WO2014148435A1 - PRODUCTION METHOD OF AQUEOUS SOLUTION OF α-SULFO FATTY ACID ALKYL ESTER SALT - Google Patents

PRODUCTION METHOD OF AQUEOUS SOLUTION OF α-SULFO FATTY ACID ALKYL ESTER SALT Download PDF

Info

Publication number
WO2014148435A1
WO2014148435A1 PCT/JP2014/057146 JP2014057146W WO2014148435A1 WO 2014148435 A1 WO2014148435 A1 WO 2014148435A1 JP 2014057146 W JP2014057146 W JP 2014057146W WO 2014148435 A1 WO2014148435 A1 WO 2014148435A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
fatty acid
solid
temperature
treatment
Prior art date
Application number
PCT/JP2014/057146
Other languages
French (fr)
Japanese (ja)
Inventor
暢一 勝賀瀬
純弘 木村
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Publication of WO2014148435A1 publication Critical patent/WO2014148435A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides

Definitions

  • the present invention relates to a method for producing an aqueous ⁇ -sulfo fatty acid alkyl ester salt solution.
  • ⁇ -sulfo fatty acid alkyl ester salt (hereinafter also referred to as “ ⁇ -SF salt”), which is an anionic surfactant, has excellent detergency, good biodegradability, and little impact on the environment. It is highly evaluated for its performance as a cleaning material, and it is widely used especially for garment detergents.
  • ⁇ -SF salt ⁇ -sulfo fatty acid alkyl ester salt
  • a paste containing a high concentration of ⁇ -SF salt by using fatty acid methyl ester as a starting material, followed by sulfonation, esterification, neutralization, etc. And the paste is dissolved in water (for example, see Patent Document 1).
  • an aqueous solution of ⁇ -SF salt has a problem that, for example, precipitation occurs under a low temperature condition of about 10 to 20 ° C. and fluidity is lowered.
  • Such an ⁇ -SF salt aqueous solution is difficult to handle, and has problems such as being difficult to mix with other materials and not being added at a uniform concentration when producing a liquid detergent.
  • An object of the present invention is to provide a method for producing an ⁇ -SF salt aqueous solution in which ⁇ -SF salt is hardly precipitated even under low temperature conditions.
  • the present inventor dissolved an ⁇ -SF salt-containing solid that was confirmed to be in a specific crystal state by thermal analysis using a differential scanning calorimeter (DSC) in water at a specific temperature.
  • the aqueous solution obtained in this way was found to be less likely to precipitate ⁇ -SF salt even under low temperature conditions, and the present invention was completed.
  • the present invention has the following configuration. That is, A method for producing an ⁇ -sulfo fatty acid alkyl ester salt aqueous solution by dissolving a solid material containing an ⁇ -sulfo fatty acid alkyl ester salt in water at a temperature Ts (° C.), wherein the solid is a differential scanning calorimeter.
  • the heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when performing a thermal analysis at 50 ° C. to 130 ° C. is 50% or more and 100% or less with respect to the heat absorption peak area S 2 at 0 ° C.
  • Ts ( ° C) is the temperature Tmax (° C) when the heat absorption peak top temperature of the maximum heat flow rate observed when the solid is thermally analyzed by a differential scanning calorimeter is Tmax (° C).
  • Tmax-5 ⁇ Ts ⁇ Tmax + 5
  • an ⁇ -SF salt aqueous solution in which precipitation of ⁇ -SF salt is unlikely to occur even under low temperature conditions. can be manufactured.
  • FIG. 1 is a schematic configuration diagram showing an example of an ⁇ -SF salt production system according to the present invention.
  • 3 is an X-ray diffraction chart of an ⁇ -SF salt-containing solid substance (hereinafter also referred to as a metastable solid) (m) in a metastable crystalline state. It is a DSC chart which shows the thermal analysis result in a differential scanning calorimeter about an example of metastable solid (m) (Example 1).
  • 6 is a DSC chart showing thermal analysis results with a differential scanning calorimeter for an example of an ⁇ -SF salt-containing solid in a stable state (hereinafter also referred to as stable solid) (s).
  • the present invention is a method for producing an ⁇ -SF salt aqueous solution by dissolving a solid containing an ⁇ -SF salt in water.
  • the heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when thermal analysis is performed with a differential scanning calorimeter is the heat absorption peak area S2 at 0 ° C. to 130 ° C. Therefore, a solid in a specific stable crystal state (hereinafter also referred to as “stable state”) that is 50% or more and 100% or less is used. And the temperature of the water which dissolves the said solid substance is controlled to specific temperature.
  • process (I) for obtaining a solid substance containing an ⁇ -SF salt in a flaky state and the like described above using a fatty acid alkyl ester as a starting material, and the ⁇ -SF
  • process (I) for obtaining a solid substance containing an ⁇ -SF salt in a flaky state and the like described above using a fatty acid alkyl ester as a starting material, and the ⁇ -SF
  • the present invention will be described in detail by exemplifying a production method having a step (II) of dissolving a salt-containing solid in water at a specific temperature (hereinafter also referred to as step (II)).
  • step (I) an ⁇ -SF salt-containing solid (m) in a metastable crystalline state (hereinafter also referred to as “metastable state”) is prepared (step (I-1)), and then Then, the ⁇ -SF salt-containing solid (m) is crystallized to obtain an ⁇ -SF salt-containing solid (s) in a stable state (step (I-2)). That is, the step (I) comprises the step (I-1) of preparing the ⁇ -SF salt-containing solid (m) in a metastable crystalline state and the adjusted ⁇ -SF salt-containing solid (m). Crystallization to obtain an ⁇ -SF salt-containing solid (s) in a stable state (I-2).
  • the ⁇ -SF salt-containing solid (m) in a metastable state may be referred to as a metastable solid (m).
  • the ⁇ -SF salt-containing solid (s) in a stable state may be referred to as a stable solid (s).
  • the metastable solid (m) and the stable solid (s) can be distinguished by thermal analysis using a differential scanning calorimeter.
  • the metastable solid (m) has a heat absorption peak area at 50 ° C. to 130 ° C. observed during thermal analysis with a differential scanning calorimeter, and a heat absorption peak area at 0 ° C. to 130 ° C. In contrast, the solid is 0% or more and less than 50%.
  • the heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when thermal analysis is performed with a differential scanning calorimeter is compared with the heat absorption peak area S2 at 0 ° C. to 130 ° C.
  • the heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate observed when thermal analysis is performed with a differential scanning calorimeter is 50 ° C. or more and 130 ° C. or less. It is a solid.
  • the ratio of “heat absorption peak area S1 at 50 ° C. to 130 ° C.” to “heat absorption peak area S2 at 0 ° C. to 130 ° C.” defined in the present invention is determined by using a differential scanning calorimeter. It can be determined by putting the object of analysis into the sample, raising the temperature at a predetermined rate of temperature rise, and measuring the endothermic and exothermic amounts. At this time, an exothermic peak may be observed at 0 ° C. to 130 ° C.
  • a value obtained by subtracting the absolute value of the exothermic peak from the endothermic amount of the endothermic peak at 50 ° C. or higher is 50 It is assumed that the heat absorption peak area S1 is in the range from 1 to 130 ° C. Similarly, for the heat absorption peak area S2 at 0 ° C. to 130 ° C., a value obtained by subtracting the absolute value of the exothermic peak from the endothermic amount of the endothermic peak is used as the total endothermic amount.
  • a baseline serving as a reference for calculating the endothermic amount is defined by a straight line connecting straight portions before and after the endothermic peak. From the schematic diagram shown in FIG. 6, those skilled in the art can easily understand how to determine the baseline and split the peak.
  • Step (I-1) In step (I-1), a sulfonation treatment in which the fatty acid alkyl ester is sulfonated with a sulfonation gas; an esterification treatment in which a lower alcohol is added to the sulfonated product obtained by the sulfonation treatment and esterification; and an esterification treatment An ⁇ -SF salt-containing paste by performing neutralization treatment for neutralizing the esterified product obtained in step 1; and bleaching treatment for bleaching the neutralized product obtained by neutralization treatment, which is performed as necessary Get.
  • the paste is heated and concentrated to obtain a concentrated product; cooling and solidifying the concentrated product to obtain a cooled solidified product such as a plate; and crushing to crush the cooled solidified product.
  • Process. As a result, ⁇ -SF salt-containing solid flakes (m) in a metastable state are obtained. That is, the step (I-1) includes a sulfonation treatment in which a fatty acid alkyl ester is sulfonated with a sulfonation gas; and an esterification treatment in which a lower alcohol is added to the sulfonated product obtained by the sulfonation treatment to perform esterification.
  • the step (I-1) may further include a bleaching treatment for bleaching the neutralized product obtained by the neutralization treatment.
  • the “paste-like” here means a semi-solid state with fluidity. “Flake” means a flaky solid.
  • the sulfonation treatment is preferably carried out by bringing a fatty acid alkyl ester into contact with a sulfonated gas in the presence of a coloring inhibitor such as sodium sulfate to sulfonate the fatty acid alkyl ester (gas contact operation), thereby producing ⁇ -sulfo.
  • a coloring inhibitor such as sodium sulfate to sulfonate the fatty acid alkyl ester (gas contact operation), thereby producing ⁇ -sulfo.
  • ⁇ -SF acid a sulfonated product containing a fatty acid alkyl ester
  • the coloring inhibitor may be added by an esterification treatment in addition to the sulfonation treatment.
  • the following method is used. First, for example, 92 kg of fatty acid alkyl ester is charged into a reaction tank having a capacity of 200 to 4000 L, and heated at a temperature at which the fatty acid alkyl ester melts, for example, about 70 ° C. to obtain a raw material liquid phase. Next, a sulfonated gas is preferably added to the raw material liquid phase at a constant flow rate (for example, preferably 10 m / sec or more, more preferably 50 to 200 m / sec. If it is less than 10 m / sec, bubbles may become large.
  • a constant flow rate for example, preferably 10 m / sec or more, more preferably 50 to 200 m / sec. If it is less than 10 m / sec, bubbles may become large.
  • the total amount added is, for example, 1.2 moles with respect to the fatty acid alkyl ester, and a plurality of bubbles are generated from the gas sparger. Disperse air bubbles uniformly.
  • the particles of the coloring inhibitor are uniformly dispersed in the raw material liquid phase by this rotation.
  • the amount of the coloring inhibitor used is preferably 0.25% to 10% with respect to the fatty acid alkyl ester, for example.
  • sodium sulfate is preferable.
  • “uniform” means a state in which particles are floating without being settled.
  • the fatty acid alkyl ester is represented by the following formula (1).
  • R 1 is a linear or branched alkyl group or alkenyl group having 8 to 20 carbon atoms
  • R 2 is a linear or branched alkyl group having 1 to 6 carbon atoms. It is. R 1 preferably has 10 to 18 carbon atoms, and more preferably 10 to 16 carbon atoms. That is, the carbon number of the acyl group (R 1 —CH 2 —CO—) of the fatty acid alkyl ester is preferably from 12 to 20, and more preferably from 12 to 18. R 2 preferably has 1 to 3 carbon atoms. As the fatty acid alkyl ester, a fatty acid methyl ester is preferable.
  • the fatty acid methyl ester for example, when the total mass of the fatty acid methyl ester is 100% by mass, the fatty acid methyl ester having 12 carbon atoms is 0.1 to 0.3% by mass, and the fatty acid methyl ester having 14 carbon atoms is 0.00. 7 to 1.2% by mass, fatty acid methyl ester having 16 carbon atoms, 66.0 to 89.5% by mass, fatty acid methyl ester having 18 carbon atoms, 9.5 to 32.0% by mass, and fatty acid having 20 or more carbon atoms It may be a mixture of fatty acid methyl esters, which may contain methyl esters.
  • Fatty acid alkyl esters are animal fats and oils derived from beef tallow, fish oil, lanolin and the like; vegetable fats and oils derived from coconut oil, palm oil, soybean oil and the like; synthetic fatty acid alkyl esters derived from the oxo method of ⁇ -olefins Any of these may be used and is not particularly limited.
  • alkyl laurate such as methyl laurate, ethyl laurate, and propyl laurate
  • alkyl myristate such as methyl myristate, ethyl myristate, propyl myristate
  • methyl palmitate Palmitic acid alkyl esters such as ethyl palmitate and propyl palmitate
  • Stearic acid alkyl esters such as methyl stearate, ethyl stearate and propyl stearate
  • Fatty acid alkyl ester hydrogenated fish oil fatty acid methyl, hydrogenated fish oil fatty acid ethyl, hydrogenated fish oil fatty acid alkyl ester, etc .
  • coconut oil fatty acid methyl coconut oil fatty acid ethyl, coconut oil fatty acid Palm oil fatty acid alkyl esters such as lopil
  • Palm oil fatty acid alkyl esters such as palm oil fatty acid methyl, palm
  • a fatty acid alkyl ester having a lower iodine value, which is an index of unsaturation, is desirable in terms of both color tone and odor, and the iodine value is preferably 0.5 or less, more preferably 0.2 or less.
  • R 1 CH (SO 3 H) —COOR 2 (2) (2) wherein, R 1 is the same as R 1 in formula (1), R 2 is the same as R 2 in formula (1).
  • the sulfonating gas e.g., SO 3 gas; gas diluted to SO 3 gas generated from the SO 3 gas or oleum with dehumidified air;; SO 3 gas generated from fuming sulfuric acid, and the like.
  • the total amount of the sulfonated gas added is at least 1 mol, preferably 1.0 to 2.0 mol, more preferably 1.1 to 1.5 mol relative to the fatty acid alkyl ester.
  • the rotational speed of the stirrer is preferably, for example, a peripheral speed at the tip of the stirring blade of the stirring blade provided in the stirrer is 0.5 to 6.0 m / sec, and is 2.0 to 5.0 m / sec. More preferably.
  • a peripheral speed at the tip of the stirring blade of the stirring blade provided in the stirrer is 0.5 to 6.0 m / sec, and is 2.0 to 5.0 m / sec. More preferably.
  • the peripheral speed is 0.5 m / sec or more, a sufficient effect of dispersing bubbles is obtained, and the reaction rate is also excellent.
  • the peripheral speed is 6.0 m / sec or less, the power consumption can be suppressed.
  • the shape of the stirring blade include a six-blade inclined paddle (up-pumping in the case of 200 L, blade diameter 240 mm ⁇ ) and the like.
  • the reaction temperature in the gas contact operation of the sulfonation treatment is a temperature at which the fatty acid alkyl ester has fluidity, and is not less than the melting point of the fatty acid alkyl ester, preferably not less than the melting point and not more than 70 ° C. above the melting point. It is preferable that The introduction time of the sulfonation gas in the sulfonation treatment is about 10 minutes to 300 minutes, and preferably about 60 minutes to 240 minutes.
  • the sulfonation method may be any sulfonation method such as a falling film type sulfonation method or a batch type sulfonation method.
  • a sulfonation reaction method a tank-type reaction, a film reaction, a tubular gas-liquid mixed phase reaction, or the like is used.
  • a coloring inhibitor it is preferable to contact the sulfonated gas in a state in which the coloring inhibitor is uniformly dispersed in the raw material. Therefore, in the batch-type sulfonation method, a tank reaction method is suitable. .
  • the sulfonation treatment preferably includes a gas contact operation and an aging operation.
  • the aging operation is a step of promoting the desorption of SO 3 from the bimolecular adduct generated by the gas contact operation while maintaining the predetermined temperature after the gas contact operation.
  • the ripening operation can be performed, for example, by continuously stirring in the reaction tank subjected to the gas contact operation.
  • the rotational speed of the agitator may be the same as or different from the rotational speed in the contact operation.
  • the reaction temperature (aging temperature) in the aging operation is preferably in the range of 70 to 100 ° C., for example. When the aging temperature is 70 ° C. or higher, the reaction proceeds rapidly, and when it is 100 ° C. or lower, coloring is also suppressed.
  • the reaction time (aging time) in the aging operation is preferably determined in the range of 1 minute to 120 minutes, for example.
  • esterification treatment In the esterification treatment, a lower alcohol is added to the sulfonated product (the product of the sulfonation treatment) obtained by the sulfonation treatment after the sulfonation treatment (gas contact operation and aging operation carried out as necessary). In this process, the sulfonated product is esterified to cause a reaction (ester reaction) to produce an ⁇ -SF acid.
  • the sulfonated product obtained by the sulfonation treatment includes, in addition to ⁇ -SF acid, a monomolecular adduct of SO 3 , a bimolecular adduct of SO 3 , an unreacted fatty acid alkyl ester, and other By-products are included.
  • a monomolecular adduct of SO 3 when the bimolecular adduct of SO 3 is neutralized, it becomes an ⁇ -sulfo fatty acid dialkali salt, which may have a lower cleaning effect than ⁇ -SF salt in a low temperature environment. For this reason, it is necessary to make the content of the bimolecular adduct of SO 3 as low as possible in the detergent application.
  • Performing esterification process by generating a alpha-SF acids from bimolecular adduct SO 3, can be lowered content of bimolecular adduct SO 3, a further improvement in the yield of alpha-SF salt Can be planned.
  • the esterification treatment is performed, for example, by a method in which a lower alcohol is added to the sulfonated product and stirred while maintaining a predetermined temperature (eg, 50 ° C. to 100 ° C.).
  • the rotational speed of the stirrer is preferably, for example, a peripheral speed at the tip of the stirring blade of the stirring blade provided in the stirrer is 0.5 to 6.0 m / sec, and is 2.0 to 5.0 m / sec. More preferably.
  • the peripheral speed is 0.5 m / sec or more, the added lower alcohol can be uniformly mixed, and the reactivity is excellent.
  • the peripheral speed is 6.0 m / sec or less, the power consumption can be suppressed.
  • the lower alcohol used in the esterification treatment is preferably an alcohol having 1 to 6 carbon atoms. Among them, an alcohol having the same carbon number as that of the alcohol residue of the starting fatty acid alkyl ester is preferable. Specifically, methanol is mentioned.
  • the amount of the lower alcohol added is preferably 0.5 to 50-fold mol, more preferably 0.8 to 2-fold mol based on the bimolecular adduct of SO 3 contained in the sulfonated product. If it is more than the lower limit of this addition amount, a sufficient addition effect can be obtained. Even if the lower alcohol is added in excess of the upper limit, the esterification reaction does not proceed any further.
  • the amount of the bimolecular adduct of SO 3 contained in the sulfonated product can be quantified by a high performance liquid chromatograph or the like.
  • the bimolecular adduct of SO 3 is contained in an amount of 5 to 50% by mass with respect to the total mass of the sulfonated product obtained by the sulfonation treatment, and when methanol is added as the lower alcohol, the amount of methanol added is The amount is preferably 0.25 to 250 parts by mass, more preferably 0.4 to 10 parts by mass with respect to 100 parts by mass of the compound.
  • the reaction temperature in the esterification treatment is 50 ° C to 100 ° C, preferably 50 ° C to 90 ° C.
  • the reaction time in the esterification treatment is preferably determined in the range of 5 minutes to 120 minutes.
  • the neutralization treatment is a treatment for obtaining a neutralized product by neutralizing the esterified product obtained by the esterification treatment with an alkaline substance such as an alkaline aqueous solution.
  • an alkaline substance such as an alkaline aqueous solution.
  • a counter ion that forms a salt may be any counter ion that forms a water-soluble salt with the following ions.
  • R 1 CH (CO—O—R 2 ) —SO 3 —
  • the water-soluble salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt; ammonium salt; ethanolamine salt and the like.
  • the neutralization treatment can be performed, for example, by bringing the esterified product into contact with an alkaline aqueous solution.
  • the alkaline aqueous solution include an aqueous solution capable of forming the above-mentioned water-soluble salt, for example, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide; an aqueous solution of an alkali metal carbonate; an alkaline earth metal water.
  • the concentration of the anionic surfactant described later in 100% by mass of the neutralized product obtained by the neutralization treatment is determined so that both the production efficiency in obtaining the neutralized product and the handleability of the neutralized product are excellent.
  • Such an anionic surfactant concentration is preferably 60% by mass to 80% by mass, more preferably 62% by mass to 75% by mass, when the total mass of the neutralized product is 100% by mass. If the concentration of the aqueous alkaline solution used for the neutralization treatment is too thin, the amount of the aqueous alkaline solution required for neutralization increases, resulting in an increase in the amount of water in the resulting neutralized product, and the anion interface. The activator concentration is lowered.
  • the concentration of the alkaline aqueous solution used for the neutralization treatment is preferably 2% to 50%.
  • the “anionic surfactant concentration” is the concentration of an anionic compound having a function as a surfactant.
  • the anionic compound in the present embodiment includes an ⁇ -SF salt, which is a cleaning active ingredient, and ⁇ -SF. This corresponds to a by-product ⁇ -sulfo fatty acid dialkali salt having a function as a surfactant as well as a salt. Therefore, the “anionic surfactant concentration” in this embodiment is the total concentration of the ⁇ -SF salt that is a cleaning active ingredient and the ⁇ -sulfo fatty acid dialkali salt (di-salt) that is one of by-products. is there.
  • the anionic surfactant concentration can be determined by a titration method or the like.
  • the mass ratio of ⁇ -SF salt and ⁇ -sulfo fatty acid dialkali salt in the neutralized product is from the viewpoints of manufacturability when obtaining the neutralized product, handling properties, and quality when blended into a liquid product.
  • the ⁇ -sulfo fatty acid dialkali salt is preferably 0% by mass or more and 10% by mass or less.
  • the neutralization temperature is preferably 30 ° C to 140 ° C, more preferably 50 ° C to 140 ° C, and further preferably 50 ° C to 80 ° C.
  • the neutralization time is preferably 5 minutes to 60 minutes, more preferably 20 minutes to 60 minutes.
  • the pH during neutralization is preferably in the acidic or weak alkaline range (pH 4 to 9 at 30 ° C. to 140 ° C.) in order to prevent hydrolysis of the ⁇ -SF salt formed. Outside this range, the ester bond of the ⁇ -sulfo fatty acid alkyl ester salt may be easily cleaved.
  • neutralization treatment in order to prevent hydrolysis of the produced ⁇ -SF salt and the production of by-products associated therewith, it is possible to avoid a radical neutralization operation and perform a mild neutralization treatment as much as possible. preferable.
  • An example of such neutralization treatment is a loop neutralization method. In the above method, a part of the neutralized neutralized product (recycled neutralized product) is circulated in a looped pipe (recycle loop), and the recycled neutralized product is unneutralized after the esterification treatment. It is the system which adds to the product of this and neutralizes.
  • neutralization may be performed, for example, by bringing an alkaline aqueous solution into contact with a mixture of a recycled neutralized product and an unneutralized product, or a recycled neutralized product and an unneutralized product. You may carry out by mixing a product and aqueous alkali solution instantaneously under the strong shearing force.
  • the amount of the recycle neutralized product added is preferably 5 to 25 times by mass and more preferably 10 to 20 times by mass with respect to the total mass of the unneutralized product and the alkaline aqueous solution.
  • the ratio of the added amount of the recycled neutralized product to the total amount of the unneutralized product and the aqueous alkali solution, that is, the recycling ratio is 5 or more, the effect of suppressing the formation of by-products is excellent, and it is 25 mass times or less. Manufacturing efficiency is improved.
  • the neutralization treatment can be performed by using a solid metal carbonate or hydrogen carbonate in addition to using an alkaline aqueous solution.
  • neutralization with solid metal carbonate concentrated soda ash
  • concentration soda ash concentrated soda ash
  • the amount of water contained in the mixture is small and hardly alkaline, and the heat of neutralization at the time of neutralization is reduced to metal water. Since it is lower than that of the oxide, hydrolysis of the ⁇ -SF salt can be suppressed, which is advantageous.
  • metal carbonate or hydrogen carbonate examples include anhydrous salts such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, hydrated salts, or mixtures thereof.
  • a bleaching treatment After the neutralization treatment, a bleaching treatment may be performed as necessary. By performing the bleaching treatment, the colored product produced until the neutralization treatment is bleached, and an ⁇ -SF salt having a good color tone can be obtained.
  • the bleaching treatment can be carried out by adding a bleaching agent to the neutralized product obtained by the neutralizing treatment.
  • a bleaching agent for example, an aqueous solution of hydrogen peroxide is preferably used.
  • the concentration of hydrogen peroxide in the bleaching agent can be determined in consideration of the water content in the bleaching process, the reaction time (bleaching time), or the reaction temperature (bleaching temperature) in the bleaching process. Hydrogen peroxide is preferably 30% by mass to 50% by mass with respect to the total mass of the aqueous solution.
  • the added amount of the bleaching agent is 0 with respect to 100 parts by mass of the anionic surfactant (total of ⁇ -SF salt and ⁇ -sulfo fatty acid dialkali salt (di-salt)) in the neutralized product.
  • the range is preferably 1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 0.1 to 3 parts by mass.
  • the bleaching temperature can be determined in consideration of the concentration of hydrogen peroxide in the bleaching agent, the amount of bleaching agent added, and the bleaching time.
  • the bleaching temperature is preferably determined within the range of 50 ° C to 120 ° C. More preferably, it is determined in the range of ⁇ 90 ° C. When it is at least the lower limit of the above range, an increase in the viscosity of the bleached product is suppressed, and the production suitability such as transfer and stirring is excellent.
  • the bleaching time can be determined in consideration of the concentration of hydrogen peroxide in the bleaching agent, the amount of bleaching agent added, and the bleaching temperature. For example, it is preferably determined in the range of 30 minutes to 600 minutes, and 60 minutes. More preferably, it is determined in the range of ⁇ 480 minutes.
  • a bleaching method in the bleaching treatment for example, a neutralized product is charged into a reaction vessel, and a bleaching agent is added and mixed while maintaining a predetermined temperature. Further, for example, there is a method in which a circulation system for returning a part of the bleached product obtained in the reaction tank to the reaction tank is provided, a neutralized product is added to the circulation system, and then a bleaching agent is added. Another example is loop-type bleaching. Specifically, there is a method in which a neutralized product and a bleaching agent are added to the circulation line while circulating a part of the neutralized product mixed with the bleaching agent. Can be mentioned. Furthermore, after adding and mixing a bleaching agent, the bleaching reaction may be advanced by a flow tube method. The bleaching treatment may be performed on the sulfonated product.
  • the paste containing ⁇ -SF salt (viscous composition containing ⁇ -SF salt) is obtained by performing sulfonation treatment, esterification treatment, neutralization treatment, and bleaching treatment as necessary. Is obtained.
  • the paste containing the ⁇ -SF salt may further contain an ⁇ -sulfo fatty acid dialkali salt.
  • the anionic surfactant concentration and the single concentration of ⁇ -SF salt in the paste are preferably within the concentration range described for the neutralized product, although depending on the amount of bleach used.
  • the production system shown in FIG. 1 includes a tank reactor equipped with a reaction tank 1 and a stirrer 4, an esterification reaction tank 31 connected to an outlet 1a of the reaction tank 1 via a line 21, and an esterification reaction tank. 31 and a recycle loop 32 connected via a line 23.
  • An SO 3 gas introduction line 8 and an exhaust gas line 10 are connected to the upper portion of the reaction tank 1 so that SO 3 gas can be supplied into the reaction tank 1 or discharged from the reaction tank 1. Yes.
  • a continuous multistage stirring tank 31a and a buffer 31b having three mixing spaces are used as the esterification reaction tank 31.
  • An alcohol supply line 26 is connected to the continuous multistage agitation tank 31a so that lower alcohol can be supplied to the continuous multistage agitation tank 31a.
  • the recycle loop 32 includes a neutralization line 32a whose ends are connected to the line 23 and the line 24, and a circulation line 32b branched from both ends of the neutralization line 32a.
  • Two mixers 32c and 32d are provided on the neutralization line 32a.
  • An alkaline aqueous solution supply line 27 is connected to a portion between the mixer 32c and the mixer 32d. Alkaline aqueous solution can be supplied to this.
  • a pump 32e and a heat exchanger 32f are provided on the circulation line 32b so that the neutralized product can be cooled.
  • the sulfonated product is introduced into the continuous multistage agitation tank 31a, and lower alcohol is supplied from the alcohol supply line 26 and mixed. And the obtained mixture is hold
  • the heating temperature depends mainly on the carbon number of the acyl group of the ⁇ -SF salt contained in the paste, but is usually 100 ° C to 150 ° C, preferably 110 ° C to 140 ° C.
  • the heating time is usually 0.15 seconds to 10 minutes, preferably 0.3 seconds to 10 minutes.
  • the melting and concentration of the ⁇ -SF salt-containing paste can be performed by using a heat medium such as steam in a jacket portion of a thin film evaporator or the like.
  • the water content of the concentrated product is preferably 0.5% to 10%.
  • the concentrated product thus obtained may be subjected to the next cooling and solidification treatment as it is, or after the concentrated product is once cooled and solidified, it is heated again and melted, and this may be subjected to the next cooling and solidification treatment. Good.
  • FIG. 2 is an X-ray diffraction chart of the metastable solid (m) produced in Example 1 described later.
  • the length of the crushing rod is preferably 10 mm or more and 150 mm or less, and more preferably 15 mm to 100 mm.
  • the length of the cracking bar is not less than the lower limit of the above range, sufficient cracking power is obtained, and a flake-like ⁇ -SF salt-containing solid (m) excellent in fluidity and the like is obtained.
  • the crushing treatment can be performed by bringing the cooled solidified product into contact with a crushing rod of a crusher.
  • the tip peripheral speed of the crushing rod is preferably 0.3 to 3.5 m / s, and more preferably 1.0 to 3.0 m / s.
  • the amount is not less than the lower limit of the above range, sufficient crushing force can be obtained, and as a result, a flake-like ⁇ -SF salt-containing solid (m) excellent in fluidity and the like can be obtained.
  • the amount is not more than the upper limit of the above range, the crushing force does not become excessive, and the resulting ⁇ -SF salt-containing solid matter (m) becomes difficult to generate dust.
  • the length of the crushing bar is preferably determined in relation to the thickness of the plate-like solid.
  • the orientation of the axis of the crushing bar with respect to the axis of the rotation axis may or may not be vertical.
  • a plurality of crushing rods are arranged side by side along the axial direction of the rotating shaft.
  • the tip of the crushing bar may be flat or pointed.
  • tetragon and a triangle here include the shape by which the top part is cut off with the straight line or the curve.
  • the crushing rod is also preferably made of a material such as SUS from the viewpoint of preventing corrosion, like the rotating shaft.
  • the first crushing portion (sometimes referred to as “pre-rotor”) is coarsely crushed, and then the second crushing portion (also referred to as “pin rotor”) is finely crushed, Since crushing strength without excess and deficiency can be given, it is preferable.
  • the first crushing portion is composed of one cylindrical rotating shaft having a diameter of 50 mm and a length of 580 mm and 20 crushing rods provided on the outer peripheral surface.
  • the crushing rod has a diameter of 14 mm and a long length. It has a cylindrical shape with a length of 60 mm and has one end attached so as to extend outward in the radial direction, and the crushing rods are arranged on the outer peripheral surface of the rotating shaft at intervals of 90 ° in the rotating direction.
  • the second crushing portion is composed of one cylindrical rotating shaft having a diameter of 110 mm and a length of 580 mm and 81 crushing rods provided on the outer peripheral surface, and the crushing rod has a diameter of 9 mm and a length. It has a cylindrical shape of 20 mm, and one end thereof is attached to the rotating shaft so as to extend radially outward.
  • the crushing rods are arranged at 120 ° intervals in the rotating direction on the outer peripheral surface of the rotating shaft. It is preferable that a crushing bar row is constructed (that is, each crushing bar row is composed of three crushing rods).
  • first crushing bar row and the second crushing bar The crushing rods are arranged so that the crushing rods are shifted by 60 ° in the rotation direction, and from the third crushing rod row adjacent to the second crushing rod row and the fourth crushing rod row adjacent thereto. Also in the second pair configured, like the first pair, the third cracking bar row and the fourth cracking rod row are arranged so that the cracking rod rows are shifted by 60 ° in the rotation direction.
  • the crushing rods of the first crushing bar row and the crushing rods of the third crushing rod row are arranged so as to be shifted by 5 ° in the rotation direction, and from the fifth crushing rod row to the 27th crushing rod row.
  • odd-numbered columns and even-numbered columns form a pair, and the odd-numbered columns in each pair are arranged in the rotational direction so as to be shifted by 5 ° from the adjacent odd-numbered columns.
  • the crusher by Nippon Belting Co., Ltd. is mentioned, for example.
  • the contact between the cooled solidified material and the crushing rod may be carried out by conveying the cooled solidified material such as a plate-shaped solid material at a constant speed toward the rotating shaft provided with the crushing rod.
  • the cooled solidified product may be moved by rotating the rotating shaft provided with the crushing rod, but it is preferable to transport and contact the cooled solidified product at a constant speed.
  • the conveying speed at that time is preferably 0.005 to 0.6 times, more preferably 0.01 to 0.5 times the tip peripheral speed of the crushing rod.
  • the distance between the rotating shaft and the cooled solidified product at the time of contact is such that the tip of the shortest crushing rod provided on the rotating shaft is about 1/4 of the thickness of the plate-like solid material, preferably 1 It is preferable to set the distance to reach about / 2.
  • step (I-1) of performing the sulfonation treatment to the crushing treatment a flaky ⁇ -SF salt-containing solid (m) in a metastable state is obtained.
  • Step (I-2) In the step (I-2), the ⁇ -SF salt-containing solid (m) in the metastable state obtained in the above step (I-1) is crystallized. Thereby, an ⁇ -SF salt-containing solid (s) in a stable state is obtained.
  • the crystallization method include the following methods (i) to (iii).
  • An ⁇ -SF salt-containing solid substance (m) in a metastable state (hereinafter sometimes referred to as a metastable solid (m)) is maintained at a pressure of 30 ° C. or more and 20000 Pa or less for at least 48 hours. Method (hereinafter, also referred to as method (i)).
  • the melt obtained by melting the metastable solid (m) is an ⁇ -SF salt-containing solid (s) (hereinafter referred to as “stable”) that is not lower than the melting point of the metastable solid (m) and is in a stable state.
  • stable ⁇ -SF salt-containing solid
  • a method of maintaining the solid for 5 minutes or more at a temperature below the melting point of the stable solid (s) (hereinafter sometimes referred to as method (ii)).
  • step (iii) A method of applying a shearing force at a speed (hereinafter sometimes referred to as method (iii)). That is, in step (I-2), (i) the flaky ⁇ -SF salt-containing solid matter (m) obtained in step (I-1) is at least 48 at a pressure of 30 ° C. or more and 20000 Pa or less.
  • the metastable solid (m) is maintained at a pressure of 30 ° C. or more and 20000 Pa or less for at least 48 hours.
  • the temperature is less than 30 ° C., crystallization proceeds, but the rate is very slow. Therefore, it is preferable to maintain the temperature at 30 ° C. or higher and 40 ° C. or lower.
  • the maintenance temperature need not be a constant temperature as long as it is 30 ° C. or higher. For example, the maintenance temperature may be intermittently heated and cooled.
  • the method for maintaining the temperature is not particularly limited, and examples thereof include a method in which a metastable solid (m) is placed in a container and its external environment is adjusted to a conditional temperature, or the container itself is adjusted to a conditional temperature. Moreover, the method of flowing the airflow of condition temperature inside a container may be used.
  • a container a silo, a flexible container bag, a drum can, a craft bag, a polyethylene bag, etc. can be used.
  • the pressure is 20000 Pa or less, preferably 12000 Pa or less, more preferably 500 to 8000 Pa, and still more preferably 3000 Pa to 7000 Pa. If it is 20000 Pa or less, the metastable solid (m) is difficult to solidify.
  • the pressure referred to here is the pressure at the bottom of the container and is defined by the following equation.
  • Pressure [Pa] Packing mass [kg] ⁇ g [m / s 2 ] / Container bottom area [m 2 ]
  • g gravitational acceleration.
  • the metastable solid (m) When the maintenance time is 48 hours or more, the conversion from the metastable solid (m) to the stable solid (s) proceeds sufficiently. If the maintenance time is excessively long, it leads to a decrease in the factory operation rate and the like, and preferably 72 hours or more and 6 weeks or less. While maintaining the metastable solid (m) under the above-mentioned conditions, the metastable solid (m) may be put in a container to be in a sealed state or an open state, but if it is in an open state, there is a possibility of moisture absorption. Therefore, it is better to avoid contact with moist air.
  • the most preferable method (i) is a condition in which the temperature is maintained at 3000 Pa to 7000 Pa for 200 hours to 700 hours at a temperature of 30 ° C. to 35 ° C. Since the stable solid (s) thus obtained has a high melting point of 50 ° C. or higher, it is difficult to melt even when stored at a high temperature.
  • the melt obtained by melting the metastable solid (m) is used for 5 minutes or more at a temperature not lower than the melting point of the metastable solid (m) and not higher than the melting point of the stable solid (s). maintain.
  • the ⁇ -SF salt obtained from the fatty acid alkyl ester of the above formula (1) specifically, it is preferably maintained at a temperature of 40 ° C. or more and less than 90 ° C., and is maintained at a temperature of 50 ° C. or more and less than 80 ° C. More preferably.
  • the temperature is within the above range, the metastable solid (m) is easily converted to the stable solid (s) in a short time.
  • the most preferred method (ii) is a condition of maintaining at a temperature of 55 ° C. to 75 ° C. for 10 minutes to 500 minutes.
  • the melt obtained by melting the metastable solid (m) is 100 (1 / s) at a temperature not lower than the melting point of the metastable solid (m) and not higher than 80 ° C.
  • a shear force is applied at the above shear rate.
  • the metastable solid (m) melt was converted to a stable state by maintaining it at a predetermined temperature for a predetermined time, but in the method (iii), instead of maintaining the predetermined time, a shear force give. By applying a shearing force, the transition to a stable state is accelerated.
  • the means for applying the shearing force is not particularly limited, and examples thereof include various kneading apparatuses and extrusion granulating apparatuses. Specifically, KRC Kneader, Mazzoni S.K. p. Commercial products such as Milling Producer manufactured by a can be used.
  • the time for applying the shearing force is preferably 5 seconds or more and less than 5 minutes.
  • the most preferable method (iii) is a condition in which a shear force is applied at a shear rate of 200 to 5000 (1 / s) at a temperature of 55 to 75 ° C.
  • the stable solid (s) exhibits a heat absorption peak at a higher temperature and is more stable in the high temperature region than the metastable solid (m).
  • 3 shows the thermal analysis result of the metastable solid (m) obtained in Example 1 described later
  • FIG. 5 shows the stability obtained by crystallizing the metastable solid (m) of Example 1. It is a thermal analysis result of solid (s).
  • the moisture content of the stable solid (s) is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the lower limit is preferably 0.5% by mass. That is, the moisture content of the stable solid (s) is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 5% by mass or less.
  • the moisture content is within the above range, the storage stability of the stable solid (s) is excellent, and the adhesiveness is hardly increased even at a low temperature. Therefore, the handling property at the time of storage and transportation of the stable solid (s) is improved.
  • the stable solid (s) of MES when the moisture content is low, the absolute value of the heat endothermic peak around 70 ° C. to 90 ° C. tends to increase.
  • the heat absorption peak area S1 at 50 ° C. to 130 ° C. and the heat absorption peak area S2 at 0 ° C. to 130 ° C. are determined by using “automatic division integration” using software attached to the differential scanning calorimeter. Each can be obtained by performing processing.
  • the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 50 ° C. to 130 ° C. is S1.
  • the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 0 ° C. to 130 ° C. is S2.
  • step (II) the stable solid (s) obtained in step (I) is dissolved in water to produce an ⁇ -SF salt aqueous solution.
  • the temperature of water that dissolves the stable solid (s) is Ts (° C.)
  • Tmax the temperature of water that dissolves the stable solid (s)
  • Tmax ° C.
  • the water temperature Ts (° C.) is determined so that the temperature Ts (° C.) and the temperature Tmax (° C.) have the following relationship.
  • the temperature Ts (° C.) of the water is determined so that the temperature Ts (° C.) and the temperature Tmax (° C.) have the following relationship.
  • the temperature Ts (° C.) of water when the stable solid (s) is dissolved is adjusted according to the heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate of the stable solid (s) to be dissolved.
  • Tmax ° C.
  • an ⁇ -SF salt aqueous solution which is less likely to precipitate even under low temperature conditions of about 10 ° C. to 20 ° C. and has excellent low temperature stability can be obtained.
  • An ⁇ -SF salt aqueous solution excellent in low-temperature stability is easy to handle and is well mixed with other materials when a liquid detergent is produced. The effect of improving the low-temperature stability is obtained in a wide range of ⁇ -SF salt aqueous solution concentrations.
  • the anionic surfactant concentration of the ⁇ -SF salt aqueous solution is preferably 3 with respect to the total mass of the ⁇ -SF salt aqueous solution.
  • the content is in the range of 5% by mass to 25% by mass, more preferably in the range of 5% by mass to 20% by mass, the effect of improving the low temperature stability is remarkably obtained.
  • the structural balance in the aqueous solution of the stable solid (s) tends to be lost, thereby causing crystallization, that is, precipitation. It will be easier.
  • the stable solid (s) contains by-product methyl sulfate metal salt or fatty acid sulfonate metal salt or has a distribution in the carbon number of acyl groups ( ⁇ - In the case of a mixture of SF salts), the crystal structure of the stable solid (s) is complicated.
  • the structure of the ⁇ -SF salt in the aqueous solution also changes in a complex manner depending on the crystalline state at the time of dissolution. It is considered that the effect of stabilizing the structure of the stable solid (s) in the aqueous solution becomes remarkable by dissolving in water.
  • An ⁇ -SF salt-containing solid that does not satisfy the condition that the heat absorption peak area S1 at 50 ° C. to 130 ° C. is 50% or more of the heat absorption peak area S2 at 0 ° C. to 130 ° C. is dissolved in water.
  • the temperature of water is set within a range of ⁇ 5 ° C. from the heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate, the low temperature stability of the obtained aqueous solution is not improved. This is presumably because the structure of the ⁇ -SF salt in an aqueous solution is not stable when dissolved in water in a metastable state where the structure of the ⁇ -SF salt is not stable.
  • step (I) of obtaining a solid ⁇ -SF salt-containing solid in a stable state using a fatty acid alkyl ester as a starting material and a step (II) of dissolving the ⁇ -SF salt-containing solid in water at a temperature Ts (° C.)
  • step (I) includes a step (I-1) of preparing an ⁇ -SF salt-containing solid (m) in a metastable crystalline state, and the adjusted ⁇ -SF salt-containing solid (m) is crystallized.
  • the flaky ⁇ -SF salt-containing solid (m) obtained in the step (I-1) is at least 48 hours at a pressure of 30 ° C. or more and 20000 Pa or less.
  • the ⁇ -SF salt-containing solid (s) in the stable state has a heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when thermal analysis is performed with a differential scanning calorimeter. , 50% or more with respect to the heat absorption peak area S2 at 0 ° C. to 130 ° C.
  • the temperature Ts (° C.) is the temperature Tmax (° C.) when the heat absorption peak top temperature of the maximum heat flow rate observed when the solid matter is thermally analyzed by a differential scanning calorimeter is Tmax (° C.).
  • A-1 Trade name “Edenor ME C16-80 MY” manufactured by Emery. Fatty acid methyl ester which originated from palm oil, was esterified, added and mixed with methyl ester of acyl group having 16 carbon atoms in a predetermined ratio, hydrogenated, and subjected to total distillation (bottom cut).
  • A-2) “Pastel M16 (Fatty acid methyl ester manufactured by Lion Corporation)” and “Pastel M18 (Fatty acid methyl ester manufactured by Lion Corporation)” have the carbon number of the acyl group shown in Table 1. As a mixed mixture.
  • Sulfonated gas A gas produced by catalytic oxidation of SO 2 using dry air (dew point ⁇ 55 ° C.).
  • Methanol used in esterification treatment: Industrial grade (water content 1000 ppm or less).
  • Caustic soda used in neutralization treatment: Caustic soda obtained by diluting an industrial grade product (concentration of 48% by mass) with clean water.
  • Hydrogen peroxide solution used in bleaching treatment: Industrial grade hydrogen peroxide solution (35% by mass concentration: Junsei Chemical Co., Ltd.).
  • steps (I-1) and (I-2) were performed as follows, and ⁇ -SF salt-containing solids (B-1) to (B-4) which are stable solids (s) ) Were produced respectively.
  • ⁇ -SF salt-containing solid (B-5) that is a metastable solid (m) was produced.
  • step (I-1) the sulfonation treatment to the neutralization treatment were performed using the production system having the configuration shown in FIG.
  • the esterification tank is a jacketed agitation tank (10% dish-type end plate, 4 baffle plates) having an inner diameter of 600 mm and a container depth of 816 mm, and uses an agitating blade composed of 6 inclined turbine blades to flow downward. It was installed as follows. The stirring rotation speed was 277 rpm.
  • Neutralization treatment Next, the product obtained by the esterification treatment is added simultaneously and continuously with a 30% by mass aqueous sodium hydroxide solution in the vicinity of the stirring blade of the mixer, and mixed by stirring to perform a neutralization reaction. A sulfo fatty acid methyl ester salt (neutralized product) was produced.
  • the neutralized product was prepared so that the temperature of the obtained neutralized product was 80 ° C. and pH around 6.0. The pH was measured directly on the neutralized product (stock solution, 80 ° C.) flowing through the neutralization line with a pH meter (SHDM-135: manufactured by Toa DKK Co., Ltd.) installed in the neutralization line.
  • this neutralized product is fed at a feed rate of 180 to 200 kg / hr to a circulation loop type bleaching agent mixing line having a circulation line having a heat exchanger, and 35% hydrogen peroxide solution is added to the sulfonated product.
  • the amount of loop circulation was 15 times the amount of neutralized product newly added to the preliminary bleached product, and the pressure in the circulation loop pipe was 4 kg / cm 2 .
  • the temperature of the circulation loop was adjusted to 80 ° C. with a heat exchanger, and the residence time of the circulation loop was 10 minutes. Subsequently, this was introduced into a bleaching line of a distribution pipe system not shown, and the bleaching proceeded.
  • a jacketed double tube with adjustable temperature and pressure was used as the bleaching line.
  • the flow of the bleaching agent mixture was a piston flow, the pressure was 4 kg / cm 2 , the maximum temperature was adjusted to 80 ° C. or more, and the residence time was 180 minutes.
  • an ⁇ -SF salt-containing solid paste was obtained.
  • the obtained ⁇ -SF salt-containing solid paste was introduced into a vacuum thin film evaporator (heat transfer surface: 4 m 2 , manufactured by Ballestra) at 200 kg / hr, the inner wall heating temperature was 100 ° C. to 160 ° C., and the degree of vacuum was 0.
  • the solution was concentrated at 01 to 0.03 MPa and taken out as a concentrate (melt) at a temperature of 100 to 130 ° C.
  • a part of the concentrated product obtained here was cooled, and the concentration of ⁇ -SF salt contained in the concentrated product was measured by a methylene blue (MB) back titration method described in JIS K3362 as described later. did.
  • the concentrations of disodium salt (Di-Na), sodium methyl sulfate (MeSO 4 Na), and sodium sulfate (Na 2 SO 4 ) were measured by liquid chromatography as described later.
  • the resulting concentrated product is cooled from 100 ° C. to 130 ° C. to 20 ° C. to 30 ° C. in 0.5 minutes using a belt cooler (manufactured by Nippon Belting Co., Ltd.), and is a plate of metastable solid (m). A solid was obtained. Thereafter, the plate-like solid was crushed using a crusher (manufactured by Nippon Belting Co., Ltd.) to obtain a flaky MES metastable solid (m).
  • Step (I-2) The method (i) described above was employed to convert the metastable solid (m) to a stable solid (s). Specifically, based on a test using a flexible container bag, a polyethylene inner bag is put into a 430 L polypropylene flexible container bag (manufactured by Furuta Shoten), and obtained in step (I-1). 200 kg of flaky MES metastable solid (m) was added and allowed to stand at the temperature and pressure shown in Table 2 for the period shown in Table 2. In this way, an ⁇ -SF salt-containing solid (B-1) which is a stable solid (s) was obtained. Table 2 shows the analysis results of the obtained ⁇ -SF salt-containing solid (B-1).
  • the ⁇ -SF salt-containing solid (B-1) was subjected to thermal analysis with a differential scanning calorimeter as described later, and 50 ° C. to 130 ° C. with respect to the heat absorption peak area S 2 at 0 ° C. to 130 ° C.
  • the heat absorption peak top temperature Tmax (° C.) of the observed maximum heat flow rate was determined. The results are shown in Table 3.
  • the analysis was performed by the following method.
  • Moisture measurement The moisture was measured using a Karl Fischer moisture meter ("MKC-210" manufactured by Kyoto Electronics Industry Co., Ltd.). Specifically, 10 mg to 100 mg of sample was completely dissolved in Karl Fischer reagent at 15 to 25 ° C., and measurement was started. The measurement was automatically stopped as the electrode reaction ended. The amount of sample input was input to the Karl Fischer moisture meter touch panel to calculate the amount of moisture.
  • the titration bottle was capped and shaken vigorously, then allowed to stand, and the end point was the point where both layers had the same color tone against a white plate.
  • a blank test (the same test as described above except that no sample was used) was performed, and the anionic surfactant concentration was calculated from the difference in titer.
  • the anionic surfactant concentration is the total concentration of the ⁇ -SF salt, which is a cleaning active ingredient, and the ⁇ -sulfo fatty acid dialkali salt (di-salt), which is one of by-products. It is.
  • Ratio of ⁇ -sulfo fatty acid disodium salt in anionic surfactant Standard product of ⁇ -sulfo fatty acid disodium salt (hereinafter also referred to as “Di-Na”) 0.02, 0.05, 0. 1 g was accurately weighed into a 200 mL volumetric flask, about 50 mL of water and about 50 mL of ethanol were added and dissolved using ultrasonic waves. After dissolution, the mixture was cooled to about 25 ° C., and methanol was accurately added up to the marked line to obtain a standard solution. About 2 mL of this standard solution was filtered using a 0.45 ⁇ m chromatographic disk, followed by high performance liquid chromatographic analysis under the following measurement conditions to prepare a calibration curve from the peak area.
  • ⁇ -SF salt-containing solid 1.5 g was accurately weighed into a 200 mL volumetric flask, and about 50 mL of water and about 50 mL of ethanol were added and dissolved using ultrasonic waves. After dissolution, the mixture was cooled to about 25 ° C., and methanol was accurately added up to the marked line to make a test solution. About 2 mL of the test solution was filtered using a 0.45 ⁇ m chromatographic disk and then analyzed by high performance liquid chromatography under the same measurement conditions as described above. The concentration of Di-Na in the sample solution was analyzed using the calibration curve prepared above. Asked. In Table 2, the concentration of Di-Na when the anionic surfactant concentration is 100% by mass is described as “Di-Na amount in 100% by mass of anionic surfactant”.
  • Sodium sulfate concentration and methyl sulfate concentration (mass%) Accurately weigh 0.02, 0.04, 0.1, and 0.2 g of sodium sulfate and methyl sulfate, respectively, into a 200 mL volumetric flask, add ion-exchanged water (distilled water) to the marked line, It was dissolved using sonic waves. After dissolution, the mixture was cooled to about 25 ° C. and used as a standard solution.
  • the area S1 and the area S2 were obtained by performing an “automatic division integration” process using software attached to the differential scanning calorimeter.
  • an exothermic peak is observed at 50 ° C. to 130 ° C.
  • the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 50 ° C. to 130 ° C. is S1
  • the exothermic peak is generated at 0 to 130 ° C.
  • S2 the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 0 ° C. to 130 ° C.
  • Examples 1 to 10, Comparative Examples 1 to 7 In each Example and each Comparative Example, as shown in Table 3, the ⁇ -SF salt-containing solids (B-1) to (B-5) obtained in each Production Example were dissolved in water, and 2.5 kg An ⁇ -SF salt-containing aqueous solution was prepared.
  • the amount of the ⁇ -SF salt-containing solids (B-1) to (B-5) dissolved in water is such that the concentration of the anionic surfactant in the obtained ⁇ -SF salt-containing aqueous solution is the value shown in Table 3.
  • Decided to be a 5 L beaker, a stirring motor, a 45-degree inclined paddle (9 cm), a baffle plate (4 sheets), and the like were used.
  • each example employs a stable solid (s) of an ⁇ -SF salt-containing solid, which is dissolved in water at an appropriate temperature to obtain an aqueous solution. Excellent stability.
  • the ⁇ -SF salt to be dissolved is not a stable solid (s), or both of them, an aqueous solution excellent in low-temperature stability cannot be obtained. It was.
  • the method for producing an ⁇ -sulfo fatty acid alkyl ester salt aqueous solution of the present invention is extremely important industrially because it can produce an ⁇ -SF salt aqueous solution that hardly causes precipitation even under low temperature conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

This method involves dissolving a solid substance containing α-sulfo fatty acid alkyl ester salt in water of a temperature Ts(°C) to produce an aqueous solution of the α-sulfo fatty acid alkyl ester salt, wherein the heat absorption peak area S1 of the solid substance at 50°C-130°C observed during thermal analysis by differential scanning thermal analyzer is 50% or greater than the heat absorption peak area S2 at 0°C-130°C, and, defining Tmax (°C) as the heat absorption peak top temperature of the heat flow maximum value observed during thermal analysis of the solid substance by differential scanning thermal analyzer, the temperature Ts (°C) has the following relation with the temperature Tmax (°C). Tmax-5 ≦ Ts ≦ Tmax+5

