WO2014152504A1 - Method of treating vitamin b12 deficiency - Google Patents

Method of treating vitamin b12 deficiency Download PDF

Info

Publication number
WO2014152504A1
WO2014152504A1 PCT/US2014/027412 US2014027412W WO2014152504A1 WO 2014152504 A1 WO2014152504 A1 WO 2014152504A1 US 2014027412 W US2014027412 W US 2014027412W WO 2014152504 A1 WO2014152504 A1 WO 2014152504A1
Authority
WO
WIPO (PCT)
Prior art keywords
vitamin
amount
pharmaceutical composition
sodium
sublingual
Prior art date
Application number
PCT/US2014/027412
Other languages
French (fr)
Inventor
John Mccarty
Original Assignee
Pharmaceutical Productions Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmaceutical Productions Inc. filed Critical Pharmaceutical Productions Inc.
Priority to CA2906060A priority Critical patent/CA2906060A1/en
Priority to MX2015012771A priority patent/MX2015012771A/en
Priority to AU2014239651A priority patent/AU2014239651A1/en
Priority to BR112015023368A priority patent/BR112015023368A2/en
Priority to JP2016502427A priority patent/JP2016513694A/en
Priority to EP14718856.9A priority patent/EP2968117A1/en
Priority to RU2015140463A priority patent/RU2015140463A/en
Publication of WO2014152504A1 publication Critical patent/WO2014152504A1/en
Priority to US14/853,110 priority patent/US20160000716A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7135Compounds containing heavy metals
    • A61K31/714Cobalamins, e.g. cyanocobalamin, i.e. vitamin B12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2009Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics

Definitions

  • the present invention relates generally to methods of treating Vitamin B 12 deficiency and a sublingual/buccal composition for such treatment.
  • Vitamin B-12 is an important and central factor in many body functions. It is necessary for normal metabolism of nerve tissue and is involved in protein, fat and carbohydrate metabolism. Vitamin B- 12 is required for the synthesis and transfer of single carbon units such as the methyl group, and aids in the synthesis of methionine and choline, which are important lipotropic substances.
  • Vitamin B-12 When the human body is healthy, the amount of Vitamin B-12 ordinarily absorbed into the blood by the intrinsic factor is about 2.5 to 3 micrograms per day. However, when the human body is not healthy and is suffering from pernicious anemia the body does not absorb adequate amounts of Vitamin B-12.
  • the Vitamin B- 12 deficiency manifests itself in human beings, most commonly, in motor and mental difficulties. The symptoms are rapid heartbeat, cardiac pain, and shortness of breath, edema of the face, general jaundice and intense brown discoloration around the small joints, weakness and fatigue. Neurological changes, such as peripheral neuritis, spinal cord changes, intermittent numbness and tingling in arms and legs, diminished tendon reflexes, unsteady gait, etc. may also occur.
  • Vitamin B- 12 is required for the formation of red blood cells and increases tissue deposition of Vitamin A by improving either carotene absorption or its conversion to Vitamin A.
  • Vitamin B-12 is also closely related to the actions of four amino acids, pantothenic acid, and Vitamin C, and plays a part in reproduction and lactation. Additionally, Vitamin B-12 helps reduce the possibility of skin bruises and has been suggested as helpful in combatting
  • Vitamin B-12 is a very complex Vitamin. It contains an atom of cobalt in its center and is a charged molecule with a high molecular weight. The structure is similar to that of hemoglobin with iron at its center and to chlorophyll with a central magnesium atom. It cannot be made synthetically, but must be grown, like penicillin, in bacteria or molds. Animal protein is virtually the only source in which Vitamin B-12 occurs naturally in substantial quantities. The human body cannot synthesize Vitamin B-12, and consequently, it must be obtained externally if there is a deficiency, that is, by diet.
  • methylcobalamin supports the methionine synthase reaction, which is essential for normal metabolism of folate.
  • the folate-cobalamin interaction is pivotal for normal synthesis of purines and pyrimidines and the transfer of the methyl group to cobalamin is essential for the adequate supply of tetrahydrofolate, the substrate for metabolic steps that require folate.
  • Vitamin B12 deficiency In a state of Vitamin B12 deficiency, the cell responds by redirecting folate metabolic pathways to supply increasing amounts of methyltetrahydrofolate.
  • the resulting elevated concentrations of homocysteine and MMA are often found in patients with low serum Vitamin B12 and can usually be lowered with successful Vitamin B12 replacement therapy.
  • elevated MM A and homocysteine concentrations may persist in patients with cobalamin concentrations between 200 to 350 pg/mL.
  • Supplementation with Vitamin B12 during conditions of deficiency restores the intracellular level of cobalamin and maintains a sufficient level of the two active coenzymes: methylcobalamin and deoxyadenosylcobalamin.
  • B- 12 deficiency The main causes of B- 12 deficiency include lack of intrinsic factors and other intestinal factors (e.g. malabsorption), rare genetic disorders, conditions associated with gastric atrophy, infestation with tape worm, and inadequate intake. Therefore, it is necessary to overcome the deficiency of B-12 by supplementing with cyanocobalamin, hydroxocobalamin or methylcobalamin through various routes such as parenteral, nasal and oral.
  • Oral therapy is not suitable for patients lacking intrinsic factors, conditions associated with gastric atrophy, or infestation with tape worm. Further, to overcome such deficiency orally is extremely difficult even for those patients with intrinsic factor and good absorption since Vitamin B-12 does not become absorbed into the blood to any significant extent when taken orally, regardless of the amount. Berlin reported (H. Berlin et al, Acta Med. Scand. 184 247-258, 1968, and H. Hedstrand, Acta Med. Scand. 186 535-537, 1969) only approximately 1.2% of oral Vitamin B-12 is absorbed over rather a wide dosing range and such absorption rate is independent of the presence of intrinsic factor. Moreover, even insofar as the absorption of such a small quantity is concerned, there may be significant limitations such as a lack of hydrochloric acid, a lack of animal protein intake, or other gastro intestinal problems which create poor absorption capabilities.
  • WIPO patent application 2011/106378 A2 and 2009/1059188 Al discloses the use of "SNAC" or Sodium-N-salicyloyl-8-aminocaprylate, Monosodium S-(N- salicyloylamino) octanoate, N-(salicyloyl)-8-aminooctanoic acid monosodium salt, monosodium N- ⁇ 8-(2 phenoxybenzoyl)amino ⁇ octanoate, EDTA monosodium salt or sodium 8-[(2-hydroxybenzoyl)amino]octanoate in combination with Vitamin B12 to improve the oral bioavailability of Vitamin B12 in the treatment of Vitamin B12- deficient patients.
  • methylsulfonymethane as a transmucosal delivery enhancer which is claimed to enhance the delivery of a number of pharmaceutically active ingredients including Vitamin B 12. No specific embodiments however are disclosed for Vitamin B12.
  • WIPO patent application 2006/020291 Al and 2007/030108 A2 discloses the use of mixtures of methylcobalamin, hydroxocobalamin, cyanocobalamin and adenosylcobalamin in various dosage forms and routes of administration including tablets, injectable, sprays and aerosols; however, no specific embodiments are disclosed for Vitamin B12.
  • Vitamin B-12 intramuscular (IM) injections are objectionable to administer because of the pain associated therewith.
  • injection treatments are inherently objectionable and offensive, and, consequently, there is a tendency not to proceed with the treatment.
  • needle abscess may occur and the treatment process is expensive.
  • Vitamin B12-deficient patient normally defined as when serum cobalamin (Vitamin B12) levels are less than 200 pg/mL, daily EVI injections of up to 1,000 ⁇ g (1 mg) per day are given to replenish the body's depleted cobalamin stores. In the presence of neurological symptoms, following daily treatment, injections up to weekly or biweekly are indicated for 6 months before initiating monthly EVI injections. Once clinical improvement is confirmed, maintenance IM injection must be given for life.
  • Vitamin B 12 Other routes of administration for Vitamin B 12, including nasal and oral sprays and transdermal patches have been considered in order to overcome the drawbacks of IM injection and poor oral absorption.
  • sprays are less desirable because of inherent compliance issues such as improper manipulation of the actuator, swallowing of the dosage before absorption of the drug, and the restrictions on usage when the patient has sinus congestion or a head cold. This again leads to erratic and poor bioavailability. Therefore sprays are not the optimal route for routine Vitamin B12 administration.
  • WIPO patent application 86/05987 and 86/05988 disclose aerosol and nasal spray formulations for delivery Vitamin B 12.
  • WIPO patent application 2007/022345 discloses a nasally administered composition for delivery of Vitamin B12.
  • WIPO patent application 2012/056299 discloses an intranasal formulation which enhances the nasal absorption of Vitamin B 12.
  • WIPO patent application 2008/116004 A2 discloses a transdermal device for administering Vitamin B 12.
  • cyanocobalamin is available by prescription in an injectable form and as a nasal gel for the treatment of pernicious anemia. Over the counter preparations containing cyanocobalamin often include multivitamin, Vitamin B-complex, and
  • Vitamin B 12 supplements which provide no benefit in treating patients lacking intrinsic factors, conditions associated with gastric atrophy, and
  • the present invention relates generally to methods of treating Vitamin B
  • One aspect of the invention is directed to a method for treating Vitamin
  • B12 deficiency in a subject comprising the steps of (a) preparing a pharmaceutical composition for sublingual/buccal administration containing (1) Vitamin B 12 and (2) at least propylene glycol, a pharmaceutically acceptable solid adsorbent and a water- soluble solid excipient (b) administering the pharmaceutical composition to the subject to effectively treat said Vitamin B12 deficiency.
  • Another aspect of the invention is directed to a pharmaceutical
  • composition for treating Vitamin B12 deficiency in a subject comprising (1) Vitamin B12 and (2) at least propylene glycol, a pharmaceutically acceptable solid adsorbent and a water-soluble solid excipient; wherein the dosage form is administered sublingually or buccally.
  • FIG. 1 is a flow chart showing steps comprising the manufacture of a sublingual tablet containing a dose of 1 mg Vitamin B 12.
  • FIG. 2 is a graph depicting Vitamin B12 permeation over time for formulations of the present invention as compared to a commercially available B12 product designed for sublingual administration.
  • the present invention provides formulations for sublingual and buccal administration, comprising Vitamin B- 12 or any member of a group of cobalt-containing compounds known as cobalamins which include, but are not limited to cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5- deoxyadenosyl-cobalamin.
  • cobalamins are mixed with propylene glycol and the resultant B-12/propylene glycol solution is added to a pharmaceutically acceptable solid adsorbent and a water-soluble solid excipient.
  • Other excipients which aid in the performance or processing of the dosage form include pharmaceutically acceptable co-solvents or mixtures thereof, disintegrants, lubricants or combinations thereof.
  • the invention also provides a process for preparing and method of administration of the disclosed formulation in the treatment of Vitamin B 12 deficiency.
  • the composition comprises a pharmaceutically acceptable adsorbent selected from silica, microcrystalline cellulose, cellulose, silicified microcrystalline cellulose, clay, talc, starch, pregelatinized starch, calcium carbonate, calcium silicate, dicalcium phosphate, magnesium carbonate and mixtures thereof.
  • a pharmaceutically acceptable adsorbent is silica, which is also called colloidal silicon dioxide.
  • Water-soluble solid excipients are one or more of the following: sugars, polyols, saccharides, polysaccharides, dextrate, dextrins, dextrose, fructose, lactitol, lactose, erythritol, maltose, maltitol, maltodextrins, polydextrose, trehalose, mannitol, polyethylene glycols, isomalts, sorbitol, sucrose and xylitol.
  • the water-soluble solid excipient is mannitol.
  • Vitamin B 12 is mixed with propylene glycol.
