WO2014148541A1 - Laser light source device - Google Patents

Laser light source device Download PDF

Info

Publication number
WO2014148541A1
WO2014148541A1 PCT/JP2014/057504 JP2014057504W WO2014148541A1 WO 2014148541 A1 WO2014148541 A1 WO 2014148541A1 JP 2014057504 W JP2014057504 W JP 2014057504W WO 2014148541 A1 WO2014148541 A1 WO 2014148541A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
light emitting
selection
source device
Prior art date
Application number
PCT/JP2014/057504
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 和弘
彩 五十嵐
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2014148541A1 publication Critical patent/WO2014148541A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters

Definitions

  • the present invention relates to an external resonance type laser light source device. More particularly, the present invention relates to an external resonance type semiconductor laser light source device using a nonlinear optical crystal.
  • a wavelength conversion type laser light source device in which an external resonator is provided in a surface emitting semiconductor laser, and a wavelength conversion element formed of a nonlinear optical crystal is disposed between the semiconductor laser and the external resonator.
  • a wavelength-selective reflecting mirror is used as the external resonator, and a technique using an optical crystal such as a polarization inversion type lithium niobate (PPLN) is known as the wavelength conversion element (the following patent document) 1).
  • PPLN polarization inversion type lithium niobate
  • VBG volume Bragg grating
  • the light emitting part is designed so that the target wavelength component is in the vicinity of the peak value, and further, the narrow wavelength band including this peak value is selected, and thus the emitted light showing a narrow wavelength distribution Is generated as a laser beam.
  • wavelength conversion is performed on light of a selected narrow wavelength band to generate radiated light having a desired wavelength as laser light.
  • a wavelength selection element efficiently selects a desired wavelength from light having a wavelength distribution (hereinafter, referred to as “fundamental light” as appropriate) emitted from each light emitting unit. Is important.
  • the present inventor has found a problem that the light emitted from the light emitting unit cannot be used completely effectively by the configuration of the conventional laser light source device through intensive research. Hereinafter, this content will be clarified while explaining the configuration of the conventional laser light source device.
  • FIG. 1 schematically shows a configuration of a conventional laser light source device disclosed in Patent Document 2.
  • a conventional laser light source device 90 includes a semiconductor element 11 having a light emitting portion, a volume Bragg grating (VBG) 93 as a wavelength selection element, and a periodically poled lithium niobate (PPLN) 95 as a wavelength conversion element.
  • VBG volume Bragg grating
  • PPLN periodically poled lithium niobate
  • FIG. 2 shows a configuration in which a plurality of light emitting units 2 are arranged in a row on the semiconductor element 11.
  • FIG. 2 shows a configuration in which a plurality of light emitting units 2 are arranged in a row on the semiconductor element 11.
  • 24 light emitting units 2 are arranged is illustrated.
  • Basic light is emitted from these light emitting units 2.
  • the semiconductor element 11 is in contact with a heat sink 17 for radiating heat generated from the light emitting unit 2.
  • the basic light emitted from each light emitting unit 2 is light having a predetermined wavelength distribution.
  • the VBG 93 is provided for selecting a specific wavelength band from this light.
  • the PPLN 95 has a function of performing wavelength conversion on a part of light in a specific wavelength band out of incident light and emitting the light.
  • Each light emitting unit 2 mounted on the semiconductor element 11 emits basic light.
  • This basic light is not light having only a component in a specific wavelength band but light having a certain wavelength distribution.
  • this basic light passes through the VBG 93, only light in a predetermined wavelength band is selectively reflected.
  • the light selected by the VBG 93 as the wavelength selection element is referred to as “first light”.
  • the VBG 93 has a function of transmitting light in the second light wavelength band described later.
  • the first light reflected from the VBG 93 passes through the PPLN 95.
  • the PPLN 95 is configured to perform wavelength conversion on a part of light in a specific wavelength band and emit the light.
  • the PPLN 95 converts the wavelength of part of the light of the wavelength component included in the first light, and generates light of another different wavelength.
  • the light having the converted wavelength converted by the PPLN 95 is referred to as “second light”.
  • the wavelength band of the first light is within the wavelength band that can be converted by the PPLN 95, not all of the incident first light is converted into the second light at one time. Passes through the PPLN 95 without being converted. For this reason, the second light generated by the PPLN 95 and the first light that has not been wavelength-converted by the PPLN 95 are emitted from the PPLN 95 toward the semiconductor element 11.
  • Reflective members 25 and 27 are provided between the PPLN 95 and the semiconductor element 11. These reflecting members 25 and 27 are configured to reflect light in the wavelength band of the second light and transmit at least light in the wavelength band of the first light. For this reason, the second light emitted from the PPLN 95 toward the semiconductor element 11 is reflected by the reflecting members 25 and 27 to change the direction of the light, and is then emitted to the outside of the device 90 (first 2 light 40).
  • the first light that has passed through the PPLN 95 without being wavelength-converted passes through the reflecting member 25 and enters the semiconductor element 11.
  • the semiconductor element 11 is provided with a reflecting member (internal mirror) (not shown), and the incident first light is reflected toward the PPLN 95.
  • the first light incident from the semiconductor element 11 side passes through the PPLN 95, a part of the first light is converted into the second light.
  • This second light reaches VBG93.
  • the VBG 93 transmits light in the wavelength band of the second light, the incident second light is transmitted as it is and emitted to the outside of the device 90 (second light 50). .
  • the first light that has not been wavelength-converted is reflected again by the VBG 93 and travels toward the PPLN 95.
  • an external resonator is formed between the internal mirror formed in the semiconductor element 11 and the VBG 93, and the first light is repeatedly reflected between the two. And while this reflection is repeated, the wavelength of the first light that has passed through the PPLN 95 is successively converted into the second light, and is extracted from the VBG 93 or the reflection member 27 to the outside of the device 90.
  • the laser light source device 90 selects the first light having the first wavelength band selected by the VBG 93 from the basic light emitted from the plurality of light emitting units 2, and converts the wavelength from the first light by the PPLN 95.
  • the second light having the second wavelength band is generated, and the second light is emitted to the outside as the target laser light.
  • the first light can be infrared light having a peak wavelength of about 1065 nm
  • the second light can be green visible light having a peak wavelength of about 532.5 nm.
  • FIG. 3 shows a wavelength distribution 41 of basic light, a wavelength distribution 42 that can be selected by the VBG 93 (hereinafter referred to as “selected wavelength distribution”), and a wavelength distribution 43 that can be converted by the PPLN 95 (hereinafter, “converted wavelength distribution”). ")."
  • the basic light shows a wide wavelength distribution with a peak wavelength of about 1065 nm.
  • the selection wavelength distribution 42 of the VBG 93 draws a steep curve as shown in FIG.
  • the peak of the selectable wavelength band is about 1065 nm. Therefore, the VBG 93 can select the first light having a wavelength of about 1065 nm from the basic light.
  • FIG. 3 shows a converted wavelength distribution 43 when a broadband PPLN 95 is used.
  • the peak of the wavelength band that can be converted is about 1065 nm. Therefore, the PPLN 95 performs wavelength conversion on the first light having a peak wavelength of about 1065 nm.
  • the wavelength distribution 41 of the basic light, the selection wavelength distribution 42, and the conversion wavelength distribution 43 need to overlap each other.
  • the laser light can be extracted most efficiently by aligning the positions of the peak wavelengths of the wavelength distribution 41, the selection wavelength distribution 42, and the conversion wavelength distribution 43 of the basic light.
  • FIG. 4 is a graph showing the wavelength distribution of the basic light emitted when the temperature of a certain light emitting unit 2 is changed. It is recognized that the peak wavelength and the wavelength band are shifted to the longer wavelength side as the temperature of the light emitting unit 2 is increased to 25 ° C, 30 ° C, 35 ° C, and 40 ° C.
  • FIG. 5 is a graph showing the relationship between the peak wavelength of light emitted from each light emitting section 2 and the temperature of each light emitting section 2 in FIG. From the graph of FIG. 5, it can be seen more clearly that the peak wavelength of light shifts to the longer wavelength side as the temperature of the light emitting unit 2 increases. In addition, according to FIG. 5, it turns out that the temperature of the light emission part 2 and the peak wavelength of the light radiated
  • Each light emitting unit 2 generates heat due to energization during light emission.
  • the heat generated from the self light emitting unit 2 and the heat generated from the adjacent or surrounding light emitting units 2 raise the temperature of each light emitting unit 2.
  • FIG. 6 is a graph showing the temperature distribution of the plurality of light emitting units 2 while the semiconductor laser device 90 is being driven. In order to make the temperature conditions the same, the temperature of each light emitting unit 2 was measured when the bottom surface of the heat sink 17 was cooled to a uniform temperature.
  • FIG. 3 is a graph in which the distance from the position of the light emitting unit 2a in FIG.
  • each light emitting unit 2 arranged in an array the temperature of the light emitting units 2a, 2b, 2w, and 2x near the outer edge of the array is lower than the other light emitting units near the center. It is recognized that
  • the light emitting section 2 arranged at a position close to the center of the array has many other light emitting sections 2 around it, heat generated by these light emitting sections is easily transmitted and the temperature is likely to rise. is there.
  • the number of light emitting units 2 existing around the light emitting units (2a, 2b, 2w, 2x, etc.) arranged near the outer edge of the array is larger than that of the light emitting units arranged near the center. (Density) is low. Therefore, it is considered that the degree of temperature rise is lower than that of the light emitting unit 2 arranged at a position close to the central portion.
  • the inventor has inferred from the results of FIGS. 4 and 6 that the basic light emitted from the plurality of light emitting units 2 mounted on the semiconductor element 11 may vary in wavelength distribution depending on the position. .
  • FIG. 7 is a graph showing the peak wavelength values of the basic light emitted from the light emitting units 2.
  • the distance from the position of the light emitting unit 2a is plotted on the horizontal axis, and the peak wavelength value is plotted on the vertical axis.
  • the wavelength of the basic light varies according to the position, as inferred by the inventor. More specifically, in each light emitting unit 2 arranged in an array, the light emitting units 2a, 2b, 2w, and 2x near the outer edge of the array are shifted to the shorter wavelength side than the other light emitting units near the center. It is recognized that
  • the wavelength distribution 41 of the basic light As described above with reference to FIG. 3, in order to efficiently extract laser light having a desired wavelength from the basic light emitted from the light emitting unit 2, the wavelength distribution 41 of the basic light, the selection wavelength distribution 42, and the conversion It is necessary to make the overlapping area of the wavelength distributions 43 as wide as possible.
  • a VBG 93 designed in advance for each wavelength to be selected has been used.
  • each light emitting unit 2 is designed so that the peak wavelength of the basic light has a wavelength distribution of 1065 nm, and 1065 nm.
  • VBG93 designed so that the selectivity of the light of a wavelength becomes high is used.
  • the wavelength distribution of the basic light varies depending on the position of each light emitting unit 2
  • the basic light whose peak wavelength is shifted from 1065 nm is generated depending on the position of the light emitting unit 2. It will be.
  • the basic light from the light emitting unit 2 arranged in the center and the outer edge of the array are arranged.
  • the fundamental light from the light emitting part 2 has a peak wavelength shift of about 1 nm.
  • the wavelength distribution of the basic light emitted from the light emitting units (2a, 2b, 2w, 2x, etc.) arranged at a position close to the outer edge of the array is the wavelength shown in FIG.
  • the distribution 41 is shifted to the short wavelength side by about 1 nm.
  • the area of the overlapping area with the selected wavelength distribution 42 is reduced. That is, the intensity of the first light selected from the basic light emitted from the light emitting unit 2 in this region is the first light selected from the basic light emitted from the light emitting unit 2 disposed near the center of the array. Less than. This suggests that the emitted light from the light emitting section 2 located at the outer edge of the array cannot be converted into laser light with high efficiency.
  • the wavelength distribution 41 of the basic light emitted from each light emitting unit 2 and the selected wavelength distribution 42 when there is a variation in the peak wavelength value of the wavelength distribution 41 of the basic light emitted from the light emitting unit 2 according to the position, the wavelength distribution 41 of the basic light emitted from each light emitting unit 2 and the selected wavelength distribution 42.
  • a method using a wavelength selection element that provides a selection wavelength distribution 42 showing a wide band is also conceivable.
  • the feature of the wavelength selection element is that the laser light is light in a narrow wavelength band, and that the first light of the narrow band wavelength is selected from the basic light emitted from the light emitting unit 2.
  • the selection wavelength distribution 42 of the wavelength selection element here, VBG93).
  • the inventor effectively uses the basic light emitted from some of the light emitting units 2 even when the plurality of light emitting units 2 are arranged in the semiconductor element 11. I found that I did not use it.
  • the present invention provides a laser light source device that enhances extraction efficiency by efficiently using basic light emitted from a plurality of light emitting units mounted on a semiconductor element to extract laser light. It aims to be realized.
  • the laser light source device of the present invention comprises: A semiconductor element comprising a plurality of light emitting portions that emit basic light; A wavelength selection element for selecting the predetermined wavelength band of the basic light and extracting the first light; A wavelength conversion element for converting the wavelength of a part of the first light and extracting the second light;
  • the wavelength selection element is configured such that the predetermined wavelength band that can be selected in a first selection region through which the basic light emitted from the first light emitting unit of the plurality of light emitting units passes is, of the plurality of light emitting units,
  • the predetermined wavelength band that can be selected in a second selection region through which the basic light emitted from the second light emitting unit, which has a temperature rise due to heat generated when the other light emitting units emit light, is higher than that of the first light emitting unit. It is the structure which becomes a shorter wavelength than this.
  • the wavelength selection element provided in the laser light source device has a configuration in which wavelength bands that can be selected in different regions are different. That is, light emitted from a light emitting unit (the “second light emitting unit”) disposed at a location where the temperature is likely to rise due to the influence of heat generated from the other light emitting units among the plurality of light emitting units passes. In the region (the “second selection region”), light having a relatively long wavelength is selected. On the contrary, the light emitting part (the above “first light emitting part”) that is not affected as much as the second light emitting part and is less likely to rise in temperature than the second light emitting part. In the region through which the light emitted from the light passes (the “first selection region”), light having a wavelength shorter than that of the second selection region is selected.
  • the basic light emitted from the light emitting part (second light emitting part) arranged at a location where the temperature is likely to rise due to the influence of heat generated from other light emitting parts is emitted as the basic light indicating the wavelength distribution of the long wavelength.
  • the basic light emitted from the light emitting unit (first light emitting unit) that is less affected by heat generation from the other light emitting units and is difficult to rise in temperature is Basic light having a wavelength distribution shorter than that of the second light emitting unit is emitted.
  • the selectable wavelength band in the region through which the basic light having a long wavelength distribution (the “second selection region”) passes, the selectable wavelength band is a long wavelength, and the basic wavelength distribution has a short wavelength distribution. In a region through which light passes (the “first selection region”), a selectable wavelength band has a short wavelength. Therefore, both the basic light emitted from the first light emitting unit and the basic light emitted from the second light emitting unit can be efficiently selected by the wavelength selection element.
  • the wavelength selection element provided in the conventional laser light source device has a configuration that selects light in one wavelength band from the wavelength distribution of incident basic light. That is, it is not taken into account that the wavelength distribution of the basic light radiated from each light emitting unit varies depending on the position due to the temperature distribution occurring in each light emitting unit due to the heat generation of the light emitting unit. It was. Therefore, the light emitting unit and the wavelength selection element are designed so as to select the wavelength band in which the wavelength distributions of the basic light emitted from each light emitting unit overlap most.
  • the light emitting part that emits basic light having a wavelength distribution that is not selected by the wavelength selection element
  • the light emitted from the light emission part is not selected by the wavelength selection element, and the light is effectively utilized. I could not say.
  • a selectable wavelength band is set to a short wavelength in the first selection region through which the basic light emitted from the first light emitting unit arranged near the outer edge of the array passes, and the first light emitting unit In the second selection region through which the basic light emitted from the second light emitting unit arranged closer to the center of the array passes, the selectable wavelength band is set to a long wavelength, so that all the light emitting units The wavelength can be efficiently selected for the emitted fundamental light.
  • a semiconductor element When forming a plurality of light emitting portions on a semiconductor element, generally, a semiconductor element is formed on a wafer and a plurality of light emitting portions are formed thereon. At this time, the semiconductor elements are densely formed so as to form as many semiconductor elements as possible on one wafer. Naturally, the light emitting portions are densely arranged on each semiconductor element.
  • the semiconductor element formed in this way is divided into a predetermined number of light emitting units and mounted on each laser light source device.
  • One method can be realized by configuring the wavelength selection element with a dielectric multilayer film bandpass filter and forming the film thickness of the first selection region thinner than the film thickness of the second selection region.
  • Another method can be realized by forming the wavelength selection element with an etalon filter and forming the gap length of the first selection region shorter than the gap length of the second selection region.
  • Still another method can be realized by forming the wavelength selection element with a volume Bragg grating (VBG) and forming the layer of the first selection region to be thinner than the layer of the second selection region.
  • VBG volume Bragg grating
  • the wavelength band that can be converted in the first conversion region through which the first light selected in the first selection region of the wavelength selection element passes is the second wavelength selection element. It is preferable that the wavelength is shorter than the wavelength band that can be converted in the second conversion region through which the first light selected in the selection region passes.
  • the first light selected by the basic light emitted from the first light emitting unit passing through the first selection region of the wavelength selecting element and the basic light emitted from the second light emitting unit are the second selected by the wavelength selecting element.
  • the first light selected by passing through the region has a difference in wavelength.
  • the wavelength conversion element is configured to be able to convert a broadband wavelength, the first light having a difference in peak wavelength depending on the position is converted into the second light even when the first light having a difference in peak wavelength is incident. Is possible. However, when a wavelength conversion element that can convert such a wide-band wavelength is designed, the intensity of the second light obtained after the conversion is relatively low.
  • the intensity of the second light obtained after conversion can be increased.
  • the band of the convertible wavelength band is made too narrow, the wavelength of the first light can be converted according to the position. It is assumed that it is located outside or the conversion efficiency is extremely lowered.
  • the wavelength conversion element has a distribution in the wavelength band that can be converted according to the position. This makes it possible to convert the first light incident at all locations while narrowing the wavelength band that can be converted at one location to increase the light intensity after conversion. More specifically, the second selection region selects the wavelength band that can be converted in the region through which the first light having a relatively short wavelength passes (the “first conversion region”) selected by the first selection region. In the region through which the first light having a relatively long wavelength passes (the “second conversion region”), the wavelength is shorter than the convertible wavelength band. Thereby, high intensity
  • the wavelength conversion element is composed of periodically poled lithium niobate (PPLN), and the thickness of the first conversion region layer is set to a second value. This can be realized by forming the conversion region to be thinner than the thickness of the layer.
  • PPLN periodically poled lithium niobate
  • the wavelength distribution of the basic light emitted from each light emitting unit varies.
  • the amount of laser light extracted to the outside can be increased, and the extraction efficiency is increased.
  • FIG. 1 schematically shows a substrate on which semiconductor elements constituting a light emitting section are arranged in an array.
  • the wavelength distribution of the basic light, the selection wavelength distribution, and the conversion wavelength distribution are shown in an overlapping manner.
  • the temperature distribution of each light emission part when light-emitting each light emission part is made into a graph.
  • emitted from each light emission part when light-emitting each light emission part was made into the graph. It is the figure which showed typically the structure of the laser light source apparatus of 1st Embodiment. It is an example of typical cross-sectional structure of TFF. It is a graph which shows the wavelength selection distribution in TFF of FIG. It is the figure which showed typically the structure of the laser light source apparatus of 2nd Embodiment. It is the figure which showed typically the structure of the laser light source apparatus of 3rd Embodiment. It is the figure which showed typically the structure of the laser light source apparatus of 4th Embodiment. The wavelength distribution of the basic light, the selection wavelength distribution, and the conversion wavelength distribution are shown in an overlapping manner. It is the figure which showed typically the structure of the laser light source apparatus of another embodiment.
  • the laser light source device of the present invention will be described with reference to the drawings.
  • the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
  • FIG. 8 is a diagram schematically showing the configuration of the laser light source device in the present embodiment.
  • the laser light source device 1 is different from the conventional laser light source device 90 shown in FIG. 1 in that a TFF (dielectric thin film filter) 3 and an optical member 4 are provided as a wavelength selection element instead of the VBG 93. Since other configurations are the same as those of the laser light source device 90, the description thereof is omitted.
  • the TFF 3 corresponds to a “wavelength selection element”.
  • the TFF 3 has a function of selecting and transmitting the first light of a predetermined wavelength band from the wavelength distribution of the basic light emitted from the plurality of light emitting units 2 mounted on the semiconductor element 11.
  • the optical member 4 is configured to reflect light in the first specific wavelength band and transmit light in the second specific wavelength band. More specifically, it is designed to reflect light (first light) in the wavelength band selected by TFF3 and transmit light (second light) in the wavelength band converted by PPLN95.
  • the optical member 4 is realized, for example, by forming a high reflection (HR) coat for the first specific wavelength band and an anti-reflection (AR) coat for the second specific wavelength band on a glass substrate of TFF3.
  • HR high reflection
  • AR anti-reflection
  • the basic light emitted from the plurality of light emitting units 2 mounted on the semiconductor element 11 passes through the TFF 3 as a wavelength selection element, so that only light in a predetermined wavelength band is selectively transmitted.
  • the light selectively transmitted by the TFF 3 corresponds to “first light”.
  • the first light is reflected by the optical member 4 and travels toward the PPLN 95.
  • the PPLN 95 performs wavelength conversion on part of the first light to generate second light, and the second light is extracted to the outside via the reflecting members 25 and 27 (second light 40). ).
  • the first light that is transmitted as it is without being wavelength-converted by the PPLN 95 passes through the reflecting member 25 and enters the semiconductor element 11, is reflected by the internal mirror, and is sent to the PPLN 95.
  • a part of the first light is wavelength-converted into the second light, which is transmitted through the optical member 4 and extracted outside (second light 50).
  • the first light that has not been wavelength-converted is again reflected by the optical member 4 and sent to the PPLN 95.
  • an external resonator is formed between the internal mirror formed in the semiconductor element 11 and the optical member 4 as a reflection element, and the first light is repeatedly reflected between the two. . While this reflection is repeated, the first light that has passed through the PPLN 95 is successively converted into the second light, and is extracted from the optical member 4 or the reflection member 27 to the outside of the device 90.
  • TFF3 is configured by laminating a plurality of high refractive index materials and low refractive index materials.
  • the wavelength band of the selected light is set by adjusting the refractive index and film thickness of these materials. Note that the wavelength distribution of the selected light (the above-mentioned “selected wavelength distribution”) is a steep curve similar to the curve 42 of the VBG 93 shown in FIG.
  • FIG. 9 is an example of a schematic cross-sectional structure of TFF3.
  • the TFF 3 is designed by making the film thicknesses different in the region 31, the region 32, and the region 33.
  • the film is illustrated as if four layers of films are formed on the substrate, but this is schematically shown only to show that the film thickness is different for each region. Actually, the number of layers to be formed may be larger.
  • the TFF 3 is formed by alternately laminating SiO 2 as a low refraction material and Ta 2 O 5 as a high refraction material.
  • the most common BPF (bandpass filter) design pattern is a single cavity (configuration having one cavity layer), and the SiO 2 cavity layer (6qw) is a high refractive index layer / low refractive index. It was set as the structure which pinched
  • FIG. 10 shows the result of calculating the transmittance at this time using TFCalc known as a membrane design tool. In the region 32, the thickness of each layer in the region 31 was increased by 1.001, and in the region 33, the thickness of each layer in the region 31 was increased by 1.002.
  • FIG. 10 is illustrated by a drawing method similar to the VBG selection wavelength distribution 42 shown in FIG.
  • the selected wavelength distribution 31a corresponds to a wavelength distribution that can be wavelength-selected in the region 31 in the TFF 3.
  • the selected wavelength distribution 32a corresponds to a wavelength distribution in which the wavelength can be selected in the region 32 in the TFF 3
  • the selected wavelength distribution 33a corresponds to a wavelength distribution in which the wavelength can be selected in the region 33 in the TFF 3.
  • a wavelength in the vicinity of 1064.04 nm is selected for the basic light that has passed through the region 31, and a wavelength in the vicinity of 1065.10 nm is selected for the basic light that has passed through the region 32.
  • a wavelength in the vicinity of 1066.16 nm is selected for the basic light that has been selected and passed through the region 33. That is, the wavelength band selected from the basic light can be varied according to the region passing through the TFF 3.
  • the selected wavelength distribution of the TFF 3 can be changed according to the position. More specifically, when the wavelength to be selected is to be on the long wavelength side, the film thickness is formed thicker. On the contrary, when the wavelength to be selected is to be selected on the short wavelength side, the film thickness is thinly formed.
  • the TFF 3 provided in the laser light source device 1 changes the film thickness according to the position. More specifically, among the plurality of light emitting units 2 mounted on the semiconductor element 1, the light emitting unit 2 (“second light emitting unit”) disposed at a position where the temperature is likely to rise due to heat generated from the surrounding light emitting units 2. In the region through which the basic light emitted from (corresponding to 1) passes (corresponding to the “second selection region”), the film thickness is increased.
  • the film thickness is formed thin.
  • the TFF 3 as the wavelength selection element is The wavelength selection distribution can be shifted according to the position in accordance with the deviation of the peak wavelength of the basic light.
  • the area of the superposition of the wavelength distribution of the basic light from each light emitting unit 2 and the selection wavelength distribution of the TFF 3 as the wavelength selection element can be increased. Therefore, the first light having a high intensity can be selected from the basic light regardless of the position of the light emitting unit 2, and the second light is converted from the first light by the wavelength conversion element (here, PPLN95).
  • the wavelength conversion element here, PPLN95
  • the wavelength tends to be longer than the wavelength of the basic light emitted from the light emitting unit 2 arranged at a position close to the outer edge of the array (see FIG. 7). Therefore, the film thickness of the TFF 3 in the first selection region through which the basic light emitted from the light emitting unit 2 arranged near the outer edge of the array passes is made thin, and conversely, arranged near the center of the array.
  • the wavelength can be efficiently selected for the basic light emitted from all the light emitting units 2.
  • the film thickness of the TFF 3 depending on the position can be changed by changing the distance from the evaporation source by providing a predetermined inclination angle without arranging the substrate perpendicular to the evaporation source. it can.
  • FIG. 11 is a diagram schematically showing the configuration of the laser light source device in the present embodiment.
  • the laser light source device 1a of this embodiment is different from the configuration of the first embodiment shown in FIG. 8 in that an etalon filter 5 is provided as a wavelength selection element instead of TFF3. More specifically, the etalon filter 5 is realized by disposing the optical member 6 so as to face the PPLN 95 with a distance.
  • the optical member 6 is an optical member that transmits incident light as it is, and is made of, for example, quartz glass.
  • the etalon filter 5 is formed by a gap provided between the first surface 95 a of the PPLN 95 and the first surface 6 a of the optical member 6.
  • the optical member 4 is formed on the second surface 6b side opposite to the first surface 6a of the optical member 6.
  • the optical member 4 is designed to reflect light (first light) in the wavelength band selected by the etalon filter 5 and transmit light (second light) in the wavelength band converted by the PPLN 95.
  • the laser light source device 1a is the same as the laser light source device 1 of the first embodiment except that an etalon filter 5 is employed as a wavelength selection element instead of the TFF 3, and thus the basic light emitted from the light emitting unit 2 is used.
  • the principle of extracting laser light (second light 40, 50) having a desired wavelength from light is common. Therefore, this description is omitted.
  • the wavelength distribution selected according to the position is different from the etalon filter 5.
  • the wavelength selected for the etalon filter 5 is determined by the distance between the opposing optical surfaces. More specifically, when the gap length d provided between the first surface 95a of the PPLN 95 and the first surface 6a of the optical member 6 is increased, the selected wavelength is shifted to the longer wavelength side, and conversely, the gap length d is decreased. If it is shortened, the selected wavelength is shifted to the short wavelength side. That is, the wavelength distribution selected according to the position can be varied by varying the gap length d according to the position.
  • the light emitting unit 2 (“second light emitting unit”) disposed at a position where the temperature is likely to rise due to heat generated from the surrounding light emitting units 2.
  • the gap length d of the etalon filter 5 is formed long in the region through which the basic light emitted from (corresponding to 2) passes (corresponding to the “second selection region”).
  • a region through which the basic light emitted from the light emitting unit 2 (corresponding to the “first light emitting unit”) disposed at a position where it is relatively difficult to be affected by heat generated from the surrounding light emitting units 2 (the “first” 1) the gap length d of the etalon filter 5 is formed short. Thereby, the effect similar to the laser light source device 1 of 1st Embodiment is acquired.
  • the wavelength of the etalon filter 5 as the wavelength selection element can be shifted according to the position. As a result, it is possible to increase the overlapping area of the wavelength distribution of the basic light from each light emitting unit 2 and the selection wavelength distribution of the etalon filter 5 as the wavelength selection element.
  • the first light having a high intensity can be selected from the basic light regardless of the position of the light emitting unit 2, and the second light is converted from the first light by the wavelength conversion element (here, PPLN95).
  • the wavelength conversion element here, PPLN95
  • the first surface 6a of the optical member 6 is a curved surface. More specifically, when the plurality of light emitting units 2 are mounted in an array on the semiconductor element 11, the optical member 6 is arranged such that the center portion is further away from the first surface 95 a of the PPLN 95 than the outer edge portion. This can be realized by forming the first surface 6a into a concave shape.
  • the 1st surface 95a of PPLN95 may be comprised with a curved surface, and both may be comprised with a curved surface.
  • FIG. 12 is a diagram schematically showing the configuration of the laser light source device in the present embodiment.
  • the laser light source device 1b of the present embodiment is different from the configuration of the first embodiment of FIG. 8 in that a VBG 7 is provided instead of TFF 3 as a wavelength selection element. That is, it corresponds to a structure in which the VBG 93 of the conventional laser light source device 90 shown in FIG.
  • This VBG 7 is different from the conventional VBG 93 in that the selection wavelength distribution is different depending on the position. More specifically, a region through which basic light emitted from the light emitting unit 2 (corresponding to the “second light emitting unit”) disposed at a position where the temperature is likely to rise due to heat generated from the surrounding light emitting units 2 passes (“ For “second selection region”, the selection wavelength distribution is designed to be on the long wavelength side. On the contrary, a region through which the basic light emitted from the light emitting unit 2 (corresponding to the “first light emitting unit”) disposed at a position where it is relatively difficult to be affected by heat generated from the surrounding light emitting units 2 (the “first” For “one selection region”, the selection wavelength distribution is designed to be on the short wavelength side. Thereby, the effect similar to the laser light source apparatus of 1st Embodiment and 2nd Embodiment is acquired.
  • the VBG 7 is formed by creating a refractive index distribution of a layer structure in a photosensitive glass material using a technique such as two-beam interference.
  • a photosensitive glass material is irradiated with light to create a refractive index distribution
  • a predetermined mask is formed and irradiated with light, so that the position can be determined according to the shape of the mask (for example, using a striped mask). It is possible to change the thickness ⁇ of the layer according to.
  • FIG. 13 is a diagram schematically showing the configuration of the laser light source device in the present embodiment.
  • the laser light source device 1c of this embodiment is different from the configuration of the first embodiment of FIG. 8 in that a PPLN 8 is provided instead of PPLN 95 as a wavelength conversion element.
  • This PPLN 8 is different from the PPLN 95 in that the conversion wavelength distribution is different depending on the position.
  • the basic light emitted from the first light emitting unit is selected by passing through the first selection region of the wavelength selection element, and the basic light emitted from the second light emitting unit.
  • the first light selected by passing through the second selection region of the wavelength selection element has a difference in wavelength.
  • the laser light source devices of the first to third embodiments described above were configured to include wavelength selection elements (TFF3, etalon filter 5, VBG7) that exhibit different characteristics of the selected wavelength distribution depending on the position.
  • TDF3, etalon filter 5, VBG7 wavelength selection elements
  • the basic light emitted from the first light emitting unit arranged at a position that is not easily affected by the temperature rise passes through the first selection region of the wavelength selection element, and the temperature
  • the first light selected by the basic light emitted from the second light emitting unit arranged at a position susceptible to the rise passing through the second selection region of the wavelength selection element has a difference in wavelength. Yes.
  • the peak wavelengths of the light (first light) selected from the basic lights passing through the region 31, the region 32, and the region 33 are different.
  • the wavelength conversion element included in the laser light source device of the first to third embodiments converts a wideband wavelength such as the conversion wavelength distribution 43 of FIG. If possible, even if the first light having a difference in the peak wavelength according to the position is incident, it is possible to convert them into the second light.
  • FIG. 14 shows the wavelength distribution 41 of the basic light, the selection wavelength distribution 42 of the VBG 93, and the conversion wavelength distribution 44 of the PPLN 95 that can be converted with high efficiency in a narrow band, as in FIG.
  • the first light selected by the wavelength selection element has a configuration in which the wavelength varies depending on the position. That is, since the first light having a different peak wavelength depending on the position is incident on the PPLN 95, if the band of the wavelength band that can be converted is too narrow, the wavelength of the first light can be converted depending on the position. It is assumed that it is located outside the band or the conversion efficiency is extremely lowered.
  • the PPLN 8 of the present embodiment has a characteristic that can be converted with high efficiency in a narrow band like the conversion wavelength distribution 44 and has a distribution in the wavelength band that can be converted according to the position. Yes. More specifically, a wavelength band that can be converted in a region (corresponding to the “first conversion region”) selected by the first selection region through which the first light having a relatively short wavelength passes is selected by the second selection region. In the region through which the first light having a relatively long wavelength passes (corresponding to the “second conversion region”), the wavelength is shorter than the convertible wavelength band. As a result, regardless of the position of the light emitting unit 2, the first light having a high intensity is selected from the basic light, and the first light is converted into the second light having a high intensity. It can be higher than before.
  • PPLN8 achieves pseudo phase matching for light of a predetermined wavelength by forming a periodic polarization inversion layer inside a bulk crystal such as LiNbO 3 and changes the period of the polarization inversion layer.
  • the convertible wavelength band can be adjusted.
  • slit-like electrodes are formed at a predetermined interval (same as the period of domain-inverted layer) on the upper surface and one side surface of the bulk crystal, and a high voltage is applied to this electrode.
  • a polarization inversion layer is formed inside the bulk crystal corresponding to the position of the electrode.
  • the formation method of this electrode can use the technique similar to semiconductor manufacturing processes, such as sputtering, patterning by photoengraving, and etching.
  • the laser light source device 1c in FIG. 13 is configured to include the PPLN 8 having the property that the wavelength distribution characteristic differs depending on the position with respect to the laser light source device 1 of the first embodiment. The same applies to the laser light source device 1a and the laser light source device 1b of the third embodiment.
  • the wavelength conversion elements are positioned between the semiconductor element 11 and the wavelength selection element (TFF3, etalon filter 5, VBG7).
  • the positions of the wavelength selection element and the wavelength conversion element may be interchanged.
  • FIG. 15 schematically shows a laser light source device 1d having a configuration in which the positional relationship between the TFF 3 and the PPLN 95 is reversed in the laser light source device 1 of the first embodiment shown in FIG.
  • the optical member 4 designed to reflect light in the wavelength band selected by TFF3 (first light) and transmit light in the wavelength band converted by PPLN95 (second light) is TFF3. Is provided at a position facing the PPLN 95 on the opposite surface.
  • the second lights 40 and 50 are extracted to the outside by the same principle as the laser light source device 1 shown in FIG.
  • the laser light source device 1 according to the first embodiment has been described as an example.
  • the positions of the wavelength selection element and the wavelength conversion element are interchanged. Is possible.
  • PPLN Pulse-Phase Matching
  • PPLT Other quasi phase matching type wavelength conversion (QPM: Quasi-Phase Matching) elements including Periodically Poled Lithium Tantalate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The present invention achieves a laser light source device in which extraction efficiency is improved by effectively utilizing fundamental light emitted from a plurality of light-emitting parts mounted on a semiconductor element to extract laser light. The laser light source device (1) is provided with: a semiconductor element (11) provided with a plurality of light-emitting parts (2) that emit fundamental light; a wavelength selection element (3) that selects a prescribed wavelength band of the fundamental light, and extracts a first light; and a wavelength conversion element (95) that converts the wavelength of a portion of the first light, and extracts a second light. The wavelength selection element (3) has a configuration in which a prescribed wavelength band, which can be selected in a first selection region through which fundamental light emitted from a first light-emitting part among the plurality of light-emitting parts passes, becomes shorter in wavelength than the prescribed wavelength band, which can be selected in a second selection region through which fundamental light emitted from a second light-emitting part, wherein a rise in temperature caused by heat produced when light is emitted from other light-emitting parts is higher than the first light-emitting part, passes.

