WO2014154405A1 - Heat engine and method for operating a heat engine - Google Patents

Heat engine and method for operating a heat engine Download PDF

Info

Publication number
WO2014154405A1
WO2014154405A1 PCT/EP2014/053520 EP2014053520W WO2014154405A1 WO 2014154405 A1 WO2014154405 A1 WO 2014154405A1 EP 2014053520 W EP2014053520 W EP 2014053520W WO 2014154405 A1 WO2014154405 A1 WO 2014154405A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heat
heat engine
engine
pumping
Prior art date
Application number
PCT/EP2014/053520
Other languages
German (de)
French (fr)
Inventor
Bernd Gromoll
Florian REISSNER
Jochen SCHÄFER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2014154405A1 publication Critical patent/WO2014154405A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the invention relates to a heat engine with a fluid having at least one condensation device for condensing the fluid, with at least one expansion device for expanding the fluid, with at least one evaporation device for evaporating the fluid and with at least one pump device for pumping the fluid.
  • the invention also relates to a method for operating such a heat engine.
  • a heat engine of the type mentioned is ge ⁇ uses to generate from thermal energy (heat) electric power.
  • the heat required to operate a steam turbine can be provided at high temperatures (> 300 ° C).
  • high temperatures > 300 ° C
  • water can be used as a fluid in heat engines.
  • only low temperatures are present, such.
  • water can no longer be used efficiently as a fluid from a thermody- namic point of view, so other fluids are better suited. In other words, other fluids than water must be used.
  • the object of the present invention is to provide a varnishkraftma ⁇ machine of the aforementioned type, and a method for operating such a heat engine in which fluids can be used, which are environmentally friendly and safety concern.
  • the heat engine according to the invention comprises a fluid which is a fluoroketone or a mixture of at least two fluoroketones.
  • fluoroketones or a mixture of fluoroketones in the heat engine produces a nied ⁇ rigerer amount of equipment for the heat engine, as in the use of conventional fluids. Since the pressure level in the heat engine in the use of fluoroketones, or the mixture of several fluoroketones is less than known from the prior art fluids, the heat engine can accordingly be placed from ⁇ for lower pressures, whereby delicate pressurized components can be executed. In other words, a lesser amount of material for operating the heat engine is required when fluoroketones, or their mixture are used as fluid.
  • Fluoroketones further we ⁇ the combustible nor are harmful or toxic, as it exits the Fluoroketones create no risk of de ⁇ flaming or toxic vapors. Accordingly, safety precautions, which would be erforder Lich in conventional fluids as resources of the heat engine, ie z. B. fire-fighting measures to be implemented with less effort. For example, in the case of a fire of the building containing the heat engine, it is not to be expected that the fluid if it is fluoroketone or its mixture, the fire should be intensified.
  • the heat engine operates according to the thermodynamic comparison process according to Rankine.
  • the Rankine thermodynamic comparison process is also referred to as the Organic Rankine Cycle (ORC).
  • ORC Organic Rankine Cycle
  • ORC technology contributes to the reduction of C0 2 emissions, energy costs and fossil fuels. In other words, at least a large part of the otherwise unused waste heat is no longer dissipated to the environment, but converted into another form of energy, which in turn is usable.
  • a heat exchanger transfers heat from egg definition ⁇ nem material flow higher to a material flow of lower temperature. Is located on one side of the Heat Transf ⁇ constricting surface of the heat exchanger, the cold after its expansion and above its condensation hot fluid and on the other side of the heat transfer surface after the condensation thereof and prior to its evaporation in the comparison,
  • the fluid can be particularly easily converted into an additive by the resulting heat exchange before it evaporates. be offset higher temperature.
  • the heat transfer is particularly effective when the fluid in the flow direction shortly after its expansion in an expansion device, ie, for. B. a turbine flows into the heat exchanger and dissipates a portion of its heat to the colder fluid on the other side of the heat exchanger. If the other side of the heat exchanger is arranged so that the heat is transferred to the colder fluid in the direction of flow shortly before the fluid enters the evaporation device, the heat losses are particularly low. In other words, a part of the generated process heat by means of fewer components and thus supplied ⁇ results in a particularly space- and consistssspa ⁇ -saving way to the fluid prior to evaporation.
  • the amount of heat is at least partially supplied to the fluid, in particular after passing through the pumping device and before its evaporation.
  • the pumping device can be operated particularly fail-safe. Passes through the supply of heat between the pumping means and the evaporation device, an at least partial phase change from the liquid phase to a gas phase of the fluid, it ⁇ follows no damage to the pumping means as a result of cavitation, because the heat supply in the direction of flow is carried out behind the pump means. Thus, the occurrence of cavitation phenomena in the pumping device can be particularly effectively prevented. If the heat transfer to the fluid also occurs shortly before it enters the evaporation device, the fluid already has a particularly high temperature before it enters the evaporator as a result of the heat supply. In other words, therefore, the thermal losses in the heat transfer to the fluid are particularly low. As further advantageous, it has been shown when the heat ⁇ transformer is designed as a regenerator.
  • a regenerator is also known as a heat ⁇ memory and usually has a particularly high heat ⁇ heat capacity. In other words, can be stored in a particularly effective Regenera ⁇ tor heat and be delivered via ei ⁇ nen particularly long period of a colder medium.
  • the heat engine can be used to utilize the waste heat of thermodynamic processes, in particular for utilizing the waste heat from industrial or geothermal processes.
  • waste heat as obtained in industrial plants, by a heat engine increases the Designwir ⁇ tion of the industrial plant particularly efficient.
  • the heat losses to the environment are significantly reduced because the waste heat at least in significant parts by the heat engine in another energy ⁇ form, z. B. electrical energy is converted.
  • the fluid or the mixture has an ozone depletion potential of zero.
  • the fluid has a global warming potential of less than 10.
  • fluoroketones or mixtures thereof as a fluid is particularly recommended.
  • fluoroketones are usually used as insulation gas and Feuerbeklampfungs ⁇ medium and have a value less than ten, a particularly low global warming potential.
  • Such operating materials for heat engines can be used particularly future-proof within the legal framework conditions.
  • this fluid is condensed tendonss we ⁇ a condenser means, expansion means of at least one expansion device, at least evaporated by an evaporator and pumped by at least one pump means.
  • a fluoroketone or the mixture of at least two fluoroketones is used as the fluid.
  • FIGURE schematically shows the execution ei ⁇ ner heat engine with a fluoroketone or a mixture of different fluoroketones as the fluid.
  • FIGG 1 schematically a cycle of a heat engine 1. The fluid is conveyed in a flow direction 7 by means of a pump 5 through the heat engine 1.
  • the fluid of the image plane is thus conveyed clockwise by the heat ⁇ combustion engine accordingly.
  • the fluid used can be, for example, one of the fluoroketones Novec 524 (C 5 F 10 O), Novec 649 (C 6 F 12 O) or Novec 774 (C 7 F 14 O) or a mixture thereof.
  • the fluid is conveyed by the pump 5 in the flow direction 7 through a heat exchanger, which is designed as a regenerator 6. After the passage of the fluid through the Rege ⁇ generator 6, the fluid enters an evaporation device, which is designed as an evaporator 4, and is evaporated there.
  • the vaporized fluid enters an expansion device, wel ⁇ che is designed as an expansion unit 3.
  • wel ⁇ onsaku 3 is a turbine, by means of which thermal energy is converted into mechanical energy, where ⁇ is reacted at the mechanical energy for example by driving a generator at least in essential parts into electrical energy.
  • the fluid After its expansion, the fluid enters the regenerator 6 in accordance with the direction of flow 7 and releases at least part of its heat to the regenerator 6.
  • the cooled fluid is supplied and condensed according to the flow direction 7 of a condenser, which is designed as a condenser 2.
  • the fluid After its condensation, the fluid is again supplied to the pump 5 in accordance with the flow direction 7, whereby the cycle of the heat engine 1 is closed.
  • the heat engine 1 works according to the Organic Rankine Cycle (ORC).
  • ORC Organic Rankine Cycle
  • a part of the heat of the fluid is at least ent ⁇ taken after it exits from the expansion unit 3 and supplied to the fluid prior to its entry into the evaporator. 4

