WO2014147708A1 - Power source control device, power source control program, and power source control method - Google Patents

Power source control device, power source control program, and power source control method Download PDF

Info

Publication number
WO2014147708A1
WO2014147708A1 PCT/JP2013/057671 JP2013057671W WO2014147708A1 WO 2014147708 A1 WO2014147708 A1 WO 2014147708A1 JP 2013057671 W JP2013057671 W JP 2013057671W WO 2014147708 A1 WO2014147708 A1 WO 2014147708A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
server
power consumption
power supply
consumption
Prior art date
Application number
PCT/JP2013/057671
Other languages
French (fr)
Japanese (ja)
Inventor
杉山淳一
松浦康道
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2013/057671 priority Critical patent/WO2014147708A1/en
Publication of WO2014147708A1 publication Critical patent/WO2014147708A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to power supply control.
  • Blade server is a server system that can be equipped with multiple power supplies and multiple devices.
  • a plurality of boards (blades) on which the server computer function is mounted can be attached to the insertion port of the housing.
  • a server having desired performance can be obtained by adjusting the number of blades to be installed according to the application.
  • the device includes blades and switches in the blade server.
  • the plurality of power sources is, for example, a combination of a power source that supplies power and an auxiliary power source.
  • the server operator or user may use redundant power supplies to make the power supplies redundant.
  • the server operator or user calculates the power consumption amount of the server and the power supply amount of the power source, and sets the combination of power sources according to the operation status of the server. It is preferable that the server operator or user decides the combination of power sources on the server side without being aware of the server operation status, the power consumption amount of the server, and the power supply amount of the power source.
  • a technology in which the server selects a combination of power sources based on conversion efficiency.
  • the server monitors the power consumption of the actual load, and selects a highly efficient combination of power sources from information on conversion efficiency set in advance corresponding to the power consumption information (see, for example, Patent Document 1).
  • overvoltage protection function is known.
  • the operation of the apparatus is continued by stopping the power supply that has become abnormal and supplying power only with a normal power supply (see, for example, Patent Document 2).
  • Patent Document 3 A technique for controlling the operation of a device to be monitored according to the operation status of a specific network is known (see, for example, Patent Document 3).
  • Patent Publication No. 2008-204231 Patent Publication No. 2003-339116 Patent Publication No. 2007-159298
  • a new device may be additionally installed in the server by hot plugging, and the total power consumption of the server may exceed the amount of power supplied by the power supply. In this case, the server may go down. It is also possible that the added device cannot be activated.
  • the power supply control device includes a calculation unit, a determination unit, a power control unit, and a device power supply control unit.
  • the power control device controls the number of power supplies that supply power to the server.
  • the calculation unit calculates the total power consumption of the server by adding the actual power consumption of the active device connected to the server and the rated power consumption of the device before the operation.
  • the determination unit compares the total power consumption with the amount of power that can be supplied by the power supply, and determines the minimum number of power supplies that can supply power that is equal to or greater than the total power consumption.
  • the power control unit causes the power supply to supply power corresponding to the determined number of power supplies.
  • the device power control unit operates the device before the operation when the power supplied to the server reaches the total power consumption.
  • FIG. 1 is an example of a server according to the embodiment.
  • the server 100 in FIG. 1A includes a management device 101, devices 102-1 to 102-J, and power supplies 103-a to 103-d.
  • the management device 101 includes an optimization unit 104, a power supply control unit 105, and a device control unit 106.
  • FIG. 1B the same components as those in FIG. 1A are denoted by the same reference numerals.
  • FIG. 1B is a diagram when a new device is added to the server 100 of FIG. 1A by hot plug.
  • FIG. 1B further includes device 102- (J + 1).
  • the device control unit 106 adds the rated power consumption of the added device to the power consumption P MAXA before adding the device.
  • P MAX P MAXA + P J + 1 (1)
  • the power consumption amount P MAXA on the right side is the actual power consumption amount (hereinafter referred to as “actual power consumption”) of FIG. 1A that is the server before the device is added.
  • the server 100 in FIG. 1A has J devices.
  • the rated power consumption of each device is indicated by (P 1 , P 2 ,... P J ).
  • the server 100 in FIG. 1B is a server in which a J + 1th device is added to the server 100 in FIG. 1A.
  • P J + 1 is the rated power consumption of the added device.
  • the power consumption P MAX calculated by the equation (1) is obtained by adding the rated power consumption of the added device before operation to the actual power consumption of the server 100.
  • the power consumption P MAX is the total power consumption of the server that is expected to be consumed when the added device is operated.
  • the device control unit 106 sends information on the power consumption P MAX set by the equation (1) to the optimization unit 104.
  • the power supply device control unit 105 sends information on the amount of power that can be supplied by the current power supply (hereinafter referred to as “suppliable power amount”) to the optimization unit 104.
  • the power source 103-a to power source 103-d in FIG. 1A are a set of a power source 103-a and a power source 103-b surrounded by B1, and a set of a power source 103-c and a power source 103-d surrounded by C1. It is divided into and.
  • the power supply in the range surrounded by B1 is a power supply that supplies power to the server.
  • the power supply in the range surrounded by C1 is an auxiliary power supply used as a backup when the power supply in the range surrounded by B1 fails.
  • a combination of a power source that supplies power to the server and an auxiliary power source is hereinafter referred to as a “power source combination”.
  • the server 100 increases the number of power supplies that supply power to the server when the (J + 1) th device is added and the power supplies 103-a and 103-b cannot supply power.
  • the power supply in the range surrounded by B2 is a power supply that supplies power to the server.
  • the power supply in the range surrounded by C2 is an auxiliary power supply used as a backup when the power supply in the range surrounded by B2 fails.
  • a power source 103-c is newly allocated as a power source for supplying power to the server.
  • the optimization unit 104 can secure the power consumption amount P MAX and change the power source combination to the minimum number of power sources that supply power to the server.
  • the power supply device control unit 105 is notified.
  • the optimization unit 104 receives information on the power consumption amount P MAX and information on the suppliable power amount.
  • the server 100 in FIG. 1A does not need to increase the number of power supplies that supply power to the server if the power supply 103-a and the power supply 103-b can supply power even when the J + 1th device is added.
  • the optimization unit 104 notifies the power supply device control unit 105 that the combination of power sources is not changed.
  • the power supply control unit 105 sets the number of power supplies that supply power to the server in accordance with the notified information.
  • the power supply control unit 105 transmits information on the suppliable power amount corresponding to the number of power supplies that supply power to the newly set server to the device control unit 106.
  • the device control unit 106 powers on the added device.
  • FIG. 2 shows an example of the hardware configuration of the server.
  • FIG. 2 includes management devices 101-1 to 101-2, devices 102-1 to 102-J, and power supplies 103-1 to 103-I.
  • Each of the devices 102-1 to 102-J includes a CPU, a memory, and a storage device.
  • the devices 102-1 to 102-J are added to make the server have a desired performance, and the number is not limited.
  • the power supplies 103-1 to 103-I are devices that supply power to the server.
  • the number of power supplies installed in the server is not limited.
  • Each of the management devices 101-1 to 101-2 includes a CPU (Central Processing Unit), a memory, and a storage device.
  • the management devices 101-1 to 101-2 are redundant and are divided into an active system and a standby system.
  • the management devices 101-1 to 101-2 implement the optimization unit 104, the power supply device control unit 105, and the device control unit 106 in FIG. 1 is processed by the CPU of the active management device, and information to be used is stored in a memory or a storage device.
  • the server may include a dedicated monitor and input means for setting server setting information. Alternatively, the setting information may be set by accessing the server from an external operator terminal.
  • FIG. 3 is an example of a functional block diagram according to the embodiment. 1 and 2 are denoted by the same reference numerals. Each of the devices 102-1 to 102-J has information (P 1 , P 2 ,... P J ) on the rated power consumption.
  • FIG. 3 includes a memory 201 and an operator terminal 202.
  • the device control unit 106 includes a power consumption recording unit 203, a calculation unit 204, and a device power supply control unit 205.
  • the power consumption recording unit 203 records the actual power consumption actually used by the power supply and the device in the memory 201 as power consumption data.
  • the calculation unit 204 calculates the power consumption amount P MAX . When a device is added as shown in FIG. 1B, the calculation unit 204 calculates the power consumption P MAX by adding the rated power consumption of the added device to the actual power consumption. Similarly, even when there is a device that is not operating, the calculation unit 204 calculates the power consumption P MAX by adding the rated power consumption of the device that is not operating to the actual power consumption.
  • the calculation unit 204 calculates, from the power consumption data of the memory 201, the maximum value of the power consumption during a predetermined period as the power consumption P MAX .
  • the calculation unit 204 sums the rated power consumption of each device and calculates the power consumption P MAX .
  • the device power control unit 205 compares the amount of power that can be supplied with power and the power consumption PMAX, and when a device that is not operating can be operated, the device that is not operating is operated.
  • the optimization unit 104 includes an acquisition unit 206, a determination unit 207, and a determination unit 208.
  • the acquisition unit 206 acquires information about the server power consumption P MAX from the device control unit 106.
  • the acquisition unit 206 acquires information on the suppliable power amount corresponding to the number of power supplies that supply power of the current combination of power supplies from the power supply device control unit 105.
  • the determination unit 207 compares the information on the power consumption amount P MAX of the server and the information on the suppliable power amount, and determines the minimum number of power sources that can supply power equal to or higher than the power consumption amount P MAX of the server.
  • the determination unit 208 sets the number of power sources determined by the determination unit 207 as the number of power sources that supply power to the server of the combination of power sources, and determines the number of auxiliary power sources according to the priority order set by the user.
  • the determination unit 208 notifies the power supply device control unit 105 of combination information of power sources, which is information on the number of power sources that supply power to the server and the number of auxiliary power sources.
  • the power supply device control unit 105 includes a power control unit 209, a setting unit 210, a notification unit 211, and a calculation unit 212.
  • the power control unit 209 receives power source combination information from the determination unit 208 and supplies power to the power source according to the number of power sources that supply power to the server.
  • the setting unit 210 sets the auxiliary power source determined by the power source combination information as a backup.
  • the notification unit 211 calculates a suppliable power amount corresponding to the number of power supplies that are currently supplying power, and notifies the optimization unit 104 and the device control unit 106 of information on the suppliable power amount.
  • the calculation unit 212 calculates the amount of power consumed by the power source. Information on the power consumption amount of the power supply is used by the power consumption recording unit 203.
  • the memory 201 stores server setting information, power consumption data, and various data.
  • the server setting information includes the following information.
  • the value (time) of the period used when the calculation unit 204 calculates the maximum value of power consumption Priority order of the number of auxiliary power sources used when the determination unit 208 determines the number of auxiliary power sources
  • the determination unit 207 uses when determining the minimum number of power sources that can supply the power consumption amount P MAX or more of the server Threshold
  • the information held in the memory 201 may be stored in a storage device and used by the optimization unit 104 and the device control unit 106 as appropriate.
  • the operator terminal 202 has input means such as a keyboard. An operator can use the operator terminal 202 to access the memory 201 and change server setting information. For example, the operator uses the operator terminal 202 to change the priority order of the number of auxiliary power supplies.
  • the combination of power sources is N power sources and M auxiliary power sources, and is represented by N + M.
  • the N power supplies are power supplies that supply power while the server is operating.
  • the M auxiliary power supplies are auxiliary power supplies that operate as backup power supplies when trouble occurs in any of the N power supplies.
  • the combination of N + M power sources is, for example, a combination of N + N, N + 1, and N + 0.
  • the combination of N + N power supplies can continue to operate the server even if N power supplies fail.
  • the combination of N + 1 power supplies can continuously operate the server even if one of the power supplies fails.
  • the combination of N + N power supplies is a combination with higher redundancy than that of N + 1 power supplies.
  • the N + 0 power supply is non-redundant, and if one power supply fails, the server may go down.
  • the priority order of the number of auxiliary power sources set by the operator is a setting of whether or not to give priority to a combination with high redundancy by setting the number of M in N + M. Note that, in the combination of N + M power sources, power can be saved by stopping unused power sources.
  • FIG. 4 is an example of power consumption data.
  • the power consumption data in FIG. 4 is stored in the memory 201.
  • the example of FIG. 4, the actual power consumption P R is obtained by time saved from April 1 to May 13.
  • the actual power consumption P R of April 11 is illustrated as the maximum value P RMAX of actual power.
  • Calculation unit 204 calculates the maximum value P RMAX of actual power as power consumption P MAX.
  • P MAX P RMAX (2) formula
  • Calculation unit 204 notifies the information of the power consumption P MAX to the device control unit 106.
  • the process of acquiring information about the maximum value P RMAX of the actual power consumption from the power consumption data may be executed every predetermined period. Further, the user / operator may be able to change the setting during a predetermined period.
  • FIG. 5 is a flowchart illustrating an example of processing of the device control unit 106 when a device is added.
  • the device control unit 106 detects that the device J + 1 has been added (step S101).
  • the device control unit 106 acquires information on the rated power consumption of the detected device J + 1 (step S102).
  • the device control unit 106 adds the detected rated power consumption P J + 1 of the device J + 1 to the actual power consumption of the server before the device is added, and sets the added value as a new power consumption P MAX (step) S103).
  • the device control unit 106 sends information on the power consumption P MAX to the optimization unit 104 (step S104). After the process of step S104, the processes of FIGS.
  • the device control unit 106 acquires information on the suppliable power amount corresponding to the changed combination of power sources from the power supply device control unit 105 (step S105).
  • the device control unit 106 the power consumption P MAX of the entire server or smaller is determined than the supply power amount (Step S106).
  • the device control unit 106 powers on the device J + 1 (YES in step S106, step S107).
  • the device control unit 106 suppresses power-on of the device J + 1 (NO in step S106, step S108).
  • the device control unit 106 moves the process to a flowchart for operation.
  • the processes in steps S101 to S104 are processes executed by the calculation unit 204. Further, the processing of steps S105 to S108 is processing executed by the device power supply control unit 205.
  • FIG. 6 is a flowchart for explaining an example of processing of the optimization unit 104.
  • the optimization unit 104, the notification information of the power consumption P MAX (e.g., step S104 in FIG. 5) is a process after receiving the.
  • the optimization unit 104 inquires of the power supply control unit 105 about information relating to the amount of power that can be supplied (step S201).
  • the optimization unit 104 acquires information on the amount of power that can be supplied from the power supply device control unit 105 (step S202).
  • the optimization unit 104 determines an optimal combination of power sources (step S203).
  • the determination of the combination of power sources in step S203 includes the priority order of the combination of power sources.
  • the optimization unit 104 notifies the power supply device control unit 105 of the determined combination information of the power supplies, and transmits an instruction to set (step S204).
  • the processes in steps S201 to S202 are processes executed by the acquisition unit 206.
