WO2014148160A1 - Cylinder head cover with integrated negative pressure pump - Google Patents

Cylinder head cover with integrated negative pressure pump Download PDF

Info

Publication number
WO2014148160A1
WO2014148160A1 PCT/JP2014/053325 JP2014053325W WO2014148160A1 WO 2014148160 A1 WO2014148160 A1 WO 2014148160A1 JP 2014053325 W JP2014053325 W JP 2014053325W WO 2014148160 A1 WO2014148160 A1 WO 2014148160A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder head
head cover
negative pressure
vane
pressure pump
Prior art date
Application number
PCT/JP2014/053325
Other languages
French (fr)
Japanese (ja)
Inventor
伸司 山▲崎▼
Original Assignee
三桜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三桜工業株式会社 filed Critical 三桜工業株式会社
Publication of WO2014148160A1 publication Critical patent/WO2014148160A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/006Camshaft or pushrod housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members

Definitions

  • the present invention relates to a cylinder head cover integrated with a negative pressure pump in which a part of the negative pressure pump is integrally formed with the cylinder head cover.
  • the vehicle is equipped with a brake booster to reduce the driver's braking force.
  • a negative pressure is applied to the brake booster by connecting the brake booster to the intake manifold.
  • the throttle valve is not used, it is described in Patent Document 1.
  • negative pressure has been applied to the brake booster by a negative pressure pump that utilizes the rotation of the engine.
  • the negative pressure pump described in Patent Document 1 is a vane pump that utilizes the rotation of a camshaft of an engine, and a housing body that has a pump chamber formed therein, and a housing cover that is attached to the housing body so as to close the pump chamber And a vane for partitioning the pump chamber, and a rotor connected to the camshaft of the engine for rotating the vane.
  • the housing main body is assembled
  • the cylinder head cover and the housing body of the negative pressure pump are separate members, the cylinder head cover and the housing body of the negative pressure pump must be manufactured separately, and the housing body of the negative pressure pump is attached to the cylinder head cover. As a result, there is a problem that the manufacturing cost is increased because an operation for assembling the cylinder head and an operation for sealing between the cylinder head cover and the housing main body of the negative pressure pump occur. In addition, if the housing body of the negative pressure pump is not sufficiently assembled to the cylinder head cover, there is a problem that the support strength of the rotor is lowered.
  • an object of the present invention is to provide a cylinder head cover integrated with a negative pressure pump that can reduce the manufacturing cost and improve the support strength of the rotor.
  • a cylinder head cover integrated with a negative pressure pump is formed integrally with a cylinder head cover portion covering a camshaft of an engine and a cylinder head cover portion, and a pump chamber is formed therein, and a part of the negative pressure pump is formed. And a first through hole into which a rotor of a negative pressure pump connected to the camshaft is inserted.
  • the housing main body is configured to be connected to the cylinder head cover and the housing main body.
  • the cylinder head cover portion and the housing main body portion of the negative pressure pump are integrally formed, so that the manufacturing cost can be reduced.
  • the rotor is inserted into the first through hole formed in the connection portion that connects the cylinder head cover portion and the housing main body portion, the support strength of the rotor can be improved.
  • the material of the cylinder head cover part and the housing main body part of the negative pressure pump are the same. From the viewpoint of cost reduction, it is preferable that the material of the cylinder head cover portion and the housing main body portion of the negative pressure pump is the same resin.
  • the cylinder head cover portion and the housing main body portion can be made of resin by utilizing such knowledge. Therefore, while being able to integrate a cylinder head cover part and the housing main-body part of a negative pressure pump easily, weight reduction and cost reduction can be achieved.
  • a bush supporting the rotor may be inserted into the first through hole.
  • the rotor since the rotor is supported via the bush, the rotor can be smoothly rotated with respect to the first through hole.
  • it may further include a second through hole formed in the connection portion and disposed at the lower portion of the pump chamber.
  • the second through hole can be formed in the lower portion of the pump chamber, so that even if oil is sucked into the pump chamber, the oil sucked into the pump chamber lubricates each drive section of the pump chamber. It is discharged from the second through hole. For this reason, it is possible to prevent the pressure in the pump chamber from increasing due to accumulation of oil in the pump chamber.
  • a chamber chamber may be formed on the cylinder head cover side of the second through hole.
  • the chamber chamber is formed on the cylinder head cover portion side of the second through hole, whereby the second through port and the inner space of the cylinder head cover portion are connected via the chamber chamber. For this reason, even if the pump chamber in a negative pressure state is opened to the inner space of the cylinder head cover portion, oil can be prevented from being sucked into the pump chamber.
  • an exhaust sound for exhausting air from the pump chamber is generated, but the air exhausted from the second through-port is reflected by the air exhausted from the second through-port. The momentum is weakened. For this reason, the discharge sound generated at the second through hole can be reduced.
  • the manufacturing cost can be reduced and the support strength of the rotor can be improved.
  • FIG. 2 is a cross-sectional view taken along line II-II shown in FIG. It is a figure which shows the structure of the vane of a 3rd means.
  • FIG. 1 is a cross-sectional view of an upper part of an engine to which a cylinder head cover integrated with a negative pressure pump is attached
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • the negative pressure pump-integrated cylinder head cover 1 is formed by integrally forming a cylinder head cover portion 2 and a housing main body portion 4 constituting a part of the negative pressure pump 3. It is.
  • the cylinder head cover portion 2 is a cover that constitutes a part of the negative pressure pump integrated cylinder head cover 1 and covers the camshaft 5 disposed in the upper part of the engine.
  • a space inside the cylinder head cover portion 2 is a camshaft housing space B in which the camshaft 5 is housed.
  • the material of the cylinder head cover 2 is not particularly limited, but is preferably a resin from the viewpoint of weight reduction and cost reduction.
  • a resin from the viewpoint of weight reduction and cost reduction.
  • PA polyamide
  • PPA polyphthalamide
  • the housing body 4 constitutes part of the negative pressure pump integrated cylinder head cover 1 and part of the negative pressure pump 3.
  • the negative pressure pump 3 constitutes a part of the negative pressure pump integrated cylinder head cover 1 and has a housing main body 4 in which a pump chamber A is formed, and is attached to the housing main body 4 so as to close the pump chamber A.
  • a housing cover 6, a rotor 7 connected to the camshaft 5, and a vane 8 that partitions the pump chamber A and is driven to rotate by the rotor 7 are provided.
  • the pump chamber A is a space having a substantially circular cross section, and is opened on the housing cover 6 side.
  • the cross-sectional shape of the pump chamber A is not limited to a perfect circle, and may be, for example, an ellipse or a deformed circle.
  • the housing body 4 includes a connecting portion 14 connected to the cylinder head cover portion 2. Further, the housing main body 4 is formed with a first through-hole 11, a second through-hole 12, and a third through-hole 13 that penetrate the housing main body 4 and communicate with the pump chamber A.
  • the first through-hole 11 is a through-hole for inserting the rotor 7 and arranging the rotor in the pump chamber A.
  • the first through-hole 11 is formed in the connection portion 14 and communicates the pump chamber A and the camshaft housing space B.
  • the second through-hole 12 is a through-hole for discharging the air and oil in the pump chamber A to the camshaft housing space B.
  • the second through-hole 12 is formed in the connection portion 14 and communicates the pump chamber A and the camshaft housing space B.
  • the third through hole 13 is a through hole for applying the negative pressure in the pump chamber A to the brake booster.
  • the first through-hole 11 is formed at a position eccentric from the center position of the pump chamber A. For this reason, the rotation center of the rotor 7 inserted into the first through-hole 11 is a position eccentric from the center position of the pump chamber A.
  • the second through-hole 12 is disposed in the lower part of the pump chamber A in order to discharge the oil in the pump chamber A to the camshaft housing space B.
  • a chamber chamber C is formed on the cam shaft housing space B side (cylinder head cover portion 2 side) of the second through-hole 12.
  • the chamber C is a space disposed between the second through-hole 12 and the camshaft housing space B. For this reason, the air and oil discharged from the second through-hole 12 pass through the chamber chamber C and are then discharged into the camshaft housing space B.
  • the chamber chamber is formed in a cave shape extending in the vertical direction.
  • the chamber chamber C communicates with the second through-hole 12 in the upper part, and communicates with the camshaft accommodation space B in the lower part. More specifically, in the chamber chamber C, a vertical wall portion 16 that partitions the chamber chamber C and the camshaft housing space B is formed in front of the second through-hole 12.
  • a communication port 15 that communicates the chamber chamber C and the camshaft housing space B is formed below the hanging wall portion 16.
  • the housing cover 6 closes the opening of the pump chamber A by being attached to the housing body 4.
  • the housing cover 6 can be attached to the housing body 4 by, for example, fastening with a plurality of bolts or fusion.
  • a packing such as an O-ring is sandwiched between the housing body 4 and the housing cover 6 in order to maintain airtightness between the housing body 4 and the housing cover 6.
  • the material of the housing body 4 and the housing cover 6 is not particularly limited, but is preferably a resin from the viewpoint of weight reduction and cost reduction.
  • a resin from the viewpoint of weight reduction and cost reduction.
  • PA polyamide
  • PPA polyphthalamide
  • the cylinder head cover portion 2 and the housing body portion 4 that are integrally formed as the negative pressure pump integrated cylinder head cover 1 may be the same material or different materials.
  • the cylinder head cover portion 2 and the housing main body portion 4 are preferably the same material from the viewpoint of manufacturability, and are preferably the same resin material from the viewpoint of weight reduction and cost reduction.
  • the cylinder head cover portion 2 and the housing main body portion 4 can be integrally formed by general injection molding.
  • the cylinder head cover portion 2 and the housing main body portion 4 can be integrally formed by insert molding.
  • the material of the cylinder head cover portion 2 and the material of the housing main body portion 4 are made of the same metal such as aluminum, the cylinder head cover portion 2 and the housing main body portion 4 can be integrally formed by casting or cutting. it can.
  • the technique which uses the raw material of the housing main-body part 4 as resin is mentioned later.
  • the rotor 7 is disposed in the pump chamber A, a connecting end portion 71 connected to the camshaft 5, a central support portion 72 inserted into the first through-hole 11 and rotatably supported by the connection portion 14. And a support end 73 that slidably supports the vane 8.
  • connection end 71 is connected to the camshaft 5 directly or indirectly so that the rotational drive of the camshaft 5 is transmitted.
  • the connection structure between the connection end portion 71 and the camshaft 5 may be any structure as long as it can transmit the rotational drive without sliding.
  • the central support 72 is formed in a cylindrical shape.
  • the central support portion 72 is rotatably supported by the connection portion 14 via a bush 74 press-fitted into the first through hole 11 of the connection portion 14.
  • the support end 73 is formed in a cylindrical shape.
  • the support end 73 is formed with a support groove 75 into which the vane 8 is inserted.
  • the support groove 75 is a groove cut out along a straight line that passes through the central axis of the support end 73 and is orthogonal to the central axis. For this reason, the support end 73 can slidably support the vane 8 in a direction passing through the central axis of the support end 73 and orthogonal to the central axis by inserting the vane 8 into the support groove 75. It is possible.
  • the connecting end 71, the center supporting portion 72, and the supporting end 73 are connected in series so that the center axes of the connecting end 71, the center supporting portion 72, and the supporting end 73 coincide with each other.
  • the vane 8 is an elongated plate-like member that is slidably supported by the rotor 7 and partitions the pump chamber A into two spaces.
  • the vane 8 is substantially divided into two in the thickness direction.
  • the vane 8 includes an elongated plate-like first vane portion 81 whose tip 81a abuts against the inner peripheral wall 17 of the housing main body 4 forming the pump chamber A, and the inner peripheral wall of the housing main body 4 forming the pump chamber A. 17 is provided with an elongated plate-like second vane portion 82 with which a tip 82a abuts.
  • the first vane portion 81 and the second vane portion 82 are formed in the same shape.
  • the vane 8 is inserted into the support groove 75 of the support end 73 in a state where the first vane portion 81 and the second vane portion 82 are overlapped so as to be point-symmetric.
  • the means for bringing the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 into contact with the inner peripheral wall 17 of the housing body 4 is not particularly limited, and is realized by, for example, the following means. be able to.
  • the vane 8 of the first means is such that the center of gravity of the first vane portion 81 is positioned on the tip 81 a side with respect to the rotor 7, and the center of gravity of the second vane portion 82 is positioned on the tip 82 a side with respect to the rotor 7.
  • the distal end 81a of the first vane portion 81 and the distal end 82a of the second vane portion 82 are moved by the centrifugal force generated in the first vane portion 81 and the second vane portion 82 due to the rotation of the rotor 7.
  • the inner peripheral wall 17 of the part 4 can be pressed.
  • the vane 8 of the second means urges (pushes) the tip 81a of the first vane portion 81 toward the inner peripheral wall 17 side of the housing main body 4 by an urging means (not shown) such as a spring and the second vane.
  • the tip 82 a of the portion 82 is urged (pushed) toward the inner peripheral wall 17 side of the housing body 4.
  • the front end 81a of the first vane portion 81 and the front end 82a of the second vane portion 82 are connected to the inner peripheral wall 17 of the housing main body portion 4 by the biasing force of the biasing means regardless of whether the rotor 7 is rotated. Can be pressed.
  • FIG. 3 is a diagram showing the structure of the third means vane.
  • the vane 8 of the third means is configured such that the tip 81 a of the first vane portion 81 and the tip 82 a of the second vane portion 82 are connected to the inner peripheral wall 17 of the housing body 4 by a biasing means 83 such as a spring.
  • the first vane portion 81 and the second vane portion 82 are subjected to a centrifugal force generated by the rotation of the rotor 7 to generate a load P2 in a direction opposite to the urging direction of the urging means 83. It is a structure.
  • the biasing means 83 pushes the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 toward the inner peripheral wall 17 side of the housing main body portion 4, and uses, for example, a spring such as a coil spring. Some use magnetic force or hydraulic pressure.
  • Such a load P ⁇ b> 2 positions the center of gravity of the first vane part 81 on the opposite side of the tip 81 a of the first vane part 81 with respect to the rotor 7, and the center of gravity of the second vane part 82 is It can be generated by positioning it on the opposite side of the tip 82a of the two vane portion 82.
  • such setting of the center of gravity position can be performed as follows, for example. That is, the weight portion 81b is formed on the opposite side of the tip 81a of the first vane portion 81 with respect to the rotor 7, and the weight portion 82b is formed on the opposite side of the tip 82a of the second vane portion 82 with respect to the rotor 7.
  • the average density of the first vane portion 81 on the opposite side of the tip 81a with respect to the rotor 7 is made higher than the average density on the tip 81a side of the first vane portion 81 with respect to the rotor 7, and the rotor 7 of the second vane portion 82
  • the average density on the side opposite to the tip 82a is set higher than the average density on the tip 82a side of the second vane portion 82 with respect to the rotor 7.
  • the volume of the first vane portion 81 on the opposite side of the tip 81a with respect to the rotor 7 is made larger than the volume on the tip 81a side of the first vane portion 81 with respect to the rotor 7, and the tip of the second vane portion 82 with respect to the rotor 7
  • the volume on the opposite side of 82a is made larger than the volume on the tip 82a side of the second vane portion 82 with respect to the rotor 7.
  • the vane 8 of the third means configured as described above, when the rotor 7 is stopped, the front end 81a of the first vane portion 81 and the second vane portion 82 are driven by the biasing force P1 of the biasing means 83.
  • the tip 82 a is pressed against the inner peripheral wall 17 of the housing body 4.
  • the pump chamber A is separated by the vane 8 in the state where the airtightness is maintained between the tip 81a of the first vane part 81 and the tip 82a of the second vane part 82 and the inner peripheral wall 17 of the housing body part 4. Divided into spaces.
  • the vane 8 when the rotational speed of the rotor 7 exceeds a predetermined value, the vane 8 is in a state where the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 and the inner peripheral wall 17 of the housing body 4 are separated from each other. Rotates. For this reason, friction does not occur between the tip 81 a of the first vane part 81 and the tip 82 a of the second vane part 82 and the inner peripheral wall 17 of the housing body 4.
  • the negative pressure pump is set to have a pump performance that can apply a sufficient negative pressure even at the rotational speed of the rotor at idling. Therefore, when the rotational speed of the rotor increases because the driver steps on the accelerator. The pump performance of the negative pressure pump becomes excessive. Therefore, as in the third means, when the rotor 7 rotates at a high rotation, the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 and the inner peripheral wall 17 of the housing main body portion 4 are separated. Even if there is a gap, the amount of increase in the transfer amount that increases with the increase in the rotational speed of the rotor 7 balances the amount of air leaking from the gap. Thereby, appropriate pump performance can be maintained.
  • the vane 8 As the third means, it becomes possible to employ a resin as the material of the housing main body 4, the first vane 81, and the second vane 82.
  • a resin for example, polyamide (PA) or polyphthalamide (PPA) can be used as the resin that is the material of the first vane portion 81 and the second vane portion 82 from the viewpoint of heat resistance.
  • PA polyamide
  • PPA polyphthalamide
  • the material of the first vane portion 81 and the second vane portion 82 is not limited to resin, and can be various materials.
  • the third through hole 13 described above is formed at a position where one space partitioned by the vane 8 expands as the vane 8 rotates. Further, the second through hole 12 described above is formed at a position where the other space partitioned by the vane 8 is narrowed by the rotation of the vane 8.
  • the cylinder head cover portion 2 and the housing main body portion 4 of the negative pressure pump 3 are integrally formed. Can be reduced. Moreover, since the rotor 7 is inserted into the first through-hole 11 that penetrates the cylinder head cover portion 2 and the housing body portion 4 that are integrally formed in this way, the support strength of the rotor 7 can be improved. . Furthermore, since the rotor 7 is supported via the bush 74 press-fitted into the first through hole 11, the rotation of the rotor 7 with respect to the first through hole 11 can be made smooth.
  • the negative pressure pump integrated cylinder head cover 1 can be manufactured by simple injection molding. And the housing main body 4 of the negative pressure pump 3 can be easily integrated, and weight reduction and cost reduction can be achieved.
  • the second through-hole 12 and the camshaft housing space B are communicated with each other via the chamber chamber C, and a hanging wall portion 16 that partitions the chamber chamber C and the camshaft housing space B is formed in front of the second through-hole 12.
  • a communication port 15 that communicates the chamber chamber C and the camshaft housing space B is formed below the hanging wall portion 16.
  • the present invention is not limited to the above embodiment.
  • the vane is formed in a plate shape and the vane is divided into the first vane portion and the second vane portion in the plate thickness direction.
  • the shape and structure of the vane are not limited to this. It can change suitably without being limited to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

A cylinder head cover with an integrated negative pressure pump is provided with: a cylinder head cover part which covers the camshaft of an engine; a main housing body which is integrally formed with the cylinder head cover part, has a pump chamber formed in the interior thereof, and constitutes a portion of the negative pressure pump; and a first through opening which is formed in a connecting section for connecting the cylinder head cover part and the main housing body and into which the rotor of the negative pressure pump linked to the camshaft is inserted.