Description

α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法Method for producing α-sulfo fatty acid alkyl ester salt aqueous solution
 本発明は、α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法に関する。
 本願は、2013年3月18日に、日本に出願された特願2013-055531号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing an aqueous α-sulfo fatty acid alkyl ester salt solution.
This application claims priority based on Japanese Patent Application No. 2013-055531 filed in Japan on March 18, 2013, the contents of which are incorporated herein by reference.
 アニオン界面活性剤であるα-スルホ脂肪酸アルキルエステル塩(以下、「α-SF塩」ともいう。)は、優れた洗浄力を有するとともに、生分解性が良好で環境に対する影響が少ないことから、洗浄剤材料としての性能が高く評価されており、特に衣料用洗剤に広く用いられている。
 α-SF塩を液体洗剤に配合する場合には、配合のしやすさ、ハンドリングのしやすさ等から、α-SF塩の水溶液を調製し、前記水溶液を他の材料と混合する方法が一般的である。α-SF塩の水溶液を調製する場合には、例えば、脂肪酸メチルエステルを出発原料とし、スルホン化処理、エステル化処理、中和処理等を行って、α-SF塩を高濃度で含有するペーストを得て、前記ペーストを水に溶解する方法がある(例えば特許文献1参照。)。
Α-sulfo fatty acid alkyl ester salt (hereinafter also referred to as “α-SF salt”), which is an anionic surfactant, has excellent detergency, good biodegradability, and little impact on the environment. It is highly evaluated for its performance as a cleaning material, and it is widely used especially for garment detergents.
When blending α-SF salt into a liquid detergent, it is common to prepare an aqueous solution of α-SF salt and mix the aqueous solution with other materials for ease of blending and handling. Is. When preparing an aqueous solution of α-SF salt, for example, a paste containing a high concentration of α-SF salt by using fatty acid methyl ester as a starting material, followed by sulfonation, esterification, neutralization, etc. And the paste is dissolved in water (for example, see Patent Document 1).
国際公開第2008/75770号International Publication No. 2008/75770
 しかしながら、α-SF塩の水溶液は、例えば10~20℃程度の低温条件下では析出が生じ、流動性が低下するという問題がある。このようなα-SF塩水溶液はハンドリングしにくく、また、液体洗剤を製造する際等に、他の材料と充分に混ざりにくい、均一な濃度で添加できない等の問題がある。 However, an aqueous solution of α-SF salt has a problem that, for example, precipitation occurs under a low temperature condition of about 10 to 20 ° C. and fluidity is lowered. Such an α-SF salt aqueous solution is difficult to handle, and has problems such as being difficult to mix with other materials and not being added at a uniform concentration when producing a liquid detergent.
 本発明の目的は、低温条件下でもα-SF塩の析出が生じにくいα-SF塩水溶液の製造方法を提供することである。 An object of the present invention is to provide a method for producing an α-SF salt aqueous solution in which α-SF salt is hardly precipitated even under low temperature conditions.
 本発明者は鋭意検討した結果、示差走査熱分析計(DSC)での熱分析により、特定の結晶状態にあることが確認されたα-SF塩含有固形物を特定の温度の水に溶解させて得られた水溶液は、低温条件下でもα-SF塩の析出が生じにくいことを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor dissolved an α-SF salt-containing solid that was confirmed to be in a specific crystal state by thermal analysis using a differential scanning calorimeter (DSC) in water at a specific temperature. The aqueous solution obtained in this way was found to be less likely to precipitate α-SF salt even under low temperature conditions, and the present invention was completed.
 本発明は以下の構成を有する。
 すなわち、
 α-スルホ脂肪酸アルキルエステル塩を含有する固形物を温度Ts(℃)の水に溶解させ、α-スルホ脂肪酸アルキルエステル塩水溶液を製造する方法であって、前記固形物は、示差走査熱分析計で熱分析した際に観測される50℃~130℃における熱吸収ピーク面積S1が、0℃~130℃における熱吸収ピーク面積S2に対して50%以上、100%以下であり、前記温度Ts(℃)は、前記固形物を示差走査熱分析計で熱分析した際に観測される熱流量最大値の熱吸収ピークトップ温度をTmax(℃)とした場合に、前記温度Tmax(℃)との間に下記の関係を有する、α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法。
 Tmax-5≦Ts≦Tmax+5
The present invention has the following configuration.
That is,
A method for producing an α-sulfo fatty acid alkyl ester salt aqueous solution by dissolving a solid material containing an α-sulfo fatty acid alkyl ester salt in water at a temperature Ts (° C.), wherein the solid is a differential scanning calorimeter. The heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when performing a thermal analysis at 50 ° C. to 130 ° C. is 50% or more and 100% or less with respect to the heat absorption peak area S 2 at 0 ° C. to 130 ° C., and the temperature Ts ( ° C) is the temperature Tmax (° C) when the heat absorption peak top temperature of the maximum heat flow rate observed when the solid is thermally analyzed by a differential scanning calorimeter is Tmax (° C). A method for producing an α-sulfo fatty acid alkyl ester salt aqueous solution having the following relationship therebetween.
Tmax-5 ≦ Ts ≦ Tmax + 5
 本発明のα-スルホ脂肪酸アルキルエステル塩(以下、α-SF塩ということがある。)水溶液の製造方法によれば、低温条件下でもα-SF塩の析出が生じにくいα-SF塩水溶液を製造できる。 According to the method for producing an α-sulfo fatty acid alkyl ester salt (hereinafter sometimes referred to as α-SF salt) aqueous solution of the present invention, an α-SF salt aqueous solution in which precipitation of α-SF salt is unlikely to occur even under low temperature conditions. Can be manufactured.
本発明に係るα-SF塩の製造システムの一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of an α-SF salt production system according to the present invention. 準安定な結晶状態にあるα-SF塩含有固形物(以下、準安定固体ともいう。)(m)のX線回折チャートである。3 is an X-ray diffraction chart of an α-SF salt-containing solid substance (hereinafter also referred to as a metastable solid) (m) in a metastable crystalline state. 準安定固体(m)の一例について、示差走査熱分析計での熱分析結果を示すDSCチャートである(実施例1)。It is a DSC chart which shows the thermal analysis result in a differential scanning calorimeter about an example of metastable solid (m) (Example 1). 安定状態にあるα-SF塩含有固形物(以下、安定固体ともいう。)(s)の一例について、示差走査熱分析計での熱分析結果を示すDSCチャートである。6 is a DSC chart showing thermal analysis results with a differential scanning calorimeter for an example of an α-SF salt-containing solid in a stable state (hereinafter also referred to as stable solid) (s). 図3の準安定固体(m)を結晶化して得られた安定固体(s)について、示差走査熱分析計での熱分析結果を示すDSCチャートである(実施例1)。It is a DSC chart which shows the thermal analysis result in a differential scanning calorimeter about the stable solid (s) obtained by crystallizing the metastable solid (m) of FIG. 3 (Example 1). 吸熱量を算出するために基準となるベースライン及びピーク分割の仕方を示す模式図である。It is a schematic diagram which shows the base line used as a reference | standard in order to calculate endothermic amount, and the method of peak division.
 本発明は、α-SF塩を含有する固形物を水に溶解させ、α-SF塩水溶液を製造する方法である。本発明では、水に溶解させる固形物として、示差走査熱分析計で熱分析した際に観測される50℃~130℃における熱吸収ピーク面積S1が、0℃~130℃における熱吸収ピーク面積S2に対して50%以上、100%以下となる、特定の安定な結晶状態(以下、「安定状態」ともいう。)にある固形物を用いる。そして、前記固形物を溶解させる水の温度を特定の温度に制御する。
 以下、脂肪酸アルキルエステルを出発原料として、上述の安定状態にあるフレーク状等のα-SF塩含有固形物を得る工程(I)(以下、工程(I)ともいう。)と、前記α-SF塩含有固形物を特定の温度の水に溶解させる工程(II)(以下、工程(II)ともいう。)と、を有する製造方法を例示して、本発明について詳細に説明する。
The present invention is a method for producing an α-SF salt aqueous solution by dissolving a solid containing an α-SF salt in water. In the present invention, as a solid matter dissolved in water, the heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when thermal analysis is performed with a differential scanning calorimeter is the heat absorption peak area S2 at 0 ° C. to 130 ° C. Therefore, a solid in a specific stable crystal state (hereinafter also referred to as “stable state”) that is 50% or more and 100% or less is used. And the temperature of the water which dissolves the said solid substance is controlled to specific temperature.
Hereinafter, a process (I) (hereinafter also referred to as process (I)) for obtaining a solid substance containing an α-SF salt in a flaky state and the like described above using a fatty acid alkyl ester as a starting material, and the α-SF The present invention will be described in detail by exemplifying a production method having a step (II) of dissolving a salt-containing solid in water at a specific temperature (hereinafter also referred to as step (II)).
<工程(I)>
 工程(I)では、まず、準安定な結晶状態(以下、「準安定状態」ともいう。)にあるα-SF塩含有固形物(m)を調製し(工程(I-1))、ついで、前記α-SF塩含有固形物(m)を結晶化して、安定状態にあるα-SF塩含有固形物(s)を得る(工程(I-2))。
 即ち、 工程(I)は、準安定な結晶状態にあるα-SF塩含有固形物(m)を調製する工程(I-1)と、前記調整したα-SF塩含有固形物(m)を結晶化して、安定状態にあるα-SF塩含有固形物(s)を得る工程(I-2)とを含む。
 以下、準安定状態にあるα-SF塩含有固形物(m)のことを準安定固体(m)と言う場合がある。また、安定状態にあるα-SF塩含有固形物(s)のことを安定固体(s)と言う場合がある。
<Process (I)>
In step (I), first, an α-SF salt-containing solid (m) in a metastable crystalline state (hereinafter also referred to as “metastable state”) is prepared (step (I-1)), and then Then, the α-SF salt-containing solid (m) is crystallized to obtain an α-SF salt-containing solid (s) in a stable state (step (I-2)).
That is, the step (I) comprises the step (I-1) of preparing the α-SF salt-containing solid (m) in a metastable crystalline state and the adjusted α-SF salt-containing solid (m). Crystallization to obtain an α-SF salt-containing solid (s) in a stable state (I-2).
Hereinafter, the α-SF salt-containing solid (m) in a metastable state may be referred to as a metastable solid (m). In addition, the α-SF salt-containing solid (s) in a stable state may be referred to as a stable solid (s).
 準安定固体(m)と安定固体(s)は、示差走査熱分析計による熱分析で判別できる。
詳しくは後述するが、準安定固体(m)は、示差走査熱分析計で熱分析した際に観測される50℃~130℃における熱吸収ピーク面積が、0℃~130℃における熱吸収ピーク面積に対して、0%以上、50%未満である固体である。
一方、安定固体(s)は、示差走査熱分析計で熱分析した際に観測される50℃~130℃における熱吸収ピーク面積S1が、0℃~130℃における熱吸収ピーク面積S2に対して、50%以上、100%以下となり、また、示差走査熱分析計で熱分析した際に観測される熱流量最大値の熱吸収ピークトップ温度Tmax(℃)が、50℃以上、130℃以下である固体である。
本発明で規定する「50℃~130℃における熱吸収ピーク面積S1」の「0℃~130℃における熱吸収ピーク面積S2」に対する割合は、示差走差熱分析計を用いてアルミパン又はステンレスパンに分析対象を入れて所定昇温速度で昇温し、吸熱、発熱量の測定をすることにより決定することができる。この時、0℃~130℃において発熱ピークが観察されることがあるが、この場合には、50℃以上の吸熱ピークの吸熱量から発熱ピークの発熱量の絶対値を差し引いた値を、50℃~130℃における熱吸収ピーク面積S1とする。0℃~130℃における熱吸収ピーク面積S2についても同様に、吸熱ピークの吸熱量から発熱ピークの発熱量の絶対値を差し引いた値を全吸熱量として用いる。
なお、吸熱量を算出するために基準となるベースラインは、吸熱ピーク前後の直線部分結ぶ直線により定義される。図6に示した模式図を見れば、当業者であればベースラインの決定及びピーク分割の仕方を容易に理解できるであろう。
The metastable solid (m) and the stable solid (s) can be distinguished by thermal analysis using a differential scanning calorimeter.
As will be described in detail later, the metastable solid (m) has a heat absorption peak area at 50 ° C. to 130 ° C. observed during thermal analysis with a differential scanning calorimeter, and a heat absorption peak area at 0 ° C. to 130 ° C. In contrast, the solid is 0% or more and less than 50%.
On the other hand, in the stable solid (s), the heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when thermal analysis is performed with a differential scanning calorimeter is compared with the heat absorption peak area S2 at 0 ° C. to 130 ° C. The heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate observed when thermal analysis is performed with a differential scanning calorimeter is 50 ° C. or more and 130 ° C. or less. It is a solid.
The ratio of “heat absorption peak area S1 at 50 ° C. to 130 ° C.” to “heat absorption peak area S2 at 0 ° C. to 130 ° C.” defined in the present invention is determined by using a differential scanning calorimeter. It can be determined by putting the object of analysis into the sample, raising the temperature at a predetermined rate of temperature rise, and measuring the endothermic and exothermic amounts. At this time, an exothermic peak may be observed at 0 ° C. to 130 ° C. In this case, a value obtained by subtracting the absolute value of the exothermic peak from the endothermic amount of the endothermic peak at 50 ° C. or higher is 50 It is assumed that the heat absorption peak area S1 is in the range from 1 to 130 ° C. Similarly, for the heat absorption peak area S2 at 0 ° C. to 130 ° C., a value obtained by subtracting the absolute value of the exothermic peak from the endothermic amount of the endothermic peak is used as the total endothermic amount.
Note that a baseline serving as a reference for calculating the endothermic amount is defined by a straight line connecting straight portions before and after the endothermic peak. From the schematic diagram shown in FIG. 6, those skilled in the art can easily understand how to determine the baseline and split the peak.
[工程(I-1)]
 工程(I-1)では、脂肪酸アルキルエステルをスルホン化ガスによりスルホン化するスルホン化処理と;スルホン化処理で得られたスルホン化物に低級アルコールを加えてエステル化するエステル化処理と;エステル化処理で得られたエステル化物を中和する中和処理と;必要に応じて実施される、中和処理で得られた中和物を漂白する漂白処理とを行うことにより、α-SF塩含有ペーストを得る。ついで、前記ペーストを加熱、濃縮して濃縮品を得る濃縮処理と;濃縮品を冷却して固化し、板状等の冷却固化物を得る冷却固化処理と;冷却固化物を解砕する解砕処理とを行う。これにより、準安定状態にあるα-SF塩含有固形物フレーク(m)を得る。
 即ち、前記工程(I-1)は、脂肪酸アルキルエステルをスルホン化ガスによりスルホン化するスルホン化処理と;前記スルホン化処理で得られたスルホン化物に低級アルコールを加えてエステル化するエステル化処理と;前記エステル化処理で得られたエステル化物を中和する中和処理と;前記中和処理により得られたα-SF塩含有ペーストを加熱、濃縮して濃縮品を得る濃縮処理と;前記濃縮品を冷却して固化し、冷却固化物を得る冷却固化処理と;前記冷却固化処理により得られた冷却固化物を解砕する解砕処理とを含む。
前記前記工程(I-1)は、さらに、前記中和処理で得られた中和物を漂白する漂白処理を含んでもよい。
 なお、ここでいう「ペースト状」とは、流動性のある半固形状態を意味する。
「フレーク」とは、薄片状の固体を意味する。
[Step (I-1)]
In step (I-1), a sulfonation treatment in which the fatty acid alkyl ester is sulfonated with a sulfonation gas; an esterification treatment in which a lower alcohol is added to the sulfonated product obtained by the sulfonation treatment and esterification; and an esterification treatment An α-SF salt-containing paste by performing neutralization treatment for neutralizing the esterified product obtained in step 1; and bleaching treatment for bleaching the neutralized product obtained by neutralization treatment, which is performed as necessary Get. Next, the paste is heated and concentrated to obtain a concentrated product; cooling and solidifying the concentrated product to obtain a cooled solidified product such as a plate; and crushing to crush the cooled solidified product. Process. As a result, α-SF salt-containing solid flakes (m) in a metastable state are obtained.
That is, the step (I-1) includes a sulfonation treatment in which a fatty acid alkyl ester is sulfonated with a sulfonation gas; and an esterification treatment in which a lower alcohol is added to the sulfonated product obtained by the sulfonation treatment to perform esterification. A neutralization treatment for neutralizing the esterified product obtained by the esterification treatment; a concentration treatment for obtaining a concentrated product by heating and concentrating the paste containing α-SF salt obtained by the neutralization treatment; Cooling and solidifying the product by cooling and solidifying the product to obtain a cooled solidified product; and crushing treatment for crushing the cooled and solidified product obtained by the cooling and solidifying treatment.
The step (I-1) may further include a bleaching treatment for bleaching the neutralized product obtained by the neutralization treatment.
The “paste-like” here means a semi-solid state with fluidity.
“Flake” means a flaky solid.
(スルホン化処理) 
スルホン化処理は、好ましくは、硫酸ナトリウム等の着色抑制剤の存在下で、脂肪酸アルキルエステルとスルホン化ガスとを接触させて脂肪酸アルキルエステルをスルホン化する(ガス接触操作)ことにより、α-スルホ脂肪酸アルキルエステル(以下、「α-SF酸」ともいう。)を含むスルホン化物を得る処理である。着色抑制剤は、スルホン化処理以外にも、エステル化処理で添加してもよい。
(Sulfonation treatment)
The sulfonation treatment is preferably carried out by bringing a fatty acid alkyl ester into contact with a sulfonated gas in the presence of a coloring inhibitor such as sodium sulfate to sulfonate the fatty acid alkyl ester (gas contact operation), thereby producing α-sulfo. This is a treatment for obtaining a sulfonated product containing a fatty acid alkyl ester (hereinafter also referred to as “α-SF acid”). The coloring inhibitor may be added by an esterification treatment in addition to the sulfonation treatment.
 具体的には、例えば以下の方法により行う。
 まず、容量が200~4000Lの反応槽内に脂肪酸アルキルエステルを、例えば92kg仕込み、脂肪酸アルキルエステルが融解する温度、例えば約70℃で加熱し、原料液相とする。次いで、この原料液相に、スルホン化ガスを好ましくは一定流速(例えば、10m/秒以上が好ましく、50~200m/秒がより好ましい。10m/秒未満の場合は気泡が大きくなってしまう場合がある。)で総添加量が脂肪酸アルキルエステルに対してモル比で、例えば1.2モルになるよう導入し、ガススパージャーから複数の気泡を発生させると共に、撹拌機の回転によって原料液相中に気泡を均一に分散させる。スルホン化処理を着色抑制剤の存在下で行う場合には、この回転によって着色抑制剤の粒子が原料液相中に均一に分散する。
着色抑制剤の使用量は、例えば脂肪酸アルキルエステルに対して0.25%~10%が好ましい。
 着色抑制剤としては、具体的には硫酸ナトリウムが好ましい。
 なおここでいう「均一」とは、粒子が沈降せずに浮遊している状態を意味する。 
Specifically, for example, the following method is used.
First, for example, 92 kg of fatty acid alkyl ester is charged into a reaction tank having a capacity of 200 to 4000 L, and heated at a temperature at which the fatty acid alkyl ester melts, for example, about 70 ° C. to obtain a raw material liquid phase. Next, a sulfonated gas is preferably added to the raw material liquid phase at a constant flow rate (for example, preferably 10 m / sec or more, more preferably 50 to 200 m / sec. If it is less than 10 m / sec, bubbles may become large. The total amount added is, for example, 1.2 moles with respect to the fatty acid alkyl ester, and a plurality of bubbles are generated from the gas sparger. Disperse air bubbles uniformly. When the sulfonation treatment is performed in the presence of a coloring inhibitor, the particles of the coloring inhibitor are uniformly dispersed in the raw material liquid phase by this rotation.
The amount of the coloring inhibitor used is preferably 0.25% to 10% with respect to the fatty acid alkyl ester, for example.
Specifically, as the coloring inhibitor, sodium sulfate is preferable.
Here, “uniform” means a state in which particles are floating without being settled.
 脂肪酸アルキルエステルは、下記(1)式で表される。
 R-CH-COOR・・・(1)
The fatty acid alkyl ester is represented by the following formula (1).
R 1 —CH 2 —COOR 2 (1)
 (1)式中、Rは炭素数8~20の直鎖状又は分岐鎖状のアルキル基又はアルケニル基であり、Rは炭素数1~6の直鎖状又は分岐鎖状のアルキル基である。 
 Rの炭素数は10~18が好ましく、10~16がより好ましい。すなわち、脂肪酸アルキルエステルのアシル基(R-CH-CO-)の炭素数は、12~20が好ましく、12~18がより好ましい。また、Rの炭素数は1~3が好ましい。
脂肪酸アルキルエステルとしては、脂肪酸メチルエステルが好ましい。
脂肪酸メチルエステルとしては、例えば、脂肪酸メチルエステルの総質量を100質量%としたとき、炭素数12の脂肪酸メチルエステルが0.1~0.3質量%、炭素数14の脂肪酸メチルエステルが0.7~1.2質量%、炭素数16の脂肪酸メチルエステルが66.0~89.5質量%、炭素数18の脂肪酸メチルエステルが9.5~32.0質量%及び炭素数20以上の脂肪酸メチルエステルが含まれてもよい、脂肪酸メチルエステルの混合物であってもよい。
(1) In the formula, R 1 is a linear or branched alkyl group or alkenyl group having 8 to 20 carbon atoms, and R 2 is a linear or branched alkyl group having 1 to 6 carbon atoms. It is.
R 1 preferably has 10 to 18 carbon atoms, and more preferably 10 to 16 carbon atoms. That is, the carbon number of the acyl group (R 1 —CH 2 —CO—) of the fatty acid alkyl ester is preferably from 12 to 20, and more preferably from 12 to 18. R 2 preferably has 1 to 3 carbon atoms.
As the fatty acid alkyl ester, a fatty acid methyl ester is preferable.
As the fatty acid methyl ester, for example, when the total mass of the fatty acid methyl ester is 100% by mass, the fatty acid methyl ester having 12 carbon atoms is 0.1 to 0.3% by mass, and the fatty acid methyl ester having 14 carbon atoms is 0.00. 7 to 1.2% by mass, fatty acid methyl ester having 16 carbon atoms, 66.0 to 89.5% by mass, fatty acid methyl ester having 18 carbon atoms, 9.5 to 32.0% by mass, and fatty acid having 20 or more carbon atoms It may be a mixture of fatty acid methyl esters, which may contain methyl esters.
 脂肪酸アルキルエステルは、牛脂、魚油、ラノリン等から誘導される動物系油脂;ヤシ油、パーム油、大豆油等から誘導される植物系油脂;α-オレフィンのオキソ法から誘導される合成脂肪酸アルキルエステル等のいずれでもよく、特に限定はされない。
 具体的には、脂肪酸アルキルエステルとして、ラウリン酸メチル、ラウリン酸エチル、ラウリン酸プロピル等のラウリン酸アルキルエステル;ミリスチン酸メチル、ミリスチン酸エチル、ミリスチン酸プロピル等のミリスチン酸アルキルエステル;パルミチン酸メチル、パルミチン酸エチル、パルミチン酸プロピル等のパルミチン酸アルキルエステル;ステアリン酸メチル、ステアリン酸エチル、ステアリン酸プロピル等のステアリン酸アルキルエステル;硬化牛脂脂肪酸メチル、硬化牛脂脂肪酸エチル、硬化牛脂脂肪酸プロピル等の硬化牛脂脂肪酸アルキルエステル;硬化魚油脂肪酸メチル、硬化魚油脂肪酸エチル、硬化魚油脂肪酸プロピル等の硬化魚油脂肪酸アルキルエステル;ヤシ油脂肪酸メチル、ヤシ油脂肪酸エチル、ヤシ油脂肪酸プロピル等のヤシ油脂肪酸アルキルエステル;パーム油脂肪酸メチル、パーム油脂肪酸エチル、パーム油脂肪酸プロピル等のパーム油脂肪酸アルキルエステル;パーム核油脂肪酸メチル、パーム核油脂肪酸エチル、パーム核油脂肪酸プロピル等のパーム核油脂肪酸アルキルエステル等を例示できる。
 これらは1種以上を使用できる。
Fatty acid alkyl esters are animal fats and oils derived from beef tallow, fish oil, lanolin and the like; vegetable fats and oils derived from coconut oil, palm oil, soybean oil and the like; synthetic fatty acid alkyl esters derived from the oxo method of α-olefins Any of these may be used and is not particularly limited.
Specifically, as the fatty acid alkyl ester, alkyl laurate such as methyl laurate, ethyl laurate, and propyl laurate; alkyl myristate such as methyl myristate, ethyl myristate, propyl myristate; methyl palmitate, Palmitic acid alkyl esters such as ethyl palmitate and propyl palmitate; Stearic acid alkyl esters such as methyl stearate, ethyl stearate and propyl stearate; Fatty acid alkyl ester; hydrogenated fish oil fatty acid methyl, hydrogenated fish oil fatty acid ethyl, hydrogenated fish oil fatty acid alkyl ester, etc .; coconut oil fatty acid methyl, coconut oil fatty acid ethyl, coconut oil fatty acid Palm oil fatty acid alkyl esters such as lopil; Palm oil fatty acid alkyl esters such as palm oil fatty acid methyl, palm oil fatty acid ethyl, palm oil fatty acid propyl; Palm kernel oil fatty acid methyl, palm kernel oil fatty acid ethyl, palm kernel oil fatty acid propyl, etc. A palm kernel oil fatty acid alkyl ester etc. can be illustrated.
One or more of these can be used.
 脂肪酸アルキルエステルは、不飽和度の指標であるヨウ素価が低い方が、色調と臭気の両観点において望ましく、ヨウ素価は0.5以下が好ましく、0.2以下がより好ましい。 A fatty acid alkyl ester having a lower iodine value, which is an index of unsaturation, is desirable in terms of both color tone and odor, and the iodine value is preferably 0.5 or less, more preferably 0.2 or less.
 スルホン化処理において脂肪酸アルキルエステルとスルホン化ガスとが接触すると、はじめに脂肪酸アルキルエステルのアルコキシ基にSOが挿入される反応が起こり、一分子のSOが付加した一分子付加体が生成する。さらにSOと反応してα位にスルホン基が導入され、二分子のSOが付加した二分子付加体が生成し、最後にアルコキシ基に挿入されたSOが脱離して、下記式(2)で表される化合物(α-スルホ脂肪酸アルキルエステル。以下、「α-SF酸」ともいう。)が生成する。スルホン化処理で得られる生成物(スルホン化物)中には、α-SF酸以外に、SOの一分子付加体、SOの二分子付加体、未反応の脂肪酸アルキルエステル及びその他の副生成物等が含まれる。 When the fatty acid alkyl ester and the sulfonated gas come into contact with each other in the sulfonation treatment, first, a reaction in which SO 3 is inserted into the alkoxy group of the fatty acid alkyl ester occurs, and a single molecule adduct in which one molecule of SO 3 is added is generated. Furthermore, it reacts with SO 3 to introduce a sulfone group at the α-position, thereby producing a bimolecular adduct in which bimolecular SO 3 is added. Finally, SO 3 inserted into the alkoxy group is eliminated, and the following formula ( 2) (α-sulfo fatty acid alkyl ester; hereinafter also referred to as “α-SF acid”) is formed. In products obtained by sulfonation (sulfonated products), in addition to α-SF acid, SO 3 monomolecular adduct, SO 3 bimolecular adduct, unreacted fatty acid alkyl ester and other by-products Things are included.
 R-CH(SOH)-COOR・・・(2)
 (2)式中、Rは(1)式中のRと同じであり、Rは(1)式中のRと同じである。
R 1 —CH (SO 3 H) —COOR 2 (2)
(2) wherein, R 1 is the same as R 1 in formula (1), R 2 is the same as R 2 in formula (1).
 スルホン化ガスとしては、例えば、SOガス;発煙硫酸から発生させたSOガス;脱湿した空気でSOガスまたは発煙硫酸から発生させたSOガスを希釈したガス;等が挙げられる。
 スルホン化ガスの総添加量は、脂肪酸アルキルエステルに対して、等倍モル以上であり、1.0~2.0倍モルが好ましく、1.1~1.5倍モルがより好ましい。
The sulfonating gas, e.g., SO 3 gas; gas diluted to SO 3 gas generated from the SO 3 gas or oleum with dehumidified air;; SO 3 gas generated from fuming sulfuric acid, and the like.
The total amount of the sulfonated gas added is at least 1 mol, preferably 1.0 to 2.0 mol, more preferably 1.1 to 1.5 mol relative to the fatty acid alkyl ester.
 撹拌機の回転速度は、例えば撹拌機に備えられている撹拌翼の撹拌羽根先端の周速を0.5~6.0m/secとすることが好ましく、2.0~5.0m/secとすることがより好ましい。周速が0.5m/sec以上であると、気泡の分散効果が充分に得られ、反応率も優れる。周速が6.0m/sec以下であると、消費動力も抑制できる。また、撹拌羽根先端の周速を上述の好ましい数値範囲に保ちつつ回転させることによって、後述の熟成操作においても充分に反応させることができる。
 撹拌羽根の形状としては、例えば6枚羽根傾斜パドル(200Lの場合、up-pumping、羽根径240mmφ)等が挙げられる。
The rotational speed of the stirrer is preferably, for example, a peripheral speed at the tip of the stirring blade of the stirring blade provided in the stirrer is 0.5 to 6.0 m / sec, and is 2.0 to 5.0 m / sec. More preferably. When the peripheral speed is 0.5 m / sec or more, a sufficient effect of dispersing bubbles is obtained, and the reaction rate is also excellent. When the peripheral speed is 6.0 m / sec or less, the power consumption can be suppressed. Further, by rotating while maintaining the peripheral speed of the tip of the stirring blade within the above-mentioned preferable numerical range, it is possible to sufficiently react even in the ripening operation described later.
Examples of the shape of the stirring blade include a six-blade inclined paddle (up-pumping in the case of 200 L, blade diameter 240 mmφ) and the like.
 スルホン化処理のガス接触操作における反応温度は、脂肪酸アルキルエステルが流動性を有する温度とされ、脂肪酸アルキルエステルの融点以上であり、好ましくは融点以上であって、融点より70℃高い温度以下の範囲とすることが好ましい。
 スルホン化処理におけるスルホン化ガスの導入時間は、10分間~300分間程度とされ、60分間~240分間程度が好ましい。
The reaction temperature in the gas contact operation of the sulfonation treatment is a temperature at which the fatty acid alkyl ester has fluidity, and is not less than the melting point of the fatty acid alkyl ester, preferably not less than the melting point and not more than 70 ° C. above the melting point. It is preferable that
The introduction time of the sulfonation gas in the sulfonation treatment is about 10 minutes to 300 minutes, and preferably about 60 minutes to 240 minutes.
 スルホン化の方法としては、流下薄膜式スルホン化法、回分式スルホン化法等のいずれのスルホン化法であってもよい。また、スルホン化反応方式としては槽型反応、フィルム反応、管型気液混相反応等の方式が用いられる。着色抑制剤を用いる場合には、着色抑制剤を原料中に均一に分散させた状態でスルホン化ガスと接触させることが好ましいため、回分式スルホン化法においては、槽型反応方式が好適である。 The sulfonation method may be any sulfonation method such as a falling film type sulfonation method or a batch type sulfonation method. In addition, as a sulfonation reaction method, a tank-type reaction, a film reaction, a tubular gas-liquid mixed phase reaction, or the like is used. When using a coloring inhibitor, it is preferable to contact the sulfonated gas in a state in which the coloring inhibitor is uniformly dispersed in the raw material. Therefore, in the batch-type sulfonation method, a tank reaction method is suitable. .
