WO2014149176A2 - Use of chromobacterium substugae formulations, compositions and compounds to modulate cornworm rootworm larvae infestation - Google Patents

Use of chromobacterium substugae formulations, compositions and compounds to modulate cornworm rootworm larvae infestation Download PDF

Info

Publication number
WO2014149176A2
WO2014149176A2 PCT/US2014/012451 US2014012451W WO2014149176A2 WO 2014149176 A2 WO2014149176 A2 WO 2014149176A2 US 2014012451 W US2014012451 W US 2014012451W WO 2014149176 A2 WO2014149176 A2 WO 2014149176A2
Authority
WO
WIPO (PCT)
Prior art keywords
larvae
corn rootworm
chromobacterium
culture
diabrotica
Prior art date
Application number
PCT/US2014/012451
Other languages
French (fr)
Other versions
WO2014149176A3 (en
Inventor
Lina Flor-Weiler
April Yang
Original Assignee
Marrone Bio Innovations, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marrone Bio Innovations, Inc. filed Critical Marrone Bio Innovations, Inc.
Publication of WO2014149176A2 publication Critical patent/WO2014149176A2/en
Publication of WO2014149176A3 publication Critical patent/WO2014149176A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom

Definitions

  • compositions or formulations comprising Chromobacterium species, filtrate, supernatant, extract, pesticidally active compound or metabolite derived therefrom as an insecticide, particularly against infestation of Diabrotica (Corn Rootworm) larvae.
  • Chromobacteria Chromobacterium. substsugae sp. nov (Martin et al., 2007c). and or alternatively as Chromobacterium subslsugae NRRL B-30655.
  • Chromobacterium substsugae NRRL B-30655 The effect of Chromobacterium substsugae NRRL B-30655 on insects does vary. It has been found to be toxic to Colorado Potato Beetle larvae but not to adults when these insects were fed a diet including Chromobacterium substsugae NRRL B-30655 (Martin, 2007b, 2007c). It was found to be toxic to adult southern green stink bugs but appeared to have a faster effect on males (Martin 2007c). For diamondback moth instar larvae fed a diet including Chromobacterium substsugae NRRL B-30655, the mortality was 90% in 7 days.
  • US patent application publication no. US20120100236 also discloses compounds obtainable or derived from Chromobacterium species, more particularly, Chromobacterium substugae.
  • PCX appln. no. PCT/US2012/061503 discloses the use of
  • Chromobacterium species as an acarieide and insecticide particularly against infestation of one or more pests belonging to the Acarina, Scarabeidae, Drosophilidae, Triozidae, Aphidae, Muscidae, Anthomyiidae or Tenebrionidae families.
  • a method for modulating infestation of corn rootworm larvae in a location where modulation is desired comprising applying an amount of (a) a culture, suspension or whole ceil broth comprising a strain of Chromobacterium sp., or supernatant, filtrate, cell fraction, extract and/or one or more compounds derived from said culture, suspension or whole cell broth and (b) optionally at least one of a carrier, diluent or adjuvant effective to modulate said infestation of corn rootworm larvae at said location.
  • the strain has the identifying characteristics of Chromobacterium substugae NRRL B-30655.
  • Infestation of Diabrotica (corn rootworm) larvae may be modulated by modulating mortality of corn rootworm larvae, specifically by modulating and particularly increasing or boosting mortality of corn rootworm larvae and/or by decreasing hatching rate of eggs laid and/or decreasing the number of eggs laid in a particular location.
  • Figure I shows the mean percent (%) mortality of corn rootworm first instar larvae on MBI-203 treated corn seedlings
  • derived from means directly isolated or obtained from a particular source or alternatively having identifying characteristics of a substance or organism isolated or obtained from a particular source.
  • source is an organism
  • derived from means that it may be isolated or obtained from the organism itself or culture broth, suspension or medium used to culture or grow said organism.
  • a compound “derived from” or “obtainable from” means that a compound may be isolated from or produced by a cell culture, whole cell broth, suspension, filtrate, supernatant, fraction or extract.
  • whole broth culture or “whole cell broth” refers to a liquid culture containing both cells and media. If bacteria are grown on a plate, the cells can be harvested in water or other liquid, whole culture.
  • whole broth culture and “whole ceil broth” are used interchangeably.
  • supernatant refers to the liquid remaining when ceils grown in broth or are harvested in another liquid from an agar plate and are removed by centrifugation, filtration, sedimentation, or other means well known in the art.
  • filtrate refers to liquid from a whole broth culture that has passed through a membrane.
  • extract refers to liquid substance removed from cells by a solvent (water, detergent, buffer, organic solvent) and separated from the cells by centrifugation, filtration or other method.
  • metabolite refers to a compound, substance or byproduct of a fermentation of a microorganism, or supernatant, filtrate, or extract obtained from a
  • microorganism that has pesticidal activity.
  • an "isolated compound” is essentially free of other compounds or substances, e.g., at least about 20% pure, preferably at least about 40% pure, more preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by analytical methods, including but not limited to chromatographic methods, elecirophoretie methods.