Description

レーザ光源装置Laser light source device
 本発明は外部共振型のレーザ光源装置に関する。より詳細には、本発明は、非線形光学結晶を用いた外部共振型の半導体レーザ光源装置に関する。 The present invention relates to an external resonance type laser light source device. More particularly, the present invention relates to an external resonance type semiconductor laser light source device using a nonlinear optical crystal.
 従来、面発光型の半導体レーザに外部共振器を設け、当該半導体レーザと当該外部共振器との間に非線形光学結晶で形成された波長変換素子を配置した波長変換型レーザ光源装置が知られている。この外部共振器としては波長選択性反射鏡が用いられ、波長変換素子としては分極反転型ニオブ酸リチウム(PPLN:Periodically Poled Lithium Niobate)などの光学結晶を用いる技術が知られている(下記特許文献1参照)。また、外部共振器に用いる反射鏡に変わり体積ブラッググレーティング(VBG:Volume Bragg Grating)を用いる技術も知られている(下記特許文献2参照)。 2. Description of the Related Art Conventionally, there has been known a wavelength conversion type laser light source device in which an external resonator is provided in a surface emitting semiconductor laser, and a wavelength conversion element formed of a nonlinear optical crystal is disposed between the semiconductor laser and the external resonator. Yes. A wavelength-selective reflecting mirror is used as the external resonator, and a technique using an optical crystal such as a polarization inversion type lithium niobate (PPLN) is known as the wavelength conversion element (the following patent document) 1). In addition, a technique using a volume Bragg grating (VBG) instead of a reflector used for an external resonator is also known (see Patent Document 2 below).
特表2003-526930号公報Special table 2003-526930 gazette 特開2012-098495号公報JP 2012-098495 A
 レーザ光源装置を形成するに当たっては、目標となる波長成分がピーク値近傍となるように発光部を設計し、更にこのピーク値を含む狭い波長帯を選択することで、狭い波長分布を示す放射光をレーザ光として生成する。また、必要に応じて、選択された狭い波長帯の光に対して波長変換を施すことで、所望の波長を有する放射光をレーザ光として生成する。 In forming the laser light source device, the light emitting part is designed so that the target wavelength component is in the vicinity of the peak value, and further, the narrow wavelength band including this peak value is selected, and thus the emitted light showing a narrow wavelength distribution Is generated as a laser beam. In addition, if necessary, wavelength conversion is performed on light of a selected narrow wavelength band to generate radiated light having a desired wavelength as laser light.
 つまり、レーザ光源装置においては、各発光部から放射される、波長分布を有した光(以下、適宜「基本光」と呼ぶ。)から、波長選択素子において効率的に所望の波長を選択することが重要となる。 That is, in a laser light source device, a wavelength selection element efficiently selects a desired wavelength from light having a wavelength distribution (hereinafter, referred to as “fundamental light” as appropriate) emitted from each light emitting unit. Is important.
 本発明者は、鋭意研究により、従来のレーザ光源装置の構成では発光部からの放射される光を完全に有効には活用できていないという課題を見出した。以下では、この内容につき、従来のレーザ光源装置の構成を説明しつつ、明らかにする。 The present inventor has found a problem that the light emitted from the light emitting unit cannot be used completely effectively by the configuration of the conventional laser light source device through intensive research. Hereinafter, this content will be clarified while explaining the configuration of the conventional laser light source device.
 図1は、特許文献2に開示されている従来のレーザ光源装置の構成を模式的に示したものである。従来のレーザ光源装置90は、発光部を備える半導体素子11、波長選択素子としての体積ブラッググレーティング(VBG)93及び波長変換素子としての周期的分極反転型ニオブ酸リチウム(PPLN)95を含む。 FIG. 1 schematically shows a configuration of a conventional laser light source device disclosed in Patent Document 2. As shown in FIG. A conventional laser light source device 90 includes a semiconductor element 11 having a light emitting portion, a volume Bragg grating (VBG) 93 as a wavelength selection element, and a periodically poled lithium niobate (PPLN) 95 as a wavelength conversion element.
 図2に示すように、半導体素子11上には複数の発光部2がアレイ状に配列されている。図2では、半導体素子11上に複数の発光部2が一列に配置された構成が図示されている。この図では、24個の発光部2が配置された例を図示している。これらの発光部2から基本光が放射される。なお、半導体素子11は、発光部2から生じる熱を放熱するためのヒートシンク17上に当接されている。 As shown in FIG. 2, a plurality of light emitting sections 2 are arranged in an array on the semiconductor element 11. FIG. 2 shows a configuration in which a plurality of light emitting units 2 are arranged in a row on the semiconductor element 11. In this figure, an example in which 24 light emitting units 2 are arranged is illustrated. Basic light is emitted from these light emitting units 2. The semiconductor element 11 is in contact with a heat sink 17 for radiating heat generated from the light emitting unit 2.
 各発光部2から放射される基本光は、所定の波長分布を有する光である。VBG93は、この光から特定の波長帯を選択するために設けられている。また、PPLN95は、入射される光のうち、特定の波長帯の光の一部に対して波長変換を施して出射する機能を有する。 The basic light emitted from each light emitting unit 2 is light having a predetermined wavelength distribution. The VBG 93 is provided for selecting a specific wavelength band from this light. In addition, the PPLN 95 has a function of performing wavelength conversion on a part of light in a specific wavelength band out of incident light and emitting the light.
 半導体素子11上に搭載された各発光部2は、基本光を放射する。この基本光は、特定の波長帯の成分のみを有する光ではなく、一定の波長分布を有する光である。この基本光がVBG93を通過すると、所定の波長帯の光のみが選択的に反射される。以下、波長選択素子としてのVBG93によって選択された光を「第1光」と呼ぶ。なお、このVBG93は、後述する第2光の波長帯の光は透過する機能を有している。 Each light emitting unit 2 mounted on the semiconductor element 11 emits basic light. This basic light is not light having only a component in a specific wavelength band but light having a certain wavelength distribution. When this basic light passes through the VBG 93, only light in a predetermined wavelength band is selectively reflected. Hereinafter, the light selected by the VBG 93 as the wavelength selection element is referred to as “first light”. The VBG 93 has a function of transmitting light in the second light wavelength band described later.
 VBG93から反射された第1光は、PPLN95内を通過する。PPLN95は、上述したように、特定の波長帯の光の一部に対して波長変換を施して出射する構成である。ここでは、PPLN95は、第1光が有する波長成分の光の一部の波長を変換して、別の異なる波長の光を生成する。以下、PPLN95によって変換された変換後の波長を有する光を「第2光」と呼ぶ。 The first light reflected from the VBG 93 passes through the PPLN 95. As described above, the PPLN 95 is configured to perform wavelength conversion on a part of light in a specific wavelength band and emit the light. Here, the PPLN 95 converts the wavelength of part of the light of the wavelength component included in the first light, and generates light of another different wavelength. Hereinafter, the light having the converted wavelength converted by the PPLN 95 is referred to as “second light”.
 なお、第1光の波長帯がPPLN95による波長変換可能な波長帯内である場合であっても、入射される全ての第1光が一度に第2光に変換されるわけではなく、一部は変換されないままPPLN95を通過する。このため、PPLN95からは、半導体素子11に向かって、PPLN95によって生成された第2光と、PPLN95で波長変換されなかった第1光が出射する。 Even when the wavelength band of the first light is within the wavelength band that can be converted by the PPLN 95, not all of the incident first light is converted into the second light at one time. Passes through the PPLN 95 without being converted. For this reason, the second light generated by the PPLN 95 and the first light that has not been wavelength-converted by the PPLN 95 are emitted from the PPLN 95 toward the semiconductor element 11.
 PPLN95と半導体素子11の間には、反射部材25及び27が設けられている。これらの反射部材25及び27は、第2光が有する波長帯の光を反射し、少なくとも第1光が有する波長帯の光を透過するような構成である。このため、PPLN95から半導体素子11に向かって出射された第2光は、反射部材25及び27で反射されることで光の向きが変えられた後、装置90の外部へと出射される(第2光40)。 Reflective members 25 and 27 are provided between the PPLN 95 and the semiconductor element 11. These reflecting members 25 and 27 are configured to reflect light in the wavelength band of the second light and transmit at least light in the wavelength band of the first light. For this reason, the second light emitted from the PPLN 95 toward the semiconductor element 11 is reflected by the reflecting members 25 and 27 to change the direction of the light, and is then emitted to the outside of the device 90 (first 2 light 40).
 一方、PPLN95によって波長変換されずにそのまま透過した第1光は、反射部材25を透過して半導体素子11内に進入する。半導体素子11には、反射部材(内部ミラー)が設けられており(不図示)、入射された第1光は、PPLN95の方向に向かって反射する。 On the other hand, the first light that has passed through the PPLN 95 without being wavelength-converted passes through the reflecting member 25 and enters the semiconductor element 11. The semiconductor element 11 is provided with a reflecting member (internal mirror) (not shown), and the incident first light is reflected toward the PPLN 95.
 半導体素子11側から入射された第1光は、前述したのと同様、PPLN95内を通過する際に、一部が波長変換されて第2光になる。この第2光は、VBG93に達する。上述したように、VBG93は、第2光が有する波長帯の光を透過する構成のため、入射された第2光はそのまま透過して装置90の外部へと出射される(第2光50)。一方、波長変換されなかった第1光は、再びVBG93で反射されてPPLN95に向かう。 As described above, when the first light incident from the semiconductor element 11 side passes through the PPLN 95, a part of the first light is converted into the second light. This second light reaches VBG93. As described above, since the VBG 93 transmits light in the wavelength band of the second light, the incident second light is transmitted as it is and emitted to the outside of the device 90 (second light 50). . On the other hand, the first light that has not been wavelength-converted is reflected again by the VBG 93 and travels toward the PPLN 95.
 つまり、レーザ光源装置90は、半導体素子11内に形成された内部ミラーとVBG93の間で外部共振器が形成されており、第1光はこの両者間で反射が繰り返される。そして、この反射が繰り返されている間に、PPLN95を通過した第1光が次々と第2光へと波長変換されて、VBG93又は反射部材27から装置90の外部へと取り出される。 That is, in the laser light source device 90, an external resonator is formed between the internal mirror formed in the semiconductor element 11 and the VBG 93, and the first light is repeatedly reflected between the two. And while this reflection is repeated, the wavelength of the first light that has passed through the PPLN 95 is successively converted into the second light, and is extracted from the VBG 93 or the reflection member 27 to the outside of the device 90.
 すなわち、レーザ光源装置90は、複数の発光部2から放射された基本光から、VBG93によって選択された第1の波長帯を有する第1光を選択し、この第1光から、PPLN95によって波長変換されて第2の波長帯を有する第2光を生成して、この第2光を、目的とするレーザ光として外部に出射する構成である。一例として、第1光をピーク波長が1065nm程度の赤外光とし、第2光をピーク波長が532.5nm程度の緑色可視光とすることができる。 That is, the laser light source device 90 selects the first light having the first wavelength band selected by the VBG 93 from the basic light emitted from the plurality of light emitting units 2, and converts the wavelength from the first light by the PPLN 95. Thus, the second light having the second wavelength band is generated, and the second light is emitted to the outside as the target laser light. As an example, the first light can be infrared light having a peak wavelength of about 1065 nm, and the second light can be green visible light having a peak wavelength of about 532.5 nm.
 図3は、基本光の波長分布41、VBG93によって波長選択可能な波長分布42(以下、「選択波長分布」と呼ぶ。)、及びPPLN95によって波長変換可能な波長分布43(以下、「変換波長分布」と呼ぶ。)を重ねて図示したものである。 FIG. 3 shows a wavelength distribution 41 of basic light, a wavelength distribution 42 that can be selected by the VBG 93 (hereinafter referred to as “selected wavelength distribution”), and a wavelength distribution 43 that can be converted by the PPLN 95 (hereinafter, “converted wavelength distribution”). ")."
 図3によれば、基本光は約1065nmをピーク波長として、広い波長分布を示している。上述したように、この基本光から所望のレーザ光を生成するためには、まずVBG93によって所定の波長帯の光を選択する必要がある。VBG93の選択波長分布42は、図3に示すように急峻な曲線を描く。図3に示す選択波長分布42は、選択可能な波長帯のピークを約1065nmとしているため、VBG93によって基本光から約1065nmの波長の第1光を選択することができる。 According to FIG. 3, the basic light shows a wide wavelength distribution with a peak wavelength of about 1065 nm. As described above, in order to generate desired laser light from this basic light, it is necessary to first select light in a predetermined wavelength band by the VBG 93. The selection wavelength distribution 42 of the VBG 93 draws a steep curve as shown in FIG. In the selection wavelength distribution 42 shown in FIG. 3, the peak of the selectable wavelength band is about 1065 nm. Therefore, the VBG 93 can select the first light having a wavelength of about 1065 nm from the basic light.
 更に、VBG93によって選択された第1光から、PPLN95によって所望の波長の第2光に変換する必要がある。図3では、広帯域のPPLN95を用いた場合の変換波長分布43が示されている。図3に示す変換波長分布43は、変換可能な波長帯のピークを約1065nmとしているため、PPLN95によってピーク波長が約1065nmの第1光に対して波長変換が施される。 Furthermore, it is necessary to convert the first light selected by the VBG 93 into the second light having a desired wavelength by the PPLN 95. FIG. 3 shows a converted wavelength distribution 43 when a broadband PPLN 95 is used. In the converted wavelength distribution 43 shown in FIG. 3, the peak of the wavelength band that can be converted is about 1065 nm. Therefore, the PPLN 95 performs wavelength conversion on the first light having a peak wavelength of about 1065 nm.
 つまり、発光部2から放射される基本光から所望の波長のレーザ光を生成するためには、基本光の波長分布41、選択波長分布42、及び変換波長分布43が相互に重なり合う必要がある。この重なり合う面積が広いほど、基本光からレーザ光を高効率で生成できることになる。現実的には、基本光の波長分布41、選択波長分布42、及び変換波長分布43の各ピーク波長の位置を合わせることで、最も効率的にレーザ光を取り出すことが可能となる。 That is, in order to generate laser light having a desired wavelength from the basic light emitted from the light emitting unit 2, the wavelength distribution 41 of the basic light, the selection wavelength distribution 42, and the conversion wavelength distribution 43 need to overlap each other. The larger the overlapping area, the more efficiently laser light can be generated from the basic light. Actually, the laser light can be extracted most efficiently by aligning the positions of the peak wavelengths of the wavelength distribution 41, the selection wavelength distribution 42, and the conversion wavelength distribution 43 of the basic light.
 ところで、発光部2から放射される光(基本光)の波長は、発光部2の温度が高くなるほど長波長側にシフトすることが実験的に認められている。図4は、ある発光部2に対して温度を変化させたときに放射される基本光の波長分布を示したグラフである。発光部2の温度が25℃、30℃、35℃、40℃と高温になるほど、ピーク波長及び波長帯が長波長側にシフトしていることが認められる。 By the way, it has been experimentally recognized that the wavelength of light (basic light) emitted from the light emitting unit 2 shifts to the longer wavelength side as the temperature of the light emitting unit 2 increases. FIG. 4 is a graph showing the wavelength distribution of the basic light emitted when the temperature of a certain light emitting unit 2 is changed. It is recognized that the peak wavelength and the wavelength band are shifted to the longer wavelength side as the temperature of the light emitting unit 2 is increased to 25 ° C, 30 ° C, 35 ° C, and 40 ° C.
 また、図5は、図4において、各発光部2から放射される光のピーク波長と各発光部2の温度の関係をグラフに示したものである。図5のグラフからは、発光部2の温度が上昇するほど光のピーク波長が長波長側にシフトしていることが、より明らかに見て取れる。なお、図5によれば、発光部2の温度と発光部2から放射される光のピーク波長には、ほぼ線形的な関係があることが分かる。 FIG. 5 is a graph showing the relationship between the peak wavelength of light emitted from each light emitting section 2 and the temperature of each light emitting section 2 in FIG. From the graph of FIG. 5, it can be seen more clearly that the peak wavelength of light shifts to the longer wavelength side as the temperature of the light emitting unit 2 increases. In addition, according to FIG. 5, it turns out that the temperature of the light emission part 2 and the peak wavelength of the light radiated | emitted from the light emission part 2 have a substantially linear relationship.
 各発光部2は、発光時に通電による発熱を生じる。図2のように複数の発光部2が配列された半導体素子11において、自己の発光部2から生じた熱、並びに隣接又は周囲の発光部2から生じた熱が、各発光部2を昇温させる。本発明者は、各発光部2の配置位置に応じて、周囲の発光部2からの発熱に起因した温度上昇の程度に差異が生じていることに着目した。 Each light emitting unit 2 generates heat due to energization during light emission. In the semiconductor element 11 in which the plurality of light emitting units 2 are arranged as shown in FIG. 2, the heat generated from the self light emitting unit 2 and the heat generated from the adjacent or surrounding light emitting units 2 raise the temperature of each light emitting unit 2. Let The inventor paid attention to the difference in the degree of temperature rise caused by the heat generated from the surrounding light emitting units 2 depending on the arrangement position of each light emitting unit 2.
 図6は、半導体レーザ装置90の駆動中における複数の発光部2の温度分布を示すグラフである。温度条件を同一にするために、ヒートシンク17底面を均一温度に冷却した場合において、各発光部2の温度を測定した。図2における発光部2aの位置からの距離を横軸とし、温度を縦軸としてグラフ化したものである。 FIG. 6 is a graph showing the temperature distribution of the plurality of light emitting units 2 while the semiconductor laser device 90 is being driven. In order to make the temperature conditions the same, the temperature of each light emitting unit 2 was measured when the bottom surface of the heat sink 17 was cooled to a uniform temperature. FIG. 3 is a graph in which the distance from the position of the light emitting unit 2a in FIG.
 図6によれば、アレイ状に配置された各発光部2において、アレイの外縁に近い位置の発光部2a,2b,2w,2xは、中央部に近いその他の発光部よりも温度が低くなっていることが認められる。 According to FIG. 6, in each light emitting unit 2 arranged in an array, the temperature of the light emitting units 2a, 2b, 2w, and 2x near the outer edge of the array is lower than the other light emitting units near the center. It is recognized that