  • suitable co- solvents include polyethylene glycol (PEG), e.g., PEG 400, PEG 200, PEG 300, PEG 600, or other molecular weight grades of PEG, ethanol, ethyl acetate, isopropyl alcohol, triacetin, triethyl citrate, tributyl citrate, substituted polyethylene glycols, bisabolol, glycerin, mineral oil, ethyl oleate, , fatty acid esters, squalane, animal oils, vegetable oils, dimethyl isosorbide, hydrogenated vegetable oils, isopropyl myristate, isopropyl palmitate, glycofurol, terpenes, essential oils, alcohols, polyols, silicone fluids, and/or glycerides and combinations of such solvents.
  • the co-solvent ethanol is used.
  • excipients that might aid in the performance or to enhance processability, form, function, stability or aesthetic appeal of the formulation can be included in a composition according to the invention.
  • excipients according to the invention are a buffering agent (such as phosphate, carbonate, tartrate, borate, citrate, acetate, and maleate buffers), colorant, flavoring, coating agent, binder, diluent, carrier, disintegrant, glidant, lubricant, opacifying agent, humectant, granulating agent, gelling agent, polishing agent, suspending agent, sweetening agent, anti-adherent, preservative, emulsifying agent, antioxidant, chelating agent, plasticizer, surfactant, tonicity agent, viscosity agent, enteric agent and coating, controlled-release agent and coating, wax, wetting agent, thickening agent, suppository base, stiffing agent, stabilizing agent, solubilizing agent, sequestering agent, mucoad
  • the oral dosage form for buccal or sublingual administration, e.g. films, lozenges, pills and tablets.
  • the oral dosage form is provided as a tablet.
  • the pharmaceutical composition of the subject invention is provided as an oral dosage form for sublingual or buccal administration, e.g. films, lozenges, pills and tablets.
  • the oral dosage form is provided as a tablet.
  • the treatment is directed to subjects that had failed to respond to existing oral Vitamin B 12 treatment or are currently being administered Vitamin B 12 by EVI injection or nasal spray and wherein increasing the oral absorption and bioavailability, while shortening the onset of Vitamin B 12 action is provided.
  • the water-soluble solid excipient has an allowable change is +5%, for a disintegrant it is +1%, for a lubricant it is + 1%.
  • the Guidance is not specific for the complimentary lipophilic species, co-solvent or adsorbent and considering the range for the active is + 10%, the value for these excipients should be no different than the active as their use in the formulation is directly dependent on the active's level.
  • tablets are used for the treatment and such tablets contain from about 0.05 mg to about 2 mg of Vitamin B 12, from about 1 mg to about 50 mg of a propylene glycol, from about 0.1 mg about 50 mg of a solid adsorbent, when included in a particular formulation, illustrated by, albeit not limited to silica, and from about 25 mg to about 500 mg of a water-soluble solid excipient, illustrated by, albeit not limited to, spray dried mannitol.
  • the water-soluble solid excipient illustrated by, albeit not limited to, spray dried mannitol, may function as the only solid adsorbent and as the water-soluble solid excipient in the particular formulation.
  • an effective amount of a co-solvent may be necessary in order to enhance the transport of the active ingredient through the mucosal membrane.
  • up to 25 mg per tablet is considered an effective amount to facilitate such transport, illustrated by, albeit not limited to ethanol.
  • the tablet further contains at least one disintegrant and one lubricant.
  • the disintegrant has been exemplified in the formulations in Table 1, 2 and 3 as sodium starch glycolate, it is nevertheless within the purview of this invention to substitute any functionally equivalent disintegrant, illustrated by, but not limited to, crospovidone, croscarmellose sodium, low- substituted hydroxypropyl cellulose, starch, microcrystalline cellulose and mixtures thereof.
  • the content of the disintegrant is from about 0.5 mg to about 50 mg.
  • the tablet further contains at least one lubricant.
  • the lubricant has been exemplified in the formulations in Table 1, 2 and 3 as sodium stearyl fumarate, it is nevertheless within the purview of this invention to substitute any functionally equivalent lubricant, illustrated by, but not limited to, magnesium stearate, stearic acid, sodium lauryl sulfate, talc, polyethylene glycol, calcium stearate and mixtures thereof.
  • the content of the lubricant is from about 0.1 mg to about 15 mg.
  • One embodiment of the invention is prepared by dissolving Vitamin B12 into propylene glycol, with or without a co-solvent, and adsorbing this drug solution onto an acceptable pharmaceutical adsorbent, e.g. a silica and silicified microcrystalline celluloses.
  • an acceptable pharmaceutical adsorbent e.g. a silica and silicified microcrystalline celluloses.
  • the liquid laden adsorbent is then combined with a water-soluble tablet diluent, a disintegrant and lubricant which is then compressed into a tablet for sublingual/buccal administration.
  • Vitamin B 12 is in solution and this drug solution is combined with an adsorbent and then processed into a tablet for sublingual or buccal administration.
  • Vitamin B12 is in a propylene glycol solution and being adsorbed to a silica, which unexpectedly provides a significantly greater amount of drug transported across the sublingual mucosa and at a significantly greater rate.
  • Vitamin B12 is commercially available. In these commercially available products Vitamin B12 is in its solid state, as opposed to being in a solution as taught by the present invention, and is combined with other ingredients to make tablets for oral or sublingual administration.
  • These prior art tablets suffer from a lack of sufficient permeation, which translates into a loss of bioavailability, delays the onset of action, and reduces the overall extent of action derived therefrom.
  • Vitamin B 12 1.00 1.00
  • the 1 mg product marketed by GNC represents existing prior art. This product is a tablet designed to be placed under the tongue and allowed to dissolve before swallowing, i.e. sublingual administration. Further one of the main ingredients in the GNC tablet formulation is mannitol, which is the same tablet diluent used in the invention. Therefore comparisons are from similar formulations except for the inventive step of solubilizing Vitamin B12 in propylene glycol, with or without a co- solvent, and use of the adsorbent silica.
  • the data shows two and a half to three times the amount of Vitamin B12 permeated the sublingual tissue from the invention over the GNC's product and the rates was two and a half to three times greater. This translates clinically into significantly greater bioavailability of the invention over GNC's Vitamin B12 sublingual tablet and a more rapid onset which is important in sublingual delivery as residence time in the mouth is limited with this route of administration.
  • the invention provides a 1 mg strength Vitamin B12 sublingual/buccal tablet having a total tablet weight of about 150 mg, wherein the tablet comprises drug, a solid carrier, such as silica; a water soluble solid excipient, such as mannitol; a disintegrant, such as sodium starch glycolate; and a lubricant, such as sodium stearyl fumarate.
  • Vitamin B 12 is mixed with propylene glycol.
  • An exemplary formulation in accordance with the described formulation of this embodiment is provided in Table 2, below.
  • the invention provides 1 mg strength Vitamin B 12 sublingual/buccal tablet having a total tablet weight of about 150 mg.
  • Vitamin B 12 is mixed with propylene glycol and the co- solvent ethanol.
  • An exemplary formulation manufactured for this embodiment in accordance with the subject invention is provided in Table 3, below.
  • the invention provides a 0.1 mg strength Vitamin B12 sublingual tablet having a total tablet weight of about 160 mg.
  • Vitamin B12 is mixed with propylene glycol and added to spray dried mannitol, which functions as the water-soluble solid excipient and solid adsorbent.
  • An exemplary formulation manufactured for this embodiment in accordance with the subject invention is provided in Table 4, below.
  • a method of manufacture for a tablet according to an embodiment of the subject invention for sublingual/buccal administration may employ any suitable method known in the art including, but not limited to, the addition of the Vitamin B 12 propylene glycol mixture with or without a co- solvent to premanufactured tablets, cold compressions with inert fillers and binders, direct tablet compression blends, direct powder blends, wet or dry granulations, molding, lyophilization, microencapsulation, freeze drying, spray-congealing, spray-drying, co-melt, spheronization, triturates, troching, powder layering, pelleting, encapsulation.
  • An exemplary method for the manufacture of a direct compression tablet of the formulation given in Example 1 is outlined below and is schematically diagramed in Figure 1, and the steps outlined below: Embodiment 1
  • STEP 1 Mix Vitamin B 12 and propylene glycol.
  • STEP 2 Blend the Vitamin B 12 and propylene glycol mixture from Step 1 with silica until homogeneous to form a silica adsorbent blend.
  • STEP 3 Add to the silica adsorbent blend from Step 2, mannitol and sodium starch glycolate and mix until homogeneous to form a further blend.
  • STEP 4 Add sodium stearyl fumarate to the further blend from Step 3 and blend until well lubricated to form a lubricated blend.
  • STEP 5 Compressing the lubricated blend from Step 4 into 150mg tablets using 1 ⁇ 4 inch round tooling.
  • the sublingual/buccal tablets may be packaged in such a manner as to aid in maintaining stability.
  • Packaging methods and materials may include, but are not limited to, blister packaging in a foil/foil, foil/Acrylonitrile, foil/Polychlorotrifluoroethylene laminates for blister packaging or glass and plastic bottles.
  • Vitamin B 12 buccal/sublingual tablet formulation according to the invention is useful in the treatment of pernicious anemia and other conditions brought on by a Vitamin B 12 deficiency.
  • the typically treatment regimen starts by placing a Vitamin B 12 tablet under the tongue and leaving it undisturbed for about 5 to 15 minutes.
  • the dosage range for this embodiment may vary from 0.05 to 2.0 mg depending on the therapeutic need.
  • the invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Obesity (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates generally to Vitamin B12 pharmaceutical composition and method of using the same for the treatment of Vitamin B12 deficiency and the various disorders that are related to such deficiency. In particular embodiments, the present invention is directed towards treatment methods comprising sublingual or buccal administration of a Vitamin B12 composition useful in the practice of such treatment. The present invention features compositions that include one or more Vitamin B 12 compounds, propylene glycol, a solid adsorbent and a solid water-soluble excipient, wherein the Vitamin B 12 compounds are in a propylene glycol solution.