Abstract

The invention relates to a heat engine (1) having a fluid. The heat engine (1) comprises at least one condensation device (2) for condensing the fluid, at least one expansion device (3) for expanding the fluid, at least one evaporation device (4) for evaporating the fluid, and at least one pump device (5) for pumping the fluid. The fluid is a fluoroketone or a mixture of at least two fluoroketones. The invention further relates to a method for operating a heat engine (1).

Description

Beschreibung description
Wärmekraftmaschine und Verfahren zum Betreiben einer Wärme¬ kraftmaschine Heat engine and method for operating a heat ¬ engine
Die Erfindung betrifft eine Wärmekraftmaschine mit einem Fluid mit wenigstens einer Kondensationseinrichtung zum Kondensieren des Fluids, mit wenigstens einer Expansionseinrichtung zum Expandieren des Fluids, mit wenigstens einer Ver- dampfungseinrichtung zum Verdampfen des Fluids und mit wenigstens einer Pumpeinrichtung zum Pumpen des Fluids. Die Erfindung betrifft auch ein Verfahren zum Betreiben einer solchen Wärmekraftmaschine. Eine Wärmekraftmaschine der eingangs genannten Art wird ge¬ nutzt, um aus thermischer Energie (Wärme) elektrischen Strom zu erzeugen. In Kraftwerken (z. B. Kohle- oder Nuklearkraftwerken) kann für die zum Betrieb einer Dampfturbine benötigte Wärme bei hohen Temperaturen (>300°C) bereitgestellt werden. Bei derart hohen Prozesstemperaturen kann Wasser als Fluid in Wärmekraftmaschinen eingesetzt werden. Sind jedoch nur niedrige Temperaturen vorhanden, wie z. B. bei industrieller Abwärme oder Geothermie, so kann Wasser als Fluid aus thermody- namischer Sicht nicht mehr effizient genutzt werden, weshalb andere Fluide besser geeignet sind. Mit anderen Worten müssen dann andere Fluide als Wasser eingesetzt werden. The invention relates to a heat engine with a fluid having at least one condensation device for condensing the fluid, with at least one expansion device for expanding the fluid, with at least one evaporation device for evaporating the fluid and with at least one pump device for pumping the fluid. The invention also relates to a method for operating such a heat engine. A heat engine of the type mentioned is ge ¬ uses to generate from thermal energy (heat) electric power. In power stations (eg coal or nuclear power plants), the heat required to operate a steam turbine can be provided at high temperatures (> 300 ° C). At such high process temperatures, water can be used as a fluid in heat engines. However, only low temperatures are present, such. For example, in industrial waste heat or geothermal energy, so water can no longer be used efficiently as a fluid from a thermody- namic point of view, so other fluids are better suited. In other words, other fluids than water must be used.
In diesen Wärmekraftmaschinen werden derzeit Fluide eingesetzt, die aus Aspekten des Umweltschutzes bedenklich sind, da sie ozonabbauend oder stark erderwärmend sind. So weisen diese Fluide oft ein Ozonabbaupotential (ODP) auf, welches größer als 0 ist, oder ein Erderwärmungspotential (GWP) mit einem Wert größer als 10. Des Weiteren sind einige der gängigen Fluide brennbar, mitunter gesundheitsgefährdend oder to- xisch. Derzeit sind keine kommerziellen Anlagen bekannt, de¬ ren Fluide diese vier genannten Eigenschaften gleichzeitig in positiver Weise aufweisen. Aufgabe der vorliegenden Erfindung ist es, eine Wärmekraftma¬ schine der eingangs genannten Art, sowie ein Verfahren zum Betrieb einer solchen Wärmekraftmaschine zu schaffen, bei welchem Fluide eingesetzt werden können, die umweltfreundlich und sicherheitstechnisch unbedenklich sind. In these heat engines are currently used fluids that are questionable from aspects of environmental protection, since they are ozone depleting or strong earth warming. Thus, these fluids often have an ozone depletion potential (ODP) which is greater than 0 or a global warming potential (GWP) with a value greater than 10. Furthermore, some of the common fluids are flammable, sometimes hazardous to health or toxic. At present no commercial plants are known, whose fluids have these four properties mentioned at the same time in a positive way. The object of the present invention is to provide a Wärmekraftma ¬ machine of the aforementioned type, and a method for operating such a heat engine in which fluids can be used, which are environmentally friendly and safety concern.
Diese Aufgabe wird durch eine Wärmekraftmaschine mit den Merkmalen des Patentanspruchs 1 und durch ein Verfahren mit den Merkmalen des Patentanspruchs 8 gelöst. Vorteilhafte Aus¬ gestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben. This object is achieved by a heat engine having the features of patent claim 1 and by a method having the features of patent claim 8. Advantageous embodiments with expedient developments of the invention are specified in the dependent claims.
Die erfindungsgemäße Wärmekraftmaschine umfasst ein Fluid, welches ein Fluorketon oder eine Mischung wenigstens zweier Fluorketone ist. The heat engine according to the invention comprises a fluid which is a fluoroketone or a mixture of at least two fluoroketones.
