in the inverter unit 9 may be wide band gap semiconductors. Further, a wide band gap semiconductor may be used for only a part (at least one) of the switching elements provided in the switching elements 27a to 27f. The above effect can also be obtained when a wide bandgap semiconductor is applied to only some elements.
実施の形態3.
 本実施の形態では、実施の形態1及び2にて説明したヒートポンプ装置100を適用した機器(空気調和機または冷凍機など)について説明する。
Embodiment 3 FIG.
In this embodiment, a device (such as an air conditioner or a refrigerator) to which the heat pump device 100 described in Embodiments 1 and 2 is applied will be described.
 図9-1及び図9-2は、ヒートポンプ装置100を備えた機器の一構成例を示す図である。図9-1は暖房運転時の一構成例を示し、図9-2は冷房運転時の一構成例を示す。なお、図9-1と図9-2では冷媒の循環方向が異なり、この切り換えは後述する四方弁57により行われる。図10は、図9-1及び図9-2に示したヒートポンプ装置100の冷媒の状態についてのモリエル線図を示す図である。図10において、横軸は比エンタルピhであり、縦軸は冷媒圧力Pである。 FIGS. 9-1 and 9-2 are diagrams illustrating a configuration example of a device including the heat pump device 100. FIG. FIG. 9-1 shows a configuration example during heating operation, and FIG. 9-2 shows a configuration example during cooling operation. Note that the refrigerant circulation direction is different between FIGS. 9-1 and 9-2, and this switching is performed by a four-way valve 57 described later. FIG. 10 is a diagram illustrating a Mollier diagram regarding the state of the refrigerant in the heat pump apparatus 100 illustrated in FIGS. 9-1 and 9-2. In FIG. 10, the horizontal axis is the specific enthalpy h, and the vertical axis is the refrigerant pressure P.
 圧縮機49、熱交換器50、膨張機構51、レシーバ52、内部熱交換器53、膨張機構54及び熱交換器55は、それぞれ配管によって接続されており、該配管を冷媒が循環する主冷媒回路を構成している。該主冷媒回路は、図9-1及び図9-2のそれぞれにおいて、主冷媒回路56a~56kに区分けされている。なお、圧縮機49の吐出側には四方弁57が設けられており、冷媒の循環方向の切り替えが可能である。また、熱交換器55の近傍には、ファン58が設けられている。 The compressor 49, the heat exchanger 50, the expansion mechanism 51, the receiver 52, the internal heat exchanger 53, the expansion mechanism 54, and the heat exchanger 55 are connected to each other by a pipe, and a main refrigerant circuit in which the refrigerant circulates through the pipe. Is configured. The main refrigerant circuit is divided into main refrigerant circuits 56a to 56k in FIGS. 9-1 and 9-2, respectively. A four-way valve 57 is provided on the discharge side of the compressor 49, and the refrigerant circulation direction can be switched. A fan 58 is provided in the vicinity of the heat exchanger 55.
 圧縮機49は、実施の形態1及び2における圧縮機1に相当し(図1参照)、インバータ部9によって駆動されるモータ8及び圧縮機構7を有する。さらに、ヒートポンプ装置100には、レシーバ52と内部熱交換器53の間から圧縮機49のインジェクションパイプまでを接続するインジェクション回路60a~60c(太線にて表す。)が備えられている。インジェクション回路60a~60cには、膨張機構59と内部熱交換器53が接続されている。 The compressor 49 corresponds to the compressor 1 in the first and second embodiments (see FIG. 1), and includes a motor 8 and a compression mechanism 7 driven by the inverter unit 9. Furthermore, the heat pump device 100 is provided with injection circuits 60a to 60c (shown by bold lines) that connect between the receiver 52 and the internal heat exchanger 53 to the injection pipe of the compressor 49. An expansion mechanism 59 and an internal heat exchanger 53 are connected to the injection circuits 60a to 60c.
 熱交換器50には、水回路61a及び水回路61bにより構成される水回路(太線にて表す。)が接続され、水が循環している。なお、水回路61a及び水回路61bには、給湯器、ラジエータまたは床暖房などが備える放熱器などの水を利用する装置が接続されている。 A water circuit (represented by a thick line) composed of a water circuit 61a and a water circuit 61b is connected to the heat exchanger 50, and water is circulated. The water circuit 61a and the water circuit 61b are connected to a device that uses water, such as a radiator provided in a water heater, a radiator, or floor heating.