  • the process of step S203 is a process executed by the determination unit 207 and the determination unit 208.
  • the process in step S204 is a process executed by the determination unit 208.
  • FIG. 7 is a flowchart for explaining an example of processing of the power supply device control unit 105.
  • the process in FIG. 7A is a process after the power supply control unit 105 receives an inquiry about information about the amount of power that can be supplied from the optimization unit 104 to the power supply control unit 105 (step S201 in FIG. 6). .
  • the power supply device control unit 105 notifies the optimization unit 104 of information related to the suppliable power amount corresponding to the current combination of power sources (step S301).
  • step S301 is a process executed by the notification unit 211.
  • the process in FIG. 7B is a process after receiving an instruction (step S204 in FIG.
  • step S401 The power supply device control unit 105 changes the power supply combination setting in accordance with the received power supply combination information.
  • the power supply device control unit 105 notifies the device control unit 106 of information related to the combination of power sources (step S402).
  • the information regarding the combination of power supplies notified in step S402 corresponds to the information acquired in step S104 of FIG.
  • the process of step S401 is a process executed by the power control unit 209 and the setting unit 210.
  • the process in step S402 is a process executed by the setting unit 210.
  • the combination of power supplies is automatically changed, so that the server operator or user is aware of the server operating status, the amount of power consumed by the server, and the amount of power that can be supplied.
  • the server can be operated without having to When a server device is added by hot plugging and the combination of power sources reaches the suppliable power amount, for example, in Patent Document 1, the power source of the added device may not be activated.
  • the server 100 according to the embodiment can automatically supply the power of the added device by securing the amount of power that can be supplied by automatically changing the combination of the power sources. By automatically changing the combination of power sources, the server can stop unused power sources and save power.
  • the server autonomously changes the number of power supplies that supply power to the server and starts up the device power.
  • the processing is the same as when a device is added.
  • the device X is not running, (1) the P J + 1 the rated power consumption of the added device type, may be replaced with the rated power P X of the device X.
  • the device X is one or a plurality of devices 201-1 to 201-J.
  • the calculation unit 204 calculates the maximum power consumption amount during a predetermined period from the power consumption data of the memory 201 as the power consumption amount P MAX .
  • the server autonomously changes the number of power supplies that supply power to the server.
  • the server may not have power consumption data.
  • the calculation unit 204 sums the rated power consumption of each device to calculate the power consumption P MAX.
  • P MAX P 1 + P 2 + ... + P J (3)
  • the power consumption amount P MAX in the expression (3) is the sum of the information (P 1 , P 2 ... P J ) of the rated power consumption of each device 201-1 to 201-J.
  • the calculation unit 204 without the power consumption data recorded actual power consumption, it is possible to calculate the power consumption P MAX.
  • the server determines the number of power sources that can supply power that is greater than or equal to the power consumption.
  • FIG. 8 is an example of information used for determining a combination of power sources.
  • FIG. 8 shows an example of a combination of power supplies and a threshold value calculated from the suppliable power amount P 0 (N + M) and the suppliable power amount corresponding to the combination of power sources.
  • the combination of power sources in FIG. 8 is an example in the case where six power sources are used.
  • the suppliable power amount P 0 (N + M) indicates the suppliable power amount when the combination of the power sources is N + M.
  • the suppliable power amount P 0 (N + M) is calculated at 2000 W (watts) for each power source that supplies power.
  • the threshold value calculated from the suppliable power amount is a value used when the determination unit 207 determines the minimum number of power sources that can supply power equal to or greater than the power consumption amount P MAX of the server.
  • a value obtained by multiplying the suppliable power amount P 0 (N + M) by ⁇ is used.
  • is set to 0.8.
  • is a value used to determine the threshold.
  • is 1 or less, and may be set by a user or an operator.
  • the values shown in FIG. 8 are an example and do not limit the numerical values. Similarly, the number of power supplies is not limited.
  • the threshold value may be set directly by an operator or user of the server.
  • the threshold value calculated from the suppliable power amount in FIG. 8 is used in, for example, step S203 in FIG. P 0 (N + M) ⁇ ⁇ ⁇ P MAX (4) formula
  • Expression (4) is a conditional expression used when the determination unit 207 determines the minimum number of power sources that can supply power equal to or greater than the power consumption amount P MAX of the server.
  • the combination of power sources that can supply the power more than the power consumption P MAX of the server is the threshold value P 0 (4 + M) ⁇ ⁇ to P 0 (6 + M) ⁇ ⁇ It is. Since the determination unit 207 determines the minimum number of power supplies that can supply power equal to or greater than the power consumption amount P MAX , the minimum number of power supplies that supply power is four.
  • FIG. 9 is an example of a diagram comparing the amount of power that can be supplied by the power supply and the rated and actual power consumption.
  • the dotted line in FIG. 9 represents the threshold value P 0 (N + M) ⁇ ⁇ calculated from the suppliable power amount used when the optimization unit 104 in FIG. 3 determines the optimal combination of power sources.
  • the dotted line indicates the threshold value P 0 (N + M) ⁇ ⁇ of P 0 (5 + 1) , P 0 (4 + 1) , P 0 (3 + 3) or P 0 (3 + 1) , P 0 (2 + 2) or P 0 (2 + 1) from the top.
  • the threshold value P 0 (N + M) ⁇ ⁇ in ⁇ calculated from the suppliable power amount may be 1.
  • the threshold value P 0 (N + M) ⁇ ⁇ calculated from the suppliable power amount may be the suppliable power amount P 0 (N + M) .
  • the threshold used when the determination unit 207 determines the minimum number of power sources that can supply power equal to or higher than the power consumption amount P MAX of the server assumes that ⁇ is 1, and the suppliable power amount P 0 (N + M ) .
  • the calculation unit 204 calculates the power consumption amount P MAX from the rated power consumption, and the determination unit 207 determines the number of power supplies that can supply power that is equal to or higher than the power consumption amount.
  • the calculation unit 204 calculates the maximum value P RMAX of the actual power consumption as the power consumption P MAX as shown in the equation (2), and the determination unit 207 Determine the number of power supplies that can supply the power.
  • the flow from server activation to server operating state will be described using the example of FIG.
  • the calculation unit 204 calculates the power consumption amount P MAX from the rated power consumption.
  • the example of the rated power consumption in FIG. 9 is 4500 W, which exceeds the suppliable power amount 4000 W of P 0 (2 + 2) or P 0 (2 + 1) .
  • the power supply of the server is set to P 0 (3 + 3) or P 0 (3 + 1) . Therefore, the power supply of the server is set to P 0 (3 + 3) or P 0 (3 + 1) .
  • the calculation unit 204 calculates the maximum value P RMAX of the actual power consumption as the power consumption P MAX .
  • the example of the actual power consumption in FIG. 9 is 3000 W, and does not exceed the supplyable power amount 4000 W of P 0 (2 + 2) or P 0 (2 + 1) . Therefore, the combination of the server power sources is set to P 0 (2 + 2) or P 0 (2 + 1) .
  • the actual power consumption of the server is often smaller than the rated power consumption, and the number of power supplies that supply power to the server can be reduced during operation rather than when the server is started.
  • the determination unit 208 sets the number of power sources determined by the determination unit 207 as the number of power sources that supply power to the server of the combination of power sources, and determines the number of auxiliary power sources according to the priority order set by the user.
  • the power consumption P MAX of the entire server is calculated to 5000 W
  • a combination of the power of the N + N is set priority as the priority.
  • the supplyable power amount 4000 W of P 0 (2 + 2) or P 0 (2 + 1) is exceeded.
  • the power consumption amount P MAX is 5000 W does not exceed 6000 W that is the suppliable power amount of P 0 (3 + 3) or P 0 (3 + 1) . Therefore, the power supply of the server is set to P 0 (3 + 3) or P 0 (3 + 1) .
  • the power supply combinations are set so that the N + N power supply combinations are prioritized, so the 3 + 3 power supply combinations are selected.
  • the power control unit 209 stops two power supplies that are not used for power saving.
  • FIG. 10 is a flowchart for explaining an example of processing of the server 100 at server startup.
  • the device control unit 106 acquires information on the power consumption of each device (step S501).
  • the device control unit 106 calculates the power consumption P MAX for the entire server (step S502).
  • the server 100 notifies the optimization unit 104 of information about the power consumption P MAX for the entire server, and changes the combination of power sources. (Step S503).
  • the device control unit 106 acquires information related to the suppliable power amount from the power supply device control unit 105 (step S504).
  • the device control unit 106, the power consumption P MAX of the entire server is less than or judges than the supply power amount of a combination of power (step S505).
  • the device control unit 106 turns on the power of each of the devices 201-1 to 201-J (YES in step S505, step S506).
  • the server enters the operating state and moves the process to FIG.
  • the device control unit 106 performs setting so as to suppress the power-on of the device X (NO in step S505, step S507).
  • the device X is any one of the devices 201-1 to 201-J, and may be a plurality of devices. From power consumption P MAX of the entire server, obtains a value obtained by subtracting the rated power P X set devices X to suppress power-on, the power consumption P MAX of the entire server (step S508) . When the process of step S508 is executed, the process is repeated from step S503.
  • the user interface 301 may determine the device X by setting the priority order of the devices 201-1 to 201-J as server setting information. Although the power-on of the device X is set to be suppressed in step S507, this process is a temporary response. Thereafter, when the server is in an operating state, the server executes a process corresponding to the operating state, determines whether the device X can be started, and starts up if it can be started.
  • the supplyable power amount used in S505 may use a threshold value calculated from the supplyable power amount.
  • the processes in steps S501 to S503 are processes executed by the calculation unit 204. Further, the processing in steps S504 to S508 is processing executed by the device power supply control unit 205.
  • FIG. 11 is a flowchart illustrating an example of processing of the server 100 during server operation. This flowchart is processing after step S506 in FIG.
  • the device control unit 106 monitors the actual power consumption P R (step S601).
  • the device control unit 106 stores the information of the actual power consumption P R as the data of the power consumption (step S602).
  • the device control unit 106 determines whether there is power consumption data for the set period (step S603). If there is no power consumption data for the set period (NO in step S603), the process is repeated from step S601.
  • the device control unit 106 acquires the maximum value P RMAX of actual power consumption from the power consumption data (step S604).
  • the device control unit 106 compares the power consumption amount P MAX and the actual power consumption maximum value P RMAX to determine whether or not they are the same value (step S605).
  • the processing is repeated from step S601.
  • the device control unit 106 sets the actual power consumption maximum value P RMAX to the power consumption amount P MAX (NO in step S605, step S606).
  • the device control unit 106 determines whether there is a device X whose power-on is inhibited (step S607).
  • the server 100 notifies the optimization unit 104 of information about the power consumption P MAX for the entire server, and changes the combination of power sources. (NO in step S607, step S613).
  • step S613 When the process of step S613 is executed, the process is repeated from step S601.
  • the device control unit 106 newly sets the power consumption P MAX value obtained by adding the rated power P X to the power consumption P MAX (YES in step S607, the step S608).
  • the server 100 notifies the optimization unit 104 of information about the power consumption P MAX for the entire server, and changes the combination of power sources. (Step S609).
  • the device control unit 106 acquires information on the amount of power that can be supplied from the power supply device control unit 105 (step S610).
  • the power consumption P MAX of the entire server is less than or judges than the supply power amount of a combination of power (step S611). If the power consumption amount P MAX of the entire server is larger than the suppliable power amount of the combination of power sources (NO in step S611), the processing is repeated from step S601.
  • the device control unit 106 powers on the device X (YES in step S611, step S612).
  • the process of step S612 is executed, the process repeats the process from step S607.
  • a threshold value calculated from the suppliable power amount may be used.
  • the process of step S613 is a process when there is no component X that is not operating by the determination process of step S607.
  • step S503 sets a combination of power sources that is the minimum number of power sources that can supply power that exceeds the rated power consumption.
  • step S613 sets a combination of power sources with the minimum number of power sources that can supply power equal to or greater than the maximum value P RMAX of actual power consumption. Servers often have lower actual power consumption than rated power consumption. Therefore, when the supply of power is excessive, step S613 can reduce the number of power supplies that supply power, thereby saving power.
  • step S613 sets a combination of the minimum number of power source capable of supplying a maximum value P RMAX more power actual power. For example, when the number of users who use the server increases and the use of the server increases, the maximum value P RMAX of actual power consumption also increases.
  • step S613 by setting a combination of the minimum number of power sources that can supply power that is equal to or greater than the increased actual power consumption maximum value P RMAX , power can be supplied in accordance with the usage status of the server.
  • steps S601 to S603 is processing executed by the power consumption recording unit 203.
  • the processes in steps S604 to S609 and step S613 are processes executed by the calculation unit 204. Further, the processing of steps S610 to S612 is processing executed by the device power supply control unit 205.
  • the device X when the combination of power sources is determined based on the rated power consumption at the time of starting the server, and the rated power consumption is larger than the suppliable power, the device X is temporarily suppressed. Thereafter, when the server is in operation, the combination of power sources is determined from the maximum value of the actual power consumption of the server. Servers often have lower actual power consumption than rated power consumption. Therefore, when the suppliable power amount is larger than the value obtained by adding the actual power consumption and the rated power consumption of the device X, the power of the device X can be turned on.
  • the server operator or the user can operate the server without being aware of the operation status of the server, the power consumption amount of the server, and the power supply amount of power. .
  • the server can automatically change the combination of the power sources to ensure the amount of power that can be supplied and start the power source of the device that is not in operation. By automatically changing the combination of power sources, the server can stop unused power sources and save power.
  • the server may store various information about the device that was operating last time and information about the power consumption P ′ MAX of the server.
  • the server When starting the server, compare the various information of the device that was operating last time with the various information of the current device, and if the device has not been newly added or deleted, the server will use the power consumption P MAX . Set the power consumption P ′ MAX .
  • the process is executed by the calculation unit 204.
  • P MAX P ' MAX (5) formula
  • the calculation unit 204 can calculate the power consumption amount P MAX from the actual power consumption amount even when starting the server by setting as in the equation (5), and the determination unit 207 determines the power consumption amount P
  • the minimum number of power supplies capable of supplying more than MAX power can be determined.
  • the number of processes for changing the combination of power supplies can be reduced.
  • Server may be stored and various information and the amount of power consumption P 'MAX of the server information of the device when was the last time running, when to turn off the restart or power the server, to periodically save It may be.
  • the memory 201 may have a setting for enabling or disabling power consumption data.
  • the server executes the processes in FIGS. 5, 6, 7, 10, and 11.
  • the processes of FIGS. 6, 7 and 10 are executed.
  • the event stored in the memory 201 may be notified to the user or the operator by an SNMP (Simple Network Management Protocol) trap, mail, or the like.
  • the memory 201 may have a setting for determining a notification method for an event that has occurred.
  • the operator can access the memory 201 from the operator terminal 202 and confirm the event.
  • the user or operator can confirm that the combination of the power sources has been changed, and can confirm the activation status of the device.
  • the calculation unit 204 calculates the maximum power consumption amount during a predetermined period from the power consumption data of the memory 201 as the power consumption amount P MAX .
  • the maximum value of power consumption may be a relatively large value in the power consumption data.
  • the power consumption P MAX may be a value obtained by adding the margin value to the maximum value, with further margin from the maximum value.

