WO2014154135A1 - Aluminum oxide dispersion-strengthened titanium aluminum nitride ceramic composite and method for preparing same - Google Patents

Aluminum oxide dispersion-strengthened titanium aluminum nitride ceramic composite and method for preparing same Download PDF

Info

Publication number
WO2014154135A1
WO2014154135A1 PCT/CN2014/074049 CN2014074049W WO2014154135A1 WO 2014154135 A1 WO2014154135 A1 WO 2014154135A1 CN 2014074049 W CN2014074049 W CN 2014074049W WO 2014154135 A1 WO2014154135 A1 WO 2014154135A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
ceramic composite
aluminum oxide
aln
oxide dispersion
Prior art date
Application number
PCT/CN2014/074049
Other languages
French (fr)
Chinese (zh)
Inventor
郑卓
李菊英
崔玉友
杨锐
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Publication of WO2014154135A1 publication Critical patent/WO2014154135A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

An aluminum oxide (Al2O3) dispersion-strengthened titanium aluminum nitride (Ti4AlN3) ceramic composite and a method for preparing same. Said composite consists essentially of a Ti4AlN3 matrix and an Al2O3 strengthening phase, an Al2O3 particle dispersion being distributed in the Ti4AlN3 matrix, the Al2O3 particles being 1-2 microns, and the volume fraction of the Al2O3 being 35-45%. The preparation method employs raw powders in the form of in-situ generated of Al2O3 particles and in-situ reaction-generated Ti4AlN3. The generated Al2O3 particles are tiny, constitute a distributed dispersion, and have a volume fraction that can be adjusted to as high as 40%.