Durch den Einsatz von Fluorketonen bzw. einer Mischung aus Fluorketonen in der Wärmekraftmaschine ergibt sich ein nied¬ rigerer apparativer Aufwand für die Wärmekraftmaschine, als bei der Verwendung von herkömmlichen Fluiden. Da das Druckniveau in der Wärmekraftmaschine beim Einsatz von Fluorketonen, bzw. der Mischung aus mehreren Fluorketonen geringer ist, als bei aus dem Stand der Technik bekannten Fluiden, so kann die Wärmekraftmaschine dementsprechend für geringere Drücke aus¬ gelegt werden, wodurch mit Druck beaufschlagte Komponenten filigraner ausgeführt werden können. Mit anderen Worten ist ein geringerer Materialaufwand zum Betreiben der Wärmekraftmaschine erforderlich, wenn Fluorketone, oder deren Mischung als Fluid eingesetzt werden. Da Fluorketone des Weiteren we¬ der brennbar noch gesundheitsschädlich oder toxisch sind, entsteht beim Austreten der Fluorketone keine Gefahr der Ent¬ flammung oder der Entstehung giftiger Dämpfe. Dementsprechend können Sicherheitsvorkehrungen, welche bei konventionellen Fluiden als Betriebsmittel der Wärmekraftmaschine erforder¬ lich wären, also z. B. Maßnahmen zur Brandbekämpfung, mit geringerem Aufwand umgesetzt werden. So muss beispielsweise im Falle eines Brandes des die Wärmekraftmaschine beinhaltenden Gebäudes nicht damit gerechnet werden, dass vom Fluid die Ge- fahr ausgeht, den Brand zu intensivieren, sofern es sich um Fluorketone oder deren Mischung handelt. Through the use of fluoroketones or a mixture of fluoroketones in the heat engine produces a nied ¬ rigerer amount of equipment for the heat engine, as in the use of conventional fluids. Since the pressure level in the heat engine in the use of fluoroketones, or the mixture of several fluoroketones is less than known from the prior art fluids, the heat engine can accordingly be placed from ¬ for lower pressures, whereby delicate pressurized components can be executed. In other words, a lesser amount of material for operating the heat engine is required when fluoroketones, or their mixture are used as fluid. Since Fluoroketones further we ¬ the combustible nor are harmful or toxic, as it exits the Fluoroketones create no risk of de ¬ flaming or toxic vapors. Accordingly, safety precautions, which would be erforder Lich in conventional fluids as resources of the heat engine, ie z. B. fire-fighting measures to be implemented with less effort. For example, in the case of a fire of the building containing the heat engine, it is not to be expected that the fluid if it is fluoroketone or its mixture, the fire should be intensified.
In einer vorteilhaften Ausgestaltung der Erfindung arbeitet die Wärmekraftmaschine nach dem thermodynamischen Vergleichs- prozess nach Rankine. In an advantageous embodiment of the invention, the heat engine operates according to the thermodynamic comparison process according to Rankine.
Wird beim Betrieb von Wärmekraftmaschinen ein anderes Fluid als Wasser verwendet, so wird der thermodynamische Ver- gleichsprozess Rankine auch als Organic Rankine Cycle (ORC) bezeichnet. Durch den Betrieb von Wärmekraftmaschinen im Organic Rankine Cycle können auch geringe Wärmemengen, wie sie z. B. bei industrieller Abwärme oder Geothermie anfallen, besonders effizient z.B. in mechanische oder elektrische Energie umgewandelt werden. Da die Abwärme durch die ORC- Technologie nutzbar gemacht wird, trägt die ORC-Technologie zur Einsparung an C02-Emissionen, Energiekosten und fossiler Energieträger bei. Mit anderen Worten wird zumindest ein großer Teil der ansonsten ungenutzten Abwärme nicht mehr an die Umgebung abgeführt, sondern in eine andere Energieform umgewandelt, welche wiederum nutzbar ist. If a fluid other than water is used in the operation of heat engines, the Rankine thermodynamic comparison process is also referred to as the Organic Rankine Cycle (ORC). Through the operation of heat engines in the Organic Rankine Cycle even small amounts of heat, as z. B. incurred in industrial waste heat or geothermal energy, particularly efficient, for example, be converted into mechanical or electrical energy. As the waste heat is harnessed by ORC technology, ORC technology contributes to the reduction of C0 2 emissions, energy costs and fossil fuels. In other words, at least a large part of the otherwise unused waste heat is no longer dissipated to the environment, but converted into another form of energy, which in turn is usable.
Als weiter vorteilhaft hat es sich gezeigt, wenn mittels ei¬ nes Wärmeübertragers dem Fluid nach dessen Expansion und vor dessen Kondensation eine Wärmemenge entnehmbar ist und mittels welchem dem Fluid nach dessen Kondensation und vor dessen Verdampfung die Wärmemenge zumindest teilweise zuführbar ist . As further advantageous, it has been shown, if by means of ei ¬ Nes heat exchanger, the fluid after its expansion and before condensation, a quantity of heat can be removed and by means of which the fluid after its condensation and before its evaporation, the amount of heat is at least partially supplied.