Description

負圧ポンプ一体型シリンダヘッドカバーCylinder head cover with integrated negative pressure pump
 本発明は、シリンダヘッドカバーに負圧ポンプの一部が一体的に形成された負圧ポンプ一体型シリンダヘッドカバーに関する。 The present invention relates to a cylinder head cover integrated with a negative pressure pump in which a part of the negative pressure pump is integrally formed with the cylinder head cover.
 車両には、ドライバのブレーキ操作力を軽減するためのブレーキ倍力装置が搭載されている。従来、ブレーキ倍力装置をインテークマニホールドに接続させることでブレーキ倍力装置に負圧を印可していたが、近年、スロットルバルブが使用されなくなってきたことに伴い、特許文献1に記載されたように、エンジンの回転を利用した負圧ポンプによりブレーキ倍力装置に負圧を印可するようになってきた。 The vehicle is equipped with a brake booster to reduce the driver's braking force. Conventionally, a negative pressure is applied to the brake booster by connecting the brake booster to the intake manifold. However, in recent years, as the throttle valve is not used, it is described in Patent Document 1. Furthermore, negative pressure has been applied to the brake booster by a negative pressure pump that utilizes the rotation of the engine.
 特許文献1に記載された負圧ポンプは、エンジンのカムシャフトの回転を利用したベーンポンプであり、内部にポンプ室が形成されたハウジング本体と、ポンプ室を塞ぐようにハウジング本体に取り付けられるハウジングカバーと、ポンプ室を仕切るベーンと、エンジンのカムシャフトに連結されてベーンを回転させるロータと、を備えている。そして、カムシャフトを覆うシリンダヘッドカバーにハウジング本体を組み付けて、ロータをエンジンのカムシャフトに連結している。 The negative pressure pump described in Patent Document 1 is a vane pump that utilizes the rotation of a camshaft of an engine, and a housing body that has a pump chamber formed therein, and a housing cover that is attached to the housing body so as to close the pump chamber And a vane for partitioning the pump chamber, and a rotor connected to the camshaft of the engine for rotating the vane. And the housing main body is assembled | attached to the cylinder head cover which covers a cam shaft, and the rotor is connected with the cam shaft of the engine.
特許第4733356号公報Japanese Patent No. 4733356
 しかしながら、シリンダヘッドカバーと負圧ポンプのハウジング本体とが別部材であると、シリンダヘッドカバーと負圧ポンプのハウジング本体とを別々に製造しなければならず、また、シリンダヘッドカバーに負圧ポンプのハウジング本体を組み付ける作業やシリンダヘッドカバーと負圧ポンプのハウジング本体との間をシールする作業等が発生するため、製造コストが高くなるという問題がある。しかも、シリンダヘッドカバーに対して負圧ポンプのハウジング本体が十分に組み付けられていないと、ロータの支持強度が低下するという問題もある。 However, if the cylinder head cover and the housing body of the negative pressure pump are separate members, the cylinder head cover and the housing body of the negative pressure pump must be manufactured separately, and the housing body of the negative pressure pump is attached to the cylinder head cover. As a result, there is a problem that the manufacturing cost is increased because an operation for assembling the cylinder head and an operation for sealing between the cylinder head cover and the housing main body of the negative pressure pump occur. In addition, if the housing body of the negative pressure pump is not sufficiently assembled to the cylinder head cover, there is a problem that the support strength of the rotor is lowered.
 そこで、本発明は、製造コストを低減することができるとともに、ロータの支持強度を向上することができる負圧ポンプ一体型シリンダヘッドカバーを提供することを目的とする。 Therefore, an object of the present invention is to provide a cylinder head cover integrated with a negative pressure pump that can reduce the manufacturing cost and improve the support strength of the rotor.
 本発明の一側面に係る負圧ポンプ一体型シリンダヘッドカバーは、エンジンのカムシャフトを覆うシリンダヘッドカバー部と、シリンダヘッドカバー部と一体形成され、内部にポンプ室が形成されて負圧ポンプの一部を構成するハウジング本体部と、シリンダヘッドカバー部とハウジング本体部とを接続する接続部に形成され、カムシャフトに連結される負圧ポンプのロータが挿入される第一貫通口と、を有する。 A cylinder head cover integrated with a negative pressure pump according to one aspect of the present invention is formed integrally with a cylinder head cover portion covering a camshaft of an engine and a cylinder head cover portion, and a pump chamber is formed therein, and a part of the negative pressure pump is formed. And a first through hole into which a rotor of a negative pressure pump connected to the camshaft is inserted. The housing main body is configured to be connected to the cylinder head cover and the housing main body.
 本発明の一側面に係る負圧ポンプ一体型シリンダヘッドカバーによれば、シリンダヘッドカバー部と負圧ポンプのハウジング本体部とが一体的に形成されているため、製造コストを低減することができる。しかも、シリンダヘッドカバー部とハウジング本体部とを接続する接続部に形成される第一貫通口にロータが挿入されるため、ロータの支持強度を向上することができる。 According to the cylinder head cover integrated with the negative pressure pump according to one aspect of the present invention, the cylinder head cover portion and the housing main body portion of the negative pressure pump are integrally formed, so that the manufacturing cost can be reduced. In addition, since the rotor is inserted into the first through hole formed in the connection portion that connects the cylinder head cover portion and the housing main body portion, the support strength of the rotor can be improved.
 ところで、シリンダヘッドカバー部と負圧ポンプのハウジング本体部とを一体的に形成するためには、シリンダヘッドカバー部と負圧ポンプのハウジング本体部との素材が同一であることが好ましく、軽量化や低コスト化の観点からは、シリンダヘッドカバー部と負圧ポンプのハウジング本体部との素材が同一の樹脂であることが好ましい。 By the way, in order to integrally form the cylinder head cover part and the housing main body part of the negative pressure pump, it is preferable that the material of the cylinder head cover part and the housing main body part of the negative pressure pump are the same. From the viewpoint of cost reduction, it is preferable that the material of the cylinder head cover portion and the housing main body portion of the negative pressure pump is the same resin.
 しかしながら、シリンダヘッドカバー部の素材としては樹脂を用いることができるものの、負圧ポンプのハウジング本体部の素材としては、次の理由から、金属以外の選択の余地がなかった。つまり、負圧ポンプは、ベーンをハウジング本体部の内周面に接触させているため、エンジンが高回転で回転すると、ベーンとハウジング本体部の内周壁との間に介在するオイルの剪断抵抗や負圧圧力によって負圧ポンプの駆動トルクが増加するという問題が生じる。更には、潤滑油切れや摺動エネルギ上昇による焼き付きや摩耗が発生するという問題が生じる。このため、従来は、負圧ポンプのハウジング本体部の素材として、樹脂を採用することができなかった。 However, although resin can be used as the material of the cylinder head cover part, there was no room for selection other than metal as the material of the housing body part of the negative pressure pump for the following reasons. That is, since the negative pressure pump has the vane in contact with the inner peripheral surface of the housing main body, when the engine rotates at a high speed, the shear resistance of oil interposed between the vane and the inner peripheral wall of the housing main body is reduced. There is a problem that the driving torque of the negative pressure pump increases due to the negative pressure. Furthermore, there arises a problem that seizure or wear occurs due to running out of lubricating oil or an increase in sliding energy. For this reason, conventionally, it has not been possible to employ a resin as a material for the housing body of the negative pressure pump.
 このような問題に鑑み、本発明者らは、シリンダヘッドカバー部と負圧ポンプのハウジング本体部とを一体化する技術について鋭意検討を重ねた結果、エンジンが高回転で回転しても上記の問題発生しない負圧ポンプが得られるとの知見に至った。なお、当該知見に基づく発明は、別途特許出願する。 In view of such problems, the present inventors have made extensive studies on the technology for integrating the cylinder head cover portion and the housing main body portion of the negative pressure pump. It came to the knowledge that the negative pressure pump which does not generate is obtained. In addition, a patent application is separately filed for the invention based on this knowledge.
 そこで、本発明の一側面は、このような知見を活用して、シリンダヘッドカバー部及びハウジング本体部が樹脂製であるものとすることができる。これにより、シリンダヘッドカバー部と負圧ポンプのハウジング本体部とを容易に一体化することができるとともに、軽量化及び低コスト化を図ることができる。 Therefore, in one aspect of the present invention, the cylinder head cover portion and the housing main body portion can be made of resin by utilizing such knowledge. Thereby, while being able to integrate a cylinder head cover part and the housing main-body part of a negative pressure pump easily, weight reduction and cost reduction can be achieved.
 一実施形態として、第一貫通口に、ロータを支持するブッシュが挿入されているものとすることができる。このように、ブッシュを介してロータを支持するため、第一貫通口に対するロータの回転を円滑にすることができる。 As an embodiment, a bush supporting the rotor may be inserted into the first through hole. Thus, since the rotor is supported via the bush, the rotor can be smoothly rotated with respect to the first through hole.
 また、一実施形態として、接続部に形成されて、ポンプ室の下部に配置される第二貫通口を更に有するものとすることができる。このように、ポンプ室の下部に第二貫通口を形成することがで、ポンプ室にオイルが吸い込まれたとしても、ポンプ室に吸い込まれたオイルは、ポンプ室の各駆動部を潤滑して第二貫通口から排出される。このため、ポンプ室にオイルが溜まることによりポンプ室の圧力が高まるのを防止することができる。 Moreover, as one embodiment, it may further include a second through hole formed in the connection portion and disposed at the lower portion of the pump chamber. In this way, the second through hole can be formed in the lower portion of the pump chamber, so that even if oil is sucked into the pump chamber, the oil sucked into the pump chamber lubricates each drive section of the pump chamber. It is discharged from the second through hole. For this reason, it is possible to prevent the pressure in the pump chamber from increasing due to accumulation of oil in the pump chamber.