  • a compound "derived from” a Chromobacterium species also encompasses a metabolite.
  • carrier is an inert, organic or inorganic material, with which the active ingredient is mixed or formulated to facilitate its application to plant or other object to be treated, or its storage, transport and/or handling.
  • diluting is intended to mean an aqueous or non-aqueous solution with the purpose of diluting the active ingredient.
  • module is used to mean to alter the amount or rate of pest infestation
  • pest infestation is the presence of a pest in an amount that causes a harmful effect including a disease or infection in a host population or emergence of an undesired weed in a growth system.
  • pesticide is a substance derived from a biological product or chemical substance that increase mortality or inhibit the growth rate of plant pests and includes but is not limited to nematicides, algaecides, herbicides, insecticides, plant fungicides, plant bactericides, and plant viricides.
  • the pesticide used in the method set forth herein may comprise or be derived from an organism having the identifying characteristics of a Chromobacierium species, more particularly, from an organism having the identifying characteristics of a strain of
  • Chromobacierium substugae more particularly from a strain of Chromobacierium substugae sp. nov, which may have the identifying characteristics of NRRL B-30655, or alternatively from any other microorganism.
  • the methods comprise cultivating these organisms and obtaining the compounds and/or compositions of the present invention by isolating these compounds from, the culture of these organisms.
  • the organisms are cultivated in nutrient medium, using methods known in the art.
  • the organisms may be cultivated by shake flask cultivation, small scale or large scale fermentation (including but not limited to continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial ferm enters performed in suitable medium and under conditions allowing cell growth.
  • the cultivation may take place in suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available may be available from commercial sources or prepared according to published compositions.
  • the compounds, metabolites and/or compositions may be extracted from the culture broth.
  • the extract may be fractionated by chromatography.
  • Compounds used may be metabolites and in a specific embodiment may include but is not limited to compounds set forth in US Patent Application Publication No. US20120100236 and PCX appln. no.
  • compositions and methods disclosed herein can be formulated in any manner.
  • N on- limiting formulation examples include but are not limited to Emulsifiable concentrates (EC), Wettable powders (WP), soluble liquids (SL), Aerosols, Ultra-low volume concentrate solutions (ULV), Soluble powders (SP),
  • Microencapsulation Water dispersed Granules, Flowables (FL), Microemulsions (ME), Nano- emulsions (NE), and Seed treatmentsm etc .
  • percent of the active ingredient is within a range of 0,01% to 99.99%.
  • compositions may be in the form of a liquid, gel or solid.
  • Liquid compositions comprise pesticidal compounds derived from a Chromobacterium strain, e.g. a strain having the identifying characteristics of Chromobacterium substugae sp. Nov and more particularly, having the identifying characteristics ofNRRL B-30655 (see US Patent No. 7,244,607).
  • a solid composition can be prepared by suspending a solid carrier in a solution of pesticidal compounds and drying the suspension under mild conditions, such as evaporation at room temperature or vacuum evaporation at 65°C or lower.
  • a composition may comprise gel-encapsulated compounds derived from the
  • Such gel-encapsulated materials can be prepared by mixing a gel- forming agent (e.g., gelatin, cellulose, or lignin) with a culture or suspension of live or inactivated Chromobacterium, or a cell-free filtrate or cell fraction of a Chromobacterium culture or suspension, or a spray- or freeze-dried culture, cell, or cell fraction or in a solution of pesticidal compounds used in the method of the invention; and inducing gel formation of the agent.
  • a gel- forming agent e.g., gelatin, cellulose, or lignin
  • composition may additionally comprise a surfactant to be used for the purpose of emulsification, dispersion, wetting, spreading, integration, disintegration control, stabilization of active ingredients, and improvement of fluidity or rust inhibition.
  • a surfactant to be used for the purpose of emulsification, dispersion, wetting, spreading, integration, disintegration control, stabilization of active ingredients, and improvement of fluidity or rust inhibition.
  • the surfactant is a non-phytotoxic non-ionic surfactant which preferably belongs to EPA Inerts List 4B.
  • the nonionic surfactant is polyoxyethyiene (20) monolaurate.
  • the concentration of surfactants may range between 0.1- 35% of the total formulation, preferred range is 5-25%.
  • the choice of dispersing and emulsifying agents, such as non-ionic, anionic, amphoteric and cationic dispersing and emulsifying agents, and the amount employed is determined by the nature of the composition and the ability of the agent to facilitate the dispersion of the compositions of the present invention.