 次に、ヒートポンプ装置100の動作について説明する。まず、ヒートポンプ装置100が暖房運転する際(給湯器として運転する際)の動作について、図9-1を参照して説明する。 Next, the operation of the heat pump apparatus 100 will be described. First, the operation when the heat pump device 100 performs a heating operation (when operated as a water heater) will be described with reference to FIG.
 まず、圧縮機49で気相状態の冷媒が圧縮されることで高温高圧状態となる(図10の点A)。 First, the refrigerant in the gas phase is compressed by the compressor 49 to be in a high temperature and high pressure state (point A in FIG. 10).
 そして、高温高圧状態の冷媒は、圧縮機49から主冷媒回路56aに吐出される。主冷媒回路56aの冷媒は四方弁57へと移送され、四方弁57を経由した主冷媒回路56bの冷媒は熱交換器50へと移送される。移送された主冷媒回路56bの冷媒は、熱交換器50で熱交換により冷却されて液化する(図10の点B)。すなわち、熱交換器50は、主冷媒回路において凝縮器であり放熱器として機能する。このとき、水回路61aの水は、主冷媒回路の冷媒から放熱された熱によって温められる。温められた水回路61bの水は、暖房または給湯などに利用される。 The high-temperature and high-pressure refrigerant is discharged from the compressor 49 to the main refrigerant circuit 56a. The refrigerant in the main refrigerant circuit 56 a is transferred to the four-way valve 57, and the refrigerant in the main refrigerant circuit 56 b that passes through the four-way valve 57 is transferred to the heat exchanger 50. The transferred refrigerant in the main refrigerant circuit 56b is cooled and liquefied by heat exchange in the heat exchanger 50 (point B in FIG. 10). That is, the heat exchanger 50 is a condenser and functions as a radiator in the main refrigerant circuit. At this time, the water in the water circuit 61a is warmed by the heat radiated from the refrigerant in the main refrigerant circuit. The water in the heated water circuit 61b is used for heating or hot water supply.
 熱交換器50で液化された主冷媒回路56cの冷媒は、膨張機構51へと移送され、膨張機構51で減圧されることで、気液二相状態になる(図10の点C)。 The refrigerant in the main refrigerant circuit 56c liquefied by the heat exchanger 50 is transferred to the expansion mechanism 51, and is decompressed by the expansion mechanism 51 to be in a gas-liquid two-phase state (point C in FIG. 10).
 気液二相状態の主冷媒回路56dの冷媒は、レシーバ52へと移送され、レシーバ52で圧縮機49に移送される冷媒(主冷媒回路56jから主冷媒回路56kに移送される冷媒)と熱交換され、冷却されて液化する(図10の点D)。 The refrigerant in the main refrigerant circuit 56d in the gas-liquid two-phase state is transferred to the receiver 52, transferred to the compressor 49 by the receiver 52 (refrigerant transferred from the main refrigerant circuit 56j to the main refrigerant circuit 56k), and heat. It is exchanged, cooled and liquefied (point D in FIG. 10).
 レシーバ52で液化された主冷媒回路56eの冷媒は、図9-1の点Pにおいて、主冷媒回路56fとインジェクション回路60aに分岐する。主冷媒回路56fから内部熱交換機53に流れる冷媒は、内部熱交換器53において、インジェクション回路60bからインジェクション回路60cに移送される冷媒と熱交換されてさらに冷却される(図10の点E)。なお、インジェクション回路60bを流れる冷媒は、膨張機構59で減圧されて気液二相状態である。 The refrigerant in the main refrigerant circuit 56e liquefied by the receiver 52 branches to the main refrigerant circuit 56f and the injection circuit 60a at a point P in FIG. The refrigerant flowing from the main refrigerant circuit 56f to the internal heat exchanger 53 is further cooled in the internal heat exchanger 53 by heat exchange with the refrigerant transferred from the injection circuit 60b to the injection circuit 60c (point E in FIG. 10). The refrigerant flowing through the injection circuit 60b is decompressed by the expansion mechanism 59 and is in a gas-liquid two-phase state.