 なお、スルホン化処理には、上述のガス接触操作の後、必要に応じて熟成操作を設けることができる。最終的に得られるα-SF塩の収率向上の観点からは、熟成操作を設けることが好ましい。
 即ち、スルホン化処理は、ガス接触操作と熟成操作とを含むことが好ましい。
 熟成操作は、ガス接触操作の後、所定の温度に維持して、ガス接触操作で生成した二分子付加体からのSOの脱離を促進する工程である。
 熟成操作は、例えば、ガス接触操作を行った反応槽内で、引き続き撹拌すること等により行うことができる。撹拌機の回転速度は、接触操作における回転速度と同じであってもよく、異なっていてもよい。ガス接触操作に、フィルム式反応、管型気液混相反応等を用いた場合には、スルホン化物を他の槽型反応器に移して熟成操作を行えばよい。
In the sulfonation treatment, an aging operation can be provided as necessary after the gas contact operation described above. From the viewpoint of improving the yield of the finally obtained α-SF salt, it is preferable to provide an aging operation.
That is, the sulfonation treatment preferably includes a gas contact operation and an aging operation.
The aging operation is a step of promoting the desorption of SO 3 from the bimolecular adduct generated by the gas contact operation while maintaining the predetermined temperature after the gas contact operation.
The ripening operation can be performed, for example, by continuously stirring in the reaction tank subjected to the gas contact operation. The rotational speed of the agitator may be the same as or different from the rotational speed in the contact operation. When a film-type reaction, a tube-type gas-liquid mixed phase reaction, or the like is used for the gas contact operation, the sulfonated product may be transferred to another tank reactor and aged.
 熟成操作における反応温度(熟成温度)は、例えば、70~100℃の範囲が好ましい。熟成温度が70℃以上であると、反応が速やかに進行し、100℃以下であると、着色も抑制される。
 熟成操作における反応時間(熟成時間)は、例えば、1分間~120分間の範囲で決定することが好ましい。
The reaction temperature (aging temperature) in the aging operation is preferably in the range of 70 to 100 ° C., for example. When the aging temperature is 70 ° C. or higher, the reaction proceeds rapidly, and when it is 100 ° C. or lower, coloring is also suppressed.
The reaction time (aging time) in the aging operation is preferably determined in the range of 1 minute to 120 minutes, for example.
(エステル化処理)
 エステル化処理は、スルホン化処理(ガス接触操作及び必要に応じて実施される熟成操作)の後、スルホン化処理で得られたスルホン化物(スルホン化処理の生成物)に低級アルコールを添加して、スルホン化物をエステル化し、α-SF酸を生成する反応(エステル反応)を進行させる処理である。
(Esterification treatment)
In the esterification treatment, a lower alcohol is added to the sulfonated product (the product of the sulfonation treatment) obtained by the sulfonation treatment after the sulfonation treatment (gas contact operation and aging operation carried out as necessary). In this process, the sulfonated product is esterified to cause a reaction (ester reaction) to produce an α-SF acid.
 上述したように、スルホン化処理で得られたスルホン化物には、α-SF酸以外にも、SOの一分子付加体、SOの二分子付加体、未反応の脂肪酸アルキルエステル及びその他の副生成物が含まれている。このうち、特にSOの二分子付加体を中和すると、低温環境下ではα-SF塩よりも洗浄効果が低下する場合があるα-スルホ脂肪酸ジアルカリ塩となる。そのため、洗浄剤用途においては、SOの二分子付加体の含有量をできるだけ低くする必要がある。エステル化処理を行って、SOの二分子付加体からα-SF酸を生成させることにより、SOの二分子付加体の含有量を低くでき、さらにはα-SF塩の収率向上を図ることができる。
 エステル化処理は、例えば、スルホン化物に低級アルコールを添加し、所定の温度(例えば50℃~100℃)に維持しながら撹拌する方法で行われる。撹拌機の回転速度は、例えば撹拌機に備えられている撹拌翼の撹拌羽根先端の周速を0.5~6.0m/secとすることが好ましく、2.0~5.0m/secとすることがより好ましい。周速が0.5m/sec以上であると、添加した低級アルコールを均一に混合することが可能であり、反応性も優れる。周速が6.0m/sec以下であると、消費動力も抑制できる。
As described above, the sulfonated product obtained by the sulfonation treatment includes, in addition to α-SF acid, a monomolecular adduct of SO 3 , a bimolecular adduct of SO 3 , an unreacted fatty acid alkyl ester, and other By-products are included. Among these, when the bimolecular adduct of SO 3 is neutralized, it becomes an α-sulfo fatty acid dialkali salt, which may have a lower cleaning effect than α-SF salt in a low temperature environment. For this reason, it is necessary to make the content of the bimolecular adduct of SO 3 as low as possible in the detergent application. Performing esterification process, by generating a alpha-SF acids from bimolecular adduct SO 3, can be lowered content of bimolecular adduct SO 3, a further improvement in the yield of alpha-SF salt Can be planned.
The esterification treatment is performed, for example, by a method in which a lower alcohol is added to the sulfonated product and stirred while maintaining a predetermined temperature (eg, 50 ° C. to 100 ° C.). The rotational speed of the stirrer is preferably, for example, a peripheral speed at the tip of the stirring blade of the stirring blade provided in the stirrer is 0.5 to 6.0 m / sec, and is 2.0 to 5.0 m / sec. More preferably. When the peripheral speed is 0.5 m / sec or more, the added lower alcohol can be uniformly mixed, and the reactivity is excellent. When the peripheral speed is 6.0 m / sec or less, the power consumption can be suppressed.
 エステル化処理で用いる低級アルコールとは、好ましくは炭素数1~6のアルコールであり、なかでも、その炭素数が原料の脂肪酸アルキルエステルのアルコール残基の炭素数と等しいアルコールが好ましい。具体的には、メタノールが挙げられる。
 低級アルコールの添加量は、スルホン化物に含まれるSOの二分子付加体に対して、0.5~50倍モルであることが好ましく、より好ましくは0.8~2倍モルである。この添加量の下限値以上であれば、充分な添加効果が得られる。低級アルコールは、上限値を超えて添加しても、それ以上エステル化反応は進行しない。
 なお、スルホン化物に含まれるSOの二分子付加体の量は、高速液体クロマトグラフ等により定量できる。
The lower alcohol used in the esterification treatment is preferably an alcohol having 1 to 6 carbon atoms. Among them, an alcohol having the same carbon number as that of the alcohol residue of the starting fatty acid alkyl ester is preferable. Specifically, methanol is mentioned.
The amount of the lower alcohol added is preferably 0.5 to 50-fold mol, more preferably 0.8 to 2-fold mol based on the bimolecular adduct of SO 3 contained in the sulfonated product. If it is more than the lower limit of this addition amount, a sufficient addition effect can be obtained. Even if the lower alcohol is added in excess of the upper limit, the esterification reaction does not proceed any further.
In addition, the amount of the bimolecular adduct of SO 3 contained in the sulfonated product can be quantified by a high performance liquid chromatograph or the like.
 例えば、SOの二分子付加体が、スルホン化処理で得られるスルホン化物の総質量に対して、5~50質量%含まれ、低級アルコールとしてメタノールを添加する場合、メタノールの添加量は、スルホン化物の100質量部に対して0.25~250質量部が好ましく、より好ましくは0.4~10質量部である。 For example, the bimolecular adduct of SO 3 is contained in an amount of 5 to 50% by mass with respect to the total mass of the sulfonated product obtained by the sulfonation treatment, and when methanol is added as the lower alcohol, the amount of methanol added is The amount is preferably 0.25 to 250 parts by mass, more preferably 0.4 to 10 parts by mass with respect to 100 parts by mass of the compound.
 エステル化処理における反応温度は、50℃~100℃であり、50℃~90℃が好ましい。エステル化処理における反応時間は、5分間~120分間の範囲で決定することが好ましい。 The reaction temperature in the esterification treatment is 50 ° C to 100 ° C, preferably 50 ° C to 90 ° C. The reaction time in the esterification treatment is preferably determined in the range of 5 minutes to 120 minutes.
(中和処理)
 中和処理は、エステル化処理で得られたエステル化物に対して、アルカリ水溶液等のアルカリ物質により中和処理を行い、中和物を得る処理である。中和処理を行うことにより、エステル化物中のα-SF酸からα-SF塩が生成する。
(Neutralization treatment)
The neutralization treatment is a treatment for obtaining a neutralized product by neutralizing the esterified product obtained by the esterification treatment with an alkaline substance such as an alkaline aqueous solution. By performing the neutralization treatment, α-SF salt is formed from α-SF acid in the esterified product.
 α-SF塩において、塩を形成する対イオンとしては、下記イオンとともに水溶性の塩を形成する対イオンであればよい。
 R-CH(CO-O-R)-SO
 前記水溶性の塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩等のアルカリ土類金属塩;アンモニウム塩;エタノールアミン塩等が挙げられる。
In the α-SF salt, a counter ion that forms a salt may be any counter ion that forms a water-soluble salt with the following ions.
R 1 —CH (CO—O—R 2 ) —SO 3
Examples of the water-soluble salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt; ammonium salt; ethanolamine salt and the like.
 中和処理は、例えば、エステル化物とアルカリ水溶液とを接触させることにより行うことができる。
 アルカリ水溶液としては、例えば上述の水溶性の塩を形成することができる水溶液、例えば、水酸化ナトリウム等のアルカリ金属の水酸化物の水溶液;アルカリ金属の炭酸塩の水溶液;アルカリ土類金属の水酸化物の水溶液;アンモニアの水溶液;エタノールアミンの水溶液等が挙げられる。
The neutralization treatment can be performed, for example, by bringing the esterified product into contact with an alkaline aqueous solution.
Examples of the alkaline aqueous solution include an aqueous solution capable of forming the above-mentioned water-soluble salt, for example, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide; an aqueous solution of an alkali metal carbonate; an alkaline earth metal water. An aqueous solution of oxide; an aqueous solution of ammonia; an aqueous solution of ethanolamine and the like.
 中和処理により得られた中和物100質量%中における後述するアニオン界面活性剤濃度は、中和物を得る際の製造効率、中和物のハンドリング性がともに優れるように、決定する。
 このようなアニオン界面活性剤濃度としては、中和物の総質量を100質量%としたとき、好ましくは60質量%~80質量%、より好ましくは62質量%~75質量%である。ここで中和処理に用いるアルカリ水溶液の濃度が薄すぎると、中和のために必要となるアルカリ水溶液の量が増加し、その結果、得られる中和物中の水分量が増加し、アニオン界面活性剤濃度が低くなる。
 中和処理に用いるアルカリ水溶液の濃度としては、2%~50%が好ましい。
The concentration of the anionic surfactant described later in 100% by mass of the neutralized product obtained by the neutralization treatment is determined so that both the production efficiency in obtaining the neutralized product and the handleability of the neutralized product are excellent.
Such an anionic surfactant concentration is preferably 60% by mass to 80% by mass, more preferably 62% by mass to 75% by mass, when the total mass of the neutralized product is 100% by mass. If the concentration of the aqueous alkaline solution used for the neutralization treatment is too thin, the amount of the aqueous alkaline solution required for neutralization increases, resulting in an increase in the amount of water in the resulting neutralized product, and the anion interface. The activator concentration is lowered.
The concentration of the alkaline aqueous solution used for the neutralization treatment is preferably 2% to 50%.
 「アニオン界面活性剤濃度」とは、界面活性剤としての機能を有するアニオン性化合物の濃度であり、本実施形態におけるアニオン性化合物には、洗浄有効成分であるα-SF塩と、α-SF塩と同様に界面活性剤としての機能を有している副生成物のα-スルホ脂肪酸ジアルカリ塩とが該当する。したがって、本実施形態における「アニオン界面活性剤濃度」は、洗浄有効成分であるα-SF塩と、副生成物の1つであるα-スルホ脂肪酸ジアルカリ塩(ジ塩)との合計の濃度である。
 アニオン界面活性剤濃度は、滴定法等により求めることができる。
The “anionic surfactant concentration” is the concentration of an anionic compound having a function as a surfactant. The anionic compound in the present embodiment includes an α-SF salt, which is a cleaning active ingredient, and α-SF. This corresponds to a by-product α-sulfo fatty acid dialkali salt having a function as a surfactant as well as a salt. Therefore, the “anionic surfactant concentration” in this embodiment is the total concentration of the α-SF salt that is a cleaning active ingredient and the α-sulfo fatty acid dialkali salt (di-salt) that is one of by-products. is there.
The anionic surfactant concentration can be determined by a titration method or the like.
 また、中和物におけるα-SF塩とα-スルホ脂肪酸ジアルカリ塩との質量比は、中和物を得る際の製造性、ハンドリング性、また、液体製品への配合時の品質等の点から、α-SF塩とα-スルホ脂肪酸ジアルカリ塩との合計質量を100質量%としたとき、α-スルホ脂肪酸ジアルカリ塩が0質量%以上、10質量%以下となることが好ましい。 In addition, the mass ratio of α-SF salt and α-sulfo fatty acid dialkali salt in the neutralized product is from the viewpoints of manufacturability when obtaining the neutralized product, handling properties, and quality when blended into a liquid product. When the total mass of the α-SF salt and the α-sulfo fatty acid dialkali salt is 100% by mass, the α-sulfo fatty acid dialkali salt is preferably 0% by mass or more and 10% by mass or less.
 中和温度は、30℃~140℃が好ましく、50℃~140℃がより好ましく、50℃~80℃がさらに好ましい。
 中和時間は、5分間~60分間が好ましく、20分間~60分間がより好ましい。
 中和時のpHは、生成したα-SF塩の加水分解を防止するために、酸性あるいは弱いアルカリ性の範囲(30℃~140℃におけるpHが4~9)が好ましい。この範囲外では、α-スルホ脂肪酸アルキルエステル塩のエステル結合が切断されやすくなる可能性がある。
The neutralization temperature is preferably 30 ° C to 140 ° C, more preferably 50 ° C to 140 ° C, and further preferably 50 ° C to 80 ° C.
The neutralization time is preferably 5 minutes to 60 minutes, more preferably 20 minutes to 60 minutes.
The pH during neutralization is preferably in the acidic or weak alkaline range (pH 4 to 9 at 30 ° C. to 140 ° C.) in order to prevent hydrolysis of the α-SF salt formed. Outside this range, the ester bond of the α-sulfo fatty acid alkyl ester salt may be easily cleaved.
 また、中和処理においては、生成したα-SF塩の加水分解とそれに伴う副生成物の生成とを防止するために、過激な中和操作を避け、極力マイルドな中和処理を行うことが好ましい。このような中和処理としては、ループ中和方式が挙げられる。前記方式は、ループ状の配管(リサイクルループ)内で、中和処理した中和物の一部(リサイクル中和物)を循環させ、前記リサイクル中和物を、エステル化処理後の未中和の生成物に添加して中和を行う方式である。
 ループ中和方式において、中和は、例えば、リサイクル中和物と未中和の生成物との混合物に対してアルカリ水溶液を接触させて行ってもよいし、リサイクル中和物と未中和の生成物とアルカリ水溶液とを、強力なせん断力の元で瞬時に混合して行ってもよい。
In addition, in the neutralization treatment, in order to prevent hydrolysis of the produced α-SF salt and the production of by-products associated therewith, it is possible to avoid a radical neutralization operation and perform a mild neutralization treatment as much as possible. preferable. An example of such neutralization treatment is a loop neutralization method. In the above method, a part of the neutralized neutralized product (recycled neutralized product) is circulated in a looped pipe (recycle loop), and the recycled neutralized product is unneutralized after the esterification treatment. It is the system which adds to the product of this and neutralizes.
In the loop neutralization method, neutralization may be performed, for example, by bringing an alkaline aqueous solution into contact with a mixture of a recycled neutralized product and an unneutralized product, or a recycled neutralized product and an unneutralized product. You may carry out by mixing a product and aqueous alkali solution instantaneously under the strong shearing force.
 リサイクル中和物の添加量は、未中和の生成物とアルカリ水溶液との合計質量に対して、5~25質量倍が好ましく、10~20質量倍がより好ましい。未中和の生成物とアルカリ水溶液との合計量に対するリサイクル中和物の添加量の比、すなわちリサイクル比が5以上であると副生成物の生成抑制効果に優れ、25質量倍以下であると製造効率が向上する。 The amount of the recycle neutralized product added is preferably 5 to 25 times by mass and more preferably 10 to 20 times by mass with respect to the total mass of the unneutralized product and the alkaline aqueous solution. When the ratio of the added amount of the recycled neutralized product to the total amount of the unneutralized product and the aqueous alkali solution, that is, the recycling ratio is 5 or more, the effect of suppressing the formation of by-products is excellent, and it is 25 mass times or less. Manufacturing efficiency is improved.
 中和処理は、アルカリ水溶液を用いる以外に、固体の金属炭酸塩又は炭酸水素塩を用いることによっても行うことができる。
 特に固体の金属炭酸塩(濃厚ソーダ灰)による中和は、濃厚ソーダ灰が他のアルカリよりも安価であるため好ましい。また、固体の金属炭酸塩で中和を行うと、生成物と混合した際に、その混合物に含まれる水分量が少なく、強アルカリ性になりにくく、また、中和時の中和熱が金属水酸化物の場合よりも低いため、α-SF塩の加水分解を抑制でき、有利である。
The neutralization treatment can be performed by using a solid metal carbonate or hydrogen carbonate in addition to using an alkaline aqueous solution.
In particular, neutralization with solid metal carbonate (concentrated soda ash) is preferable because concentrated soda ash is less expensive than other alkalis. Further, when neutralization with a solid metal carbonate is performed, when mixed with the product, the amount of water contained in the mixture is small and hardly alkaline, and the heat of neutralization at the time of neutralization is reduced to metal water. Since it is lower than that of the oxide, hydrolysis of the α-SF salt can be suppressed, which is advantageous.
 金属炭酸塩又は炭酸水素塩としては、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム等の無水塩、水和塩、又はこれらの混合物等が挙げられる。 Examples of the metal carbonate or hydrogen carbonate include anhydrous salts such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, hydrated salts, or mixtures thereof.
(漂白処理)
 中和処理後には、必要に応じて漂白処理を行ってもよい。漂白処理を行うことにより、中和処理までに生じた着色物が漂白され、良好な色調のα-SF塩が得られる。
 漂白処理は、中和処理で得られた中和物に漂白剤を添加することによって行うことができ、漂白剤としては、例えば過酸化水素の水溶液が好適に用いられる。
 前記漂白剤中の過酸化水素の濃度は、漂白処理における水分量、反応時間(漂白時間)又は漂白処理における反応温度(漂白温度)を勘案して決定することができるが、例えば過酸化水素の水溶液の総質量に対し、過酸化水素が30質量%~50質量%が好ましい。
(Bleaching treatment)
After the neutralization treatment, a bleaching treatment may be performed as necessary. By performing the bleaching treatment, the colored product produced until the neutralization treatment is bleached, and an α-SF salt having a good color tone can be obtained.
The bleaching treatment can be carried out by adding a bleaching agent to the neutralized product obtained by the neutralizing treatment. As the bleaching agent, for example, an aqueous solution of hydrogen peroxide is preferably used.
The concentration of hydrogen peroxide in the bleaching agent can be determined in consideration of the water content in the bleaching process, the reaction time (bleaching time), or the reaction temperature (bleaching temperature) in the bleaching process. Hydrogen peroxide is preferably 30% by mass to 50% by mass with respect to the total mass of the aqueous solution.
 漂白剤の添加量は、中和物中のアニオン界面活性剤(α-SF塩及びα-スルホ脂肪酸ジアルカリ塩(ジ塩)の合計)100質量部に対して、過酸化水素の純分で0.1~10質量部の範囲が好ましく、0.1~5質量部であることがより好ましく、0.1~3質量部であることがさらに好ましい。 The added amount of the bleaching agent is 0 with respect to 100 parts by mass of the anionic surfactant (total of α-SF salt and α-sulfo fatty acid dialkali salt (di-salt)) in the neutralized product. The range is preferably 1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 0.1 to 3 parts by mass.
 漂白温度は、漂白剤中の過酸化水素の濃度、漂白剤の添加量、漂白時間を勘案して決定することができ、例えば、50℃~120℃の範囲で決定することが好ましく、60℃~90℃の範囲で決定することがより好ましい。上記範囲の下限値以上であると、漂白物の粘度上昇が抑えられ、移送や撹拌等の製造適正に優れる。上記範囲の上限値以下であると、α-SF塩は加水分解されにくく、α-SF塩の色調劣化が抑制されるとともに、低温環境下ではα-SF塩よりも洗浄効果が低下する場合があるジ塩の生成も低減される。
 漂白時間は、漂白剤中の過酸化水素の濃度、漂白剤の添加量、漂白温度を勘案して決定することができ、例えば、30分間~600分間の範囲で決定することが好ましく、60分間~480分間の範囲で決定することがより好ましい。
The bleaching temperature can be determined in consideration of the concentration of hydrogen peroxide in the bleaching agent, the amount of bleaching agent added, and the bleaching time. For example, the bleaching temperature is preferably determined within the range of 50 ° C to 120 ° C. More preferably, it is determined in the range of ˜90 ° C. When it is at least the lower limit of the above range, an increase in the viscosity of the bleached product is suppressed, and the production suitability such as transfer and stirring is excellent. If it is below the upper limit of the above range, the α-SF salt is hardly hydrolyzed, the deterioration of the color tone of the α-SF salt is suppressed, and the cleaning effect may be lower than that of the α-SF salt in a low temperature environment. The formation of certain di-salts is also reduced.
The bleaching time can be determined in consideration of the concentration of hydrogen peroxide in the bleaching agent, the amount of bleaching agent added, and the bleaching temperature. For example, it is preferably determined in the range of 30 minutes to 600 minutes, and 60 minutes. More preferably, it is determined in the range of ˜480 minutes.
 漂白処理における漂白方法としては、例えば、反応槽内に中和物を投入し、所定の温度に維持したまま、漂白剤を添加・混合する方法が挙げられる。また、例えば、反応槽で得られた漂白物の一部を再び反応槽に戻す循環系を設け、前記循環系に中和物を添加し、次いで漂白剤を添加する方法が挙げられる。
 また、ループ方式の漂白も挙げられ、具体的には、循環ラインに、漂白剤と混合された中和物の一部を循環させながら、そこへ中和物と漂白剤をそれぞれ添加する方法が挙げられる。
 さらに、漂白剤を添加・混合した後、流通管方式によって漂白反応を進行させてもよい。
 なお、漂白処理は、スルホン化物に対して行ってもよい。 
As a bleaching method in the bleaching treatment, for example, a neutralized product is charged into a reaction vessel, and a bleaching agent is added and mixed while maintaining a predetermined temperature. Further, for example, there is a method in which a circulation system for returning a part of the bleached product obtained in the reaction tank to the reaction tank is provided, a neutralized product is added to the circulation system, and then a bleaching agent is added.
Another example is loop-type bleaching. Specifically, there is a method in which a neutralized product and a bleaching agent are added to the circulation line while circulating a part of the neutralized product mixed with the bleaching agent. Can be mentioned.
Furthermore, after adding and mixing a bleaching agent, the bleaching reaction may be advanced by a flow tube method.
The bleaching treatment may be performed on the sulfonated product.
 このようにスルホン化処理と、エステル化処理と、中和処理と、必要に応じて漂白処理とを行うことにより、α-SF塩を含有するペースト(α-SF塩を含む粘稠組成物)が得られる。α-SF塩を含有するペーストは、更にα-スルホ脂肪酸ジアルカリ塩を含む場合がある。
 前記ペーストにおけるアニオン界面活性剤濃度及びα-SF塩の単独の濃度は、漂白剤の使用量にもよるが、それぞれ、中和物について記載した濃度範囲内であることが好ましい。
Thus, the paste containing α-SF salt (viscous composition containing α-SF salt) is obtained by performing sulfonation treatment, esterification treatment, neutralization treatment, and bleaching treatment as necessary. Is obtained. The paste containing the α-SF salt may further contain an α-sulfo fatty acid dialkali salt.
The anionic surfactant concentration and the single concentration of α-SF salt in the paste are preferably within the concentration range described for the neutralized product, although depending on the amount of bleach used.
 以上説明した各処理のうち、スルホン化処理、エステル化処理、中和処理は、例えば、図1の製造システムを用いて行うことができる。
 図1に示す製造システムは、反応槽1及び撹拌機4を備えた槽型反応器と、反応槽1の出口1aにライン21を介して接続されたエステル化反応槽31と、エステル化反応槽31にライン23を介して接続されたリサイクルループ32とを含む。
Among the above-described processes, the sulfonation process, the esterification process, and the neutralization process can be performed using, for example, the manufacturing system of FIG.
The production system shown in FIG. 1 includes a tank reactor equipped with a reaction tank 1 and a stirrer 4, an esterification reaction tank 31 connected to an outlet 1a of the reaction tank 1 via a line 21, and an esterification reaction tank. 31 and a recycle loop 32 connected via a line 23.
 反応槽1の上部には、SOガス導入ライン8及び排ガスライン10が接続されており、SOガスを反応槽1内に供給したり、反応槽1内から排出したりできるようになっている。
 エステル化反応槽31としては、3つの混合スペースを有する連続式多段撹拌槽31a及びバッファ31bが用いられている。連続式多段撹拌槽31aには、アルコール供給ライン26が接続されており、連続式多段撹拌槽31aに低級アルコールを供給できるようになっている。
An SO 3 gas introduction line 8 and an exhaust gas line 10 are connected to the upper portion of the reaction tank 1 so that SO 3 gas can be supplied into the reaction tank 1 or discharged from the reaction tank 1. Yes.
As the esterification reaction tank 31, a continuous multistage stirring tank 31a and a buffer 31b having three mixing spaces are used. An alcohol supply line 26 is connected to the continuous multistage agitation tank 31a so that lower alcohol can be supplied to the continuous multistage agitation tank 31a.
 リサイクルループ32は、ライン23及びライン24にその端部が連結された中和ライン32aと、中和ライン32aの両端から分岐する循環ライン32bとを含む。中和ライン32a上には、2つのミキサー32c、及び32dが設けられており、ミキサー32cとミキサー32dとの間の部分には、アルカリ水溶液供給ライン27が接続されており、中和ライン32a内にアルカリ水溶液を供給できるようになっている。また、循環ライン32b上にはポンプ32e及び熱交換器32fが設けられており、中和物を冷却できるようになっている。 The recycle loop 32 includes a neutralization line 32a whose ends are connected to the line 23 and the line 24, and a circulation line 32b branched from both ends of the neutralization line 32a. Two mixers 32c and 32d are provided on the neutralization line 32a. An alkaline aqueous solution supply line 27 is connected to a portion between the mixer 32c and the mixer 32d. Alkaline aqueous solution can be supplied to this. In addition, a pump 32e and a heat exchanger 32f are provided on the circulation line 32b so that the neutralized product can be cooled.
 このような製造システムを用いて、スルホン化処理、エステル化処理及び中和処理を行う場合には、まず、反応槽1に、原料である脂肪酸アルキルエステルを仕込む。撹拌機4で撹拌しながら反応槽1の内温を所定の反応温度まで上昇させる。ついで、この原料液相に、SOガス導入ライン8からスルホン化ガスを導入する。スルホン化ガスは、SOガス導入ライン8から、SOガス導入ライン8先端に接続されたガススパージャー(図示なし)を経て反応槽1内に導入され、撹拌機4によって原料液相中に分散する。
 原料液相にスルホン化ガスを導入して撹拌した後、反応槽1内を所定温度に保持して、スルホン化ガス導入後の熟成を行うことが好ましい。
 このようにしてスルホン化処理を行う。
When the sulfonation treatment, the esterification treatment and the neutralization treatment are performed using such a production system, first, the fatty acid alkyl ester as a raw material is charged into the reaction tank 1. While stirring with the stirrer 4, the internal temperature of the reaction tank 1 is raised to a predetermined reaction temperature. Next, a sulfonated gas is introduced into the raw material liquid phase from the SO 3 gas introduction line 8. Sulfonating gas from SO 3 gas inlet line 8, is introduced into the reaction vessel 1 via the SO 3 gas inlet line 8 leading end connected to a gas sparger (not shown), the raw material liquid phase by a stirrer 4 scatter.
After introducing the sulfonated gas into the raw material liquid phase and stirring, it is preferable to maintain the interior of the reaction vessel 1 at a predetermined temperature and perform aging after introducing the sulfonated gas.
In this way, the sulfonation treatment is performed.
 次に、スルホン化物を連続式多段撹拌槽31aに導入するとともに、アルコール供給ライン26から低級アルコールを供給し、それらを混合する。そして、得られた混合物を、所定の温度で、所定の時間、連続式多段撹拌槽31a及びバッファ31bにて保持する。
 このようにしてエステル化処理を行う。
Next, the sulfonated product is introduced into the continuous multistage agitation tank 31a, and lower alcohol is supplied from the alcohol supply line 26 and mixed. And the obtained mixture is hold | maintained by the continuous multistage stirring tank 31a and the buffer 31b for a predetermined time at predetermined temperature.
In this way, the esterification treatment is performed.
 その後、得られた生成物(エステル化物)を、ライン23を通じてリサイクルループ32の中和ライン32aに供給する。
 このエステル化物を、アルカリ供給ライン27からアルカリ水溶液を供給して中和し、得られた中和物の一部を、循環ライン32bを通して循環させ、熱交換器32fで冷却した後、中和ライン32a内の未中和のエステル化物に添加する。これを、ミキサー32cで混合した後、上記と同様にして中和する。
 このようにして中和処理を行う。
Thereafter, the obtained product (esterified product) is supplied to the neutralization line 32 a of the recycle loop 32 through the line 23.
