WO2014148591A1 - 1,2-ジオール化合物の製造方法 - Google Patents

1,2-ジオール化合物の製造方法 Download PDF

Info

Publication number
WO2014148591A1
WO2014148591A1 PCT/JP2014/057660 JP2014057660W WO2014148591A1 WO 2014148591 A1 WO2014148591 A1 WO 2014148591A1 JP 2014057660 W JP2014057660 W JP 2014057660W WO 2014148591 A1 WO2014148591 A1 WO 2014148591A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
hydrogen atom
reaction
optically active
Prior art date
Application number
PCT/JP2014/057660
Other languages
English (en)
French (fr)
Inventor
久雄 西山
賢二 鳥畠
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2015506845A priority Critical patent/JPWO2014148591A1/ja
Publication of WO2014148591A1 publication Critical patent/WO2014148591A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/10Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with one amino group and at least two hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • C07D209/49Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide and having in the molecule an acyl radical containing a saturated three-membered ring, e.g. chrysanthemumic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/0244Pincer-type complexes, i.e. consisting of a tridentate skeleton bound to a metal, e.g. by one to three metal-carbon sigma-bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a method for producing an optically active 1,2-diol compound from olefins.
  • Optically active 1,2-diol compounds are an important group of compounds that can be used as synthetic intermediates for various pharmaceuticals and agricultural chemicals. Various methods for synthesizing this optically active 1,2-diol skeleton have been reported.
  • Non-Patent Documents 1 and 2 For example, a method using an osmium catalyst containing an asymmetric ligand is well known (see Non-Patent Documents 1 and 2). This method has been used for the synthesis of physiologically active substances and natural organic compounds because of its high optical yield. However, since osmium compounds are expensive and highly toxic, they are unsuitable for the synthesis of a large amount of optically active compounds as a synthesis method lacking environmental harmony.
  • Non-Patent Document 3 a method for asymmetric hydrogenation of ⁇ -hydroxyketones by using iridium as a catalyst metal in combination with an asymmetric ligand has been reported (see Non-Patent Document 3).
  • iridium is expensive, and ⁇ -hydroxy ketones as raw material substrates are not readily available for purchase, and must be synthesized in-house and are not suitable for mass synthesis.
  • Non-Patent Documents 4 and 5 optical activity is obtained by catalytic asymmetric diborylation of olefins using a rhodium catalyst containing a chiral ligand ((S) -Quinap), followed by oxidation reaction.
  • a method for synthesizing diols has been reported. This method is a simple method using olefins as raw materials, and is effective in providing 1,2-diol from an aliphatic olefin with a high optical yield.
  • an aryl group-substituted olefin such as styrene is used as a raw material, the optical yield of 1,2-diol is low, and the applicable range of the substrate is limited.
  • Non-Patent Document 6 reports a method for synthesizing optically active diols by catalytic asymmetric diborylation of olefins using a platinum catalyst containing a chiral ligand, followed by an oxidation reaction.
  • this method is not suitable for large-scale synthesis because the substrate capable of reaction is limited to the terminal olefin and the amount of expensive platinum used is relatively large at 5 mol%. Therefore, there was room for further improvement.
  • Non-Patent Documents 7 and 8, etc. by using a chiral bis (oxazolinyl) phenyl-rhodium-acetate complex as a catalyst, asymmetric hydrosilylation of alkene, reductive aldol coupling reaction, alkylation reaction, Michael addition It is described that reactions such as reactions, heterodiels Alder reactions, direct aldol reactions, asymmetric alkynations, ⁇ -borations of ⁇ , ⁇ -unsaturated esters, etc. proceed. However, it is not described that an optically active 1,2-diol compound can be produced using this catalyst.
  • An object of the present invention is to provide a method for efficiently producing an optically active 1,2-diol compound from olefins.
  • the inventors of the present invention conducted intensive research to solve the above problems.
  • a chiral bis (oxazolinyl) phenyl rhodium acetate complex see, for example, Non-Patent Documents 7 and 8) as a catalyst, an olefin is reacted with a diboron compound such as bis (catecholato) diboron, Highly enantioselective 1,2-diborylation of olefins proceeds under mild conditions, followed by oxidation reaction, and optically active 1,2-diol compounds can be obtained with high yield and high optical yield. I found. Further research based on this knowledge has led to the completion of the present invention.
  • the present invention provides the following method for producing an optically active 1,2-diol compound.
  • Item 1 A method for producing an optically active 1,2-diol compound, which is represented by the general formula (1):
  • R 1 is a hydrogen atom and R 2 is an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group, or R 2 is a hydrogen atom and R 1 is an alkyl group, a cycloalkyl group or an aryl group
  • a group or an aralkyl group, R 3 , R 4 and R 5 are the same or different and are a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group
  • X is a ligand
  • n is 1 to 4 (It is an integer.)
  • Manufacturing method comprising an olefin with a diboron compound in the presence of
  • Item 2 The method according to Item 1, wherein a base is further used in the step of obtaining the 1,2-diboryl compound.
  • Item 3 The method according to Item 2, wherein the base is an alkali metal alkoxide.
  • R 1 is a hydrogen atom and R 2 is an isopropyl group, a benzyl group or a phenyl group, or R 2 is a hydrogen atom and R 1 is an isopropyl group, a benzyl group or a phenyl group Item 4.
  • the method for producing an optically active 1,2-diol compound of the present invention comprises 1,2-diborylation of olefins in the presence of a catalyst comprising a rhodium complex containing an asymmetric ligand represented by the general formula (1). Then, this is oxidized. That is, in the first step, olefins are highly enantioselectively diborylated, and in the subsequent second step, boron is converted to a hydroxyl group while retaining the stereochemistry of the carbon to which the boron atom is bonded.
  • an optically active 1,2-diol compound can be obtained with high yield and high optical yield.
  • an optically active 1,2-diol compound having a high optical purity (enantiomeric excess) close to 100% using an asymmetric ligand with an optical purity (enantiomeric excess) of 100% as an asymmetric source. Can be obtained.
  • the first step (1,2-diborylation) and the second step (oxidation) can be carried out separately or in one pot.
  • the latter case is an efficient manufacturing method because the number of steps can be reduced.
  • a 1,2-diol compound can be obtained with a higher yield and a higher optical yield by adding a base (particularly, alkali metal alkoxide, etc.) in the 1,2-diborylation step.
  • the production method of the present invention is simple and economical because the reaction proceeds under mild conditions.
  • This is also a preferable method. Therefore, it is useful as an industrial synthesis method for optically active 1,2-diol compounds.
  • FIG. 2 is a schematic diagram of a predicted mechanism of a highly enantioselective 1,2-diborylation reaction in the first step of the present invention and an oxidation reaction in the second step.
  • the symbol B contained in the chemical structure represents a group containing boron.