 アレイの中央部に近い位置に配置された発光部2は、周囲に他の発光部2を多く有する状態であるため、これらの発光部が生じる熱が伝わりやすく、温度が上昇しやすい環境下にある。他方、アレイの外縁に近い位置に配置された発光部(2a,2b,2w,2xなど)は、中央部に近い位置に配置された発光部に比べて、周囲に存在する発光部2の数(密度)が少ない。よって、中央部に近い位置に配置された発光部2に比べて、温度の上昇程度が低くなっていると考えられる。 Since the light emitting section 2 arranged at a position close to the center of the array has many other light emitting sections 2 around it, heat generated by these light emitting sections is easily transmitted and the temperature is likely to rise. is there. On the other hand, the number of light emitting units 2 existing around the light emitting units (2a, 2b, 2w, 2x, etc.) arranged near the outer edge of the array is larger than that of the light emitting units arranged near the center. (Density) is low. Therefore, it is considered that the degree of temperature rise is lower than that of the light emitting unit 2 arranged at a position close to the central portion.
 本発明者は、図4及び図6の結果から、半導体素子11に搭載された複数の発光部2から放射される基本光は、位置に応じて波長分布にバラツキがあるのではないかと推察した。 The inventor has inferred from the results of FIGS. 4 and 6 that the basic light emitted from the plurality of light emitting units 2 mounted on the semiconductor element 11 may vary in wavelength distribution depending on the position. .
 図7は、複数の発光部2から放射される基本光のピーク波長の値を示すグラフである。図6と同様、発光部2aの位置からの距離を横軸とし、ピーク波長の値を縦軸としてグラフ化したものである。図7によれば、本発明者の推察通り、位置に応じて基本光の波長にバラツキが生じていることが確認される。より詳細には、アレイ状に配置された各発光部2において、アレイの外縁に近い位置の発光部2a,2b,2w,2xは、中央部に近いその他の発光部よりも短波長側にシフトしていることが認められる。 FIG. 7 is a graph showing the peak wavelength values of the basic light emitted from the light emitting units 2. As in FIG. 6, the distance from the position of the light emitting unit 2a is plotted on the horizontal axis, and the peak wavelength value is plotted on the vertical axis. According to FIG. 7, it is confirmed that the wavelength of the basic light varies according to the position, as inferred by the inventor. More specifically, in each light emitting unit 2 arranged in an array, the light emitting units 2a, 2b, 2w, and 2x near the outer edge of the array are shifted to the shorter wavelength side than the other light emitting units near the center. It is recognized that
 図3を参照して上述したように、発光部2から放射される基本光から所望の波長のレーザ光を効率的に取り出すためには、基本光の波長分布41、選択波長分布42、及び変換波長分布43の重なり合う面積をできるだけ広くする必要がある。 As described above with reference to FIG. 3, in order to efficiently extract laser light having a desired wavelength from the basic light emitted from the light emitting unit 2, the wavelength distribution 41 of the basic light, the selection wavelength distribution 42, and the conversion It is necessary to make the overlapping area of the wavelength distributions 43 as wide as possible.
 従来のレーザ光源装置90では、VBG93として予め選択したい波長毎に設計されたものが用いられていた。例えば、各発光部2から放射された基本光から波長1065nmの光を選択したい場合には、各発光部2を、基本光のピーク波長が1065nmの波長分布となるように設計すると共に、1065nmの波長の光の選択性が高くなるように設計されたVBG93が用いられる。 In the conventional laser light source device 90, a VBG 93 designed in advance for each wavelength to be selected has been used. For example, when it is desired to select light having a wavelength of 1065 nm from the basic light emitted from each light emitting unit 2, each light emitting unit 2 is designed so that the peak wavelength of the basic light has a wavelength distribution of 1065 nm, and 1065 nm. VBG93 designed so that the selectivity of the light of a wavelength becomes high is used.
 しかし、上述したように、各発光部2の位置に応じて基本光の波長分布にバラツキが生じている場合、発光部2の位置によっては基本光のピーク波長が1065nmからずれた基本光が生じることになる。 However, as described above, when the wavelength distribution of the basic light varies depending on the position of each light emitting unit 2, the basic light whose peak wavelength is shifted from 1065 nm is generated depending on the position of the light emitting unit 2. It will be.
 例えば、図7の結果によれば、半導体素子11上に24個の発光部2を備えた場合において、中央部に配置された発光部2からの基本光とアレイの外縁に近い位置に配置された発光部2からの基本光には、約1nm程度のピーク波長のズレが生じている。この結果を図3に併せて鑑みれば、アレイの外縁に近い位置に配置された発光部(2a,2b,2w,2xなど)から放射された基本光の波長分布は、図3に示される波長分布41よりも1nm程度短波長側にシフトされることになる。 For example, according to the result of FIG. 7, in the case where 24 light emitting units 2 are provided on the semiconductor element 11, the basic light from the light emitting unit 2 arranged in the center and the outer edge of the array are arranged. The fundamental light from the light emitting part 2 has a peak wavelength shift of about 1 nm. Considering this result together with FIG. 3, the wavelength distribution of the basic light emitted from the light emitting units (2a, 2b, 2w, 2x, etc.) arranged at a position close to the outer edge of the array is the wavelength shown in FIG. The distribution 41 is shifted to the short wavelength side by about 1 nm.
 この結果、選択波長分布42との重なり合う領域の面積は小さくなる。つまり、この領域の発光部2から放射された基本光から選択される第1光の強度は、アレイの中央部付近に配置された発光部2から放射された基本光から選択される第1光よりも低下する。このことは、アレイの外縁に位置する発光部2からの放射光を高効率でレーザ光に変換できていないことを示唆するものである。 As a result, the area of the overlapping area with the selected wavelength distribution 42 is reduced. That is, the intensity of the first light selected from the basic light emitted from the light emitting unit 2 in this region is the first light selected from the basic light emitted from the light emitting unit 2 disposed near the center of the array. Less than. This suggests that the emitted light from the light emitting section 2 located at the outer edge of the array cannot be converted into laser light with high efficiency.
 なお、上記の例では発光部2が24個一列に配列されている場合について考察したが、この数が増加するほど、配置位置に応じて各発光部2から放射される基本光の波長分布に差異が生じることが分かる。このことは、基本光の波長分布41と選択波長分布42の重なり合う領域の面積が更に縮小化されること、すなわち、基本光から第1光を取り出す効率が更に低下することを意味するものである。 In the above example, the case where 24 light emitting units 2 are arranged in a row is considered. However, as this number increases, the wavelength distribution of the basic light emitted from each light emitting unit 2 according to the arrangement position is increased. It can be seen that there is a difference. This means that the area of the overlapping region of the fundamental light wavelength distribution 41 and the selection wavelength distribution 42 is further reduced, that is, the efficiency of extracting the first light from the fundamental light is further reduced. .
 ここで、位置に応じて発光部2から放射される基本光の波長分布41のピーク波長値にバラツキが生じる場合において、各発光部2から放射される基本光の波長分布41と選択波長分布42の重なり合う面積を増加させることのみを考えれば、広帯域を示す選択波長分布42となるような波長選択素子を用いる方法も考えられる。しかし、そもそもレーザ光は狭波長帯の光であることが特徴であるところ、発光部2から放射される基本光から狭帯域の波長の第1光を選択することにこそ、波長選択素子の意義が存在する。つまり、波長選択素子(ここではVBG93)の選択波長分布42を広帯域化させることで、上記の問題に対処することは現実的ではない。 Here, when there is a variation in the peak wavelength value of the wavelength distribution 41 of the basic light emitted from the light emitting unit 2 according to the position, the wavelength distribution 41 of the basic light emitted from each light emitting unit 2 and the selected wavelength distribution 42. Considering only increasing the overlapping area, a method using a wavelength selection element that provides a selection wavelength distribution 42 showing a wide band is also conceivable. However, in the first place, the feature of the wavelength selection element is that the laser light is light in a narrow wavelength band, and that the first light of the narrow band wavelength is selected from the basic light emitted from the light emitting unit 2. Exists. That is, it is not practical to deal with the above problem by widening the selection wavelength distribution 42 of the wavelength selection element (here, VBG93).
 本発明者は、以上において説明したように、従来のレーザ光源装置の場合、半導体素子11に複数の発光部2を配置した構成としても、一部の発光部2から放射された基本光を有効に活用していないことを見出した。 As described above, in the case of the conventional laser light source device, the inventor effectively uses the basic light emitted from some of the light emitting units 2 even when the plurality of light emitting units 2 are arranged in the semiconductor element 11. I found that I did not use it.
 本発明は、上記の課題に鑑み、半導体素子上に搭載された複数の発光部から放射される基本光を効率的に活用してレーザ光を取り出すことで、取り出し効率を高めたレーザ光源装置を実現することを目的とする。 In view of the above-described problems, the present invention provides a laser light source device that enhances extraction efficiency by efficiently using basic light emitted from a plurality of light emitting units mounted on a semiconductor element to extract laser light. It aims to be realized.
 本発明のレーザ光源装置は、
 基本光を放射する複数の発光部を備える半導体素子と、
 前記基本光の所定波長帯を選択して第1光を取り出す波長選択素子と、
 前記第1光の一部を波長変換して第2光を取り出す波長変換素子を備え、
 前記波長選択素子は、前記複数の発光部のうちの第1発光部から放射された前記基本光が通過する第1選択領域において選択可能な前記所定波長帯が、前記複数の発光部のうち、他の前記発光部の発光時に生じる熱に起因した温度上昇が前記第1発光部よりも高い第2発光部から放射された前記基本光が通過する第2選択領域において選択可能な前記所定波長帯よりも短波長となる構成であることを特徴とする。
The laser light source device of the present invention comprises:
A semiconductor element comprising a plurality of light emitting portions that emit basic light;
A wavelength selection element for selecting the predetermined wavelength band of the basic light and extracting the first light;
A wavelength conversion element for converting the wavelength of a part of the first light and extracting the second light;
The wavelength selection element is configured such that the predetermined wavelength band that can be selected in a first selection region through which the basic light emitted from the first light emitting unit of the plurality of light emitting units passes is, of the plurality of light emitting units, The predetermined wavelength band that can be selected in a second selection region through which the basic light emitted from the second light emitting unit, which has a temperature rise due to heat generated when the other light emitting units emit light, is higher than that of the first light emitting unit. It is the structure which becomes a shorter wavelength than this.
 このレーザ光源装置が備える波長選択素子は、異なる領域で選択可能な波長帯を異ならせた構成である。すなわち、複数の発光部のうち、他の発光部からの発熱の影響を受けて温度が上昇しやすい箇所に配置された発光部(上記「第2発光部」)から放射された光が通過する領域(上記「第2選択領域」)においては、比較的長い波長の光が選択される構成としている。逆に、他の発光部からの発熱の影響を第2発光部ほどは受けずに、第2発光部よりは温度が上昇しにくい箇所に配置された発光部(上記「第1発光部」)から放射された光が通過する領域(上記「第1選択領域」)においては、第2選択領域よりも短い波長の光が選択される構成としている。 The wavelength selection element provided in the laser light source device has a configuration in which wavelength bands that can be selected in different regions are different. That is, light emitted from a light emitting unit (the “second light emitting unit”) disposed at a location where the temperature is likely to rise due to the influence of heat generated from the other light emitting units among the plurality of light emitting units passes. In the region (the “second selection region”), light having a relatively long wavelength is selected. On the contrary, the light emitting part (the above “first light emitting part”) that is not affected as much as the second light emitting part and is less likely to rise in temperature than the second light emitting part. In the region through which the light emitted from the light passes (the “first selection region”), light having a wavelength shorter than that of the second selection region is selected.
 他の発光部からの発熱の影響を受けて温度が上昇しやすい箇所に配置された発光部(第2発光部)から放射される基本光は、長波長の波長分布を示す基本光が放射される。逆に、第2発光部に比べると、他の発光部からの発熱の影響を受けにくく、温度が上昇しにくい箇所に配置された発光部(第1発光部)から放射される基本光は、第2発光部よりも短波長の波長分布を示す基本光が放射される。 The basic light emitted from the light emitting part (second light emitting part) arranged at a location where the temperature is likely to rise due to the influence of heat generated from other light emitting parts is emitted as the basic light indicating the wavelength distribution of the long wavelength. The On the other hand, compared to the second light emitting unit, the basic light emitted from the light emitting unit (first light emitting unit) that is less affected by heat generation from the other light emitting units and is difficult to rise in temperature is Basic light having a wavelength distribution shorter than that of the second light emitting unit is emitted.
 上記の波長選択素子は、長波長の波長分布を示す基本光が通過する領域(上記「第2選択領域」)は、選択可能な波長帯が長波長であり、短波長の波長分布を示す基本光が通過する領域(上記「第1選択領域」)は、選択可能な波長帯が短波長となっている。よって、第1発光部から放射される基本光も、第2発光部から放射される基本光も、波長選択素子によって効率的に波長選択が行える。 In the wavelength selection element described above, in the region through which the basic light having a long wavelength distribution (the “second selection region”) passes, the selectable wavelength band is a long wavelength, and the basic wavelength distribution has a short wavelength distribution. In a region through which light passes (the “first selection region”), a selectable wavelength band has a short wavelength. Therefore, both the basic light emitted from the first light emitting unit and the basic light emitted from the second light emitting unit can be efficiently selected by the wavelength selection element.
 従来のレーザ光源装置が備える波長選択素子は、入射される基本光の波長分布から一の波長帯の光を選択する構成であった。つまり、発光部の発熱に起因して各発光部に温度分布が生じることにより、各発光部から放射される基本光の波長分布にも位置に応じたバラツキが生じていることは考慮されていなかった。従って、各発光部から放射される基本光の波長分布が最も重なり合っている波長帯を選択するように、発光部と波長選択素子を設計していた。この結果、波長選択素子で選択されない波長分布の基本光を放射する発光部については、その発光部から放射された光が波長選択素子において選択されない状態であり、有効に光が活用されているとはいえなかった。 The wavelength selection element provided in the conventional laser light source device has a configuration that selects light in one wavelength band from the wavelength distribution of incident basic light. That is, it is not taken into account that the wavelength distribution of the basic light radiated from each light emitting unit varies depending on the position due to the temperature distribution occurring in each light emitting unit due to the heat generation of the light emitting unit. It was. Therefore, the light emitting unit and the wavelength selection element are designed so as to select the wavelength band in which the wavelength distributions of the basic light emitted from each light emitting unit overlap most. As a result, with respect to the light emitting part that emits basic light having a wavelength distribution that is not selected by the wavelength selection element, the light emitted from the light emission part is not selected by the wavelength selection element, and the light is effectively utilized. I could not say.
 上記の構成のように、位置に応じて発光部から放射される基本光の波長分布にバラツキがあることを前提とし、このバラツキに応じて波長選択素子の選択可能な波長帯にも分布を持たせることで、全ての発光部から放射される基本光を効率的に波長選択素子によって選択させることができる。よって、この選択された波長の光を、波長変換素子によって波長変換させて取り出すことで、取り出されるレーザ光の光量を従来よりも高めることができる。 As in the above configuration, it is assumed that there is a variation in the wavelength distribution of the basic light emitted from the light emitting unit depending on the position, and there is also a distribution in the selectable wavelength band of the wavelength selection element according to this variation. By doing so, the basic light emitted from all the light emitting units can be efficiently selected by the wavelength selection element. Therefore, by extracting the light having the selected wavelength after wavelength conversion by the wavelength conversion element, it is possible to increase the amount of the extracted laser light as compared with the conventional case.
 特に、複数の発光部がアレイ状に配置されている場合、発光部の位置に応じた発熱の影響の受けやすさに差異が生じる。すなわち、アレイの中央部に近い位置に配置された発光部は、周囲に他の発光部を多く有する状態であるため、これらの発光部が生じる熱が伝わりやすく、温度が上昇しやすい環境下にある。他方、アレイの外縁に近い位置に配置された発光部は、中央部に近い位置に配置された発光部に比べて、周囲に存在する発光部の数(密度)が少ない。これにより、中心に近い位置に配置された発光部に比べて、温度の上昇程度は低くなる。 In particular, when a plurality of light emitting units are arranged in an array, there is a difference in the susceptibility to heat generation depending on the position of the light emitting unit. In other words, since the light emitting section arranged near the center of the array has many other light emitting sections around it, the heat generated by these light emitting sections is easily transferred and the temperature is likely to rise. is there. On the other hand, the number of light emitting parts (density) present in the periphery of the light emitting parts arranged near the outer edge of the array is smaller than that of the light emitting parts arranged near the center part. Thereby, compared with the light emission part arrange | positioned in the position close | similar to a center, the raise degree of temperature becomes low.