The esterified product is neutralized by supplying an alkaline aqueous solution from the alkali supply line 27, and a part of the obtained neutralized product is circulated through the circulation line 32b and cooled by the heat exchanger 32f. Add to the unneutralized esterified product in 32a. This is mixed by the mixer 32c and then neutralized in the same manner as described above.
In this way, neutralization is performed.
 このように、例えば図1の製造システムを用い、スルホン化処理、エステル化処理及び中和処理を行うことにより、α-SF塩含有ペーストが得られる。その後、必要に応じてさらに漂白処理を実施することにより、色調の改善されたα-SF塩含有ペーストを得ることもできる。 Thus, for example, by using the production system of FIG. 1 and performing sulfonation treatment, esterification treatment and neutralization treatment, an α-SF salt-containing paste can be obtained. Thereafter, an α-SF salt-containing paste with improved color tone can be obtained by further performing a bleaching treatment as necessary.
(濃縮処理)
 ついで、得られたα-SF塩含有ペーストを加熱、濃縮して濃縮品を得る濃縮処理を行う。濃縮処理では、例えば薄膜蒸発機(例えば、桜製作所製のエバオレータ、神鋼パンテック(株)製のエクセバ、(株)日立製作所製のコントロ、バレストラ社製のWiped Film Evaporator等。)等を使用して、α-SF塩含有ペーストを加熱する。濃縮品の水分量は、加熱温度及び加熱時間を制御することで調節できる。
 加熱温度は、ペーストに含まれるα-SF塩のアシル基の炭素数に主に依存するが、通常100℃~150℃、好ましくは110℃~140℃である。加熱時間は、通常0.15秒間~10分間、好ましくは0.3秒間~10分間である。α-SF塩含有ペーストの溶融、及び濃縮は、薄膜蒸発機等のジャケット部にスチーム等の熱媒を使用することで行うことができる。
 濃縮品の水分量は、0.5%~10%であることが好ましい。
 このようにして得られた濃縮品をそのまま次の冷却固化処理に供してもよいし、濃縮品を一旦冷却固化した後、再度加熱して溶融させ、これを次の冷却固化処理に供してもよい。
(Concentration treatment)
Subsequently, the obtained α-SF salt-containing paste is heated and concentrated to carry out a concentration treatment to obtain a concentrated product. In the concentration treatment, for example, a thin film evaporator (for example, an evaporator manufactured by Sakura Seisakusho, Exeva manufactured by Shinko Pantech Co., Ltd., a control company manufactured by Hitachi, Ltd., a Wiped Film Evaporator manufactured by Valestra Co., Ltd.) or the like is used. Then, the paste containing α-SF salt is heated. The water content of the concentrated product can be adjusted by controlling the heating temperature and the heating time.
The heating temperature depends mainly on the carbon number of the acyl group of the α-SF salt contained in the paste, but is usually 100 ° C to 150 ° C, preferably 110 ° C to 140 ° C. The heating time is usually 0.15 seconds to 10 minutes, preferably 0.3 seconds to 10 minutes. The melting and concentration of the α-SF salt-containing paste can be performed by using a heat medium such as steam in a jacket portion of a thin film evaporator or the like.
The water content of the concentrated product is preferably 0.5% to 10%.
The concentrated product thus obtained may be subjected to the next cooling and solidification treatment as it is, or after the concentrated product is once cooled and solidified, it is heated again and melted, and this may be subjected to the next cooling and solidification treatment. Good.
(冷却固化処理)
 冷却固化処理において、例えばベルト型冷却機(例えば、日本ベルティング株式会社製のダブル・ベルト・クーラー、NR型ダブル・ベルト・クーラー、サンドビック株式会社製ダブルベルト冷却システム等。)や、ドラム型冷却機(例えば、カツラギ工業株式会社製のドラムフレーカー、三菱マテリアルテクノ株式会社製のドラムフレーカーFL等。)を使用し、α-SF塩含有ペーストを板状に成形しながら冷却することにより、板状の冷却固化物が得られる。なかでも、ハンドリングの観点からベルト型冷却機が好ましく、さらに、冷却効率の観点から、上下に二枚の金属板が備えられており、下側の金属板上に濃縮品を広げて冷却するタイプのベルト型冷却機が好ましい。
(Cooling solidification process)
In the cooling and solidification treatment, for example, a belt type cooler (for example, a double belt cooler manufactured by Nippon Belting Co., Ltd., an NR type double belt cooler, a double belt cooling system manufactured by Sandvik Co., Ltd.), or a drum type. By using a cooler (for example, drum flaker manufactured by Katsuragi Kogyo Co., Ltd., drum fraker FL manufactured by Mitsubishi Materials Techno Co., Ltd.) and cooling the α-SF salt-containing paste while forming it into a plate shape. A plate-like cooled and solidified product is obtained. Among them, a belt type cooler is preferable from the viewpoint of handling, and further, from the viewpoint of cooling efficiency, two metal plates are provided on the upper and lower sides, and the concentrated product is spread and cooled on the lower metal plate. The belt type cooler is preferable.
 冷却固化処理において、溶融状態にある濃縮品を融点以下まで冷却するが、この際、大きな冷却速度で急冷することにより、α-SF塩含有固形物の結晶状態を準安定状態とすることができる。具体的には、例えば、100℃~150℃の濃縮品を3分間以内に、好ましくは10秒間~1分間で、0℃~40℃まで冷却する。このように急冷すると、生産性にも優れる。なお、融点は、示差走査熱分析計で測定できる。
 こうして得られる準安定固体(m)は、液晶状態が過冷却して固体になったものと考えられる。α-SF塩含有固形物の準安定固体(m)をX線回折に供すると、図2に示すように、20Å-30Å、10Å-15Å、3Å-5Åの各面間隔にピークトップが認められる、図2のような3本の回折ピークを有するX線回折チャートが得られる。
 なお、図2は、後述の実施例1で製造した準安定固体(m)のX線回折チャートである。
In the cooling and solidification treatment, the concentrated product in a molten state is cooled to a melting point or lower, and at this time, the crystalline state of the α-SF salt-containing solid can be made metastable by rapidly cooling at a high cooling rate. . Specifically, for example, a concentrated product at 100 ° C. to 150 ° C. is cooled to 0 ° C. to 40 ° C. within 3 minutes, preferably 10 seconds to 1 minute. When cooled rapidly, the productivity is also excellent. The melting point can be measured with a differential scanning calorimeter.
The metastable solid (m) obtained in this way is considered to have become a solid due to supercooling of the liquid crystal state. When the metastable solid (m) of the α-SF salt-containing solid is subjected to X-ray diffraction, as shown in FIG. 2, peak tops are observed at intervals of 20 to 30 mm, 10 to 15 mm, and 3 to 5 mm. An X-ray diffraction chart having three diffraction peaks as shown in FIG. 2 is obtained.
FIG. 2 is an X-ray diffraction chart of the metastable solid (m) produced in Example 1 described later.
 高純度のα-SF塩(即ち、純度99%以上のα-SF塩)からは、このような準安定固体(m)は一般に形成されにくいが、脂肪酸アルキルエステルを出発原料として、以上説明した各処理を経て得られたα-SF塩含有固形物は、通常、硫酸メチル金属塩や脂肪酸スルホナート金属塩等の副生成物を含む。このような副生成物を含む場合、α-SF塩含有固形物は準安定状態となりやすい。 Such a metastable solid (m) is generally difficult to form from a high-purity α-SF salt (that is, an α-SF salt having a purity of 99% or more). However, as described above, the fatty acid alkyl ester is used as a starting material. The α-SF salt-containing solid obtained through each treatment usually contains by-products such as methyl sulfate metal salt and fatty acid sulfonate metal salt. When such a by-product is included, the α-SF salt-containing solid tends to be in a metastable state.
 なお、α-SF塩は、様々な結晶状態を取ることが知られている。例えば、2-スルホパルミチン酸メチルエステルナトリウムの安定結晶としては、無水物、2水塩、5水塩、10水塩の各結晶状態がある。無水物の融点は112℃であり、2水塩の融点は70℃であると報告されている(M. Fujiwara,et.al, Langmuir,13,p3345(1997)参照。)。 Note that α-SF salts are known to take various crystal states. For example, stable crystals of sodium 2-sulfopalmitic acid methyl ester include crystalline states of anhydrous, dihydrate, pentahydrate, and hydrate. The melting point of the anhydride is 112 ° C. and the melting point of the dihydrate is reported to be 70 ° C. (see M. Fujiwara, et.al, Langmuir, 13, p3345 (1997)).
 冷却固化処理で板状固形物を得る場合、その厚さには特に制限はないが、次の解砕処理で効率的な処理を行う観点から、解砕処理に用いる解砕機の具備する解砕棒の長さを考慮して決定することが好ましい。解砕機は一般に、円柱状の回転軸と、前記回転軸の周面上から外方に延びる解砕棒とを備えて構成されている。
 具体的には、板状固形物の厚さは、解砕棒の長さの0.05倍以上、0.30倍以下であることが好ましく、0.1倍以上、0.28倍以下であることがより好ましい。かつ、板状固形物の厚みが1~3mmの場合、解砕棒の長さは10mm以上、150mm以下であることが好ましく、15mm~100mmであることがより好ましい。解砕棒の長さが上記範囲の下限値以上であると、充分な解砕力が得られ、流動性等に優れるフレーク状のα-SF塩含有固形物(m)が得られる。 
When obtaining a plate-like solid by cooling solidification treatment, the thickness is not particularly limited, but from the viewpoint of performing efficient treatment in the next crushing treatment, crushing provided in a crusher used for crushing treatment It is preferable to determine in consideration of the length of the bar. The crusher is generally configured to include a columnar rotating shaft and a crushing rod extending outward from the circumferential surface of the rotating shaft.
Specifically, the thickness of the plate-like solid is preferably 0.05 times or more and 0.30 times or less of the length of the crushing rod, and is 0.1 times or more and 0.28 times or less. More preferably. In addition, when the thickness of the plate-like solid is 1 to 3 mm, the length of the crushing rod is preferably 10 mm or more and 150 mm or less, and more preferably 15 mm to 100 mm. When the length of the cracking bar is not less than the lower limit of the above range, sufficient cracking power is obtained, and a flake-like α-SF salt-containing solid (m) excellent in fluidity and the like is obtained.
 なお、1本の回転軸に対して、複数本の解砕棒が設けられている場合、解砕棒の長さは全て同じでなくてもよい。その場合、最も短い長さの解砕棒の長さを基準として、板状固形物の厚さを決定する。具体的には、最も短い長さの解砕棒の長さが、板状固形物の平均厚さの3倍以上、120倍以下であることが好ましく、3.5倍以上、100倍以下であることがより好ましい。一方、最も長い長さの解砕棒の長さは、板状固形物の平均厚さの12倍以上、250倍以下であることが好ましく、20倍~200倍であることがより好ましい。
 板状固形物の厚さは、例えばベルト型冷却機の投入プーリー間のクリアランスを設定することで制御できる。
 なお、ここでいう「板状固形物平均厚さ」とは、板状固形物における任意の10か所以上において測定した厚さの平均値を意味する。
When a plurality of crushing bars are provided for one rotating shaft, the lengths of the crushing bars may not be the same. In that case, the thickness of the plate-like solid is determined based on the length of the shortest crushing bar. Specifically, the length of the shortest crushing rod is preferably 3 times or more and 120 times or less of the average thickness of the plate-like solid, and is 3.5 times or more and 100 times or less. More preferably. On the other hand, the length of the longest crushing rod is preferably 12 times or more and 250 times or less, more preferably 20 times to 200 times the average thickness of the plate-like solid.
The thickness of the plate-like solid can be controlled, for example, by setting the clearance between the input pulleys of the belt type cooler.
In addition, "plate-shaped solid average thickness" here means the average value of the thickness measured in arbitrary 10 or more places in a plate-shaped solid.
(解砕処理)
 解砕処理は、冷却固化物を解砕機の解砕棒に接触させることで行うことができる。解砕棒の先端周速度は、0.3~3.5m/sが好ましく、1.0~3.0m/sがより好ましい。上記範囲の下限値以上であると、充分な解砕力が得られ、その結果、流動性等に優れるフレーク状のα-SF塩含有固形物(m)が得られる。一方、上記範囲の上限値以下であると、解砕力が過度にならず、得られるα-SF塩含有固形物(m)は発塵しにくくなる。
(Crushing process)
The crushing treatment can be performed by bringing the cooled solidified product into contact with a crushing rod of a crusher. The tip peripheral speed of the crushing rod is preferably 0.3 to 3.5 m / s, and more preferably 1.0 to 3.0 m / s. When the amount is not less than the lower limit of the above range, sufficient crushing force can be obtained, and as a result, a flake-like α-SF salt-containing solid (m) excellent in fluidity and the like can be obtained. On the other hand, if the amount is not more than the upper limit of the above range, the crushing force does not become excessive, and the resulting α-SF salt-containing solid matter (m) becomes difficult to generate dust.
 解砕機の具備する回転軸は、通常円柱状であり、外径は40~60mm、軸方向の長さは550~650mmが好ましい。回転軸は、腐食防止の観点から、SUS等の材料から形成されていることが好ましい。なお回転軸は、円筒状等であってもよい。 The rotating shaft of the crusher is usually cylindrical, and preferably has an outer diameter of 40 to 60 mm and an axial length of 550 to 650 mm. The rotating shaft is preferably formed of a material such as SUS from the viewpoint of preventing corrosion. The rotating shaft may be cylindrical.
 解砕棒の長さは、上述のとおり、板状固形物の厚みとの関係で決定することが好ましい。
 回転軸の軸に対する解砕棒の軸の向きは、垂直であっても、垂直でなくてもよい。また、複数本の解砕棒が回転軸の軸方向に沿って並んで配置されていることが好ましい。
 解砕棒の先端部は、平面状でも尖っていてもよい。解砕棒の軸に対して垂直な面で切断した断面形状に制限はなく、例えば円形、四角形、三角形が挙げられる。なお、ここでいう四角形、三角形は、頂部が直線や曲線で隅切されている形状を含む。
解砕棒も回転軸と同様に、腐食防止の観点から、SUS等の材料から形成されていることが好ましい。
As described above, the length of the crushing bar is preferably determined in relation to the thickness of the plate-like solid.
The orientation of the axis of the crushing bar with respect to the axis of the rotation axis may or may not be vertical. Moreover, it is preferable that a plurality of crushing rods are arranged side by side along the axial direction of the rotating shaft.
The tip of the crushing bar may be flat or pointed. There is no restriction | limiting in the cross-sectional shape cut | disconnected by the surface perpendicular | vertical with respect to the axis | shaft of a crushing rod, For example, a circle, a square, and a triangle are mentioned. In addition, the quadrangle | tetragon and a triangle here include the shape by which the top part is cut off with the straight line or the curve.
The crushing rod is also preferably made of a material such as SUS from the viewpoint of preventing corrosion, like the rotating shaft.
 解砕機としては、1本の回転軸と前記回転軸に設けられた1本以上の解砕棒とを1つの解砕部とした場合、1つの解砕部を有する解砕機を用いても、2つ以上の解砕部を有する解砕機を用いてもよいが、2つ以上の解砕部を有する解砕機を用いると、効率的に解砕を行うことができる。 As a crusher, when one crushing part is composed of one rotating shaft and one or more crushing rods provided on the rotating shaft, even if a crusher having one crushing part is used, Although a crusher having two or more crushing units may be used, crushing can be efficiently performed by using a crusher having two or more crushing units.
 特に、第一の解砕部(「プレローター」と称することもある)で粗く解砕し、続いて第二の解砕部(「ピンローター」と称することもある)で細かく解砕すると、過不足のない解砕強度を与えることができるので好ましい。
 更に、第一の解砕部が、直径50mm、長さ580mmの円柱回転軸1本と、その外周面上に備えられた解砕棒20本とからなり、解砕棒は、直径14mm、長さ60mmの円柱形状を有し、径方向外方に向かって延びるようにその一端が取付けられており、解砕棒は、回転軸の外周面上で回転方向に90°間隔で配置されて解砕棒列を構成している(すなわち、各解砕棒列は4本の解砕棒からなる)ことが好ましい。第一及び第五解砕棒列は、回転軸の一端からそれぞれ65mm付近に配置され、第一解砕棒列に隣接する第二解砕棒列、第二解砕棒列に隣接する第三解砕棒列、第三解砕棒列に隣接する第四解砕棒列はそれぞれ、第一解砕棒列と第五解砕棒列との間に、回転軸の長手方向に略等間隔に配置され、更に隣接する解砕棒列において各解砕棒は回転方向に45°ずれるように配置されているものが好ましい。
 第二の解砕部は、直径110mm、長さ580mmの円柱状回転軸1本と、その外周面上に備えられた解砕棒81本とからなり、解砕棒は、直径9mm、長さ20mmの円柱形状を有し、径方向外方に向かって延びるようにその一端が回転軸に取付けられており、解砕棒は、回転軸の外周面上で回転方向に120°間隔で配置されて解砕棒列を構成している(すなわち、各解砕棒列は3本の解砕棒からなる)ことが好ましい。回転軸の一端から30mm付近に配置された第一解砕棒列と、それに隣接する第二解砕棒列とから構成される第一の対において、第一解砕棒列と第二解砕棒列とが、回転方向に60°ずつ解砕棒がずれて配置されており、第二解砕棒列に隣接する第三解砕棒列と、それに隣接する第四解砕棒列とから構成される第二の対においても、第一の対と同様に、第三解砕棒列と第四解砕棒列とが回転方向に60°ずつ解砕棒列がずれて配置されており、第一解砕棒列の解砕棒と第三解砕棒列の解砕棒とは回転方向に5°ずつずれて配置されており、第五解砕棒列から第27解砕棒列についても同様に、奇数列と偶数列とで対を形成し、各対における奇数列は、隣接する対の奇数列と5°ずつずれるように回転方向に配置されているものが好ましい。
 このような、第一の解砕部と第二の解砕部とを備えた解砕機としては、例えば日本ベルティング社製クラッシャーが挙げられる。
In particular, when the first crushing portion (sometimes referred to as “pre-rotor”) is coarsely crushed, and then the second crushing portion (also referred to as “pin rotor”) is finely crushed, Since crushing strength without excess and deficiency can be given, it is preferable.
Further, the first crushing portion is composed of one cylindrical rotating shaft having a diameter of 50 mm and a length of 580 mm and 20 crushing rods provided on the outer peripheral surface. The crushing rod has a diameter of 14 mm and a long length. It has a cylindrical shape with a length of 60 mm and has one end attached so as to extend outward in the radial direction, and the crushing rods are arranged on the outer peripheral surface of the rotating shaft at intervals of 90 ° in the rotating direction. It is preferable to constitute a crushing rod row (that is, each crushing rod row is composed of four crushing rods). The first and fifth crushing bar rows are respectively arranged in the vicinity of 65 mm from one end of the rotating shaft, and the second crushing bar row adjacent to the first crushing bar row and the third crushing bar row adjacent to the second crushing bar row. The fourth cracking rod row adjacent to the cracking rod row and the third cracking rod row is approximately equidistant in the longitudinal direction of the rotating shaft between the first cracking rod row and the fifth cracking rod row, respectively. It is preferable that each crushing rod is arranged so as to be shifted by 45 ° in the rotation direction in the adjacent crushing rod rows.
The second crushing portion is composed of one cylindrical rotating shaft having a diameter of 110 mm and a length of 580 mm and 81 crushing rods provided on the outer peripheral surface, and the crushing rod has a diameter of 9 mm and a length. It has a cylindrical shape of 20 mm, and one end thereof is attached to the rotating shaft so as to extend radially outward. The crushing rods are arranged at 120 ° intervals in the rotating direction on the outer peripheral surface of the rotating shaft. It is preferable that a crushing bar row is constructed (that is, each crushing bar row is composed of three crushing rods). In a first pair composed of a first crushing bar row arranged near 30 mm from one end of the rotating shaft and a second crushing bar row adjacent thereto, the first crushing bar row and the second crushing bar The crushing rods are arranged so that the crushing rods are shifted by 60 ° in the rotation direction, and from the third crushing rod row adjacent to the second crushing rod row and the fourth crushing rod row adjacent thereto. Also in the second pair configured, like the first pair, the third cracking bar row and the fourth cracking rod row are arranged so that the cracking rod rows are shifted by 60 ° in the rotation direction. The crushing rods of the first crushing bar row and the crushing rods of the third crushing rod row are arranged so as to be shifted by 5 ° in the rotation direction, and from the fifth crushing rod row to the 27th crushing rod row. Similarly, it is preferable that odd-numbered columns and even-numbered columns form a pair, and the odd-numbered columns in each pair are arranged in the rotational direction so as to be shifted by 5 ° from the adjacent odd-numbered columns.
As a crusher provided with such a 1st crushing part and a 2nd crushing part, the crusher by Nippon Belting Co., Ltd. is mentioned, for example.
 冷却固化物と解砕棒との接触は、解砕棒を備えた回転軸に向けて板状固形物等の冷却固化物を一定速度で搬送することにより行ってもよいし、反対に、静置された冷却固化物に対して、解砕棒を備えた回転軸を回転させながら移動させることにより行ってもよいが、なかでも、冷却固化物を一定速度で搬送して接触させることが好ましい。その際の搬送速度は、解砕棒の先端周速度に対して0.005~0.6倍が好ましく、0.01~0.5倍がより好ましい。また、接触時における回転軸と冷却固化物との距離は、回転軸に備えられた最短長さの解砕棒の先端が、板状固形物の厚さの1/4程度まで、好ましくは1/2程度まで到達するような距離とすることが好ましい。 The contact between the cooled solidified material and the crushing rod may be carried out by conveying the cooled solidified material such as a plate-shaped solid material at a constant speed toward the rotating shaft provided with the crushing rod. The cooled solidified product may be moved by rotating the rotating shaft provided with the crushing rod, but it is preferable to transport and contact the cooled solidified product at a constant speed. . The conveying speed at that time is preferably 0.005 to 0.6 times, more preferably 0.01 to 0.5 times the tip peripheral speed of the crushing rod. The distance between the rotating shaft and the cooled solidified product at the time of contact is such that the tip of the shortest crushing rod provided on the rotating shaft is about 1/4 of the thickness of the plate-like solid material, preferably 1 It is preferable to set the distance to reach about / 2.
 このようにスルホン化処理~解砕処理を行う工程(I-1)により、準安定状態にあるフレーク状のα-SF塩含有固形物(m)が得られる。 Thus, by the step (I-1) of performing the sulfonation treatment to the crushing treatment, a flaky α-SF salt-containing solid (m) in a metastable state is obtained.
[工程(I-2)]
 工程(I-2)では、上述の工程(I-1)で得られた準安定状態にあるα-SF塩含有固形物(m)を結晶化する。これにより、安定状態にあるα-SF塩含有固形物(s)が得られる。
 結晶化する方法としては、例えば下記(i)~(iii)の方法が挙げられる。
(i)準安定状態にあるα-SF塩含有固形物(m)(以下、準安定固体(m)ともいうことがある。)を、30℃以上、20000Pa以下の圧力において、少なくとも48時間維持する方法(以下、方法(i)という場合がある。)。
(ii)準安定固体(m)を溶融して得られた溶融物を、準安定固体(m)の融点以上で、かつ、安定状態にあるα-SF塩含有固形物(s)(以下、安定固体(s)ということがある。)の融点以下の温度で、5分間以上維持する方法(以下、方法(ii)という場合がある。)。
(iii)準安定固体(m)を溶融して得られた溶融物に対して、準安定固体(m)の融点以上、かつ、80℃以下の温度において、100(1/s)以上の剪断速度で剪断力を与える方法(以下、方法(iii)という場合がある。)。
すなわち、工程(I-2)は、(i)工程(I―1)で得られたフレーク状のα-SF塩含有固形物(m)を、30℃以上、20000Pa以下の圧力において、少なくとも48時間維持すること、(ii)工程(I―1)で得られたフレーク状のα-SF塩含有固形物(m)を溶融して得られた溶融物を、前記フレーク状のα-SF塩含有固形物(m)の融点以上で、かつ、安定状態にあるα-SF塩含有固形物(s)の融点以下の温度で、5分間以上維持すること、又は、(iii)前記フレーク状のα-SF塩含有固形物(m)を溶融して得られた溶融物に対して、前記フレーク状のα-SF塩含有固形物(m)の融点以上、かつ、80℃以下の温度において、100(1/s)以上の剪断速度で剪断力を与えることを含む。
[Step (I-2)]
In the step (I-2), the α-SF salt-containing solid (m) in the metastable state obtained in the above step (I-1) is crystallized. Thereby, an α-SF salt-containing solid (s) in a stable state is obtained.
Examples of the crystallization method include the following methods (i) to (iii).
(I) An α-SF salt-containing solid substance (m) in a metastable state (hereinafter sometimes referred to as a metastable solid (m)) is maintained at a pressure of 30 ° C. or more and 20000 Pa or less for at least 48 hours. Method (hereinafter, also referred to as method (i)).
(Ii) The melt obtained by melting the metastable solid (m) is an α-SF salt-containing solid (s) (hereinafter referred to as “stable”) that is not lower than the melting point of the metastable solid (m) and is in a stable state. A method of maintaining the solid for 5 minutes or more at a temperature below the melting point of the stable solid (s) (hereinafter sometimes referred to as method (ii)).
(Iii) With respect to the melt obtained by melting the metastable solid (m), a shear of 100 (1 / s) or more at a temperature not lower than the melting point of the metastable solid (m) and not higher than 80 ° C. A method of applying a shearing force at a speed (hereinafter sometimes referred to as method (iii)).
That is, in step (I-2), (i) the flaky α-SF salt-containing solid matter (m) obtained in step (I-1) is at least 48 at a pressure of 30 ° C. or more and 20000 Pa or less. Maintaining the time, (ii) melting the flaky α-SF salt-containing solid material (m) obtained in the step (I-1), and adding the molten product obtained by melting the flaky α-SF salt Maintaining for at least 5 minutes at a temperature not lower than the melting point of the solid (m) and not higher than the melting point of the α-SF salt-containing solid (s) in a stable state, or (iii) the flaky shape With respect to the melt obtained by melting the α-SF salt-containing solid (m), at a temperature not lower than the melting point of the flaky α-SF salt-containing solid (m) and not higher than 80 ° C. Including applying a shear force at a shear rate of 100 (1 / s) or more.
 なお、準安定固体(m)及び安定固体(s)の融点は、示差走査熱分析計を用いた熱分析により予め決定できる。準安定固体(m)及び安定固体(s)の融点は、上記式(1)のR及びRの炭素数等により異なる。 Note that the melting points of the metastable solid (m) and the stable solid (s) can be determined in advance by thermal analysis using a differential scanning calorimeter. The melting points of the metastable solid (m) and the stable solid (s) vary depending on the number of carbon atoms of R 1 and R 2 in the above formula (1).
 以下、方法(i)~(iii)について説明する。
(方法(i))
 方法(i)では、準安定固体(m)を30℃以上、20000Pa以下の圧力において、少なくとも48時間維持する。
 温度を30℃未満とすると、結晶化は進行するが、その速度は極めて遅い。よって、30℃以上、40℃以下の温度で維持することが好ましい。この範囲であると、準安定固体(m)が融解して融着することがないため、48時間以上維持している最中での固化を抑制できる。
 維持温度は、30℃以上であれば一定温度である必要はなく、例えば断続的に加熱し、冷却しても良い。温度を維持する方法は特に限定されず、例えば準安定固体(m)を容器に入れ、その外部環境を条件温度に調整したり、容器そのものを条件温度に調整したりする方法が挙げられる。また、容器の内部に条件温度の気流を流す方法でもよい。
 容器としては、サイロ、フレキシブルコンテナバッグ、ドラム缶、クラフト袋、ポリエチレンバッグ等を使用できる。
Hereinafter, methods (i) to (iii) will be described.
(Method (i))
In the method (i), the metastable solid (m) is maintained at a pressure of 30 ° C. or more and 20000 Pa or less for at least 48 hours.
When the temperature is less than 30 ° C., crystallization proceeds, but the rate is very slow. Therefore, it is preferable to maintain the temperature at 30 ° C. or higher and 40 ° C. or lower. Within this range, since the metastable solid (m) does not melt and fuse, solidification during the maintenance for 48 hours or more can be suppressed.
The maintenance temperature need not be a constant temperature as long as it is 30 ° C. or higher. For example, the maintenance temperature may be intermittently heated and cooled. The method for maintaining the temperature is not particularly limited, and examples thereof include a method in which a metastable solid (m) is placed in a container and its external environment is adjusted to a conditional temperature, or the container itself is adjusted to a conditional temperature. Moreover, the method of flowing the airflow of condition temperature inside a container may be used.
As a container, a silo, a flexible container bag, a drum can, a craft bag, a polyethylene bag, etc. can be used.
 圧力は20000Pa以下であり、好ましくは12000Pa以下であり、より好ましくは500~8000Pa、さらに好ましくは3000Pa~7000Paである。20000Pa以下であれば、準安定固体(m)は固化しにくい。
 なお、ここでいう圧力とは、容器の底面での圧力であり、以下の式により定義される。
 圧力[Pa]=容器への充填質量[kg]×g[m/s]/容器底面積[m
 上記式において、gは重力加速度である。
 準安定固体(m)を容器に充填した場合、自重により容器底部へ圧力がかかることは当然ながら避けられない。よって、容器の形状、充填量等を調整し、圧力を上記範囲とすることが好ましい。
The pressure is 20000 Pa or less, preferably 12000 Pa or less, more preferably 500 to 8000 Pa, and still more preferably 3000 Pa to 7000 Pa. If it is 20000 Pa or less, the metastable solid (m) is difficult to solidify.
The pressure referred to here is the pressure at the bottom of the container and is defined by the following equation.
Pressure [Pa] = Packing mass [kg] × g [m / s 2 ] / Container bottom area [m 2 ]
In the above formula, g is gravitational acceleration.
When the container is filled with the metastable solid (m), it is naturally inevitable that pressure is applied to the bottom of the container due to its own weight. Therefore, it is preferable to adjust the shape, filling amount, and the like of the container so that the pressure is within the above range.
 維持時間が48時間以上であると、準安定固体(m)から安定固体(s)への転換が充分に進行する。維持時間が過度に長くなると、工場稼働率の低下等につながることから、好ましくは72時間以上、6週間以下である。
 準安定固体(m)を上記条件にて維持する間、準安定固体(m)を容器に入れて密閉状態としてもよいし、開放状態としてもよいが、開放状態とすると吸湿の可能性があるため、湿潤した空気との接触は避けた方がよい。