 内部熱交換器53で冷却された主冷媒回路56gの冷媒は、膨張機構54へと移送されて減圧され、気液二相状態になる(図10の点F)。 The refrigerant in the main refrigerant circuit 56g cooled by the internal heat exchanger 53 is transferred to the expansion mechanism 54 and depressurized to be in a gas-liquid two-phase state (point F in FIG. 10).
 膨張機構54で気液二相状態になった主冷媒回路56hの冷媒は、熱交換器55に移送され、熱交換器55において外気と熱交換され、加熱される(図10の点G)。すなわち、熱交換器55は主冷媒回路において蒸発器として機能する。 The refrigerant in the main refrigerant circuit 56h, which has been in the gas-liquid two-phase state by the expansion mechanism 54, is transferred to the heat exchanger 55, exchanged with the outside air in the heat exchanger 55, and heated (point G in FIG. 10). That is, the heat exchanger 55 functions as an evaporator in the main refrigerant circuit.
 そして、熱交換器55で加熱された主冷媒回路56iの冷媒は、四方弁57へと移送され、四方弁57を経由した主冷媒回路56jの冷媒はレシーバ52へと移送されてレシーバ52でさらに加熱され(図10の点H)、加熱された主冷媒回路56kの冷媒は圧縮機49に移送される。 The refrigerant in the main refrigerant circuit 56 i heated by the heat exchanger 55 is transferred to the four-way valve 57, and the refrigerant in the main refrigerant circuit 56 j passing through the four-way valve 57 is transferred to the receiver 52 and further received by the receiver 52. Heated (point H in FIG. 10), the heated refrigerant in the main refrigerant circuit 56k is transferred to the compressor 49.
 一方、点Pにて分岐したインジェクション回路60aの冷媒(インジェクション冷媒(図10の点D))は、膨張機構59で減圧され(図10の点I)、減圧されたインジェクション回路60bの冷媒は、内部熱交換器53で熱交換され、気液二相状態となる(図10の点J)。内部熱交換器53で熱交換されたインジェクション回路60cの冷媒は、圧縮機49のインジェクションパイプから圧縮機49内へ移送される。 On the other hand, the refrigerant in the injection circuit 60a branched at the point P (injection refrigerant (point D in FIG. 10)) is decompressed by the expansion mechanism 59 (point I in FIG. 10), and the decompressed refrigerant in the injection circuit 60b is Heat exchange is performed by the internal heat exchanger 53, and a gas-liquid two-phase state is obtained (point J in FIG. 10). The refrigerant in the injection circuit 60 c heat-exchanged by the internal heat exchanger 53 is transferred from the injection pipe of the compressor 49 into the compressor 49.
 圧縮機49では、主冷媒回路56kからの冷媒(図10の点H)が、中間圧まで圧縮され、加熱される(図10の点K)。中間圧まで圧縮され、加熱された主冷媒回路56kからの冷媒はインジェクション回路60cの冷媒(図10の点J)と合流し、主冷媒回路56kからの冷媒の温度は低下する(図10の点L)。そして、温度が低下した冷媒(図11の点L)が、圧縮機49によりさらに圧縮され、加熱されて高温高圧となり(図10の点A)、圧縮機49から主冷媒回路56aに吐出される。 In the compressor 49, the refrigerant (point H in FIG. 10) from the main refrigerant circuit 56k is compressed to an intermediate pressure and heated (point K in FIG. 10). The refrigerant from the main refrigerant circuit 56k that has been compressed and heated to the intermediate pressure merges with the refrigerant in the injection circuit 60c (point J in FIG. 10), and the temperature of the refrigerant from the main refrigerant circuit 56k decreases (point in FIG. 10). L). Then, the refrigerant whose temperature has decreased (point L in FIG. 11) is further compressed by the compressor 49, heated to high temperature and high pressure (point A in FIG. 10), and discharged from the compressor 49 to the main refrigerant circuit 56a. .
 なお、本発明のヒートポンプ装置100は、インジェクション運転を行わなくてもよい。インジェクション運転を行わない場合には、膨張機構59を閉じ、圧縮機49のインジェクションパイプへ冷媒を流入させなければよい。なお、膨張機構59の開度は、マイコンなどにより制御すればよい。 In addition, the heat pump apparatus 100 of this invention does not need to perform an injection driving | operation. When the injection operation is not performed, the expansion mechanism 59 should be closed and the refrigerant should not flow into the injection pipe of the compressor 49. Note that the opening degree of the expansion mechanism 59 may be controlled by a microcomputer or the like.