Abstract

The present invention adjusts the electrical power that a server autonomously supplies even if the number of devices being served changes. This power source control device has a calculation unit, a determination unit, a power control unit, and a device power source control unit. The power source control device controls the number of power sources that supply power to the server. The calculation unit calculates the total power consumption of the server by adding the actual power consumption of the running devices connected to the server and the rated power consumption of pre-running devices. The determination unit compares the total power consumption and the amount of power that the power sources can supply, and determines the minimum number of power sources that can supply the at least the total power consumption. The power control unit causes power to be supplied by the power sources in accordance with the determined number of power sources. The device power source control unit causes the pre-running devices to run when the power supplied to the server has reached the total power consumption.

Description

電源制御装置、電源制御プログラム及び電源制御方法POWER CONTROL DEVICE, POWER CONTROL PROGRAM, AND POWER CONTROL METHOD
 本発明は、電源の制御に関する。 The present invention relates to power supply control.
 ブレードサーバーは、複数の電源や複数のデバイスを搭載することのできるサーバーシステムである。ブレードサーバーは、サーバーコンピュータの機能が実装された基板(ブレード)を、筐体の差込口に複数取り付けることができる。ブレードサーバーでは、用途に応じて取り付けるブレードの数を調節することにより、所望の性能を有するサーバーとすることができる。デバイスは、ブレードサーバーにおけるブレード及びスイッチを含む。複数の電源は、例えば電力を供給する電源と補助電源の組み合わせである。ブレードサーバーに搭載するデバイスの数を増やした場合、ブレードサーバーの総消費電力量は増える。ブレードサーバーの総消費電力量が電源の供給電力量を超える場合、サーバーのオペレータ又はユーザは、総消費電力量に対応して電力を供給する電源を増やす。また、ブレードサーバーに搭載するデバイスの数を減らした場合、ブレードサーバーの総消費電力量は減る。電力を供給する電源の数を減らすことができる場合、サーバーのオペレータ又はユーザは、余った電源を使用し電源を冗長化してもよい。サーバーのオペレータ又はユーザは、サーバーの消費電力量と電源の供給電力量とを計算し、サーバーの運用状況に合わせて電源の組み合わせを設定する。サーバーのオペレータ又はユーザが、サーバーの運用状況、サーバーの消費電力量と電源の供給電力量とを意識することなく、サーバー側で電源の組み合わせを決定することが好ましい。 Blade server is a server system that can be equipped with multiple power supplies and multiple devices. In the blade server, a plurality of boards (blades) on which the server computer function is mounted can be attached to the insertion port of the housing. In the blade server, a server having desired performance can be obtained by adjusting the number of blades to be installed according to the application. The device includes blades and switches in the blade server. The plurality of power sources is, for example, a combination of a power source that supplies power and an auxiliary power source. When the number of devices installed in the blade server is increased, the total power consumption of the blade server increases. When the total power consumption of the blade server exceeds the amount of power supplied by the power supply, the server operator or user increases the number of power supplies that supply power corresponding to the total power consumption. Further, when the number of devices mounted on the blade server is reduced, the total power consumption of the blade server is reduced. If the number of power supplies supplying power can be reduced, the server operator or user may use redundant power supplies to make the power supplies redundant. The server operator or user calculates the power consumption amount of the server and the power supply amount of the power source, and sets the combination of power sources according to the operation status of the server. It is preferable that the server operator or user decides the combination of power sources on the server side without being aware of the server operation status, the power consumption amount of the server, and the power supply amount of the power source.
 サーバーに搭載されているブレードの数が変動しないサーバーでは、サーバーが、変換効率に基づいて電源の組み合わせを選択する技術が知られている。サーバーは、実際の負荷の消費電力を監視し、消費電力の情報に対応して予め設定された変換効率の情報の内で効率の高い電源の組み合わせを選択する(例えば特許文献1参照)。 In a server in which the number of blades mounted on the server does not vary, a technology is known in which the server selects a combination of power sources based on conversion efficiency. The server monitors the power consumption of the actual load, and selects a highly efficient combination of power sources from information on conversion efficiency set in advance corresponding to the power consumption information (see, for example, Patent Document 1).
 また、過電圧保護機能も知られている。電源が冗長運転の場合には、異常となった電源を停止させ正常な電源のみで電源供給を行うことで、装置の運転を継続する(例えば特許文献2参照)。 Also, overvoltage protection function is known. When the power supply is in redundant operation, the operation of the apparatus is continued by stopping the power supply that has become abnormal and supplying power only with a normal power supply (see, for example, Patent Document 2).
 特定のネットワークの運用状況に応じて、監視対象の機器の動作を制御する技術が知られている(例えば特許文献3参照)。 A technique for controlling the operation of a device to be monitored according to the operation status of a specific network is known (see, for example, Patent Document 3).
特許公開2008-204231号Patent Publication No. 2008-204231 特許公開2003-339116号Patent Publication No. 2003-339116 特許公開2007-159298号Patent Publication No. 2007-159298
 上述した背景技術では、ブレードサーバーでの電源の制御については考慮されていない。ブレードサーバーの場合は、搭載するデバイスが稼働中に変動するので、以下のような問題がある。 In the background art described above, power supply control in the blade server is not considered. In the case of a blade server, since the mounted device fluctuates during operation, there are the following problems.
 例えば、サーバーにホットプラグにより新たなデバイスを追加で搭載し、サーバーの総消費電力量が電源の供給電力量を超えることがある。この場合、サーバーがダウンする可能性がある。また、追加したデバイスを起動できないことも考えられる。 For example, a new device may be additionally installed in the server by hot plugging, and the total power consumption of the server may exceed the amount of power supplied by the power supply. In this case, the server may go down. It is also possible that the added device cannot be activated.
 電源制御装置は、計算部と、決定部と、電力制御部と、デバイス電源制御部とを有する。電源制御装置は、サーバーに電力を供給する電源の数を制御する。計算部は、サーバーに接続された稼動中のデバイスの実際の消費電力量と稼動前のデバイスの定格消費電力量とを加算することにより、サーバーの総消費電力量を計算する。決定部は、総消費電力量と電源が供給できる電力量とを比較し、総消費電力量以上の電力を供給できる最小の電源の数を決定する。電力制御部は、決定された電源の数に対応して電源に電力を供給させる。デバイス電源制御部は、サーバーに供給される電力が総消費電力量に達した場合、稼動前のデバイスを稼動させる。 The power supply control device includes a calculation unit, a determination unit, a power control unit, and a device power supply control unit. The power control device controls the number of power supplies that supply power to the server. The calculation unit calculates the total power consumption of the server by adding the actual power consumption of the active device connected to the server and the rated power consumption of the device before the operation. The determination unit compares the total power consumption with the amount of power that can be supplied by the power supply, and determines the minimum number of power supplies that can supply power that is equal to or greater than the total power consumption. The power control unit causes the power supply to supply power corresponding to the determined number of power supplies. The device power control unit operates the device before the operation when the power supplied to the server reaches the total power consumption.
 サーバー中のデバイスの数が変動しても、サーバーが自律的に供給する電力を調整する。 ∙ Adjust the power that the server supplies autonomously even if the number of devices in the server fluctuates.
実施形態に係るサーバーの例である。It is an example of the server which concerns on embodiment. 実施形態に係るサーバーの例である。It is an example of the server which concerns on embodiment. サーバーのハードウェア構成の例である。It is an example of the hardware constitutions of a server. 実施形態に係る機能ブロック図の例である。It is an example of a functional block diagram concerning an embodiment. 消費電力のデータの例である。It is an example of the data of power consumption. デバイスが追加された場合のデバイス制御部106の処理の例を説明するフローチャートである。It is a flowchart explaining the example of a process of the device control part 106 when a device is added. 最適化部104の処理の例を説明するフローチャートである。10 is a flowchart for explaining an example of processing of an optimization unit 104. 電源装置制御部105の処理の例を説明するフローチャートである。5 is a flowchart illustrating an example of processing of a power supply device control unit 105. 電源の組み合わせの決定に使用される情報の例である。It is an example of the information used for determination of the combination of power supplies. 電源の供給可能電力量から算出される閾値及び、定格・実消費電力を比較した図の例である。It is an example of the figure which compared the threshold value calculated from the electric energy which can be supplied of a power supply, and rated and actual power consumption. サーバー起動時のサーバー100の処理の例を説明するフローチャートである。It is a flowchart explaining the example of the process of the server 100 at the time of server starting. サーバー稼働中のサーバー100の処理の例を説明するフローチャートである。It is a flowchart explaining the example of a process of the server 100 during server operation.
 以下、本実施形態について、図面を参照しながら詳細に説明する。
 図1は、実施形態に係るサーバーの例である。図1Aのサーバー100は、管理デバイス101、デバイス102-1~デバイス102-J、電源103-a~電源103―dを有する。管理デバイス101は、最適化部104、電源装置制御部105、デバイス制御部106を有する。図1Bは、図1Aと同一のものは同一の符号を付して示す。図1Bは、図1Aのサーバー100にホットプラグにより新たなデバイスを追加した場合の図である。図1Bは、更にデバイス102-(J+1)を有する。
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
FIG. 1 is an example of a server according to the embodiment. The server 100 in FIG. 1A includes a management device 101, devices 102-1 to 102-J, and power supplies 103-a to 103-d. The management device 101 includes an optimization unit 104, a power supply control unit 105, and a device control unit 106. In FIG. 1B, the same components as those in FIG. 1A are denoted by the same reference numerals. FIG. 1B is a diagram when a new device is added to the server 100 of FIG. 1A by hot plug. FIG. 1B further includes device 102- (J + 1).
 サーバーが稼働中に、ホットプラグによる新たなデバイスが追加で搭載された場合、デバイス制御部106は、デバイス追加前の消費電力量PMAXAに追加されたデバイスの定格消費電力量を加える。
   PMAX=PMAXA+PJ+1・・・(1)式
When a new device by hot plug is additionally mounted while the server is operating, the device control unit 106 adds the rated power consumption of the added device to the power consumption P MAXA before adding the device.
P MAX = P MAXA + P J + 1 (1) formula
 右辺の消費電力量PMAXAは、デバイスが追加される前のサーバーである図1Aの実際の消費電力量(以下「実消費電力」と称す)である。図1Aのサーバー100は、J台のデバイスを有する。各デバイスの定格消費電力量は(P1、P2、・・・PJ)で示される。図1Bのサーバー100は、図1Aのサーバー100にJ+1台目のデバイスが追加されたサーバーである。PJ+1は、追加されたデバイスの定格消費電力量である。(1)式で算出される消費電力量PMAXは、サーバー100の実消費電力量に稼動前の追加されたデバイスの定格消費電力量を加算したものである。消費電力量PMAXは、追加されたデバイスが稼動した際に消費されると予想されるサーバーの総消費電力量である。 The power consumption amount P MAXA on the right side is the actual power consumption amount (hereinafter referred to as “actual power consumption”) of FIG. 1A that is the server before the device is added. The server 100 in FIG. 1A has J devices. The rated power consumption of each device is indicated by (P 1 , P 2 ,... P J ). The server 100 in FIG. 1B is a server in which a J + 1th device is added to the server 100 in FIG. 1A. P J + 1 is the rated power consumption of the added device. The power consumption P MAX calculated by the equation (1) is obtained by adding the rated power consumption of the added device before operation to the actual power consumption of the server 100. The power consumption P MAX is the total power consumption of the server that is expected to be consumed when the added device is operated.
 デバイス制御部106は、(1)式で設定された消費電力量PMAXの情報を最適化部104に送る。並列して電源装置制御部105は、現在の電源が供給可能な電力量(以下「供給可能電力量」と称す)の情報を最適化部104に送る。 The device control unit 106 sends information on the power consumption P MAX set by the equation (1) to the optimization unit 104. In parallel, the power supply device control unit 105 sends information on the amount of power that can be supplied by the current power supply (hereinafter referred to as “suppliable power amount”) to the optimization unit 104.
 図1Aの電源103-a~電源103―dは、B1で囲まれている電源103-aと電源103-bの組と、C1で囲まれている電源103-cと電源103-dの組とに分かれている。B1で囲まれている範囲の電源は、サーバーに電力を供給している電源である。C1で囲まれている範囲の電源は、B1で囲まれている範囲の電源が故障したときにバックアップとして使用される補助電源である。サーバーに電力を供給している電源と補助電源の組み合わせを、以下「電源の組み合わせ」と称す。 The power source 103-a to power source 103-d in FIG. 1A are a set of a power source 103-a and a power source 103-b surrounded by B1, and a set of a power source 103-c and a power source 103-d surrounded by C1. It is divided into and. The power supply in the range surrounded by B1 is a power supply that supplies power to the server. The power supply in the range surrounded by C1 is an auxiliary power supply used as a backup when the power supply in the range surrounded by B1 fails. A combination of a power source that supplies power to the server and an auxiliary power source is hereinafter referred to as a “power source combination”.
 一方、サーバー100は、J+1台目のデバイスが追加され、電源103-aと電源103-bで電力を賄えない場合、サーバーに電力を供給する電源の数を増やす。B2で囲まれている範囲の電源は、サーバーに電力を供給している電源である。C2で囲まれている範囲の電源は、B2で囲まれている範囲の電源が故障したときにバックアップとして使用される補助電源である。図1Bの例では、B2で囲まれている電源103-a~電源103-cの組と、C2で囲まれている電源103-dの電源との組み合わせとなっている。図1Bのサーバー100は、サーバーに電力を供給する電源として新たに電源103-cが割り当てられている。最適化部104は、消費電力量PMAXが供給可能電力量よりも大きい場合、消費電力量PMAXを確保でき、サーバーに電力を供給する電源の数が最小となる電源の組み合わせに変更するよう、電源装置制御部105に通知する。 On the other hand, the server 100 increases the number of power supplies that supply power to the server when the (J + 1) th device is added and the power supplies 103-a and 103-b cannot supply power. The power supply in the range surrounded by B2 is a power supply that supplies power to the server. The power supply in the range surrounded by C2 is an auxiliary power supply used as a backup when the power supply in the range surrounded by B2 fails. In the example of FIG. 1B, a combination of a power source 103-a to power source 103-c surrounded by B2 and a power source of a power source 103-d surrounded by C2. In the server 100 of FIG. 1B, a power source 103-c is newly allocated as a power source for supplying power to the server. When the power consumption amount P MAX is larger than the suppliable power amount, the optimization unit 104 can secure the power consumption amount P MAX and change the power source combination to the minimum number of power sources that supply power to the server. The power supply device control unit 105 is notified.
 最適化部104は、消費電力量PMAXの情報と供給可能電力量の情報とを受け取る。図1Aのサーバー100は、J+1台目のデバイスが追加されても、電源103-aと電源103-bで電力を賄える場合、サーバーに電力を供給する電源の数を増やさなくてよい。最適化部104は、消費電力量PMAXが供給可能電力量よりも小さい場合、電源の組み合わせを変更しないことを電源装置制御部105に通知する。 The optimization unit 104 receives information on the power consumption amount P MAX and information on the suppliable power amount. The server 100 in FIG. 1A does not need to increase the number of power supplies that supply power to the server if the power supply 103-a and the power supply 103-b can supply power even when the J + 1th device is added. When the power consumption amount P MAX is smaller than the suppliable power amount, the optimization unit 104 notifies the power supply device control unit 105 that the combination of power sources is not changed.
 電源装置制御部105は、通知された情報に対応して、サーバーに電力を供給する電源の数を設定する。電源装置制御部105は、新たに設定されたサーバーに電力を供給する電源の数に対応する供給可能電力量の情報をデバイス制御部106に送信する。 The power supply control unit 105 sets the number of power supplies that supply power to the server in accordance with the notified information. The power supply control unit 105 transmits information on the suppliable power amount corresponding to the number of power supplies that supply power to the newly set server to the device control unit 106.
 デバイス制御部106は、新たに設定されたサーバーに電力を供給する電源の数に対応する供給可能電力量が消費電力量PMAXを確保できている場合、追加されたデバイスの電源を投入する。 If the suppliable power amount corresponding to the number of power sources that supply power to the newly set server can secure the power consumption amount P MAX , the device control unit 106 powers on the added device.