  • the present invention is a method for producing an optically active 1,2-diol compound having the general formula (1):
  • the first step is a step of obtaining a 1,2-diboryl compound by reacting an olefin and a diboron compound in the presence of the compound represented by the general formula (1).
  • the compound represented by the general formula (1) is a rhodium complex containing an asymmetric ligand, and is used as a catalyst for 1,2-diborylation reaction of olefins.
  • This compound can be manufactured by a well-known method, for example, can manufacture according to description of a nonpatent literature 7, 8 grade
  • examples of the alkyl group represented by R 1 and R 2 include a chain or branched C1-10 alkyl group. Specific examples include methyl, ethyl, n-propyl, Examples include isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, and nonyl groups.
  • a C2-6 alkyl group is preferred, a C2-4 alkyl group is more preferred, and an isopropyl group is particularly preferred.
  • Examples of the cycloalkyl group represented by R 1 and R 2 include C3-10 cycloalkyl groups, and specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups. It is done.
  • a C3-7 cycloalkyl group is preferable, a C5-7 cycloalkyl group is more preferable, and a cyclohexyl group is particularly preferable.
  • Examples of the aryl group represented by R 1 and R 2 include monocyclic or bicyclic or more aryl groups, and specific examples include phenyl, toluyl, xylyl, naphthyl, anthranyl, phenanthryl groups and the like. It is done. Preferred are monocyclic aryl groups such as phenyl, toluyl and xylyl groups, and more preferred are phenyl groups.
  • Examples of the aralkyl group represented by R 1 and R 2 include a group in which one or more (particularly, one) hydrogen atom on the alkyl group is substituted with the aryl group, that is, monocyclic or bicyclic Examples thereof include a chain or branched C1-10 alkyl group substituted with one or more (particularly one) aryl group of the formula or more. Specific examples include benzyl, phenethyl and 3-phenylpropyl groups. A chain or branched C1-6 alkyl group substituted with a monocyclic aryl group is preferred, a C1-3 alkyl group substituted with a phenyl group is more preferred, and a benzyl or phenethyl group is particularly preferred. It is.
  • the alkyl group, cycloalkyl group or aryl group represented by R 3 , R 4 and R 5 has the same meaning as each group represented by the above R 1 and R 2 .
  • R 3 , R 4 and R 5 may be the same or different.
  • R 4 is a hydrogen atom.
  • Another preferred embodiment includes a case where R 3 , R 4 and R 5 are all hydrogen atoms.
  • R 4 is a hydrogen atom, R 3 and R 5 are the same or different, and an alkyl group (particularly a methyl group), a cycloalkyl group (particularly a cyclohexyl group) or an aryl group (particularly a phenyl group). Group).
  • the ligand represented by X is not particularly limited as long as it can coordinate to rhodium (Rh).
  • a halogen atom for example, fluorine atom, chlorine atom, bromine atom, iodine atom
  • carbonyl carbon monoxide
  • C2-10 carboxylate for example, acetate (AcO ⁇ ), propionate, etc.
  • carbon number 2 to 10 nitriles eg acetonitrile
  • alkenes eg ethylene, propylene, butadiene, cyclooctadiene (COD) etc.
  • water H 2 O
  • alcohols eg methanol, ethanol, isopropanol etc.
  • a coordinating group such as alcohol) or a molecular ligand.
  • the oxidation number of rhodium (Rh) is usually in the range of 1 to 3, and preferably 3.
  • n may vary depending on the oxidation number of Rh and the nature of the ligand, but is usually an integer of 1 to 4, preferably 2 or 3, and more preferably 3.
  • X may be the same or different.
  • the amount of the compound represented by the general formula (1) may be a catalytic amount, and is usually about 0.0001 to 0.3 mol, preferably about 0.001 mol per mol of the olefin as the raw material (substrate).
  • the amount is about 001 to 0.2 mol, more preferably about 0.005 to 0.1 mol.
  • Olefins that are raw materials (substrates) for this reaction are not particularly limited as long as they are compounds having a carbon-carbon double bond in the molecule, and a wide range of olefins can be used.
  • the number of carbon-carbon double bonds to be reacted is not particularly limited. Preferred are 1 to 3 substituted, more preferably 1 or 2 substituted olefins.
  • the kind of substituent is not particularly limited. For example, substituted or unsubstituted aryl group-substituted olefins such as styrene and vinylnaphthalene; substituted or unsubstituted heteroaryl group-substituted olefins such as vinylpyridine; substituted or unsubstituted alkyl group-substituted olefins; substituted or unsubstituted alkoxy group substituted Examples of olefins include electron-withdrawing group-substituted olefins such as acrylonitrile and acrylate esters, and halogen-substituted olefins.
  • Diboron Compound A diboron compound is a reagent for diborylating olefins.
  • the diboron compound is not particularly limited as long as it can be used in this reaction.
  • R 6 is the same or different and is an alkyl group or an aryl group, or represents a divalent group in which two R 6 are bonded to each other.
  • the compound represented by these is mentioned.
  • alkyl group represented by R 6 examples include a chain or branched C1-10 alkyl group. Specific examples include chain or branched C1-4 alkyl groups such as methyl, ethyl, n-propyl, isopropyl and n-butyl groups.
  • Examples of the aryl group represented by R 6 include monocyclic or bicyclic or higher aryl groups. Specific examples include phenyl, toluyl, xylyl, and naphthyl groups.
  • Examples of the divalent group in which two R 6 are bonded to each other include, for example, general formula (2a): -C m H 2m- (2a) (M represents an integer of 2 to 10) Or a divalent group represented by the general formula (2b):
  • M is preferably 2 to 8, and more preferably 2 to 6.
  • Examples of the divalent group represented by the general formula (2a) include —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —C (CH 3 ) 2 C (CH 3 ) 2 —, — CH 2 C (CH 3 ) 2 CH 2 —, —C (CH 3 ) 2 CH 2 C (CH 3 ) H— and the like can be mentioned.
  • the divalent group in which two R 6 are bonded to each other is preferably a divalent group represented by the general formula (2a).
  • preferred diboron compounds include bis (pinacolato) diboron, bis (neopentylglycolato) diboron, bis (hexyleneglycolato) diboron, and bis (catecholato) diboron.
  • the amount of the diboron compound used is usually about 1 to 3 mol, preferably about 1 to 2 mol, more preferably about 1 to 1.5 mol, per 1 mol of the olefin as the raw material (substrate).
  • an inorganic base is preferable.
  • the inorganic base include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide, etc.), alkali metal alkoxides (eg, sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide, etc.) , Alkali metal alkanoates (eg, sodium acetate, potassium acetate, etc.), alkali metal carbonates (eg, potassium carbonate, sodium carbonate, etc.), alkaline earth metal carbonates (eg, cesium carbonate, etc.), and the like.