Description

三氧化二铝弥散强化钛四铝氮三陶瓷复合材料及制备方法 技术领域  Aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material and preparation method thereof
本发明涉及陶瓷复合材料领域, 具体为一种用三氧化二铝 (A1203)弥散强化钛四铝氮三 (Ti4AlN3) 陶瓷复合材料及其制备方法。 The invention relates to the field of ceramic composite materials, in particular to a titanium tetraaluminum nitride (Ti 4 AlN 3 ) ceramic composite material dispersed by using aluminum oxide (Al 2 2 3 3 ) and a preparation method thereof.
背景技术  Background technique
Ti4AlN3的晶体结构是 J.C.Schuster等人在 1984年发现的,起初认为其结构式为 Ti3Al2N2。 在此之后, 许多学者对 Ti3Al2N2材料进行了详细的研究。 1997年, HeeDong Lee和 William TPetuskey发现 Ti3Al2N2不完全符合化学计量比, 提出更为精确的计量比应为 ¾^.^2。 在 此基础上, W.M.Bousum等人通过研究将其化学式改为 Ti4AlN3,并将其归纳为 Mn+1AXn三元 陶瓷材料的一种。 Mn+1AXn材料中的 M为过渡元素, A是主族元素, X是 C或 N, 其中 n 为 1,2或 3, 如 Ti3SiC2、 Ti4SiC3、 Ti2AlN、 Cr2GaC等。 这些三元陶瓷具有很多共同点, 如比 普通陶瓷更软(3〜6GPa), 易于加工, 不同于传统二元氮化物、 碳化物陶瓷硬度大, 不易加 工的特点。 The crystal structure of Ti 4 AlN 3 was discovered by JCSchuster et al. in 1984 and was initially considered to be Ti 3 Al 2 N 2 . After that, many scholars have conducted detailed research on Ti 3 Al 2 N 2 materials. In 1997, HeeDong Lee and William TPetuskey found that Ti 3 Al 2 N 2 did not fully meet the stoichiometric ratio, and proposed a more accurate measurement ratio of 3⁄4^.^ 2 . On this basis, WMBousum et al. changed the chemical formula to Ti 4 AlN 3 and studied it into one of M n+1 AX n ternary ceramic materials. M in the M n+1 AX n material is a transition element, A is a main group element, X is C or N, where n is 1, 2 or 3, such as Ti 3 SiC 2 , Ti 4 SiC 3 , Ti 2 AlN, Cr 2 GaC and the like. These ternary ceramics have many things in common, such as softer than ordinary ceramics (3~6GPa), and are easy to process. They are different from traditional binary nitrides and carbide ceramics, and are difficult to process.
Ti4AlN3是属于密排六方结构的三元氮化物陶瓷, 空间群为 P63/mmc。 Ti6N八面体与 A1 原子层沿着 c轴方向上周期堆垛。 由于晶胞内金属键、 共价键和离子键共存, 故 Ti4AlN3具 有金属的导电导热性、加工性和陶瓷的高强度、 高模量等优点。 Ti4AlN3—般采用 TiH2、 A1N 和 TiN粉末为原料, 在 1275°C/24h/70MPa热等静压而成。 A1203是一种稍畸变密排六方结构 的离子氧化物, 02·位于密排六方阵点位置, Al3+填隙在 02·的八面体间隙位置。这种结构在熔 点附近也具有较好的稳定性, 由于 A1203和 Ti4AlN3的密度,热膨胀系数很接近, 硬度和压缩 强度互相补充,选在 A1203弥散强化 Ti4AlN3基体,可以提高其高温强度和抗氧化性能。 A1203 和 Ti4AlN3的主要性能见表 1。 Ti 4 AlN 3 is a ternary nitride ceramic belonging to a close-packed hexagonal structure, and the space group is P63/mmc. The Ti 6 N octahedron and the A1 atomic layer are periodically stacked along the c-axis direction. Since the intracellular metal bond, the covalent bond, and the ionic bond coexist, Ti 4 AlN 3 has the advantages of electrical conductivity and thermal conductivity of the metal, workability, high strength of the ceramic, and high modulus. Ti 4 AlN 3 is generally made of TiH 2 , A1N and TiN powders, and is isothermally pressed at 1275 ° C / 24 h / 70 MPa. A1 2 0 3 is an ionic oxide with a slightly distorted close-packed hexagonal structure, 0 2 · is located at the hexagonal lattice point of the close-packed, and the Al 3+ interstitial is at the octahedral gap position of 0 2 ·. This structure also has good stability near the melting point. Due to the density of A1 2 0 3 and Ti 4 AlN 3 , the thermal expansion coefficient is very close, and the hardness and compressive strength complement each other. It is selected in A1 2 0 3 dispersion strengthened Ti 4 AlN. 3 matrix, can improve its high temperature strength and oxidation resistance. The main properties of A1 2 0 3 and Ti 4 AlN 3 are shown in Table 1.
表 1 Ti4AlN3和 A1203的物理性能和力学性能 Table 1 Physical and mechanical properties of Ti 4 AlN 3 and A1 2 0 3
性能 Ti4AlN3 Α1203 Performance Ti 4 AlN 3 Α1 2 0 3
密度 (g/cm3) 4.61 3.9 维氏硬度 (GPa) 2.5 18 压缩强度 (MPa) 480 2600 电阻率(μΩ·ιη) 2.64,2.0 >1018 Density (g/cm 3 ) 4.61 3.9 Vickers hardness (GPa) 2.5 18 Compressive strength (MPa) 480 2600 Resistivity (μΩ·ιη) 2.64, 2.0 >1018
热膨胀系数(Κ4) 9.7χ 10"6 8.3χ 10"6 杨氏模量 (GPa) 310 Thermal expansion coefficient (Κ 4 ) 9.7χ 10" 6 8.3χ 10" 6 Young's Modulus (GPa) 310
386  386
剪切模量 (GPa) 127 175  Shear modulus (GPa) 127 175
熔点 2054  Melting point 2054
一般采用粉末热压或热等加压成型得到的 A1203弥散强化 Ti4AlN3复合材料,有以下几种 方法配比粉末组成: Generally, the A1 2 0 3 dispersion-strengthened Ti 4 AlN 3 composite material obtained by powder hot pressing or hot pressing is formed by the following methods:
( 1 )采用 A1203粉和 Ti4AlN3粉, 属于无原位反应型; (1) A1 2 0 3 powder and Ti 4 AlN 3 powder are used, which are not in situ reaction type;
(2)采用 A1203粉和生成 Ti4AlN3的原料粉, 属于原位反应生成 Ti4AlN3型; 第一种和第二种方法存在的问题是 A1203分布不均匀,易团聚,颗粒长大明显,随着 A1203 体积分数的增加, 这种现象越明显。 (2) A1 2 0 3 powder and raw powder generated Ti 4 AlN 3, belonging to the in situ reaction of Ti 4 AlN 3 type; the presence of a first and a second method is that uneven distribution of A1 2 0 3, Easy to agglomerate, the particle length is obvious, and this phenomenon becomes more obvious as the volume fraction of A1 2 0 3 increases.
发明内容  Summary of the invention