 また、一実施形態として、第二貫通口のシリンダヘッドカバー部側にチャンバ室が形成されたものとすることができる。このように、第二貫通口のシリンダヘッドカバー部側にチャンバ室が形成されることで、第二貫通口とシリンダヘッドカバー部の内側空間とがチャンバ室を介して連結される。このため、負圧状態のポンプ室がシリンダヘッドカバー部の内側空間に開放されたとしても、ポンプ室にオイルが吸い込まれ難くすることができる。しかも、第二貫通口では、ポンプ室から空気を排出する排出音が発生するが、第二貫通口から排出された空気がチャンバ室で反射されることにより、第二貫通口から排出される空気の勢いが弱められる。このため、第二貫通口で発生する排出音を小さくすることができる。 Also, as an embodiment, a chamber chamber may be formed on the cylinder head cover side of the second through hole. As described above, the chamber chamber is formed on the cylinder head cover portion side of the second through hole, whereby the second through port and the inner space of the cylinder head cover portion are connected via the chamber chamber. For this reason, even if the pump chamber in a negative pressure state is opened to the inner space of the cylinder head cover portion, oil can be prevented from being sucked into the pump chamber. Moreover, at the second through-hole, an exhaust sound for exhausting air from the pump chamber is generated, but the air exhausted from the second through-port is reflected by the air exhausted from the second through-port. The momentum is weakened. For this reason, the discharge sound generated at the second through hole can be reduced.
 本発明によれば、製造コストを低減することができるとともに、ロータの支持強度を向上することができる。 According to the present invention, the manufacturing cost can be reduced and the support strength of the rotor can be improved.
負圧ポンプ一体型シリンダヘッドカバーを取り付けたエンジン上部の断面図である。It is sectional drawing of the engine upper part which attached the negative pressure pump integrated cylinder head cover. 図1に示すII-II線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II shown in FIG. 第三手段のベーンの構造を示す図である。It is a figure which shows the structure of the vane of a 3rd means.
 以下、図面を参照して、本発明の一側面に係る負圧ポンプ一体型シリンダヘッドカバーの実施形態を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment of a cylinder head cover integrated with a negative pressure pump according to one aspect of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the element which is the same or it corresponds in each figure, and the overlapping description is abbreviate | omitted.
 図1は、負圧ポンプ一体型シリンダヘッドカバーを取り付けたエンジン上部の断面図であり、図2は、図1に示すII-II線における断面図である。図1及び図2に示すように、負圧ポンプ一体型シリンダヘッドカバー1は、シリンダヘッドカバー部2と、負圧ポンプ3の一部を構成するハウジング本体部4と、が一体的に形成されたものである。 FIG. 1 is a cross-sectional view of an upper part of an engine to which a cylinder head cover integrated with a negative pressure pump is attached, and FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. As shown in FIGS. 1 and 2, the negative pressure pump-integrated cylinder head cover 1 is formed by integrally forming a cylinder head cover portion 2 and a housing main body portion 4 constituting a part of the negative pressure pump 3. It is.
 シリンダヘッドカバー部2は、負圧ポンプ一体型シリンダヘッドカバー1の一部を構成し、エンジン上部に配置されたカムシャフト5を覆うカバーである。シリンダヘッドカバー部2の内側の空間は、カムシャフト5を収容するカムシャフト収容空間Bとなっている。 The cylinder head cover portion 2 is a cover that constitutes a part of the negative pressure pump integrated cylinder head cover 1 and covers the camshaft 5 disposed in the upper part of the engine. A space inside the cylinder head cover portion 2 is a camshaft housing space B in which the camshaft 5 is housed.
 シリンダヘッドカバー部2の素材は、特に限定されるものではないが、軽量化や低コスト化の観点からは、樹脂であることが好ましい。シリンダヘッドカバー部2の素材となる樹脂としては、例えば、耐熱性の観点から、ポリアミド(PA)やポリフタルアミド(PPA)を採用することができる。この内、コストの観点から、ポリアミドを採用することが好ましい。また、強度の観点からは、樹脂内にグラスファイバー等のチョップドストランドを分散させたり、樹脂にグラスファイバー等の繊維織物を含浸させたりすることが好ましい。 The material of the cylinder head cover 2 is not particularly limited, but is preferably a resin from the viewpoint of weight reduction and cost reduction. For example, polyamide (PA) or polyphthalamide (PPA) can be used as the resin that is the material of the cylinder head cover portion 2 from the viewpoint of heat resistance. Among these, it is preferable to employ polyamide from the viewpoint of cost. From the viewpoint of strength, it is preferable to disperse chopped strands such as glass fibers in the resin, or to impregnate the resin with fiber fabrics such as glass fibers.
 ハウジング本体部4は、負圧ポンプ一体型シリンダヘッドカバー1の一部を構成するとともに、負圧ポンプ3の一部を構成する。 The housing body 4 constitutes part of the negative pressure pump integrated cylinder head cover 1 and part of the negative pressure pump 3.
 ここで、負圧ポンプ3について詳しく説明する。 Here, the negative pressure pump 3 will be described in detail.
 負圧ポンプ3は、負圧ポンプ一体型シリンダヘッドカバー1の一部を構成して内部にポンプ室Aが形成されるハウジング本体部4と、ポンプ室Aを塞ぐようにハウジング本体部4に取り付けられるハウジングカバー6と、カムシャフト5に連結されるロータ7と、ポンプ室Aを仕切ってロータ7により回転駆動されるベーン8と、を備えている。 The negative pressure pump 3 constitutes a part of the negative pressure pump integrated cylinder head cover 1 and has a housing main body 4 in which a pump chamber A is formed, and is attached to the housing main body 4 so as to close the pump chamber A. A housing cover 6, a rotor 7 connected to the camshaft 5, and a vane 8 that partitions the pump chamber A and is driven to rotate by the rotor 7 are provided.
 ポンプ室Aは、断面略円形の空間であり、ハウジングカバー6側に開口されている。なお、ポンプ室Aの断面形状は、真円状に限定されるものではなく、例えば、楕円状や変形円状にすることができる。 The pump chamber A is a space having a substantially circular cross section, and is opened on the housing cover 6 side. Note that the cross-sectional shape of the pump chamber A is not limited to a perfect circle, and may be, for example, an ellipse or a deformed circle.
 ハウジング本体部4は、シリンダヘッドカバー部2に接続される接続部14を備えている。また、ハウジング本体部4は、ハウジング本体部4を貫通してポンプ室Aに連通される第一貫通口11、第二貫通口12及び第三貫通口13が形成されている。第一貫通口11は、ロータ7を挿入して当該ロータをポンプ室Aに配置するための貫通口である。第一貫通口11は、接続部14に形成されてポンプ室Aとカムシャフト収容空間Bとを連通している。第二貫通口12は、ポンプ室Aの空気及びオイルをカムシャフト収容空間Bに排出するための貫通口である。第二貫通口12は、接続部14に形成されてポンプ室Aとカムシャフト収容空間Bとを連通している。第三貫通口13は、ポンプ室Aの負圧をブレーキ倍力装置に印加するための貫通口である。 The housing body 4 includes a connecting portion 14 connected to the cylinder head cover portion 2. Further, the housing main body 4 is formed with a first through-hole 11, a second through-hole 12, and a third through-hole 13 that penetrate the housing main body 4 and communicate with the pump chamber A. The first through-hole 11 is a through-hole for inserting the rotor 7 and arranging the rotor in the pump chamber A. The first through-hole 11 is formed in the connection portion 14 and communicates the pump chamber A and the camshaft housing space B. The second through-hole 12 is a through-hole for discharging the air and oil in the pump chamber A to the camshaft housing space B. The second through-hole 12 is formed in the connection portion 14 and communicates the pump chamber A and the camshaft housing space B. The third through hole 13 is a through hole for applying the negative pressure in the pump chamber A to the brake booster.
 第一貫通口11は、ポンプ室Aの中心位置から偏心した位置に形成されている。このため、第一貫通口11に挿入されたロータ7の回転中心は、ポンプ室Aの中心位置から偏心した位置となる。 The first through-hole 11 is formed at a position eccentric from the center position of the pump chamber A. For this reason, the rotation center of the rotor 7 inserted into the first through-hole 11 is a position eccentric from the center position of the pump chamber A.
 第二貫通口12は、ポンプ室Aのオイルをカムシャフト収容空間Bに排出するため、ポンプ室Aの下部に配置されている。 The second through-hole 12 is disposed in the lower part of the pump chamber A in order to discharge the oil in the pump chamber A to the camshaft housing space B.
 第二貫通口12のカムシャフト収容空間B側(シリンダヘッドカバー部2側)には、チャンバ室Cが形成されている。チャンバ室Cは、第二貫通口12とカムシャフト収容空間Bとの間に配置される空間である。このため、第二貫通口12から排出された空気及びオイルは、チャンバ室Cを通過した後、カムシャフト収容空間Bに排出される。また、チャンバ室は、上下方向に延びる洞穴状に形成されている。そして、チャンバ室Cは、上部において第二貫通口12と連通されており、下部において、カムシャフト収容空間Bと連通されている。具体的に説明すると、チャンバ室Cは、第二貫通口12の前方に、チャンバ室Cとカムシャフト収容空間Bとを仕切る垂壁部16が形成されている。そして、垂壁部16の下方に、チャンバ室Cとカムシャフト収容空間Bとを連通する連通口15が形成されている。 A chamber chamber C is formed on the cam shaft housing space B side (cylinder head cover portion 2 side) of the second through-hole 12. The chamber C is a space disposed between the second through-hole 12 and the camshaft housing space B. For this reason, the air and oil discharged from the second through-hole 12 pass through the chamber chamber C and are then discharged into the camshaft housing space B. The chamber chamber is formed in a cave shape extending in the vertical direction. The chamber chamber C communicates with the second through-hole 12 in the upper part, and communicates with the camshaft accommodation space B in the lower part. More specifically, in the chamber chamber C, a vertical wall portion 16 that partitions the chamber chamber C and the camshaft housing space B is formed in front of the second through-hole 12. A communication port 15 that communicates the chamber chamber C and the camshaft housing space B is formed below the hanging wall portion 16.