  • Alkali metal alkoxides are preferable, and sodium ethoxide, sodium t-butoxide, and potassium t-butoxide are more preferable.
  • the amount of base used is usually about 0.0005 to 1 mol, preferably about 0.005 to 0.5 mol, more preferably 0, relative to 1 mol of olefins as the raw material (substrate). .01 to 0.2 mol.
  • the amount of the base used is usually about 1 to 20 mol, preferably about 1 to 10 mol, more preferably about 2 to 7 mol, per 1 mol of the compound represented by the general formula (1). Can do.
  • Solvent This reaction is usually carried out in a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect this reaction.
  • the solvent that can be used include ethers (eg, diethyl ether, diisopropyl ether, tetrahydrofuran (THF), 1,4-dioxane, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, etc.), aliphatic Hydrocarbons (eg, pentane, hexane, cyclohexane, petroleum ether, etc.), esters (eg, ethyl acetate, etc.), halogenated hydrocarbons (eg, methylene chloride, chloroform, 1,2-dichloroethylene, etc.), etc. Can be mentioned. Among these, it can use individually or in combination of 2 or more types. Of these, THF, 1,4-dioxane, and toluene are preferable, and
  • Diborylation reaction This reaction is carried out by mixing the compound represented by the above general formula (1), olefins, diboron compounds and, if necessary, a base.
  • the reaction temperature is usually about 0 to 100 ° C., preferably about 20 to 90 ° C., more preferably about 40 to 80 ° C.
  • the reaction time is usually about 1 minute to 3 hours.
  • This reaction can usually be carried out under normal pressure.
  • This reaction is usually preferably carried out in an inert gas atmosphere such as nitrogen or argon.
  • a 1,2-diboryl compound can be obtained through known purification and isolation steps.
  • the mixture after the reaction can be used as it is in the second step without undergoing purification and isolation steps (one-pot synthesis).
  • the second step is a step of oxidizing the 1,2-diboryl compound obtained in the first step.
  • Oxidation treatment is usually performed using an oxidizing agent.
  • a peroxide can be used.
  • hydrogen peroxide, perboric acid or a salt thereof for example, sodium perborate
  • persulfuric acid or a salt thereof for example, sodium persulfate, persulfate
  • potassium persulfate, persulfate Potassium, ammonium persulfate and the like
  • percarbonate or a salt thereof for example, sodium percarbonate
  • hydrogen peroxide and perborate are preferred.
  • the amount of the oxidizing agent used is usually about 2 to 20 moles, preferably 2 to 10 moles per mole of 1,2-diboryl compound (or olefins when the first step and the second step are carried out in one pot). About mol, more preferably about 3 to 7 mol.
  • This reaction can usually be carried out in a solvent.
  • a solvent water can be used in order to dissolve the inorganic salt of peroxide, which is an oxidizing agent, and it may further contain the solvent used in the first step.
  • This reaction is performed by mixing the 1,2-diboryl compound obtained in the first step and an oxidizing agent.
  • the reaction temperature is usually about 0 ° C. to 50 ° C., preferably room temperature.
  • the reaction time is usually about 1 minute to 3 hours.
  • an optically active 1,2-diol compound can be obtained through known purification and isolation steps.
  • the two borons of the 1,2-diboryl compound obtained in the first step are converted into hydroxyl groups while retaining the stereochemistry of the carbon atoms to which they are bonded (see FIG. 1).
  • the stereochemistry generated in the first step is transferred to the 1,2-diol compound, and as a result, the 1,2-diol compound can be obtained with high optical yield.
  • Example 1 Synthesis of optically active 1,2-diol
  • the following rhodium complex (1a) was synthesized as described in Non-Patent Document 7.
  • the reaction solution was cooled to room temperature, 1 ml of tetrahydrofuran, 384 mg (2.5 mmol) of sodium perborate and 2.5 ml of water were added, and the mixture was stirred at room temperature for 1 hour.
  • the reaction solution was then extracted with ethyl acetate (2 ml, 5 times) and concentrated to give a mixture.
  • the mixture was purified by silica gel column chromatography (eluent: hexane / ethyl acetate mixed solvent) to obtain 81 mg of the objective optically active 1,2-diol compound (1).
  • the yield was 94%.
  • the enantiomeric excess (optical purity) measured by high performance liquid chromatography “DAICEL CHIRALCEL OD-H” was 99% ee or higher (R form).
  • Examples 2 to 26 Synthesis of optically active 1,2-diols from various olefins
  • the reaction was carried out in the same manner as in Example 1 except that the type of raw olefins was changed.
  • the results are shown in Tables 1 to 4.
  • Tables 1 to 4 the enantiomer excess of 1,2-diol compounds (2) to (26) was measured in the same manner as in Example 1.
  • the structures of 1,2-diol compounds (2) to (26) were analyzed and confirmed by IR, 1 H NMR, 13 C NMR and the like in the same manner as in Example 1.
  • Example 27 effect of adding a base
  • the reaction was performed in the same manner as in Example 1 except that sodium t-butoxide was changed to another base or no base was used.
  • the results are shown in Table 5.
  • the enantiomer excess of the obtained optically active 1,2-diol compound (1) was measured in the same manner as in Example 1.