 図2は、サーバーのハードウェア構成の例である。図2は、管理デバイス101-1~101-2と、デバイス102-1~102-Jと、電源103-1~103-Iとを有する。デバイス102-1~102-Jは、各々がCPU、メモリ、記憶装置を備える。デバイス102-1~102-Jは、サーバーを所望の性能とするために追加されるものであり、数を限定されるものではない。電源103-1~103-Iは、電力をサーバーに供給する装置である。サーバーに搭載される電源は、数を限定されるものではない。管理デバイス101-1~101-2は、各々がCPU(Central Processing Unit)、メモリ、記憶装置を備える。管理デバイス101-1~101-2は、冗長化されており、稼動系と待機系とに分かれている。管理デバイス101-1~101-2は、図1の最適化部104、電源装置制御部105、デバイス制御部106を実現する。図1の各部の処理は稼動系の管理用デバイスのCPUで処理され、使用する情報はメモリ又は記憶装置に保存される。サーバーは、サーバーの設定情報を設定するために専用のモニタ及び入力手段を備えていてもよい。または、外部のオペレータ端末からサーバーにアクセスし、設定情報を設定するようにしてもよい。 Fig. 2 shows an example of the hardware configuration of the server. FIG. 2 includes management devices 101-1 to 101-2, devices 102-1 to 102-J, and power supplies 103-1 to 103-I. Each of the devices 102-1 to 102-J includes a CPU, a memory, and a storage device. The devices 102-1 to 102-J are added to make the server have a desired performance, and the number is not limited. The power supplies 103-1 to 103-I are devices that supply power to the server. The number of power supplies installed in the server is not limited. Each of the management devices 101-1 to 101-2 includes a CPU (Central Processing Unit), a memory, and a storage device. The management devices 101-1 to 101-2 are redundant and are divided into an active system and a standby system. The management devices 101-1 to 101-2 implement the optimization unit 104, the power supply device control unit 105, and the device control unit 106 in FIG. 1 is processed by the CPU of the active management device, and information to be used is stored in a memory or a storage device. The server may include a dedicated monitor and input means for setting server setting information. Alternatively, the setting information may be set by accessing the server from an external operator terminal.
 図3は、実施形態に係る機能ブロック図の例である。図1、図2と同一のものは、同一の符号を付して示す。各デバイス102-1~102-Jは、それぞれの定格消費電力量の情報(P1、P2、・・・PJ)を有している。また、図3は、メモリ201及びオペレータ端末202を有する。 FIG. 3 is an example of a functional block diagram according to the embodiment. 1 and 2 are denoted by the same reference numerals. Each of the devices 102-1 to 102-J has information (P 1 , P 2 ,... P J ) on the rated power consumption. FIG. 3 includes a memory 201 and an operator terminal 202.
 デバイス制御部106は、消費電力記録部203、計算部204、デバイス電源制御部205を有する。消費電力記録部203は、電源及びデバイスが実際に使用した実消費電力量を消費電力データとしてメモリ201に記録する。計算部204は、消費電力量PMAXを計算する。図1Bのようにデバイスが追加された場合、計算部204は、実消費電力量に追加されたデバイスの定格消費電力を加算し、消費電力量PMAXを計算する。同様に、稼動していないデバイスがある場合も、計算部204は、実消費電力量に稼動していないデバイスの定格消費電力を加算し、消費電力量PMAXを計算する。サーバーが稼動している場合、計算部204は、メモリ201の消費電力データから、所定の期間における消費電力量の最大値を消費電力量PMAXとして計算する。サーバーを起動した場合、計算部204は、各デバイスの定格消費電力量を合計し、消費電力量PMAXを計算する。デバイス電源制御部205は、電源の供給可能電力量と消費電力量PMAXとを比較し、稼動していないデバイスが稼動できる場合、稼動していないデバイスを稼動させる。 The device control unit 106 includes a power consumption recording unit 203, a calculation unit 204, and a device power supply control unit 205. The power consumption recording unit 203 records the actual power consumption actually used by the power supply and the device in the memory 201 as power consumption data. The calculation unit 204 calculates the power consumption amount P MAX . When a device is added as shown in FIG. 1B, the calculation unit 204 calculates the power consumption P MAX by adding the rated power consumption of the added device to the actual power consumption. Similarly, even when there is a device that is not operating, the calculation unit 204 calculates the power consumption P MAX by adding the rated power consumption of the device that is not operating to the actual power consumption. When the server is operating, the calculation unit 204 calculates, from the power consumption data of the memory 201, the maximum value of the power consumption during a predetermined period as the power consumption P MAX . When the server is activated, the calculation unit 204 sums the rated power consumption of each device and calculates the power consumption P MAX . The device power control unit 205 compares the amount of power that can be supplied with power and the power consumption PMAX, and when a device that is not operating can be operated, the device that is not operating is operated.
 最適化部104は、取得部206、決定部207、判定部208を備える。取得部206は、サーバーの消費電力量PMAXの情報をデバイス制御部106から取得する。取得部206は、現在の電源の組み合わせの電力を供給する電源の数に対応する供給可能電力量の情報を電源装置制御部105から取得する。決定部207は、サーバーの消費電力量PMAXの情報と供給可能電力量の情報とを比較し、サーバーの消費電力量PMAX以上の電力を供給できる最小の電源の数を決定する。判定部208は、決定部207が決定した電源の数を電源の組み合わせのサーバーに電力を供給する電源の数とし、また、ユーザが設定する優先順位に従って補助電源の数を判定する。判定部208は、サーバーに電力を供給する電源の数と補助電源の数の情報である電源の組み合わせ情報を電源装置制御部105に通知する。 The optimization unit 104 includes an acquisition unit 206, a determination unit 207, and a determination unit 208. The acquisition unit 206 acquires information about the server power consumption P MAX from the device control unit 106. The acquisition unit 206 acquires information on the suppliable power amount corresponding to the number of power supplies that supply power of the current combination of power supplies from the power supply device control unit 105. The determination unit 207 compares the information on the power consumption amount P MAX of the server and the information on the suppliable power amount, and determines the minimum number of power sources that can supply power equal to or higher than the power consumption amount P MAX of the server. The determination unit 208 sets the number of power sources determined by the determination unit 207 as the number of power sources that supply power to the server of the combination of power sources, and determines the number of auxiliary power sources according to the priority order set by the user. The determination unit 208 notifies the power supply device control unit 105 of combination information of power sources, which is information on the number of power sources that supply power to the server and the number of auxiliary power sources.
 電源装置制御部105は、電力制御部209、設定部210、通知部211、算出部212を備える。電力制御部209は、判定部208から電源の組み合わせ情報を受け取り、サーバーに電力を供給する電源の数に従って電源に電力を供給させる。設定部210は、電源の組み合わせ情報で判定された補助電源をバックアップとして設定する。通知部211は、現在の電力を供給している電源の数に対応した供給可能電力量を算出し、供給可能電力量の情報を最適化部104とデバイス制御部106に通知する。算出部212は、電源が消費する電力量を算出する。電源の消費電力量の情報は、消費電力記録部203で使用される。 The power supply device control unit 105 includes a power control unit 209, a setting unit 210, a notification unit 211, and a calculation unit 212. The power control unit 209 receives power source combination information from the determination unit 208 and supplies power to the power source according to the number of power sources that supply power to the server. The setting unit 210 sets the auxiliary power source determined by the power source combination information as a backup. The notification unit 211 calculates a suppliable power amount corresponding to the number of power supplies that are currently supplying power, and notifies the optimization unit 104 and the device control unit 106 of information on the suppliable power amount. The calculation unit 212 calculates the amount of power consumed by the power source. Information on the power consumption amount of the power supply is used by the power consumption recording unit 203.
 メモリ201は、サーバーの設定情報、消費電力データ、各種データが保存される。サーバーの設定情報は、以下の情報を有する。
  計算部204が消費電力量の最大値を計算する際に使用する期間の値(時間)
  判定部208が補助電源の数を判定する際に使用する補助電源の数の優先順位
  決定部207がサーバーの消費電力量PMAX以上の電力を供給できる最小の電源の数を決定する際に使用される閾値
The memory 201 stores server setting information, power consumption data, and various data. The server setting information includes the following information.
The value (time) of the period used when the calculation unit 204 calculates the maximum value of power consumption
Priority order of the number of auxiliary power sources used when the determination unit 208 determines the number of auxiliary power sources The determination unit 207 uses when determining the minimum number of power sources that can supply the power consumption amount P MAX or more of the server Threshold
 メモリ201の保持している情報は、記憶装置に記憶されていてもよく、適宜、最適化部104とデバイス制御部106で使用される。 The information held in the memory 201 may be stored in a storage device and used by the optimization unit 104 and the device control unit 106 as appropriate.
 オペレータ端末202は、キーボードなどの入力手段を有する。オペレータは、オペレータ端末202を使用することでメモリ201にアクセスし、サーバーの設定情報を変更することができる。例えば、オペレータは、オペレータ端末202を使用し、補助電源の数の優先順位を変更する。電源の組み合わせは、N台の電源とM台の補助電源であり、N+Mで表される。N台の電源は、サーバーが稼動している間、電力を供給する電源である。M台の補助電源は、N台の電源の何れかにトラブルが発生した場合にバックアップの電源として動作する補助電源である。N+Mの電源の組み合わせは、例えばN+N、N+1、N+0の組み合わせである。N+Nの電源の組み合わせは、電源のN台が故障しても継続的にサーバーを稼動することができる。N+1の電源の組み合わせは、電源の1台が故障しても継続的にサーバーを稼動することができる。N+Nの電源の組み合わせは、N+1の電源に比べ冗長性の高い組み合わせである。N+0の電源は、非冗長であり、電源が1台でも故障すると、サーバーがダウンする可能性がある。オペレータが設定する補助電源の数の優先順位とは、N+MにおけるMの台数を設定し、冗長性の高い組み合わせを優先するかどうかの設定である。なお、N+Mの電源の組み合わせにおいて、使用していない電源を停止することで省電力をはかることもできる。 The operator terminal 202 has input means such as a keyboard. An operator can use the operator terminal 202 to access the memory 201 and change server setting information. For example, the operator uses the operator terminal 202 to change the priority order of the number of auxiliary power supplies. The combination of power sources is N power sources and M auxiliary power sources, and is represented by N + M. The N power supplies are power supplies that supply power while the server is operating. The M auxiliary power supplies are auxiliary power supplies that operate as backup power supplies when trouble occurs in any of the N power supplies. The combination of N + M power sources is, for example, a combination of N + N, N + 1, and N + 0. The combination of N + N power supplies can continue to operate the server even if N power supplies fail. The combination of N + 1 power supplies can continuously operate the server even if one of the power supplies fails. The combination of N + N power supplies is a combination with higher redundancy than that of N + 1 power supplies. The N + 0 power supply is non-redundant, and if one power supply fails, the server may go down. The priority order of the number of auxiliary power sources set by the operator is a setting of whether or not to give priority to a combination with high redundancy by setting the number of M in N + M. Note that, in the combination of N + M power sources, power can be saved by stopping unused power sources.
 図4は、消費電力のデータの例である。図4の消費電力データは、メモリ201に保存されている。図4の例は、実消費電力量PRを、4月1日から5月13日までの期間保存したものである。図4の例では、4月11日の実消費電力量PRが、実消費電力の最大値PRMAXとして例示されている。計算部204は、実消費電力の最大値PRMAXを消費電力量PMAXとして計算する。
   PMAX=PRMAX・・・(2)式
FIG. 4 is an example of power consumption data. The power consumption data in FIG. 4 is stored in the memory 201. The example of FIG. 4, the actual power consumption P R, is obtained by time saved from April 1 to May 13. In the example of FIG. 4, the actual power consumption P R of April 11 is illustrated as the maximum value P RMAX of actual power. Calculation unit 204 calculates the maximum value P RMAX of actual power as power consumption P MAX.
P MAX = P RMAX (2) formula
 計算部204は、消費電力量PMAXの情報をデバイス制御部106に通知する。実消費電力の最大値PRMAXの情報を消費電力データから取得する処理は、所定の期間毎に実行さるようにすればよい。また、所定の期間は、ユーザ・オペレータが設定変更できるようにしてもよい。 Calculation unit 204 notifies the information of the power consumption P MAX to the device control unit 106. The process of acquiring information about the maximum value P RMAX of the actual power consumption from the power consumption data may be executed every predetermined period. Further, the user / operator may be able to change the setting during a predetermined period.
 図5は、デバイスが追加された場合のデバイス制御部106の処理の例を説明するフローチャートである。デバイス制御部106は、デバイスJ+1が追加されたことを検出する(ステップS101)。デバイス制御部106は、検出したデバイスJ+1の定格消費電力の情報を取得する(ステップS102)。デバイス制御部106は、デバイスが追加される前のサーバーの実消費電力量に検出したデバイスJ+1の定格消費電力PJ+1を加算し、加算した値を新たに消費電力量PMAXとして設定する(ステップS103)。デバイス制御部106は、消費電力量PMAXの情報を最適化部104に送る(ステップS104)。ステップS104の処理の後、後述する図6及び図7の処理が実行され、電源の組み合わせが変更される。デバイス制御部106は、電源装置制御部105から変更後の電源の組み合わせに対応する供給可能電力量に関する情報を取得する(ステップS105)。デバイス制御部106は、サーバー全体での消費電力量PMAXが供給可能電力量よりも小さいか判断する(ステップS106)。デバイス制御部106は、デバイスJ+1の電源を投入する(ステップS106でYES、ステップS107)。デバイス制御部106は、デバイスJ+1の電源投入を抑止する(ステップS106でNO、ステップS108)。ステップS107またはステップS108の処理が実行されると、デバイス制御部106は、処理を稼動時のフローチャートに移す。ステップS101~S104の処理は、計算部204が実行する処理である。また、ステップS105~S108の処理は、デバイス電源制御部205が実行する処理である。 FIG. 5 is a flowchart illustrating an example of processing of the device control unit 106 when a device is added. The device control unit 106 detects that the device J + 1 has been added (step S101). The device control unit 106 acquires information on the rated power consumption of the detected device J + 1 (step S102). The device control unit 106 adds the detected rated power consumption P J + 1 of the device J + 1 to the actual power consumption of the server before the device is added, and sets the added value as a new power consumption P MAX (step) S103). The device control unit 106 sends information on the power consumption P MAX to the optimization unit 104 (step S104). After the process of step S104, the processes of FIGS. 6 and 7 described later are executed, and the combination of the power sources is changed. The device control unit 106 acquires information on the suppliable power amount corresponding to the changed combination of power sources from the power supply device control unit 105 (step S105). The device control unit 106, the power consumption P MAX of the entire server or smaller is determined than the supply power amount (Step S106). The device control unit 106 powers on the device J + 1 (YES in step S106, step S107). The device control unit 106 suppresses power-on of the device J + 1 (NO in step S106, step S108). When the process of step S107 or step S108 is executed, the device control unit 106 moves the process to a flowchart for operation. The processes in steps S101 to S104 are processes executed by the calculation unit 204. Further, the processing of steps S105 to S108 is processing executed by the device power supply control unit 205.
 図6は、最適化部104の処理の例を説明するフローチャートである。図6の処理は、最適化部104が、消費電力量PMAXの情報の通知(例えば、図5のステップS104)を受信した後の処理である。最適化部104は、電源装置制御部105に供給可能電力量に関する情報を問い合わせる(ステップS201)。最適化部104は、電源装置制御部105から供給可能電力量に関する情報を取得する(ステップS202)。最適化部104は、最適な電源の組み合わせを決定する(ステップS203)。ステップS203の電源の組み合わせの決定には、電源の組み合わせの優先順位も含まれる。最適化部104は、電源装置制御部105に決定した電源の組み合わせ情報を通知し、設定をするように指示を送信する(ステップS204)。ステップS201~S202の処理は、取得部206が実行する処理である。ステップS203の処理は、決定部207と判定部208とが実行する処理である。ステップS204の処理は、判定部208が実行する処理である。 FIG. 6 is a flowchart for explaining an example of processing of the optimization unit 104. Process of Figure 6, the optimization unit 104, the notification information of the power consumption P MAX (e.g., step S104 in FIG. 5) is a process after receiving the. The optimization unit 104 inquires of the power supply control unit 105 about information relating to the amount of power that can be supplied (step S201). The optimization unit 104 acquires information on the amount of power that can be supplied from the power supply device control unit 105 (step S202). The optimization unit 104 determines an optimal combination of power sources (step S203). The determination of the combination of power sources in step S203 includes the priority order of the combination of power sources. The optimization unit 104 notifies the power supply device control unit 105 of the determined combination information of the power supplies, and transmits an instruction to set (step S204). The processes in steps S201 to S202 are processes executed by the acquisition unit 206. The process of step S203 is a process executed by the determination unit 207 and the determination unit 208. The process in step S204 is a process executed by the determination unit 208.