When the maintenance time is 48 hours or more, the conversion from the metastable solid (m) to the stable solid (s) proceeds sufficiently. If the maintenance time is excessively long, it leads to a decrease in the factory operation rate and the like, and preferably 72 hours or more and 6 weeks or less.
While maintaining the metastable solid (m) under the above-mentioned conditions, the metastable solid (m) may be put in a container to be in a sealed state or an open state, but if it is in an open state, there is a possibility of moisture absorption. Therefore, it is better to avoid contact with moist air.
 最も好ましい方法(i)の条件は、30℃~35℃の温度で、3000Pa~7000Paにおいて200時間~700時間維持する条件である。こうして得られる安定固体(s)は、融点が50℃以上と高いため、高温下で保存しても融解しにくい。 The most preferable method (i) is a condition in which the temperature is maintained at 3000 Pa to 7000 Pa for 200 hours to 700 hours at a temperature of 30 ° C. to 35 ° C. Since the stable solid (s) thus obtained has a high melting point of 50 ° C. or higher, it is difficult to melt even when stored at a high temperature.
(方法(ii))
 方法(ii)では、準安定固体(m)を溶融して得られた溶融物を、準安定固体(m)の融点以上、かつ、安定固体(s)の融点以下の温度で、5分間以上維持する。
 上記式(1)の脂肪酸アルキルエステルから得られるα-SF塩の場合、具体的には40℃以上、90℃未満の温度で維持することが好ましく、50℃以上、80℃未満の温度で維持することがより好ましい。温度が上記範囲内であると、短時間で準安定固体(m)から安定固体(s)に転換されやすい。また、維持時間が上記範囲内であると、準安定固体(m)が確実に安定固体(s)に転換する。
 最も好ましい方法(ii)の条件は、55℃~75℃の温度で、10分間~500分間、維持する条件である。
(Method (ii))
In the method (ii), the melt obtained by melting the metastable solid (m) is used for 5 minutes or more at a temperature not lower than the melting point of the metastable solid (m) and not higher than the melting point of the stable solid (s). maintain.
In the case of the α-SF salt obtained from the fatty acid alkyl ester of the above formula (1), specifically, it is preferably maintained at a temperature of 40 ° C. or more and less than 90 ° C., and is maintained at a temperature of 50 ° C. or more and less than 80 ° C. More preferably. When the temperature is within the above range, the metastable solid (m) is easily converted to the stable solid (s) in a short time. Further, when the maintenance time is within the above range, the metastable solid (m) is surely converted into the stable solid (s).
The most preferred method (ii) is a condition of maintaining at a temperature of 55 ° C. to 75 ° C. for 10 minutes to 500 minutes.
(方法(iii))
 方法(iii)では、準安定固体(m)を溶融して得られた溶融物に対して、準安定固体(m)の融点以上、かつ、80℃以下の温度において、100(1/s)以上の剪断速度で剪断力を与える。
 上記方法(ii)では、準安定固体(m)の溶融物を所定温度で所定時間維持することにより、安定状態へと転換させたが、方法(iii)では、所定時間維持する代わりに剪断力を与える。剪断力を与えることにより、安定状態への転換が早くなる。
(Method (iii))
In the method (iii), the melt obtained by melting the metastable solid (m) is 100 (1 / s) at a temperature not lower than the melting point of the metastable solid (m) and not higher than 80 ° C. A shear force is applied at the above shear rate.
In the above method (ii), the metastable solid (m) melt was converted to a stable state by maintaining it at a predetermined temperature for a predetermined time, but in the method (iii), instead of maintaining the predetermined time, a shear force give. By applying a shearing force, the transition to a stable state is accelerated.
 剪断力を付与する手段は特に限定されないが、例えば、各種混練装置や押出造粒装置が挙げられる。具体的には、栗本鐵工所株式会社製KRCニーダー、Mazzoni S.p.a製Milling Prodder等の市販品を使用できる。
 剪断速度は、剪断速度=羽先端速度/クリアランス、で規定され、100(1/s)以上、10000(1/s)以下であり、150(1/s)以上、7000(1/s)以下が好ましく、200(1/s)以上、5000(1/s)以下がより好ましい。
100(1/s)以上とすると、撹拌処理が充分となり、準安定固体(m)が確実に安定固体(s)に転換する。
 剪断力を与える時間は、5秒間以上であって5分間未満の時間であることが好ましい。上記範囲の下限値以上であると、準安定固体(m)が充分に安定固体(s)に転換し、上記範囲の上限値以下であると、大型の装置(混練装置、押出造粒装置等)を用いる必要がない。
 最も好ましい方法(iii)の条件は、55℃~75℃の温度で、200~5000(1/s)の剪断速度で剪断力を与える条件である。
The means for applying the shearing force is not particularly limited, and examples thereof include various kneading apparatuses and extrusion granulating apparatuses. Specifically, KRC Kneader, Mazzoni S.K. p. Commercial products such as Milling Producer manufactured by a can be used.
The shear rate is defined by shear rate = blade tip speed / clearance, and is 100 (1 / s) or more and 10000 (1 / s) or less, 150 (1 / s) or more and 7000 (1 / s) or less. Is preferably 200 (1 / s) or more and 5000 (1 / s) or less.
When it is 100 (1 / s) or more, the stirring treatment is sufficient, and the metastable solid (m) is reliably converted to the stable solid (s).
The time for applying the shearing force is preferably 5 seconds or more and less than 5 minutes. When it is above the lower limit of the above range, the metastable solid (m) is sufficiently converted to a stable solid (s), and when it is below the upper limit of the above range, a large apparatus (kneading device, extrusion granulator, etc. ) Is not necessary.
The most preferable method (iii) is a condition in which a shear force is applied at a shear rate of 200 to 5000 (1 / s) at a temperature of 55 to 75 ° C.
 以上説明した方法(i)~(iii)等により、準安定固体(m)が結晶化して安定固体(s)に転換したことは、示差走査熱分析計での熱分析により確認できる。
 例えば、上記式(1)におけるRの炭素数が14と16との混合物から製造されるα-スルホ脂肪酸メチルエステル塩(MES)の場合、その準安定固体(m)を熱分析すると、例えば図3に示すように、ピークトップを約40℃~50℃に有する、約35℃~55℃の温度帯に発現する熱吸収(融解)ピークが観察される。この場合、50℃以上の領域における熱吸収は少ないため、50℃~130℃における熱吸収ピーク面積は、0℃~130℃における熱吸収ピーク面積に対して50%未満となる。
 これに対し、結晶化後の安定固体(s)を熱分析すると、例えば図4や図5に示すように、約40℃~50℃付近のピークが低減し、約50℃以上(約50℃~70℃と、約70℃~90℃付近)の領域に複数のピークが観察されるようになる。この場合、50℃~130℃における熱吸収ピーク面積S1が、0~130℃における熱吸収ピーク面積S2に対して50%以上となる。
 このように安定固体(s)は、より高温で熱吸収ピークが発現するものであり、準安定固体(m)よりも高温領域で安定であると理解できる。
 なお、図3は、後述の実施例1で得られた準安定固体(m)の熱分析結果であり、図5は、実施例1の準安定固体(m)を結晶化して得られた安定固体(s)の熱分析結果である。
It can be confirmed by thermal analysis using a differential scanning calorimeter that the metastable solid (m) has been crystallized and converted to the stable solid (s) by the methods (i) to (iii) described above.
For example, in the case of α-sulfo fatty acid methyl ester salt (MES) produced from a mixture of carbon atoms of R 1 in the above formula (1) having 14 and 16, when the metastable solid (m) is subjected to thermal analysis, As shown in FIG. 3, a heat absorption (melting) peak having a peak top at about 40 ° C. to 50 ° C. and appearing in a temperature range of about 35 ° C. to 55 ° C. is observed. In this case, since the heat absorption in the region of 50 ° C. or higher is small, the heat absorption peak area at 50 ° C. to 130 ° C. is less than 50% with respect to the heat absorption peak area at 0 ° C. to 130 ° C.
On the other hand, when the stable solid (s) after crystallization is subjected to thermal analysis, for example, as shown in FIGS. 4 and 5, the peak in the vicinity of about 40 ° C. to 50 ° C. is reduced to about 50 ° C. or more (about 50 ° C. A plurality of peaks are observed in a region of about 70 ° C. and about 70 ° C. to 90 ° C.). In this case, the heat absorption peak area S1 at 50 ° C. to 130 ° C. is 50% or more with respect to the heat absorption peak area S2 at 0 to 130 ° C.
Thus, it can be understood that the stable solid (s) exhibits a heat absorption peak at a higher temperature and is more stable in the high temperature region than the metastable solid (m).
3 shows the thermal analysis result of the metastable solid (m) obtained in Example 1 described later, and FIG. 5 shows the stability obtained by crystallizing the metastable solid (m) of Example 1. It is a thermal analysis result of solid (s).
 安定固体(s)の水分率は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。下限値は0.5質量%が好ましい。すなわち、 安定固体(s)の水分率は、0.5質量%以上、10質量%以下であることが好ましく、0.5質量%以上、5質量%以下であることがより好ましい。
水分率が上記範囲内であると、安定固体(s)の保存安定性が優れ、低温でも粘着性が増大しにくい。そのため、安定固体(s)の保管、輸送時の取扱性が良好となる。
 なお、MESの安定固体(s)の場合、水分率が低いと、約70℃~90℃付近の熱吸熱ピークの絶対値が大きくなる傾向にある。
The moisture content of the stable solid (s) is preferably 10% by mass or less, and more preferably 5% by mass or less. The lower limit is preferably 0.5% by mass. That is, the moisture content of the stable solid (s) is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 5% by mass or less.
When the moisture content is within the above range, the storage stability of the stable solid (s) is excellent, and the adhesiveness is hardly increased even at a low temperature. Therefore, the handling property at the time of storage and transportation of the stable solid (s) is improved.
In the case of the stable solid (s) of MES, when the moisture content is low, the absolute value of the heat endothermic peak around 70 ° C. to 90 ° C. tends to increase.
 示差走査熱分析計としては、市販されている一般の示差走査熱量計であれば、入力補償型、熱流束型のいずれも使用できる。具体的には、例えば、パーキンエルマー社の「Diamond DSC」、セイコーインスツル株式会社の「EXSTAR 6000」等の市販品が挙げられる。試料を入れるサンプルパンとしては、アルミニウム製またはステンレス製のサンプルパンを用いる。昇温速度は、1~2℃/minであることが好ましい。昇温速度が上記範囲の下限値以上であるとノイズを抑制でき、上記範囲の上限値以下であると、微細なピークを問題なく検出できる。 As the differential scanning calorimeter, any of a commercially available general differential scanning calorimeter can be used either an input compensation type or a heat flux type. Specifically, for example, commercially available products such as “Diamond DSC” manufactured by PerkinElmer and “EXSTAR 6000” manufactured by Seiko Instruments Inc. can be used. A sample pan made of aluminum or stainless steel is used as a sample pan to put the sample. The temperature raising rate is preferably 1 to 2 ° C./min. Noise can be suppressed when the rate of temperature increase is equal to or higher than the lower limit value of the above range, and a fine peak can be detected without any problem when the temperature rising rate is equal to or lower than the upper limit value of the above range.
 なお、50℃~130℃における熱吸収ピーク面積S1と、0℃~130℃における熱吸収ピーク面積S2は、示差走査熱分析計に付属しているソフトウエア等を用いて、「自動分割積分」処理を行うことにより、それぞれ求めることができる。
 また、50℃~130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を50℃~130℃における熱吸収ピーク面積から差し引いた値をS1とする。同様に、0℃~130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を0℃~130℃における熱吸収ピーク面積から差し引いた値をS2とする。
Note that the heat absorption peak area S1 at 50 ° C. to 130 ° C. and the heat absorption peak area S2 at 0 ° C. to 130 ° C. are determined by using “automatic division integration” using software attached to the differential scanning calorimeter. Each can be obtained by performing processing.
When an exothermic peak is observed at 50 ° C. to 130 ° C., the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 50 ° C. to 130 ° C. is S1. Similarly, when an exothermic peak is observed at 0 ° C. to 130 ° C., the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 0 ° C. to 130 ° C. is S2.
<工程(II)>
 工程(II)では、工程(I)で得られた安定固体(s)を水に溶解させ、α-SF塩水溶液を製造する。
 ここで、安定固体(s)を溶解する水の温度をTs(℃)とし、前記安定固体(s)を示差走査熱分析計で熱分析した際に観測される熱流量最大値の熱吸収ピークトップ温度をTmax(℃)とした場合、温度Ts(℃)と温度Tmax(℃)とが、下記の関係を有するように、水の温度Ts(℃)を決定する。
<Process (II)>
In step (II), the stable solid (s) obtained in step (I) is dissolved in water to produce an α-SF salt aqueous solution.
Here, the temperature of water that dissolves the stable solid (s) is Ts (° C.), and the heat absorption peak of the maximum heat flow rate observed when the stable solid (s) is subjected to thermal analysis with a differential scanning calorimeter. When the top temperature is Tmax (° C.), the water temperature Ts (° C.) is determined so that the temperature Ts (° C.) and the temperature Tmax (° C.) have the following relationship.
 Tmax-5≦Ts≦Tmax+5 Tmax-5 ≦ Ts ≦ Tmax + 5
 具体的には、まず、溶解させる安定固体(s)を示差走査熱分析計で熱分析して、温度Tmax(℃)を求める。そして、水の温度Ts(℃)を温度Tmax(℃)の±5℃以内に温度調整し、撹拌しながら、温度調整された水に安定固体(s)を加える。
 例えば、図4に示したDSCチャートにおいては、熱流量最大値の熱吸収ピークトップ温度Tmax(℃)は88℃であるため、水の温度Ts(℃)を83℃~93℃の範囲に調整してから、水に安定固体(s)を加えて溶解させる。図5に示したDSCチャートにおいては、熱流量最大値の熱吸収ピークトップ温度Tmax(℃)は60℃であるため、水の温度Ts(℃)を55℃~65℃の範囲に調整してから、水に安定固体(s)を加えて溶解させる。
Specifically, first, a stable solid (s) to be dissolved is subjected to thermal analysis with a differential scanning calorimeter to obtain a temperature Tmax (° C.). Then, the temperature Ts (° C.) of the water is adjusted within ± 5 ° C. of the temperature Tmax (° C.), and the stable solid (s) is added to the temperature-adjusted water while stirring.
For example, in the DSC chart shown in FIG. 4, since the heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate is 88 ° C., the water temperature Ts (° C.) is adjusted to the range of 83 ° C. to 93 ° C. Then, a stable solid (s) is added to water and dissolved. In the DSC chart shown in FIG. 5, since the heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate is 60 ° C., the water temperature Ts (° C.) is adjusted to the range of 55 ° C. to 65 ° C. Then, a stable solid (s) is added to water and dissolved.
 より好ましくは、温度Ts(℃)と温度Tmax(℃)とが、下記の関係を有するように、水の温度Ts(℃)を決定する。 More preferably, the temperature Ts (° C.) of the water is determined so that the temperature Ts (° C.) and the temperature Tmax (° C.) have the following relationship.
 Tmax-2≦Ts≦Tmax+2 Tmax-2 ≦ Ts ≦ Tmax + 2
 このように、溶解させる安定固体(s)の熱流量最大値の熱吸収ピークトップ温度Tmax(℃)に応じて、前記安定固体(s)を溶解する際の水の温度Ts(℃)を調整することにより、例えば10℃~20℃程度の低温条件下でも析出が生じにくく、低温安定性に優れたα-SF塩水溶液が得られる。低温安定性に優れたα-SF塩水溶液は、ハンドリングしやすく、また、液体洗剤を製造する際等に、他の材料とも良好に混和する。
 低温安定性の向上効果は、広い範囲のα-SF塩水溶液濃度において得られるが、α-SF塩水溶液のアニオン界面活性剤濃度が、α-SF塩水溶液の総質量に対して、好ましくは3質量%~25質量%で、より好ましくは5質量%~20質量%の範囲であると、低温安定性の向上効果が顕著に得られる。
As described above, the temperature Ts (° C.) of water when the stable solid (s) is dissolved is adjusted according to the heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate of the stable solid (s) to be dissolved. By doing so, for example, an α-SF salt aqueous solution which is less likely to precipitate even under low temperature conditions of about 10 ° C. to 20 ° C. and has excellent low temperature stability can be obtained. An α-SF salt aqueous solution excellent in low-temperature stability is easy to handle and is well mixed with other materials when a liquid detergent is produced.
The effect of improving the low-temperature stability is obtained in a wide range of α-SF salt aqueous solution concentrations. The anionic surfactant concentration of the α-SF salt aqueous solution is preferably 3 with respect to the total mass of the α-SF salt aqueous solution. When the content is in the range of 5% by mass to 25% by mass, more preferably in the range of 5% by mass to 20% by mass, the effect of improving the low temperature stability is remarkably obtained.
 このように特定温度で安定固体(s)を水に溶解させることにより、低温安定性に優れたα-SF塩水溶液が得られる理由は、必ずしも明らかではないが、熱流量最大値の熱吸収ピークトップ温度Tmax(℃)から±5℃の温度範囲内の水に安定固体(s)を溶解させると、安定固体(s)の水溶液中での構造が安定化することに起因するものと考えられる。熱流量最大値の熱吸収ピークトップ温度Tmax(℃)から±5℃の範囲外の水中では、安定固体(s)の水溶液中での構造バランスが崩れやすく、それにより結晶化、すなわち析出が生じやすくなるものと考えられる。
 特に安定固体(s)が、副生成物である硫酸メチル金属塩や脂肪酸スルホナート金属塩を含有する場合や、アシル基の炭素数に分布を持っている場合(アシル基の炭素数が異なるα-SF塩の混合物である場合)には、安定固体(s)の結晶構造が複雑である。その場合、溶解時の結晶状態によって、水溶液中におけるα-SF塩の構造も複雑に変化すると考えられるが、特に熱流量最大値の熱吸収ピークトップ温度Tmax(℃)から±5℃の範囲の水に溶解させることにより、安定固体(s)の水溶液中での構造を安定化させる効果が顕著となると考えられる。
The reason why an α-SF salt aqueous solution excellent in low-temperature stability can be obtained by dissolving the stable solid (s) in water at a specific temperature is not necessarily clear, but the heat absorption peak at the maximum heat flow rate is not clear. It is considered that when the stable solid (s) is dissolved in water within a temperature range of ± 5 ° C. from the top temperature Tmax (° C.), the structure of the stable solid (s) in the aqueous solution is stabilized. . In water outside the range of ± 5 ° C from the heat absorption peak top temperature Tmax (° C) of the maximum heat flow rate, the structural balance in the aqueous solution of the stable solid (s) tends to be lost, thereby causing crystallization, that is, precipitation. It will be easier.
In particular, when the stable solid (s) contains by-product methyl sulfate metal salt or fatty acid sulfonate metal salt or has a distribution in the carbon number of acyl groups (α- In the case of a mixture of SF salts), the crystal structure of the stable solid (s) is complicated. In that case, it is considered that the structure of the α-SF salt in the aqueous solution also changes in a complex manner depending on the crystalline state at the time of dissolution. It is considered that the effect of stabilizing the structure of the stable solid (s) in the aqueous solution becomes remarkable by dissolving in water.
 なお、50℃~130℃における熱吸収ピーク面積S1が、0℃~130℃における熱吸収ピーク面積S2に対して50%以上となるという条件を満たさないα-SF塩含有固体を水に溶解させる場合に、水の温度を熱流量最大値の熱吸収ピークトップ温度Tmax(℃)から±5℃の範囲に設定したとしても、得られる水溶液の低温安定性は改善されない。
これは、α-SF塩の構造が安定しない準安定状態等で水に溶解させると、水溶液中でのα-SF塩の構造も安定しないことによるものと推察される。
An α-SF salt-containing solid that does not satisfy the condition that the heat absorption peak area S1 at 50 ° C. to 130 ° C. is 50% or more of the heat absorption peak area S2 at 0 ° C. to 130 ° C. is dissolved in water. In this case, even if the temperature of water is set within a range of ± 5 ° C. from the heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate, the low temperature stability of the obtained aqueous solution is not improved.
This is presumably because the structure of the α-SF salt in an aqueous solution is not stable when dissolved in water in a metastable state where the structure of the α-SF salt is not stable.
本発明のα-スルホ脂肪酸アルキルエステル塩水溶液を製造する方法のその他の態様としては、
脂肪酸アルキルエステルを出発原料として、安定状態にあるα-SF塩含有固形物を得る工程(I)と、前記α-SF塩含有固形物を温度Ts(℃)の水に溶解させる工程(II)とを含み、
前記工程(I)は、準安定な結晶状態にあるα-SF塩含有固形物(m)を調製する工程(I-1)と、前記調整したα-SF塩含有固形物(m)を結晶化して、前記安定状態にあるα-SF塩含有固形物(s)を得る工程(I-2)とを含み、
前記工程(I-1)は、前記脂肪酸アルキルエステルをスルホン化ガスによりスルホン化するスルホン化処理と;前記スルホン化処理で得られたスルホン化物に低級アルコールを加えてエステル化するエステル化処理と;前記エステル化処理で得られたエステル化物を中和する中和処理と;前記中和処理で得られた中和物を漂白する漂白処理と;前記漂白処理により得られたα-SF塩含有ペーストを加熱、濃縮して濃縮品を得る濃縮処理と;前記濃縮品を冷却して固化し、冷却固化物を得る冷却固化処理と;前記冷却固化処理により得られた冷却固化物を解砕する解砕処理と、を含み、
前記工程(I-2)は、(i)工程(I―1)で得られたフレーク状のα-SF塩含有固形物(m)を、30℃以上、20000Pa以下の圧力において、少なくとも48時間維持すること、(ii)工程(I―1)で得られたフレーク状のα-SF塩含有固形物(m)を溶融して得られた溶融物を、前記フレーク状のα-SF塩含有固形物(m)の融点以上で、かつ、安定状態にあるα-SF塩含有固形物(s)の融点以下の温度で、5分間以上維持すること、又は、(iii)前記フレーク状のα-SF塩含有固形物(m)を溶融して得られた溶融物に対して、前記フレーク状のα-SF塩含有固形物(m)の融点以上、かつ、80℃以下の温度において、100(1/s)以上の剪断速度で剪断力を与えることを含み、
前記工程(II)において、前記安定状態にあるα-SF塩含有固形物(s)は、示差走査熱分析計で熱分析した際に観測される50℃~130℃における熱吸収ピーク面積S1が、0℃~130℃における熱吸収ピーク面積S2に対して50%以上であり、
 前記温度Ts(℃)は、前記固形物を示差走査熱分析計で熱分析した際に観測される熱流量最大値の熱吸収ピークトップ温度をTmax(℃)とした場合に、前記温度Tmax(℃)との間に下記の関係を有する、
α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法が挙げられる。
 Tmax-5≦Ts≦Tmax+5
Other embodiments of the method for producing the aqueous α-sulfo fatty acid alkyl ester salt solution of the present invention include:
A step (I) of obtaining a solid α-SF salt-containing solid in a stable state using a fatty acid alkyl ester as a starting material, and a step (II) of dissolving the α-SF salt-containing solid in water at a temperature Ts (° C.) Including
The step (I) includes a step (I-1) of preparing an α-SF salt-containing solid (m) in a metastable crystalline state, and the adjusted α-SF salt-containing solid (m) is crystallized. And obtaining the α-SF salt-containing solid (s) in the stable state (I-2),
Step (I-1) includes a sulfonation treatment in which the fatty acid alkyl ester is sulfonated with a sulfonation gas; an esterification treatment in which a lower alcohol is added to the sulfonated product obtained by the sulfonation treatment to perform esterification; A neutralization treatment for neutralizing the esterified product obtained by the esterification treatment; a bleaching treatment for bleaching the neutralized product obtained by the neutralization treatment; and an α-SF salt-containing paste obtained by the bleaching treatment Heating and concentrating to obtain a concentrated product; cooling and solidifying the concentrated product to obtain a cooled solidified product; and crushing the cooled and solidified product obtained by the cooling and solidifying treatment. Crushing treatment,
In the step (I-2), (i) the flaky α-SF salt-containing solid (m) obtained in the step (I-1) is at least 48 hours at a pressure of 30 ° C. or more and 20000 Pa or less. (Ii) melting the flaky α-SF salt-containing solid material (m) obtained in step (I-1) to obtain the melt obtained by melting the flaky α-SF salt Maintaining for at least 5 minutes at a temperature not lower than the melting point of the solid (m) and not higher than the melting point of the α-SF salt-containing solid (s) in a stable state, or (iii) the flaky α -With respect to the melt obtained by melting the SF salt-containing solid (m), at a temperature not lower than the melting point of the flaky α-SF salt-containing solid (m) and not higher than 80 ° C. Applying a shear force at a shear rate of (1 / s) or more,
In the step (II), the α-SF salt-containing solid (s) in the stable state has a heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when thermal analysis is performed with a differential scanning calorimeter. , 50% or more with respect to the heat absorption peak area S2 at 0 ° C. to 130 ° C.,
The temperature Ts (° C.) is the temperature Tmax (° C.) when the heat absorption peak top temperature of the maximum heat flow rate observed when the solid matter is thermally analyzed by a differential scanning calorimeter is Tmax (° C.). And the following relationship:
A method for producing an aqueous α-sulfo fatty acid alkyl ester salt solution can be mentioned.
Tmax-5 ≦ Ts ≦ Tmax + 5
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<使用した原料等>
(1)脂肪酸メチルエステル
 脂肪酸メチルエステル(A-1)~(A-4)を用いた。これらのアシル基の炭素数分布を表1に示す。
<Used raw materials>
(1) Fatty acid methyl ester Fatty acid methyl esters (A-1) to (A-4) were used. Table 1 shows the carbon number distribution of these acyl groups.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (A-1):エメリー社製の商品名「Edenor ME C16-80 MY」。パーム油を起源とし、エステル化を行い、アシル基の炭素数16のメチルエステルを所定比率になるように添加・混合した後、水添し、全蒸留(ボトムカット)を行った脂肪酸メチルエステル。
 (A-2):「パステルM16(ライオン株式会社製の脂肪酸メチルエステル)」と、「パステルM18(ライオン株式会社製の脂肪酸メチルエステル)」とを、表1に示すアシル基の炭素数となるように、混合した混合物。
 (A-3):「パステルM16(ライオン株式会社製の脂肪酸メチルエステル)」と、「パステルM18(ライオン株式会社製の脂肪酸メチルエステル)」とを、表1に示すアシル基の炭素数となるように、混合した混合物。
 (A-4): エメリー社製の商品名「Edenor ME C16-60 MY」。パーム油を起源とし、エステル化を行い、アシル基の炭素数16のメチルエステルを所定比率になるように添加・混合した後、水添し、全蒸留(ボトムカット)を行った脂肪酸メチルエステル。
(A-1): Trade name “Edenor ME C16-80 MY” manufactured by Emery. Fatty acid methyl ester which originated from palm oil, was esterified, added and mixed with methyl ester of acyl group having 16 carbon atoms in a predetermined ratio, hydrogenated, and subjected to total distillation (bottom cut).
(A-2): “Pastel M16 (Fatty acid methyl ester manufactured by Lion Corporation)” and “Pastel M18 (Fatty acid methyl ester manufactured by Lion Corporation)” have the carbon number of the acyl group shown in Table 1. As a mixed mixture.
(A-3): “Pastel M16 (Fatty acid methyl ester manufactured by Lion Corporation)” and “Pastel M18 (Fatty acid methyl ester manufactured by Lion Corporation)” have the carbon number of the acyl group shown in Table 1. As a mixed mixture.
(A-4): Trade name “Edenor ME C16-60 MY” manufactured by Emery. Fatty acid methyl ester which originated from palm oil, was esterified, added and mixed with methyl ester of acyl group having 16 carbon atoms in a predetermined ratio, hydrogenated, and subjected to total distillation (bottom cut).
(2)スルホン化ガス:乾燥空気(露点-55℃)を用いてSOを触媒酸化して生成したガス。
(3)メタノール(エステル化処理において使用):工業グレード(水分1000ppm以下)。
(4)苛性ソーダ(中和処理において使用):工業グレードの製品(48質量%濃度)を上水で希釈した苛性ソーダ。
(5)過酸化水素水(漂白処理において使用):工業グレードの過酸化水素水(35質量%濃度:純正化学株式会社)。
(2) Sulfonated gas: A gas produced by catalytic oxidation of SO 2 using dry air (dew point −55 ° C.).
(3) Methanol (used in esterification treatment): Industrial grade (water content 1000 ppm or less).
(4) Caustic soda (used in neutralization treatment): Caustic soda obtained by diluting an industrial grade product (concentration of 48% by mass) with clean water.
(5) Hydrogen peroxide solution (used in bleaching treatment): Industrial grade hydrogen peroxide solution (35% by mass concentration: Junsei Chemical Co., Ltd.).
 製造例1~4において、以下のように工程(I-1)及び(I-2)を行い、安定固体(s)であるα-SF塩含有固形物(B-1)~(B-4)をそれぞれ製造した。製造例5では、準安定固体(m)であるα-SF塩含有固形物(B-5)を製造した。なお、工程(I-1)のうち、スルホン化処理~中和処理は、図1の構成の製造システムを用いて行った。 In Production Examples 1 to 4, steps (I-1) and (I-2) were performed as follows, and α-SF salt-containing solids (B-1) to (B-4) which are stable solids (s) ) Were produced respectively. In Production Example 5, an α-SF salt-containing solid (B-5) that is a metastable solid (m) was produced. In the step (I-1), the sulfonation treatment to the neutralization treatment were performed using the production system having the configuration shown in FIG.
(製造例1):α-SF塩含有固形物(B-1)の製造〔工程(I-1)〕(スルホン化処理)
 槽型スルホン化反応器に、脂肪酸メチルエステル(A-1)の100質量部を投入し、スルホン化ガスを反応モル比(SO/脂肪酸メチルエステル)=1.2で添加し、スルホン化(ガス接触操作)(80℃、240分間)を行った。その後、エステル化槽に移送し、熟成操作(80℃、20分間)を行った後、脂肪酸メチルエステル(A-1)の100質量部に対して硫酸ナトリウムの5質量部を15分間かけて添加し、硫酸ナトリウムの添加開始から20分間撹拌した。このようにしてスルホン化物を得た。
 なお、エステル化槽は、内径600mm、容器深さ816mmのジャケット付撹拌槽(10%皿型鏡板、邪魔板4枚)であり、傾斜タービン翼6枚からなる撹拌翼を用い、下向き流れとなるよう据付けた。撹拌回転数は277rpmとした。
(Production Example 1): Production of α-SF salt-containing solid (B-1) [Step (I-1)] (Sulfonation treatment)
100 parts by mass of the fatty acid methyl ester (A-1) was charged into the tank-type sulfonation reactor, and a sulfonation gas was added at a reaction molar ratio (SO 3 / fatty acid methyl ester) = 1.2, and sulfonation ( Gas contact operation) (80 ° C., 240 minutes). Thereafter, the mixture was transferred to an esterification tank and subjected to an aging operation (80 ° C., 20 minutes), and then 5 parts by mass of sodium sulfate was added over 15 minutes to 100 parts by mass of the fatty acid methyl ester (A-1). The mixture was stirred for 20 minutes from the start of sodium sulfate addition. A sulfonated product was thus obtained.