 つまり、波長選択素子として、アレイの外縁に近い位置に配置された第1発光部から放射される基本光が通過する第1選択領域において、選択可能な波長帯を短波長とし、第1発光部よりもアレイの中央部に近い位置に配置された第2発光部から放射される基本光が通過する第2選択領域において、選択可能な波長帯を長波長とすることで、全ての発光部から放射される基本光に対して効率的に波長選択が行える。 That is, as a wavelength selection element, a selectable wavelength band is set to a short wavelength in the first selection region through which the basic light emitted from the first light emitting unit arranged near the outer edge of the array passes, and the first light emitting unit In the second selection region through which the basic light emitted from the second light emitting unit arranged closer to the center of the array passes, the selectable wavelength band is set to a long wavelength, so that all the light emitting units The wavelength can be efficiently selected for the emitted fundamental light.
 半導体素子上に複数の発光部を形成する場合、一般的にはウェハ上に半導体素子を形成し、その上に複数の発光部を形成する。このとき、なるべく一枚のウェハ上に多くの半導体素子を形成すべく、密集して半導体素子が形成される。当然に、各半導体素子上には、密集して発光部が配列される。このようにして形成された半導体素子が、所定の個数の発光部毎に分割され、各レーザ光源装置に搭載される。 When forming a plurality of light emitting portions on a semiconductor element, generally, a semiconductor element is formed on a wafer and a plurality of light emitting portions are formed thereon. At this time, the semiconductor elements are densely formed so as to form as many semiconductor elements as possible on one wafer. Naturally, the light emitting portions are densely arranged on each semiconductor element. The semiconductor element formed in this way is divided into a predetermined number of light emitting units and mounted on each laser light source device.
 従って、製造効率を高める観点からも、各半導体素子上には複数の発光部を密集して配置するのが一般的であり、このとき、発光部は半導体素子上にアレイ状に配置される。この場合、上述したように、アレイの中央部に近い発光部とアレイの外縁に近い発光部との間には、発光波長に差異が生じる。つまり、上記の構成によれば、高い製造効率を維持しながらレーザ光源装置を製造した場合において、各発光部から放射される基本光を有効に活用する効果が得られる。 Therefore, from the viewpoint of increasing manufacturing efficiency, it is common to arrange a plurality of light emitting portions densely on each semiconductor element. At this time, the light emitting portions are arranged in an array on the semiconductor element. In this case, as described above, there is a difference in the emission wavelength between the light emitting unit near the center of the array and the light emitting unit near the outer edge of the array. That is, according to said structure, when manufacturing a laser light source device, maintaining high manufacturing efficiency, the effect which utilizes effectively the basic light radiated | emitted from each light emission part is acquired.
 波長選択素子の選択可能な波長に分布を持たせる具体的な方法としては、以下の方法がある。 There are the following methods as specific methods for providing a distribution of wavelengths that can be selected by the wavelength selection element.
 一の方法としては、波長選択素子を誘電体多層膜バンドパスフィルタで構成し、第1選択領域の膜厚を第2選択領域の膜厚よりも薄く形成することで実現できる。 One method can be realized by configuring the wavelength selection element with a dielectric multilayer film bandpass filter and forming the film thickness of the first selection region thinner than the film thickness of the second selection region.
 別の方法としては、波長選択素子をエタロンフィルタで構成し、第1選択領域のギャップ長を第2選択領域のギャップ長よりも短く形成することで実現できる。 Another method can be realized by forming the wavelength selection element with an etalon filter and forming the gap length of the first selection region shorter than the gap length of the second selection region.
 更に別の方法としては、波長選択素子を体積ブラッググレーティング(VBG)で構成し、第1選択領域の層の厚みを第2選択領域の層の厚みよりも薄く形成することで実現できる。 Still another method can be realized by forming the wavelength selection element with a volume Bragg grating (VBG) and forming the layer of the first selection region to be thinner than the layer of the second selection region.
 また、上記の構成に加えて、波長変換素子を、波長選択素子の第1選択領域で選択された第1光が通過する第1変換領域において変換可能な波長帯が、波長選択素子の第2選択領域で選択された第1光が通過する第2変換領域において変換可能な波長帯よりも短波長となる構成とするのが好適である。 In addition to the above-described configuration, the wavelength band that can be converted in the first conversion region through which the first light selected in the first selection region of the wavelength selection element passes is the second wavelength selection element. It is preferable that the wavelength is shorter than the wavelength band that can be converted in the second conversion region through which the first light selected in the selection region passes.
 第1発光部から放射された基本光が波長選択素子の第1選択領域を通過することで選択された第1光と、第2発光部から放射された基本光が波長選択素子の第2選択領域を通過することで選択された第1光には、波長に差異が生じている。 The first light selected by the basic light emitted from the first light emitting unit passing through the first selection region of the wavelength selecting element and the basic light emitted from the second light emitting unit are the second selected by the wavelength selecting element. The first light selected by passing through the region has a difference in wavelength.
 波長変換素子が、広帯域な波長に対して変換可能な構成であれば、このように位置に応じてピーク波長に差異の有する第1光が入射されても、これらを第2光に変換させることが可能である。しかし、このような広帯域の波長に対して変換可能な波長変換素子を設計した場合、変換後に得られる第2光の強度が比較的低くなってしまう。 If the wavelength conversion element is configured to be able to convert a broadband wavelength, the first light having a difference in peak wavelength depending on the position is converted into the second light even when the first light having a difference in peak wavelength is incident. Is possible. However, when a wavelength conversion element that can convert such a wide-band wavelength is designed, the intensity of the second light obtained after the conversion is relatively low.
 逆に、変換可能な波長帯の帯域が狭い波長変換素子を設計した場合には、変換後に得られる第2光の強度を高くすることが可能となる。しかしこの場合、位置に応じて異なるピーク波長を示す第1光が入射されるため、変換可能な波長帯の帯域をあまりに狭くすると、位置に応じては第1光の波長が変換可能な帯域の外に位置する、又は変換効率が極めて低下することが想定される。 Conversely, when a wavelength conversion element having a narrow band of convertible wavelength band is designed, the intensity of the second light obtained after conversion can be increased. However, in this case, since the first light having a different peak wavelength is incident according to the position, if the band of the convertible wavelength band is made too narrow, the wavelength of the first light can be converted according to the position. It is assumed that it is located outside or the conversion efficiency is extremely lowered.
 そこで、波長変換素子においても、波長選択素子と同様に、位置に応じて変換可能な波長帯に分布を持たせる。これにより、一の箇所における変換可能な波長帯の帯域は狭くして変換後の光強度を高めつつ、全ての箇所において入射される第1光を変換させることが可能となる。より具体的には、第1選択領域によって選択された、比較的短波長の第1光が通過する領域(上記「第1変換領域」)において変換可能な波長帯を、第2選択領域によって選択された、比較的長波長の第1光が通過する領域(上記「第2変換領域」)において変換可能な波長帯よりも短波長となるように構成する。これにより、強度の高い第2光が生成され、取り出し効率が向上する。 Therefore, similarly to the wavelength selection element, the wavelength conversion element has a distribution in the wavelength band that can be converted according to the position. This makes it possible to convert the first light incident at all locations while narrowing the wavelength band that can be converted at one location to increase the light intensity after conversion. More specifically, the second selection region selects the wavelength band that can be converted in the region through which the first light having a relatively short wavelength passes (the “first conversion region”) selected by the first selection region. In the region through which the first light having a relatively long wavelength passes (the “second conversion region”), the wavelength is shorter than the convertible wavelength band. Thereby, high intensity | strength 2nd light is produced | generated and extraction efficiency improves.
 波長変換素子の変換可能な波長に分布を持たせる具体的な方法としては、波長変換素子を周期的分極反転型ニオブ酸リチウム(PPLN)で構成し、第1変換領域の層の厚みを第2変換領域の層の厚みよりも薄く形成することで実現できる。 As a specific method for providing a distribution of wavelengths that can be converted by the wavelength conversion element, the wavelength conversion element is composed of periodically poled lithium niobate (PPLN), and the thickness of the first conversion region layer is set to a second value. This can be realized by forming the conversion region to be thinner than the thickness of the layer.
 本発明の構成によれば、発光部の発熱に起因した温度上昇の程度が異なる複数の発光部を備えたレーザ光源装置において、各発光部から放射される基本光の波長分布にバラツキが生じていても、波長選択素子によって各発光部から放射された基本光が示す波長分布から効率的に所定の波長帯の光を選択することができる。これにより、外部に取り出されるレーザ光の光量を増やすことができ、取り出し効率が高められる。 According to the configuration of the present invention, in the laser light source device including a plurality of light emitting units with different degrees of temperature rise caused by heat generation of the light emitting units, the wavelength distribution of the basic light emitted from each light emitting unit varies. However, it is possible to efficiently select light in a predetermined wavelength band from the wavelength distribution indicated by the basic light emitted from each light emitting unit by the wavelength selection element. As a result, the amount of laser light extracted to the outside can be increased, and the extraction efficiency is increased.
従来のレーザ光源装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the conventional laser light source device. 発光部を構成する半導体素子をアレイ状に配置した基板を模式的に図示したものである。1 schematically shows a substrate on which semiconductor elements constituting a light emitting section are arranged in an array. 基本光の波長分布、選択波長分布、及び変換波長分布を重ねて図示したものである。The wavelength distribution of the basic light, the selection wavelength distribution, and the conversion wavelength distribution are shown in an overlapping manner. 発光部から放射される光の波長と発光部の温度の関係を示すグラフである。It is a graph which shows the relationship between the wavelength of the light radiated | emitted from a light emission part, and the temperature of a light emission part. 発光部から放射される光のピーク波長と発光部の温度の関係を示すグラフである。It is a graph which shows the relationship between the peak wavelength of the light radiated | emitted from a light emission part, and the temperature of a light emission part. 各発光部を発光させたときの各発光部の温度分布をグラフにしたものである。The temperature distribution of each light emission part when light-emitting each light emission part is made into a graph. 各発光部を発光させたときの各発光部から放射される波長分布をグラフにしたものである。The wavelength distribution radiated | emitted from each light emission part when light-emitting each light emission part was made into the graph. 第1実施形態のレーザ光源装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the laser light source apparatus of 1st Embodiment. TFFの模式的な断面構造の一例である。It is an example of typical cross-sectional structure of TFF. 図9のTFFにおける波長選択分布を示すグラフである。It is a graph which shows the wavelength selection distribution in TFF of FIG. 第2実施形態のレーザ光源装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the laser light source apparatus of 2nd Embodiment. 第3実施形態のレーザ光源装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the laser light source apparatus of 3rd Embodiment. 第4実施形態のレーザ光源装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the laser light source apparatus of 4th Embodiment. 基本光の波長分布、選択波長分布、及び変換波長分布を重ねて図示したものである。The wavelength distribution of the basic light, the selection wavelength distribution, and the conversion wavelength distribution are shown in an overlapping manner. 別実施形態のレーザ光源装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the laser light source apparatus of another embodiment.
 本発明のレーザ光源装置につき、図面を参照して説明する。なお、各図において図面の寸法比と実際の寸法比は必ずしも一致しない。 The laser light source device of the present invention will be described with reference to the drawings. In each figure, the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
 [第1実施形態]
 レーザ光源装置の第1実施形態につき説明する。
[First Embodiment]
A first embodiment of the laser light source device will be described.
 図8は、本実施形態におけるレーザ光源装置の構成を模式的に示す図である。レーザ光源装置1は、図1に示す従来のレーザ光源装置90と比較して、波長選択素子としてVBG93に代えて、TFF(誘電体薄膜フィルタ)3及び光学部材4を備える点が異なる。他の構成は、レーザ光源装置90と同様であるため、説明を省略する。本実施形態では、TFF3が「波長選択素子」に対応する。 FIG. 8 is a diagram schematically showing the configuration of the laser light source device in the present embodiment. The laser light source device 1 is different from the conventional laser light source device 90 shown in FIG. 1 in that a TFF (dielectric thin film filter) 3 and an optical member 4 are provided as a wavelength selection element instead of the VBG 93. Since other configurations are the same as those of the laser light source device 90, the description thereof is omitted. In the present embodiment, the TFF 3 corresponds to a “wavelength selection element”.
 TFF3は、半導体素子11に搭載された複数の発光部2から放射される基本光の波長分布から、所定の波長帯の第1光を選択して透過させる機能を有する。また、光学部材4は、第1の特定の波長帯の光を反射し、且つ第2の特定の波長帯の光を透過する構成である。より具体的には、TFF3で選択された波長帯の光(第1光)を反射し、PPLN95で変換された波長帯の光(第2光)を透過するように設計される。光学部材4は、例えば、第1の特定の波長帯に対する高反射(HR)コートと第2の特定の波長帯に対する減反射(AR)コートがTFF3のガラス基板上に形成されることで実現される。 The TFF 3 has a function of selecting and transmitting the first light of a predetermined wavelength band from the wavelength distribution of the basic light emitted from the plurality of light emitting units 2 mounted on the semiconductor element 11. The optical member 4 is configured to reflect light in the first specific wavelength band and transmit light in the second specific wavelength band. More specifically, it is designed to reflect light (first light) in the wavelength band selected by TFF3 and transmit light (second light) in the wavelength band converted by PPLN95. The optical member 4 is realized, for example, by forming a high reflection (HR) coat for the first specific wavelength band and an anti-reflection (AR) coat for the second specific wavelength band on a glass substrate of TFF3. The
 この構成においても、発光部2からレーザ光40、50を取り出す仕組みの基本的な原理は、図1のレーザ光源装置90と共通する。 Also in this configuration, the basic principle of the mechanism for extracting the laser beams 40 and 50 from the light emitting unit 2 is common to the laser light source device 90 of FIG.
 すなわち、半導体素子11に搭載された複数の発光部2から放射された基本光は、波長選択素子としてのTFF3を通過することで、所定の波長帯の光のみが選択的に透過される。TFF3で選択透過された光が「第1光」に対応する。この第1光は、光学部材4によって反射されてPPLN95の方に進行する。PPLN95は、第1光のうちの一部の光に対して波長変換を施して第2光を生成し、この第2光が反射部材25及び27を介して外部に取り出される(第2光40)。 That is, the basic light emitted from the plurality of light emitting units 2 mounted on the semiconductor element 11 passes through the TFF 3 as a wavelength selection element, so that only light in a predetermined wavelength band is selectively transmitted. The light selectively transmitted by the TFF 3 corresponds to “first light”. The first light is reflected by the optical member 4 and travels toward the PPLN 95. The PPLN 95 performs wavelength conversion on part of the first light to generate second light, and the second light is extracted to the outside via the reflecting members 25 and 27 (second light 40). ).
 また、PPLN95によって波長変換されずにそのまま透過した第1光は、反射部材25を透過して半導体素子11内に進入し、内部ミラーによって反射されてPPLN95へと送られる。PPLN95において一部の第1光が第2光へと波長変換され、これが光学部材4を透過して外部に取り出される(第2光50)。また、波長変換されなかった第1光は、再度、光学部材4で反射されてPPLN95へと送られる。 Further, the first light that is transmitted as it is without being wavelength-converted by the PPLN 95 passes through the reflecting member 25 and enters the semiconductor element 11, is reflected by the internal mirror, and is sent to the PPLN 95. In the PPLN 95, a part of the first light is wavelength-converted into the second light, which is transmitted through the optical member 4 and extracted outside (second light 50). The first light that has not been wavelength-converted is again reflected by the optical member 4 and sent to the PPLN 95.
 すなわち、レーザ光源装置1は、半導体素子11内に形成された内部ミラーと反射素子としての光学部材4の間で外部共振器が形成されており、第1光はこの両者間で反射が繰り返される。そして、この反射が繰り返されている間に、PPLN95を通過した第1光が次々と第2光へと波長変換されて、光学部材4又は反射部材27から装置90の外部へと取り出される。 That is, in the laser light source device 1, an external resonator is formed between the internal mirror formed in the semiconductor element 11 and the optical member 4 as a reflection element, and the first light is repeatedly reflected between the two. . While this reflection is repeated, the first light that has passed through the PPLN 95 is successively converted into the second light, and is extracted from the optical member 4 or the reflection member 27 to the outside of the device 90.
 TFF3は、高屈折率の材料と低屈折率の材料とが複数積層されることで構成される。これらの材料の屈折率と膜厚を調整することで、選択される光の波長帯が設定される。なお、選択される光の波長分布(上記「選択波長分布」)は、図3に示すVBG93の曲線42と同様に、急峻な曲線を描く。 TFF3 is configured by laminating a plurality of high refractive index materials and low refractive index materials. The wavelength band of the selected light is set by adjusting the refractive index and film thickness of these materials. Note that the wavelength distribution of the selected light (the above-mentioned “selected wavelength distribution”) is a steep curve similar to the curve 42 of the VBG 93 shown in FIG.
 ここで、レーザ光源装置1が備えるTFF3は、位置に応じて選択可能な波長帯を異ならせている。図9は、TFF3の模式的な断面構造の一例である。領域31、領域32、及び領域33において膜厚をそれぞれ異ならせることでTFF3を設計している。なお、図9では、基板上に4層の膜が成膜されているかのように図示されているが、これは単に領域毎に膜厚が異なっていることを示すために模式的に示したものであり、実際は成膜する層数はもっと多いものとして構わない。 Here, the TFF 3 included in the laser light source device 1 has different selectable wavelength bands depending on the position. FIG. 9 is an example of a schematic cross-sectional structure of TFF3. The TFF 3 is designed by making the film thicknesses different in the region 31, the region 32, and the region 33. In FIG. 9, the film is illustrated as if four layers of films are formed on the substrate, but this is schematically shown only to show that the film thickness is different for each region. Actually, the number of layers to be formed may be larger.
 より具体的な構成例として、TFF3は、低屈折材料としてSiOを、高屈折材料としてTaを用い、これらを交互に積層して形成している。TFF3の設計としては最も一般的なBPF(バンドパスフィルタ)の設計パターンであるワンキャビティ(1つのキャビティ層を有する構成)とし、SiOのキャビティ層(6qw)を高屈折率層/低屈折率層(各1qw)を8ペアで挟んだ構成とした。なお、qwとは1/4波長(quarter wave)を指しており、6qwとは1/4波長の6倍の厚みの層であることを表している。このときの透過率を、膜設計ツールとして知られるTFCalcを用いて計算した結果を図10に示す。なお、領域32は、領域31における各層の膜厚を1.001倍し、領域33は領域31における各層の膜厚を1.002倍して積層させた。 As a more specific configuration example, the TFF 3 is formed by alternately laminating SiO 2 as a low refraction material and Ta 2 O 5 as a high refraction material. As the design of TFF3, the most common BPF (bandpass filter) design pattern is a single cavity (configuration having one cavity layer), and the SiO 2 cavity layer (6qw) is a high refractive index layer / low refractive index. It was set as the structure which pinched | interposed the layer (each 1qw) by 8 pairs. Note that qw indicates a quarter wave, and 6qw indicates a layer having a thickness six times the quarter wavelength. FIG. 10 shows the result of calculating the transmittance at this time using TFCalc known as a membrane design tool. In the region 32, the thickness of each layer in the region 31 was increased by 1.001, and in the region 33, the thickness of each layer in the region 31 was increased by 1.002.
 図10は、図3に示したVBGの選択波長分布42と同様の描画方法で図示されたものである。選択波長分布31aが、TFF3内の領域31において波長選択可能な波長分布に対応する。同様に、選択波長分布32aが、TFF3内の領域32において波長選択可能な波長分布に対応し、選択波長分布33aが、TFF3内の領域33において波長選択可能な波長分布に対応する。 FIG. 10 is illustrated by a drawing method similar to the VBG selection wavelength distribution 42 shown in FIG. The selected wavelength distribution 31a corresponds to a wavelength distribution that can be wavelength-selected in the region 31 in the TFF 3. Similarly, the selected wavelength distribution 32a corresponds to a wavelength distribution in which the wavelength can be selected in the region 32 in the TFF 3, and the selected wavelength distribution 33a corresponds to a wavelength distribution in which the wavelength can be selected in the region 33 in the TFF 3.
 図10によれば、基本光がTFF3を通過した場合、領域31を通過した基本光については1064.04nm近傍の波長が選択され、領域32を通過した基本光については1065.10nm近傍の波長が選択され、領域33を通過した基本光については1066.16nm近傍の波長が選択される。つまり、TFF3を通過する領域に応じて、基本光から選択される波長帯を異ならせることができる。 According to FIG. 10, when the basic light passes through TFF 3, a wavelength in the vicinity of 1064.04 nm is selected for the basic light that has passed through the region 31, and a wavelength in the vicinity of 1065.10 nm is selected for the basic light that has passed through the region 32. For the basic light that has been selected and passed through the region 33, a wavelength in the vicinity of 1066.16 nm is selected. That is, the wavelength band selected from the basic light can be varied according to the region passing through the TFF 3.
 つまり、TFF3の膜厚を位置に応じて異ならせることで、TFF3の選択波長分布を位置に応じて変化させることが可能となる。より詳細には、選択したい波長を長波長側にしたい場合には膜厚を厚く形成し、逆に選択したい波長を短波長側にしたい場合には膜厚を薄く形成すればよい。 That is, by changing the film thickness of the TFF 3 according to the position, the selected wavelength distribution of the TFF 3 can be changed according to the position. More specifically, when the wavelength to be selected is to be on the long wavelength side, the film thickness is formed thicker. On the contrary, when the wavelength to be selected is to be selected on the short wavelength side, the film thickness is thinly formed.
 レーザ光源装置1が備えるTFF3は、この点に鑑み、位置に応じて膜厚を変化させている。より詳細には、半導体素子1に搭載された複数の発光部2のうち、周囲の発光部2からの発熱によって温度が上昇しやすい位置に配置されている発光部2(「第2発光部」に対応)から放射される基本光が通過する領域(「第2選択領域」に対応)については、膜厚を厚く形成する。逆に、周囲の発光部2からの発熱による影響を比較的受けにくい位置に配置されている発光部2(「第1発光部」に対応)から放射される基本光が通過する領域(「第1選択領域」に対応)については、膜厚を薄く形成する。 In view of this point, the TFF 3 provided in the laser light source device 1 changes the film thickness according to the position. More specifically, among the plurality of light emitting units 2 mounted on the semiconductor element 1, the light emitting unit 2 (“second light emitting unit”) disposed at a position where the temperature is likely to rise due to heat generated from the surrounding light emitting units 2. In the region through which the basic light emitted from (corresponding to 1) passes (corresponding to the “second selection region”), the film thickness is increased. On the contrary, a region through which the basic light emitted from the light emitting unit 2 (corresponding to the “first light emitting unit”) disposed at a position where it is relatively difficult to be affected by heat generated from the surrounding light emitting units 2 (the “first” With respect to “one selected region”), the film thickness is formed thin.
 これにより、各発光部2から放射される基本光のピーク波長が、近接する発光部2からの発熱に起因して、位置に応じて異なる構成であっても、波長選択素子としてのTFF3が、この基本光のピーク波長のズレに合わせてその波長選択分布を位置に応じてずらすことができる。これにより、各発光部2からの基本光の波長分布と波長選択素子としてのTFF3の選択波長分布の重ね合わせの面積を大きく取ることができる。よって、発光部2の位置に関わらず、基本光から高い強度の第1光を選択することができるので、この第1光から波長変換素子(ここではPPLN95)によって波長変換させて第2光を取り出すことで、取り出されるレーザ光の光量を従来よりも高めることができる。 Thus, even if the peak wavelength of the basic light emitted from each light emitting unit 2 is different depending on the position due to heat generation from the adjacent light emitting unit 2, the TFF 3 as the wavelength selection element is The wavelength selection distribution can be shifted according to the position in accordance with the deviation of the peak wavelength of the basic light. Thereby, the area of the superposition of the wavelength distribution of the basic light from each light emitting unit 2 and the selection wavelength distribution of the TFF 3 as the wavelength selection element can be increased. Therefore, the first light having a high intensity can be selected from the basic light regardless of the position of the light emitting unit 2, and the second light is converted from the first light by the wavelength conversion element (here, PPLN95). By taking out, the light quantity of the laser beam taken out can be increased more than before.
 なお、図2に示すように、複数の発光部2が半導体素子11上にアレイ状に搭載されている場合、アレイの中央部に近い位置に配置された発光部2から放射される基本光の波長が、アレイの外縁に近い位置に配置された発光部2から放射される基本光の波長よりも長くなる傾向にある(図7参照)。よって、アレイの外縁に近い位置に配置された発光部2から放射される基本光が通過する第1選択領域のTFF3の膜厚を薄くし、逆に、アレイの中央部に近い位置に配置された発光部2から放射される基本光が通過する第2選択領域のTFF3の膜厚を厚くすることで、全ての発光部2から放射される基本光に対して効率的に波長選択が行える。 As shown in FIG. 2, when a plurality of light emitting units 2 are mounted on the semiconductor element 11 in an array, basic light emitted from the light emitting units 2 arranged near the center of the array is used. The wavelength tends to be longer than the wavelength of the basic light emitted from the light emitting unit 2 arranged at a position close to the outer edge of the array (see FIG. 7). Therefore, the film thickness of the TFF 3 in the first selection region through which the basic light emitted from the light emitting unit 2 arranged near the outer edge of the array passes is made thin, and conversely, arranged near the center of the array. By increasing the film thickness of the TFF 3 in the second selection region through which the basic light emitted from the light emitting unit 2 passes, the wavelength can be efficiently selected for the basic light emitted from all the light emitting units 2.
 なお、TFF3の膜厚を位置に応じて異ならせる方法としては、種々の方法が採用され得る。一例としては、成膜時に真空蒸着を行う際に、蒸着源に対して基板を垂直に配置せず所定の傾斜角を設けて蒸着源からの距離を変化させることで膜厚を変化させることができる。また、基板と蒸着源の間に、マスク板を配置して、マスク形状を適切に設計、配置することによっても、位置に応じて膜厚を異ならせることが可能である。 It should be noted that various methods can be adopted as a method of varying the film thickness of the TFF 3 depending on the position. As an example, when performing vacuum evaporation during film formation, the film thickness can be changed by changing the distance from the evaporation source by providing a predetermined inclination angle without arranging the substrate perpendicular to the evaporation source. it can. In addition, it is possible to vary the film thickness depending on the position by arranging a mask plate between the substrate and the vapor deposition source and appropriately designing and arranging the mask shape.
 [第2実施形態]
 レーザ光源装置の第2実施形態につき、第1実施形態と異なる箇所のみを説明する。
[Second Embodiment]
Only a different part from 1st Embodiment is demonstrated about 2nd Embodiment of a laser light source apparatus.
 図11は、本実施形態におけるレーザ光源装置の構成を模式的に示す図である。本実施形態のレーザ光源装置1aは、図8に示す第1実施形態の構成と比較して、波長選択素子としてTFF3に代えてエタロンフィルタ5を備えた点が異なる。このエタロンフィルタ5は、より詳細には光学部材6をPPLN95と離間を有して対向して配置することで実現される。 FIG. 11 is a diagram schematically showing the configuration of the laser light source device in the present embodiment. The laser light source device 1a of this embodiment is different from the configuration of the first embodiment shown in FIG. 8 in that an etalon filter 5 is provided as a wavelength selection element instead of TFF3. More specifically, the etalon filter 5 is realized by disposing the optical member 6 so as to face the PPLN 95 with a distance.
 光学部材6は、入射された光をそのまま透過して出射する光学部材であり、例えば石英ガラスで構成される。PPLN95の第1面95aと、光学部材6の第1面6aの間に設けられたギャップにより、エタロンフィルタ5が形成される。なお、光学部材6の第1面6aとは反対の第2面6b側には、光学部材4が形成されている。この光学部材4は、エタロンフィルタ5で選択された波長帯の光(第1光)を反射し、PPLN95で変換された波長帯の光(第2光)を透過するように設計される。 The optical member 6 is an optical member that transmits incident light as it is, and is made of, for example, quartz glass. The etalon filter 5 is formed by a gap provided between the first surface 95 a of the PPLN 95 and the first surface 6 a of the optical member 6. The optical member 4 is formed on the second surface 6b side opposite to the first surface 6a of the optical member 6. The optical member 4 is designed to reflect light (first light) in the wavelength band selected by the etalon filter 5 and transmit light (second light) in the wavelength band converted by the PPLN 95.
 レーザ光源装置1aは、波長選択素子として、TFF3に代えてエタロンフィルタ5が採用された点を除けば、第1実施形態のレーザ光源装置1と同じであるため、発光部2から放射された基本光から、所望波長のレーザ光(第2光40,50)を取り出すまでの原理は共通である。従って、この説明を省略する。 The laser light source device 1a is the same as the laser light source device 1 of the first embodiment except that an etalon filter 5 is employed as a wavelength selection element instead of the TFF 3, and thus the basic light emitted from the light emitting unit 2 is used. The principle of extracting laser light (second light 40, 50) having a desired wavelength from light is common. Therefore, this description is omitted.
 本実施形態においては、エタロンフィルタ5に対して、位置に応じて選択される波長分布を異ならせる。エタロンフィルタ5は、対向する光学面の面間隔によって、選択される波長が決定される。より詳細には、PPLN95の第1面95aと、光学部材6の第1面6aの間に設けられたギャップ長dを長くすると、選択波長が長波長側にシフトされ、逆にギャップ長dを短くすると、選択波長が短波長側にシフトされる。すなわち、位置に応じてギャップ長dを異ならせることで、位置に応じて選択される波長分布を異ならせることができる。 In the present embodiment, the wavelength distribution selected according to the position is different from the etalon filter 5. The wavelength selected for the etalon filter 5 is determined by the distance between the opposing optical surfaces. More specifically, when the gap length d provided between the first surface 95a of the PPLN 95 and the first surface 6a of the optical member 6 is increased, the selected wavelength is shifted to the longer wavelength side, and conversely, the gap length d is decreased. If it is shortened, the selected wavelength is shifted to the short wavelength side. That is, the wavelength distribution selected according to the position can be varied by varying the gap length d according to the position.
 より詳細には、半導体素子1に搭載された複数の発光部2のうち、周囲の発光部2からの発熱によって温度が上昇しやすい位置に配置されている発光部2(「第2発光部」に対応)から放射される基本光が通過する領域(「第2選択領域」に対応)については、エタロンフィルタ5のギャップ長dを長く形成する。逆に、周囲の発光部2からの発熱による影響を比較的受けにくい位置に配置されている発光部2(「第1発光部」に対応)から放射される基本光が通過する領域(「第1選択領域」に対応)については、エタロンフィルタ5のギャップ長dを短く形成する。これにより、第1実施形態のレーザ光源装置1と同様の効果が得られる。 More specifically, among the plurality of light emitting units 2 mounted on the semiconductor element 1, the light emitting unit 2 (“second light emitting unit”) disposed at a position where the temperature is likely to rise due to heat generated from the surrounding light emitting units 2. The gap length d of the etalon filter 5 is formed long in the region through which the basic light emitted from (corresponding to 2) passes (corresponding to the “second selection region”). On the contrary, a region through which the basic light emitted from the light emitting unit 2 (corresponding to the “first light emitting unit”) disposed at a position where it is relatively difficult to be affected by heat generated from the surrounding light emitting units 2 (the “first” 1), the gap length d of the etalon filter 5 is formed short. Thereby, the effect similar to the laser light source device 1 of 1st Embodiment is acquired.
 すなわち、各発光部2から放射される基本光のピーク波長が、近接する発光部2からの発熱に起因して位置に応じて異なる構成であっても、波長選択素子としてのエタロンフィルタ5の波長選択分布のピーク波長の値を、その位置に応じてずらすことができる。これにより、各発光部2からの基本光の波長分布と波長選択素子としてのエタロンフィルタ5の選択波長分布の重ね合わせの面積を大きく取ることができる。 That is, even if the peak wavelength of the basic light emitted from each light emitting unit 2 is different depending on the position due to heat generation from the adjacent light emitting units 2, the wavelength of the etalon filter 5 as the wavelength selection element The value of the peak wavelength of the selection distribution can be shifted according to the position. As a result, it is possible to increase the overlapping area of the wavelength distribution of the basic light from each light emitting unit 2 and the selection wavelength distribution of the etalon filter 5 as the wavelength selection element.
 よって、発光部2の位置に関わらず、基本光から高い強度の第1光を選択することができるので、この第1光から波長変換素子(ここではPPLN95)によって波長変換させて第2光を取り出すことで、取り出されるレーザ光の光量を従来よりも高めることができる。 Therefore, the first light having a high intensity can be selected from the basic light regardless of the position of the light emitting unit 2, and the second light is converted from the first light by the wavelength conversion element (here, PPLN95). By taking out, the light quantity of the laser beam taken out can be increased more than before.
 なお、図2に示すように、複数の発光部2が半導体素子11上にアレイ状に搭載されている場合には、アレイの外縁に近い位置に配置された発光部2から放射される基本光が通過する第1選択領域のエタロンフィルタ5のギャップ長dを短くし、アレイの中央部に近い位置に配置された発光部2から放射される基本光が通過する第2選択領域のエタロンフィルタ5のギャップ長dを長くする。これにより、全ての発光部2から放射される基本光に対して効率的に波長選択が行える。 As shown in FIG. 2, when a plurality of light emitting units 2 are mounted on the semiconductor element 11 in an array, basic light emitted from the light emitting units 2 disposed near the outer edge of the array. The etalon filter 5 in the second selection region through which the basic light emitted from the light emitting unit 2 disposed near the center of the array passes is reduced by shortening the gap length d of the etalon filter 5 in the first selection region through which the light passes. The gap length d is increased. Thereby, wavelength selection can be performed efficiently for the basic light emitted from all the light emitting units 2.
 なお、エタロンフィルタ5のギャップ長dを位置に応じて異ならせる方法としては、種々の方法が採用され得る。一例としては、光学部材6の第1面6aを曲面で構成する。より具体的には、複数の発光部2が半導体素子11上にアレイ状に搭載されている場合には、中央部が外縁部よりもPPLN95の第1面95aから遠ざかるように、光学部材6の第1面6aを凹面形状にすることで実現できる。なお、PPLN95の第1面95aを曲面で構成してもよいし、両方を曲面で構成してもよい。 It should be noted that various methods can be adopted as a method of varying the gap length d of the etalon filter 5 depending on the position. As an example, the first surface 6a of the optical member 6 is a curved surface. More specifically, when the plurality of light emitting units 2 are mounted in an array on the semiconductor element 11, the optical member 6 is arranged such that the center portion is further away from the first surface 95 a of the PPLN 95 than the outer edge portion. This can be realized by forming the first surface 6a into a concave shape. In addition, the 1st surface 95a of PPLN95 may be comprised with a curved surface, and both may be comprised with a curved surface.