 ハウジングカバー6は、ハウジング本体部4に取り付けられることで、ポンプ室Aの開口を塞ぐものである。ハウジング本体部4に対するハウジングカバー6の取り付けは、例えば、複数本のボルトによる締結や、融着により行うことができる。ボルトを用いる場合は、ハウジング本体部4とハウジングカバー6との間の気密性を保持するために、ハウジング本体部4とハウジングカバー6との間にOリング等のパッキンを挟み込ませることが好ましい。 The housing cover 6 closes the opening of the pump chamber A by being attached to the housing body 4. The housing cover 6 can be attached to the housing body 4 by, for example, fastening with a plurality of bolts or fusion. When bolts are used, it is preferable that a packing such as an O-ring is sandwiched between the housing body 4 and the housing cover 6 in order to maintain airtightness between the housing body 4 and the housing cover 6.
 ハウジング本体部4及びハウジングカバー6の素材は、特に限定されるものではないが、軽量化や低コスト化の観点から、樹脂であることが好ましい。ハウジング本体部4及びハウジングカバー6の素材となる樹脂としては、例えば、耐熱性の観点から、ポリアミド(PA)やポリフタルアミド(PPA)を採用することができる。この内、コストの観点から、ポリアミドを採用することが好ましい。また、強度の観点からは、樹脂内にグラスファイバー等のチョップドストランドを分散させたり、樹脂にグラスファイバー等の繊維織物を含浸させたりすることが好ましい。 The material of the housing body 4 and the housing cover 6 is not particularly limited, but is preferably a resin from the viewpoint of weight reduction and cost reduction. For example, polyamide (PA) or polyphthalamide (PPA) can be used as the resin that is the material of the housing body 4 and the housing cover 6 from the viewpoint of heat resistance. Among these, it is preferable to employ polyamide from the viewpoint of cost. From the viewpoint of strength, it is preferable to disperse chopped strands such as glass fibers in the resin, or to impregnate the resin with fiber fabrics such as glass fibers.
 そして、負圧ポンプ一体型シリンダヘッドカバー1として一体的に形成されるシリンダヘッドカバー部2とハウジング本体部4とは、同じ素材であっても異なる素材であってもよい。シリンダヘッドカバー部2とハウジング本体部4とは、製造容易性の観点からは、同じ素材であることが好ましく、軽量化や低コスト化の観点からは、同じ樹脂素材であることが好ましい。例えば、シリンダヘッドカバー部2の素材とハウジング本体部4の素材とを同じ樹脂とする場合は、一般的な射出成型によりシリンダヘッドカバー部2とハウジング本体部4とを一体的に形成することができる。また、シリンダヘッドカバー部2の素材を樹脂とし、ハウジング本体部4の素材をアルミ等の金属とする場合は、インサート成形によりシリンダヘッドカバー部2とハウジング本体部4とを一体的に形成することができる。また、シリンダヘッドカバー部2の素材とハウジング本体部4の素材とを同じアルミ等の金属とする場合は、鋳造又は削り出しによりシリンダヘッドカバー部2とハウジング本体部4とを一体的に形成することができる。なお、ハウジング本体部4の素材を樹脂とする技術については、後述する。 The cylinder head cover portion 2 and the housing body portion 4 that are integrally formed as the negative pressure pump integrated cylinder head cover 1 may be the same material or different materials. The cylinder head cover portion 2 and the housing main body portion 4 are preferably the same material from the viewpoint of manufacturability, and are preferably the same resin material from the viewpoint of weight reduction and cost reduction. For example, when the material of the cylinder head cover portion 2 and the material of the housing main body portion 4 are the same resin, the cylinder head cover portion 2 and the housing main body portion 4 can be integrally formed by general injection molding. Further, when the material of the cylinder head cover portion 2 is made of resin and the material of the housing main body portion 4 is made of metal such as aluminum, the cylinder head cover portion 2 and the housing main body portion 4 can be integrally formed by insert molding. . Further, when the material of the cylinder head cover portion 2 and the material of the housing main body portion 4 are made of the same metal such as aluminum, the cylinder head cover portion 2 and the housing main body portion 4 can be integrally formed by casting or cutting. it can. In addition, the technique which uses the raw material of the housing main-body part 4 as resin is mentioned later.
 ロータ7は、カムシャフト5に連結される連結端部71と、第一貫通口11に挿入されて接続部14に回動自在に支持される中央支持部72と、ポンプ室Aに配置されてベーン8を摺動自在に支持する支持端部73と、を備えている。 The rotor 7 is disposed in the pump chamber A, a connecting end portion 71 connected to the camshaft 5, a central support portion 72 inserted into the first through-hole 11 and rotatably supported by the connection portion 14. And a support end 73 that slidably supports the vane 8.
 連結端部71は、直接的又は間接的にカムシャフト5と連結されて、カムシャフト5の回転駆動が伝達されるようになっている。連結端部71とカムシャフト5との連結構造は、互いにすべることなく回転駆動を伝達することができれば如何なる構造であってもよい。 The connecting end 71 is connected to the camshaft 5 directly or indirectly so that the rotational drive of the camshaft 5 is transmitted. The connection structure between the connection end portion 71 and the camshaft 5 may be any structure as long as it can transmit the rotational drive without sliding.
 中央支持部72は、円筒状に形成されている。中央支持部72は、接続部14の第一貫通口11に圧入されたブッシュ74を介して接続部14に回転自在に支持されている。 The central support 72 is formed in a cylindrical shape. The central support portion 72 is rotatably supported by the connection portion 14 via a bush 74 press-fitted into the first through hole 11 of the connection portion 14.
 支持端部73は、円筒状に形成されている。支持端部73には、ベーン8が挿入される支持溝75が形成されている。支持溝75は、支持端部73の中心軸線を通り当該中心軸線と直交する直線に沿って切り欠かれた溝である。このため、支持端部73は、支持溝75にベーン8を挿入することで、支持端部73の中心軸線を通り当該中心軸線と直交する方向に、ベーン8を摺動自在に支持することが可能となっている。 The support end 73 is formed in a cylindrical shape. The support end 73 is formed with a support groove 75 into which the vane 8 is inserted. The support groove 75 is a groove cut out along a straight line that passes through the central axis of the support end 73 and is orthogonal to the central axis. For this reason, the support end 73 can slidably support the vane 8 in a direction passing through the central axis of the support end 73 and orthogonal to the central axis by inserting the vane 8 into the support groove 75. It is possible.
 そして、連結端部71、中央支持部72及び支持端部73の中心軸線が一致するように、連結端部71と中央支持部72と支持端部73とが直列に接続されている。 The connecting end 71, the center supporting portion 72, and the supporting end 73 are connected in series so that the center axes of the connecting end 71, the center supporting portion 72, and the supporting end 73 coincide with each other.
 ベーン8は、ロータ7に摺動自在に支持されて、ポンプ室Aを二つの空間に仕切る細長い板状の部材である。ベーン8は、板厚方向に略二分割されている。ベーン8は、ポンプ室Aを形成するハウジング本体部4の内周壁17に先端81aが当接される細長い板状の第一ベーン部81と、ポンプ室Aを形成するハウジング本体部4の内周壁17に先端82aが当接される細長い板状の第二ベーン部82と、を備えている。第一ベーン部81及び第二ベーン部82は、同一形状に形成されている。そして、ベーン8は、第一ベーン部81と第二ベーン部82とが点対称となるように重ね合わされた状態で、支持端部73の支持溝75に挿入されている。 The vane 8 is an elongated plate-like member that is slidably supported by the rotor 7 and partitions the pump chamber A into two spaces. The vane 8 is substantially divided into two in the thickness direction. The vane 8 includes an elongated plate-like first vane portion 81 whose tip 81a abuts against the inner peripheral wall 17 of the housing main body 4 forming the pump chamber A, and the inner peripheral wall of the housing main body 4 forming the pump chamber A. 17 is provided with an elongated plate-like second vane portion 82 with which a tip 82a abuts. The first vane portion 81 and the second vane portion 82 are formed in the same shape. The vane 8 is inserted into the support groove 75 of the support end 73 in a state where the first vane portion 81 and the second vane portion 82 are overlapped so as to be point-symmetric.
 第一ベーン部81の先端81a及び第二ベーン部82の先端82aをハウジング本体部4の内周壁17に当接させる手段としては、特に制限されるものではなく、例えば、以下の手段により実現することができる。 The means for bringing the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 into contact with the inner peripheral wall 17 of the housing body 4 is not particularly limited, and is realized by, for example, the following means. be able to.
 第一手段のベーン8は、第一ベーン部81の重心をロータ7に対する先端81a側に位置させるとともに、第二ベーン部82の重心をロータ7に対する先端82a側に位置させるものである。このようにすることで、ロータ7の回転により第一ベーン部81及び第二ベーン部82に発生する遠心力により、第一ベーン部81の先端81a及び第二ベーン部82の先端82aをハウジング本体部4の内周壁17に押圧することができる。 The vane 8 of the first means is such that the center of gravity of the first vane portion 81 is positioned on the tip 81 a side with respect to the rotor 7, and the center of gravity of the second vane portion 82 is positioned on the tip 82 a side with respect to the rotor 7. In this way, the distal end 81a of the first vane portion 81 and the distal end 82a of the second vane portion 82 are moved by the centrifugal force generated in the first vane portion 81 and the second vane portion 82 due to the rotation of the rotor 7. The inner peripheral wall 17 of the part 4 can be pressed.