Ein Wärmeübertrager überträgt definitionsgemäß Wärme von ei¬ nem Stoffstrom höherer auf einen Stoffstrom niedrigerer Temperatur. Befindet sich auf der einen Seite der wärmeübertra¬ genden Fläche des Wärmeübertragers, das nach dessen Expansion und vor dessen Kondensation warme Fluid und auf der anderen Seite der wärmeübertragenden Fläche das nach dessen Kondensation und vor dessen Verdampfung im Vergleich dazu kalte A heat exchanger transfers heat from egg definition ¬ nem material flow higher to a material flow of lower temperature. Is located on one side of the Heat Transf ¬ constricting surface of the heat exchanger, the cold after its expansion and above its condensation hot fluid and on the other side of the heat transfer surface after the condensation thereof and prior to its evaporation in the comparison,
Fluid, so kann durch den dadurch bedingten Wärmeaustausch das Fluid vor dessen Verdampfung besonders einfach in einen Zu- stand höherer Temperatur versetzt werden. Besonders effektiv erfolgt die Wärmeübertragung dann, wenn das Fluid in Strömungsrichtung kurz nach dessen Expansion in einer Expansionseinrichtung, also z. B. einer Turbine in den Wärmeübertrager einströmt und einen Teil seiner Wärme an das kältere Fluid auf der anderen Seite des Wärmeübertragers abführt. Ist die andere Seite des Wärmeübertragers so angeordnet, dass die Wärme an das kältere Fluid in Strömungsrichtung kurz vor dem Fluideintritt in die Verdampfungseinrichtung erfolgt, so sind die Wärmeverluste besonders gering. Mit anderen Worten wird also ein Teil der anfallenden Prozesswärme mittels weniger Komponenten und somit auf besonders platz- und gewichtsspa¬ rende Art und Weise dem Fluid vor dessen Verdampfung zuge¬ führt . Fluid, the fluid can be particularly easily converted into an additive by the resulting heat exchange before it evaporates. be offset higher temperature. The heat transfer is particularly effective when the fluid in the flow direction shortly after its expansion in an expansion device, ie, for. B. a turbine flows into the heat exchanger and dissipates a portion of its heat to the colder fluid on the other side of the heat exchanger. If the other side of the heat exchanger is arranged so that the heat is transferred to the colder fluid in the direction of flow shortly before the fluid enters the evaporation device, the heat losses are particularly low. In other words, a part of the generated process heat by means of fewer components and thus supplied ¬ results in a particularly space- and gewichtsspa ¬-saving way to the fluid prior to evaporation.
In weiterer vorteilhafter Ausgestaltung ist die Wärmemenge dem Fluid insbesondere nach dessen Durchlaufen der Pumpeinrichtung und vor dessen Verdampfung zumindest teilweise zuführbar . In a further advantageous embodiment, the amount of heat is at least partially supplied to the fluid, in particular after passing through the pumping device and before its evaporation.
Dadurch, dass dem Fluid in dessen Strömungsrichtung nach der Pumpeinrichtung Wärme zugeführt wird, kann die Pumpeinrichtung besonders ausfallsicher betrieben werden. Tritt durch die Wärmezufuhr zwischen der Pumpeinrichtung und der Verdamp- fungseinrichtung ein zumindest teilweiser Phasenwechsel von der flüssigen Phase in eine Gasphase des Fluids auf, so er¬ folgt keine Beschädigungen an der Pumpeinrichtung infolge von Kavitationserscheinungen, da die Wärmezufuhr in Strömungsrichtung hinter der Pumpeinrichtung erfolgt. Somit kann das Auftreten von Kavitationserscheinungen in der Pumpeinrichtung besonders wirksam unterbunden werden. Erfolgt die Wärmeübertragung an das Fluid zudem kurz vor dessen Eintritt in die Verdampfungseinrichtung, so weist das Fluid bereits vor dem Eintritt in den Verdampfer infolge der Wärmezufuhr eine be- sonders hohe Temperatur auf. Mit anderen Worten sind also die thermischen Verluste bei der Wärmeübertragung an das Fluid besonders gering. Als weiter vorteilhaft hat es sich gezeigt, wenn der Wärme¬ übertrager als Regenerator ausgeführt ist. Characterized in that the fluid is supplied in the flow direction after the pumping device heat, the pumping device can be operated particularly fail-safe. Passes through the supply of heat between the pumping means and the evaporation device, an at least partial phase change from the liquid phase to a gas phase of the fluid, it ¬ follows no damage to the pumping means as a result of cavitation, because the heat supply in the direction of flow is carried out behind the pump means. Thus, the occurrence of cavitation phenomena in the pumping device can be particularly effectively prevented. If the heat transfer to the fluid also occurs shortly before it enters the evaporation device, the fluid already has a particularly high temperature before it enters the evaporator as a result of the heat supply. In other words, therefore, the thermal losses in the heat transfer to the fluid are particularly low. As further advantageous, it has been shown when the heat ¬ transformer is designed as a regenerator.