 図7は、電源装置制御部105の処理の例を説明するフローチャートである。図7(a)の処理は、電源装置制御部105が最適化部104から電源装置制御部105に供給可能な電力量に関する情報の問い合わせ(図6のステップS201)を受けた後の処理である。電源装置制御部105は、現在の電源の組み合わせに対応した供給可能電力量に関する情報を最適化部104に通知する(ステップS301)。ステップS301の処理が終了すると、処理は図6のステップS203に移る。ステップS301の処理は、通知部211が実行する処理である。図7(b)の処理は、電源装置制御部105が最適化部104から決定した電源の組み合わせ情報を設定する指示(図6のステップS204)を受けた後の処理である。電源装置制御部105は、指示を受けた電源の組み合わせ情報に従って、電源の組み合わせ設定を変更する(ステップS401)。電源装置制御部105は、電源の組み合わせに関する情報をデバイス制御部106に通知する(ステップS402)。ステップS402で通知する電源の組み合わせに関する情報は、図5のステップS104で取得する情報に該当する。ステップS401の処理は、電力制御部209と設定部210とが実行する処理である。ステップS402の処理は、設定部210が実行する処理である。 FIG. 7 is a flowchart for explaining an example of processing of the power supply device control unit 105. The process in FIG. 7A is a process after the power supply control unit 105 receives an inquiry about information about the amount of power that can be supplied from the optimization unit 104 to the power supply control unit 105 (step S201 in FIG. 6). . The power supply device control unit 105 notifies the optimization unit 104 of information related to the suppliable power amount corresponding to the current combination of power sources (step S301). When the process of step S301 ends, the process proceeds to step S203 of FIG. The process in step S301 is a process executed by the notification unit 211. The process in FIG. 7B is a process after receiving an instruction (step S204 in FIG. 6) for setting the combination information of the power source determined by the power supply device control unit 105 from the optimization unit 104. The power supply device control unit 105 changes the power supply combination setting in accordance with the received power supply combination information (step S401). The power supply device control unit 105 notifies the device control unit 106 of information related to the combination of power sources (step S402). The information regarding the combination of power supplies notified in step S402 corresponds to the information acquired in step S104 of FIG. The process of step S401 is a process executed by the power control unit 209 and the setting unit 210. The process in step S402 is a process executed by the setting unit 210.
 サーバーにデバイスが追加された場合に、電源の組み合わせが自動的に変更されることで、サーバーのオペレータ又はユーザは、サーバーの運用状況・サーバーの消費電力量や電源の供給可能電力量などを意識することなくサーバーを運用することができる。サーバーのデバイスがホットプラグで追加され、電源の組み合わせが供給可能電力量に達した場合、例えば特許文献1では、追加されたデバイスの電源は起動できない場合がある。しかし、実施形態に係るサーバー100は、電源の組み合わせが自動的に変更されることで、供給可能電力量を確保し、追加されたデバイスの電源を自動的に起動することができる。サーバーは、電源の組み合わせが自動的に変更されることで、使用していない電源を停止することができ、省電力をはかることもできる。 When a device is added to the server, the combination of power supplies is automatically changed, so that the server operator or user is aware of the server operating status, the amount of power consumed by the server, and the amount of power that can be supplied. The server can be operated without having to When a server device is added by hot plugging and the combination of power sources reaches the suppliable power amount, for example, in Patent Document 1, the power source of the added device may not be activated. However, the server 100 according to the embodiment can automatically supply the power of the added device by securing the amount of power that can be supplied by automatically changing the combination of the power sources. By automatically changing the combination of power sources, the server can stop unused power sources and save power.
 サーバーが搭載しているデバイスにおいて、稼動していないデバイスがあった場合にも、サーバーが自律的にサーバーに電力を供給する電源の数を変更し、デバイスの電源を起動するのが好ましい。この場合、処理はデバイスを追加した場合と同様である。例えば、デバイスXが稼動していない場合、(1)式の追加したデバイスの定格消費電力をPJ+1を、デバイスXの定格消費電力PXに置き換えればよい。デバイスXは、デバイス201-1~201-Jのうちの1つ、又は複数のデバイスである。 Even if there is a device that is not operating among the devices installed in the server, it is preferable that the server autonomously changes the number of power supplies that supply power to the server and starts up the device power. In this case, the processing is the same as when a device is added. For example, if the device X is not running, (1) the P J + 1 the rated power consumption of the added device type, may be replaced with the rated power P X of the device X. The device X is one or a plurality of devices 201-1 to 201-J.
 また、サーバーが稼働中、計算部204は、メモリ201の消費電力データから、所定の期間における消費電力量の最大値を消費電力量PMAXとして計算する。この消費電力量PMAXの値が供給可能電力量に達した場合、サーバーが自律的にサーバーに電力を供給する電源の数を変更する。 In addition, while the server is operating, the calculation unit 204 calculates the maximum power consumption amount during a predetermined period from the power consumption data of the memory 201 as the power consumption amount P MAX . When the power consumption amount P MAX reaches the suppliable power amount, the server autonomously changes the number of power supplies that supply power to the server.
<サーバー起動時の処理>
 サーバーを起動した際、サーバーが消費電力データを保有していないことがありうる。その場合、計算部204は、各デバイスの定格消費電力量を合計し、消費電力量PMAXを計算する。
   PMAX=P1+P2+・・・+PJ・・・(3)式
<Processing at server startup>
When the server is started, the server may not have power consumption data. In that case, the calculation unit 204 sums the rated power consumption of each device to calculate the power consumption P MAX.
P MAX = P 1 + P 2 + ... + P J (3)
 (3)式の消費電力量PMAXは、各デバイス201-1~201-Jの定格消費電力の情報(P1、P2・・・PJ)を合計したものである。このようにすることで、計算部204は、実消費電力を記録した消費電力データがなくとも、消費電力量PMAXを計算することができる。そして、サーバーは、消費電力量以上の電力を供給できる電源の数を決定する。 The power consumption amount P MAX in the expression (3) is the sum of the information (P 1 , P 2 ... P J ) of the rated power consumption of each device 201-1 to 201-J. In this way, the calculation unit 204, without the power consumption data recorded actual power consumption, it is possible to calculate the power consumption P MAX. Then, the server determines the number of power sources that can supply power that is greater than or equal to the power consumption.
 図8は、電源の組み合わせの決定に使用される情報の例である。図8は、電源の組み合わせの例と、電源の組み合わせに対応した供給可能電力量P0(N+M)及び供給可能電力量から算出される閾値を示す。図8の電源の組み合わせは、電源を6台とした場合の例である。供給可能電力量P0(N+M)は、電源の組み合わせがN+Mであるときの供給可能電力量を示している。供給可能電力量P0(N+M)は、電力を供給する電源1台につき2000W(ワット)で計算されている。供給可能電力量から算出される閾値は、決定部207がサーバーの消費電力量PMAX以上の電力を供給できる最小の電源の数を決定する際に使用される値である。閾値は、供給可能電力量P0(N+M)にαをかけたものが使用される。この例では、αは0.8に設定されている。αは、閾値を決定するために使用される値である。αは、1以下であり、ユーザ又はオペレータによって設定されてもよい。図8で示す値は、一例であり、数値を限定するものではない。同様に電源の数を限定するものでもない。また、閾値はサーバーのオペレータやユーザによって直接設定されるものであってもよい。図8の供給可能電力量P0(N+M)は、例えば、図5のステップS106で使用される。また、図8の供給可能電力量から算出される閾値は、例えば、図6のステップS203で使用される。
   P0(N+M)×α≧PMAX・・・(4)式
FIG. 8 is an example of information used for determining a combination of power sources. FIG. 8 shows an example of a combination of power supplies and a threshold value calculated from the suppliable power amount P 0 (N + M) and the suppliable power amount corresponding to the combination of power sources. The combination of power sources in FIG. 8 is an example in the case where six power sources are used. The suppliable power amount P 0 (N + M) indicates the suppliable power amount when the combination of the power sources is N + M. The suppliable power amount P 0 (N + M) is calculated at 2000 W (watts) for each power source that supplies power. The threshold value calculated from the suppliable power amount is a value used when the determination unit 207 determines the minimum number of power sources that can supply power equal to or greater than the power consumption amount P MAX of the server. As the threshold value, a value obtained by multiplying the suppliable power amount P 0 (N + M) by α is used. In this example, α is set to 0.8. α is a value used to determine the threshold. α is 1 or less, and may be set by a user or an operator. The values shown in FIG. 8 are an example and do not limit the numerical values. Similarly, the number of power supplies is not limited. The threshold value may be set directly by an operator or user of the server. The suppliable power amount P 0 (N + M) in FIG. 8 is used, for example, in step S106 in FIG. Further, the threshold value calculated from the suppliable power amount in FIG. 8 is used in, for example, step S203 in FIG.
P 0 (N + M) × α ≧ P MAX (4) formula
 (4)式は、決定部207がサーバーの消費電力量PMAX以上の電力を供給できる最小の電源の数を決定する際に使用される条件式である。 Expression (4) is a conditional expression used when the determination unit 207 determines the minimum number of power sources that can supply power equal to or greater than the power consumption amount P MAX of the server.
 サーバーの消費電力量PMAXが5000Wの場合、サーバーの消費電力量PMAX以上の電力を供給できる電源の組み合わせは、閾値P0(4+M) ×α~P0(6+M) ×αである。決定部207は、消費電力量PMAX以上の電力を供給できる最小の電源の数を決定するため、電力を供給する最小の電源の数は4台となる。 When the power consumption P MAX of the server is 5000 W, the combination of power sources that can supply the power more than the power consumption P MAX of the server is the threshold value P 0 (4 + M) × α to P 0 (6 + M) × α It is. Since the determination unit 207 determines the minimum number of power supplies that can supply power equal to or greater than the power consumption amount P MAX , the minimum number of power supplies that supply power is four.
 図9は、電源の供給可能電力量及び、定格・実消費電力を比較した図の例である。図9の点線は、図3の最適化部104が最適な電源の組み合わせを決定する際に使用される供給可能電力量から算出される閾値P0(N+M)×αを表している。点線は上から、P0(5+1)、P0(4+1)、P0(3+3)又はP0(3+1)、P0(2+2)又はP0(2+1)の閾値P0(N+M)×αを表す。供給可能電力量から算出される閾値P0(N+M)×αのαは1であってもよい。そのため、供給可能電力量から算出される閾値P0(N+M)×αは、供給可能電力量P0(N+M)であってもよい。以下、決定部207がサーバーの消費電力量PMAX以上の電力を供給できる最小の電源の数を決定する際に使用される閾値は、αを1と仮定し、供給可能電力量P0(N+M)とする。サーバーを起動すると、計算部204は、定格消費電力から消費電力量PMAXを計算し、決定部207は、消費電力量以上の電力を供給できる電源の数を決定する。その後、サーバーが稼動状態になると、(2)式に示されるように計算部204は、実消費電力の最大値PRMAXを消費電力量PMAXとして計算し、決定部207は、消費電力量以上の電力を供給できる電源の数を決定する。サーバー起動からサーバー稼働状態までの流れを、図9の例を使用して説明する。サーバーを起動すると計算部204は、定格消費電力から消費電力量PMAXを計算する。図9の定格消費電力量の例は4500Wであり、P0(2+2)又はP0(2+1)の供給可能電力量4000Wを越えている。一方、図9の定格消費電力の例は、P0(3+3)又はP0(3+1)の供給可能電力量である6000Wを越えていない。そのため、サーバーの電源は、P0(3+3)又はP0(3+1)に設定される。サーバーが稼動状態になると計算部204は、実消費電力の最大値PRMAXを消費電力量PMAXとして計算する。図9の実消費電力量の例は3000Wであり、P0(2+2)又はP0(2+1)の供給可能電力量4000Wを越えていない。そのため、サーバーの電源の組み合わせは、P0(2+2)又はP0(2+1)に設定される。この例のように、サーバーの実消費電力が定格消費電力よりも小さいことは多く、サーバー起動時より稼動時のほうがサーバーに電力を供給する電源の数を減らすことができる。 FIG. 9 is an example of a diagram comparing the amount of power that can be supplied by the power supply and the rated and actual power consumption. The dotted line in FIG. 9 represents the threshold value P 0 (N + M) × α calculated from the suppliable power amount used when the optimization unit 104 in FIG. 3 determines the optimal combination of power sources. The dotted line indicates the threshold value P 0 (N + M) × α of P 0 (5 + 1) , P 0 (4 + 1) , P 0 (3 + 3) or P 0 (3 + 1) , P 0 (2 + 2) or P 0 (2 + 1) from the top. To express. The threshold value P 0 (N + M) × α in α calculated from the suppliable power amount may be 1. Therefore, the threshold value P 0 (N + M) × α calculated from the suppliable power amount may be the suppliable power amount P 0 (N + M) . Hereinafter, the threshold used when the determination unit 207 determines the minimum number of power sources that can supply power equal to or higher than the power consumption amount P MAX of the server assumes that α is 1, and the suppliable power amount P 0 (N + M ) . When the server is activated, the calculation unit 204 calculates the power consumption amount P MAX from the rated power consumption, and the determination unit 207 determines the number of power supplies that can supply power that is equal to or higher than the power consumption amount. Thereafter, when the server enters an operating state, the calculation unit 204 calculates the maximum value P RMAX of the actual power consumption as the power consumption P MAX as shown in the equation (2), and the determination unit 207 Determine the number of power supplies that can supply the power. The flow from server activation to server operating state will be described using the example of FIG. When the server is started, the calculation unit 204 calculates the power consumption amount P MAX from the rated power consumption. The example of the rated power consumption in FIG. 9 is 4500 W, which exceeds the suppliable power amount 4000 W of P 0 (2 + 2) or P 0 (2 + 1) . On the other hand, the example of the rated power consumption in FIG. 9 does not exceed 6000 W, which is the suppliable power amount of P 0 (3 + 3) or P 0 (3 + 1) . Therefore, the power supply of the server is set to P 0 (3 + 3) or P 0 (3 + 1) . When the server enters the operating state, the calculation unit 204 calculates the maximum value P RMAX of the actual power consumption as the power consumption P MAX . The example of the actual power consumption in FIG. 9 is 3000 W, and does not exceed the supplyable power amount 4000 W of P 0 (2 + 2) or P 0 (2 + 1) . Therefore, the combination of the server power sources is set to P 0 (2 + 2) or P 0 (2 + 1) . As in this example, the actual power consumption of the server is often smaller than the rated power consumption, and the number of power supplies that supply power to the server can be reduced during operation rather than when the server is started.
 判定部208は、決定部207が決定した電源の数を電源の組み合わせのサーバーに電力を供給する電源の数とし、また、ユーザが設定する優先順位に従って補助電源の数を判定する。次に、サーバー全体での消費電力量PMAXが5000Wと算出され、N+Nの電源の組み合わせが優先されるように優先順位が設定されている場合の例を示す。消費電力量PMAXが5000Wの例では、P0(2+2)又はP0(2+1)の供給可能電力量4000Wを越えている。一方、消費電力量PMAXが5000Wの例は、P0(3+3)又はP0(3+1)の供給可能電力量である6000Wを越えていない。そのため、サーバーの電源は、P0(3+3)又はP0(3+1)に設定される。ここで、電源の組み合わせは、N+Nの電源の組み合わせが優先されるように優先順位が設定されているため、3+3の電源の組み合わせが選択される。また、消費電力量PMAXが5000Wの例において、N+1の電源の組み合わせが優先されるように優先順位が設定されている場合は、3+1の冗長構成が選択される。なお、電力制御部209は、使用されない2台の電源を省電力のために停止させる。 The determination unit 208 sets the number of power sources determined by the determination unit 207 as the number of power sources that supply power to the server of the combination of power sources, and determines the number of auxiliary power sources according to the priority order set by the user. Next, an example of a case where the power consumption P MAX of the entire server is calculated to 5000 W, a combination of the power of the N + N is set priority as the priority. In the example in which the power consumption P MAX is 5000 W, the supplyable power amount 4000 W of P 0 (2 + 2) or P 0 (2 + 1) is exceeded. On the other hand, the example in which the power consumption amount P MAX is 5000 W does not exceed 6000 W that is the suppliable power amount of P 0 (3 + 3) or P 0 (3 + 1) . Therefore, the power supply of the server is set to P 0 (3 + 3) or P 0 (3 + 1) . Here, the power supply combinations are set so that the N + N power supply combinations are prioritized, so the 3 + 3 power supply combinations are selected. Further, in the example where the power consumption P MAX is 5000 W, when the priority order is set so that the combination of N + 1 power supplies is given priority, the 3 + 1 redundant configuration is selected. The power control unit 209 stops two power supplies that are not used for power saving.