  • Example 28 (Effect of ligand)
  • an optically active 1,2-diol compound of the present invention can be produced from olefins with high yield and high optical yield. Therefore, it can be an extremely effective tool for precise synthesis of physiologically active substances and pharmaceuticals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Indole Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、オレフィン類から光学活性1,2-ジオール化合物を効率よく製造する方法を提供する。光学活性1,2-ジオール化合物の製造方法であって、一般式(1):(式中、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であるか、或いは、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であり、R、R及びRは同一又は異なって、水素原子、アルキル基、シクロアルキル基又はアリール基であり、Xは配位子であり、nは1~4の整数である。)で表される化合物の存在下にオレフィン類及びジボロン化合物を反応させて1,2-ジボリル化合物を得る工程、及び当該1,2-ジボリル化合物を酸化処理する工程を含むことを特徴とする製造方法に関する。

Description

1,2-ジオール化合物の製造方法
 本発明は、オレフィン類から光学活性1,2-ジオール化合物を製造する方法に関する。
 光学活性1,2-ジオール化合物は、さまざまな医薬及び農薬等の合成中間体として利用できる重要な化合物群である。この光学活性1,2-ジオール骨格の合成方法として種々の方法が報告されている。
 例えば、不斉配位子を含むオスミウム触媒を用いる方法が良く知られている(非特許文献1及び2参照)。この方法は、光学収率が高いため生理活性物質や天然有機化合物の合成に利用されてきた。しかし、オスミウム化合物は高価かつ毒性が強いため、環境調和性に欠ける合成法として大量の光学活性化合物の合成には不向きである。
 また、触媒用の金属にイリジウムを利用して不斉配位子と組み合わせ、α-ヒドロキシケトン類を不斉水素化する方法が報告されている(非特許文献3参照)。しかし、イリジウムは高価であり原料基質のα-ヒドロキシケトン類は購入による入手は容易ではなく、自前で合成しなければならず大量合成に不向きである。
 また、非特許文献4及び5には、キラル配位子((S)-Quinap)を含むロジウム触媒を用いて、オレフィン類の触媒的不斉ジボリル化を行い、引き続き酸化反応することにより光学活性ジオール類を合成する方法が報告されている。この方法は、オレフィン類を原料にした簡便な方法であり、脂肪族のオレフィンから高い光学収率で1,2-ジオールを与える点で有効である。しかし、スチレン等のアリール基置換オレフィンを原料にした場合には1,2-ジオールの光学収率は低く、基質の適応範囲に限界がある。
 また、非特許文献6には、キラル配位子を含む白金触媒を用いて、オレフィン類の触媒的不斉ジボリル化、次いで酸化反応して光学活性ジオール類を合成する方法が報告されている。しかし、この方法は、反応可能な基質が末端オレフィンに限定されており、高価な白金の使用量も5mol%と比較的多いため大量合成には不向きである。そのため、さらなる改良の余地があった。
 ところで、非特許文献7、8等には、キラルなビス(オキサゾリニル)フェニル ロジウム アセテート錯体を触媒に用いることにより、アルケンの不斉ヒドロシリレーション、還元的アルドールカップリング反応、アルキル化反応、マイケル付加反応、ヘテロディールズアルダー反応、直接アルドール反応、不斉アルキニレーション、α,β-不飽和エステルのβ-ボレーション等の反応が進行することが記載されている。しかし、この触媒を用いて光学活性1,2-ジオール化合物を製造できることは記載されていない。
Chem.Rev.,1994,2483. Organic Reactions,2005,66,109. Org.Lett.,2007,9,2565. J.Am.Chem.Soc.,2003,125,8702. J.Org.Chem.,2005,70,9538. J.Am.Chem.Soc.,2009,131,13210. Chem.Eur.J.,2006,12,63. Chem.Commun.,2010,46,203.
 本発明は、オレフィン類から光学活性1,2-ジオール化合物を効率よく製造する方法を提供することを目的とする。
 本発明者等は上記の課題を解決するために鋭意研究を行った。その結果、キラルなビス(オキサゾリニル)フェニル ロジウム アセテート錯体(例えば、非特許文献7及び8を参照)を触媒に用いて、オレフィン類とビス(カテコラト)ジボロン等のジボロン化合物とを反応させることにより、穏和な条件で高エナンチオ選択的にオレフィンの1,2-ジボリル化が進行し、続いて酸化反応に付すことにより高収率かつ高い光学収率で光学活性1,2-ジオール化合物が得られることを見出した。かかる知見に基づき更に研究を行うことにより、本発明を完成するに至った。
 即ち、本発明は以下の光学活性1,2-ジオール化合物の製造方法を提供する。
 項1 光学活性1,2-ジオール化合物の製造方法であって、一般式(1):
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であるか、或いは、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であり、R、R及びRは同一又は異なって、水素原子、アルキル基、シクロアルキル基又はアリール基であり、Xは配位子であり、nは1~4の整数である。)
で表される化合物(ロジウム錯体)の存在下にオレフィン類及びジボロン化合物を反応させて1,2-ジボリル化合物を得る工程、及び当該1,2-ジボリル化合物を酸化処理する工程を含むことを特徴とする製造方法。
 項2 前記1,2-ジボリル化合物を得る工程において、さらに塩基を用いる項1に記載の製造方法。
 項3 前記塩基がアルカリ金属アルコキシドである項2に記載の製造方法。
 項4 一般式(1)において、Rが水素原子、且つRがイソプロピル基、ベンジル基又はフェニル基であるか、或いは、Rが水素原子、且つRがイソプロピル基、ベンジル基又はフェニル基である項1~3のいずれかに記載の製造方法。
 本発明の光学活性1,2-ジオール化合物の製造方法は、一般式(1)で表される不斉配位子を含むロジウム錯体からなる触媒の存在下、オレフィン類を1,2-ジボリル化した後、これを酸化処理することを特徴とする。つまり、第1工程で、オレフィン類が高エナンチオ選択的にジボリル化され、続く第2工程で、ホウ素原子が結合した炭素の立体化学を保持したままでホウ素が水酸基に変換される。これにより、本発明の製造方法では、高収率かつ高い光学収率で光学活性1,2-ジオール化合物が得られる。換言すれば、光学純度(鏡像体過剰率)100%の不斉配位子を不斉源として用いて、100%に近い高い光学純度(鏡像体過剰率)の光学活性1,2-ジオール化合物を得ることができる。
 本発明では、第1工程(1,2-ジボリル化)と第2工程(酸化)を、別々に又はワンポットで実施することができる。特に後者の場合は、工程数を低減することができるため効率的な製造方法である。
 本発明では、1,2-ジボリル化工程において、塩基(特に、アルカリ金属アルコキシド等)を添加することにより、さらに高収率かつ高い光学収率で1,2-ジオール化合物を得ることができる。
 本発明の製造方法は、穏和な条件下で反応が進行するため簡便かつ経済的である。また、従来のオレフィン類の1,2-ジオール化反応で汎用されるオスミウム(Os)、白金(Pt)等の毒性が高い又は高価な金属の使用を回避できることから、安全性及び経済性の観点からも好ましい方法である。よって、光学活性1,2-ジオール化合物の工業的合成法として有用である。