Gibt das überhitzte Fluid in Strömungsrichtung nach der Expansionseinrichtung in einem Regenerator Wärme an das Fluid in dessen Strömungsrichtung nach der Pumpeinrichtung ab, so kann der Gesamtwirkungsgrad der Wärmekraftmaschine besonders effizient erhöht werden. Ein Regenerator ist auch als Wärme¬ speicher bekannt und besitzt üblicherweise eine besonders ho¬ he Wärmekapazität. Mit anderen Worten kann in einem Regenera¬ tor Wärme besonders effektiv gespeichert werden und über ei¬ nen besonders langen Zeitraum an ein kälteres Medium abgegeben werden. If the superheated fluid in the flow direction downstream of the expansion device in a regenerator gives off heat to the fluid in its flow direction downstream of the pump device, the overall efficiency of the heat engine can be increased particularly efficiently. A regenerator is also known as a heat ¬ memory and usually has a particularly high heat ¬ heat capacity. In other words, can be stored in a particularly effective Regenera ¬ tor heat and be delivered via ei ¬ nen particularly long period of a colder medium.
In einer weiteren vorteilhaften Ausgestaltung ist die Wärmekraftmaschine zur Nutzung der Abwärme thermodynamischer Prozesse, insbesondere zur Nutzung der Abwärme von industriellen oder geothermischen Prozessen einsetzbar. In a further advantageous refinement, the heat engine can be used to utilize the waste heat of thermodynamic processes, in particular for utilizing the waste heat from industrial or geothermal processes.
Die Nutzung von Abwärme, wie sie bei industriellen Anlagen anfällt, durch eine Wärmekraftmaschine erhöht den Gesamtwir¬ kungsgrad der industriellen Anlage besonders effizient. Mit anderen Worten werden die Wärmeverluste an die Umgebung erheblich verringert, da die Abwärme zumindest in wesentlichen Teilen durch die Wärmekraftmaschine in eine andere Energie¬ form, z. B. elektrische Energie umgewandelt wird. The use of waste heat, as obtained in industrial plants, by a heat engine increases the Gesamtwir ¬ tion of the industrial plant particularly efficient. In other words, the heat losses to the environment are significantly reduced because the waste heat at least in significant parts by the heat engine in another energy ¬ form, z. B. electrical energy is converted.
Als weiter vorteilhaft hat es sich gezeigt, wenn das Fluid oder die Mischung ein Ozonabbaupotential von 0 hat. As further advantageous, it has been shown that the fluid or the mixture has an ozone depletion potential of zero.
Wird in der Wärmekraftmaschine ein Fluid mit einem Ozonabbau¬ potential von 0 eingesetzt, so hat ein unerwünschtes Austre¬ ten des Fluids keinerlei Auswirkungen auf die Ozonschicht. Mit anderen Worten trägt ein Austreten des Fluids der Wärmekraftmaschine nicht zum Abbau der Ozonschicht bei. A fluid used with an ozone depletion potential of 0 ¬ in the heat engine, then an unwanted Austre ¬ th of the fluid does not affect the ozone layer. In other words, leakage of the fluid of the heat engine does not contribute to the depletion of the ozone layer.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung hat das Fluid ein Erderwärmungspotential kleiner als 10. Je kleiner das Erderwärmungspotential des eingesetzten Fluids ist, desto geringer ist dessen Einfluss auf den Treibhausef¬ fekt und damit auf die Klimaerwärmung. Unter diesem Aspekt ist der Einsatz so genannter Fluorketone oder deren Mischungen als Fluid besonders empfehlenswert. Solche Fluorketone werden üblicherweise als Isolationsgas und Feuerbekämpfungs¬ mittel eingesetzt und weisen mit einem Wert kleiner als zehn ein besonders geringes Erderwärmungspotential auf. Somit kön- nen solche Betriebsstoffe für Wärmekraftmaschinen innerhalb der gesetzlichen Rahmenbedingungen besonders zukunftssicher eingesetzt werden. In a further advantageous embodiment of the invention, the fluid has a global warming potential of less than 10. The smaller the global warming potential of the fluid used, the smaller is its influence on the Treibhausef ¬ fect and thus on the climate. In this aspect, the use of so-called fluoroketones or mixtures thereof as a fluid is particularly recommended. Such fluoroketones are usually used as insulation gas and Feuerbekämpfungs ¬ medium and have a value less than ten, a particularly low global warming potential. Thus, such operating materials for heat engines can be used particularly future-proof within the legal framework conditions.
Bei dem erfindungsgemäßen Verfahren zum Betrieb einer Wärme- kraftmaschine mit einem Fluid wird dieses Fluid mittels we¬ nigstens einer Kondensationseinrichtung kondensiert, mittels wenigstens einer Expansionseinrichtung expandiert, mittels wenigstens einer Verdampfungseinrichtung verdampft und mittels wenigstens einer Pumpeinrichtung gepumpt. Als das Fluid wird ein Fluorketon oder die Mischung wenigstens zweier Fluorketone verwendet. In the inventive method for operating a heat engine with a fluid, this fluid is condensed nigstens we ¬ a condenser means, expansion means of at least one expansion device, at least evaporated by an evaporator and pumped by at least one pump means. As the fluid, a fluoroketone or the mixture of at least two fluoroketones is used.
Die für die erfindungsgemäße Wärmekraftmaschine beschriebenen Vorteile und bevorzugten Ausführungsformen gelten auch für das erfindungsgemäße Verfahren und umgekehrt. The advantages and preferred embodiments described for the heat engine according to the invention also apply to the method according to the invention and vice versa.
Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbe¬ schreibung genannten und/oder in den Figuren alleine gezeig- ten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er¬ geben sich aus den Ansprüchen, deren nachfolgende Beschreibung bevorzugter Ausführungsformen sowie anhand der Figur. Dabei zeigt die einzige Figur schematisch die Ausführung ei¬ ner Wärmekraftmaschine mit einem Fluorketon oder einer Mischung aus verschiedenen Fluorketonen als Fluid. In der Figur (FIG 1) ist schematisch ein Kreisprozess einer Wärmekraftmaschine 1 dargestellt. Das Fluid wird in einer Strömungsrichtung 7 mittels einer Pumpe 5 durch die Wärmekraftmaschine 1 gefördert. Gemäß der mittels eines Pfeils verdeutlichten Strömungsrichtung 7 wird das Fluid also ent- sprechend der Bildebene im Uhrzeigersinn durch die Wärme¬ kraftmaschine gefördert. Als Fluid kann beispielsweise eines der Fluorketone Novec 524 (C5F10O) , Novec 649 (C6F120) oder Novec 774 (C7F14O) oder deren Mischung eingesetzt werden. Das Fluid wird durch die Pumpe 5 in Strömungsrichtung 7 durch ei- nen Wärmetauscher, welcher als ein Regenerator 6 ausgeführt ist gefördert. Nach dem Durchtritt des Fluids durch den Rege¬ nerator 6 tritt das Fluid in eine Verdampfungseinrichtung, welche als ein Verdampfer 4 ausgeführt ist, ein und wird dort verdampft. In Strömungsrichtung 7 nach dem Verdampfer 4 tritt das verdampfte Fluid in eine Expansionseinrichtung ein, wel¬ che als Expansionseinheit 3 ausgeführt ist. Bei der Expansi¬ onseinheit 3 handelt es sich um eine Turbine, mittels welcher thermische Energie in mechanische Energie gewandelt wird, wo¬ bei die mechanische Energie beispielsweise durch Antreiben eines Generators zumindest in wesentlichen Teilen in elektrische Energie umgesetzt wird. Nach dessen Expansion tritt das Fluid entsprechend der Strömungsrichtung 7 in den Regenerator 6 ein und gibt dort zumindest einen Teil seiner Wärme an den Regenerator 6 ab. Infolgedessen wird das abgekühlte Fluid entsprechend der Strömungsrichtung 7 einer Kondensationseinrichtung, welche als Kondensator 2 ausgeführt ist zugeführt und kondensiert. Nach dessen Kondensation wird das Fluid ent¬ sprechend der Strömungsrichtung 7 wiederum der Pumpe 5 zugeführt, wodurch der Kreislauf der Wärmekraftmaschine 1 ge- schlössen ist. Die Wärmekraftmaschine 1 arbeitet nach dem Organic Rankine Cycle (ORC) . Durch den Regenerator 6 wird zumindest ein Teil der Wärme des Fluids nach dessen Austritt aus der Expansionseinheit 3 ent¬ nommen und dem Fluid vor dessen Eintritt in den Verdampfer 4 zugeführt . The description above mentioned features and combinations of features as well as mentioned below in the Figurenbe ¬ letters and / or alone gezeig- th in the figures features and combinations of features can be used not only in the respectively specified combination but also in other combinations or in isolation, without departing from the scope of the invention. Further advantages, features and details of the invention ¬ be gathered from the claims, the following description of preferred embodiments and with reference to the figure. The single FIGURE schematically shows the execution ei ¬ ner heat engine with a fluoroketone or a mixture of different fluoroketones as the fluid. In the figure (FIG 1) is shown schematically a cycle of a heat engine 1. The fluid is conveyed in a flow direction 7 by means of a pump 5 through the heat engine 1. According to the illustrated means of an arrow 7 direction of flow the fluid of the image plane is thus conveyed clockwise by the heat ¬ combustion engine accordingly. The fluid used can be, for example, one of the fluoroketones Novec 524 (C 5 F 10 O), Novec 649 (C 6 F 12 O) or Novec 774 (C 7 F 14 O) or a mixture thereof. The fluid is conveyed by the pump 5 in the flow direction 7 through a heat exchanger, which is designed as a regenerator 6. After the passage of the fluid through the Rege ¬ generator 6, the fluid enters an evaporation device, which is designed as an evaporator 4, and is evaporated there. In the flow direction 7 after the evaporator 4, the vaporized fluid enters an expansion device, wel ¬ che is designed as an expansion unit 3. In the expansionary ¬ onseinheit 3 is a turbine, by means of which thermal energy is converted into mechanical energy, where ¬ is reacted at the mechanical energy for example by driving a generator at least in essential parts into electrical energy. After its expansion, the fluid enters the regenerator 6 in accordance with the direction of flow 7 and releases at least part of its heat to the regenerator 6. As a result, the cooled fluid is supplied and condensed according to the flow direction 7 of a condenser, which is designed as a condenser 2. After its condensation, the fluid is again supplied to the pump 5 in accordance with the flow direction 7, whereby the cycle of the heat engine 1 is closed. The heat engine 1 works according to the Organic Rankine Cycle (ORC). Through the regenerator 6, a part of the heat of the fluid is at least ent ¬ taken after it exits from the expansion unit 3 and supplied to the fluid prior to its entry into the evaporator. 4