本发明的目的是提供一种用三氧化二铝弥散强化钛四铝氮三陶瓷复合材料及其制备方 法, 陶瓷复合材料具有高硬度、 高强度和良好的抗氧化性能, 且具有导电、 可加工性。  The object of the present invention is to provide a titanium tetra-aluminum-nitrogen three-ceramic composite material and a preparation method thereof by using aluminum oxide dispersion, the ceramic composite material has high hardness, high strength and good oxidation resistance, and has electrical conductivity and processing. Sex.
本发明的技术方案是:  The technical solution of the present invention is:
一种三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, 该陶瓷复合材料, 主要由 Ti4AlN3 基体和 A1203强化相组成, A1203颗粒弥散分布在 Ti4AlN3基体中, A1203颗粒为 1〜2微米, A1203的体积分数在 35-45%, Ti4AlN3的体积分数在 50〜60%。 A two-aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material, which is mainly composed of a Ti 4 AlN 3 matrix and an A1 2 0 3 strengthening phase, and the A1 2 0 3 particles are dispersed in Ti 4 AlN 3 In the matrix, the A1 2 0 3 particles are 1 to 2 μm, the volume fraction of A1 2 0 3 is 35-45%, and the volume fraction of Ti 4 AlN 3 is 50 to 60%.
所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, A1203的体积分数优选为 40%。 所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, Ti4AlN3的体积分数优选为 50〜The aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material preferably has a volume fraction of A1 2 0 3 of 40%. The aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material, the volume fraction of Ti 4 AlN 3 is preferably 50~
55%。 55%.
所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, A1203颗粒优选为 1.5〜2微米。 所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, 其余为少量的反应相 Al3Ti和 A1N; 其中, Al3Ti的体积分数为 0〜7.5%, A1N的体积分数为 0〜7.5%。 The aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material preferably has an A1 2 0 3 particle of 1.5 to 2 μm. The Al2O3 dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material, and the rest is a small amount of reaction phases Al 3 Ti and A1N; wherein, the volume fraction of Al 3 Ti is 0 to 7.5%, and the volume fraction of A1N is 0. ~7.5%.
所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法, 包括如下步骤: 首先,在 0.7〜1.2个大气压的 N2、H2和 Ar混合气氛中,其中 N2占总体积含量的 4〜15%, H2与 Ar之体积比为 1:0.8〜1.2, 在连续供给 Ti3()A!〜 Ti6()Al母合金棒的条件下, 采用氢等离 子金属反应法合成复合材料的纳米粉; The preparation method of the aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material comprises the following steps: First, in a mixed atmosphere of N 2 , H 2 and Ar of 0.7 to 1.2 atmospheres, wherein N 2 accounts for total 4 to 15% by volume, and the volume ratio of H 2 to Ar is 1:0.8 to 1.2, and Ti 3 () A is continuously supplied! Synthesis of composite nano-powder by hydrogen plasma metal reaction under the condition of ~ Ti 6() Al master alloy rod;
然后, 采用热等静压方法将纳米粉致密化, 工艺参数: 温度为 1200°C〜1400°C, 压力为 100〜160MPa, 时间为 l〜2h, 真空度为 2xlO-2〜5xl(r3Pa。 所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法, 在采用氢等离子金属 反应法合成复合材料的纳米粉过程中, 纳米粉的平均粒径为 100〜150纳米。 Then, the nano-powder is densified by hot isostatic pressing method, the process parameters are: temperature is 1200 ° C ~ 1400 ° C, pressure is 100~160 MPa, time is l~2h, vacuum degree is 2xlO -2 ~ 5xl (r 3 Pa. The preparation method of the aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material has an average particle diameter of 100 to 150 nm in the process of synthesizing the nano-powder of the composite material by the hydrogen plasma metal reaction method.
所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法, 在采用氢等离子金属 反应法合成复合材料的纳米粉过程中, N2优选占总体积含量的 6〜12%。 The preparation method of the aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material, in the process of synthesizing the nano-powder of the composite material by the hydrogen plasma metal reaction method, N 2 preferably accounts for 6 to 12% of the total volume content.
所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法, 在采用热等静压方法 将纳米粉致密化过程中, 温度优选为 1250°C〜1350°C。  The preparation method of the aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material preferably has a temperature of 1250 ° C to 1350 ° C during densification of the nano powder by a hot isostatic pressing method.
本发明提供的 A1203弥散强化 Ti4AlN3陶瓷复合材料及其制备方法的优点在于: The A1 2 0 3 dispersion-strengthened Ti 4 AlN 3 ceramic composite material provided by the invention and the preparation method thereof have the advantages of:
1、 本发明直接采用原料粉, 为原位生成 A1203颗粒和原位反应生成 Ti4AlN3型, 原位生 成的 A1203颗粒细小, 呈弥散分布, 体积分数可调整到高达 40%。 1. The invention directly uses the raw material powder to generate A1 2 0 3 particles in situ and in situ to form Ti 4 AlN 3 type, and the in situ generated A1 2 0 3 particles are fine and dispersed, and the volume fraction can be adjusted up to 40%.
2、本发明复合材料中 Ti4AlN3基体和 A1203强化相均为原位反应生成, A1203颗粒为 1〜2. The Ti 4 AlN 3 matrix and the A1 2 3 3 strengthening phase in the composite material of the invention are both formed in situ, and the A1 2 0 3 particles are 1~
2微米, 弥散分布在 Ti4AlN3基体。 2 microns, dispersed in the Ti 4 AlN 3 matrix.