 第二手段のベーン8は、バネ等の付勢手段(不図示)により、第一ベーン部81の先端81aをハウジング本体部4の内周壁17側に付勢する(押す)とともに、第二ベーン部82の先端82aをハウジング本体部4の内周壁17側に付勢する(押す)ものである。このようにすることで、ロータ7の回転有無にかかわらず、付勢手段の付勢力により、第一ベーン部81の先端81a及び第二ベーン部82の先端82aをハウジング本体部4の内周壁17に押圧することができる。 The vane 8 of the second means urges (pushes) the tip 81a of the first vane portion 81 toward the inner peripheral wall 17 side of the housing main body 4 by an urging means (not shown) such as a spring and the second vane. The tip 82 a of the portion 82 is urged (pushed) toward the inner peripheral wall 17 side of the housing body 4. By doing so, the front end 81a of the first vane portion 81 and the front end 82a of the second vane portion 82 are connected to the inner peripheral wall 17 of the housing main body portion 4 by the biasing force of the biasing means regardless of whether the rotor 7 is rotated. Can be pressed.
 ところで、第一手段や第二手段のように第一ベーン部81の先端81a及び第二ベーン部82の先端82aをハウジング本体部4の内周壁17に押圧させると、以下の問題が発生する。つまり、エンジンが高回転で回転すると、ベーン8とハウジング本体部4の内周壁17との間に介在するオイルの剪断抵抗や負圧圧力によって負圧ポンプ3の駆動トルクが増加し、更には、潤滑油切れや摺動エネルギ上昇による焼き付きや摩耗が発生するという問題が生じる。このため、第一手段や第二手段のような構成では、ハウジング本体部4や第一ベーン部81及び第二ベーン部82の素材として、樹脂を採用することができないという問題があった。 By the way, when the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 are pressed against the inner peripheral wall 17 of the housing main body 4 as in the first means and the second means, the following problems occur. That is, when the engine rotates at a high speed, the driving torque of the negative pressure pump 3 increases due to the shear resistance and negative pressure of the oil interposed between the vane 8 and the inner peripheral wall 17 of the housing body 4, There arises a problem that seizure and wear occur due to running out of lubricating oil and an increase in sliding energy. For this reason, in a structure like the 1st means or the 2nd means, there existed a problem that resin could not be adopted as a material of housing body part 4, the 1st vane part 81, and the 2nd vane part 82.
 このような問題に鑑み、本発明者らは、シリンダヘッドカバー部2と負圧ポンプ3のハウジング本体部4とを一体化する技術について鋭意検討を重ねた結果、次に説明する第三手段により、エンジンが高回転で回転しても上記の問題発生しない負圧ポンプ3が得られるとの知見に至った。 In view of such a problem, as a result of earnestly examining the technology for integrating the cylinder head cover portion 2 and the housing main body portion 4 of the negative pressure pump 3, the present inventors have conducted the following third means. It came to the knowledge that the negative pressure pump 3 which does not generate | occur | produce said problem even if an engine rotates at high rotation is obtained.
 図3に、第三手段のベーンの構造を示す図である。図3に示すように、第三手段のベーン8は、バネ等の付勢手段83により、第一ベーン部81の先端81a及び第二ベーン部82の先端82aをハウジング本体部4の内周壁17に付勢する(押す)とともに、第一ベーン部81及び第二ベーン部82を、ロータ7の回転により生ずる遠心力により付勢手段83の付勢方向とは反対の方向の荷重P2が発生する構造とするものである。付勢手段83は、第一ベーン部81の先端81a及び第二ベーン部82の先端82aをハウジング本体部4の内周壁17側に押すものであり、例えば、コイルバネ等のバネを利用するものや、磁力や油圧を利用するものがある。 FIG. 3 is a diagram showing the structure of the third means vane. As shown in FIG. 3, the vane 8 of the third means is configured such that the tip 81 a of the first vane portion 81 and the tip 82 a of the second vane portion 82 are connected to the inner peripheral wall 17 of the housing body 4 by a biasing means 83 such as a spring. And the first vane portion 81 and the second vane portion 82 are subjected to a centrifugal force generated by the rotation of the rotor 7 to generate a load P2 in a direction opposite to the urging direction of the urging means 83. It is a structure. The biasing means 83 pushes the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 toward the inner peripheral wall 17 side of the housing main body portion 4, and uses, for example, a spring such as a coil spring. Some use magnetic force or hydraulic pressure.
 このような荷重P2は、例えば、第一ベーン部81の重心を、ロータ7に対する第一ベーン部81の先端81aの反対側に位置させるとともに、第二ベーン部82の重心が、ロータ7に対する第二ベーン部82の先端82aの反対側に位置させることにより、発生させることができる。 Such a load P <b> 2, for example, positions the center of gravity of the first vane part 81 on the opposite side of the tip 81 a of the first vane part 81 with respect to the rotor 7, and the center of gravity of the second vane part 82 is It can be generated by positioning it on the opposite side of the tip 82a of the two vane portion 82.
 また、このような重心位置の設定は、例えば、以下のように行うことができる。すなわち、第一ベーン部81のロータ7に対する先端81aの反対側に錘部81bを形成するとともに、第二ベーン部82のロータ7に対する先端82aの反対側に錘部82bを形成するものとする。また、第一ベーン部81のロータ7に対する先端81aの反対側の平均密度を、第一ベーン部81のロータ7に対する先端81a側の平均密度よりも高くするとともに、第二ベーン部82のロータ7に対する先端82aの反対側の平均密度を、第二ベーン部82のロータ7に対する先端82a側の平均密度よりも高くする。また、第一ベーン部81のロータ7に対する先端81aの反対側の体積を、第一ベーン部81のロータ7に対する先端81a側の体積よりも大きくするとともに、第二ベーン部82のロータ7に対する先端82aの反対側の体積を、第二ベーン部82のロータ7に対する先端82a側の体積よりも大きくする。 Also, such setting of the center of gravity position can be performed as follows, for example. That is, the weight portion 81b is formed on the opposite side of the tip 81a of the first vane portion 81 with respect to the rotor 7, and the weight portion 82b is formed on the opposite side of the tip 82a of the second vane portion 82 with respect to the rotor 7. The average density of the first vane portion 81 on the opposite side of the tip 81a with respect to the rotor 7 is made higher than the average density on the tip 81a side of the first vane portion 81 with respect to the rotor 7, and the rotor 7 of the second vane portion 82 The average density on the side opposite to the tip 82a is set higher than the average density on the tip 82a side of the second vane portion 82 with respect to the rotor 7. Further, the volume of the first vane portion 81 on the opposite side of the tip 81a with respect to the rotor 7 is made larger than the volume on the tip 81a side of the first vane portion 81 with respect to the rotor 7, and the tip of the second vane portion 82 with respect to the rotor 7 The volume on the opposite side of 82a is made larger than the volume on the tip 82a side of the second vane portion 82 with respect to the rotor 7.
 このように構成される第三手段のベーン8によれば、ロータ7が停止しているときは、付勢手段83の付勢力P1により第一ベーン部81の先端81a及び第二ベーン部82の先端82aがハウジング本体部4の内周壁17に押し付けられる。これにより、第一ベーン部81の先端81a及び第二ベーン部82の先端82aとハウジング本体部4の内周壁17との間の気密が保持された状態で、ポンプ室Aがベーン8により二つの空間に仕切られる。 According to the vane 8 of the third means configured as described above, when the rotor 7 is stopped, the front end 81a of the first vane portion 81 and the second vane portion 82 are driven by the biasing force P1 of the biasing means 83. The tip 82 a is pressed against the inner peripheral wall 17 of the housing body 4. Thereby, the pump chamber A is separated by the vane 8 in the state where the airtightness is maintained between the tip 81a of the first vane part 81 and the tip 82a of the second vane part 82 and the inner peripheral wall 17 of the housing body part 4. Divided into spaces.
 そして、ロータ7が回転して第一ベーン部81及び第二ベーン部82に遠心力が発生すると、第一ベーン部81及び第二ベーン部82に、付勢手段83の付勢力P1が作用する付勢方向とは反対の方向の荷重P2が発生する。 When the rotor 7 rotates and centrifugal force is generated in the first vane portion 81 and the second vane portion 82, the urging force P1 of the urging means 83 acts on the first vane portion 81 and the second vane portion 82. A load P2 in the direction opposite to the biasing direction is generated.
 このため、ロータ7の回転速度が高くなるに従い、ハウジング本体部4の内周壁17に対する第一ベーン部81の先端81a及び第二ベーン部82の先端82aの押圧力が弱くなる。そして、ロータ7の回転速度が所定値を超えると、第一ベーン部81及び第二ベーン部82に発生する荷重P2が付勢手段83の付勢力P1を上回る。このため、第一ベーン部81の先端81a及び第二ベーン部82の先端82aがハウジング本体部4の内周壁17から離間する。このため、ロータ7の回転速度が所定値を超えると、第一ベーン部81の先端81a及び第二ベーン部82の先端82aとハウジング本体部4の内周壁17とが離間した状態で、ベーン8が回転する。このため、第一ベーン部81の先端81a及び第二ベーン部82の先端82aとハウジング本体部4の内周壁17との間に摩擦が生じない。 For this reason, as the rotational speed of the rotor 7 increases, the pressing force of the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 against the inner peripheral wall 17 of the housing main body portion 4 decreases. When the rotational speed of the rotor 7 exceeds a predetermined value, the load P2 generated in the first vane portion 81 and the second vane portion 82 exceeds the urging force P1 of the urging means 83. For this reason, the front end 81 a of the first vane portion 81 and the front end 82 a of the second vane portion 82 are separated from the inner peripheral wall 17 of the housing body 4. Therefore, when the rotational speed of the rotor 7 exceeds a predetermined value, the vane 8 is in a state where the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 and the inner peripheral wall 17 of the housing body 4 are separated from each other. Rotates. For this reason, friction does not occur between the tip 81 a of the first vane part 81 and the tip 82 a of the second vane part 82 and the inner peripheral wall 17 of the housing body 4.