 次に、ヒートポンプ装置100が冷房運転する際(冷凍器として運転する際)の動作について、図10-2を参照して説明する。 Next, the operation of the heat pump device 100 when performing a cooling operation (when operating as a freezer) will be described with reference to FIG. 10-2.
 まず、圧縮機49で気相状態の冷媒が圧縮されることで高温高圧となる(図10の点A)。 First, the refrigerant in the gas phase is compressed by the compressor 49, resulting in a high temperature and high pressure (point A in FIG. 10).
 そして、高温高圧状態の冷媒は、圧縮機49から主冷媒回路56aに吐出され、四方弁57を経由し、四方弁57を経由した主冷媒回路56bの冷媒は熱交換器55へと移送される。移送された主冷媒回路56bの冷媒は、熱交換器55で熱交換により冷却されて液化する(図10の点B)。すなわち、熱交換器55は、主冷媒回路において凝縮器及び放熱器として機能する。 The high-temperature and high-pressure refrigerant is discharged from the compressor 49 to the main refrigerant circuit 56a, passes through the four-way valve 57, and the refrigerant in the main refrigerant circuit 56b that passes through the four-way valve 57 is transferred to the heat exchanger 55. . The transferred refrigerant in the main refrigerant circuit 56b is cooled and liquefied by heat exchange in the heat exchanger 55 (point B in FIG. 10). That is, the heat exchanger 55 functions as a condenser and a radiator in the main refrigerant circuit.
 熱交換器55で液化された主冷媒回路56cの冷媒は、膨張機構54へと移送されて減圧されることで、気液二相状態になる(図10の点C)。 The refrigerant in the main refrigerant circuit 56c liquefied by the heat exchanger 55 is transferred to the expansion mechanism 54 and depressurized, so that it enters a gas-liquid two-phase state (point C in FIG. 10).
 気液二相状態になった主冷媒回路56dの冷媒は、内部熱交換器53へと移送され、内部熱交換器53でインジェクション回路60bからインジェクション回路60cへと移送される冷媒と熱交換され、冷却されて液化する(図10の点D)。ここで、インジェクション回路60bから移送される冷媒は、膨張機構59で減圧されて気液二相状態である(図10の点I)。内部熱交換器53で熱交換された主冷媒回路56eの冷媒(図10の点D)は、図9-2の点Pにおいて、主冷媒回路56fとインジェクション回路60aに分岐する。 The refrigerant in the main refrigerant circuit 56d in the gas-liquid two-phase state is transferred to the internal heat exchanger 53, and heat is exchanged with the refrigerant transferred from the injection circuit 60b to the injection circuit 60c in the internal heat exchanger 53. It is cooled and liquefied (point D in FIG. 10). Here, the refrigerant transferred from the injection circuit 60b is decompressed by the expansion mechanism 59 and is in a gas-liquid two-phase state (point I in FIG. 10). The refrigerant (point D in FIG. 10) of the main refrigerant circuit 56e heat-exchanged by the internal heat exchanger 53 branches into the main refrigerant circuit 56f and the injection circuit 60a at a point P in FIG. 9-2.
 主冷媒回路56fの冷媒は、レシーバ52において、主冷媒回路56jから主冷媒回路56kに移送される冷媒と熱交換されて、さらに冷却される(図10の点E)。 In the receiver 52, the refrigerant in the main refrigerant circuit 56f is heat-exchanged with the refrigerant transferred from the main refrigerant circuit 56j to the main refrigerant circuit 56k and further cooled (point E in FIG. 10).
 レシーバ52で冷却された主冷媒回路56gの冷媒は、膨張機構51で減圧されて気液二相状態になる(図10の点F)。 The refrigerant in the main refrigerant circuit 56g cooled by the receiver 52 is decompressed by the expansion mechanism 51 and enters a gas-liquid two-phase state (point F in FIG. 10).
 膨張機構51で気液二相状態になった主冷媒回路56hの冷媒は、熱交換器50で熱交換され、加熱される(図10の点G)。このとき、水回路61aの水は冷却され、冷却された水回路61bの水は、冷房または冷凍に利用される。すなわち、熱交換器50は、主冷媒回路において蒸発器として機能する。 The refrigerant in the main refrigerant circuit 56h that has been in the gas-liquid two-phase state by the expansion mechanism 51 is heat-exchanged by the heat exchanger 50 and heated (point G in FIG. 10). At this time, the water in the water circuit 61a is cooled, and the cooled water in the water circuit 61b is used for cooling or freezing. That is, the heat exchanger 50 functions as an evaporator in the main refrigerant circuit.
 そして、熱交換器50で加熱された主冷媒回路56iの冷媒は四方弁57を経由し、四方弁57を経由した主冷媒回路56jの冷媒はレシーバ52へ流入し、さらに加熱される(図10の点H)。レシーバ52で加熱された主冷媒回路56kの冷媒は、圧縮機49に移送される。 The refrigerant in the main refrigerant circuit 56i heated by the heat exchanger 50 passes through the four-way valve 57, and the refrigerant in the main refrigerant circuit 56j that passes through the four-way valve 57 flows into the receiver 52 and is further heated (FIG. 10). Point H). The refrigerant in the main refrigerant circuit 56k heated by the receiver 52 is transferred to the compressor 49.
 一方、図9-2の点Pにて分岐したインジェクション回路60aの冷媒は、膨張機構59で減圧される(図10の点I)。膨張機構59で減圧されたインジェクション回路60bの冷媒は、内部熱交換器53で熱交換されて気液二相状態となる(図10の点J)。そして、内部熱交換器53で熱交換されたインジェクション回路60cの冷媒は、圧縮機49のインジェクションパイプから圧縮機49内へ移送される。その後の圧縮機49における圧縮動作は、暖房運転時と同様である。すなわち、圧縮され、加熱されて高温高圧となった冷媒(図10の点A)が、圧縮機49から主冷媒回路56aに吐出される。 On the other hand, the refrigerant in the injection circuit 60a branched at point P in FIG. 9-2 is decompressed by the expansion mechanism 59 (point I in FIG. 10). The refrigerant in the injection circuit 60b decompressed by the expansion mechanism 59 is heat-exchanged by the internal heat exchanger 53 to be in a gas-liquid two-phase state (point J in FIG. 10). Then, the refrigerant of the injection circuit 60 c heat-exchanged by the internal heat exchanger 53 is transferred from the injection pipe of the compressor 49 into the compressor 49. The subsequent compression operation in the compressor 49 is the same as in the heating operation. That is, the refrigerant that has been compressed and heated to a high temperature and high pressure (point A in FIG. 10) is discharged from the compressor 49 to the main refrigerant circuit 56a.
 なお、インジェクション運転を行わない場合には、膨張機構59を閉じ、圧縮機49のインジェクションパイプへ冷媒を流入させなければよい。なお、膨張機構59の開度は、マイコンなどにより制御すればよい。 If the injection operation is not performed, the expansion mechanism 59 should be closed and the refrigerant should not flow into the injection pipe of the compressor 49. Note that the opening degree of the expansion mechanism 59 may be controlled by a microcomputer or the like.
 なお、上記の説明では、熱交換器50は、主冷媒回路の冷媒と水回路の水を熱交換させる熱交換器(例えば、プレート式熱交換器)であるとして説明した。しかし、熱交換器50は、これに限定されず、冷媒と空気を熱交換させるものであってもよい。また、水回路には、水ではなく、他の流体が流れていてもよい。 In the above description, the heat exchanger 50 is described as being a heat exchanger (for example, a plate heat exchanger) that exchanges heat between the refrigerant in the main refrigerant circuit and the water in the water circuit. However, the heat exchanger 50 is not limited to this, and may exchange heat between the refrigerant and the air. Further, other fluid may flow in the water circuit instead of water.
 以上説明したように、本発明にかかるヒートポンプ装置は、空気調和機及び冷凍機などのインバータ圧縮機を用いた様々なヒートポンプ装置に適用することができる。なお、これに限定されず、本発明にかかるヒートポンプ装置は、ヒートポンプ給湯機及び冷蔵庫に適用することも可能である。 As described above, the heat pump device according to the present invention can be applied to various heat pump devices using inverter compressors such as air conditioners and refrigerators. In addition, it is not limited to this, The heat pump apparatus concerning this invention can also be applied to a heat pump water heater and a refrigerator.
 1,49 圧縮機、2,57 四方弁、3,5,50,55 熱交換器、4,51,54,59 膨張機構、6 冷媒配管、7 圧縮機構、8 モータ、9 インバータ部、10 インバータ制御部、11 冷媒圧縮運転モード制御部、12 d軸,q軸電流検出部、13 電圧指令演算部、14 駆動信号生成部、15 振幅位相決定部、16 回転数及び負荷演算部、16a テーブル、17 フィルタ機能付検出回路、18 相電流演算部、19 3相2相変換部、20 冷凍サイクル部、24 PWM信号生成部、25 2相3相変換部、26a,26b 電流センサ、27a~27f スイッチング素子、30 フィルタ機能付検出回路切換部、31 二次側抵抗切換部、34 モータ電流波形、35 ACCTの出力波形、40,40a アンプ出力波形、41,41a 実電流波形、42,42a ACCT出力波形、43a,43b 抵抗素子、44 増幅器、45 マイコン、52 レシーバ、53 内部熱交換器、56a~56k 主冷媒回路、58 ファン、60a~60c インジェクション回路、61a,61b 水回路、100 ヒートポンプ装置、S1~S3 ステップ。 1,49 compressor, 2,57 four-way valve, 3, 5, 50, 55 heat exchanger, 4, 51, 54, 59 expansion mechanism, 6 refrigerant piping, 7 compression mechanism, 8 motor, 9 inverter unit, 10 inverter Control unit, 11 refrigerant compression operation mode control unit, 12 d-axis, q-axis current detection unit, 13 voltage command calculation unit, 14 drive signal generation unit, 15 amplitude phase determination unit, 16 rotation speed and load calculation unit, 16a table, 17 Detection circuit with filter function, 18 phase current calculation unit, 19 3 phase 2 phase conversion unit, 20 refrigeration cycle unit, 24 PWM signal generation unit, 25 2 phase 3 phase conversion unit, 26a, 26b current sensor, 27a-27f switching Element, 30 detection circuit switching unit with filter function, 31 secondary side resistance switching unit, 34 motor current waveform, 35 ACCT output waveform, 4 , 40a amplifier output waveform, 41, 41a actual current waveform, 42, 42a ACCT output waveform, 43a, 43b resistance element, 44 amplifier, 45 microcomputer, 52 receiver, 53 internal heat exchanger, 56a-56k main refrigerant circuit, 58 fan , 60a-60c injection circuit, 61a, 61b water circuit, 100 heat pump device, S1-S3 steps.

Claims (8)

  1.  モータにより駆動され、冷媒を圧縮する圧縮機と、
     前記モータに電圧を印加するインバータ部と、
     前記モータに流れる電流を検出し、抵抗値の異なる2つの二次側抵抗を含む電流センサと、
     前記インバータ部へ駆動信号を出力するインバータ制御部と、を備え、
     前記インバータ制御部は、
     前記電流センサが検出した電流を入力する電流検出部と、
     前記電流検出部からの信号に基づいて電圧指令値を算出する電圧指令演算部と、
     前記電圧指令値に基づいて前記駆動信号を生成する駆動信号生成部と、
     前記モータの回転数及び負荷を演算する回転数及び負荷と、を備え、
     前記駆動信号生成部は、
     前記電流センサからの信号により前記圧縮機の必要冷媒圧縮量を決定し、前記必要冷媒圧縮量から振幅と位相を決定して前記駆動信号生成部に前記駆動信号を生成させる振幅位相決定部を備え、
     前記電流検出部は、フィルタ回路及び検出回路を含み、高調波ノイズを除去するフィルタ機能付検出回路を備え、
     前記回転数及び負荷演算部は、前記モータの回転数または負荷が設定値以下であるか否かに応じて、前記フィルタ機能付検出回路のフィルタ回路及び検出回路の切り換えを行い、
     前記モータの回転数または負荷が設定値以下である場合には、前記フィルタ機能付検出回路の出力信号の位相差を補正するヒートポンプ装置。
    A compressor driven by a motor to compress the refrigerant;
    An inverter for applying a voltage to the motor;
    A current sensor that detects current flowing in the motor and includes two secondary resistances having different resistance values;
    An inverter control unit that outputs a drive signal to the inverter unit,
    The inverter control unit
    A current detector for inputting the current detected by the current sensor;
    A voltage command calculation unit that calculates a voltage command value based on a signal from the current detection unit;
    A drive signal generator for generating the drive signal based on the voltage command value;
    A rotational speed and a load for calculating the rotational speed and load of the motor,
    The drive signal generator is
    An amplitude phase determining unit that determines a necessary refrigerant compression amount of the compressor based on a signal from the current sensor, determines an amplitude and a phase from the necessary refrigerant compression amount, and causes the drive signal generation unit to generate the drive signal; ,
    The current detection unit includes a filter circuit and a detection circuit, and includes a detection circuit with a filter function for removing harmonic noise,
    The rotation speed and load calculation unit performs switching between the filter circuit and the detection circuit of the detection circuit with a filter function according to whether the rotation speed or load of the motor is equal to or less than a set value,
    A heat pump device that corrects a phase difference of an output signal of the detection circuit with a filter function when a rotation speed or a load of the motor is equal to or less than a set value.
  2.  前記インバータ制御部は記憶領域を有し、
     前記記憶領域には、前記電流センサの前記二次側抵抗の抵抗値に応じた補正信号が記憶されていることを特徴とする請求項1に記載のヒートポンプ装置。
    The inverter control unit has a storage area,
    The heat pump apparatus according to claim 1, wherein a correction signal corresponding to a resistance value of the secondary resistance of the current sensor is stored in the storage area.
  3.  前記フィルタ機能付検出回路のフィルタ回路は、前記電流センサからの信号の高調波ノイズを除去または低減するデジタルフィルタまたはアナログフィルタであることを特徴とする請求項1または請求項2に記載のヒートポンプ装置。 The heat pump device according to claim 1 or 2, wherein the filter circuit of the detection circuit with a filter function is a digital filter or an analog filter that removes or reduces harmonic noise of a signal from the current sensor. .
  4.  前記インバータ部に備えられたスイッチング素子のうち、少なくとも1つがワイドバンドギャップ半導体で形成されていることを特徴とする請求項1乃至請求項3のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 3, wherein at least one of the switching elements provided in the inverter unit is formed of a wide band gap semiconductor.
  5.  前記インバータ部に備えられたスイッチング素子を構成するダイオードが、ワイドバンドギャップ半導体で形成されていることを特徴とする請求項1乃至請求項3のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 3, wherein a diode constituting the switching element provided in the inverter unit is formed of a wide band gap semiconductor.
  6.  前記ワイドバンドギャップ半導体は、
     炭化珪素、窒化ガリウム系材料又はダイヤモンドであることを特徴とする請求項4または請求項5に記載のヒートポンプ装置。
    The wide band gap semiconductor is
    6. The heat pump device according to claim 4, wherein the heat pump device is silicon carbide, gallium nitride-based material, or diamond.
  7.  請求項1乃至請求項6のいずれか一項に記載のヒートポンプ装置を備える空気調和機。 An air conditioner including the heat pump device according to any one of claims 1 to 6.
  8.  請求項1乃至請求項6のいずれか一項に記載のヒートポンプ装置を備える冷凍機。 A refrigerator equipped with the heat pump device according to any one of claims 1 to 6.