  • composition as set forth above also comprises a. stabilizing agent, which stabilizes a biological pesticide composition against physical separation and loss of activity due to exposure to sunlight.
  • This stabilizing agent may be a benzoic acid salt or lignin sulfonate salt.
  • the composition may as noted above, further comprise an insecticide.
  • the insecticide may include but is not limited to avermectin, Bt, neem oil, spinosads, Burkholderdia sp. as set forth in US Patent Appln. Pub. No, 2011-0207604, entomopatho genie fungi such a Beauveria bassiana and chemical insecticides including but not limited to organochlorine compounds, organophosphorous compounds, carbamates, pyrethroids, and iieonicotinoids, Uses
  • compositions, cultures and supernatants and pesticidal compounds set forth above may be used particularly to modulate infestation of corn rootvvorm. larvae on a plant, plant seed, plant part, plant, roots, seedling or substrate (e.g., soil, sand, loam, clay) for growing said plant, particularly a corn plant, cucurbits (e.g., cucumbers, melons, pumpkins, squash, gourds, etc.), wheat, barley, oats, rye, sorghum, beans and legumes, peas, potato, sweet potato, soy, oilseed rape, tomato, aubergine, lettuce, pepper, sunflower, and ornamental plants such as
  • chrysanthemum as well as other plants such as red root pigweed (Amaranthus retroflexus), goosegrass (Eleusine indica) weeping lovegrass (Eragrostis curvula), sand lovegrass
  • Diahrotica rootworm
  • Diahrotica baiteata banded cucumber beetle
  • Diahrotica barberi noden corn rootworm
  • Diahrotica beniensis Diahrotica cristata
  • Diahrotica curvipustulata Diabrotica dissimilis
  • Diahrotica elegantula Diahrotica emorsitans
  • Diahrotica graminea Diahrotica hispanolae
  • Diahrotica lemniscata Diahrotica linsleyi
  • Diahrotica longicornis Diahrotica milleri
  • Diahrotica nummularis Diahrotica occlusa
  • Diahrotica porracea Diahrotica sculellala
  • Diahrotica speciosa cucurbit beetle or chrysanthemum beetle
  • Diahrotica tibialis Diabrolica trifasciata
  • infestation of corn rootworm larvae is modulated by modulating mean mortality of said larvae at, a particular location, particularly at least about 50% and more particularly at least about 60% within at least about three days following application of said compositions, cultures and supernatants and pesticidal compounds set forth above.
  • composition and methods set, forth above will be further illustrated in the following, non-limiting Examples.
  • the examples are illustrative of various embodiments only and do not limit the claimed invention regarding the materials, conditions, weight ratios, process arameters and the like recited herein.
  • Chromobacterium substugae sp. nov. (MBI-203) on Southern Corn Rootworm larvae. Newly hatched corn rootworm larvae were used in the bioassay.
  • Corn seeds were soaked in water overnight for germination. After soaking, the water- imbibed seeds were laid out in a tray lined with moistened paper towels (at least 4 layers of paper towels were used), with seeds spread evenly in the tray. The seeds were then covered with 2-3 layers of paper towels. The paper towel on top of corn seeds was moistened with water until paper towels are completely wet, just enough to not to flood the seeds with water. Seeds in wet paper towels were then covered with a plastic wrap to contain high humidity and kept at room temperature. The seeds were allowed to germinate for 2-3 days,
  • Bioassay setup was done using 100mm X 15mm sterile plastic petri dishes. Petri dishes were lined with 4 layers of paper towels moistened with deionized water. Five germinated corn seedlings were selected and placed in petri dishes. Bioassay setup was done with 4 treatments; a) MBl 203 TG AI (technical grade of active ingredient) at 3% vol: vol concentration, b) MBI- 203 TGAI (technical grade of active ingredient) at, 6% vol: vol concentration, c) MBI-203 TGAI at 3% vol:vol concentration, and d) dH 2 0 (negative control). Eaeli treatment replicated three times. Petri dishes with corn seedlings were labeled according to treatment.
  • Treatment of seedlings was done by spraying 1 mL of treatment solution on seedlings in each dish using a spray bottle. Spray application was done in fume hood and allowed to air dry. After drying, 10 first instar corn rootworm larvae were introduced to each dish with treated corn seedlings. The seedlings in each dish were covered with moist paper towel before covering with the dish cover. The dishes with corn rootworm. larvae were kept at room, temperature. Larval mortality was assessed 3 days post introduction to treated seedlings. Results
  • the MBI 203 TGAI at different concentration affected corn rootworm larvae 3 days post exposure to treated corn seedlings. Corn rootworms were found susceptible to the product with a 60% mean mortality attained on corn seedlings treated with 10% MBI 203 TGAI. MBI 203 concentrations at 3% and 6% caused 53.3% and 50% mortality (Figure 1). All treatments have showed 50% or more larval mortality after 3 days of exposure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Pest Control & Pesticides (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is the use of or compositions or formulations comprising Chromobacterium species, filtrate, supernatant, extract, pesticidally active compound or metabolite derived therefrom as an insecticide, particularly against infestation of Corn Rootworm larvae.