Claims

Patentansprüche claims
1. Wärmekraftmaschine (1) mit einem Fluid, mit wenigstens ei¬ ner Kondensationseinrichtung (2) zum Kondensieren des Fluids, mit wenigstens einer Expansionseinrichtung (3) zum Expandieren des Fluids, mit wenigstens einer Verdampfungseinrichtung (4) zum Verdampfen des Fluids und mit wenigstens einer Pumpeinrichtung (5) zum Pumpen des Fluids, dadurch gekennzeichnet, dass das Fluid ein Fluorketon oder eine Mischung wenigs¬ tens zweier Fluorketone ist. 1. A heat engine (1) with a fluid, with at least ei ¬ ner condensation device (2) for condensing the fluid, with at least one expansion means (3) for expanding the fluid, with at least one evaporation means (4) for vaporizing the fluid and with at least a pumping means (5) for pumping the fluid, characterized in that the fluid is a fluoroketone or a mixture Wenig ¬ least two fluoroketones.
2. Wärmekraftmaschine (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Wärmekraftmaschine (1) nach dem thermody- namischen Vergleichsprozess nach Rankine arbeitet. 2. Heat engine (1) according to claim 1, characterized in that the heat engine (1) according to the thermodynamic comparison process according to Rankine works.
3. Wärmekraftmaschine (1) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mittels eines Wärmeübertragers (6) dem Fluid nach dessen Expansion und vor dessen Kondensation, eine Wärmemenge entnehmbar ist und mittels welchem dem Fluid nach dessen Kondensation und vor dessen Verdampfung die Wärmemenge zumindest teilweise zuführbar ist. 3. Heat engine (1) according to any one of claims 1 or 2, characterized in that by means of a heat exchanger (6) the fluid after its expansion and before the condensation, a quantity of heat can be removed and by means of which the fluid after its condensation and before its evaporation the amount of heat is at least partially supplied.
4. Wärmekraftmaschine (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Wärmemenge dem Fluid insbesondere nach dessen Durchlaufen der Pumpeinrichtung (5) und vor dessen Verdampfung zumindest teilweise zuführbar ist. 4. Heat engine (1) according to claim 3, characterized in that the amount of heat the fluid in particular after passing through the pumping means (5) and before its evaporation is at least partially supplied.
5. Wärmekraftmaschine (1) nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der Wärmeübertrager (6) als Re¬ generator ausgeführt ist. 5. Heat engine (1) according to any one of claims 3 or 4, characterized in that the heat exchanger (6) is designed as Re ¬ generator.
6. Wärmekraftmaschine (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Wärmekraftmaschine ( 1 ) zur Nutzung der Abwärme thermodynamischer Prozesse, insbesondere zur Nutzung der Abwärme von industriellen oder geothermischen Prozessen einsetzbar ist. 6. Heat engine (1) according to one of claims 1 to 5, characterized in that the heat engine (1) for the use of waste heat thermodynamic processes, in particular for the use of waste heat from industrial or geothermal processes can be used.
7. Wärmekraftmaschine (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Fluid oder die Mischung ein Ozonabbaupotential von 0 hat. 7. Heat engine (1) according to one of claims 1 to 6, characterized in that the fluid or mixture has an ozone depletion potential of zero.
8. Wärmekraftmaschine (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Fluid ein Erderwärmungspo- tential kleiner als 10 hat. 8. Heat engine (1) according to one of claims 1 to 7, characterized in that the fluid has a global warming potential of less than 10.
9. Verfahren zum Betrieb einer Wärmekraftmaschine (1) mit ei¬ nem Fluid, mit wenigstens einer Kondensationseinrichtung (2) zum Kondensieren des Fluids, mit wenigstens einer Expansions¬ einrichtung (3) zum Expandieren des Fluids, mit wenigstens einer Verdampfungseinrichtung (4) zum Verdampfen des Fluids und mit wenigstens einer Pumpeinrichtung (5) zum Pumpen des Fluids, dadurch gekennzeichnet, dass als das Fluid ein Fluor- keton oder die Mischung wenigstens zweier Fluorketone verwendet wird. 9. A method for operating a heat engine (1) with ei ¬ NEM fluid, with at least one condensation device (2) for condensing the fluid, with at least one expansion ¬ device (3) for expanding the fluid, with at least one evaporation device (4) for Vaporizing the fluid and with at least one pumping device (5) for pumping the fluid, characterized in that a fluoroketone or the mixture of at least two fluoroketones is used as the fluid.
PCT/EP2014/053520 2013-03-26 2014-02-24 Heat engine and method for operating a heat engine WO2014154405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310205266 DE102013205266A1 (en) 2013-03-26 2013-03-26 Heat engine and method for operating a heat engine
DE102013205266.9 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014154405A1 true WO2014154405A1 (en) 2014-10-02

Family

ID=50193464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/053520 WO2014154405A1 (en) 2013-03-26 2014-02-24 Heat engine and method for operating a heat engine

Country Status (2)

Country Link
DE (1) DE102013205266A1 (en)
WO (1) WO2014154405A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11959466B2 (en) 2022-07-01 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166607A1 (en) * 2004-02-03 2005-08-04 United Technologies Corporation Organic rankine cycle fluid
US20050188697A1 (en) * 2004-03-01 2005-09-01 Honeywell Corporation Fluorinated ketone and fluorinated ethers as working fluids for thermal energy conversion
EP1764487A1 (en) * 2005-09-19 2007-03-21 Solvay Fluor GmbH Working fluid for a OCR-process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7428816B2 (en) * 2004-07-16 2008-09-30 Honeywell International Inc. Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems
US20120067049A1 (en) * 2010-09-17 2012-03-22 United Technologies Corporation Systems and methods for power generation from multiple heat sources using customized working fluids
DE102012006345A1 (en) * 2012-03-28 2012-10-11 Daimler Ag Device, useful for recovering energy from waste heat stream of internal combustion engine in vehicle, comprises working medium circuit, where working medium circulates within medium circuit and is formed from mixture of water and ethanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166607A1 (en) * 2004-02-03 2005-08-04 United Technologies Corporation Organic rankine cycle fluid
US20050188697A1 (en) * 2004-03-01 2005-09-01 Honeywell Corporation Fluorinated ketone and fluorinated ethers as working fluids for thermal energy conversion
EP1764487A1 (en) * 2005-09-19 2007-03-21 Solvay Fluor GmbH Working fluid for a OCR-process

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2022-07-01 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Also Published As

Publication number Publication date
DE102013205266A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2014154405A1 (en) Heat engine and method for operating a heat engine
DE102006035272B4 (en) Method and device for using low-temperature heat for power generation
EP2900943B1 (en) Cogeneration power plant and method for operating a cogeneration power plant
DE102008005978A1 (en) Low-temperature power plant and method for operating a thermodynamic cycle
EP2823156B1 (en) System for storing and outputting thermal energy
EP2409003A2 (en) Device and method for generating steam with a high level of efficiency
EP3006682B1 (en) Device and method for operating a heating distribution station
DE102011086476A1 (en) High temperature heat pump and method of using a working medium in a high temperature heat pump
EP1706598B1 (en) Method and installation for converting heat energy from refrigerating machines
AT510809A1 (en) DEVICE FOR WASTE USE
DE102013107251B4 (en) Steam power device and method for operating a steam power device
DE202010004882U1 (en) Conversion system for the conversion of waste heat into wave power
WO2008055720A2 (en) Working medium for steam circuit process
DE102012110579A1 (en) System for generating process steam, has expansion arrangement to perform expansion of partial stream on lower pressure level, and steam engine to drive generator to produce electric power by high pressurized partial steam
DE202004013299U1 (en) Installation for generation of mechanical energy with utilization of the principle of organic Rankine cycle incorporates a condensate line which branches downstream the condensate pump
DE102012100645B4 (en) ORC - Organic Rankine cycle
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
WO2008031613A2 (en) Current generation in the base load region with geothermal energy
DE102009060887A1 (en) System for converting thermal energy into electrical energy, is arranged in space that is thermally insulated by isolation in relation to another space, where cold gas side of Stirling engine is connected with heat exchanger
DE102019006184A1 (en) Device for converting thermal energy into kinetic energy, using a heat pump with a thermal power plant
EP3152487B1 (en) Anordnung mit mehreren wärmeübertragern und verfahren zum verdampfen eines arbeitsmediums
DE102013203243A1 (en) Heat pump and method for operating a heat pump
DE102009040300A1 (en) Method and device for generating energy, in particular from biomass or biomass energy sources
DE102010025504A1 (en) Method for generation of heat or cold using refrigerating machine for internal combustion engine of vehicle, involves preheating pre-vaporized refrigerant in closed spaces, and compressing refrigerant by heat input
WO2004005676A1 (en) Thermal power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14707710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14707710

Country of ref document: EP

Kind code of ref document: A1