本発明の第1工程の高エナンチオ選択的1,2-ジボリル化反応の予想メカニズムと第2工程の酸化反応の模式図である。化学構造に含まれる記号Bはホウ素を含む基を示す。
 本発明は光学活性1,2-ジオール化合物の製造方法であって、一般式(1):
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であるか、或いは、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であり、R、R及びRは同一又は異なって、水素原子、アルキル基、シクロアルキル基又はアリール基であり、Xは配位子であり、nは1~4の整数である。)
で表される化合物の存在下にオレフィン類及びジボロン化合物を反応させて1,2-ジボリル化合物を得る工程(以下、「第1工程」とも表記する)、及び該1,2-ジボリル化合物を酸化処理する工程(以下、「第2工程」とも表記する)を含むことを特徴とする。
1.第1工程(1,2-ジボリル化反応)
 第1工程は、一般式(1)で表される化合物の存在下にオレフィン類及びジボロン化合物を反応させて1,2-ジボリル化合物を得る工程である。
 触媒
 一般式(1)で表される化合物は、不斉配位子を含むロジウム錯体であり、オレフィン類の1,2-ジボリル化反応の触媒として用いられる。この化合物は、公知の方法で製造することができ、例えば、非特許文献7、8等の記載に従い又は準じて製造することができる。
 一般式(1)において、R及びRで示されるアルキル基としては、例えば、鎖状又は分岐状のC1~10アルキル基が挙げられ、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル基等が挙げられる。好ましくはC2~6アルキル基であり、より好ましくはC2~4アルキル基であり、特に好ましくはイソプロピル基である。
 R及びRで示されるシクロアルキル基としては、例えば、C3~10のシクロアルキル基が挙げられ、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。好ましくはC3~7シクロアルキル基であり、より好ましくはC5~7シクロアルキル基であり、特に好ましくはシクロヘキシル基である。
 R及びRで示されるアリール基としては、例えば、単環式又は二環式以上のアリール基が挙げられ、具体的には、フェニル、トルイル、キシリル、ナフチル、アンスラニル、フェナンスリル基等が挙げられる。好ましくはフェニル、トルイル、キシリル基等の単環式アリール基であり、より好ましくはフェニル基である。
 R及びRで示されるアラルキル基としては、例えば、上記アルキル基上の1個以上(特に、1個)の水素原子が上記アリール基で置換された基、即ち、単環式又は二環式以上のアリール基で1個以上(特に、1個)置換された鎖状又は分岐状のC1~10アルキル基が挙げられる。具体的には、ベンジル、フェネチル、3-フェニルプロピル基等が挙げられる。好ましくは単環式のアリール基で置換された鎖状又は分岐状のC1~6アルキル基であり、より好ましくはフェニル基で置換されたC1~3アルキル基であり、特に好ましくはベンジル、フェネチル基である。
 一般式(1)において、R、R及びR示されるアルキル基、シクロアルキル基又はアリール基は、上記R及びRで示される各基と同義である。R、R及びRは同一又は異なっていてもよい。
 好ましい態様として、Rが水素原子の場合が挙げられる。他の好ましい態様として、R、R及びRが全て水素原子の場合が挙げられる。他の好ましい態様として、Rが水素原子であり、R及びRが同一又は異なって、アルキル基(特に、メチル基)、シクロアルキル基(特に、シクロヘキシル基)又はアリール基(特に、フェニル基)の場合が挙げられる。
 一般式(1)において、Xで示される配位子としては、ロジウム(Rh)に配位し得るものであれば特に限定はない。例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、カルボニル(一酸化炭素)、C2~10のカルボキシラート(例えば、アセタート(AcO)、プロピオナート等)、炭素数2~10のニトリル(例えば、アセトニトリル等)、アルケン(例えば、エチレン、プロピレン、ブタジエン、シクロオクタジエン(COD)等)、水(HO)、アルコール(例えば、メタノール、エタノール、イソプロパノール等のC1~4アルコール等)等の配位基又は分子状配位子が挙げられる。好ましくは、塩素原子等のハロゲン原子、アセタート等のC2~10のカルボキシラート、水等である。より好ましくは、塩素原子、アセタート及び水である。
 一般式(1)において、ロジウム(Rh)の酸化数は、通常1~3価の範囲であり、好ましくは3価である。nは、Rhの酸化数や配位子の性質に応じて変動し得るが、通常1~4の整数であり、好ましくは2又は3であり、より好ましくは3である。nが2以上の場合、Xは同一又は異なっていてもよい。特に、nが3であり、Xのうち2つがアセタート又は塩素原子であり、1つが水であることが好ましい。
 なお、一般式(1)において、ロジウム(Rh)と配位子との結合は全て実線で示しているが、当該実線は共有結合、イオン結合及び配位結合のいずれをも包含する。
 一般式(1)で表される化合物の使用量は触媒量であればよく、原料(基質)であるオレフィン類1モルに対し、通常、0.0001~0.3モル程度、好ましくは0.001~0.2モル程度、より好ましくは0.005~0.1モル程度である。
 オレフィン類
 本反応の原料(基質)であるオレフィン類は、分子内に炭素-炭素の二重結合を有する化合物であれば特に限定はなく、広範なオレフィン類を用いることができる。
 反応する炭素-炭素の二重結合の置換数は特に限定はない。好ましくは1~3置換、より好ましくは1又は2置換オレフィン類である。また、置換基の種類も特に限定はない。例えば、スチレン、ビニルナフタレン等の置換又は非置換アリール基置換オレフィン類;ビニルピリジン等の置換又は非置換ヘテロアリール基置換オレフィン類;置換又は非置換アルキル基置換オレフィン類;置換又は非置換アルコキシ基置換オレフィン類;アクリロニトリル、アクリル酸エステル等の電子吸引性基置換オレフィン類;ハロゲン置換オレフィン類等が挙げられる。
 特に、非特許文献4及び5の不斉触媒を用いた方法では、芳香族基置換オレフィン類(スチレン等)を原料に用いた場合に、生成物の1,2-ジオールの光学純度(鏡像体過剰率)は低いものであったが、本発明の方法を用いることにより、芳香族基置換オレフィン類からでも極めて高い光学純度(鏡像体過剰率)を有する1,2-ジオールが得られる。
 ジボロン化合物
 ジボロン化合物はオレフィン類をジボリル化する反応剤である。ジボロン化合物は、本反応に用い得るものであれば特に限定はない。例えば、一般式(2):
Figure JPOXMLDOC01-appb-C000004
(式中、Rは同一又は異なって、アルキル基又はアリール基であるか、或いは、2つのRが互いに結合した2価の基を示す。)
で表される化合物が挙げられる。
 Rで示されるアルキル基としては、例えば、鎖状又は分岐状のC1~10アルキル基が挙げられる。具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル基等の鎖状又は分岐状のC1~4アルキル基が挙げられる。
 Rで示されるアリール基としては、例えば、単環式又は二環式以上のアリール基が挙げられる。具体的には、フェニル、トルイル、キシリル、ナフチル基等が挙げられる。
 2つのRが互いに結合した2価の基としては、例えば、一般式(2a):
 -C2m-    (2a)
(mは2~10の整数を示す。)
で表される2価の基、或いは、一般式(2b):
Figure JPOXMLDOC01-appb-C000005
で表される2価の基が挙げられる。
 mは2~8が好ましく、2~6がより好ましい。
 一般式(2a)で表される2価の基としては、例えば、-CHCH-、-CHCHCH-、-C(CHC(CH-、-CHC(CHCH-、-C(CHCHC(CH)H-等が挙げられる。
 2つのRが互いに結合した2価の基としては、一般式(2a)で表される2価の基が好ましい。
 ジボロン化合物の好ましい具体例としては、ビス(ピナコラト)ジボロン、ビス(ネオペンチルグリコラト)ジボロン、ビス(ヘキシレングリコラト)ジボロン、ビス(カテコラト)ジボロン等が挙げられる。
 ジボロン化合物の使用量は、原料(基質)であるオレフィン類1モルに対し、通常、1~3モル程度、好ましくは1~2モル程度、より好ましくは1~1.5モル程度である。
 塩基
 本反応では、さらに反応を促進し且つ高い光学収率を達成するために、塩基を添加することが好ましい。塩基としては無機塩基が好ましい。無機塩基としては、例えば、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム等)、アルカリ金属アルコキシド(例えば、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等)、アルカリ金属アルカノエート(例えば、酢酸ナトリウム、酢酸カリウム等)、アルカリ金属カーボネート(例えば、炭酸カリウム、炭酸ナトリウム等)、アルカリ土類金属カーボネート(例えば、セシウムカーボネート等)等が挙げられる。好ましくはアルカリ金属アルコキシドであり、より好ましくはナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシドである。
 塩基を用いる場合、塩基の使用量は、原料(基質)であるオレフィン類1モルに対し、通常、0.0005~1モル程度、好ましくは0.005~0.5モル程度、より好ましくは0.01~0.2モル程度にできる。また、塩基の使用量は、一般式(1)で表される化合物1モルに対し、通常、1~20モル程度、好ましくは1~10モル程度、より好ましくは2~7モル程度にすることができる。
 溶媒
 本反応は、通常、溶媒中で実施される。溶媒としては本反応に悪影響を与えない溶媒であれば特に限定はない。用い得る溶媒としては、例えば、エーテル類(例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(例えは、ペンタン、ヘキサン、シクロヘキサン、石油エーテル等)、エステル類(例えば、酢酸エチル等)、ハロゲン化炭化水素類(例えば、塩化メチレン、クロロホルム、1,2-ジクロロエチレン等)等が挙げられる。これらのうち、単独又は2種以上を組み合わせて用いることができる。このうち、THF、1,4-ジオキサン、トルエンが好ましく、特にTHFが好ましい。
 ジボリル化反応
 本反応は、上記の一般式(1)で表される化合物、オレフィン類、ジボロン化合物、必要に応じ塩基を混合して行う。反応温度は、通常、0~100℃程度であり、好ましくは20~90℃程度であり、より好ましくは40~80℃程度である。反応時間は、通常、1分~3時間程度である。本反応は通常、常圧下で実施することができる。本反応は、通常、窒素、アルゴン等の不活性ガス雰囲気下で実施することが好ましい。
 反応後は、公知の精製及び単離工程を経て、1,2-ジボリル化合物を得ることができる。或いは、精製及び単離工程を経ず反応後の混合物をそのまま第2工程に用いることもできる(ワンポット合成)。
 本反応において、高い光学収率が達成される理由として、図1の模式図で示すように、ジボロン化合物がロジウムに酸化的付加した後、オレフィン類がロジウムに配位する際に、配位子上の嵩高い基(○印で示す基)の空間配置による規制が働き、オレフィン類の二重結合の反応面が高選択的に識別されるためであると推測される。具体的には、スチレンがRhに配位する図1の模式図「B」では、スチレンのフェニル基(Ph)と配位子上の嵩高い基との立体反発によりスチレンのRe面からの配位が妨げられ、これに対し、模式図「A」では、Phと嵩高い基との立体反発がなく嵌合し得るためスチレンのSi面からの配位が選択的に進行すると考えられる。
2.第2工程(酸化反応)
 第2工程は、第1工程で得られた1,2-ジボリル化合物を酸化処理する工程である。
 酸化処理は、通常、酸化剤を用いて実施する。酸化剤としては、過酸化物を用いることができ、例えば、過酸化水素、過ホウ酸又はその塩(例えば、過ホウ酸ナトリウム等)、過硫酸又はその塩(例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等)、過炭酸又はその塩(例えば、過炭酸ナトリウム等)等が挙げられる。このうち、過酸化水素、過ホウ酸塩(特に、過ホウ酸ナトリウム)が好ましい。
 酸化剤の使用量は、1,2-ジボリル化合物(或いは、第1工程と第2工程をワンポットで行う場合はオレフィン類)1モルに対し、通常、2~20モル程度、好ましくは2~10モル程度、より好ましくは3~7モル程度である。
 本反応は、通常、溶媒中で実施することができる。当該溶媒としては、通常、酸化剤である過酸化物の無機塩を溶解させるために水を用いることができ、さらに第1工程で用いた溶媒を含んでいてもよい。
 本反応は、第1工程で得られた1,2-ジボリル化合物及び酸化剤を混合して行う。反応温度は、通常、0℃~50℃程度、好ましくは室温である。反応時間は、通常、1分~3時間程度である。
 反応後は、公知の精製及び単離工程を経て、光学活性1,2-ジオール化合物を得ることができる。
 本反応により、第1工程で得られた1,2-ジボリル化合物の2つのホウ素は、それらが結合した炭素原子の立体化学を保持したまま水酸基に変換される(図1を参照)。これにより、第1工程で生み出された立体化学が1,2-ジオール化合物に転写され、結果として高い光学収率で1,2-ジオール化合物を得ることができる。
 以下の実施例を挙げて本発明について説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1(光学活性1,2-ジオールの合成)
 下記のロジウム錯体(1a)を、非特許文献7の記載に従い合成した。
Figure JPOXMLDOC01-appb-C000006
 合成したロジウム錯体(1a)2.7mg(0.005mmol)、ビス(ピナコラト)ジボロン152mg(0.6mmol)、ナトリウムt-ブトキシド2.4mg(0.025mmol)をフラスコに秤量し、アルゴン雰囲気とした。続いて、p-クロロスチレン69.3mg(0.50mmol)とテトラヒドロフラン 1mlを加え、60℃に加熱し1時間撹拌した。反応溶液を室温まで冷やし、テトラヒドロフラン1mlと過ホウ酸ナトリウム384mg(2.5mmol)と水2.5mlを加え、室温で1時間撹拌した。次いで、反応溶液を酢酸エチル(2ml、5回)で抽出し、濃縮して混合物を得た。混合物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル混合溶媒)により精製し、目的とする光学活性1、2-ジオール化合物(1)81mgを得た。収率は94%であった。さらに、高速液体クロマトグラフィー「DAICEL CHIRALCEL OD-H」により測定した鏡像体過剰率(光学純度)は99%ee以上(R体)であった。
Figure JPOXMLDOC01-appb-C000007
 合成したジオール化合物(1)の分析結果を下記に示す。
 ジオール化合物(1):IR (KBr) ν 3388 (broad) cm-11H NMR (300 MHz, CDCl3) δ 2.11 (broad, 1H), 2.64 (broad, 1H), 3.57 (m, 1H), 3.69 (m, 1H), 4.75 (dd, J = 8.4, 3.3 Hz, 1H), 7.20-7.30 (m, 4H) ppm; 13C NMR (75 MHz, CDCl3) δ 67.9, 74.0, 127.2, 128.5, 133.5, 138.6; DAICEL CHIRALCEL OD-H, ヘキサン/2-プロパノール (98:2, 1.5 mL/min), 保持時間 46.0 min (major), 52.8 min (minor), >99 % ee (R); [α]D 28 -57.4 (c 1.0, CHCl3).