 [第3実施形態]
 レーザ光源装置の第3実施形態につき、第1実施形態と異なる箇所のみを説明する。
[Third Embodiment]
Only a different part from 1st Embodiment is demonstrated about 3rd Embodiment of a laser light source apparatus.
 図12は、本実施形態におけるレーザ光源装置の構成を模式的に示す図である。本実施形態のレーザ光源装置1bは、図8の第1実施形態の構成と比較して、波長選択素子としてTFF3に代えてVBG7を備えた点が異なる。つまり、図1に示す従来のレーザ光源装置90のVBG93を、本実施形態の構成が備えるVBG7に代えたものに対応する。 FIG. 12 is a diagram schematically showing the configuration of the laser light source device in the present embodiment. The laser light source device 1b of the present embodiment is different from the configuration of the first embodiment of FIG. 8 in that a VBG 7 is provided instead of TFF 3 as a wavelength selection element. That is, it corresponds to a structure in which the VBG 93 of the conventional laser light source device 90 shown in FIG.
 このVBG7は、従来のVBG93とは異なり、位置に応じて選択波長分布を異ならせた構成としている。より詳細には、周囲の発光部2からの発熱によって温度が上昇しやすい位置に配置されている発光部2(「第2発光部」に対応)から放射される基本光が通過する領域(「第2選択領域」に対応)については、選択波長分布が長波長側となるように設計する。逆に、周囲の発光部2からの発熱による影響を比較的受けにくい位置に配置されている発光部2(「第1発光部」に対応)から放射される基本光が通過する領域(「第1選択領域」に対応)については、選択波長分布が短波長側となるように設計する。これにより、第1実施形態、第2実施形態のレーザ光源装置と同様の効果が得られる。 This VBG 7 is different from the conventional VBG 93 in that the selection wavelength distribution is different depending on the position. More specifically, a region through which basic light emitted from the light emitting unit 2 (corresponding to the “second light emitting unit”) disposed at a position where the temperature is likely to rise due to heat generated from the surrounding light emitting units 2 passes (“ For “second selection region”, the selection wavelength distribution is designed to be on the long wavelength side. On the contrary, a region through which the basic light emitted from the light emitting unit 2 (corresponding to the “first light emitting unit”) disposed at a position where it is relatively difficult to be affected by heat generated from the surrounding light emitting units 2 (the “first” For “one selection region”, the selection wavelength distribution is designed to be on the short wavelength side. Thereby, the effect similar to the laser light source apparatus of 1st Embodiment and 2nd Embodiment is acquired.
 VBG7に対して、位置に応じて選択波長分布を異ならせる方法としては、種々の方法が採用され得る。VBG7は、2光束干渉などの技術を用いて、感光性ガラス材料に層構造の屈折率分布を作り出すことで形成される。そして、VBG7によって反射される光の波長λは、層の厚さをΔ、VBG7に入射される光の入射角をθとした場合に、λ=2n・Δ・cosθで表される。よって、層の厚さΔを変化させることで、VBG7から反射される光の波長λを変化させることができる。 Various methods can be adopted as a method for differentiating the selection wavelength distribution according to the position with respect to VBG7. The VBG 7 is formed by creating a refractive index distribution of a layer structure in a photosensitive glass material using a technique such as two-beam interference. The wavelength λ of the light reflected by the VBG 7 is expressed as λ = 2n · Δ · cos θ, where Δ is the thickness of the layer and θ is the incident angle of the light incident on the VBG 7. Therefore, the wavelength λ of the light reflected from the VBG 7 can be changed by changing the layer thickness Δ.
 よって、感光性ガラス材料に光を照射して屈折率分布を作り出す際に、所定のマスクを形成して光を照射することで、マスクの形状(例えば縞形状のマスクを利用するなど)によって位置に応じて層の厚さΔを変化させることが可能である。 Therefore, when a photosensitive glass material is irradiated with light to create a refractive index distribution, a predetermined mask is formed and irradiated with light, so that the position can be determined according to the shape of the mask (for example, using a striped mask). It is possible to change the thickness Δ of the layer according to.
 [第4実施形態]
 レーザ光源装置の第4実施形態につき、第1実施形態と異なる箇所のみを説明する。
[Fourth Embodiment]
Only a different part from 1st Embodiment is demonstrated about 4th Embodiment of a laser light source apparatus.
 図13は、本実施形態におけるレーザ光源装置の構成を模式的に示す図である。本実施形態のレーザ光源装置1cは、図8の第1実施形態の構成と比較して、波長変換素子としてPPLN95に代えてPPLN8を備えた点が異なる。 FIG. 13 is a diagram schematically showing the configuration of the laser light source device in the present embodiment. The laser light source device 1c of this embodiment is different from the configuration of the first embodiment of FIG. 8 in that a PPLN 8 is provided instead of PPLN 95 as a wavelength conversion element.
 このPPLN8は、PPLN95とは異なり、位置に応じて変換波長分布を異ならせた構成としている。 This PPLN 8 is different from the PPLN 95 in that the conversion wavelength distribution is different depending on the position.
 このため、上述したように、第1発光部から放射された基本光が波長選択素子の第1選択領域を通過することで選択された第1光と、第2発光部から放射された基本光が波長選択素子の第2選択領域を通過することで選択された第1光には、波長に差異が生じている。 For this reason, as described above, the basic light emitted from the first light emitting unit is selected by passing through the first selection region of the wavelength selection element, and the basic light emitted from the second light emitting unit. The first light selected by passing through the second selection region of the wavelength selection element has a difference in wavelength.
 上述した第1~第3実施形態のレーザ光源装置は、位置に応じて選択波長分布が異なる特性を示す波長選択素子(TFF3、エタロンフィルタ5、VBG7)を備えた構成であった。この構成の場合、温度上昇の影響を受けにくい位置に配置された第1発光部から放射された基本光が波長選択素子の第1選択領域を通過することで選択された第1光と、温度上昇の影響を受けやすい位置に配置された第2発光部から放射された基本光が波長選択素子の第2選択領域を通過することで選択された第1光には、波長に差異が生じている。これは、例えば図10において、領域31、領域32、領域33を通過する各基本光から選択される光(各第1光)のピーク波長が、それぞれ異なることからも理解できる。 The laser light source devices of the first to third embodiments described above were configured to include wavelength selection elements (TFF3, etalon filter 5, VBG7) that exhibit different characteristics of the selected wavelength distribution depending on the position. In this configuration, the basic light emitted from the first light emitting unit arranged at a position that is not easily affected by the temperature rise passes through the first selection region of the wavelength selection element, and the temperature The first light selected by the basic light emitted from the second light emitting unit arranged at a position susceptible to the rise passing through the second selection region of the wavelength selection element has a difference in wavelength. Yes. This can be understood from the fact that, for example, in FIG. 10, the peak wavelengths of the light (first light) selected from the basic lights passing through the region 31, the region 32, and the region 33 are different.
 しかし、このような状態であっても、第1~第3実施形態のレーザ光源装置が備える波長変換素子が、PPLN95のように図3の変換波長分布43のような広帯域な波長に対して変換可能な構成であれば、このように位置に応じてピーク波長に差異の有する第1光が入射されても、これらを第2光に変換させることが可能である。 However, even in such a state, the wavelength conversion element included in the laser light source device of the first to third embodiments converts a wideband wavelength such as the conversion wavelength distribution 43 of FIG. If possible, even if the first light having a difference in the peak wavelength according to the position is incident, it is possible to convert them into the second light.
 しかし、このような広帯域の波長に対して変換可能な波長変換素子を設計した場合、変換後に得られる第2光の強度が比較的低くなってしまう。 However, when a wavelength conversion element that can convert such a wide-band wavelength is designed, the intensity of the second light obtained after the conversion is relatively low.
 PPLNの分極反転のピッチを精度よく製作すると、変換効率を高めることができる。しかし、この場合、変換波長分布も狭帯域になってしまう(図14参照)。図14は、図3と同様に、基本光の波長分布41、VBG93の選択波長分布42、及び狭帯域で高効率に変換可能なPPLN95の変換波長分布44を重ねて図示したものである。 If the PPLN polarization inversion pitch is accurately manufactured, the conversion efficiency can be increased. However, in this case, the conversion wavelength distribution also becomes a narrow band (see FIG. 14). FIG. 14 shows the wavelength distribution 41 of the basic light, the selection wavelength distribution 42 of the VBG 93, and the conversion wavelength distribution 44 of the PPLN 95 that can be converted with high efficiency in a narrow band, as in FIG.
 第1~第3実施形態の構成において、図14の変換波長分布44のような特性を示すPPLN95を用いた場合について検討する。上述したように、波長選択素子によって選択された第1光は、位置に応じて波長に差異が生じる構成である。つまり、PPLN95に対して位置に応じて異なるピーク波長を示す第1光が入射されるため、変換可能な波長帯の帯域をあまりに狭くすると、位置に応じては第1光の波長が変換可能な帯域の外に位置する、又は変換効率が極めて低下することが想定される。 In the configuration of the first to third embodiments, the case where the PPLN 95 showing the characteristic like the conversion wavelength distribution 44 of FIG. 14 is used will be examined. As described above, the first light selected by the wavelength selection element has a configuration in which the wavelength varies depending on the position. That is, since the first light having a different peak wavelength depending on the position is incident on the PPLN 95, if the band of the wavelength band that can be converted is too narrow, the wavelength of the first light can be converted depending on the position. It is assumed that it is located outside the band or the conversion efficiency is extremely lowered.
 そこで、本実施形態のPPLN8は、変換波長分布44のように、狭帯域で高効率に変換可能な特性を有し、且つ、位置に応じて変換可能な波長帯に分布を持たせた構成としている。より詳細には、第1選択領域によって選択された、比較的短波長の第1光が通過する領域(「第1変換領域」に対応)において変換可能な波長帯を、第2選択領域によって選択された、比較的長波長の第1光が通過する領域(「第2変換領域」に対応)において変換可能な波長帯よりも短波長となるように構成する。これにより、発光部2の位置に関わらず、基本光から高い強度の第1光が選択され、更にこの第1光が高い強度の第2光に変換されるので、取り出されるレーザ光の光量を従来よりも高めることができる。 Therefore, the PPLN 8 of the present embodiment has a characteristic that can be converted with high efficiency in a narrow band like the conversion wavelength distribution 44 and has a distribution in the wavelength band that can be converted according to the position. Yes. More specifically, a wavelength band that can be converted in a region (corresponding to the “first conversion region”) selected by the first selection region through which the first light having a relatively short wavelength passes is selected by the second selection region. In the region through which the first light having a relatively long wavelength passes (corresponding to the “second conversion region”), the wavelength is shorter than the convertible wavelength band. As a result, regardless of the position of the light emitting unit 2, the first light having a high intensity is selected from the basic light, and the first light is converted into the second light having a high intensity. It can be higher than before.
 PPLN8に対して、位置に応じて変換波長分布を異ならせる方法としては、種々の方法が採用され得る。PPLN8は、LiNbOなどのバルク結晶の内部に周期的な分極反転層を形成することで、所定波長の光に対して擬似的な位相整合を達成するものであり、分極反転層の周期を変えることで変換可能な波長帯域を調整することができる。この分極反転層の形成方法の一例としては、バルク結晶の上面及び一側面に所定間隔(分極反転層の周期と同一)でスリット状の電極を形成しておき、この電極に高電圧を印加することで、電極の位置に対応したバルク結晶内部に分極反転層が形成される。 Various methods can be adopted as a method of making the conversion wavelength distribution different depending on the position with respect to the PPLN8. PPLN8 achieves pseudo phase matching for light of a predetermined wavelength by forming a periodic polarization inversion layer inside a bulk crystal such as LiNbO 3 and changes the period of the polarization inversion layer. Thus, the convertible wavelength band can be adjusted. As an example of the method of forming this domain-inverted layer, slit-like electrodes are formed at a predetermined interval (same as the period of domain-inverted layer) on the upper surface and one side surface of the bulk crystal, and a high voltage is applied to this electrode. Thus, a polarization inversion layer is formed inside the bulk crystal corresponding to the position of the electrode.
 よって、バルク結晶の面に形成する電極の位置の間隔を、位置に応じて所定の規則の下で異ならせておくことで、位置に応じて異なる分極反転層の周期を形成することができる。これにより、PPLN8に対して、位置に応じて変換波長分布を異ならせることができる。なお、この電極の形成方法は、スパッタリング、写真製版によるパターニング、エッチングなどの半導体製造プロセスと同様の手法を用いることができる。 Therefore, by changing the interval between the positions of the electrodes formed on the surface of the bulk crystal under a predetermined rule according to the position, it is possible to form different periods of the domain-inverted layers according to the position. As a result, the conversion wavelength distribution can be made different for PPLN 8 depending on the position. In addition, the formation method of this electrode can use the technique similar to semiconductor manufacturing processes, such as sputtering, patterning by photoengraving, and etching.
 なお、図13のレーザ光源装置1cは、第1実施形態のレーザ光源装置1に対して、位置に応じて波長分布特性が異なる性質を有するPPLN8を備えた構成としたが、第2実施形態のレーザ光源装置1aや第3実施形態のレーザ光源装置1bに対しても同様に適用可能である。 The laser light source device 1c in FIG. 13 is configured to include the PPLN 8 having the property that the wavelength distribution characteristic differs depending on the position with respect to the laser light source device 1 of the first embodiment. The same applies to the laser light source device 1a and the laser light source device 1b of the third embodiment.
 [別実施形態]
 上記各実施形態では、いずれも半導体素子11と波長選択素子(TFF3、エタロンフィルタ5、VBG7)の間に、波長変換素子(PPLN95、PPLN8)を位置させた構成とした。これに対し、波長選択素子と波長変換素子の位置を入れ替えても構わない。
[Another embodiment]
In each of the above embodiments, the wavelength conversion elements (PPLN95, PPLN8) are positioned between the semiconductor element 11 and the wavelength selection element (TFF3, etalon filter 5, VBG7). On the other hand, the positions of the wavelength selection element and the wavelength conversion element may be interchanged.
 図15は、図8に示す第1実施形態のレーザ光源装置1において、TFF3とPPLN95の位置関係を反転させた構成のレーザ光源装置1dを、模式的に示したものである。この場合、TFF3で選択された波長帯の光(第1光)を反射し、PPLN95で変換された波長帯の光(第2光)を透過するように設計された光学部材4は、TFF3とは反対側の面においてPPLN95と対向する位置に設けられる。 FIG. 15 schematically shows a laser light source device 1d having a configuration in which the positional relationship between the TFF 3 and the PPLN 95 is reversed in the laser light source device 1 of the first embodiment shown in FIG. In this case, the optical member 4 designed to reflect light in the wavelength band selected by TFF3 (first light) and transmit light in the wavelength band converted by PPLN95 (second light) is TFF3. Is provided at a position facing the PPLN 95 on the opposite surface.
 この構成においても、図8に示すレーザ光源装置1と同様の原理により、第2光40,50が外部に取り出される。なお、図15では、第1実施形態のレーザ光源装置1を例に挙げて説明したが、第2~第4実施形態においても同様に、波長選択素子と波長変換素子の位置を入れ替えた構成とすることが可能である。 Also in this configuration, the second lights 40 and 50 are extracted to the outside by the same principle as the laser light source device 1 shown in FIG. In FIG. 15, the laser light source device 1 according to the first embodiment has been described as an example. Similarly, in the second to fourth embodiments, the positions of the wavelength selection element and the wavelength conversion element are interchanged. Is possible.
 また、上記実施形態では、波長変換素子として、PPLN(PPLN95、PPLN8)を用いる場合につき説明したが、これに限らず、LiTaOに分極反転構造を形成した周期的分極反転タンタル酸リチウム(PPLT:Periodically Poled Lithium Tantalate)を含む他の擬似位相整合型波長変換(QPM:Quasi-Phase Matching)素子を用いるものとしても構わない。 In the above embodiment, as the wavelength conversion element, PPLN (PPLN95, PPLN8) has been explained the case of using, not limited to this, periodically poled lithium tantalate forming a domain-inverted structure in LiTaO 3 (PPLT: Other quasi phase matching type wavelength conversion (QPM: Quasi-Phase Matching) elements including Periodically Poled Lithium Tantalate may be used.
    1,1a,1b,1c,1d   :  レーザ光源装置
    2(2a,2b,…,2w,2x)   :  発光部
    3   :  TFF(誘電体薄膜フィルタ)
    4   :  光学部材
    5   :  エタロンフィルタ
    6   :  光学部材
    6a  :  光学部材の第1面
    6b  :  光学部材の第2面
    7   :  VBG
    8   :  PPLN
   11   :  半導体素子
   17   :  ヒートシンク
   25   :  反射部材
   27   :  反射部材
   31,32,33   :  TFFの領域
   31a,32a,33a   :  TFFの領域毎の選択波長分布
   40   :  第2光
   41   :  基本光の波長分布
   42   :  選択波長分布
   43   :  変換波長分布
   44   :  狭帯域の変換波長分布
   50   :  第2光
   90   :  従来のレーザ光源装置
   93   :  VBG
   95   :  PPLN
   95a  :  PPLNの第1面
   d    :  エタロンフィルタのギャップ長
1, 1a, 1b, 1c, 1d: Laser light source device 2 (2a, 2b,..., 2w, 2x): Light emitting unit 3: TFF (dielectric thin film filter)
4: Optical member 5: Etalon filter 6: Optical member 6a: First surface of optical member 6b: Second surface of optical member 7: VBG
8: PPLN
11: Semiconductor element 17: Heat sink 25: Reflective member 27: Reflective member 31, 32, 33: TFF regions 31a, 32a, 33a: Selected wavelength distribution for each TFF region 40: Second light 41: Wavelength distribution of basic light 42: Selected wavelength distribution 43: Conversion wavelength distribution 44: Narrow band conversion wavelength distribution 50: Second light 90: Conventional laser light source device 93: VBG
95: PPLN
95a: First surface of PPLN d: Gap length of etalon filter

Claims (7)

  1.  基本光を放射する複数の発光部を備える半導体素子と、
     前記基本光の所定波長帯を選択して第1光を取り出す波長選択素子と、
     前記第1光の一部を波長変換して第2光を取り出す波長変換素子を備え、
     前記波長選択素子は、前記複数の発光部のうちの第1発光部から放射された前記基本光が通過する第1選択領域において選択可能な前記所定波長帯が、前記複数の発光部のうち、他の前記発光部の発光時に生じる熱に起因した温度上昇が前記第1発光部よりも高い第2発光部から放射された前記基本光が通過する第2選択領域において選択可能な前記所定波長帯よりも短波長となる構成であることを特徴とするレーザ光源装置。
    A semiconductor element comprising a plurality of light emitting portions that emit basic light;
    A wavelength selection element for selecting the predetermined wavelength band of the basic light and extracting the first light;
    A wavelength conversion element for converting the wavelength of a part of the first light and extracting the second light;
    The wavelength selection element is configured such that the predetermined wavelength band that can be selected in a first selection region through which the basic light emitted from the first light emitting unit of the plurality of light emitting units passes is, of the plurality of light emitting units, The predetermined wavelength band that can be selected in a second selection region through which the basic light emitted from the second light emitting unit, which has a temperature rise due to heat generated when the other light emitting units emit light, is higher than that of the first light emitting unit. A laser light source device characterized in that the wavelength becomes shorter than that of the laser light source device.
  2.  前記複数の発光部がアレイ状に配置されており、
     前記第1発光部は、前記第2発光部よりもアレイの外縁に近い位置に配置されていることを特徴とする請求項1に記載のレーザ光源装置。
    The plurality of light emitting units are arranged in an array,
    2. The laser light source device according to claim 1, wherein the first light emitting unit is disposed at a position closer to an outer edge of the array than the second light emitting unit.
  3.  前記波長選択素子は誘電体多層膜バンドパスフィルタであり、前記第1選択領域の膜厚が前記第2選択領域の膜厚よりも薄く形成されていることを特徴とする請求項1又は2に記載のレーザ光源装置。 The wavelength selection element is a dielectric multilayer film bandpass filter, and the film thickness of the first selection region is formed thinner than the film thickness of the second selection region. The laser light source device described.
  4.  前記波長選択素子はエタロンフィルタであり、前記第1選択領域のギャップ長が前記第2選択領域のギャップ長よりも短く形成されていることを特徴とする請求項1又は2に記載のレーザ光源装置。 3. The laser light source device according to claim 1, wherein the wavelength selection element is an etalon filter, and the gap length of the first selection region is shorter than the gap length of the second selection region. .
  5.  前記波長選択素子は体積ブラッググレーティング(VBG)であり、前記第1選択領域の層の厚みが前記第2選択領域の層の厚みよりも薄く形成されていることを特徴とする請求項1又は2に記載のレーザ光源装置。 The said wavelength selection element is a volume Bragg grating (VBG), and the thickness of the layer of the said 1st selection area | region is formed thinner than the thickness of the layer of the said 2nd selection area | region. The laser light source device according to 1.
  6.  前記波長変換素子は、前記波長選択素子の前記第1選択領域で選択された前記第1光が通過する第1変換領域において変換可能な波長帯が、前記波長選択素子の前記第2選択領域で選択された前記第1光が通過する第2変換領域において変換可能な波長帯よりも短波長となる構成であることを特徴とする請求項1~5のいずれか1項に記載のレーザ光源装置。 The wavelength conversion element has a wavelength band that can be converted in the first conversion area through which the first light selected in the first selection area of the wavelength selection element passes in the second selection area of the wavelength selection element. 6. The laser light source device according to claim 1, wherein the laser light source device is configured to have a wavelength shorter than a wavelength band that can be converted in the second conversion region through which the selected first light passes. .
  7.  前記波長変換素子は周期的分極反転型ニオブ酸リチウム(PPLN)であり、前記第1変換領域の層の厚みが前記第2変換領域の層の厚みよりも薄く形成されていることを特徴とする請求項6に記載のレーザ光源装置。
     