3、 本发明制备的陶瓷复合材料显微硬度是 Ti4AlN3的 2.6倍, 强化效果显著。 3. The microhardness of the ceramic composite prepared by the invention is 2.6 times that of Ti 4 AlN 3 , and the strengthening effect is remarkable.
4、 本发明采用纳米粉合成块体反应快, 时间短, 可以节约大量能源。  4. The invention adopts the nano powder synthesis block to react quickly and has a short time, which can save a lot of energy.
5、 本发明复合材料具有良好的综合性能, 密度 4.2〜4.4 g/cm3, 维氏硬度 6.5〜7.5 GPa, 压缩强度 1750〜1850 MPa, 电阻率 0.6〜0.8 μΩ·ιη。 5. The composite material of the invention has good comprehensive properties, the density is 4.2~4.4 g/cm 3 , the Vickers hardness is 6.5~7.5 GPa, the compressive strength is 1750~1850 MPa, and the resistivity is 0.6~0.8 μΩ·ιη.
附图说明  DRAWINGS
图 1是氢等离子金属反应法制备的合金纳米粉形貌, 呈球状粉末 (内插图为电视衍射谱)。 图 2是氢等离子金属反应法制备的合金纳米粉形貌, 呈立方体状粉 (内插图为电子衍射 谱)。  Figure 1 shows the morphology of an alloy nanopowder prepared by a hydrogen plasma metal reaction method, which is a spherical powder (inside is a TV diffraction spectrum). Figure 2 shows the morphology of the alloy nanopowder prepared by the hydrogen plasma metal reaction method, which is a cubic powder (the inside is an electron diffraction spectrum).
图 3是氢等离子金属反应法制备的合计纳米粉的粒径分布图。  Fig. 3 is a particle size distribution diagram of the total nanopowder prepared by the hydrogen plasma metal reaction method.
图 4是制备的陶瓷复合材料的外观图。  Figure 4 is an external view of the prepared ceramic composite.
图 5是制备的陶瓷复合材料的金相照片。  Figure 5 is a metallographic photograph of the prepared ceramic composite.
图 6是制备的陶瓷复合材料的 X射线衍射图谱。  Figure 6 is an X-ray diffraction pattern of the prepared ceramic composite.
图 7是制备的陶瓷复合材料的显微硬度与载荷之间的关系曲线图。  Figure 7 is a graph showing the relationship between the microhardness and the load of the prepared ceramic composite.
具体实施方式  detailed description
下面结合附图和实施例对本发明进一步详细说明。  The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
本发明三氧化二铝弥散强化钛四铝氮三陶瓷复合材料,主要由 Ti4AlN3基体和 Α1203强化 相组成, Α1203颗粒弥散分布在 Ti4AlN3基体中, A1203颗粒为 1〜2微米, A1203的体积分数 在 35〜45% (优选为 40%), Ti4AlN3的体积分数在 50〜60%, 其余为少量的反应相 Al3Ti和 ΑΙΝο 所述三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法, 包括如下步骤: 首先,在 0.7〜1.2个大气压的 N2、H2和 Ar混合气氛中,其中 N2占总体积含量的 4〜15%, ¾与 Ar之体积比为 1:0.8〜1.2, 在连续供给 Ti30A!〜 Ti60Al (Ti原子百分含量为 30〜60%) 母合金棒的条件下, 采用氢等离子金属反应法合成复合材料的纳米粉; 纳米粉的投射电镜形 貌见图 1、 图 2, 有两种典型的形貌: 一种为球形或近球形颗粒(如图 1 ), 另一种为方形颗 粒(如图 2), 电子衍射分析表明, 方形颗粒是 TiN; 氢等离子金属反应法制备的纳米粉的粒 径分布见图 3, 陶瓷复合材料的宏观照片见图 4。 由此可以看出, 纳米粉的平均粒径为 120 纳米。 The aluminum oxide dispersion-enhanced titanium tetra-aluminum-nitrogen three-ceramic composite material is mainly composed of a Ti 4 AlN 3 matrix and a Α1 2 0 3 strengthening phase, and the Α1 2 0 3 particles are dispersed and distributed in the Ti 4 AlN 3 matrix, A1 2 0 3 particles are 1~2 microns, A1 2 0 3 volume fraction is 35~45% (preferably 40%), Ti 4 AlN 3 volume fraction is 50~60%, and the rest is a small amount of reaction phase Al 3 Ti And ΑΙΝο The preparation method of the aluminum oxide dispersion-strengthened titanium tetra-aluminum-nitrogen three-ceramic composite material comprises the following steps: First, in a mixed atmosphere of N 2 , H 2 and Ar of 0.7 to 1.2 atmospheres, wherein N 2 accounts for the total volume The content of 4 to 15%, the ratio of 3⁄4 to Ar is 1:0.8 to 1.2, and the Ti 30 A is continuously supplied! ~ Ti 60 Al (Ti atomic percentage is 30~ 60 %) Under the condition of master alloy rod, the nano-powder of composite material is synthesized by hydrogen plasma metal reaction method; the projection electron microscope morphology of nano-powder is shown in Figure 1, Figure 2, There are two typical morphologies: one is spherical or nearly spherical particles (Figure 1), and the other is square particles (Figure 2). Electron diffraction analysis shows that the square particles are TiN; Hydrogen plasma metal reaction preparation The particle size distribution of the nanopowder is shown in Fig. 3, and the macroscopic photograph of the ceramic composite is shown in Fig. 4. It can be seen that the average particle size of the nanopowder is 120 nm.
其中, 氢等离子金属反应法采用常规技术, 可参见文献: [1] 孙维民,金寿日.活性等离子 体一金属"反应法制备 M— TiN复合超微粒子的研究.材料科学与工艺. 1997, 5(4): P26-29; [2] 李星国,廖复辉.直流电弧等离子体法合成金属和陶瓷纳米颗粒. 过程工程学报 ,2002, 2(4): P295-300; [3]林峰,蒋燕麟,文永鹏,张健伟.直流电弧等离子体制备纳米粉技术及其应用.大众 科技. 2012, 01: P99-103。  Among them, the hydrogen plasma metal reaction method uses conventional techniques, which can be found in the literature: [1] Sun Weimin, Jin Shouri. Preparation of M-TiN composite ultrafine particles by reactive plasma-metal reaction method. Materials Science and Technology. 1997, 5 (4): P26-29; [2] Li Xingguo, Liao Fuhui. Synthesis of metal and ceramic nanoparticles by DC arc plasma method. Chinese Journal of Process Engineering, 2002, 2(4): P295-300; [3] Lin Feng, Jiang Yanlin, Wen Yong Peng, Zhang Jianwei. Preparation of nano-powder technology by DC arc plasma and its application. Volkswagen Technology. 2012, 01: P99-103.
然后, 采用热等静压方法将纳米粉致密化, 工艺参数: 温度为 1200°C〜1400°C, 压力为 100〜160MPa,时间为 l〜2h,真空度为 2χ 10·2〜5χ 10·3Ρ。制备的复合材料进行了金相观察、 X射线物相分析、 电阻率和硬度测试, 制备的复合材料的金相形貌见图 5, 图中黑色颗粒为 Α1203, 尺寸大约在 1.5微米, 弥散分布在 Ti4AlN3基体中。 制备的复合材料的 X射线衍射图 谱见图 6, 结果表明该复合材料主要生成相: A1203和 Ti4AlN3, 另外含有少量的反应相 Al3Ti 和 A1N。 制备的复合材料的显微硬度与载荷之间的曲线见图 7, 从该图中可以看出, 复合材 料的显微硬度是 Ti4AlN3硬度的 2.6倍, 显著强化了 Ti4AlN3相, 且硬度随载荷变化不显著。 Then, the nanopowder is densified by a hot isostatic pressing method, and the process parameters are as follows: temperature is 1200 ° C to 1400 ° C, pressure is 100 to 160 MPa, time is 1 to 2 h, and vacuum degree is 2 χ 10 · 2 〜 5 χ 10· 3 Ρ. The prepared composites were subjected to metallographic observation, X-ray phase analysis, resistivity and hardness test. The metallographic morphology of the composites prepared is shown in Fig. 5. The black particles in the figure are Α1 2 0 3 and the size is about 1.5 μm. , dispersed in the Ti 4 AlN 3 matrix. The X-ray diffraction pattern of the prepared composite is shown in Fig. 6. The results show that the composite mainly forms phases: A1 2 0 3 and Ti 4 AlN 3 , and additionally contains a small amount of reaction phases Al 3 Ti and A1N. See curve between the load microhardness composite material prepared 7, can be seen from this figure, the hardness of the composite is 2.6 Ti 4 AlN 3 times the hardness significantly strengthened Ti 4 AlN 3-phase , and the hardness does not change significantly with the load.
实施例 1  Example 1
首先, 在 0.77个大气压的 N2、 ¾和 Ar混合气氛中, 其中 N2占总体积含量的 9%, ¾ 与 Ar气体积比为 1: 1, 在连续供给 Ti48Al (原子百分比)母合金棒材的条件下, 采用氢等离 子金属反应法合成用于制备该复合材料的纳米粉, 纳米粉的平均粒径为 120纳米。 First, in a mixed atmosphere of 0.77 atmospheres of N 2 , 3⁄4 and Ar, wherein N 2 accounts for 9% of the total volume, and the volume ratio of 3⁄4 to Ar gas is 1:1, and the Ti 48 Al (atomic percentage) is continuously supplied. Under the condition of the alloy bar, the nano-powder used for preparing the composite material was synthesized by a hydrogen plasma metal reaction method, and the average particle diameter of the nano-powder was 120 nm.
然后, 称量 25g纳米粉, 置于 (p38mmx l5mm的纯钛包套内, 放入热等静压机内, 抽真 空, 真空度为 3x l0—3Pa, 在 1280°C/150MPa条件下保温 1小时。 所得到的复合材料中 A1203 颗粒为 1〜2微米, A1203的体积分数为 40%, Ti4AlN3的体积分数在 54%, 其余为少量的反 应相 Al3Ti和 A1N体积分数为 6%。本实施例中,复合材料的密度 4.3g/cm3,维氏硬度 6.86GPa, 压缩强度 1798MPa, 电阻率 0.716 μΩ·ιη。 Then, nano powder was weighed 25g and placed in (p38mmx l5mm of titanium within the envelope, placed in a hot isostatic press, evacuated to a vacuum degree of 3x l0- 3 Pa, kept at 1280 ° C / 150MPa conditions 1 hour. In the obtained composite, the A1 2 0 3 particles are 1 to 2 μm, the volume fraction of A1 2 0 3 is 40%, the volume fraction of Ti 4 AlN 3 is 54%, and the rest is a small amount of reaction phase Al 3 The volume fraction of Ti and A1N was 6%. In this example, the composite had a density of 4.3 g/cm 3 , a Vickers hardness of 6.86 GPa, a compressive strength of 1798 MPa, and a resistivity of 0.716 μΩ·ιη.
实施例 2 首先, 在 1.0个大气压的 N2、 ¾和 Ar混合气氛中, 其中 N2占总体积含量的 6%, ¾与 Ar气体积比为 1:1, 在连续供给 Ti48Al (原子百分比)母合金棒材的条件下, 采用氢等离子 金属反应法合成用于制备该复合材料的纳米粉, 纳米粉的平均粒径为 110纳米。 Example 2 First, in a mixed atmosphere of N 2 , 3⁄4 and Ar at 1.0 atmosphere, wherein N 2 accounts for 6% of the total volume, and the volume ratio of 3⁄4 to Ar gas is 1:1, and the Ti 48 Al (atomic percentage) is continuously supplied. Under the condition of the alloy bar, the nanometer powder used for preparing the composite material is synthesized by a hydrogen plasma metal reaction method, and the average particle diameter of the nano powder is 110 nm.
然后, 称量 25g纳米粉, 置于 (p38mmxl5mm的纯钛包套内, 放入热等静压机内, 抽真 空, 真空度为 3xlO—3Pa, 在 1250°C/145MPa条件下保温 1.5小时。所得到的复合材料中 A1203 颗粒为 1〜2微米, A1203的体积分数为 35%, Ti4AlN3的体积分数在 60%, 其余为少量的反 应相 Al3Ti和 A1N体积分数为 5%。 本实施例中, 复合材料的密度 4.24 g/cm3, 维氏硬度 6.80 GPa, 压缩强度 1789 MPa, 电阻率 0.788 μΩ·ιη。 Then, weigh 25g of nano-powder, placed in a p38mmxl5mm pure titanium sheath, placed in a hot isostatic press, vacuumed, vacuum 3xlO- 3 Pa, and kept at 1250 °C / 145MPa for 1.5 hours In the obtained composite, the A1 2 0 3 particles are 1 to 2 μm, the volume fraction of A1 2 0 3 is 35%, the volume fraction of Ti 4 AlN 3 is 60%, and the rest is a small amount of reaction phase Al 3 Ti and The volume fraction of A1N is 5%. In this embodiment, the composite has a density of 4.24 g/cm 3 , a Vickers hardness of 6.80 GPa, a compressive strength of 1789 MPa, and a resistivity of 0.788 μΩ·ιη.
实施例 3  Example 3
首先, 在 0.9个大气压的 Ν2、 Η2和 Ar混合气氛中, 其中 N2占总体积含量的 12%, ¾ 与 Ar气体积比为 1:1, 在连续供给 Ti48Al (原子百分比)母合金棒材的条件下, 采用氢等离 子金属反应法合成用于制备该复合材料的纳米粉, 纳米粉的平均粒径为 130纳米。 First, in a mixed atmosphere of Ν 2 , Η 2 and Ar at 0.9 atmospheres, wherein N 2 accounts for 12% of the total volume, and the volume ratio of 3⁄4 to Ar gas is 1:1, and Ti 48 Al (atomic percentage) is continuously supplied. Under the condition of the master alloy bar, the nanopowder used for preparing the composite material was synthesized by a hydrogen plasma metal reaction method, and the average particle diameter of the nanopowder was 130 nm.
然后, 称量 25g纳米粉, 置于 (p38mmxl5mm的纯钛包套内, 放入热等静压机内, 抽真 空, 真空度为 3xlO—3Pa, 在 1350°C/155MPa条件下保温 2小时。 所得到的复合材料中 A1203 颗粒为 1〜2微米, A1203的体积分数为 45%, Ti4AlN3的体积分数在 50%, 其余为少量的反 应相 Al3Ti和 A1N体积分数为 5%。本实施例中,复合材料的密度 4.32g/cm3,维氏硬度 7.02GPa, 压缩强度 1804 MPa, 电阻率 0.661 μΩ·ιη。 Then, weigh 25g of nano-powder, placed in a p38mmxl5mm pure titanium sheath, placed in a hot isostatic press, vacuumed, vacuum 3xlO- 3 Pa, and kept at 1350 °C / 155MPa for 2 hours In the obtained composite, the A1 2 0 3 particles are 1 to 2 μm, the volume fraction of A1 2 0 3 is 45%, the volume fraction of Ti 4 AlN 3 is 50%, and the rest is a small amount of reaction phase Al 3 Ti and The volume fraction of A1N is 5%. In this embodiment, the density of the composite material is 4.32 g/cm 3 , the Vickers hardness is 7.02 GPa, the compressive strength is 1804 MPa, and the electrical resistivity is 0.661 μΩ·ιη.
实施例 4  Example 4
首先, 在 0.8个大气压的 Ν2、 ¾和 Ar混合气氛中, 其中 N2占总体积含量的 5%, ¾与 Ar气体积比为 1:1, 在连续供给 Ti34Al (原子百分比)母合金棒材的条件下, 采用氢等离子 金属反应法合成用于制备该复合材料的纳米粉, 纳米粉的平均粒径为 100纳米。 First, in a mixed atmosphere of Ν 2 , 3⁄4 and Ar at 0.8 atmospheres, wherein N 2 accounts for 5% of the total volume, and the volume ratio of 3⁄4 to Ar gas is 1:1, and the Ti 34 Al (atomic percentage) is continuously supplied. Under the condition of the alloy bar, the nanometer powder used for preparing the composite material is synthesized by a hydrogen plasma metal reaction method, and the average particle diameter of the nano powder is 100 nm.
然后, 称量 25g纳米粉, 置于 (p38mmxl5mm的纯钛包套内, 放入热等静压机内, 抽真 空, 真空度为 2xlO—3Pa, 在 1400°C/120MPa条件下保温 1小时。 所得到的复合材料中 A1203 平均颗粒为 1.5微米, A1203的体积分数为 36%, Ti4AlN3的体积分数在 52%, 其余为少量的 反应相 Al3Ti和 A1N体积分数为 12%。 本实施例中, 复合材料的密度 4.23 g/cm3, 维氏硬度 6.95GPa, 压缩强度 1778 MPa, 电阻率 0.753 μΩ·ιη。 Then, weigh 25g of nano-powder, placed in a p38mmxl5mm pure titanium sheath, placed in a hot isostatic press, vacuumed, vacuum 2xlO- 3 Pa, and incubated at 1400 °C / 120MPa for 1 hour In the obtained composite, the average particle size of A1 2 0 3 is 1.5 μm, the volume fraction of A1 2 0 3 is 36%, the volume fraction of Ti 4 AlN 3 is 52%, and the rest is a small amount of reaction phases Al 3 Ti and A1N. The volume fraction is 12%. In this embodiment, the composite has a density of 4.23 g/cm 3 , a Vickers hardness of 6.95 GPa, a compressive strength of 1778 MPa, and a resistivity of 0.753 μΩ·ιη.
实施例 5  Example 5
首先, 在 1.2个大气压的 Ν2、 ¾和 Ar混合气氛中, 其中 N2占总体积含量的 10%, ¾ 与 Ar气体积比为 1:1, 在连续供给 Ti6QAl (原子百分比)母合金棒材的条件下, 采用氢等离 子金属反应法合成用于制备该复合材料的纳米粉, 纳米粉的平均粒径为 150纳米。 然后, 称量 25g纳米粉, 置于 (p38mmx l5mm的纯钛包套内, 放入热等静压机内, 抽真 空, 真空度为 4x lO—3Pa, 在 1300°C/130MPa条件下保温 2小时。 所得到的复合材料中 A1203 平均颗粒为 1.2微米, A1203的体积分数为 42%, Ti4AlN3的体积分数在 54%, 其余为少量的 反应相 Al3Ti A1N体积分数为 4%。 本实施例中, 复合材料的密度 4.31 g/cm3, 维氏硬度 7.12 GPa, 压缩强度 1816 MPa, 电阻率 0.687 μΩ·ιη0 First, in a mixed atmosphere of Ν 2 , 3⁄4 and Ar at 1.2 atmospheres, where N 2 is 10% of the total volume, and the volume ratio of 3⁄4 to Ar is 1:1, and the Ti 6Q Al (atomic percentage) is continuously supplied. Under the condition of the alloy bar, the nano powder used for preparing the composite material is synthesized by a hydrogen plasma metal reaction method, and the average particle diameter of the nano powder is 150 nm. Then, weigh 25g of nano-powder, placed in a p38mmx l5mm pure titanium sheath, placed in a hot isostatic press, vacuumed, vacuum 4x lO- 3 Pa, 1300 ° C / 130MPa conditions for 2 hours. composite material obtained in A1 2 0 3 having an average particle of 1.2 micron, the volume fraction of A1 2 0 3 is 42%, Ti volume fraction 4 AlN 3 is 54%, the rest phase Al 3 Ti is a small amount of reaction The volume fraction of A1N is 4%. In this embodiment, the density of the composite material is 4.31 g/cm 3 , the Vickers hardness is 7.12 GPa, the compressive strength is 1816 MPa, and the electrical resistivity is 0.687 μΩ·ιη 0
实施例结果表明, 本发明陶瓷复合材料主要由 Ti4AlN3基体和 Α1203强化相组成, Α1203 颗粒弥散分布在 Ti4AlN3基体中。本发明直接采用原料粉,为原位生成 A1203颗粒和原位反应 生成 Ti4AlN3型, 原位生成的 A1203颗粒细小, 呈弥散分布, 体积分数可调整到高达 40%左 右。本发明陶瓷复合材料具有高硬度、高强度和良好的抗氧化性能, 且具有导电、可加工性。 The results of the examples show that the ceramic composite of the present invention mainly consists of a Ti 4 AlN 3 matrix and a Α1 2 0 3 strengthening phase, and the Α1 2 0 3 particles are dispersed in the Ti 4 AlN 3 matrix. The invention directly uses the raw material powder to generate A1 2 0 3 particles in situ and in situ to form Ti 4 AlN 3 type, and the in situ generated A1 2 0 3 particles are fine and dispersed, and the volume fraction can be adjusted up to 40%. about. The ceramic composite material of the invention has high hardness, high strength and good oxidation resistance, and has electrical conductivity and workability.