The esterification tank is a jacketed agitation tank (10% dish-type end plate, 4 baffle plates) having an inner diameter of 600 mm and a container depth of 816 mm, and uses an agitating blade composed of 6 inclined turbine blades to flow downward. It was installed as follows. The stirring rotation speed was 277 rpm.
(エステル化処理)
 スルホン化処理で得られたスルホン化物の100質量部に対してメタノール3質量部(SOの二分子付加体に対して1.5倍モル)を添加し、エステル化(80℃、75分間)を行い、エステル化物を得た。
(Esterification treatment)
3 parts by mass of methanol (1.5 times mol with respect to the bimolecular adduct of SO 3 ) was added to 100 parts by mass of the sulfonated product obtained by the sulfonation treatment, and esterification (80 ° C., 75 minutes) To obtain an esterified product.
(中和処理)
 ついで、エステル化処理で得られた生成物を、30質量%水酸化ナトリウム水溶液と共に、ミキサーの撹拌羽根近傍に同時かつ連続的に投入し、撹拌混合することにより、中和反応を行い、α-スルホ脂肪酸メチルエステル塩(中和物)を製造した。得られた中和物の温度が80℃、pH6.0付近になるように中和物を調製した。pH測定は、中和ラインに設置したpH計(SHDM-135:東亜ディーケーケー(株)製)により、中和ラインを流れる中和物(原液、80℃)に対して直接行った。
(Neutralization treatment)
Next, the product obtained by the esterification treatment is added simultaneously and continuously with a 30% by mass aqueous sodium hydroxide solution in the vicinity of the stirring blade of the mixer, and mixed by stirring to perform a neutralization reaction. A sulfo fatty acid methyl ester salt (neutralized product) was produced. The neutralized product was prepared so that the temperature of the obtained neutralized product was 80 ° C. and pH around 6.0. The pH was measured directly on the neutralized product (stock solution, 80 ° C.) flowing through the neutralization line with a pH meter (SHDM-135: manufactured by Toa DKK Co., Ltd.) installed in the neutralization line.
(漂白処理)
 ついで、熱交換器を有する循環ラインを備えた循環ループ方式の漂白剤混合ラインに、この中和物を180~200kg/hrの供給速度で供給するとともに、35%過酸化水素水をスルホン化物の色調に応じて3.5~11.5kg/hr(AI(有効成分:α-スルホ脂肪酸アルキルエステル塩)に対して純分で1~3質量%)で供給し、循環ラインからの漂白混合済み中和物(予備漂白物)と過酸化水素水とが充分に混合するようにした(5%KLETTが500以下であれば1質量%、5%KLETTが500から1000であれば2質量%、5%KLETTが1000から1500であれば3質量%、なお、5%KLETTとは、得られたα-スルホ脂肪酸メチルエステル塩のAI5質量%溶液を、40mm光路長、No.42ブルーフィルターを用いてクレット光電光度計で色調を測定した値を意味する。)。
 ループ循環量は、予備漂白物に新たに加えられる中和物の15倍量であり、循環ループ管内圧力は4kg/cm2であった。また、循環ループの温度は、熱交換器によって80℃に調節し、循環ループの滞留時間は10分間とした。
 ついで、これを図示略の流通管方式の漂白ラインに導入して漂白を進行させた。なお、漂白ラインとしては、ジャケット付き二重管で、温度、圧力調節が可能なものを採用した。漂白剤混合物の流れはピストンフローで、圧力4kg/cm2、最高温度が80℃以上になるよう調節し、滞留時間は180分間とした。
 こうしてα-SF塩含有固体ペーストを得た。
(Bleaching treatment)
Next, this neutralized product is fed at a feed rate of 180 to 200 kg / hr to a circulation loop type bleaching agent mixing line having a circulation line having a heat exchanger, and 35% hydrogen peroxide solution is added to the sulfonated product. 3.5 to 11.5 kg / hr depending on color tone (1 to 3% by mass with respect to AI (active ingredient: α-sulfo fatty acid alkyl ester salt)), and bleach mixed from the circulation line The neutralized product (preliminary bleached product) and hydrogen peroxide solution were mixed thoroughly (1% by mass if 5% KLETT was 500 or less, 2% by mass if 5% KLETT was 500 to 1000, If the 5% KLETT is 1000 to 1500, it is 3% by mass, and 5% KLETT means that the obtained 5% by mass solution of α-sulfo fatty acid methyl ester salt is 40 mm optical path length, No. 42 -It means the value of color tone measured with a Krett photometer using a filter.)
The amount of loop circulation was 15 times the amount of neutralized product newly added to the preliminary bleached product, and the pressure in the circulation loop pipe was 4 kg / cm 2 . The temperature of the circulation loop was adjusted to 80 ° C. with a heat exchanger, and the residence time of the circulation loop was 10 minutes.
Subsequently, this was introduced into a bleaching line of a distribution pipe system not shown, and the bleaching proceeded. As the bleaching line, a jacketed double tube with adjustable temperature and pressure was used. The flow of the bleaching agent mixture was a piston flow, the pressure was 4 kg / cm 2 , the maximum temperature was adjusted to 80 ° C. or more, and the residence time was 180 minutes.
Thus, an α-SF salt-containing solid paste was obtained.
(濃縮処理)
 ついで、得られたα-SF塩含有固体ペーストを真空薄膜蒸発機(伝熱面:4m、Ballestra社製)に200kg/hrで導入し、内壁加熱温度100℃~160℃、真空度0.01~0.03MPaにて濃縮し、温度100℃~130℃の濃縮物(溶融物)として取り出した。
 なお、ここで得られた濃縮品の一部を冷却し、濃縮品に含まれるα-SF塩濃度については、後述するように、JIS K3362に記載されているメチレンブルー(MB)逆滴定法で測定した。また、ジナトリウム塩(Di-Na)、メチル硫酸ナトリウム(MeSONa)、硫酸ナトリウム(NaSO)の各濃度については、後述するように、液体クロマトグラフ法により測定した。
(Concentration treatment)
Subsequently, the obtained α-SF salt-containing solid paste was introduced into a vacuum thin film evaporator (heat transfer surface: 4 m 2 , manufactured by Ballestra) at 200 kg / hr, the inner wall heating temperature was 100 ° C. to 160 ° C., and the degree of vacuum was 0. The solution was concentrated at 01 to 0.03 MPa and taken out as a concentrate (melt) at a temperature of 100 to 130 ° C.
A part of the concentrated product obtained here was cooled, and the concentration of α-SF salt contained in the concentrated product was measured by a methylene blue (MB) back titration method described in JIS K3362 as described later. did. The concentrations of disodium salt (Di-Na), sodium methyl sulfate (MeSO 4 Na), and sodium sulfate (Na 2 SO 4 ) were measured by liquid chromatography as described later.
(冷却固化処理及び解砕処理)
 得られた濃縮品をベルトクーラー((株)日本ベルティング製)を用いて、100℃~130℃から20℃~30℃まで0.5分間で冷却し、準安定固体(m)の板状固形物を得た。
 その後、解砕機((株)日本ベルティング製)を用いて板状固形物を解砕し、フレーク状のMESの準安定固体(m)を得た。
(Cooling solidification treatment and crushing treatment)
The resulting concentrated product is cooled from 100 ° C. to 130 ° C. to 20 ° C. to 30 ° C. in 0.5 minutes using a belt cooler (manufactured by Nippon Belting Co., Ltd.), and is a plate of metastable solid (m). A solid was obtained.
Thereafter, the plate-like solid was crushed using a crusher (manufactured by Nippon Belting Co., Ltd.) to obtain a flaky MES metastable solid (m).
〔工程(I-2)〕
 上述の方法(i)を採用し、準安定固体(m)を安定固体(s)に変換した。具体的には、フレキシブルコンテナバックを用いる試験に基づき、430Lのポリプロピレン製フレキシブルコンテナバッグ((有)古田商店製)にポリエチレン製の内袋を入れ、そこに、工程(I-1)で得られたフレーク状のMESの準安定固体(m)の200kgを入れ、表2に示した温度、圧力において、表2に示した期間に亘って放置した。このようにして安定固体(s)であるα-SF塩含有固形物(B-1)を得た。得られたα-SF塩含有固形物(B-1)の分析結果を表2に示す。
 また、前記α-SF塩含有固形物(B-1)について、後述するようにして示差走査熱分析計で熱分析を行い、0℃~130℃における熱吸収ピーク面積S2に対する、50℃~130℃における熱吸収ピーク面積S1の割合;観測された熱流量最大値の熱吸収ピークトップ温度Tmax(℃)を求めた。結果を表3に示す。
[Step (I-2)]
The method (i) described above was employed to convert the metastable solid (m) to a stable solid (s). Specifically, based on a test using a flexible container bag, a polyethylene inner bag is put into a 430 L polypropylene flexible container bag (manufactured by Furuta Shoten), and obtained in step (I-1). 200 kg of flaky MES metastable solid (m) was added and allowed to stand at the temperature and pressure shown in Table 2 for the period shown in Table 2. In this way, an α-SF salt-containing solid (B-1) which is a stable solid (s) was obtained. Table 2 shows the analysis results of the obtained α-SF salt-containing solid (B-1).
Further, the α-SF salt-containing solid (B-1) was subjected to thermal analysis with a differential scanning calorimeter as described later, and 50 ° C. to 130 ° C. with respect to the heat absorption peak area S 2 at 0 ° C. to 130 ° C. Ratio of heat absorption peak area S1 at ° C .: The heat absorption peak top temperature Tmax (° C.) of the observed maximum heat flow rate was determined. The results are shown in Table 3.
(製造例2):α-SF塩含有固形物(B-2)の製造
 脂肪酸メチルエステル(A-1)の代わりに、脂肪酸メチルエステル(A-2)を使用した以外は、製造例1と同様にして各工程を行い、α-SF塩含有固形物(B-2)を得た。得られたα-SF塩含有固形物(B-2)の分析結果を表2に示す。また、前記α-SF塩含有固形物(B-2)について、製造例1と同様にして、示差走査熱分析計で熱分析を行い、0℃~130℃における熱吸収ピーク面積S2に対する、50℃~130℃における熱吸収ピーク面積S1の割合;観測された熱流量最大値の熱吸収ピークトップ温度Tmax(℃)を求めた。結果を表3に示す。
(Production Example 2): Production of α-SF salt-containing solid (B-2) Production Example 1 except that fatty acid methyl ester (A-2) was used instead of fatty acid methyl ester (A-1). Each step was performed in the same manner to obtain an α-SF salt-containing solid (B-2). Table 2 shows the analysis results of the obtained α-SF salt-containing solid (B-2). In addition, the α-SF salt-containing solid (B-2) was subjected to thermal analysis with a differential scanning calorimeter in the same manner as in Production Example 1, and 50% of the heat absorption peak area S2 at 0 ° C. to 130 ° C. The ratio of the heat absorption peak area S1 in the range from 0 ° C. to 130 ° C .; the heat absorption peak top temperature Tmax (° C.) of the maximum observed heat flow rate was determined. The results are shown in Table 3.
(製造例3):α-SF塩含有固形物(B-3)の製造
 脂肪酸メチルエステル(A-1)の代わりに、脂肪酸メチルエステル(A-3)を使用した以外は、製造例1と同様にして各工程を行い、α-SF塩含有固形物(B-3)を得た。得られたα-SF塩含有固形物(B-3)の分析結果を表2に示す。また、前記α-SF塩含有固形物(B-3)について、製造例1と同様にして、示差走査熱分析計で熱分析を行い、0℃~130℃における熱吸収ピーク面積S2に対する、50℃~130℃における熱吸収ピーク面積S1の割合;観測された熱流量最大値の熱吸収ピークトップ温度Tmax(℃)を求めた。結果を表3に示す。
(Production Example 3): Production of α-SF salt-containing solid (B-3) Production Example 1 except that fatty acid methyl ester (A-3) was used instead of fatty acid methyl ester (A-1). Each step was performed in the same manner to obtain an α-SF salt-containing solid (B-3). Table 2 shows the analysis results of the resulting α-SF salt-containing solid (B-3). Further, the α-SF salt-containing solid (B-3) was subjected to thermal analysis with a differential scanning calorimeter in the same manner as in Production Example 1, and 50% of the heat absorption peak area S2 at 0 ° C. to 130 ° C. The ratio of the heat absorption peak area S1 in the range from 0 ° C. to 130 ° C .; the heat absorption peak top temperature Tmax (° C.) of the maximum observed heat flow rate was determined. The results are shown in Table 3.
(製造例4):α-SF塩含有固形物(B-4)の製造
 脂肪酸メチルエステル(A-1)の代わりに、脂肪酸メチルエステル(A-4)を使用した以外は、製造例1と同様にして各工程を行い、α-SF塩含有固形物(B-4)を得た。得られたα-SF塩含有固形物(B-4)の分析結果を表2に示す。また、前記α-SF塩含有固形物(B-4)について、製造例1と同様にして、示差走査熱分析計で熱分析を行い、0℃~130℃における熱吸収ピーク面積S2に対する、50℃~130℃における熱吸収ピーク面積S1の割合;観測された熱流量最大値の熱吸収ピークトップ温度Tmax(℃)を求めた。結果を表3に示す。
(Production Example 4): Production of α-SF salt-containing solid (B-4) Production Example 1 except that fatty acid methyl ester (A-4) was used instead of fatty acid methyl ester (A-1). Each step was performed in the same manner to obtain an α-SF salt-containing solid (B-4). Table 2 shows the analysis results of the resulting α-SF salt-containing solid (B-4). In addition, the α-SF salt-containing solid (B-4) was subjected to thermal analysis with a differential scanning calorimeter in the same manner as in Production Example 1, and 50% of the heat absorption peak area S2 at 0 ° C. to 130 ° C. The ratio of the heat absorption peak area S1 in the range from 0 ° C. to 130 ° C .; the heat absorption peak top temperature Tmax (° C.) of the maximum observed heat flow rate was determined. The results are shown in Table 3.
(製造例5):準安定固体(m)であるα-SF塩含有固形物(B-5)の製造
 製造例1と同様にして各工程を行い、α-SF塩含有固形物(B-5)を得た。ただし、濃縮処理まで行い、工程(I-2)を実施しなかった。得られたα-SF塩含有固形物(B-5)の分析結果を表2に示す。また、前記α-SF塩含有固形物(B-5)について、製造例1と同様にして、示差走査熱分析計で熱分析を行い、0℃~130℃における熱吸収ピーク面積S2に対する、50℃~130℃における熱吸収ピーク面積S1の割合;観測された熱流量最大値の熱吸収ピークトップ温度Tmax(℃)を求めた。結果を表3に示す。
(Production Example 5): Production of α-SF salt-containing solid (B-5) which is a metastable solid (m) Each of the steps was carried out in the same manner as in Production Example 1, and α-SF salt-containing solid (B- 5) was obtained. However, concentration treatment was performed, and step (I-2) was not performed. Table 2 shows the analysis results of the resulting α-SF salt-containing solid (B-5). In addition, the α-SF salt-containing solid (B-5) was subjected to thermal analysis with a differential scanning calorimeter in the same manner as in Production Example 1, and 50% of the heat absorption peak area S2 at 0 ° C. to 130 ° C. The ratio of the heat absorption peak area S1 in the range from 0 ° C. to 130 ° C .; the heat absorption peak top temperature Tmax (° C.) of the maximum observed heat flow rate was determined. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、分析は下記の方法で行った。
(1)水分測定
 カールフィッシャー水分計(京都電子工業(株)製、「MKC-210」)を用いて測定した。具体的には、15℃~25℃でサンプル10mg~100mgをカールフィッシャー試薬に完全溶解させて、測定を開始した。電極反応の終了に伴い、測定を自動的に停止した。投入サンプル量をカールフィッシャー水分計のタッチパネルに入力して水分量を算出した。
The analysis was performed by the following method.
(1) Moisture measurement The moisture was measured using a Karl Fischer moisture meter ("MKC-210" manufactured by Kyoto Electronics Industry Co., Ltd.). Specifically, 10 mg to 100 mg of sample was completely dissolved in Karl Fischer reagent at 15 to 25 ° C., and measurement was started. The measurement was automatically stopped as the electrode reaction ended. The amount of sample input was input to the Karl Fischer moisture meter touch panel to calculate the amount of moisture.
(2)アニオン界面活性剤濃度(質量%)
 試料0.3gを200mLメスフラスコに正確に量り取り、イオン交換水(蒸留水)を標線まで加えて超音波で溶解させた。溶解後、約25℃まで冷却し、この中から5mLをホールピペットで滴定瓶にとり、MB(メチレンブルー)指示薬25mLとクロロホルム15mLを加え、さらに0.004mol/L塩化ベンゼトニウム溶液5mLを加えた後、0.002mol/Lアルキルベンゼンスルホン酸ナトリウム溶液で滴定した。滴定は、その都度、滴定瓶に栓をして激しく振とうした後、静置し、白色板を背景として両層が同一色調になった点を終点とした。同様に空試験(試料を使用しない以外は上記と同じ試験)を行い、滴定量の差からアニオン界面活性剤濃度を算出した。なお、ここでアニオン界面活性剤濃度とは、上述のとおり、洗浄有効成分であるα-SF塩と、副生成物の1つであるα-スルホ脂肪酸ジアルカリ塩(ジ塩)との合計の濃度である。
(2) Anionic surfactant concentration (% by mass)
0.3 g of a sample was accurately weighed into a 200 mL volumetric flask, and ion-exchanged water (distilled water) was added up to the marked line and dissolved by ultrasonic waves. After dissolution, cool to about 25 ° C., take 5 mL of the solution with a whole pipette into a titration bottle, add 25 mL of MB (methylene blue) indicator and 15 mL of chloroform, and then add 5 mL of a 0.004 mol / L benzethonium chloride solution. Titrated with 0.002 mol / L sodium alkylbenzene sulfonate solution. In each titration, the titration bottle was capped and shaken vigorously, then allowed to stand, and the end point was the point where both layers had the same color tone against a white plate. Similarly, a blank test (the same test as described above except that no sample was used) was performed, and the anionic surfactant concentration was calculated from the difference in titer. Here, as described above, the anionic surfactant concentration is the total concentration of the α-SF salt, which is a cleaning active ingredient, and the α-sulfo fatty acid dialkali salt (di-salt), which is one of by-products. It is.
(3)アニオン界面活性剤中のα-スルホ脂肪酸ジナトリウム塩の割合
 α-スルホ脂肪酸ジナトリウム塩(以下、「Di-Na」ともいう。)の標準品0.02,0.05,0.1gを200mLメスフラスコに正確に量りとり、水約50mLとエタノール約50mLを加えて超音波を用いて溶解させた。溶解後、約25℃まで冷却し、メタノールを標線まで正確に加え、これを標準液とした。
 この標準液約2mLを、0.45μmのクロマトディスクを用いて濾過後、下記測定条件の高速液体クロマトグラフ分析を行い、ピーク面積から検量線を作成した。
(3) Ratio of α-sulfo fatty acid disodium salt in anionic surfactant Standard product of α-sulfo fatty acid disodium salt (hereinafter also referred to as “Di-Na”) 0.02, 0.05, 0. 1 g was accurately weighed into a 200 mL volumetric flask, about 50 mL of water and about 50 mL of ethanol were added and dissolved using ultrasonic waves. After dissolution, the mixture was cooled to about 25 ° C., and methanol was accurately added up to the marked line to obtain a standard solution.
About 2 mL of this standard solution was filtered using a 0.45 μm chromatographic disk, followed by high performance liquid chromatographic analysis under the following measurement conditions to prepare a calibration curve from the peak area.
 次に、α-SF塩含有固形物の1.5gを200mLメスフラスコに正確に量りとり、水約50mLとエタノール約50mLを加えて超音波を用いて溶解させた。溶解後、約25℃まで冷却し、メタノールを標線まで正確に加え、これを試験溶液とした。
 試験溶液約2mLを、0.45μmのクロマトディスクを用いて濾過後、上記と同じ測定条件の高速液体クロマトグラフィーで分析し、上記で作成した検量線を用いて、試料溶液中のDi-Na濃度を求めた。
 表2中には、アニオン界面活性剤濃度を100質量%とした時のDi-Naの濃度を「アニオン界面活性剤100質量%中のDi-Na量」として記載した。
Next, 1.5 g of the α-SF salt-containing solid was accurately weighed into a 200 mL volumetric flask, and about 50 mL of water and about 50 mL of ethanol were added and dissolved using ultrasonic waves. After dissolution, the mixture was cooled to about 25 ° C., and methanol was accurately added up to the marked line to make a test solution.
About 2 mL of the test solution was filtered using a 0.45 μm chromatographic disk and then analyzed by high performance liquid chromatography under the same measurement conditions as described above. The concentration of Di-Na in the sample solution was analyzed using the calibration curve prepared above. Asked.
In Table 2, the concentration of Di-Na when the anionic surfactant concentration is 100% by mass is described as “Di-Na amount in 100% by mass of anionic surfactant”.
(高速液体クロマトグラフ分析測定条件)
・装置:LC-6A(島津製作所製)・カラム:Nucleosil 5SB(ジーエルサイエンス社製)・カラム温度:40℃・検出器:示差屈折率検出器RID-6A(島津製作所製)・移動相:0.7%過塩素酸ナトリウムのHO/CHOH=1/4(体積比)溶液・流量:1.0mL/min.・注入量:100μL
(High-performance liquid chromatographic analysis measurement conditions)
・ Device: LC-6A (manufactured by Shimadzu Corporation) ・ Column: Nucleosil 5SB (manufactured by GL Sciences Inc.) ・ Column temperature: 40 ° C. ・ Detector: Differential refractive index detector RID-6A (manufactured by Shimadzu Corporation) ・ Mobile phase: 0 0.7% sodium perchlorate in H 2 O / CH 3 OH = 1/4 (volume ratio) solution Flow rate: 1.0 mL / min.・ Injection volume: 100 μL
(4)硫酸ナトリウム濃度及びメチルサルフェート濃度(質量%)
 硫酸ナトリウム及びメチルサルフェートの標準品をそれぞれ0.02,0.04,0.1,0.2gずつ、200mLメスフラスコに正確に量りとり、イオン交換水(蒸留水)を標線まで加え、超音波を用いて溶解させた。溶解後、約25℃まで冷却し、これを標準液とした。この標準液約2mLを、0.45μmのクロマトディスクを用いて濾過後、下記測定条件のイオンクロマトグラフ分析を行い、硫酸ナトリウム及びメチルサルフェート標準液のピーク面積から検量線を作成した。
 次に、測定試料0.3gを200mLメスフラスコに正確に量り、イオン交換水(蒸留水)を標線まで加え、超音波を用いて溶解させる。溶解後、約25℃まで冷却し、これを試験溶液とした。試験溶液約2mLを、0.45μmのクロマトディスクを用いて濾過後、上記と同じ測定条件のイオンクロマトグラフで分析し、作成した検量線を用いて、試料溶液中のメチルサルフェート濃度及び硫酸ナトリウム濃度を求め、試料中の硫酸ナトリウム及びメチルサルフェート濃度(質量%)を算出した。
(4) Sodium sulfate concentration and methyl sulfate concentration (mass%)
Accurately weigh 0.02, 0.04, 0.1, and 0.2 g of sodium sulfate and methyl sulfate, respectively, into a 200 mL volumetric flask, add ion-exchanged water (distilled water) to the marked line, It was dissolved using sonic waves. After dissolution, the mixture was cooled to about 25 ° C. and used as a standard solution. About 2 mL of this standard solution was filtered using a 0.45 μm chromatographic disk, followed by ion chromatographic analysis under the following measurement conditions, and a calibration curve was created from the peak areas of the sodium sulfate and methyl sulfate standard solutions.
Next, 0.3 g of a measurement sample is accurately weighed into a 200 mL volumetric flask, ion-exchanged water (distilled water) is added up to the marked line, and dissolved using ultrasonic waves. After dissolution, the solution was cooled to about 25 ° C. and used as a test solution. About 2 mL of the test solution was filtered using a 0.45 μm chromatographic disk and then analyzed by an ion chromatograph under the same measurement conditions as described above. Using the prepared calibration curve, the methyl sulfate concentration and sodium sulfate concentration in the sample solution were analyzed. The sodium sulfate and methyl sulfate concentrations (mass%) in the sample were calculated.
(イオンクロマトグラフ分析測定条件)・装置:DX-500(日本ダイオネックス社製)・検出器:電気伝導度検出器CD-20(日本ダイオネックス社製)・ポンプ:IP-25(日本ダイオネックス社製)・オーブン:LC-25(日本ダイオネックス社製)・インテグレータ:C-R6A(島津製作所製)・分離カラム:AS-12A(日本ダイオネックス社製)・ガードカラム:AG-12A(日本ダイオネックス社製)・溶離液:2.5mM NaCO/2.5mM NaOH/5%(体積)アセトニトリル水溶液・溶離液流量:1.3mL/min.・再生液:純水・カラム温度:30℃・ループ容量:25μL (Ion chromatographic analysis and measurement conditions)-Device: DX-500 (Nippon Dionex)-Detector: Electrical conductivity detector CD-20 (Nippon Dionex)-Pump: IP-25 (Nippon Dionex)・ Oven: LC-25 (made by Nippon Dionex) ・ Integrator: C-R6A (made by Shimadzu Corporation) ・ Separation column: AS-12A (made by Nippon Dionex) ・ Guard column: AG-12A (Japan) Manufactured by Dionex Co., Ltd.)-Eluent: 2.5 mM Na 2 CO 3 /2.5 mM NaOH / 5% (volume) acetonitrile aqueous solution-eluent flow rate: 1.3 mL / min.・ Regeneration solution: Pure water ・ Column temperature: 30 ° C. ・ Loop volume: 25 μL
(5)示差走査熱分析計での熱分析
 示差走差熱分析計として、パーキンエルマー社Diamond DSCを用いた。トリオブレンダー(トリオサイエンス社製)で試料の20gを粉砕し、そのうちの5~30mgをアルミニウム製のサンプルパンに入れ、0℃から130℃まで2℃/minの速度で昇温し、熱分析した。
 この時の50℃~130℃における熱吸収ピーク面積S1と、0℃~130℃における熱吸収ピーク面積S2から、S1×100/S2を求めた。なお、面積S1と面積S2は、示差走査熱分析計に付属しているソフトウエアを用いて、「自動分割積分」処理を行うことにより、それぞれ求めた。また、50℃~130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を50℃~130℃における熱吸収ピーク面積から差し引いた値をS1とし、0~130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を0℃~130℃における熱吸収ピーク面積から差し引いた値をS2とした。
(5) Thermal analysis with a differential scanning calorimeter A Perkin Elmer Diamond DSC was used as a differential scanning calorimeter. 20 g of the sample was pulverized with a trio blender (manufactured by Trio Science), 5-30 mg of the sample was put in an aluminum sample pan, heated from 0 ° C. to 130 ° C. at a rate of 2 ° C./min, and subjected to thermal analysis. .
S1 × 100 / S2 was determined from the heat absorption peak area S1 at 50 ° C. to 130 ° C. and the heat absorption peak area S2 at 0 ° C. to 130 ° C. The area S1 and the area S2 were obtained by performing an “automatic division integration” process using software attached to the differential scanning calorimeter. When an exothermic peak is observed at 50 ° C. to 130 ° C., the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 50 ° C. to 130 ° C. is S1, and the exothermic peak is generated at 0 to 130 ° C. When a peak was observed, the value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 0 ° C. to 130 ° C. was defined as S2.
(実施例1~10、比較例1~7)
 各実施例及び各比較例において、表3に示すように、各製造例で得られたα-SF塩含有固形物(B-1)~(B-5)を水に溶解させ、2.5kgのα-SF塩含有水溶液を調製した。ここでα-SF塩含有固形物(B-1)~(B-5)を水に溶解させる量は、得られるα-SF塩含有水溶液中におけるアニオン界面活性剤濃度が表3に示す値となるように決定した。
 なお、溶解には、5Lビーカー、撹拌モーター、45度傾斜パドル(9cm)、邪魔板(4枚)等を使用した。具体的には、ビーカーに水を入れて加温し、所定の温度(Ts(℃))に到達したのを確認してから、撹拌モーターの回転数を262rpmに設定し、α-SF塩含有固形物(B-1)~(B-5)を水に添加した。完全に溶解したことを目視で確認できるまで撹拌し、各水溶液を得た。
 溶解時の水の温度Ts(℃)、α-SF塩含有固形物(B-1)~(B-5)の熱分析により観測された熱流量最大値の熱吸収ピークトップ温度Tmax(℃)、Tmax(℃)とTs(℃)との差(Tmax-Ts(℃))を表3に示す。
 そして、得られたα-SF塩含有水溶液を容量200mlのガラス瓶にサンプリングし、18℃の恒温槽内に静置した。静置して24時間後の外観を確認し、以下の4段階で評価した。結果を表3に示す。
 A:透明
 B:微白濁
 C:析出が認められたが、水溶液の流動性はある。
 D:析出が認められ、水溶液の流動性も無い。
(Examples 1 to 10, Comparative Examples 1 to 7)
In each Example and each Comparative Example, as shown in Table 3, the α-SF salt-containing solids (B-1) to (B-5) obtained in each Production Example were dissolved in water, and 2.5 kg An α-SF salt-containing aqueous solution was prepared. Here, the amount of the α-SF salt-containing solids (B-1) to (B-5) dissolved in water is such that the concentration of the anionic surfactant in the obtained α-SF salt-containing aqueous solution is the value shown in Table 3. Decided to be.
For dissolution, a 5 L beaker, a stirring motor, a 45-degree inclined paddle (9 cm), a baffle plate (4 sheets), and the like were used. Specifically, water is put into a beaker and heated, and after confirming that a predetermined temperature (Ts (° C.)) has been reached, the rotation speed of the stirring motor is set to 262 rpm and the α-SF salt is contained. Solids (B-1) to (B-5) were added to water. The solution was stirred until it could be visually confirmed that it was completely dissolved to obtain each aqueous solution.
Temperature Ts (° C.) of water at the time of dissolution, heat absorption peak top temperature Tmax (° C.) of the maximum heat flow rate observed by thermal analysis of α-SF salt-containing solids (B-1) to (B-5) Table 3 shows the difference between Tmax (° C.) and Ts (° C.) (Tmax−Ts (° C.)).
The obtained α-SF salt-containing aqueous solution was sampled in a glass bottle with a capacity of 200 ml and allowed to stand in a thermostatic bath at 18 ° C. The appearance after 24 hours of standing was confirmed and evaluated in the following four stages. The results are shown in Table 3.
A: Transparent B: Slight cloudiness C: Precipitation was observed, but the aqueous solution was fluid.
D: Precipitation is observed, and there is no fluidity of the aqueous solution.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、各実施例では、α-SF塩含有固形物の安定固体(s)を採用し、これを適切な温度の水に溶解させて水溶液を得ているため、水溶液の低温安定性が優れた。一方、水の温度が適切でないか、溶解させるα-SF塩が安定固体(s)ではないか、あるいはこれらの両方に前記当する各比較例では、低温安定性に優れた水溶液は得られなかった。 As shown in Table 3, each example employs a stable solid (s) of an α-SF salt-containing solid, which is dissolved in water at an appropriate temperature to obtain an aqueous solution. Excellent stability. On the other hand, in each comparative example where the temperature of water is not appropriate, the α-SF salt to be dissolved is not a stable solid (s), or both of them, an aqueous solution excellent in low-temperature stability cannot be obtained. It was.
本発明のα-スルホ脂肪酸アルキルエステル塩水溶液の製造方法は、低温条件下でも析出が生じにくいα-SF塩水溶液を製造できるので、産業上極めて重要である。 The method for producing an α-sulfo fatty acid alkyl ester salt aqueous solution of the present invention is extremely important industrially because it can produce an α-SF salt aqueous solution that hardly causes precipitation even under low temperature conditions.

Claims (1)

  1.  α-スルホ脂肪酸アルキルエステル塩を含有する固形物を温度Ts(℃)の水に溶解させ、α-スルホ脂肪酸アルキルエステル塩水溶液を製造する方法であって、
     前記固形物は、示差走査熱分析計で熱分析した際に観測される50℃~130℃における熱吸収ピーク面積S1が、0℃~130℃における熱吸収ピーク面積S2に対して50%以上であり、
     前記温度Ts(℃)は、前記固形物を示差走査熱分析計で熱分析した際に観測される熱流量最大値の熱吸収ピークトップ温度をTmax(℃)とした場合に、前記温度Tmax(℃)との間に下記の関係を有する、α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法。
     Tmax-5≦Ts≦Tmax+5
    A method for producing an α-sulfo fatty acid alkyl ester salt aqueous solution by dissolving a solid containing an α-sulfo fatty acid alkyl ester salt in water at a temperature Ts (° C.),
    The solid matter has a heat absorption peak area S1 at 50 ° C. to 130 ° C. observed when thermal analysis is performed with a differential scanning calorimeter, which is 50% or more of the heat absorption peak area S2 at 0 ° C. to 130 ° C. Yes,
    The temperature Ts (° C.) is the temperature Tmax (° C.) when the heat absorption peak top temperature of the maximum heat flow rate observed when the solid matter is thermally analyzed by a differential scanning calorimeter is Tmax (° C.). And an aqueous α-sulfo fatty acid alkyl ester salt solution having the following relationship:
    Tmax-5 ≦ Ts ≦ Tmax + 5
PCT/JP2014/057146 2013-03-18 2014-03-17 PRODUCTION METHOD OF AQUEOUS SOLUTION OF α-SULFO FATTY ACID ALKYL ESTER SALT WO2014148435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-055531 2013-03-18
JP2013055531A JP6060013B2 (en) 2013-03-18 2013-03-18 Process for producing α-sulfo fatty acid alkyl ester salt aqueous solution