    The wavelength conversion element is a periodically poled lithium niobate (PPLN), and the thickness of the layer in the first conversion region is thinner than the thickness of the layer in the second conversion region. The laser light source device according to claim 6.
PCT/JP2014/057504 2013-03-22 2014-03-19 Laser light source device WO2014148541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-060338 2013-03-22
JP2013060338A JP2014187138A (en) 2013-03-22 2013-03-22 Laser light source device

Publications (1)

Publication Number Publication Date
WO2014148541A1 true WO2014148541A1 (en) 2014-09-25

Family

ID=51580215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057504 WO2014148541A1 (en) 2013-03-22 2014-03-19 Laser light source device

Country Status (2)

Country Link
JP (1) JP2014187138A (en)
WO (1) WO2014148541A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059661A (en) 2015-09-16 2017-03-23 ウシオ電機株式会社 External resonator laser device
JP7151497B2 (en) 2019-01-17 2022-10-12 ウシオ電機株式会社 Light source device
KR102271640B1 (en) * 2020-08-28 2021-07-01 국방과학연구소 Optical fiber laser assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205342A (en) * 2007-02-22 2008-09-04 Seiko Epson Corp Light source apparatus and projector
JP2009058646A (en) * 2007-08-30 2009-03-19 Seiko Epson Corp Light source device, image display device, and monitor device
JP2012098495A (en) * 2010-11-02 2012-05-24 Ushio Inc Laser beam wavelength conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205342A (en) * 2007-02-22 2008-09-04 Seiko Epson Corp Light source apparatus and projector
JP2009058646A (en) * 2007-08-30 2009-03-19 Seiko Epson Corp Light source device, image display device, and monitor device
JP2012098495A (en) * 2010-11-02 2012-05-24 Ushio Inc Laser beam wavelength conversion device

Also Published As

Publication number Publication date
JP2014187138A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
US6665119B1 (en) Wire grid polarizer
JP7125640B2 (en) Manufacturing method of transmission type diffraction grating
JP2004280050A5 (en)
US20020164105A1 (en) Sub-wavelength efficient polarization filter (swep filter)
JP2007524218A (en) Tunable resonant grating filter
JP5474844B2 (en) Tunable resonant grating filter
US20120075636A1 (en) Tunable optical filters using cascaded etalons
US9874694B2 (en) Production method for mounting structure for grating elements
WO2014148541A1 (en) Laser light source device
JP4945140B2 (en) Wavelength tunable optical filter and external resonator type semiconductor laser device using the same
JP6895903B2 (en) Semiconductor laser device, diffraction grating structure, and diffraction grating
US20230378720A1 (en) Vertical laser emitter and manufacturing method thereof
KR20120046680A (en) Laser beam wavelength conversion apparatus
JP6629194B2 (en) External cavity type light emitting device
US7515804B2 (en) Optical waveguide device
EP3111259B1 (en) Grating mirror
JP6497699B2 (en) Light modulation device and light modulation system
JP2010093211A (en) Wavelength conversion laser device
JP3899996B2 (en) Optical waveguide, multi-wavelength light source, and tunable light source
WO2006104045A1 (en) Wavelength filter
CN215415976U (en) Distributed feedback chirped grating based on graphene array
Magnusson et al. Cascaded resonant-grating filters: experimental results on lowered sidebands and narrowed lines
JP2019061116A (en) Laser irradiation device
Zhang et al. The Design and Fabrication of Fibonacci Quasi-Periodic Superstructure Fiber Bragg Gratings
CN113219572A (en) Distributed feedback chirped grating based on graphene array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768527

Country of ref document: EP

Kind code of ref document: A1