Claims

权 利 要 求 Rights request
1、 一种三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, 其特征在于, 该陶瓷复合材料, 主要由 Ti4AlN3基体和 A1203强化相组成, A1203颗粒弥散分布在 Ti4AlN3基体中, A1203颗粒 为 1〜2微米, A1203的体积分数在 35〜45%, Ti4AlN3的体积分数在 50〜60%。 1. An aluminum oxide dispersion strengthened titanium tetraaluminum nitrogen three ceramic composite material, characterized in that the ceramic composite material is mainly composed of a Ti 4 AlN 3 matrix and an A1 2 0 3 strengthening phase, and the A1 2 0 3 particles are dispersed Distributed in the Ti 4 AlN 3 matrix, the A1 2 0 3 particles are 1 to 2 microns, the volume fraction of A1 2 0 3 is 35 to 45%, and the volume fraction of Ti 4 AlN 3 is 50 to 60%.
2、 按照权利要求 1所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, 其特征在于, 2. The aluminum oxide dispersion-strengthened titanium tetraaluminum nitrogen three ceramic composite material according to claim 1, characterized in that,
A1203的体积分数优选为 40%。 The volume fraction of A1 2 0 3 is preferably 40%.
3、 按照权利要求 1所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, 其特征在于, Ti4AlN3的体积分数优选为 50〜55%。 3. The aluminum oxide dispersion-strengthened titanium tetraaluminum nitride ceramic composite material according to claim 1, characterized in that the volume fraction of Ti 4 AlN 3 is preferably 50 to 55%.
4、 按照权利要求 1所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, 其特征在于, A1203颗粒优选为 1.5〜2微米。 4. The aluminum oxide dispersion-strengthened titanium tetraaluminum nitride ceramic composite material according to claim 1, characterized in that the A1 2 0 3 particles are preferably 1.5 to 2 microns.
5、 按照权利要求 1所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料, 其特征在于, 其余为少量的反应相 Al3Ti和 A1N; 其中, Al3Ti的体积分数为 0〜7.5%, A1N的体积分数为 0〜7.5%。 5. The aluminum oxide dispersion-strengthened titanium tetraaluminum nitrogen three ceramic composite material according to claim 1, characterized in that the remainder is a small amount of reaction phases Al 3 Ti and A1N; wherein the volume fraction of Al 3 Ti is 0 ~7.5%, the volume fraction of A1N is 0~7.5%.
6、一种权利要求 1所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法,其 特征在于, 包括如下步骤: 6. A method for preparing the aluminum oxide dispersion-strengthened titanium tetraaluminum nitride ceramic composite material according to claim 1, characterized in that it includes the following steps:
首先,在 0.7〜1.2个大气压的 N2、H2和 Ar混合气氛中,其中 N2占总体积含量的 4〜15%, H2与 Ar之体积比为 1 :0.8〜1.2, 在连续供给 Ti3()A!〜 Ti6()Al母合金棒的条件下, 采用氢等离 子金属反应法合成复合材料的纳米粉; First, in a mixed atmosphere of N 2 , H 2 and Ar at 0.7 to 1.2 atmospheric pressure, in which N 2 accounts for 4 to 15% of the total volume content, the volume ratio of H 2 to Ar is 1:0.8 to 1.2, in a continuous supply Ti 3() A! ~ Under the conditions of Ti 6() Al master alloy rod, the nanopowder of the composite material is synthesized using the hydrogen plasma metal reaction method;
然后, 采用热等静压方法将纳米粉致密化, 工艺参数: 温度为 1200°C〜1400°C, 压力为 100〜160MPa, 时间为 l〜2h, 真空度为 2xlO-2〜5xl(r3Pa。 Then, the hot isostatic pressing method is used to densify the nanopowder. Process parameters: temperature is 1200°C~1400°C, pressure is 100~160MPa, time is 1~2h, vacuum degree is 2xlO -2 ~5xl(r 3 Pa.
7、按照权利要求 6所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法,其 特征在于, 在采用氢等离子金属反应法合成复合材料的纳米粉过程中, 纳米粉的平均粒径为 100〜150纳米。 7. The preparation method of aluminum oxide dispersion-strengthened titanium tetraaluminum nitride ceramic composite material according to claim 6, characterized in that, in the process of synthesizing the nanopowder of the composite material using the hydrogen plasma metal reaction method, the nanopowder The average particle size is 100~150 nanometers.
8、按照权利要求 6所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法,其 特征在于, 在采用氢等离子金属反应法合成复合材料的纳米粉过程中, N2优选占总体积含量 的 6〜12%。 8. The method for preparing the aluminum oxide dispersion-strengthened titanium tetraaluminum nitrogen three ceramic composite material according to claim 6, characterized in that, in the process of synthesizing the nanopowder of the composite material using the hydrogen plasma metal reaction method, N 2 is preferably Accounting for 6~12% of the total volume content.
9、按照权利要求 6所述的三氧化二铝弥散强化钛四铝氮三陶瓷复合材料的制备方法,其 特征在于, 在采用热等静压方法将纳米粉致密化过程中, 温度优选为 1250°C〜1350°C o 9. The preparation method of aluminum oxide dispersion-strengthened titanium tetraaluminum nitride ceramic composite material according to claim 6, characterized in that, during the densification process of nanopowder using hot isostatic pressing method, the temperature is preferably 1250°C °C~1350°C o
PCT/CN2014/074049 2013-03-26 2014-03-25 Aluminum oxide dispersion-strengthened titanium aluminum nitride ceramic composite and method for preparing same WO2014154135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310099914.3 2013-03-26
CN201310099914.3A CN103183511B (en) 2013-03-26 2013-03-26 Aluminum oxide dispersion strengthening Ti4AlN3 ceramic composite material and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2014154135A1 true WO2014154135A1 (en) 2014-10-02

Family

ID=48674996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074049 WO2014154135A1 (en) 2013-03-26 2014-03-25 Aluminum oxide dispersion-strengthened titanium aluminum nitride ceramic composite and method for preparing same

Country Status (2)

Country Link
CN (1) CN103183511B (en)
WO (1) WO2014154135A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725486A (en) * 2021-08-30 2021-11-30 慈溪斯昂尼电池有限公司 Flame-retardant explosion-proof solid battery with stable polymer and ceramic electrolyte components
CN115555570A (en) * 2022-09-30 2023-01-03 中国航发北京航空材料研究院 Method for controlling distribution structure uniformity of particle reinforced titanium-based composite material reinforcement
CN117594809A (en) * 2024-01-19 2024-02-23 北京师范大学 Multilayer TiN/phthalocyanine iron composite material electrocatalyst, preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183511B (en) * 2013-03-26 2015-02-18 中国科学院金属研究所 Aluminum oxide dispersion strengthening Ti4AlN3 ceramic composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721367A (en) * 2004-07-15 2006-01-18 中国科学院金属研究所 A kind of with aluminium sesquioxide dispersion-strengthened Ti2AlN ceramic composite and preparation method thereof
CN101058434A (en) * 2007-04-13 2007-10-24 武汉理工大学 Method of synthesizing high purity Ti4AlN3 block material
CN101448760A (en) * 2006-05-30 2009-06-03 原子能委员会 MAX-phase powders and method for making same
CN103183511A (en) * 2013-03-26 2013-07-03 中国科学院金属研究所 Aluminum oxide dispersion strengthening Ti4AlN3 ceramic composite material and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721367A (en) * 2004-07-15 2006-01-18 中国科学院金属研究所 A kind of with aluminium sesquioxide dispersion-strengthened Ti2AlN ceramic composite and preparation method thereof
CN101448760A (en) * 2006-05-30 2009-06-03 原子能委员会 MAX-phase powders and method for making same
CN101058434A (en) * 2007-04-13 2007-10-24 武汉理工大学 Method of synthesizing high purity Ti4AlN3 block material
CN103183511A (en) * 2013-03-26 2013-07-03 中国科学院金属研究所 Aluminum oxide dispersion strengthening Ti4AlN3 ceramic composite material and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONG, JINGHONG ET AL.: "Phase Composition and Morphology of Bulk Ti_4AlN_3 Synthesized by Spark Plasma Sintering", JOURNAL OF THE CHINEST CERAMIC SOCIETY, vol. 39, no. 9, 30 September 2011 (2011-09-30) *
TAN, QING ET AL.: "Research on the Synthesis and Microstructure of Layered-ternary Nitride Ti4AlN3", BULLETIN OF THE CHINEST CERAMIC SOCIETY, vol. 29, no. 1, 28 February 2010 (2010-02-28) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725486A (en) * 2021-08-30 2021-11-30 慈溪斯昂尼电池有限公司 Flame-retardant explosion-proof solid battery with stable polymer and ceramic electrolyte components
CN115555570A (en) * 2022-09-30 2023-01-03 中国航发北京航空材料研究院 Method for controlling distribution structure uniformity of particle reinforced titanium-based composite material reinforcement
CN115555570B (en) * 2022-09-30 2023-11-21 中国航发北京航空材料研究院 Method for controlling uniformity of distribution structure of particle reinforced titanium-based composite material reinforcement
CN117594809A (en) * 2024-01-19 2024-02-23 北京师范大学 Multilayer TiN/phthalocyanine iron composite material electrocatalyst, preparation method and application thereof
CN117594809B (en) * 2024-01-19 2024-04-16 北京师范大学 Multilayer TiN/phthalocyanine iron composite material electrocatalyst, preparation method and application thereof

Also Published As

Publication number Publication date
CN103183511A (en) 2013-07-03
CN103183511B (en) 2015-02-18

Similar Documents

Publication Publication Date Title
Zhang et al. Dense high-entropy boride ceramics with ultra-high hardness
Zhang et al. Understanding the oxidation behavior of Ta–Hf–C ternary ceramics at high temperature
Yan et al. Pressureless sintering of high‐density ZrB2–SiC ceramic composites
Li et al. Spark plasma sintering of TiC–ZrC composites
CN109608203B (en) High-entropy disilicide and preparation method thereof
Zhao et al. Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing
WO2006005267A1 (en) A A12O3 DISPERSION-STRENGTHENED Ti2AlN CERAMIC COMPOSITE MATERIAL AND ITS PREPARATION
Cheng et al. Spark plasma sintering of TiC ceramic with tungsten carbide as a sintering additive
Li et al. Microstructure and properties of Ti (C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets
Zhang et al. Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa) C combined experiments and first-principles simulation
Andrievski Micro-and nanosized boron carbide: synthesis, structure and properties
Fu et al. Sintering and mechanical properties of TiB2-TiC-Ni using submicron borides and carbides
Zhang et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo) C ceramic prepared by pressureless sintering
Jafari et al. Effects of HfB2 addition on pressureless sintering behavior and microstructure of ZrB2-SiC composites
El-Sheikh et al. In situ synthesis of ZrC/SiC nanocomposite via carbothermic reduction of binary xerogel
Genç et al. Fabrication and properties of mechanically alloyed and Ni activated sintered W matrix composites reinforced with Y2O3 and TiB2 particles
Wang et al. Nano/microstructures and mechanical properties of Al2O3-WC-TiC ceramic composites incorporating graphene with different sizes
WO2014154135A1 (en) Aluminum oxide dispersion-strengthened titanium aluminum nitride ceramic composite and method for preparing same
KR20140081149A (en) Manufacturing method of super hard metal containing carbon nanotube, the super hard metal manufactured using the same and cutting tools comprising the super hard metal
Cao et al. Progress in densification and toughening of high entropy carbide ceramics
Laskoski et al. Synthesis and material properties of polymer-derived niobium carbide and niobium nitride nanocrystalline ceramics
Nguyen et al. Effects of SiC on densification, microstructure and nano-indentation properties of ZrB2–BN composites
Yang et al. Influence of equiatomic Zr/(Ti, Nb) substitution on microstructure and ultra-high strength of (Ti, Zr, Nb) C medium-entropy ceramics at 1900° C
Firshtman et al. Effect of boron carbide composition on its densification behavior during spark plasma sintering (SPS)
Hirota et al. Mechanical properties of simultaneously synthesized and consolidated carbon nanofiber (CNF)-dispersed SiC composites by pulsed electric-current pressure sintering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776266

Country of ref document: EP

Kind code of ref document: A1