 実施例2~26(各種オレフィン類から光学活性1,2-ジオール類の合成)
 原料のオレフィン類の種類を変えた以外は、実施例1と同様の操作によって反応を行った。その結果を表1~4に示す。表1~4中、1,2-ジオール化合物(2)~(26)の鏡像体過剰率は、実施例1の場合と同様にして測定した。また、1,2-ジオール化合物(2)~(26)の構造は実施例1と同様にIR、H NMR、13C NMR等により分析し確認した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 1、2-ジオール化合物(2)~(15)の鏡像体過剰率を測定した高速液体クロマトグラフィーの条件は、以下の通りである。特に断りのない限り、いずれもDAICEL CHIRALCEL OD-Hカラムを用いた。
 化合物(2):ヘキサン/2-プロパノール, 95:5, 0.5 ml/min:保持時間 43.5 min (major), 49.9 min (minor)
 化合物(3):ヘキサン/2-プロパノール, 97:3, 1.0 ml/min: 保持時間 25.0 min (major), 27.5 min (minor)
 化合物(4):ヘキサン/2-プロパノール, 98:2, 1.5 ml/min: 保持時間 91.8 min (major), 109.6 min (minor)
 化合物(5):ヘキサン/2-プロパノール, 98:2, 1.5 ml/min: 保持時間 45.3 min (major), 52.6 min (minor)
 化合物(6):ヘキサン/2-プロパノール, 98:2, 1.5 ml/min): 保持時間 32.6 min (major), 43.7 min (minor)
 化合物(7):ヘキサン/2-プロパノール, 98:2, 1.5 ml/min): 保持時間 28.4 min (major), 33.5 min (minor)
 化合物(8):ヘキサン/2-プロパノール, 90:10, 1.0 ml/min): 保持時間 14.5 min (major), 24.5 min (minor)
 化合物(9):ヘキサン/2-プロパノール, 90:10, 1.0 ml/min): 保持時間 16.5 min (major), 20.2 min (minor)
 化合物(10):ヘキサン/2-プロパノール, 95:5, 0.5 ml/min): 保持時間 46.9 min (major), 52.8 min (minor)
 化合物(11):ヘキサン/2-プロパノール, 90:10, 0.5 ml/min): 保持時間 34.6 min (major), 54.1 min (minor)
 化合物(12):ヘキサン/2-プロパノール, 98:2, 1.5 ml/min): 保持時間 39.2 min (major), 54.3 min (minor)
 化合物(13):ヘキサン/2-プロパノール, 90:10, 1.0 ml/min): 保持時間 21.6 min (minor), 44.9 min (major)
 化合物(14):ヘキサン/2-プロパノール, 90:10, 1.0 ml/min): 保持時間 19.8 min (minor), 22.9 min (major)
 化合物(15):ヘキサン/2-プロパノール, 90:10, 0.5 ml/min): 保持時間 52.4 min (minor), 56.8 min (major)
 化合物(16):DAICEL CHIRALPAK AS-H; ヘキサン/2-プロパノール、95:5, 0.5 ml/min; 保持時間 56.8 min (major), 59.5 min (minor) 
 化合物(17):DAICEL CHIRALCEL OH-H; ヘキサン/2-プロパノール、98:2, 1.0 ml/min; 保持時間 59.4 (major), 69.5 min (minor)
 化合物(18):DAICEL CHIRALPAK AS-H; ヘキサン/2-プロパノール、95:5, 1.0 ml/min; 保持時間 34.0 min (minor), 40.8 min (major)
 化合物(19):DAICEL CHIRALPAK AS-H; ヘキサン/2-プロパノール、95:5, 1.0 ml/min; 保持時間 35.2 min (minor), 44.3 min (major)
 化合物(20):DAICEL CHIRALPAK AS-H; ヘキサン/2-プロパノール、80:30, 1.0 ml/min; 保持時間 46.0 min (minor), 48.9 min (major)
 化合物(21):ヘキサン/2-プロパノール、 95:5, 1.0 ml/min; 保持時間 31.6 min (minor), 36.2 min (major)
 化合物(22):ヘキサン/2-プロパノール、 95:5, 1.0 ml/min; 保持時間 31.3 min (major), 37.0 min (minor)
 化合物(23):DAICEL CHIRALPAK AS-H; ヘキサン/2-プロパノール、 90:10, 1.0 ml/min; 保持時間 69.2 min (major), 97.2 min (minor)
 化合物(24):ヘキサン/2-プロパノール、98:2, 1.5 ml/min; 保持時間 41.5 (major), 45.8 min (minor)
 化合物(25):ジベンゾエート誘導体として分析:DAICEL CHIRALPAC AD-H; ヘキサン/2-プロパノール、99:1, 1.0 ml/min; 保持時間 15.5 (minor), 37.6 min (major)
 実施例27(塩基の添加効果)
 ナトリウムt-ブトキシドを他の塩基に変えること又は塩基を用いないこと以外は、実施例1と同様の操作によって反応を行った。その結果を表5に示す。得られた光学活性1,2-ジオール化合物(1)の鏡像体過剰率は、実施例1の場合と同様にして測定した。
Figure JPOXMLDOC01-appb-T000012
 これより、塩基を添加すると、高収率で高い鏡像体過剰率の光学活性1,2-ジオール化合物(1)が得られることが分かった。特に、アルカリ金属アルコキシドを用いた場合に収率及び鏡像体過剰率はともに飛躍的に向上することが分かった。
 実施例28(配位子の効果)
 実施例1で用いたロジウム錯体(1a)において、イソプロピル基(iPr)をベンジル基(Bn)及びフェニル基(Ph)に代えたロジウム錯体(1b)及び(1c)を、非特許文献7の記載に従い合成した。また、実施例1で用いたロジウム錯体(1a)において、ベンゼン環上のRhに対して2つのメタ位にそれぞれメチル基を有するロジウム錯体(1d)(下記式においてR=R=Me)も同様にして合成した。
 ロジウム錯体(1a)に代えて、ロジウム錯体(1b)、(1c)及び(1d)を用いること以外は、実施例1と同様の操作によって反応を行った。その結果を表6に示す。得られた光学活性1,2-ジオール化合物(1)の鏡像体過剰率は、実施例1の場合と同様にして測定した。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-T000014
 これより、ロジウム錯体(1b)、(1c)及び(1d)を用いて反応した場合でも、高収率で高い鏡像体過剰率の光学活性1,2-ジオール化合物(1)が得られることが分かった。
 実施例29
 ロジウム錯体(1a)とビス(カテコール)ジボロンとの反応により得られる中間体について、11B NMR (160 MHz, THF-d8)を測定した。その結果、一種類のB(ホウ素)種が、103Rhとカップリングした二重線δ28.0 ppm (d, JRh-B = 155.2 Hz) として検出された。これより、中間体がRh-B結合を有することが明らかになった。
 本発明の光学活性1,2-ジオール化合物の製造方法によれば、オレフィン類から高収率かつ高い光学収率で光学活性1,2-ジオール化合物を製造することができる。そのため、生理活性物質、医薬品等の精密合成の極めて有効なツールとなりうる。

Claims (4)

  1. 光学活性1,2-ジオール化合物の製造方法であって、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であるか、或いは、Rは水素原子、且つRはアルキル基、シクロアルキル基、アリール基又はアラルキル基であり、R、R及びRは同一又は異なって、水素原子、アルキル基、シクロアルキル基又はアリール基であり、Xは配位子であり、nは1~4の整数である。)
    で表される化合物(ロジウム錯体)の存在下にオレフィン類及びジボロン化合物を反応させて1,2-ジボリル化合物を得る工程、及び当該1,2-ジボリル化合物を酸化処理する工程を含むことを特徴とする製造方法。
  2. 前記1,2-ジボリル化合物を得る工程において、さらに塩基を用いる請求項1に記載の製造方法。
  3. 前記塩基がアルカリ金属アルコキシドである請求項2に記載の製造方法。
  4. 一般式(1)において、Rが水素原子、且つRがイソプロピル基、ベンジル基又はフェニル基であるか、或いは、Rが水素原子、且つRがイソプロピル基、ベンジル基又はフェニル基である請求項1~3のいずれかに記載の製造方法。
PCT/JP2014/057660 2013-03-21 2014-03-20 1,2-ジオール化合物の製造方法 WO2014148591A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506845A JPWO2014148591A1 (ja) 2013-03-21 2014-03-20 1,2−ジオール化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013058194 2013-03-21
JP2013-058194 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148591A1 true WO2014148591A1 (ja) 2014-09-25

Family

ID=51580261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057660 WO2014148591A1 (ja) 2013-03-21 2014-03-20 1,2-ジオール化合物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2014148591A1 (ja)
WO (1) WO2014148591A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05509297A (ja) * 1990-04-23 1993-12-22 マサチユセツツ・インスチチユート・オブ・テクノロジー ヘテロサイクルのキラルリガンドおよびオレフィンの接触非対称のジヒドロキシル化法
JPH06500344A (ja) * 1991-05-13 1994-01-13 マサチユセツツ・インスチチユート・オブ・テクノロジー 複素環式キラル配位子およびオレフィン類の接触非対称性ジヒドロキシル化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05509297A (ja) * 1990-04-23 1993-12-22 マサチユセツツ・インスチチユート・オブ・テクノロジー ヘテロサイクルのキラルリガンドおよびオレフィンの接触非対称のジヒドロキシル化法
JPH06500344A (ja) * 1991-05-13 1994-01-13 マサチユセツツ・インスチチユート・オブ・テクノロジー 複素環式キラル配位子およびオレフィン類の接触非対称性ジヒドロキシル化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIOMI, TAKUSHI ET AL.: "Asymmetric beta-boration of alpha,beta-unsaturated carbonyl compounds promoted by chiral rhodium-bisoxazolinylphenyl catalysts", CHEMICAL COMMUNICATIONS, vol. 40, 2009, pages 5987 - 5989 *
TORIBATAKE, KENJI ET AL.: "Asymmetric Diboration of Terminal Alkenes with Rhodium Catalyst and Subsequent Oxidation: Enantioselective Synthesis of Optically Active 1,2-Diols", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 52, no. 42, 2013, pages 11011 - 11015 *

Also Published As

Publication number Publication date
JPWO2014148591A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
Toribatake et al. Asymmetric diboration of terminal alkenes with a rhodium catalyst and subsequent oxidation: enantioselective synthesis of optically active 1, 2-diols.
Cao et al. Asymmetric Nazarov reaction catalyzed by chiral tris (oxazoline)/copper (II)
Chelucci et al. Chiral pyridine N-oxides: useful ligands for asymmetric catalysis
Breit et al. Directed reactions of organocopper reagents
Braga et al. Catalytic applications of chiral organoselenium compounds in asymmetric synthesis
JP5313335B2 (ja) 不飽和カルボン酸の触媒的不斉水素化におけるイリジウム錯体の応用
Lin et al. Enantioselective syn and anti Homocrotylation of Aldehydes: Application to the Formal Synthesis of Spongidepsin
Schmidt et al. Diarylmethanols by catalyzed asymmetric aryl transfer reactions onto aldehydes using boronic acids as aryl source
Yun et al. Chromium (III)-catalyzed addition of water and alcohol to α, β-unsaturated ketones for the synthesis of β-hydroxyl and β-alkoxyl ketones in aqueous media
Kinoshita et al. Catalytic enantioselective alkylation of aldehydes by using organozinc halide reagents.
Wang et al. Asymmetric Synthesis of Chiral 1, 3‐Disubstituted Allylsilanes via Copper (I)‐Catalyzed 1, 4‐Conjugate Silylation of α, β‐Unsaturated Sulfones and Subsequent Julia‐Kocienski Olefination
Braga et al. Modular chiral thiazolidine catalysts in asymmetric aryl transfer reactions
JP4582794B2 (ja) 光学活性ヒドロキシメチル化化合物の製法
EP2376411B1 (en) Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
JP5271503B2 (ja) 有機ホウ素化合物の製造方法
Yajima et al. Practical synthesis of aromatic bisabolanes: Synthesis of 1, 3, 5-bisabolatrien-7-ol, peniciaculin A and B, and hydroxysydonic acid
WO2014148591A1 (ja) 1,2-ジオール化合物の製造方法
Deng et al. Chlorotrimethylsilane (TMSCl): an efficient silicon-based Lewis acid mediator in allylic alkylation using a diethylzinc reagent
Merino et al. Stereocontrolled Approach to Phenyl Cyclitols from (SR)-[(p-Tolylsulfinyl) methyl]-p-quinol
CN102627571B (zh) 一种手性铵盐的制备及合成方法
Fan et al. Rhodium catalyzed asymmetric Pauson-Khand reaction using SDP ligands
JP2015172024A (ja) 水素結合形成アミド基を持つキラル二環式ジエン配位子
CN115650824B (zh) 手性二醇及其制备方法、制得的催化剂及制备方法和应用
JP5179430B2 (ja) 光学活性アルコールの製造方法
JP4696274B2 (ja) 固体キラルジルコニウム触媒及びそれを用いたアルドール反応物又は環化体化合物の合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767415

Country of ref document: EP

Kind code of ref document: A1