 図10は、サーバー起動時のサーバー100の処理の例を説明するフローチャートである。サーバーを起動した場合、デバイス制御部106は、各デバイスの消費電力の情報を取得する(ステップS501)。デバイス制御部106は、サーバー全体での消費電力量PMAXを計算する(ステップS502)。サーバー100は、サーバー全体での消費電力量PMAXの情報を最適化部104に通知し、電源の組み合わせを変更する。(ステップS503)。デバイス制御部106は、電源装置制御部105から供給可能電力量に関する情報を取得する(ステップS504)。デバイス制御部106は、サーバー全体での消費電力量PMAXが電源の組み合わせの供給可能電力量よりも小さいか判断する(ステップS505)。デバイス制御部106は、各デバイス201-1~201-Jの電源を投入する(ステップS505でYES、ステップS506)。サーバーは、稼動状態に入り、処理を図11に移す。一方、デバイス制御部106は、デバイスXの電源投入を抑止するよう設定する(ステップS505でNO、ステップS507)。デバイスXは、デバイス201-1~201-Jの何れかであり、複数のデバイスであってもよい。サーバー全体での消費電力量PMAXから、電源投入を抑止するよう設定されたデバイスXの定格消費電力PXを引いた値を求め、サーバー全体での消費電力量PMAXとする(ステップS508)。ステップS508の処理が実行されると、ステップS503から処理が繰り返される。ユーザインターフェース301によってサーバーの設定情報として、各デバイス201-1~201-Jに優先順位を設定させ、デバイスXを決定されるようにしてもよい。ステップS507で、デバイスXの電源投入を抑止設定しているものの、この処理は、一時的な対応である。その後、サーバーが稼働中の状態になると、サーバーは、稼働中に対応した処理を実行し、デバイスXを起動できるかを判断し、起動できるようであれば起動する。S505で使用される供給可能電力量は、供給可能電力量から算出される閾値を使用してもよい。ステップS501~S503の処理は、計算部204が実行する処理である。また、ステップS504~S508の処理は、デバイス電源制御部205が実行する処理である。 FIG. 10 is a flowchart for explaining an example of processing of the server 100 at server startup. When the server is activated, the device control unit 106 acquires information on the power consumption of each device (step S501). The device control unit 106 calculates the power consumption P MAX for the entire server (step S502). The server 100 notifies the optimization unit 104 of information about the power consumption P MAX for the entire server, and changes the combination of power sources. (Step S503). The device control unit 106 acquires information related to the suppliable power amount from the power supply device control unit 105 (step S504). The device control unit 106, the power consumption P MAX of the entire server is less than or judges than the supply power amount of a combination of power (step S505). The device control unit 106 turns on the power of each of the devices 201-1 to 201-J (YES in step S505, step S506). The server enters the operating state and moves the process to FIG. On the other hand, the device control unit 106 performs setting so as to suppress the power-on of the device X (NO in step S505, step S507). The device X is any one of the devices 201-1 to 201-J, and may be a plurality of devices. From power consumption P MAX of the entire server, obtains a value obtained by subtracting the rated power P X set devices X to suppress power-on, the power consumption P MAX of the entire server (step S508) . When the process of step S508 is executed, the process is repeated from step S503. The user interface 301 may determine the device X by setting the priority order of the devices 201-1 to 201-J as server setting information. Although the power-on of the device X is set to be suppressed in step S507, this process is a temporary response. Thereafter, when the server is in an operating state, the server executes a process corresponding to the operating state, determines whether the device X can be started, and starts up if it can be started. The supplyable power amount used in S505 may use a threshold value calculated from the supplyable power amount. The processes in steps S501 to S503 are processes executed by the calculation unit 204. Further, the processing in steps S504 to S508 is processing executed by the device power supply control unit 205.
 図11は、サーバー稼働中のサーバー100の処理の例を説明するフローチャートである。このフローチャートは、図10のステップS506の後の処理である。デバイス制御部106は、実消費電力量PRを監視する(ステップS601)。 FIG. 11 is a flowchart illustrating an example of processing of the server 100 during server operation. This flowchart is processing after step S506 in FIG. The device control unit 106 monitors the actual power consumption P R (step S601).
 デバイス制御部106は、実消費電力量PRの情報を消費電力のデータとして保存する(ステップS602)。デバイス制御部106は、設定した期間の消費電力のデータがあるかを判断する(ステップS603)。設定した期間の消費電力のデータがない場合(ステップS603でNO)、ステップS601から処理が繰り返される。 The device control unit 106 stores the information of the actual power consumption P R as the data of the power consumption (step S602). The device control unit 106 determines whether there is power consumption data for the set period (step S603). If there is no power consumption data for the set period (NO in step S603), the process is repeated from step S601.
 デバイス制御部106は、消費電力のデータから実消費電力の最大値PRMAXを取得する(ステップS604)。デバイス制御部106は、消費電力量PMAXと実消費電力の最大値PRMAXとを比較して同じ値かどうかを判断する(ステップS605)。消費電力量PMAXと実消費電力の最大値PRMAXとが同じ値であった場合(ステップS605でYES)、ステップS601から処理が繰り返される。デバイス制御部106は、消費電力量PMAXに実消費電力の最大値PRMAXを設定する(ステップS605でNO、ステップS606)。 The device control unit 106 acquires the maximum value P RMAX of actual power consumption from the power consumption data (step S604). The device control unit 106 compares the power consumption amount P MAX and the actual power consumption maximum value P RMAX to determine whether or not they are the same value (step S605). When the power consumption amount P MAX and the actual power consumption maximum value PRMAX are the same value (YES in step S605), the processing is repeated from step S601. The device control unit 106 sets the actual power consumption maximum value P RMAX to the power consumption amount P MAX (NO in step S605, step S606).
 デバイス制御部106は、電源投入を抑止されたデバイスXがあるかを判断する(ステップS607)。サーバー100は、サーバー全体での消費電力量PMAXの情報を最適化部104に通知し、電源の組み合わせを変更する。(ステップS607でNO、ステップS613)。ステップS613の処理が実行されると、ステップS601から処理が繰り返される。 The device control unit 106 determines whether there is a device X whose power-on is inhibited (step S607). The server 100 notifies the optimization unit 104 of information about the power consumption P MAX for the entire server, and changes the combination of power sources. (NO in step S607, step S613). When the process of step S613 is executed, the process is repeated from step S601.
 デバイス制御部106は、消費電力量PMAXに定格消費電力PXを加えた値を新たに消費電力量PMAXとして設定する(ステップS607でYES、ステップS608)。サーバー100は、サーバー全体での消費電力量PMAXの情報を最適化部104に通知し、電源の組み合わせを変更する。(ステップS609)。 The device control unit 106 newly sets the power consumption P MAX value obtained by adding the rated power P X to the power consumption P MAX (YES in step S607, the step S608). The server 100 notifies the optimization unit 104 of information about the power consumption P MAX for the entire server, and changes the combination of power sources. (Step S609).
 デバイス制御部106は、電源装置制御部105から供給可能電力量に関する情報を取得する(ステップS610)。 The device control unit 106 acquires information on the amount of power that can be supplied from the power supply device control unit 105 (step S610).
 デバイス制御部106は、サーバー全体での消費電力量PMAXが電源の組み合わせの供給可能電力量よりも小さいか判断する(ステップS611)。サーバー全体での消費電力量PMAXが、電源の組み合わせの供給可能電力量よりも大きい場合(ステップS611でNO)、ステップS601から処理が繰り返される。 The device control unit 106, the power consumption P MAX of the entire server is less than or judges than the supply power amount of a combination of power (step S611). If the power consumption amount P MAX of the entire server is larger than the suppliable power amount of the combination of power sources (NO in step S611), the processing is repeated from step S601.
 デバイス制御部106は、デバイスXの電源を投入する(ステップS611でYES、ステップS612)。ステップS612の処理が実行されると、処理はステップS607から処理を繰り返す。S611で使用される供給可能電力量は、供給可能電力量から算出される閾値を使用してもよい。ステップS613の処理は、ステップS607の判断処理によって稼動していないコンポーネントXがない場合の処理である。サーバー起動時に、ステップS503は、定格消費電力以上の電力を供給できる最小の電源の数の電源の組み合わせが設定する。 The device control unit 106 powers on the device X (YES in step S611, step S612). When the process of step S612 is executed, the process repeats the process from step S607. As the suppliable power amount used in S611, a threshold value calculated from the suppliable power amount may be used. The process of step S613 is a process when there is no component X that is not operating by the determination process of step S607. At the time of server startup, step S503 sets a combination of power sources that is the minimum number of power sources that can supply power that exceeds the rated power consumption.
 サーバーが稼働状態になると、ステップS613は、実消費電力の最大値PRMAX以上の電力を供給できる最小の電源の数の電源の組み合わせを設定する。サーバーは、実消費電力が定格消費電力よりも小さいことが多い。そのため、電力の供給が過多である場合に、ステップS613は、電力を供給する電源の数を減らし、省電力を図ることができる。 When the server is in an operating state, step S613 sets a combination of power sources with the minimum number of power sources that can supply power equal to or greater than the maximum value P RMAX of actual power consumption. Servers often have lower actual power consumption than rated power consumption. Therefore, when the supply of power is excessive, step S613 can reduce the number of power supplies that supply power, thereby saving power.
 一方、定期的にステップS613は、実消費電力の最大値PRMAX以上の電力を供給できる最小の電源の数の電源の組み合わせを設定する。例えば、サーバーを利用するユーザが増え、サーバーの使用が増えた場合、実消費電力の最大値PRMAXも増える。 On the other hand, regularly step S613 sets a combination of the minimum number of power source capable of supplying a maximum value P RMAX more power actual power. For example, when the number of users who use the server increases and the use of the server increases, the maximum value P RMAX of actual power consumption also increases.
 すると、電力の供給が不足することが起こりうる。ステップS613は、増加した実消費電力の最大値PRMAX以上の電力を供給できる最小の数の電源の組み合わせを設定することで、サーバーの使用状況にあわせて電力を供給することができる。 Then, it may happen that power supply is insufficient. In step S613, by setting a combination of the minimum number of power sources that can supply power that is equal to or greater than the increased actual power consumption maximum value P RMAX , power can be supplied in accordance with the usage status of the server.
 ステップS601~S603の処理は、消費電力記録部203が実行する処理である。ステップS604~S609及びステップS613の処理は、計算部204が実行する処理である。また、ステップS610~S612の処理は、デバイス電源制御部205が実行する処理である。 The processing of steps S601 to S603 is processing executed by the power consumption recording unit 203. The processes in steps S604 to S609 and step S613 are processes executed by the calculation unit 204. Further, the processing of steps S610 to S612 is processing executed by the device power supply control unit 205.
 このように、サーバー起動時に定格消費電力によって電源の組み合わせを決定し、供給可能電力よりも定格消費電力が大きい場合、デバイスXが一時的に抑止される。その後、サーバーが稼働中の状態になると、サーバーの実消費電力の最大値から電源の組み合わせを決定する。サーバーは、実消費電力が定格消費電力よりも小さいことが多い。そのため、実消費電力とデバイスXの定格消費電力を加算した値よりも供給可能電力量が大きい場合は、デバイスXの電源を投入することができる。 As described above, when the combination of power sources is determined based on the rated power consumption at the time of starting the server, and the rated power consumption is larger than the suppliable power, the device X is temporarily suppressed. Thereafter, when the server is in operation, the combination of power sources is determined from the maximum value of the actual power consumption of the server. Servers often have lower actual power consumption than rated power consumption. Therefore, when the suppliable power amount is larger than the value obtained by adding the actual power consumption and the rated power consumption of the device X, the power of the device X can be turned on.
 以上、説明したように、実施形態にかかる方法では、サーバーのオペレータ又はユーザは、サーバーの運用状況、サーバーの消費電力量と電源の供給電力量とを意識することなくサーバー運用をすることができる。 As described above, in the method according to the embodiment, the server operator or the user can operate the server without being aware of the operation status of the server, the power consumption amount of the server, and the power supply amount of power. .
 また、サーバーが搭載する電源の内で、最適な電源の組み合わせを選択し、電源が投入されていないデバイスがあった場合にも、デバイスを起動することができる。稼動していないデバイスがある場合に、サーバーは、電源の組み合わせが自動的に変更することで、供給可能電力量を確保し、稼動していないデバイスの電源を起動することができる。サーバーは、電源の組み合わせが自動的に変更されることで、使用していない電源を停止することができ、省電力をはかることもできる。 In addition, it is possible to start the device even when there is a device that is not turned on by selecting the optimal combination of the power sources among the power sources installed in the server. When there is a device that is not in operation, the server can automatically change the combination of the power sources to ensure the amount of power that can be supplied and start the power source of the device that is not in operation. By automatically changing the combination of power sources, the server can stop unused power sources and save power.
 なお、実施形態は上記に限られるものではなく、様々に変形可能である。以下にその例をいくつか述べる。 Note that the embodiment is not limited to the above, and can be variously modified. Some examples are described below.
 サーバーは、前回稼動していた際のデバイスの各種情報とサーバーの消費電力量P´ MAXの情報とを保存していてもよい。サーバーを起動する際に、前回稼動していた際のデバイスの各種情報と、現状のデバイスの各種情報とを比較し、デバイスが新たに追加・削除されていなければ、消費電力量PMAXにサーバーの消費電力量P´ MAXを設定する。処理は、計算部204で実行される。
   PMAX=P´ MAX・・・(5)式
The server may store various information about the device that was operating last time and information about the power consumption P MAX of the server. When starting the server, compare the various information of the device that was operating last time with the various information of the current device, and if the device has not been newly added or deleted, the server will use the power consumption P MAX . Set the power consumption P MAX . The process is executed by the calculation unit 204.
P MAX = P ' MAX (5) formula
 計算部204は、(5)式のように設定することで、サーバーを起動する際にも実消費電力量から消費電力量PMAXを計算することができ、決定部207は、消費電力量PMAX以上の電力を供給できる最小の電源の数を決定することができる。また、電源の組み合わせを変更しようとする処理の回数を減らすこともできる。サーバーは、前回稼動していた際のデバイスの各種情報とサーバーの消費電力量P´ MAXの情報とを、サーバーを再起動又は電源を切る際に保存してもよく、定期的に保存するようにしてもよい。 The calculation unit 204 can calculate the power consumption amount P MAX from the actual power consumption amount even when starting the server by setting as in the equation (5), and the determination unit 207 determines the power consumption amount P The minimum number of power supplies capable of supplying more than MAX power can be determined. In addition, the number of processes for changing the combination of power supplies can be reduced. Server may be stored and various information and the amount of power consumption P 'MAX of the server information of the device when was the last time running, when to turn off the restart or power the server, to periodically save It may be.
 メモリ201は、消費電力のデータを有効または無効にする設定を有してもよい。消費電力のデータを有効にした場合は、サーバーは、図5、図6、図7、図10、図11の処理を実行する。一方、消費電力のデータを無効にした場合は、図6,図7、図10の処理を実行する。 The memory 201 may have a setting for enabling or disabling power consumption data. When the power consumption data is validated, the server executes the processes in FIGS. 5, 6, 7, 10, and 11. On the other hand, when the power consumption data is invalidated, the processes of FIGS. 6, 7 and 10 are executed.
 メモリ201に保存されたイベントは、SNMP(Simple Network Management Protocol)トラップ、メールなどでユーザ又はオペレータに通報されてもよい。
 メモリ201は、発生したイベントの通知方法を決定する設定を有してもよい。
 オペレータは、オペレータ端末202からメモリ201にアクセスし、イベントを確認することができる。ユーザ又はオペレータは、電源の組み合わせが変更されたことを確認することができ、又、デバイスの起動状況を確認することができる。
The event stored in the memory 201 may be notified to the user or the operator by an SNMP (Simple Network Management Protocol) trap, mail, or the like.
The memory 201 may have a setting for determining a notification method for an event that has occurred.
The operator can access the memory 201 from the operator terminal 202 and confirm the event. The user or operator can confirm that the combination of the power sources has been changed, and can confirm the activation status of the device.
 (2)式に記載のように、計算部204は、メモリ201の消費電力データから、所定の期間における消費電力量の最大値を消費電力量PMAXとして計算する。消費電力量の最大値は、消費電力データ中の相対的に大きい値であればよい。また、最大値から更に余裕を見て、消費電力量PMAXは、最大値に余裕値を加算した値であってもよい。 As described in equation (2), the calculation unit 204 calculates the maximum power consumption amount during a predetermined period from the power consumption data of the memory 201 as the power consumption amount P MAX . The maximum value of power consumption may be a relatively large value in the power consumption data. Further, the power consumption P MAX may be a value obtained by adding the margin value to the maximum value, with further margin from the maximum value.
 100   サーバー
 101   管理デバイス
 101-1~101-2   管理デバイス
 102-1~102-J   デバイス
 103-a~103―d、103-1~103―I   電源
 104   最適化部
 105   電源装置制御部
 106   デバイス制御部
 201   メモリ
 202   オペレータ端末
 203   消費電力記録部
 204   計算部
 205   デバイス電源制御部
 206   取得部
 207   決定部
 208   判定部
 209   電力制御部
 210   設定部
 211   通知部
 212   算出部
100 server 101 management device 101-1 to 101-2 management device 102-1 to 102-J device 103-a to 103-d, 103-1 to 103-I power supply 104 optimization unit 105 power supply control unit 106 device control Unit 201 memory 202 operator terminal 203 power consumption recording unit 204 calculation unit 205 device power supply control unit 206 acquisition unit 207 determination unit 208 determination unit 209 power control unit 210 setting unit 211 notification unit 212 calculation unit