Description

METHOD OF TREATING VITAMIN B12 DEFICIENCY
CROSS-REFERENCE TO RELATED APPLICATIONS
[ 0001 ] This application claims priority to U.S. Provisional Application Ser. No.
61/782,246, filed on March 14, 2013. This application is also related to U.S.
Application Ser. No. 10/545,774, filed on August 8, 2006, which claims priority to
U.S. Provisional Application Ser. No. 60/449,647 filed on Feb. 24, 2003; and to U.S.
Application Ser. No. 13/633,924, filed on October 3, 2012, which is a continuation of
Ser. No. 12/595,183, filed on October 8, 2009, and now abandoned, which claims priority to U.S. Provisional Application Ser. No. 60/922,921, filed on April 11, 2007.
The contents of each are incorporated by reference herein in their entirety.
FIELD OF INVENTION
[ 0002 ] The present invention relates generally to methods of treating Vitamin B 12 deficiency and a sublingual/buccal composition for such treatment.
BACKGROUND OF THE INVENTION
[ 0003 ] Vitamin B-12 deficiency is very common. Large surveys in the United
States and the United Kingdom disclosed that about 6% of those aged above or equal to 60 years are Vitamin B-12 deficient. Moreover, in developing countries like India this deficiency is much more common, starting in early life and persisting across the life span. A study of 441 middle-aged men in Pune (India) revealed that 67% of the men had low Vitamin B-12 concentration (<150 pmol/L). Of the urban middle class, 81% had low Vitamin B-12 concentration and vegetarians had 4.4 times higher risk of low Vitamin B-12 concentrations.
[ 0004 ] It is now well understood and accepted that Vitamin B-12 is an important and central factor in many body functions. It is necessary for normal metabolism of nerve tissue and is involved in protein, fat and carbohydrate metabolism. Vitamin B- 12 is required for the synthesis and transfer of single carbon units such as the methyl group, and aids in the synthesis of methionine and choline, which are important lipotropic substances.
[ 0005 ] When the human body is healthy, the amount of Vitamin B-12 ordinarily absorbed into the blood by the intrinsic factor is about 2.5 to 3 micrograms per day. However, when the human body is not healthy and is suffering from pernicious anemia the body does not absorb adequate amounts of Vitamin B-12. The Vitamin B- 12 deficiency manifests itself in human beings, most commonly, in motor and mental difficulties. The symptoms are rapid heartbeat, cardiac pain, and shortness of breath, edema of the face, general jaundice and intense brown discoloration around the small joints, weakness and fatigue. Neurological changes, such as peripheral neuritis, spinal cord changes, intermittent numbness and tingling in arms and legs, diminished tendon reflexes, unsteady gait, etc. may also occur.
[ 0006] Among its other functions, Vitamin B- 12 is required for the formation of red blood cells and increases tissue deposition of Vitamin A by improving either carotene absorption or its conversion to Vitamin A. Vitamin B-12 is also closely related to the actions of four amino acids, pantothenic acid, and Vitamin C, and plays a part in reproduction and lactation. Additionally, Vitamin B-12 helps reduce the possibility of skin bruises and has been suggested as helpful in combatting
alcoholism, diabetes mellitus, osteoarthritis, multiple sclerosis, certain mental diseases, and a number of other diseases and abnormalities.
[ 0007 ] Vitamin B-12, however, is a very complex Vitamin. It contains an atom of cobalt in its center and is a charged molecule with a high molecular weight. The structure is similar to that of hemoglobin with iron at its center and to chlorophyll with a central magnesium atom. It cannot be made synthetically, but must be grown, like penicillin, in bacteria or molds. Animal protein is virtually the only source in which Vitamin B-12 occurs naturally in substantial quantities. The human body cannot synthesize Vitamin B-12, and consequently, it must be obtained externally if there is a deficiency, that is, by diet.
[ 0008 ] In Vitamin B 12 deficiency, conversion of methylmalonyl-CoA to succinyl- CoA cannot take place, which results in accumulation of methylmalonyl CoA and aberrant fatty acid synthesis. In the other enzymatic reaction, methylcobalamin supports the methionine synthase reaction, which is essential for normal metabolism of folate. The folate-cobalamin interaction is pivotal for normal synthesis of purines and pyrimidines and the transfer of the methyl group to cobalamin is essential for the adequate supply of tetrahydrofolate, the substrate for metabolic steps that require folate. In a state of Vitamin B12 deficiency, the cell responds by redirecting folate metabolic pathways to supply increasing amounts of methyltetrahydrofolate. The resulting elevated concentrations of homocysteine and MMA are often found in patients with low serum Vitamin B12 and can usually be lowered with successful Vitamin B12 replacement therapy. However, elevated MM A and homocysteine concentrations may persist in patients with cobalamin concentrations between 200 to 350 pg/mL. Supplementation with Vitamin B12 during conditions of deficiency restores the intracellular level of cobalamin and maintains a sufficient level of the two active coenzymes: methylcobalamin and deoxyadenosylcobalamin.
[ 0009 ] The main causes of B- 12 deficiency include lack of intrinsic factors and other intestinal factors (e.g. malabsorption), rare genetic disorders, conditions associated with gastric atrophy, infestation with tape worm, and inadequate intake. Therefore, it is necessary to overcome the deficiency of B-12 by supplementing with cyanocobalamin, hydroxocobalamin or methylcobalamin through various routes such as parenteral, nasal and oral.
[ 0010 ] Oral therapy is not suitable for patients lacking intrinsic factors, conditions associated with gastric atrophy, or infestation with tape worm. Further, to overcome such deficiency orally is extremely difficult even for those patients with intrinsic factor and good absorption since Vitamin B-12 does not become absorbed into the blood to any significant extent when taken orally, regardless of the amount. Berlin reported (H. Berlin et al, Acta Med. Scand. 184 247-258, 1968, and H. Hedstrand, Acta Med. Scand. 186 535-537, 1969) only approximately 1.2% of oral Vitamin B-12 is absorbed over rather a wide dosing range and such absorption rate is independent of the presence of intrinsic factor. Moreover, even insofar as the absorption of such a small quantity is concerned, there may be significant limitations such as a lack of hydrochloric acid, a lack of animal protein intake, or other gastro intestinal problems which create poor absorption capabilities.
[0011] WIPO patent application 2011/106378 A2 and 2009/1059188 Al discloses the use of "SNAC" or Sodium-N-salicyloyl-8-aminocaprylate, Monosodium S-(N- salicyloylamino) octanoate, N-(salicyloyl)-8-aminooctanoic acid monosodium salt, monosodium N-{ 8-(2 phenoxybenzoyl)amino } octanoate, EDTA monosodium salt or sodium 8-[(2-hydroxybenzoyl)amino]octanoate in combination with Vitamin B12 to improve the oral bioavailability of Vitamin B12 in the treatment of Vitamin B12- deficient patients.
[0012 ] WIPO patent application 2008/099397 discloses the use of
methylsulfonymethane as a transmucosal delivery enhancer which is claimed to enhance the delivery of a number of pharmaceutically active ingredients including Vitamin B 12. No specific embodiments however are disclosed for Vitamin B12.
[0013] WIPO patent application 2006/020291 Al and 2007/030108 A2 discloses the use of mixtures of methylcobalamin, hydroxocobalamin, cyanocobalamin and adenosylcobalamin in various dosage forms and routes of administration including tablets, injectable, sprays and aerosols; however, no specific embodiments are disclosed for Vitamin B12.
[0014] Because of the extremely limited bioavailability of Vitamin B- 12 when taken orally the preferred treatment process has to be in the form of Vitamin B-12 intramuscular (IM) injections. Such injections, however, have a number of significant drawbacks. First, injections are objectionable to administer because of the pain associated therewith. In this same regard, to many, the idea of injection treatments is inherently objectionable and offensive, and, consequently, there is a tendency not to proceed with the treatment. Additionally, as with any injection treatment process, needle abscess may occur and the treatment process is expensive.
[0015] In a newly-diagnosed Vitamin B12-deficient patient, normally defined as when serum cobalamin (Vitamin B12) levels are less than 200 pg/mL, daily EVI injections of up to 1,000 μg (1 mg) per day are given to replenish the body's depleted cobalamin stores. In the presence of neurological symptoms, following daily treatment, injections up to weekly or biweekly are indicated for 6 months before initiating monthly EVI injections. Once clinical improvement is confirmed, maintenance IM injection must be given for life.
[0016] Other routes of administration for Vitamin B 12, including nasal and oral sprays and transdermal patches have been considered in order to overcome the drawbacks of IM injection and poor oral absorption. However, sprays are less desirable because of inherent compliance issues such as improper manipulation of the actuator, swallowing of the dosage before absorption of the drug, and the restrictions on usage when the patient has sinus congestion or a head cold. This again leads to erratic and poor bioavailability. Therefore sprays are not the optimal route for routine Vitamin B12 administration.
[0017 ] WIPO patent application 86/05987 and 86/05988 disclose aerosol and nasal spray formulations for delivery Vitamin B 12.
[0018] WIPO patent application 2007/022345 discloses a nasally administered composition for delivery of Vitamin B12.
[0019] WIPO patent application 2012/056299 discloses an intranasal formulation which enhances the nasal absorption of Vitamin B 12.
[0020] WIPO patent application 2008/116004 A2 discloses a transdermal device for administering Vitamin B 12.
[0021] It can be appreciated from the foregoing that various internal and external factors may result in an individual experiencing a Vitamin B 12 deficiency.
Currently, cyanocobalamin is available by prescription in an injectable form and as a nasal gel for the treatment of pernicious anemia. Over the counter preparations containing cyanocobalamin often include multivitamin, Vitamin B-complex, and