Publications (1)

Publication Number Publication Date
WO2014148435A1 true WO2014148435A1 (en) 2014-09-25

Family

ID=51580114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057146 WO2014148435A1 (en) 2013-03-18 2014-03-17 PRODUCTION METHOD OF AQUEOUS SOLUTION OF α-SULFO FATTY ACID ALKYL ESTER SALT

Country Status (2)

Country Link
JP (1) JP6060013B2 (en)
WO (1) WO2014148435A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379337B2 (en) * 2015-06-26 2018-08-29 グリーンプラ株式会社 Packaging band made from flexible container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075770A1 (en) * 2006-12-21 2008-06-26 Lion Corporation Aqueous surfactant solution and method for producing the same
WO2009054406A1 (en) * 2007-10-22 2009-04-30 Lion Corporation Solid fatty acid alkyl ester sulfonate metal salt material, and process for production of fatty acid alkyl ester sulfonate metal salt powder having sharp grain size distribution
WO2010123060A1 (en) * 2009-04-22 2010-10-28 ライオン株式会社 Fatty acid alkyl ester sulfonate metal salt powder mixture and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075770A1 (en) * 2006-12-21 2008-06-26 Lion Corporation Aqueous surfactant solution and method for producing the same
WO2009054406A1 (en) * 2007-10-22 2009-04-30 Lion Corporation Solid fatty acid alkyl ester sulfonate metal salt material, and process for production of fatty acid alkyl ester sulfonate metal salt powder having sharp grain size distribution
WO2010123060A1 (en) * 2009-04-22 2010-10-28 ライオン株式会社 Fatty acid alkyl ester sulfonate metal salt powder mixture and manufacturing method therefor

Also Published As

Publication number Publication date
JP2014181193A (en) 2014-09-29
JP6060013B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5940664B2 (en) General method for preparing fatty acylamide based surfactants
US8410304B2 (en) Process for preparing gamma-hydroxybutyrate
US5382677A (en) Process for the production of highly concentrated pastes of α-sulfofatty acid alkyl ester alkali metal salts
JPWO2004111166A1 (en) Powder, flakes or pellets containing α-sulfo fatty acid alkyl ester salt in high concentration, method for producing the same, granular detergent and method for producing the same
US5391783A (en) Process for the production of light-colored pastes of α-sulfofatty acid alkyl ester alkali metal salts
BR112014001334B1 (en) concentrate of acyl starch compounds c8-c22
WO2014148435A1 (en) PRODUCTION METHOD OF AQUEOUS SOLUTION OF α-SULFO FATTY ACID ALKYL ESTER SALT
JP2008024672A (en) METHOD FOR PRODUCING alpha-SULFOFATTY ACID ALKYL ESTER SALT
KR101581987B1 (en) - method for producing aqueous -sulfo fatty acid alkyl ester salt solution
JP2008094942A (en) Surface active agent composition
JP5358190B2 (en) Process for producing powder containing α-sulfo fatty acid alkyl ester salt
JP4782001B2 (en) Method for producing anionic surfactant containing α-sulfo fatty acid alkyl ester salt, anionic surfactant and detergent composition containing the same
JP5522839B2 (en) Method for producing fatty acid alkyl ester sulfonate metal salt solids
JP5222733B2 (en) Surfactant aqueous liquid and method for producing the same
JP5656696B2 (en) Method for producing granular detergent composition
JP2007320978A (en) Surfactant composition
JP5495307B2 (en) Method for producing α-sulfo fatty acid alkyl ester-containing composition
JP4614065B2 (en) High-concentration α-sulfo fatty acid alkyl ester salt-containing particles, production method thereof, and detergent
JP2009191065A (en) PRODUCTION METHOD OF alpha-SULFO FATTY ACID ALKYL ESTER SALT
JPS61280467A (en) Aqueous solution of alpha-sulfofatty acid ester salt having high concentration
JP5193865B2 (en) Method for producing α-sulfo fatty acid alkyl ester salt
JP2011032251A (en) Method for manufacturing alpha-sulfofatty acid alkyl ester salt
JP2011121892A (en) METHOD OF MANUFACTURING alpha-SULFOFATTY ACID ALKYL ESTER ALKANOLAMINE SALT
JP2001002632A (en) PRODUCTION OF alpha-SULFOFATTY ACID ALKYL ESTER SALT
JP6774798B2 (en) Coated α-sulfofatty acid alkyl ester salt particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767429

Country of ref document: EP

Kind code of ref document: A1