Claims (18)

  1.  サーバーに電力を供給する電源の数を制御する電源制御装置であって、
     前記サーバーに接続された稼動中のデバイスの実際の消費電力量と稼動前のデバイスの定格消費電力量とを加算することにより、前記サーバーの総消費電力量を計算する計算部と、
     前記総消費電力量と電源が供給できる電力量とを比較し、前記総消費電力量以上の電力を供給できる最小の電源の数を決定する決定部と、
     決定された前記電源の数に対応して電源に電力を供給させる電力制御部と、
     前記サーバーに供給される電力が前記総消費電力量に達した場合、前記稼動前のデバイスを稼動させるデバイス電源制御部とを有する
    ことを特徴とする電源制御装置。
    A power control device that controls the number of power supplies that supply power to a server,
    A calculation unit for calculating the total power consumption of the server by adding the actual power consumption of the active device connected to the server and the rated power consumption of the device before the operation;
    A determination unit that compares the total power consumption and the amount of power that can be supplied by a power source, and determines the minimum number of power sources that can supply power equal to or greater than the total power consumption;
    A power control unit for supplying power to the power supply corresponding to the determined number of power supplies;
    And a device power control unit configured to operate the device before the operation when the power supplied to the server reaches the total power consumption.
  2.  前記電力制御部によって電源が投入されていない電源を、電力を供給している電源の補助として使用する、又は、省電力のために電源を落としたままにすることを特徴とする請求項1記載の電源制御装置。 2. The power source that is not turned on by the power control unit is used as an auxiliary to the power source that is supplying power, or the power source is kept down for power saving. Power supply control device.
  3.  電力を供給している電源の補助として使用する電源の数が多い設定を優先することを特徴とする請求項1又は2記載の電源制御装置。 3. The power control apparatus according to claim 1, wherein priority is given to a setting having a large number of power supplies used as an auxiliary to a power supply that supplies power.
  4.  前記稼働中のデバイスの実際の消費電力量は、所定の期間でサーバーが実際に消費した消費電力量のうち、相対的に大きい値であることを特徴とする請求項1~3の何れかに記載の電源制御装置。 4. The actual power consumption of the operating device is a relatively large value of the power consumption actually consumed by the server in a predetermined period. The power supply control device described.
  5.  前記計算部は、前記サーバーを起動する際に、前記サーバーが搭載しているデバイスの定格消費電力量を全て合算した値を、前記サーバーの総消費電力量とすることを特徴とする請求項1~4の何れかに記載の電源制御装置。 2. The calculation unit, when starting up the server, sets a value obtained by adding all rated power consumptions of devices mounted on the server as a total power consumption of the server. 5. The power supply control device according to any one of 4 to 4.
  6.  前記計算部は、サーバーをシャットダウンする際に、稼動時の消費電力量を保存しておき、サーバーを起動する際に、前記稼動時の消費電力量を前記サーバーの総消費電力量として設定することを特徴とする請求項5記載の電源制御装置。 The calculation unit stores power consumption during operation when the server is shut down, and sets the power consumption during operation as the total power consumption of the server when the server is started. The power supply control device according to claim 5.
  7.  サーバーに電力を供給する電源の数を制御する電源制御プログラムであって、
     前記サーバーに接続された稼動中のデバイスの実際の消費電力量と稼動前のデバイスの定格消費電力量とを加算することにより、前記サーバーの総消費電力量を計算し、
     前記総消費電力量と電源が供給できる電力量とを比較し、前記総消費電力量以上の電力を供給できる最小の電源の数を決定し、
     決定された前記電源の数に対応して電源に電力を供給させ、
     前記サーバーに供給される電力が前記総消費電力量に達した場合、前記稼動前のデバイスを稼動させる
    処理を前記サーバーに行わせることを特徴とする電源制御プログラム。
    A power supply control program for controlling the number of power supplies that supply power to a server,
    Calculate the total power consumption of the server by adding the actual power consumption of the active device connected to the server and the rated power consumption of the device before the operation,
    Comparing the total power consumption and the amount of power that can be supplied by a power source, and determining the minimum number of power sources that can supply power equal to or greater than the total power consumption amount,
    Power is supplied to the power supply corresponding to the determined number of the power supplies,
    When the power supplied to the server reaches the total power consumption, the server controls the server to perform a process for operating the device before the operation.
  8.  電源が投入されていない電源を、電力を供給している電源の補助として使用する、又は、省電力のために電源を落としたままにすることを特徴とする請求項7記載の電源制御プログラム。 The power supply control program according to claim 7, wherein a power supply that is not turned on is used as an auxiliary to the power supply that supplies power, or the power supply is kept turned off for power saving.
  9.  電力を供給している電源の補助として使用する電源の数が多い設定を優先することを特徴とする請求項7又は8記載の電源制御プログラム。 9. The power supply control program according to claim 7, wherein priority is given to a setting with a large number of power supplies used as an auxiliary to a power supply that supplies power.
  10.  前記稼働中のデバイスの実際の消費電力量は、所定の期間でサーバーが実際に消費した消費電力量のうち、相対的に大きい値であることを特徴とする請求項7~9の何れかに記載の電源制御プログラム。 10. The actual power consumption amount of the active device is a relatively large value among the power consumption amounts actually consumed by the server in a predetermined period. The power supply control program described.
  11.  前記サーバーを起動する際に、前記サーバーが搭載しているデバイスの定格消費電力量を全て合算した値を、前記サーバーの総消費電力量とすることを特徴とする請求項7~10の何れかに記載の電源制御プログラム。 11. The total power consumption of the server is a value obtained by adding all the rated power consumptions of devices mounted on the server when the server is started. The power supply control program described in 1.
  12.  サーバーをシャットダウンする際に、稼動時の消費電力量を保存しておき、サーバーを起動する際に、前記稼動時の消費電力量を前記サーバーの総消費電力量として設定することを特徴とする請求項11記載の電源制御プログラム。 The power consumption during operation is stored when the server is shut down, and the power consumption during operation is set as the total power consumption of the server when the server is started. Item 12. The power supply control program according to Item 11.
  13.  サーバーに接続された稼動中のデバイスの実際の消費電力量と稼動前のデバイスの定格消費電力量とを加算することにより、前記サーバーの総消費電力量を計算し、
     前記総消費電力量と電源が供給できる電力量とを比較し、前記総消費電力量以上の電力を供給できる最小の電源の数を決定し、
     決定された前記電源の数に対応して電源に電力を供給させ、
     前記サーバーに供給される電力が前記総消費電力量に達した場合、前記稼動前のデバイスを稼動させる
    処理を前記サーバーに行わせることを特徴とする電源制御方法。
    Calculate the total power consumption of the server by adding the actual power consumption of the active device connected to the server and the rated power consumption of the device before operation.
    Comparing the total power consumption and the amount of power that can be supplied by a power source, and determining the minimum number of power sources that can supply power equal to or greater than the total power consumption amount,
    Power is supplied to the power supply corresponding to the determined number of the power supplies,
    A power control method characterized in that when the power supplied to the server reaches the total power consumption, the server performs processing for operating the device before the operation.
  14.  電源が投入されていない電源を、電力を供給している電源の補助として使用する、又は、省電力のために電源を落としたままにすることを特徴とする請求項13記載の電源制御方法。 14. The power supply control method according to claim 13, wherein a power supply that is not turned on is used as an auxiliary to a power supply that supplies power, or the power supply is kept down for power saving.
  15.  電力を供給している電源の補助として使用する電源の数が多い設定を優先することを特徴とする請求項13又は14記載の電源制御方法。 The power control method according to claim 13 or 14, wherein priority is given to a setting with a large number of power supplies used as an auxiliary to a power supply that supplies power.
  16.  前記稼働中のデバイスの実際の消費電力量は、所定の期間でサーバーが実際に消費した消費電力量のうち、相対的に大きい値であることを特徴とする請求項13~15の何れかに記載の電源制御方法。 16. The actual power consumption of the operating device is a relatively large value among the power consumption actually consumed by the server in a predetermined period. The power supply control method described.
  17.  前記サーバーを起動する際に、前記サーバーが搭載しているデバイスの定格消費電力量を全て合算した値を、前記サーバーの総消費電力量とすることを特徴とする請求項13~16の何れかに記載の電源制御方法。 The total power consumption of the server is a value obtained by adding all the rated power consumptions of devices mounted on the server when the server is started. The power supply control method described in 1.
  18.  サーバーをシャットダウンする際に、稼動時の消費電力量を保存しておき、サーバーを起動する際に、前記稼動時の消費電力量を前記サーバーの総消費電力量として設定することを特徴とする請求項17記載の電源制御方法。 The power consumption during operation is stored when the server is shut down, and the power consumption during operation is set as the total power consumption of the server when the server is started. Item 18. The power supply control method according to Item 17.
PCT/JP2013/057671 2013-03-18 2013-03-18 Power source control device, power source control program, and power source control method WO2014147708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057671 WO2014147708A1 (en) 2013-03-18 2013-03-18 Power source control device, power source control program, and power source control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057671 WO2014147708A1 (en) 2013-03-18 2013-03-18 Power source control device, power source control program, and power source control method