[0022 ] Vitamin B 12 supplements, which provide no benefit in treating patients lacking intrinsic factors, conditions associated with gastric atrophy, and
malabsorption. It is clear that the present administration methods, in particular those using intravenous and nasal routes, make compliance difficult for any patient and particularly difficult for disabled, elderly and juveniles. Accordingly, it is desirable in the medical field to provide a means for the simple and reliable administration of Vitamin B 12 at appropriate dosages, over extended periods of time. One such alternative means may be administration via the sublingual/buccal route as disclosed herein. SUMMARY OF THE INVENTION
[ 0023 ] The present invention relates generally to methods of treating Vitamin B
12 deficiency and pharmaceutical compositions for such treatment.
[ 0024 ] One aspect of the invention is directed to a method for treating Vitamin
B12 deficiency in a subject, comprising the steps of (a) preparing a pharmaceutical composition for sublingual/buccal administration containing (1) Vitamin B 12 and (2) at least propylene glycol, a pharmaceutically acceptable solid adsorbent and a water- soluble solid excipient (b) administering the pharmaceutical composition to the subject to effectively treat said Vitamin B12 deficiency.
[ 0025 ] Another aspect of the invention is directed to a pharmaceutical
composition for treating Vitamin B12 deficiency in a subject, comprising (1) Vitamin B12 and (2) at least propylene glycol, a pharmaceutically acceptable solid adsorbent and a water-soluble solid excipient; wherein the dosage form is administered sublingually or buccally.
[ 0026] The contents of the patents and publications cited herein and the contents of these documents cited in these patents and publications are hereby incorporated herein by reference to the extent permitted.
BRIEF DESCRIPTION OF THE DRAWINGS
[ 0027 ] FIG. 1 is a flow chart showing steps comprising the manufacture of a sublingual tablet containing a dose of 1 mg Vitamin B 12. [ 0028 ] FIG. 2 is a graph depicting Vitamin B12 permeation over time for formulations of the present invention as compared to a commercially available B12 product designed for sublingual administration.
DESCRIPTION OF PREFERRED EMBODIMENTS
[ 0029] The present invention provides formulations for sublingual and buccal administration, comprising Vitamin B- 12 or any member of a group of cobalt-containing compounds known as cobalamins which include, but are not limited to cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5- deoxyadenosyl-cobalamin. The cobalamins are mixed with propylene glycol and the resultant B-12/propylene glycol solution is added to a pharmaceutically acceptable solid adsorbent and a water-soluble solid excipient. Other excipients which aid in the performance or processing of the dosage form include pharmaceutically acceptable co-solvents or mixtures thereof, disintegrants, lubricants or combinations thereof. The invention also provides a process for preparing and method of administration of the disclosed formulation in the treatment of Vitamin B 12 deficiency.
[ 0030 ] In accordance with certain embodiments of the present invention, the composition comprises a pharmaceutically acceptable adsorbent selected from silica, microcrystalline cellulose, cellulose, silicified microcrystalline cellulose, clay, talc, starch, pregelatinized starch, calcium carbonate, calcium silicate, dicalcium phosphate, magnesium carbonate and mixtures thereof. In a preferred embodiment, the pharmaceutically acceptable adsorbent is silica, which is also called colloidal silicon dioxide.
[0031 ] Water-soluble solid excipients according to the invention are one or more of the following: sugars, polyols, saccharides, polysaccharides, dextrate, dextrins, dextrose, fructose, lactitol, lactose, erythritol, maltose, maltitol, maltodextrins, polydextrose, trehalose, mannitol, polyethylene glycols, isomalts, sorbitol, sucrose and xylitol. In one embodiment the water-soluble solid excipient is mannitol.
[0032] In an embodiment of the invention, Vitamin B 12 is mixed with propylene glycol. Other suitable co- solvents include polyethylene glycol (PEG), e.g., PEG 400, PEG 200, PEG 300, PEG 600, or other molecular weight grades of PEG, ethanol, ethyl acetate, isopropyl alcohol, triacetin, triethyl citrate, tributyl citrate, substituted polyethylene glycols, bisabolol, glycerin, mineral oil, ethyl oleate, , fatty acid esters, squalane, animal oils, vegetable oils, dimethyl isosorbide, hydrogenated vegetable oils, isopropyl myristate, isopropyl palmitate, glycofurol, terpenes, essential oils, alcohols, polyols, silicone fluids, and/or glycerides and combinations of such solvents. In one embodiment the co-solvent ethanol is used.
[0033] Other suitable excipients that might aid in the performance or to enhance processability, form, function, stability or aesthetic appeal of the formulation can be included in a composition according to the invention. Other excipients according to the invention are a buffering agent (such as phosphate, carbonate, tartrate, borate, citrate, acetate, and maleate buffers), colorant, flavoring, coating agent, binder, diluent, carrier, disintegrant, glidant, lubricant, opacifying agent, humectant, granulating agent, gelling agent, polishing agent, suspending agent, sweetening agent, anti-adherent, preservative, emulsifying agent, antioxidant, chelating agent, plasticizer, surfactant, tonicity agent, viscosity agent, enteric agent and coating, controlled-release agent and coating, wax, wetting agent, thickening agent, suppository base, stiffing agent, stabilizing agent, solubilizing agent, sequestering agent, mucoadhesive, ointment base, oleaginous vehicle, film-forming agent, essential oil, emollient, dissolution enhancer, dispersing agent, and/or cryoprotectant or combinations thereof.
[ 0034 ] In one embodiment, the pharmaceutical composition of the subject
invention is provided as an oral dosage form for buccal or sublingual administration, e.g. films, lozenges, pills and tablets. In the following illustrative embodiments, the oral dosage form is provided as a tablet. In one embodiment, the pharmaceutical composition of the subject invention is provided as an oral dosage form for sublingual or buccal administration, e.g. films, lozenges, pills and tablets. In the following illustrative embodiments, the oral dosage form is provided as a tablet. In the following illustrative embodiments, the treatment is directed to subjects that had failed to respond to existing oral Vitamin B 12 treatment or are currently being administered Vitamin B 12 by EVI injection or nasal spray and wherein increasing the oral absorption and bioavailability, while shortening the onset of Vitamin B 12 action is provided.
[ 0035 ] It is understood by the skilled artisan, that use of the term "about" includes the range as stated, are within what is normally acceptable in the pharmaceutical industry. The US Pharmacopeia allows a plus and minus range of 10% in the assay for the active ingredient in most solid dosage forms. The Food and Drug
Administration (FDA) has a published Guidances for changes in levels of common excipient classes that are considered unlikely to have any detectable impact on formulation quality and performance (Guidance for Industry: Immediate Release Solid Oral Dosage Forms Scale-Up and Post approval Changes: Chemistry,
Manufacturing, and Controls, In Vitro Dissolution Testing, and In Vivo
Bioequivalence Documentation). Under this Guidance the water-soluble solid excipient has an allowable change is +5%, for a disintegrant it is +1%, for a lubricant it is + 1%. Although the Guidance is not specific for the complimentary lipophilic species, co-solvent or adsorbent and considering the range for the active is + 10%, the value for these excipients should be no different than the active as their use in the formulation is directly dependent on the active's level. 36 ] As illustrated, tablets are used for the treatment and such tablets contain from about 0.05 mg to about 2 mg of Vitamin B 12, from about 1 mg to about 50 mg of a propylene glycol, from about 0.1 mg about 50 mg of a solid adsorbent, when included in a particular formulation, illustrated by, albeit not limited to silica, and from about 25 mg to about 500 mg of a water-soluble solid excipient, illustrated by, albeit not limited to, spray dried mannitol. In some instances the water-soluble solid excipient, illustrated by, albeit not limited to, spray dried mannitol, may function as the only solid adsorbent and as the water-soluble solid excipient in the particular formulation. In the case of certain formulations, an effective amount of a co-solvent may be necessary in order to enhance the transport of the active ingredient through the mucosal membrane. In such instances up to 25 mg per tablet is considered an effective amount to facilitate such transport, illustrated by, albeit not limited to ethanol.
[ 0037 ] In the illustrated embodiments, the tablet further contains at least one disintegrant and one lubricant. Although the disintegrant has been exemplified in the formulations in Table 1, 2 and 3 as sodium starch glycolate, it is nevertheless within the purview of this invention to substitute any functionally equivalent disintegrant, illustrated by, but not limited to, crospovidone, croscarmellose sodium, low- substituted hydroxypropyl cellulose, starch, microcrystalline cellulose and mixtures thereof. The content of the disintegrant is from about 0.5 mg to about 50 mg.
[ 0038 ] In the illustrated embodiments, the tablet further contains at least one lubricant. Although the lubricant has been exemplified in the formulations in Table 1, 2 and 3 as sodium stearyl fumarate, it is nevertheless within the purview of this invention to substitute any functionally equivalent lubricant, illustrated by, but not limited to, magnesium stearate, stearic acid, sodium lauryl sulfate, talc, polyethylene glycol, calcium stearate and mixtures thereof. The content of the lubricant is from about 0.1 mg to about 15 mg. [ 0039] The present invention provides an unexpected increase in the rate and extent of drug absorption through the sublingual or buccal tissue. In a clinical setting this translates into increasing oral bioavailability and shortens the onset of drug action. One embodiment of the invention is prepared by dissolving Vitamin B12 into propylene glycol, with or without a co-solvent, and adsorbing this drug solution onto an acceptable pharmaceutical adsorbent, e.g. a silica and silicified microcrystalline celluloses. The liquid laden adsorbent is then combined with a water-soluble tablet diluent, a disintegrant and lubricant which is then compressed into a tablet for sublingual/buccal administration.
[ 0040 ] In the present invention Vitamin B 12 is in solution and this drug solution is combined with an adsorbent and then processed into a tablet for sublingual or buccal administration. In one embodiment of the invention it is the combination of the Vitamin B12 being in a propylene glycol solution and being adsorbed to a silica, which unexpectedly provides a significantly greater amount of drug transported across the sublingual mucosa and at a significantly greater rate. As a nutraceutical, Vitamin B12 is commercially available. In these commercially available products Vitamin B12 is in its solid state, as opposed to being in a solution as taught by the present invention, and is combined with other ingredients to make tablets for oral or sublingual administration. These prior art tablets suffer from a lack of sufficient permeation, which translates into a loss of bioavailability, delays the onset of action, and reduces the overall extent of action derived therefrom.
[ 0041 ] The steps of dissolving the active ingredient, e.g. Vitamin B 12, to form an active ingredient-containing solution followed by contacting of the active ingredient- containing solution with the solid absorbent/adsorbent carrier whereby said active ingredient-containing solution is coated, absorbed or adsorbed onto said carrier are unique to the instant invention, and the carrying out of said steps are what allow for the formation of a unique solid dosage form which enables increased oral absorption and bioavailability while shortening onset of active ingredient action upon administration of the novel solid dosage form via the buccal or sublingual route
[ 0042 ] The following experiments were performed to support the enhanced Vitamin B12 sublingual permeation of the invention.
[ 0043 ] Drug permeation studies were performed using Epioral™ (see web site www.mattek.com), a fully differentiated, cultured oral mucosa as the relevant biological tissue. The graph below is the results obtained from sublingual permeation studies comparing GNC's 1 mg Vitamin B12 sublingual tablet to two formulations of a 1 mg Vitamin B12 sublingual tablet prepared according to the invention. Formulation Fl is prepared per the invention using only propylene glycol to solubilize Vitamin B12 and formulation F2 uses propylene glycol along with the co-solvent ethanol. The compositions of formulations Fl and F2 are given in Table 1 below.
TABLE 1: 1 mg Vitamin B 12 Sublingual/Buccal Tablet Formulation
INGREDIENT AMOUNT (mg tablet)
Fl F2
Vitamin B 12 1.00 1.00
Propylene glycol 14.00 4.77 Ethanol 0.30
Silica 9.60 4.00
Mannitol 132.00 92.10
Sodium Starch Glycolate 3.20
LS Hydroxypropyl Cellulose 20.11
Sodium Stearyl Fumarate 3.20 2.72
Total Tablet Weight 163.00 125.00
[ 0044 ] The 1 mg product marketed by GNC represents existing prior art. This product is a tablet designed to be placed under the tongue and allowed to dissolve before swallowing, i.e. sublingual administration. Further one of the main ingredients in the GNC tablet formulation is mannitol, which is the same tablet diluent used in the invention. Therefore comparisons are from similar formulations except for the inventive step of solubilizing Vitamin B12 in propylene glycol, with or without a co- solvent, and use of the adsorbent silica.
[ 0045 ] This study was conducted by mounting the Epioral™ tissue in a Franz cell and the drug concentration was measured in the receiver solution over time. The tablets were placed on the donor side of the Franz cell and wetted with 1 ml of phosphate buffered saline at pH6.8, which was the same buffer used on the receiver side. Samples were taken from the receiver side of the Franz cell at the time points depicted in the graph of Figure 2.
[ 0046 ] Each formulation was run in triplicate, i.e. three Franz cells, and plotted as the mean value with a bar being used to show the sample standard deviation.
The permeation rates are calculated below:
Permeation rate between time points 30 and 120 minutes is calculated as: INVENTION Fl = 10.21mcg - 1.27mcg/90 minutes = O.lOOmcg/minute INVENTION F2 = 13.32mcg - 2.05mcg/90 minutes = 0.125mcg/minute
GNC = 4.24mcg - 0.58mcg/90 minutes = 0.041mcg/minute
Ratio of INVENTION Fl to GNC's rates = 0.1/0.41 = 2.44
Ratio of INVENTION F2 to GNC's rates = 0.125/0.41 = 3.05
[ 0047 ] In conclusion, the data shows two and a half to three times the amount of Vitamin B12 permeated the sublingual tissue from the invention over the GNC's product and the rates was two and a half to three times greater. This translates clinically into significantly greater bioavailability of the invention over GNC's Vitamin B12 sublingual tablet and a more rapid onset which is important in sublingual delivery as residence time in the mouth is limited with this route of administration.
[ 0048 ] Accordingly, preparation of the tablet as disclosed by the instant invention, by dissolving Vitamin B12 into propylene glycol, with or without a co-solvent, and adsorbing this drug solution onto an acceptable pharmaceutical adsorbent, e.g. a silica and silicified microcrystalline cellulose, and adding the liquid laden adsorbent with a water-soluble tablet diluent, a disintegrant and lubricant and then processing into a tablet for sublingual administration. It is the combination of the Vitamin B12 being in solution and being adsorbed to silica which unexpectedly provides a significantly greater amount of drug being transported across the sublingual mucosa and at a significantly greater rate. This composition prepared in accordance with the method of the claimed invention thereby unexpectedly yields greater Vitamin B12 permeation, which translate clinically to greater bioavailability. Example 2
[ 0049 ] In one embodiment, the invention provides a 1 mg strength Vitamin B12 sublingual/buccal tablet having a total tablet weight of about 150 mg, wherein the tablet comprises drug, a solid carrier, such as silica; a water soluble solid excipient, such as mannitol; a disintegrant, such as sodium starch glycolate; and a lubricant, such as sodium stearyl fumarate. In such an embodiment, Vitamin B 12 is mixed with propylene glycol. An exemplary formulation in accordance with the described formulation of this embodiment is provided in Table 2, below.
TABLE 2. 1 mg Vitamin B 12 Sublingual/Buccal Tablet Formulation
INGREDIENT AMOUNT (mg tablet)
Vitamin B 12 1.00
Propylene glycol 11.00
Silica 9.00
Mannitol 121.50
Sodium Starch Glycolate 4.50
Sodium Stearyl Fumarate 3.00
Total Tablet Weight 150.00
Example 3
[ 0050 ] In one embodiment, the invention provides 1 mg strength Vitamin B 12 sublingual/buccal tablet having a total tablet weight of about 150 mg. In this exemplary embodiment, Vitamin B 12 is mixed with propylene glycol and the co- solvent ethanol. An exemplary formulation manufactured for this embodiment in accordance with the subject invention is provided in Table 3, below.
TABLE 3. 1 mg Vitamin B 12 Sublingual/Buccal Tablet Formulation
INGREDIENT AMOUNT Cms/tablet)
Vitamin B 12 1.00
Propylene glycol 11.00
Ethanol 2.00
Silica 10.00
Mannitol 118.50
Sodium Starch Glycolate 4.50
Sodium Stearvl Fumarate 3.00
Total Tablet Weight 150.00
Example 4
[ 0051 ] In one embodiment, the invention provides a 0.1 mg strength Vitamin B12 sublingual tablet having a total tablet weight of about 160 mg. In this exemplary embodiment, Vitamin B12 is mixed with propylene glycol and added to spray dried mannitol, which functions as the water-soluble solid excipient and solid adsorbent. An exemplary formulation manufactured for this embodiment in accordance with the subject invention is provided in Table 4, below.
TABLE 4. 0.1 mg Vitamin B 12 Sublingual Tablet Formulation
INGREDIENT AMOUNT (mg/tablet)
Vitamin B 12 0.1
Propylene glycol 1.5
Mannitol 150.9
Sodium Starch Glycolate 4.5
Sodium Stearyl Fumarate 3.0
Total Tablet Weight 160.0
Example 5
[ 0052 ] A method of manufacture for a tablet according to an embodiment of the subject invention for sublingual/buccal administration may employ any suitable method known in the art including, but not limited to, the addition of the Vitamin B 12 propylene glycol mixture with or without a co- solvent to premanufactured tablets, cold compressions with inert fillers and binders, direct tablet compression blends, direct powder blends, wet or dry granulations, molding, lyophilization, microencapsulation, freeze drying, spray-congealing, spray-drying, co-melt, spheronization, triturates, troching, powder layering, pelleting, encapsulation. [ 0053 ] An exemplary method for the manufacture of a direct compression tablet of the formulation given in Example 1 is outlined below and is schematically diagramed in Figure 1, and the steps outlined below: Embodiment 1
STEP 1: Mix Vitamin B 12 and propylene glycol.
STEP 2: Blend the Vitamin B 12 and propylene glycol mixture from Step 1 with silica until homogeneous to form a silica adsorbent blend.
STEP 3: Add to the silica adsorbent blend from Step 2, mannitol and sodium starch glycolate and mix until homogeneous to form a further blend.
STEP 4: Add sodium stearyl fumarate to the further blend from Step 3 and blend until well lubricated to form a lubricated blend.
STEP 5: Compressing the lubricated blend from Step 4 into 150mg tablets using ¼ inch round tooling.
[ 0054 ] Method of packaging. The sublingual/buccal tablets may be packaged in such a manner as to aid in maintaining stability. Packaging methods and materials may include, but are not limited to, blister packaging in a foil/foil, foil/Acrylonitrile, foil/Polychlorotrifluoroethylene laminates for blister packaging or glass and plastic bottles.
[ 0055 ] Method of Use: In an embodiment, Vitamin B 12 buccal/sublingual tablet formulation according to the invention is useful in the treatment of pernicious anemia and other conditions brought on by a Vitamin B 12 deficiency. The typically treatment regimen starts by placing a Vitamin B 12 tablet under the tongue and leaving it undisturbed for about 5 to 15 minutes. The dosage range for this embodiment may vary from 0.05 to 2.0 mg depending on the therapeutic need. 56] The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims

CLAIMS What is claimed is:
Claim 1. A pharmaceutical composition containing Vitamin B 12 in a solid dosage form for buccal or sublingual delivery comprising:
Vitamin B 12 in an amount of about 0.05 mg to about 2 mg;
Propylene glycol in an amount of about 1 mg to about 50 mg;
a solid adsorbent in an amount up to about 50 mg;
a solid water-soluble excipient in an amount of about 25 mg to about 500 mg;
a disintegrant in an amount of about 0.5 mg to about 50 mg; and
a lubricant in an amount of about 0.1 mg to about 15 mg.
Claim 2. The pharmaceutical composition of claim 1, further including a co- solvent in an amount of up to about 25 mg.
Claim 3. The pharmaceutical composition of claim 2 wherein suitable co- solvents include ethanol, ethyl acetate, isopropyl alcohol, triacetin, triethyl citrate, tributyl citrate, substituted polyethylene glycols, bisabolol, glycerin, mineral oil, ethyl oleate, fatty acid esters, squalane, animal oils, vegetable oil, polyethylene glycols, hydrogenated vegetable oils, isopropyl myristate, isopropyl palmitate, glycofurol, terpenes, essential oils, alcohols, polyols, silicone fluid, glycerides and mixtures thereof.
Claim 4. The pharmaceutical composition of claim 1 wherein the solid adsorbent is selected from the group consisting of microcrystalline cellulose, cellulose powder, silicified microcrystalline cellulose, silica, clay, talc, starch, pregelatinized starch, calcium carbonate, magnesium carbonate, and mixtures thereof.
Claim 5. The pharmaceutical composition of claim 1 wherein the solid water-soluble excipient is selected from the group consisting of a sugar, a polyol, a saccharide, a polysaccharide, a dextrate, a dextrin, dextrose, fructose, lactitol, lactose, erythritol, maltose, maltitol, a maltodextrin, a polydextrose, trehalose, mannitol, a polyethylene glycol, sorbitol, sucrose, xylitol and mixtures thereof.
Claim 6. The pharmaceutical composition of claim 1 wherein the disintegrant is selected from the group consisting of sodium starch glycolate, crospovidone, croscarmellose sodium, low- substituted hydroxypropyl cellulose, starch, microcrystalline cellulose and mixtures thereof.
Claim 7. The pharmaceutical composition of claim 1 wherein the lubricant is selected from the group consisting of sodium stearyl fumarate, magnesium stearate, stearic acid, sodium lauryl sulfate, talc, polyethylene glycol, calcium stearate and mixtures thereof.
Claim 8. The pharmaceutical composition of claim 2 wherein the solid adsorbent is selected from the group consisting of microcrystalline cellulose, cellulose powder, silicified microcrystalline cellulose, silica, clay, talc, starch, pregelatinized starch, calcium carbonate, magnesium carbonate, and mixtures thereof.
Claim 9. The pharmaceutical composition of claim 2 wherein the solid water-soluble excipient is selected from the group consisting of a sugar, a polyol, a saccharide, a polysaccharide, a dextrate, a dextrin, dextrose, fructose, lactitol, lactose, erythritol, maltose, maltitol, a maltodextrin, a polydextrose, trehalose, mannitol, a polyethylene glycol, sorbitol, sucrose, xylitol and mixtures thereof.
Claim 10. The pharmaceutical composition of claim 2 wherein the disintegrant is selected from the group consisting of sodium starch glycolate, crospovidone, croscarmellose sodium, low- substituted hydroxypropyl cellulose, starch, microcrystalline cellulose and mixtures thereof.
Claim 11. The pharmaceutical composition of claim 2 wherein the lubricant is selected from the group consisting of sodium stearyl fumarate, magnesium stearate, stearic acid, sodium lauryl sulfate, talc, polyethylene glycol, calcium stearate and mixtures thereof.
Claim 12. The pharmaceutical composition of claim 1 comprising:
Vitamin B 12 in an amount to provide about 1 mg of Vitamin B 12;
propylene glycol in an amount of about 11 mg;
silica in an amount of about 9 mg;
mannitol in an amount of about 121 mg;
sodium starch glycolate in an amount of about 4.5 mg; and
sodium stearyl fumarate in an amount of about 3 mg.
Claim 13. The pharmaceutical composition of claim 2 containing Vitamin B
12 in a solid dosage form for buccal or sublingual delivery comprising:
Vitamin B 12 in an amount to provide about 1 mg of Vitamin B 12;
Propylene glycol in an amount of about 11 mg;
ethanol in an amount of about 2 mg;
silica in an amount of about 12 mg;
mannitol in an amount of about 118.5 mg;
sodium starch glycolate in an amount of about 4.5 mg; and
sodium stearyl fumarate in an amount of about 3 mg.
Claim 14. The pharmaceutical composition of claim 1 containing Vitamin B
12 in a solid dosage form for buccal or sublingual delivery comprising:
Vitamin B 12 in an amount to provide about 0.1 mg of Vitamin B 12;
Propylene glycol in an amount of about 1.5 mg; spray dried mannitol in an amount of about 150.9 mg;
sodium starch glycolate in an amount of about 4.5 mg; and
sodium stearyl fumarate in an amount of about 3 mg.
Claim 15. A method for increasing oral absorption and bioavailability while shortening onset of Vitamin B 12 action in an oral solid dosage form comprising: providing Vitamin B 12 in an amount of about 0.05 mg to about 2 mg;
providing propylene glycol in an amount of about 1 mg of to about 50 mg;
providing a solid adsorbent in an amount up to about 50 mg;
providing a co-solvent in an amount up to about 25 mg;
providing a solid water-soluble excipient in an amount of about 25 mg to about 500 mg;
providing a disintegrant in an amount of about 0.5 mg to about 50 mg;
providing a lubricant in an amount of about 0.1 mg to about 15 mg; and
forming a solid oral dosage for buccal or sublingual administration having increased oral absorption and bioavailability and shortened onset of action for Vitamin B 12.
Claim 16. A method for treating low B 12 levels, pernicious anemia, and other disease states for which Vitamin B 12 is an effective therapeutic, in a patient in need thereof comprising:
placing a Vitamin B 12 containing the pharmaceutical composition in accordance with Claim 1, under the tongue; and leaving it undisturbed from about 5 to 15 minutes;
whereby a therapeutically effective amount of Vitamin B 12 is administered by sublingual or buccal administration.
Claim 17. A method for treating low B 12 levels, pernicious anemia, and other disease states for which Vitamin B 12 is an effective therapeutic, in a patient in need thereof comprising:
placing a Vitamin B 12 containing the pharmaceutical composition in accordance with Claim 2, under the tongue; and
leaving it undisturbed from about 5 to 15 minutes;
whereby a therapeutically effective amount of Vitamin B 12 is administered by sublingual or buccal administration.
PCT/US2014/027412 2013-03-14 2014-03-14 Method of treating vitamin b12 deficiency WO2014152504A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2906060A CA2906060A1 (en) 2013-03-14 2014-03-14 Method of treating vitamin b12 deficiency
MX2015012771A MX2015012771A (en) 2013-03-14 2014-03-14 Method of treating vitamin b12 deficiency.
AU2014239651A AU2014239651A1 (en) 2013-03-14 2014-03-14 Method of treating vitamin B12 deficiency
BR112015023368A BR112015023368A2 (en) 2013-03-14 2014-03-14 Vitamin B12 deficiency treatment method
JP2016502427A JP2016513694A (en) 2013-03-14 2014-03-14 How to treat vitamin B12 deficiency
EP14718856.9A EP2968117A1 (en) 2013-03-14 2014-03-14 Method of treating vitamin b12 deficiency
RU2015140463A RU2015140463A (en) 2013-03-14 2014-03-14 METHOD FOR TREATING VITAMIN B12 DEFICIENCY
US14/853,110 US20160000716A1 (en) 2013-03-14 2015-09-14 Method of treating vitamin b12 deficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361782246P 2013-03-14 2013-03-14
US61/782,246 2013-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/853,110 Continuation-In-Part US20160000716A1 (en) 2013-03-14 2015-09-14 Method of treating vitamin b12 deficiency