Description

Provided is the use of or compositions or formulations comprising Chromobacterium species, filtrate, supernatant, extract, pesticidally active compound or metabolite derived therefrom as an insecticide, particularly against infestation of Diabrotica (Corn Rootworm) larvae.
BACKGROUND
In 2000, Dr. Martin and her coworkers at USDA isolated a purple -pigmented bacteria (PRAA4-1) from a forest soil in Maryland (Martin et al, 2007a). It is a facultatively aerobic, motile, Gram-negative betaproteobacterium with polar flagella. Colonies formed at 2-3 days on an L-agar plate at 25°C are initially cream colored, gradually turning light to dark violet during the following 24 hours. Colonies of PRAA4-1 grow well on peptone based media with an optimum at 25°C, pH 6.5-8.0, and with 0-1.5 % (w/v) NaCl (Martin et al., 2007a). This motile, Gram-negative, bacteria was identified as a new species of Chromobacteria, Chromobacterium. substsugae sp. nov (Martin et al., 2007c). and or alternatively as Chromobacterium subslsugae NRRL B-30655.
The effect of Chromobacterium substsugae NRRL B-30655 on insects does vary. It has been found to be toxic to Colorado Potato Beetle larvae but not to adults when these insects were fed a diet including Chromobacterium substsugae NRRL B-30655 (Martin, 2007b, 2007c). It was found to be toxic to adult southern green stink bugs but appeared to have a faster effect on males (Martin 2007c). For diamondback moth instar larvae fed a diet including Chromobacterium substsugae NRRL B-30655, the mortality was 90% in 7 days. None of the gypsy moth larvae died following treatment with NRRL B-30655, but the larvae which consumed NRRL B-30655 in their diet were 40% lighter than the controls. For mosquito larvae, there was no mortality at 48 hrs. although the larvae in the B. thuringiensis control were dead in 16 hrs. With respect to Southern and Western Corn Rootworms, about 80% of both Southern and Western Corn Rootworm adults died when fed Chromobacterium substsugae NRRL B- 30655 in a. bait formulation; in other assays 100% mortality was reached after 120 hr. (Martin, 2007c). However, mortality in southern corn rootworm larvae wras only found to be 40% when fed whole cultures. There was though a. difference in the weight in larvae fed NRRL B-306555 as compared to the controls (Martin, 2007c).
US patent application publication no. US20120100236 also discloses compounds obtainable or derived from Chromobacterium species, more particularly, Chromobacterium substugae. In particular, PCX appln. no. PCT/US2012/061503 discloses the use of
Chromobacterium species as an acarieide and insecticide, particularly against infestation of one or more pests belonging to the Acarina, Scarabeidae, Drosophilidae, Triozidae, Aphidae, Muscidae, Anthomyiidae or Tenebrionidae families.
SUMMARY
Provided is a method for modulating infestation of corn rootworm larvae in a location where modulation is desired comprising applying an amount of (a) a culture, suspension or whole ceil broth comprising a strain of Chromobacterium sp., or supernatant, filtrate, cell fraction, extract and/or one or more compounds derived from said culture, suspension or whole cell broth and (b) optionally at least one of a carrier, diluent or adjuvant effective to modulate said infestation of corn rootworm larvae at said location. In a particular embodiment, the strain has the identifying characteristics of Chromobacterium substugae NRRL B-30655.
Infestation of Diabrotica (corn rootworm) larvae may be modulated by modulating mortality of corn rootworm larvae, specifically by modulating and particularly increasing or boosting mortality of corn rootworm larvae and/or by decreasing hatching rate of eggs laid and/or decreasing the number of eggs laid in a particular location.
BRIEF DESCRIPTION OF THE FIGURES
Figure I shows the mean percent (%) mortality of corn rootworm first instar larvae on MBI-203 treated corn seedlings,
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS While the compositions and methods heretofore are susceptible to various modifications and alternative forms, exemplary embodiments will herein be described in detail. It should be understood, however, that there is no intent to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Where a range of values is provided, it, is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is included therein. Smaller ranges are also included. The upper and lower limits of these smaller ranges are also included therein, subject to any specifically excluded limit in the stated range.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described.
It must be noted that as used herein and in the appended claims, the singular forms "a," "and" and "the" include plural references unless the context clearly dictates otherwise.
As defined herein, "derived from" means directly isolated or obtained from a particular source or alternatively having identifying characteristics of a substance or organism isolated or obtained from a particular source. In the event that the "source" is an organism, "derived from" means that it may be isolated or obtained from the organism itself or culture broth, suspension or medium used to culture or grow said organism. A compound "derived from" or "obtainable from" means that a compound may be isolated from or produced by a cell culture, whole cell broth, suspension, filtrate, supernatant, fraction or extract.
As defined herein, "whole broth culture" or "whole cell broth" refers to a liquid culture containing both cells and media. If bacteria are grown on a plate, the cells can be harvested in water or other liquid, whole culture. The terms "whole broth culture" and "whole ceil broth" are used interchangeably. As defined herein, "supernatant" refers to the liquid remaining when ceils grown in broth or are harvested in another liquid from an agar plate and are removed by centrifugation, filtration, sedimentation, or other means well known in the art.
As defined herein, "filtrate" refers to liquid from a whole broth culture that has passed through a membrane.
As defined herein, "extract" refers to liquid substance removed from cells by a solvent (water, detergent, buffer, organic solvent) and separated from the cells by centrifugation, filtration or other method.
As defined herein, "metabolite" refers to a compound, substance or byproduct of a fermentation of a microorganism, or supernatant, filtrate, or extract obtained from a
microorganism, that has pesticidal activity.
As defined herein, an "isolated compound" is essentially free of other compounds or substances, e.g., at least about 20% pure, preferably at least about 40% pure, more preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by analytical methods, including but not limited to chromatographic methods, elecirophoretie methods. A compound "derived from" a Chromobacterium species also encompasses a metabolite.
As defined herein, "carrier" is an inert, organic or inorganic material, with which the active ingredient is mixed or formulated to facilitate its application to plant or other object to be treated, or its storage, transport and/or handling.
The term "diluent" is intended to mean an aqueous or non-aqueous solution with the purpose of diluting the active ingredient.
As defined herein, "modulate", is used to mean to alter the amount or rate of pest infestation,
As defined herein, "pest infestation", is the presence of a pest in an amount that causes a harmful effect including a disease or infection in a host population or emergence of an undesired weed in a growth system.
As defined herein "pesticide", is a substance derived from a biological product or chemical substance that increase mortality or inhibit the growth rate of plant pests and includes but is not limited to nematicides, algaecides, herbicides, insecticides, plant fungicides, plant bactericides, and plant viricides. Methods of Production
As noted above, the pesticide used in the method set forth herein may comprise or be derived from an organism having the identifying characteristics of a Chromobacierium species, more particularly, from an organism having the identifying characteristics of a strain of
Chromobacierium substugae, more particularly from a strain of Chromobacierium substugae sp. nov, which may have the identifying characteristics of NRRL B-30655, or alternatively from any other microorganism. The methods comprise cultivating these organisms and obtaining the compounds and/or compositions of the present invention by isolating these compounds from, the culture of these organisms.
In particular, the organisms are cultivated in nutrient medium, using methods known in the art. The organisms may be cultivated by shake flask cultivation, small scale or large scale fermentation (including but not limited to continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial ferm enters performed in suitable medium and under conditions allowing cell growth. The cultivation may take place in suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available may be available from commercial sources or prepared according to published compositions.
After cultivation, the compounds, metabolites and/or compositions may be extracted from the culture broth. The extract may be fractionated by chromatography. Compounds used may be metabolites and in a specific embodiment may include but is not limited to compounds set forth in US Patent Application Publication No. US20120100236 and PCX appln. no.
PCT/LJS2012/061503, the contents of both which are incorporated herein by reference. Compositions
The substances set forth above used in the compositions and methods disclosed herein can be formulated in any manner. N on- limiting formulation examples include but are not limited to Emulsifiable concentrates (EC), Wettable powders (WP), soluble liquids (SL), Aerosols, Ultra-low volume concentrate solutions (ULV), Soluble powders (SP),
Microencapsulation, Water dispersed Granules, Flowables (FL), Microemulsions (ME), Nano- emulsions (NE), and Seed treatmentsm etc . In any formulation described herein, percent of the active ingredient is within a range of 0,01% to 99.99%.
The compositions may be in the form of a liquid, gel or solid. Liquid compositions comprise pesticidal compounds derived from a Chromobacterium strain, e.g. a strain having the identifying characteristics of Chromobacterium substugae sp. Nov and more particularly, having the identifying characteristics ofNRRL B-30655 (see US Patent No. 7,244,607).
A solid composition can be prepared by suspending a solid carrier in a solution of pesticidal compounds and drying the suspension under mild conditions, such as evaporation at room temperature or vacuum evaporation at 65°C or lower.
A composition may comprise gel-encapsulated compounds derived from the
Chromobacterium strain. Such gel-encapsulated materials can be prepared by mixing a gel- forming agent (e.g., gelatin, cellulose, or lignin) with a culture or suspension of live or inactivated Chromobacterium, or a cell-free filtrate or cell fraction of a Chromobacterium culture or suspension, or a spray- or freeze-dried culture, cell, or cell fraction or in a solution of pesticidal compounds used in the method of the invention; and inducing gel formation of the agent.
The composition may additionally comprise a surfactant to be used for the purpose of emulsification, dispersion, wetting, spreading, integration, disintegration control, stabilization of active ingredients, and improvement of fluidity or rust inhibition. In a particular
embodiment, the surfactant is a non-phytotoxic non-ionic surfactant which preferably belongs to EPA Inerts List 4B. In another particular embodiment, the nonionic surfactant is polyoxyethyiene (20) monolaurate. The concentration of surfactants may range between 0.1- 35% of the total formulation, preferred range is 5-25%. The choice of dispersing and emulsifying agents, such as non-ionic, anionic, amphoteric and cationic dispersing and emulsifying agents, and the amount employed is determined by the nature of the composition and the ability of the agent to facilitate the dispersion of the compositions of the present invention.
The composition as set forth above also comprises a. stabilizing agent, which stabilizes a biological pesticide composition against physical separation and loss of activity due to exposure to sunlight. This stabilizing agent may be a benzoic acid salt or lignin sulfonate salt.
The composition may as noted above, further comprise an insecticide. The insecticide may include but is not limited to avermectin, Bt, neem oil, spinosads, Burkholderdia sp. as set forth in US Patent Appln. Pub. No, 2011-0207604, entomopatho genie fungi such a Beauveria bassiana and chemical insecticides including but not limited to organochlorine compounds, organophosphorous compounds, carbamates, pyrethroids, and iieonicotinoids, Uses
The compositions, cultures and supernatants and pesticidal compounds set forth above may be used particularly to modulate infestation of corn rootvvorm. larvae on a plant, plant seed, plant part, plant, roots, seedling or substrate (e.g., soil, sand, loam, clay) for growing said plant, particularly a corn plant, cucurbits (e.g., cucumbers, melons, pumpkins, squash, gourds, etc.), wheat, barley, oats, rye, sorghum, beans and legumes, peas, potato, sweet potato, soy, oilseed rape, tomato, aubergine, lettuce, pepper, sunflower, and ornamental plants such as
chrysanthemum as well as other plants such as red root pigweed (Amaranthus retroflexus), goosegrass (Eleusine indica) weeping lovegrass (Eragrostis curvula), sand lovegrass
(Eragrostis trichodes), rhodes grass (Chloris gayana), shattercane (Sorghum drummondii), johnsongrass (Sorghum halepense), maize (Zea mays), sandbur (Cenchrus tribuloides), large crabgrass (Digitaria sanquinalis), barnyard grass, (Echinochloa crus-galU), woolly cupgrass (Eriochloa villosa), witchgrass (Panicum capillare), foxtail millet (P. italicum), Prosso millet (P. miliaceum), switchgrass (P. virgatum), giant foxtail (Setaria faberi), yellow foxtail (S. pumila), bristly foxtail (S. vericillatta), Green foxtail (S. viridis), texas panicum (Urochloa texana), Redtop (Agrostis giganteari), oat (Avena sativa), reed canary grass (Phalaris arundinacea), downy brome (Bromus tectorum) , Orchardgrass (Dactylis glomerata) , western wheatgrass (Pascopyrum smithii) , spring wheat "Russ" (Triticum aeslivum)
It may be used to modulate members go the genus Diahrotica (rootworm) including Diahrotica baiteata (banded cucumber beetle), Diahrotica barberi (northern corn rootworm) , Diahrotica beniensis, Diahrotica cristata, Diahrotica curvipustulata,Diabrotica dissimilis, Diahrotica elegantula, Diahrotica emorsitans, Diahrotica graminea, Diahrotica hispanolae, Diahrotica lemniscata, Diahrotica linsleyi, Diahrotica longicornis, Diahrotica milleri, Diahrotica nummularis, Diahrotica occlusa, Diahrotica porracea, Diahrotica sculellala, Diahrotica speciosa (cucurbit beetle or chrysanthemum beetle), Diahrotica tibialis, Diabrolica trifasciata, Diahrotica undecimpimctatahowardi (southern corn rootworm, a.k.a spotted cucumber bettle), Diahrotica undecimpunctata tenella (western cucumber beetle), Diahrotica undecimpunctata undecimpunctata (western spotted encumber beetle), Diabrotica virgifera virgifera (western corn rootworm), Diabrotica virgifera zea (Mexican corn rootworm), Diabrotica viridula, Diabrotica significata (three-spotted cucumber beetle)
Southern, Western or Northern Corn Rootworm larvae. In a particular embodiment, infestation of corn rootworm larvae is modulated by modulating mean mortality of said larvae at, a particular location, particularly at least about 50% and more particularly at least about 60% within at least about three days following application of said compositions, cultures and supernatants and pesticidal compounds set forth above. EXAMPLE
The composition and methods set, forth above will be further illustrated in the following, non-limiting Examples. The examples are illustrative of various embodiments only and do not limit the claimed invention regarding the materials, conditions, weight ratios, process arameters and the like recited herein.
Figure imgf000009_0001
A bioassay set up was done to determine the effect of a formulation of
Chromobacterium substugae sp. nov. (MBI-203) on Southern Corn Rootworm larvae. Newly hatched corn rootworm larvae were used in the bioassay.
Corn seeds were soaked in water overnight for germination. After soaking, the water- imbibed seeds were laid out in a tray lined with moistened paper towels (at least 4 layers of paper towels were used), with seeds spread evenly in the tray. The seeds were then covered with 2-3 layers of paper towels. The paper towel on top of corn seeds was moistened with water until paper towels are completely wet, just enough to not to flood the seeds with water. Seeds in wet paper towels were then covered with a plastic wrap to contain high humidity and kept at room temperature. The seeds were allowed to germinate for 2-3 days,
Bioassay setup was done using 100mm X 15mm sterile plastic petri dishes. Petri dishes were lined with 4 layers of paper towels moistened with deionized water. Five germinated corn seedlings were selected and placed in petri dishes. Bioassay setup was done with 4 treatments; a) MBl 203 TG AI (technical grade of active ingredient) at 3% vol: vol concentration, b) MBI- 203 TGAI (technical grade of active ingredient) at, 6% vol: vol concentration, c) MBI-203 TGAI at 3% vol:vol concentration, and d) dH20 (negative control). Eaeli treatment replicated three times. Petri dishes with corn seedlings were labeled according to treatment. Treatment of seedlings was done by spraying 1 mL of treatment solution on seedlings in each dish using a spray bottle. Spray application was done in fume hood and allowed to air dry. After drying, 10 first instar corn rootworm larvae were introduced to each dish with treated corn seedlings. The seedlings in each dish were covered with moist paper towel before covering with the dish cover. The dishes with corn rootworm. larvae were kept at room, temperature. Larval mortality was assessed 3 days post introduction to treated seedlings. Results
The MBI 203 TGAI at different concentration affected corn rootworm larvae 3 days post exposure to treated corn seedlings. Corn rootworms were found susceptible to the product with a 60% mean mortality attained on corn seedlings treated with 10% MBI 203 TGAI. MBI 203 concentrations at 3% and 6% caused 53.3% and 50% mortality (Figure 1). All treatments have showed 50% or more larval mortality after 3 days of exposure.
Although this invention has been described with reference to specific embodiments, the details thereof are not to be construed as limiting, as it is obvious that one can use various equivalents, changes and modifications and still be within the scope of the present invention.
Various references are cited throughout this specification, each of which is incorporated herein by reference in its entirety.
References
Clark, TL and BE Hibbard, 2004, Comparison of Nonmaize Hosts to Support Western Corn Rootworm (Coleoptera: Chrysomelidae) Larval Biology, Environ. Entomol. 33(3): 681— 689. Martin, P. A. W., D. Gundersen-RindaL et ai. (2007a). "Chromobacterium substugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests." Int. J. Syst. Evol, Microbiol. 57: 993-999.
Martin, P.A., A.D.S. Shropshire, et al., (2007b), " Chromobacterium substugae sp. nov for control of insect pests" U.S. Patent 7244607 B2.
Martin, P.A.W., Hirose, E., and Aldrich, J.R. 2007c. " Toxicity of Chromobacterium substugae to southern green stink bug (Heteroptera.:Pentatomidae) and com rootworm (Coleoptera:Chrysomelidae)". J. Econ. Enlomol 100: 680-684.
Martin, P.A.W., Blackburn, M., et al. (2004), "Two New Bacterial Pathogens of Colorado Potato Beetle (Colorado: Chrysomelidae)", J. Econ. Entomol 97:774-780 (2004).

Claims

WHAT IS CLAIMED IS:
1. A method for modulating infestation of Diabrotica (corn rootworm) larvae in a location where modulation is desired comprising applying an amount of (a) a culture, suspension or whole cell broth comprising a strain of Chromobacterium sp., or supernatant, filtrate, cell fraction, extract and/or one or more compounds derived from said culture, suspension or whole cell broth and (b) optionally at least one of a carrier, diluent, or adjuvant effective to modulate said infestation of corn rootworm larvae at said location.
2. The method according to claim 1 , wherein the location where modulation is desired is on a plant, plant seed, plant roots, plant part, seedling or substrate for growing said plant.
3. The method according to claim 1 , wherein said Chromobacterium sp. is
Chromobacterium substugae sp. Nov strain.
4. The method according to claim I , wherein said Chromobacterium sp. has the identifying characteristics of substsugae NRRL B-30655.
5. The method according to claim! wherein said Diabrotica (corn rootworm) larvae is Southern Corn Rootworm larvae.
6. The method according to claim I , wherein said Diabrotica (corn rootworm) larvae is modulated by modulating the mortality of said corn rootworm larvae.
7. The method according to claim 1 , wherein the mortality of Diabrotica (corn rootworm) larvae is modulated and wherein there is a mortality of corn rootworm larvae of at least about 50% at said location.
8. The method according to claim 1 , wherein the wherein the mortality of corn rootworm larvae is modulated and wherein there is a mortality of Diabrotica (corn rootworm) larvae of at least about 50% within about three days following application of said culture, suspension or whole cell broth comprising a strain of Chromobacterium sp., or supernatant, filtrate, cell fraction, extract and/or one or more compounds derived from said culture, suspension or whole cell broth and (b) optionally at least one of a carrier, diluent or adjuvant at said location.
9. The method according to claim 1 , which further comprises applying another insecticidal substance.
10. The method according to claim 1 , wherein the infestation of Diabrotica (corn rootworm) larvae is modulated by modulating the rate of hatching of eggs.
11. The method according to claim 1 , wherein said (a) a culture, suspension or whole cell broth comprising a. strain of Chromobacterium sp. , or supernatant, filtrate, cell fraction, extract and/or one or more compounds derived from said culture, suspension or whole cell broth and (b) optionally at least one of a carrier, diluent or adjuvant is formulated into a composition.
PCT/US2014/012451 2013-03-15 2014-01-22 Use of chromobacterium substugae formulations, compositions and compounds to modulate cornworm rootworm larvae infestation WO2014149176A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/842,981 US8808719B1 (en) 2013-03-15 2013-03-15 Use of Chromobacterium substugae formulations, compostions and compounds to modulate cornworm rootworm larvae infestation
US13/842,981 2013-03-15

Publications (2)

Publication Number Publication Date
WO2014149176A2 true WO2014149176A2 (en) 2014-09-25
WO2014149176A3 WO2014149176A3 (en) 2015-05-07

Family

ID=51301623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/012451 WO2014149176A2 (en) 2013-03-15 2014-01-22 Use of chromobacterium substugae formulations, compositions and compounds to modulate cornworm rootworm larvae infestation

Country Status (2)

Country Link
US (2) US8808719B1 (en)
WO (1) WO2014149176A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016069564A1 (en) 2014-10-27 2016-05-06 Newleaf Symbiotics, Inc. Methods and compositions for controlling corn rootworm
WO2023212708A1 (en) * 2022-04-28 2023-11-02 Pro Farm Group, Inc. Method and composition of synergistic insecticidal mixtures

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951585B2 (en) 2010-02-25 2015-02-10 Marrone Bio Innovations, Inc. Compositions and methods for modulating plant parasitic nematodes
TW201225844A (en) 2010-10-25 2012-07-01 Marrone Bio Innovations Inc Chromobacterium bioactive compositions and metabolites
ES2811914T3 (en) * 2014-09-05 2021-03-15 Marrone Bio Innovations Inc Chromobacterium subtsugae genes
US10160976B2 (en) 2014-09-11 2018-12-25 Marrone Bio Innovations, Inc. Chromobacterium subtsugae genome
WO2017155817A1 (en) * 2016-03-07 2017-09-14 The United States Of America, As Represented By The Secretary Of Agriculture Chromobacterium species with insecticidal activity

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047424A (en) 1988-10-03 1991-09-10 Safer, Inc. Environmentally safe insecticide
CA2064021A1 (en) 1989-06-28 1991-07-11 James Howard Slater Microbes for controlling pests
JPH06247964A (en) 1993-02-22 1994-09-06 Snow Brand Milk Prod Co Ltd New physiologically active substance hs-1 and its production
FR2729825A1 (en) 1995-01-30 1996-08-02 Rhone Poulenc Agrochimie INSECTICIDAL ASSOCIATIONS COMPRISING AN INSECTICIDE OF THE CHLORONICOTINYL FAMILY AND A PYRAZOLE, PYRROLE OR PHENYLIMIDAZOLE GROUP INSECTICIDE FOR TREATING SEED OR SOIL
US6103228A (en) 1997-05-09 2000-08-15 Agraquest, Inc. Compositions and methods for controlling plant pests
US7037494B2 (en) 1997-10-14 2006-05-02 The Board Of Regents Of The University Of Texas System Formulations and methods for insect control
AU2001249853B2 (en) 2000-04-04 2006-07-13 Abr, Llc Improved pesticide microemulsions and dispersant/penetrant formulations
DE10063712C1 (en) 2000-12-20 2002-08-29 Stiftung A Wegener Inst Polar Microbiological process for the biosynthesis of the natural blue-violet dyes violacein and deoxyviolacein and their use
BR0207239A (en) 2002-12-19 2004-08-10 Conselho Nacional Cnpq Polynucleotides encoding chromosome gene of the bacterium chromobacterium violaceum, expression and activity of these polynucleotides and their applications
US7244607B2 (en) * 2003-10-01 2007-07-17 The United States Of America, As Represented By The Secretary Of Agriculture Chromobacterium subtsugae sp. nov. for control of insect pests
US20060263368A1 (en) 2005-01-10 2006-11-23 Research Development Foundation Targeted chimeric molecules for cancer therapy
KR100802494B1 (en) 2006-02-24 2008-02-12 (주)한국바이오케미칼 The antiparasitic and antifungal agent containing violacein and the method of it
EP1849363A1 (en) 2006-03-09 2007-10-31 Cheminova A/S Synergistic combination of glutamate- and GABA-gated chloride agonist pesticide and at least one of Vitamin E or Niacin
EP2545181B1 (en) 2010-03-12 2014-11-12 Council Of Scientific & Industrial Research Process for the production of violacein and its derivative deoxyviolacein containing bioactive pigment from chromobacterium sp. (mtcc 5522)
TW201225844A (en) 2010-10-25 2012-07-01 Marrone Bio Innovations Inc Chromobacterium bioactive compositions and metabolites
BR112013026394B1 (en) * 2011-04-15 2019-12-24 Syngenta Participations Ag method of protecting a plant propagating material, a plant, a part of a plant and / or a plant organ against damage from pests
BR112014009140B1 (en) 2011-10-25 2020-01-28 Marrone Bio Innovations Inc method to modulate pest infestation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016069564A1 (en) 2014-10-27 2016-05-06 Newleaf Symbiotics, Inc. Methods and compositions for controlling corn rootworm
EP3212000A4 (en) * 2014-10-27 2018-06-20 Newleaf Symbiotics, Inc. Methods and compositions for controlling corn rootworm
US10905127B2 (en) 2014-10-27 2021-02-02 Newleaf Symbiotics, Inc. Methods and compositions for controlling corn rootworm
WO2023212708A1 (en) * 2022-04-28 2023-11-02 Pro Farm Group, Inc. Method and composition of synergistic insecticidal mixtures

Also Published As

Publication number Publication date
US8808719B1 (en) 2014-08-19
WO2014149176A3 (en) 2015-05-07
US9320282B2 (en) 2016-04-26
US20140322171A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US9320282B2 (en) Use of chromobacterium substugage formulations, compositions and compounds to modulate cornworm rootworm larvae infestation
Wekesa et al. Pathogenicity of Beauveria bassiana and Metarhizium anisopliae to the tobacco spider mite Tetranychus evansi
Prabhukarthikeyan et al. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato
CA2885303C (en) Biocontrol compositions
Bayissa et al. Selection of fungal isolates for virulence against three aphid pest species of crucifers and okra
CN113631040A (en) Compositions and methods for controlling plant pests and improving plant health
Klingen et al. Effect of brassicaceous plants on the survival and infectivity of insect pathogenic fungi
Biryol et al. Development of Beauveria bassiana (Ascomycota: Hypocreales) as a mycoinsecticide to control green peach aphid, Myzus persicae (Homoptera: Aphididae) and investigation of its biocontrol potential
WO2014193162A1 (en) Preparation method for biopesticide using paecilomyces sp. strain
Mantzoukas et al. Entomopathogenic fungi tested in planta on pepper and in field on sorghum, to control commercially important species of aphids
KR101444214B1 (en) COMPOSITION FOR CONTROL OF INSECT USING Beauveria bassiana Bb08 AND ITS CULTURE EXTRACTS
TWI444141B (en) (LECANICILLIUM MUSCARIUM) V-5 strain, a pest control method using the same, and a primary pesticide containing the same
JP2016135101A (en) Beauveria bassiana 12b strain and microbial agrochemical using the same
Sivasundaram et al. Effect of talc-formulated entomopathogenic fungus Beauveria against leaffolder (Cnaphalocrosis medinalis) in rice
Alavo et al. Virulence of strains of the entomopathogenic fungus Verticillium lecanii to aphids: strain improvement
US11917999B2 (en) Use of Burkholderia formulations, compositions and compounds to modulate crop yield and/or corn rootworm infestation
KR101993986B1 (en) New Paecilomyces lilacinus JEF076 and Purpureocillium lilacinum JEF141 strains controlling Orthoptera order, formulated compositions for controlling the Orthoptera order and application methods to control the Orthoptera order
Aker et al. Efficacy of some entomopathogenic fungi in controlling filbert aphid, Myzocallis coryli Goetze (Hemiptera: Aphididae)
RU2347809C1 (en) Bacillus thuringiensis strain, exhibiting fungicide activity, insecticide activity and suppressing virulent properties of phytopathogenic bacteria erwinia carotovora
Lakshmidevi et al. Bio-formulation based on plant oil of the future Beauveria bassiana (Balsamo) for fruit borer control in tomatoes
Yiğit et al. Evaluation of biocontrol agents for Graphosoma lineatum (L.)(Hemiptera: Pentatomidae) in experimental conditions
Ek-Ramos et al. Entomopathogenic fungi tested in planta on pepper and in field on sorghum, to control commercially important species of Aphids
JP3073263B2 (en) New strains of the genus Dorexrela and weed control agents containing them
Gholizad et al. Microbial control potential of some entomopathogenic agents against the European grapevine moth, Lobesia botrana Schiff.(Lepidoptera: Tortricidae).

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 14771131

Country of ref document: EP

Kind code of ref document: A2