 通常、負圧ポンプは、アイドリング時におけるロータの回転速度でも、十分な負圧を印加できるポンプ性能となるように設定されているため、ドライバがアクセルを踏むなどしてロータの回転速度が高くなると、負圧ポンプのポンプ性能が過剰になる。このため、第三手段のように、ロータ7が高回転で回転するときに、第一ベーン部81の先端81a及び第二ベーン部82の先端82aとハウジング本体部4の内周壁17との間に隙間ができても、ロータ7の回転速度の上昇に伴い増加する移送量の増加量と当該隙間から漏れる空気の漏出量とがつり合う。これにより、適切なポンプ性能を維持することができる。 Normally, the negative pressure pump is set to have a pump performance that can apply a sufficient negative pressure even at the rotational speed of the rotor at idling. Therefore, when the rotational speed of the rotor increases because the driver steps on the accelerator. The pump performance of the negative pressure pump becomes excessive. Therefore, as in the third means, when the rotor 7 rotates at a high rotation, the tip 81a of the first vane portion 81 and the tip 82a of the second vane portion 82 and the inner peripheral wall 17 of the housing main body portion 4 are separated. Even if there is a gap, the amount of increase in the transfer amount that increases with the increase in the rotational speed of the rotor 7 balances the amount of air leaking from the gap. Thereby, appropriate pump performance can be maintained.
 このようなことから、ベーン8を第三手段のように構成することで、ハウジング本体部4、第一ベーン部81及び第二ベーン部82の素材として、樹脂を採用することが可能となる。第一ベーン部81及び第二ベーン部82の素材となる樹脂としては、例えば、耐熱性の観点から、ポリアミド(PA)やポリフタルアミド(PPA)を採用することができる。この内、コストの観点から、ポリアミドを採用することが好ましい。また、強度の観点からは、樹脂内にグラスファイバー等のチョップドストランドを分散させたり、樹脂にグラスファイバー等の繊維織物を含浸させたりすることが好ましい。但し、第一ベーン部81及び第二ベーン部82の素材は、樹脂に限定されるものではなく、様々な素材とすることができる。 For this reason, by configuring the vane 8 as the third means, it becomes possible to employ a resin as the material of the housing main body 4, the first vane 81, and the second vane 82. For example, polyamide (PA) or polyphthalamide (PPA) can be used as the resin that is the material of the first vane portion 81 and the second vane portion 82 from the viewpoint of heat resistance. Among these, it is preferable to employ polyamide from the viewpoint of cost. From the viewpoint of strength, it is preferable to disperse chopped strands such as glass fibers in the resin, or to impregnate the resin with fiber fabrics such as glass fibers. However, the material of the first vane portion 81 and the second vane portion 82 is not limited to resin, and can be various materials.
 そして、上述した第三貫通口13は、ベーン8により仕切られた一方の空間がベーン8の回転により広がっていく位置に形成されている。また、上述した第二貫通口12は、ベーン8により仕切られた他方の空間がベーン8の回転により狭まっていく位置に形成されている。 The third through hole 13 described above is formed at a position where one space partitioned by the vane 8 expands as the vane 8 rotates. Further, the second through hole 12 described above is formed at a position where the other space partitioned by the vane 8 is narrowed by the rotation of the vane 8.
 このため、ロータ7が図3の矢印R方向に回転すると、ベーン8により仕切られた一方の空間は、第三貫通口13に連通された状態で広がっていく。これにより、ブレーキ倍力装置に負圧が印加される。一方、ベーン8により仕切られた他方の空間は、第二貫通口12に連通された状態で狭まっていく。これにより、第三貫通口13から吸引した空気が第二貫通口12からシリンダヘッドカバー部2のカムシャフト収容空間Bに排出される。 For this reason, when the rotor 7 rotates in the direction of arrow R in FIG. 3, one space partitioned by the vane 8 expands in a state where it is communicated with the third through-hole 13. Thereby, a negative pressure is applied to the brake booster. On the other hand, the other space partitioned by the vane 8 is narrowed in a state where it is communicated with the second through-hole 12. Thereby, the air sucked from the third through-hole 13 is discharged from the second through-hole 12 to the camshaft housing space B of the cylinder head cover portion 2.
 以上説明したように、本実施形態に係る負圧ポンプ一体型シリンダヘッドカバー1によれば、シリンダヘッドカバー部2と負圧ポンプ3のハウジング本体部4とが一体的に形成されているため、製造コストを低減することができる。しかも、このように一体的に形成されたシリンダヘッドカバー部2とハウジング本体部4とに貫通される第一貫通口11にロータ7が挿入されるため、ロータ7の支持強度を向上することができる。更に、第一貫通口11に圧入されたブッシュ74を介してロータ7を支持するため、第一貫通口11に対するロータ7の回転を円滑にすることができる。 As described above, according to the negative pressure pump-integrated cylinder head cover 1 according to this embodiment, the cylinder head cover portion 2 and the housing main body portion 4 of the negative pressure pump 3 are integrally formed. Can be reduced. Moreover, since the rotor 7 is inserted into the first through-hole 11 that penetrates the cylinder head cover portion 2 and the housing body portion 4 that are integrally formed in this way, the support strength of the rotor 7 can be improved. . Furthermore, since the rotor 7 is supported via the bush 74 press-fitted into the first through hole 11, the rotation of the rotor 7 with respect to the first through hole 11 can be made smooth.
 また、シリンダヘッドカバー部2と負圧ポンプ3のハウジング本体部4とを樹脂製とすることで、負圧ポンプ一体型シリンダヘッドカバー1を単純な射出成型により製造することができるため、シリンダヘッドカバー部2と負圧ポンプ3のハウジング本体部4とを容易に一体化することができるとともに、軽量化及び低コスト化を図ることができる。 Further, since the cylinder head cover portion 2 and the housing main body portion 4 of the negative pressure pump 3 are made of resin, the negative pressure pump integrated cylinder head cover 1 can be manufactured by simple injection molding. And the housing main body 4 of the negative pressure pump 3 can be easily integrated, and weight reduction and cost reduction can be achieved.
 また、第二貫通口12とカムシャフト収容空間Bとがチャンバ室Cを介して連通されて、第二貫通口12の前方にチャンバ室Cとカムシャフト収容空間Bと仕切る垂壁部16が形成されているとともに、垂壁部16の下方にチャンバ室Cとカムシャフト収容空間Bとを連通する連通口15が形成されている。このため、負圧状態のポンプ室Aがカムシャフト収容空間Bに開放されたとしても、カムシャフト収容空間Bからポンプ室Aにオイルが吸い込まれ難くすることができる。一方で、カムシャフト収容空間Bからポンプ室Aにオイルが吸い込まれたとしても、ポンプ室Aに吸い込まれたオイルは、ポンプ室Aの各駆動部を潤滑して第二貫通口12から排出される。このため、ポンプ室Aにオイルが溜まることによりポンプ室Aの圧力が高まるのを防止することができる。 In addition, the second through-hole 12 and the camshaft housing space B are communicated with each other via the chamber chamber C, and a hanging wall portion 16 that partitions the chamber chamber C and the camshaft housing space B is formed in front of the second through-hole 12. In addition, a communication port 15 that communicates the chamber chamber C and the camshaft housing space B is formed below the hanging wall portion 16. For this reason, even if the pump chamber A in a negative pressure state is opened to the camshaft housing space B, oil can be prevented from being sucked into the pump chamber A from the camshaft housing space B. On the other hand, even if oil is sucked into the pump chamber A from the camshaft housing space B, the oil sucked into the pump chamber A lubricates each drive part of the pump chamber A and is discharged from the second through-hole 12. The For this reason, it is possible to prevent the pressure in the pump chamber A from increasing due to the accumulation of oil in the pump chamber A.
 また、第二貫通口12では、ポンプ室Aから空気を排出する排出音が発生する。しかしながら、第二貫通口12から排出された空気がチャンバ室Cの垂壁部16で反射されることにより、第二貫通口12から排出される空気の勢いが弱められる。このため、第二貫通口12で発生する排出音を小さくすることができる。 In addition, at the second through-hole 12, a discharge sound for discharging air from the pump chamber A is generated. However, when the air discharged from the second through-hole 12 is reflected by the hanging wall portion 16 of the chamber chamber C, the momentum of the air discharged from the second through-hole 12 is weakened. For this reason, the discharge sound generated at the second through-hole 12 can be reduced.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、ベーンが板状に形成されるとともに、ベーンが板厚方向に第一ベーン部と第二ベーン部とに分割されるものとして説明したが、ベーンの形状や構造はこれに限定されず適宜変更することができる。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the embodiment described above, the vane is formed in a plate shape and the vane is divided into the first vane portion and the second vane portion in the plate thickness direction. However, the shape and structure of the vane are not limited to this. It can change suitably without being limited to.
 1…負圧ポンプ一体型シリンダヘッドカバー、2…シリンダヘッドカバー部、3…負圧ポンプ、4…ハウジング本体部、5…カムシャフト、6…ハウジングカバー、7…ロータ、8…ベーン、11…第一貫通口、12…第二貫通口、13…第三貫通口、14…接続部、15…連通口、16…垂壁部、17…内周壁、71…連結端部、72…中央支持部、73…支持端部、74…ブッシュ、75…支持溝、81…第一ベーン部、81a…先端、81b…錘部、82…第二ベーン部、82a…先端、82b…錘部、83…付勢手段、A…ポンプ室、B…カムシャフト収容空間(シリンダヘッドカバー部の内側空間)、C…チャンバ室。 DESCRIPTION OF SYMBOLS 1 ... Negative pressure pump integrated cylinder head cover, 2 ... Cylinder head cover part, 3 ... Negative pressure pump, 4 ... Housing main-body part, 5 ... Cam shaft, 6 ... Housing cover, 7 ... Rotor, 8 ... Vane, 11 ... 1st Through hole, 12 ... Second through hole, 13 ... Third through hole, 14 ... Connection part, 15 ... Communication port, 16 ... Vertical wall part, 17 ... Inner peripheral wall, 71 ... Connection end part, 72 ... Central support part, 73 ... Support end, 74 ... Bush, 75 ... Support groove, 81 ... First vane part, 81a ... Tip, 81b ... Weight part, 82 ... Second vane part, 82a ... Tip, 82b ... Weight part, 83 ... A biasing means, A ... pump chamber, B ... camshaft housing space (inner space of the cylinder head cover part), C ... chamber chamber.

Claims (5)

  1.  エンジンのカムシャフトを覆うシリンダヘッドカバー部と、
     前記シリンダヘッドカバー部と一体形成され、内部にポンプ室が形成されて負圧ポンプの一部を構成するハウジング本体部と、
     前記シリンダヘッドカバー部と前記ハウジング本体部とを接続する接続部に形成され、前記カムシャフトに連結される前記負圧ポンプのロータが挿入される第一貫通口と、
    を有する、
    負圧ポンプ一体型シリンダヘッドカバー。
    A cylinder head cover that covers the camshaft of the engine;
    A housing body part integrally formed with the cylinder head cover part and having a pump chamber formed therein and constituting a part of the negative pressure pump;
    A first through hole into which a rotor of the negative pressure pump connected to the camshaft is inserted is formed in a connection portion connecting the cylinder head cover portion and the housing main body portion;
    Having
    Cylinder head cover with integrated negative pressure pump.
  2.  前記シリンダヘッドカバー部及び前記ハウジング本体部が樹脂製である、
    請求項1に記載の負圧ポンプ一体型シリンダヘッドカバー。
    The cylinder head cover part and the housing main body part are made of resin.
    The cylinder head cover integrated with a negative pressure pump according to claim 1.
  3.  前記第一貫通口に、前記ロータを支持するブッシュが挿入されている、
    請求項1又は2に記載の負圧ポンプ一体型シリンダヘッドカバー。
    A bush that supports the rotor is inserted into the first through hole,
    The cylinder head cover integrated with a negative pressure pump according to claim 1 or 2.
  4.  前記接続部に形成されて、前記ポンプ室の下部に配置される第二貫通口を更に有する、
    請求項1~3の何れか一項に記載された負圧ポンプ一体型シリンダヘッドカバー。
    A second through hole formed in the connection portion and disposed at a lower portion of the pump chamber;
    The negative pressure pump-integrated cylinder head cover according to any one of claims 1 to 3.
  5.  前記第二貫通口の前記シリンダヘッドカバー部側にチャンバ室が形成されている、
    請求項4に記載の負圧ポンプ一体型シリンダヘッドカバー。
    A chamber chamber is formed on the cylinder head cover side of the second through-hole,
    The negative pressure pump-integrated cylinder head cover according to claim 4.
PCT/JP2014/053325 2013-03-18 2014-02-13 Cylinder head cover with integrated negative pressure pump WO2014148160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-055244 2013-03-18
JP2013055244A JP2014181582A (en) 2013-03-18 2013-03-18 Negative pressure pump integrated cylinder head cover

Publications (1)

Publication Number Publication Date
WO2014148160A1 true WO2014148160A1 (en) 2014-09-25

Family

ID=51579854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053325 WO2014148160A1 (en) 2013-03-18 2014-02-13 Cylinder head cover with integrated negative pressure pump

Country Status (2)

Country Link
JP (1) JP2014181582A (en)
WO (1) WO2014148160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029305A4 (en) * 2013-11-21 2016-09-21 Sanoh Ind Co Ltd Cylinder head cover

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428378B2 (en) 2015-02-27 2018-11-28 スズキ株式会社 Internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115766A (en) * 2006-11-06 2008-05-22 Mazda Motor Corp Accessary layout structure for engine
JP2010138822A (en) * 2008-12-12 2010-06-24 Honda Motor Co Ltd Water pump mounting structure of water-cooled internal combustion engine
JP4733356B2 (en) * 2004-03-10 2011-07-27 トヨタ自動車株式会社 Vane pump for gas and operation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733356B2 (en) * 2004-03-10 2011-07-27 トヨタ自動車株式会社 Vane pump for gas and operation method thereof
JP2008115766A (en) * 2006-11-06 2008-05-22 Mazda Motor Corp Accessary layout structure for engine
JP2010138822A (en) * 2008-12-12 2010-06-24 Honda Motor Co Ltd Water pump mounting structure of water-cooled internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029305A4 (en) * 2013-11-21 2016-09-21 Sanoh Ind Co Ltd Cylinder head cover

Also Published As

Publication number Publication date
JP2014181582A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP2014194211A (en) Electric vacuum pump
US20100139431A1 (en) Scissors gear
WO2011045928A1 (en) Compressor
JP6059465B2 (en) Electric dual pump
CN100465448C (en) Single-winged vacuum pump
US20100119398A1 (en) Gerotor Pump
TW200538663A (en) Sound-proof structure in power unit
JP5065120B2 (en) Reciprocating compressor
CN113474197B (en) Hybrid drive system
JP2013514488A (en) Motor pump unit
CN104271900A (en) Rotor for variable valve timing system and VVT system comprising the rotor
JP2013506088A (en) Internal gear pump for hydraulic vehicle brakes
WO2014148160A1 (en) Cylinder head cover with integrated negative pressure pump
CN105518303B (en) Vacuum pumping mechanism
US20140255236A1 (en) Internal gear pump
JP2015073375A (en) Electric vacuum pump
JP2013545056A (en) Fittings, rotors and components for pumps
US7503757B2 (en) Oil pump having rotor receiving portion for restriction moving range of an outer rotor in a direction perpendicular to an eccentric direction
WO2015060030A1 (en) Electrically driven vacuum pump
TWI267599B (en) Driven pulley device of V-belt type automatic transmission
JP2014181583A (en) Vane pump
JP6549907B2 (en) Control device of oil pump
JP6276648B2 (en) Electric pump and vehicle hydraulic circuit
US20180111468A1 (en) Power train
KR100590650B1 (en) Vaccum pump for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767619

Country of ref document: EP

Kind code of ref document: A1