PCT/JP2013/059350 2013-03-28 2013-03-28 Heat pump device, air conditioner, and freezer WO2014155622A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015507817A JP6480859B2 (en) 2013-03-28 2013-03-28 Heat pump device, air conditioner and refrigerator
PCT/JP2013/059350 WO2014155622A1 (en) 2013-03-28 2013-03-28 Heat pump device, air conditioner, and freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059350 WO2014155622A1 (en) 2013-03-28 2013-03-28 Heat pump device, air conditioner, and freezer

Publications (1)

Publication Number Publication Date
WO2014155622A1 true WO2014155622A1 (en) 2014-10-02

Family

ID=51622695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059350 WO2014155622A1 (en) 2013-03-28 2013-03-28 Heat pump device, air conditioner, and freezer

Country Status (2)

Country Link
JP (1) JP6480859B2 (en)
WO (1) WO2014155622A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078824A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Drive device, motor system, and air conditioner
JP2018165710A (en) * 2017-03-28 2018-10-25 三井精機工業株式会社 Machine tool and compressor
KR20200057912A (en) * 2018-11-19 2020-05-27 엘지전자 주식회사 Motor driving apparatus and home appliance including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238497A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Drive control unit of induction motor
JP2004350496A (en) * 2003-04-30 2004-12-09 Matsushita Electric Ind Co Ltd Motor driving device
JP3612636B2 (en) * 1996-09-18 2005-01-19 有限会社シー・アンド・エス国際研究所 Vector control method for synchronous motor
JP2006174681A (en) * 2004-12-10 2006-06-29 C & S Kokusai Kenkyusho:Kk Vector control method for synchronous motor
WO2008065719A1 (en) * 2006-11-29 2008-06-05 Mitsubishi Electric Corporation Controller of ac rotating machine
JP2010130731A (en) * 2008-11-25 2010-06-10 Samsung Electronics Co Ltd Motor controller
WO2013014798A1 (en) * 2011-07-28 2013-01-31 三菱電機株式会社 Motor control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103685A (en) * 1986-10-16 1988-05-09 Fuji Electric Co Ltd Current detector for induction motor
JP5438401B2 (en) * 2009-07-08 2014-03-12 株式会社日本サーモエナー Hybrid hot water supply system and operation control method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612636B2 (en) * 1996-09-18 2005-01-19 有限会社シー・アンド・エス国際研究所 Vector control method for synchronous motor
JP2001238497A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Drive control unit of induction motor
JP2004350496A (en) * 2003-04-30 2004-12-09 Matsushita Electric Ind Co Ltd Motor driving device
JP2006174681A (en) * 2004-12-10 2006-06-29 C & S Kokusai Kenkyusho:Kk Vector control method for synchronous motor
WO2008065719A1 (en) * 2006-11-29 2008-06-05 Mitsubishi Electric Corporation Controller of ac rotating machine
JP2010130731A (en) * 2008-11-25 2010-06-10 Samsung Electronics Co Ltd Motor controller
WO2013014798A1 (en) * 2011-07-28 2013-01-31 三菱電機株式会社 Motor control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078824A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Drive device, motor system, and air conditioner
JPWO2018078824A1 (en) * 2016-10-28 2019-03-22 三菱電機株式会社 Drive device, motor system and air conditioner
JP2018165710A (en) * 2017-03-28 2018-10-25 三井精機工業株式会社 Machine tool and compressor
KR20200057912A (en) * 2018-11-19 2020-05-27 엘지전자 주식회사 Motor driving apparatus and home appliance including the same

Also Published As

Publication number Publication date
JP6480859B2 (en) 2019-03-13
JPWO2014155622A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5968531B2 (en) HEAT PUMP DEVICE AND AIR CONDITIONER, HEAT PUMP HOT WATER, REFRIGERATOR, AND REFRIGERATOR HAVING THE SAME
JP5490249B2 (en) HEAT PUMP DEVICE, HEAT PUMP SYSTEM, AND INVERTER CONTROL METHOD
US9746216B2 (en) Heat pump device, heat pump system, air conditioner, and freezer
JP5490260B2 (en) HEAT PUMP DEVICE, HEAT PUMP SYSTEM, AND INVERTER CONTROL METHOD
EP2703748B1 (en) Heat pump device, and a method for controlling an inveter in a heat pump device
JP5795085B2 (en) Heat pump device, air conditioner and refrigerator
US11114970B2 (en) Motor driver, heat pump system and refrigeration and air conditioning equipment using motor driver
CN108093675B (en) Motor drive device, heat pump device using motor drive device, and refrigerating and air-conditioning device
US9903629B2 (en) Heat pump device, air conditioner, and freezer
KR20180021141A (en) Power conversion device and heat pump device
JP7105961B2 (en) Motor drive device and refrigeration cycle application equipment
WO2014049867A1 (en) Heat pump device, air-conditioner, and refrigerator
JP6480859B2 (en) Heat pump device, air conditioner and refrigerator
JP6309173B2 (en) Motor drive device, heat pump device using the motor drive device, refrigeration air conditioner, and blower
US11264924B2 (en) Motor driving apparatus and refrigeration cycle equipment
JP7150137B2 (en) Motor drive device and refrigeration cycle application equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880395

Country of ref document: EP

Kind code of ref document: A1