Publications (1)

Publication Number Publication Date
WO2014152504A1 true WO2014152504A1 (en) 2014-09-25

Family

ID=50543352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/027412 WO2014152504A1 (en) 2013-03-14 2014-03-14 Method of treating vitamin b12 deficiency

Country Status (9)

Country Link
US (1) US20160000716A1 (en)
EP (1) EP2968117A1 (en)
JP (1) JP2016513694A (en)
AU (1) AU2014239651A1 (en)
BR (1) BR112015023368A2 (en)
CA (1) CA2906060A1 (en)
MX (1) MX2015012771A (en)
RU (1) RU2015140463A (en)
WO (1) WO2014152504A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199165A2 (en) * 2015-06-08 2016-12-15 Zim Laboratories Limited Improved mucosal delivery of vitamin b12
CN114073683A (en) * 2021-09-27 2022-02-22 广州汇元医药科技有限公司 Vitamin orally-dissolving film agent and preparation method thereof
US11369626B2 (en) 2017-12-21 2022-06-28 Osaka University Therapeutic agent for nervous system disease
WO2023079445A1 (en) * 2021-11-03 2023-05-11 Lupin Limited Pharmaceutical composition of low dose vitamin b12

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105040A2 (en) * 2004-04-26 2005-11-10 Micelle Products, Inc. Water-soluble formulations of fat soluble vitamins and pharmaceutical agents and their applications
US20070122455A1 (en) * 2001-10-12 2007-05-31 Monosolrx, Llc. Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
WO2013028333A1 (en) * 2011-08-25 2013-02-28 Purebrands LLC Edible strips

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147666A1 (en) * 2002-03-06 2005-07-07 Kyowa Hakko Kogyo Co., Ltd. Tablets quickly disintegrating in oral cavity
US20080039422A1 (en) * 2004-03-30 2008-02-14 Transition Therapeutics Inc. Vitamin B12-Containing Compositions and Methods of Use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122455A1 (en) * 2001-10-12 2007-05-31 Monosolrx, Llc. Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
WO2005105040A2 (en) * 2004-04-26 2005-11-10 Micelle Products, Inc. Water-soluble formulations of fat soluble vitamins and pharmaceutical agents and their applications
WO2013028333A1 (en) * 2011-08-25 2013-02-28 Purebrands LLC Edible strips

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199165A2 (en) * 2015-06-08 2016-12-15 Zim Laboratories Limited Improved mucosal delivery of vitamin b12
WO2016199165A3 (en) * 2015-06-08 2017-02-09 Zim Laboratories Limited Improved mucosal delivery of vitamin b12
US11369626B2 (en) 2017-12-21 2022-06-28 Osaka University Therapeutic agent for nervous system disease
US11679122B2 (en) 2017-12-21 2023-06-20 Osaka University Therapeutic agent for nervous system disease
US12029751B2 (en) 2017-12-21 2024-07-09 Osaka University Therapeutic agent for nervous system disease
CN114073683A (en) * 2021-09-27 2022-02-22 广州汇元医药科技有限公司 Vitamin orally-dissolving film agent and preparation method thereof
WO2023079445A1 (en) * 2021-11-03 2023-05-11 Lupin Limited Pharmaceutical composition of low dose vitamin b12

Also Published As

Publication number Publication date
CA2906060A1 (en) 2014-09-25
BR112015023368A2 (en) 2017-07-18
JP2016513694A (en) 2016-05-16
RU2015140463A (en) 2017-04-18
AU2014239651A1 (en) 2015-10-15
MX2015012771A (en) 2016-05-31
EP2968117A1 (en) 2016-01-20
US20160000716A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
EP2144610B1 (en) Melatonin tablet and methods of preparation and use
US8349359B2 (en) Liposomal formulation for oral administration of glutathione (reduced)
US9907748B2 (en) Excipients for nicotine-containing therapeutic compositions
EP1817006B1 (en) Liposomal formulation for oral administration of glutathione (reduced)
KR20190005823A (en) Controlled-release and mixed-bed cyclodextrin-containing complex vehicle
JP2014533251A (en) Melatonin-based solutions and powders for their production
US20160000716A1 (en) Method of treating vitamin b12 deficiency
CN111278466A (en) Liquid dosage forms of imatinib
US20060024241A1 (en) Vitamin B12 compositions
US20070178141A1 (en) Vitamin B12 compositions
Yadav et al. Methylcobalamine (vitamin B12): Water soluble vitamin with various pharmacological aspect
KR102375232B1 (en) Intranasal epinephrine preparations and methods of treatment of diseases
JP2013047257A (en) Composition and method for increasing blood platelet level in human
WO2020132263A1 (en) Compositions, devices, and methods for the treatment of overdose and reward-based disorders
US20230295585A1 (en) Superoxide dismutase compositions and methods
JP2011068614A (en) Vitamin preparation
CN104840480A (en) New use of dimethyldiguanide/folic acid/vitamin B12 pharmaceutical composition
RU2309731C1 (en) Emetine hydrochloride granulate, method for its preparing and medicinal formulation based on thereof
KR20210087952A (en) Use of gaboxadol, ganaxolone, and allopregnanolone to treat movement disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14718856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2906060

Country of ref document: CA

Ref document number: 2016502427

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/012771

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 241662

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2014718856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014718856

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015140463

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014239651

Country of ref document: AU

Date of ref document: 20140314

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015023368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015023368

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150914