Publications (1)

Publication Number Publication Date
WO2014147708A1 true WO2014147708A1 (en) 2014-09-25

Family

ID=51579445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057671 WO2014147708A1 (en) 2013-03-18 2013-03-18 Power source control device, power source control program, and power source control method

Country Status (1)

Country Link
WO (1) WO2014147708A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764679A (en) * 1993-08-27 1995-03-10 Toshiba Corp Power source capacity informing method
JPH09204240A (en) * 1996-01-24 1997-08-05 Fujitsu Ltd Power supplying device
JP2010128804A (en) * 2008-11-27 2010-06-10 Nec Corp Method for controlling power of a plurality of power supply units, and power control device, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764679A (en) * 1993-08-27 1995-03-10 Toshiba Corp Power source capacity informing method
JPH09204240A (en) * 1996-01-24 1997-08-05 Fujitsu Ltd Power supplying device
JP2010128804A (en) * 2008-11-27 2010-06-10 Nec Corp Method for controlling power of a plurality of power supply units, and power control device, and program

Similar Documents

Publication Publication Date Title
US7779276B2 (en) Power management in a power-constrained processing system
US8390148B2 (en) Systems and methods for power supply wear leveling in a blade server chassis
US7529949B1 (en) Heterogeneous power supply management system
US9047360B2 (en) Apparatus and method for controlling a computer system with at least two power supply units
US9223394B2 (en) Rack and power control method thereof
US8041970B2 (en) Cluster system with reduced power consumption and power management method thereof
JP2007213167A (en) Power control program, server system, and power control method
EP3069431B1 (en) Uninterruptible power supply control
WO2010050041A1 (en) Computer system
US20080155284A1 (en) Power consumption adjusting apparatus and processing method
US10725875B2 (en) Server system, server device and power supply recovery method therefor
US9929592B2 (en) UPS sensitivity of power status parameter adjustment setting method
JP4920995B2 (en) Computer system
WO2016082433A1 (en) Mainframe power management method, apparatus and mainframe system
US10230263B2 (en) Adaptive power availability controller
JP2010181996A (en) Power supply unit and power supply method
JP5050558B2 (en) Power supply system, power supply unit thereof, and power efficiency improvement method
JP6402658B2 (en) Power supply control system and power supply control method
JP2011221724A (en) Information processing system and information processing method
US9991703B1 (en) Dual wall input for network attached storage device
JP2007068321A (en) Uninterruptible power supply system
JP5626884B2 (en) Power supply management system and power supply management method
JP2015050913A (en) Power control system
US8504851B2 (en) Electronic device having power consumption adjusting feature
WO2014147708A1 (en) Power source control device, power source control program, and power source control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP