WO2014146991A1 - Invert emulsion treatment fluids - Google Patents

Invert emulsion treatment fluids Download PDF

Info

Publication number
WO2014146991A1
WO2014146991A1 PCT/EP2014/055192 EP2014055192W WO2014146991A1 WO 2014146991 A1 WO2014146991 A1 WO 2014146991A1 EP 2014055192 W EP2014055192 W EP 2014055192W WO 2014146991 A1 WO2014146991 A1 WO 2014146991A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
oil
acid
invert emulsion
treatment fluid
Prior art date
Application number
PCT/EP2014/055192
Other languages
French (fr)
Inventor
Lycia BERTANI
Luigi Merli
Pierangelo Pirovano
Franco Federici
Thierry Bossi
Giovanni Floridi
Giuseppe Li Bassi
Original Assignee
Lamberti Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lamberti Spa filed Critical Lamberti Spa
Publication of WO2014146991A1 publication Critical patent/WO2014146991A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/32Non-aqueous well-drilling compositions, e.g. oil-based
    • C09K8/36Water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/502Oil-based compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • C09K8/565Oil-based compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/82Oil-based compositions

Definitions

  • the present invention relates to subterranean treatment fluids with improved stability and environmental compatibility based on high internal phase ratio (HIPR) invert emulsions, to their use in subterranean applications. More particularly, the treatment fluids comprise the combination of an ester and an oil soluble acrylic copolymer as emulsion stabilizer.
  • HIPR high internal phase ratio
  • the present invention further relates to a method for subterranean treatments comprising :
  • Emulsions usually comprise two immiscible phases : a continuous (or external) phase and a discontinuous (or internal) phase, the discontinuous phase usually being a liquid dispersed in droplets in the continuous phase.
  • Oil-in-water emulsions usually include a fluid that is at least partially immiscible in oil (an aqueous-based fluid) as the continuous phase and an oil phase as the discontinuous phase.
  • Water- in -oil emulsions are the opposite, having the oil phase as the continuous phase and a fluid that is at least partially immiscible in the oil phase (usually an aqueous-based fluid) as the discontinuous phase.
  • Water- in -oil emulsions are also referred to as invert emulsions. Both kinds of emulsions have been used widely in oil and gas applications, for instance, for drilling and other subterranean treatment applications.
  • Oil based drilling fluids or muds are generally used in the form of invert emulsions, that are preferred when the formation is remarkably sensitive to contact with water and they usually guarantee better lubrication of the drill strings and downhole tools, thinner filter cake formation and better thermal resistance and hole stability, especially for water sensitive formations.
  • the oil phase/aqueous phase ratio of invert emulsion fluids is traditionally in the range of 55/45 to 85/ 15 v/v.
  • Inverse high internal phase ratio emulsions i .e. systems possessing a larger volume of internal aqueous phase (> 50% in volume), are highly preferred because of the significant reduction of the oil phase, with its associated costs and possible environmental concern for waste and disposal .
  • Emulsions are generally stabilized by addition of one or more emulsion stabilizing agents.
  • the main stabilizing agents also referred to as emulsifiers, decrease the interfacial tension between water and oil phases, usually forming an interracial film, thus preventing the droplets coalescence, phase separation and the compromising of the emulsion performance.
  • additives like co-emulsifiers, salts, viscosifiers or rheology modifiers.
  • the emulsifiers that are traditionally used in OBMs have surfactant-character, comprising a hydrophobic portion and a hydrophilic portion, while amine modified bentonites are often used to thicken the oil phase, thus stabilizing the emulsion.
  • surfactant-character comprising a hydrophobic portion and a hydrophilic portion
  • amine modified bentonites are often used to thicken the oil phase, thus stabilizing the emulsion.
  • these solid rheology modifiers and the commonly used emulsifiers are under observation in some areas due to environmental concerns.
  • drilling fluids lacking organophilic clays are considered to contribute to superior performances of the fluids.
  • the copolymers a re substantially uncross-linked copolymers formed from 80- 100% by weight of hydrophobic monomers, 0-20 % by weight (wt) of hydrophilic monomers and in which at least 25 % wt of the monomers a re both polar and hydrophobic and not more than 30% wt of the monomers a re hydrophobic aromatic hydrocarbon monomers.
  • US 2004/0043905 describes the use of a polymer from 2- ethylhexylacrylate/acrylic (99/1), prepared as described in US 4,670,501, to enhance the suspension characteristics of a drilling fluid devoid of organophilic clays.
  • the drilling fluid may comprise one or more emulsifier, but nothing is said about the importance or the chemical nature of this emulsifier and nothing is said about the possibility of using this polymer in HIPR invert emulsion drilling fluid .
  • US 2011/0257051 describes a consolidating fluid comprising a tackifying agent that can also be prepared according to US 4,670,501 and an emulsifying agent that comprises at least one cationic or amphoteric surfactant.
  • WO 2011/037954 discloses an HIPR invert emulsion treatment fluid characterized by the presence of an alkoxylated ether acid as emulsifier. Although the presence of viscosifiers and/or emulsion stabilizer like organophilic clays or oil soluble polymers is described, conventional emulsifiers (SUREMUL® available from M -I L. L.C. Houston, Texas) are used to demonstrate the impossibility to form stable and manageable HIPR invert emulsion drilling fluids.
  • SUREMUL® available from M -I L. L.C. Houston, Texas
  • an invert emulsion subterranean treatment fluid comprising:
  • emulsifier from 0.5 to 10 % by weight of an ester obtained by reaction of a linear or branched, saturated or unsaturated, C 6 -C 2 4 a liphatic monocarboxylic acid with a linear or branched, C 4 -Ci 2 aliphatic polyol having from 4 to 7 hydroxyls (n), with a degree of esterification comprised between 1 and n-n/4; d) as rheology modifier, from 0.
  • oil phase/aqueous phase ratio by volume is in the range of from 50/50 to 20/80, preferably from 45/55 to 30/70.
  • the present invention relates to a method for subterranean treatments comprising :
  • degree of esterification of the ester of the invention we mean the molar ratio between the monoca rboxylic acid and the polyol .
  • the HIPR invert emulsion treatment fluid comprises from 2 to 6 % by weight of said ester c) and from 0.2 to 3 % by weight of said oil soluble acrylic copolymer d) .
  • the ester c) has a degree of esterification comprised between 1 and 3.
  • esters of the invention are well known and can be prepared according to any of the procedure described in the art and known to the experts.
  • C 6 -C 24 aliphatic unsaturated monocarboxylic acids suitable for the present invention include both unsaturated and polyunsaturated aliphatic carboxylic acids with from 6 to 24 ca rbon atoms.
  • these acids are palmitoleic acid, oleic acid, linoleic acid, linolenic acid , arachidonic acid, and the like.
  • C 6 -C 24 aliphatic saturated monocarboxylic acids examples include decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, and the like.
  • the C 6 -C 2 4 aliphatic monocarboxylic acid is a mixture of C 6 -C 2 4 saturated and unsaturated linear monocarboxylic acids comprising at least 55 % by weight, preferably at least 70 % by weight, of oleic acid .
  • the C4-C 12 aliphatic polyol may be, for example, pentaerythritol, dipentaerythritol, di-trimethylolpropane, diglycerol, triglycerol, tetraglycerol, sorbitan, sorbitol and the like.
  • said polyol has from 4 to 6 hydroxyl groups and more preferably it is sorbitan, triglycerol, pentaerythritol or mixture thereof.
  • the invert emulsion treatment fluid does not comprise any additional emulsifier.
  • the preferred oil soluble copolymer d) is obtained by reaction of from 95% to 99.5% by weight of a C 4 -C 12 alkyl (meth)acrylate and from 0.5% to 5 % by weight an ethylenically unsaturated acid .
  • the alkyl group of the alkyl (meth)acrylate contains of the from 4 to 12 and preferably from 6 to 10 carbon atoms.
  • a particularly preferred C4-C 12 alkyl (meth)acrylate is 2-ethyl hexyl acrylate.
  • the ethylenically unsaturated acid can be a sulphonic acid such as vinyl sulphonic acid or an unsaturated carboxylic acid such as methacrylic acid or acrylic acid .
  • the acid is generally in protonated form, but it may also be present as salt.
  • copolymers obtained by reaction of from 90 to 99.5 % by weight, in particular from 95 to 99.5 % by weight, of C 6 -Ci 0 alkyl (meth)acrylate with from 0.5 to 10% by weight, in particular from 0.5 to 5 % by weight, of (meth)acrylic acid .
  • the copolymer of the invention is provided as an aqueous emulsion, prepared, for example, according to US 4,670,501.
  • the oil phase b) used in the water-in-oil subterranean treatment fluids of the present invention may comprise any oil-based fluid suitable for use in emulsions.
  • the oil phase may derive from a natural or synthetic source.
  • suitable oil phase include, without limitation, diesel oils, paraffin oils, mineral oils, low toxicity mineral oils, olefins, esters, amides, amines, synthetic oils such as polyolefins, ethers, acetals, dialkyl carbonates, hydrocarbons and combinations thereof.
  • the preferred oil phases are paraffin oils, low toxicity mineral oils, mi neral oils, polyolefins, olefins, esters and mixtures thereof.
  • the HIPR invert emulsion subterranean treatment fluid of the present invention also comprises an aqueous phase a) that is at least partially insoluble in the oil phase.
  • aqueous phase examples include fresh water, sea water, salt water, and brines (e.g., saturated salt waters), glycerine, glycols, polyglycol amines, polyols and derivatives thereof, that are partially insoluble in the oleaginous fluid, and combinations thereof.
  • brines e.g., saturated salt waters
  • glycerine e.g., glycols, polyglycol amines, polyols and derivatives thereof, that are partially insoluble in the oleaginous fluid, and combinations thereof.
  • Suitable brines include heavy brines.
  • Heavy brines for the purposes of this application, include brines with various salts at variable concentrations, that may be used to weight up a fluid; generally the use of weighting agents is required to provide the desired density of the fluid.
  • Brines generally comprise water soluble salts.
  • Suitable water soluble salts are sodium chloride, calcium chloride, calcium bromide, zinc bromide, sodium formate, potassium formate, sodium acetate, potassium acetate, calcium acetate, ammonium acetate, ammonium chloride, ammonium bromide, sodium nitrate, potassium nitrate, ammonium nitrate, calcium nitrate, sodium carbonate, potassium carbonate, and mixtures thereof.
  • the aqueous phase is chosen taking into account several factors including cost, environmental and health safety profile, density, availability, and which oil phase has been chosen. Another factor that may be considered is the kind of application of the emulsion. For example, if the application needs an emulsion with a heavy weight, a zinc bromide brine (for example) may be chosen. Preferred brines are those having a density above 1.2 g/ml, more preferably above 1.6 g/ml.
  • the HIPR invert emulsion subterranean treatment fluid of the invention may further comprise conventional additives including weighting agents, wetting agents, fluid loss reducers, thickeners, thinning agents, lubricants, anti-oxidants, corrosion inhibitors, scale inhibitors, defoamers, biocides, pH modifiers, and the like.
  • the subterranean treatment fluids also contain at least one filtrate reducer, preferably chosen among gilsonite, organophilic lignite, organophilic tannins, synthetic polymers, polycarboxylic fatty acids.
  • at least one filtrate reducer preferably chosen among gilsonite, organophilic lignite, organophilic tannins, synthetic polymers, polycarboxylic fatty acids.
  • the HIPR fluids may include particulates such as proppant or gravel.
  • the HIPR invert emulsion subterranean treatment fluids of the present invention are suitable for use in any treatment of subterranean formations wherein invert emulsions can be used.
  • treatment or “treating,” refers to any subterra nean operation that uses a fluid in conjunction with a desired function and/or for a desired purpose.
  • the fluids disclosed herein are especially useful in the drilling, completion and working-over of subterranean oil and gas wells and also in stimulation operations (such as fracturing), sand control treatments such as installing a gravel pack, cementing, maintenance and reactivation.
  • Emulam FP and Emulam HT are emulsifiers commonly used in the oil field and are produced by reaction of polyamines with ma leic anhydride and fatty acids.
  • Phosphate 1 and 2 are monophosphoric esters (acid) of ethoxylated cetyl- oleic alcohol (4 EO) and ethoxylated cetyl-stearyl alcohol (4 EO), respectively.
  • Emulsogen COL 020 (Clariant) is a fatty alcohol polyoxyethylene carboxylic acid (2 EO) .
  • Triglycerol monooleate and sorbitan sesquioleate were obtained by esterification of triglycerol or sorbitan with a n olein having an oleic acid content of about 85 % wt. These esters have a degree of esterification of 1.02 and 1.43, respectively.
  • Sorbitan monooleate, sorbitan trioleate, triethanolamine (TEA) trioleate and pentaeritrithol trioleate were obtained by esterification of sorbitan, TEA or pentaeritrithol with an olein containing about 78 % wt of oleic acid . These esters have a degree of esterification of 1.05, 2.91, 2.95 and 2.7, respectively.
  • Sorbitan monolaurate was produced by esterification of sorbitan with the carboxylic acids obtained from coconut oil, comprisi ng about 50 % by weight of lauric acid . This ester has a degree of esterification of 1.10.
  • a copolymer containing 81 % by weight of N- oleyl acrylamide and 19 % of acrylic acid (RM2) and an ethoxylated (5EO) C 54 trimer fatty acid (RM3) were used .
  • the performances of the emulsifying system assessed by the invention were evaluated by determining the stability of the obtained HIPR invert emulsions, measuring the separation of the oil phase or the aqueous phase after aging at a temperature of 120 °C.
  • An emulsion is considered stable when it shows, after 72 hours of thermal treatment at 120°C, a sepa ration of oil phase below 5 % by volume (v/v) and is considered very stable when it shows, after 336 hours (2 weeks) of thermal treatment at 120°C, a separation of oil phase below 10 % by volume (v/v) .
  • An emulsion showing after 72 hours of thermal treatment at 120°C a separation of the aqueous (brine) phase is not considered stable.
  • the HIPR invert emulsions of Examples 1- 12 were prepared va rying the chemical nature of the emulsifier and keeping constant the other parameters, such as the oil phase/aqueous phase volume ratio (60/40) and the amount of emulsifier or rheology modifier. Emulsifiers commonly utilized in the field were used for comparison . 120 ml of oil and 10 g of emulsifier (3.6 % by weight of the final invert emulsions) were added in a plastic beaker and stirred for 3 min with a Silverson® mixer mod . L4R at 3000 rpm .
  • the emulsifying systems of the invention exhibit also a very good long-term stability.
  • HIPR invert emulsions were prepared by varying the chemical nature of the rheology modifier and keeping constant the other parameters, such as the oil phase/aqueous phase volume ratio (60/40) and the amount of emulsifier and rheology modifier.
  • 120 mL of oil and 10 g of sorbitan trioleate were added in a plastic beaker and stirred for 3 min with a Silverson® mixer at 3000 rpm. After this period the rheology modifiers were added and the mixture was homogenized for 5 min. Finally 180 mL of CaBr 2 saturated brine were added under stirring. The mixture was emulsified by stirring for other 10 min
  • invert emulsions were transferred in sealed glass jars which were subsequently closed and stored in a static oven for 72 hours at 120 °C. After this thermal treatment the separation of the oil phase and/or aqueous phase was visually evaluated.
  • the effect of the concentration of rheology modifier was determined keeping constant the oil/aqueous phase volume ratio (40/60) and the concentration of emulsifier (sorbitan trioleate).
  • HIPR invert emulsions were prepared using the procedure of Example 10 and adding different amounts (% wt of emulsion) of the 2-ethyl-hexyl acrylate copolymer (RM 1).
  • the effect of the chemical naure of the brine on the stability of the HIPR invert emulsions was determined keeping constant the oil/aqueous phase volume ratio (40/60), the concentration of emulsifier (sorbitan trioleate) and of the 2-ethyl- hexyl acrylate copolymer (RM 1) .
  • the emulsions were prepared using the procedure of Example 10.
  • the HIPR invert emulsions were prepared with the same procedure of Exa mple 10.

Abstract

High internal phase ratio (HIPR) invert emulsions with improved stability and environmental compatibility comprise a combination of an ester and an oil soluble acrylic copolymer as emulsion stabilizer and are useful as well treatment fluids in subterranean applications.

Description

INVERT EMULSION TREATMENT FLUIDS
TECHNICAL FIELD
The present invention relates to subterranean treatment fluids with improved stability and environmental compatibility based on high internal phase ratio (HIPR) invert emulsions, to their use in subterranean applications. More particularly, the treatment fluids comprise the combination of an ester and an oil soluble acrylic copolymer as emulsion stabilizer.
The present invention further relates to a method for subterranean treatments comprising :
I) providing an invert emulsion subterranean treatment fluid based on high internal phase ratio invert emulsions and comprising the combination of an ester and an oil soluble acrylic copolymer as emulsion stabilizer and II) introducing said fluid into at least a portion of a subterranean formation. PRIOR ART
Emulsions usually comprise two immiscible phases : a continuous (or external) phase and a discontinuous (or internal) phase, the discontinuous phase usually being a liquid dispersed in droplets in the continuous phase.
Oil-in-water emulsions usually include a fluid that is at least partially immiscible in oil (an aqueous-based fluid) as the continuous phase and an oil phase as the discontinuous phase.
Water- in -oil emulsions are the opposite, having the oil phase as the continuous phase and a fluid that is at least partially immiscible in the oil phase (usually an aqueous-based fluid) as the discontinuous phase.
Water- in -oil emulsions are also referred to as invert emulsions. Both kinds of emulsions have been used widely in oil and gas applications, for instance, for drilling and other subterranean treatment applications.
Oil based drilling fluids or muds (OBM) are generally used in the form of invert emulsions, that are preferred when the formation is remarkably sensitive to contact with water and they usually guarantee better lubrication of the drill strings and downhole tools, thinner filter cake formation and better thermal resistance and hole stability, especially for water sensitive formations.
The oil phase/aqueous phase ratio of invert emulsion fluids is traditionally in the range of 55/45 to 85/ 15 v/v. Inverse high internal phase ratio emulsions, i .e. systems possessing a larger volume of internal aqueous phase (> 50% in volume), are highly preferred because of the significant reduction of the oil phase, with its associated costs and possible environmental concern for waste and disposal .
When used in subterranean applications, emulsions undergo exceptional mechanical and thermal stress, and therefore stability is an especially critical aspect of their formulation. For HIPR invert emulsions the stabilization is even more critical .
Emulsions are generally stabilized by addition of one or more emulsion stabilizing agents.
The main stabilizing agents, also referred to as emulsifiers, decrease the interfacial tension between water and oil phases, usually forming an interracial film, thus preventing the droplets coalescence, phase separation and the compromising of the emulsion performance.
To further improve the stability of the emulsion several other additives may be used, like co-emulsifiers, salts, viscosifiers or rheology modifiers.
The emulsifiers that are traditionally used in OBMs have surfactant-character, comprising a hydrophobic portion and a hydrophilic portion, while amine modified bentonites are often used to thicken the oil phase, thus stabilizing the emulsion. However these solid rheology modifiers and the commonly used emulsifiers are under observation in some areas due to environmental concerns. Moreover, drilling fluids lacking organophilic clays are considered to contribute to superior performances of the fluids.
US 4,670,501 and its continuation-in-part US 4,777,200 describe acrylic copolymers that can be used to thicken the oil phase of water in oil emulsion based drilling muds. The copolymers a re substantially uncross-linked copolymers formed from 80- 100% by weight of hydrophobic monomers, 0-20 % by weight (wt) of hydrophilic monomers and in which at least 25 % wt of the monomers a re both polar and hydrophobic and not more than 30% wt of the monomers a re hydrophobic aromatic hydrocarbon monomers. The presence of 7% wt of an emulsifier together with 1.5% wt active copolymer is reported in the exemplified 25/75 v/v water-in-oil emulsion drilling fluid, but nothing is said about the importance or the chemical nature of this emulsifier, that in general it is said that it may be anionic, non-ionic or cationic. Moreover, nothing is said about the possibility of using this polymer in HIPR invert emulsion drilling fluids.
US 2004/0043905 describes the use of a polymer from 2- ethylhexylacrylate/acrylic (99/1), prepared as described in US 4,670,501, to enhance the suspension characteristics of a drilling fluid devoid of organophilic clays. The drilling fluid may comprise one or more emulsifier, but nothing is said about the importance or the chemical nature of this emulsifier and nothing is said about the possibility of using this polymer in HIPR invert emulsion drilling fluid . US 2011/0257051 describes a consolidating fluid comprising a tackifying agent that can also be prepared according to US 4,670,501 and an emulsifying agent that comprises at least one cationic or amphoteric surfactant.
WO 2011/037954 discloses an HIPR invert emulsion treatment fluid characterized by the presence of an alkoxylated ether acid as emulsifier. Although the presence of viscosifiers and/or emulsion stabilizer like organophilic clays or oil soluble polymers is described, conventional emulsifiers (SUREMUL® available from M -I L. L.C. Houston, Texas) are used to demonstrate the impossibility to form stable and manageable HIPR invert emulsion drilling fluids.
For these reasons, there is still the need of emulsifying system for the preparation of high internal phase ratio invert emulsion treatment fluids havingbetter resistance to separation even at high temperature, that do not require the use of solid particles to further stabilize the emulsion and that can be obtai ned more economically and with a lower environmental impact, with the same performance.
It has now been found that the combination of an ester obtained by reaction of a monocarboxylic acid and a polyol (acting as emulsifier), with a specific acrylic, oil soluble polymer (acting as rheology modifier) has excellent stabilizing properties when used in HIPR invert emulsion subterranean treatment fluids, being able to guarantee long term stability of the fluids, even at high temperature. Moreover, this emulsifying system, or emulsion stabilizer, allows an easy prepa ration of the emulsion also in difficult conditions, such as those encountered in on -field operations.
DESCRIPTION OF THE INVENTION
It is, therefore, an object of the present invention an invert emulsion subterranean treatment fluid comprising :
a) an oil phase;
b) an aqueous phase;
c) as emulsifier, from 0.5 to 10 % by weight of an ester obtained by reaction of a linear or branched, saturated or unsaturated, C6-C24 a liphatic monocarboxylic acid with a linear or branched, C4-Ci2 aliphatic polyol having from 4 to 7 hydroxyls (n), with a degree of esterification comprised between 1 and n-n/4; d) as rheology modifier, from 0. 1 to 5 % by weight of an oil soluble acrylic copolymer obtained by reaction of from 90 to 99.5% by weight of a C4-Ci2 alkyl (meth)acrylate and from 0.5 to 10% by weight of an ethylenically unsaturated acid ;
wherein the oil phase/aqueous phase ratio by volume is in the range of from 50/50 to 20/80, preferably from 45/55 to 30/70.
In another embodiment, the present invention relates to a method for subterranean treatments comprising :
I) providing the above described invert emulsion treatment fluid and
II) introducing said fluid into at least one portion of a subterranean formation .
The features and advantages of the present invention will be read ily apparent to those skilled in the art upon reading of the description of the preferred embodiments, which follow.
DETAILED DESCRIPTION OF TH E INVENTION
With the expression "degree of esterification" of the ester of the invention we mean the molar ratio between the monoca rboxylic acid and the polyol .
Preferably the HIPR invert emulsion treatment fluid comprises from 2 to 6 % by weight of said ester c) and from 0.2 to 3 % by weight of said oil soluble acrylic copolymer d) .
In a preferred embodiment, the ester c) has a degree of esterification comprised between 1 and 3.
The esters of the invention are well known and can be prepared according to any of the procedure described in the art and known to the experts.
Examples of C6-C24 aliphatic unsaturated monocarboxylic acids suitable for the present invention include both unsaturated and polyunsaturated aliphatic carboxylic acids with from 6 to 24 ca rbon atoms. Examples of these acids are palmitoleic acid, oleic acid, linoleic acid, linolenic acid , arachidonic acid, and the like.
Examples of C6-C24 aliphatic saturated monocarboxylic acids include decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, and the like.
Mixtures of C6-C24 saturated and unsaturated aliphatic monocarboxylic acids can be also used
Mixtures of monocarboxylic acid derived from natural oils, such as coconut oil, palm oil, olein, soy oil, canola oil and tall oil, are particularly preferred . Preferably the C6-C24 aliphatic monocarboxylic acid is a mixture of C6-C24 saturated and unsaturated linear monocarboxylic acids comprising at least 55 % by weight, preferably at least 70 % by weight, of oleic acid .
The C4-C12 aliphatic polyol may be, for example, pentaerythritol, dipentaerythritol, di-trimethylolpropane, diglycerol, triglycerol, tetraglycerol, sorbitan, sorbitol and the like.
Preferably, said polyol has from 4 to 6 hydroxyl groups and more preferably it is sorbitan, triglycerol, pentaerythritol or mixture thereof.
According to a preferred aspect of the present invention, the invert emulsion treatment fluid does not comprise any additional emulsifier.
The preferred oil soluble copolymer d) is obtained by reaction of from 95% to 99.5% by weight of a C4-C12 alkyl (meth)acrylate and from 0.5% to 5 % by weight an ethylenically unsaturated acid .
The alkyl group of the alkyl (meth)acrylate contains of the from 4 to 12 and preferably from 6 to 10 carbon atoms. A particularly preferred C4-C12 alkyl (meth)acrylate is 2-ethyl hexyl acrylate.
The ethylenically unsaturated acid can be a sulphonic acid such as vinyl sulphonic acid or an unsaturated carboxylic acid such as methacrylic acid or acrylic acid . The acid is generally in protonated form, but it may also be present as salt.
Particularly preferred are copolymers obtained by reaction of from 90 to 99.5 % by weight, in particular from 95 to 99.5 % by weight, of C6-Ci0 alkyl (meth)acrylate with from 0.5 to 10% by weight, in particular from 0.5 to 5 % by weight, of (meth)acrylic acid .
Usually, the copolymer of the invention is provided as an aqueous emulsion, prepared, for example, according to US 4,670,501.
The oil phase b) used in the water-in-oil subterranean treatment fluids of the present invention may comprise any oil-based fluid suitable for use in emulsions. The oil phase may derive from a natural or synthetic source. Examples of suitable oil phase include, without limitation, diesel oils, paraffin oils, mineral oils, low toxicity mineral oils, olefins, esters, amides, amines, synthetic oils such as polyolefins, ethers, acetals, dialkyl carbonates, hydrocarbons and combinations thereof. The preferred oil phases are paraffin oils, low toxicity mineral oils, mi neral oils, polyolefins, olefins, esters and mixtures thereof. Factors determining which oil phase will be used in a particular application, include but are not limited to, its cost and performance cha racteristics, environmental compatibility, toxicological profile and availability. The HIPR invert emulsion subterranean treatment fluid of the present invention also comprises an aqueous phase a) that is at least partially insoluble in the oil phase.
Suitable examples of aqueous phase include fresh water, sea water, salt water, and brines (e.g., saturated salt waters), glycerine, glycols, polyglycol amines, polyols and derivatives thereof, that are partially insoluble in the oleaginous fluid, and combinations thereof.
Suitable brines include heavy brines. Heavy brines, for the purposes of this application, include brines with various salts at variable concentrations, that may be used to weight up a fluid; generally the use of weighting agents is required to provide the desired density of the fluid.
Brines generally comprise water soluble salts. Suitable water soluble salts are sodium chloride, calcium chloride, calcium bromide, zinc bromide, sodium formate, potassium formate, sodium acetate, potassium acetate, calcium acetate, ammonium acetate, ammonium chloride, ammonium bromide, sodium nitrate, potassium nitrate, ammonium nitrate, calcium nitrate, sodium carbonate, potassium carbonate, and mixtures thereof.
The aqueous phase is chosen taking into account several factors including cost, environmental and health safety profile, density, availability, and which oil phase has been chosen. Another factor that may be considered is the kind of application of the emulsion. For example, if the application needs an emulsion with a heavy weight, a zinc bromide brine (for example) may be chosen. Preferred brines are those having a density above 1.2 g/ml, more preferably above 1.6 g/ml.
The HIPR invert emulsion subterranean treatment fluid of the invention may further comprise conventional additives including weighting agents, wetting agents, fluid loss reducers, thickeners, thinning agents, lubricants, anti-oxidants, corrosion inhibitors, scale inhibitors, defoamers, biocides, pH modifiers, and the like.
The subterranean treatment fluids, in particular, also contain at least one filtrate reducer, preferably chosen among gilsonite, organophilic lignite, organophilic tannins, synthetic polymers, polycarboxylic fatty acids.
When used in certain applications, the HIPR fluids may include particulates such as proppant or gravel.
The HIPR invert emulsion subterranean treatment fluids of the present invention are suitable for use in any treatment of subterranean formations wherein invert emulsions can be used. As used herein, the term "treatment," or "treating," refers to any subterra nean operation that uses a fluid in conjunction with a desired function and/or for a desired purpose. The fluids disclosed herein are especially useful in the drilling, completion and working-over of subterranean oil and gas wells and also in stimulation operations (such as fracturing), sand control treatments such as installing a gravel pack, cementing, maintenance and reactivation.
The following examples are included to illustrate the preferred embodiments of the invention .
EXAMPLES
In the examples, the following compounds have been used as emulsifiers :
• Emulam FP and Emulam HT (Lamberti S. p.A. ) are emulsifiers commonly used in the oil field and are produced by reaction of polyamines with ma leic anhydride and fatty acids.
• Phosphate 1 and 2 are monophosphoric esters (acid) of ethoxylated cetyl- oleic alcohol (4 EO) and ethoxylated cetyl-stearyl alcohol (4 EO), respectively.
• Emulsogen COL 020 (Clariant) is a fatty alcohol polyoxyethylene carboxylic acid (2 EO) .
• Triglycerol monooleate and sorbitan sesquioleate were obtained by esterification of triglycerol or sorbitan with a n olein having an oleic acid content of about 85 % wt. These esters have a degree of esterification of 1.02 and 1.43, respectively.
• Sorbitan monooleate, sorbitan trioleate, triethanolamine (TEA) trioleate and pentaeritrithol trioleate were obtained by esterification of sorbitan, TEA or pentaeritrithol with an olein containing about 78 % wt of oleic acid . These esters have a degree of esterification of 1.05, 2.91, 2.95 and 2.7, respectively.
• Sorbitan monolaurate was produced by esterification of sorbitan with the carboxylic acids obtained from coconut oil, comprisi ng about 50 % by weight of lauric acid . This ester has a degree of esterification of 1.10.
An emulsion of a copolymer (RM 1) obtained by reaction of 98 % by weight of 2- ethylhexyl acrylate and 2 % by weight of methacrylic acid , prepared according to Example 1 of US 4,670,501, was used as rheology modifier of the invention .
As comparative rheology modifiers, a copolymer containing 81 % by weight of N- oleyl acrylamide and 19 % of acrylic acid (RM2) and an ethoxylated (5EO) C54 trimer fatty acid (RM3) were used . As oil phase, a mineral oil synthetic paraffin base (specific gravity = 0.767, Flash Point > 100 °C) was used .
The performances of the emulsifying system assessed by the invention were evaluated by determining the stability of the obtained HIPR invert emulsions, measuring the separation of the oil phase or the aqueous phase after aging at a temperature of 120 °C. An emulsion is considered stable when it shows, after 72 hours of thermal treatment at 120°C, a sepa ration of oil phase below 5 % by volume (v/v) and is considered very stable when it shows, after 336 hours (2 weeks) of thermal treatment at 120°C, a separation of oil phase below 10 % by volume (v/v) . An emulsion showing after 72 hours of thermal treatment at 120°C a separation of the aqueous (brine) phase is not considered stable.
Examples 1 -20
The HIPR invert emulsions of Examples 1- 12 were prepared va rying the chemical nature of the emulsifier and keeping constant the other parameters, such as the oil phase/aqueous phase volume ratio (60/40) and the amount of emulsifier or rheology modifier. Emulsifiers commonly utilized in the field were used for comparison . 120 ml of oil and 10 g of emulsifier (3.6 % by weight of the final invert emulsions) were added in a plastic beaker and stirred for 3 min with a Silverson® mixer mod . L4R at 3000 rpm . After this period 3.5 g of 2-ethylhexyl acrylate/acrylic acid copolymer ( 1.3 % by weight of the final invert emulsions) were added and the mixture was homogenized for 5 mi n. 180 ml of CaBr2 saturated brine were added under stirring. The mixture was emulsified by stirring for other 10 min . The invert emulsions were transferred in graduated glass jars which were subsequently sealed and stored in a static oven for 72 hours at 120 °C. After this thermal treatment the separation of the oil phase and/or aqueous phase was visually evaluated .
The chemical nature of the emulsifiers and the separation data (% v/v) are reported in Table 1.
No sepa ration of the aqueous phase and a minimal separation of the oil phase was observed with the emulsifying systems of the invention.
The same experiments were performed using some of the emulsifiers described in Table 1 at a concentration of 1.8% by weight. Table 2 reports the separation of the oil phase (% v/v) after 72 and 336 hours of thermal treatment at 120 °C. No separation of the aqueous phase was observed . Table 1
Figure imgf000010_0001
* Comparative
Table 2
Figure imgf000010_0002
Comparative
The emulsifying systems of the invention exhibit also a very good long-term stability.
Examples 21 -23
HIPR invert emulsions were prepared by varying the chemical nature of the rheology modifier and keeping constant the other parameters, such as the oil phase/aqueous phase volume ratio (60/40) and the amount of emulsifier and rheology modifier. 120 mL of oil and 10 g of sorbitan trioleate were added in a plastic beaker and stirred for 3 min with a Silverson® mixer at 3000 rpm. After this period the rheology modifiers were added and the mixture was homogenized for 5 min. Finally 180 mL of CaBr2 saturated brine were added under stirring. The mixture was emulsified by stirring for other 10 min
The invert emulsions were transferred in sealed glass jars which were subsequently closed and stored in a static oven for 72 hours at 120 °C. After this thermal treatment the separation of the oil phase and/or aqueous phase was visually evaluated.
The chemical nature of the rheology modifiers and the separation data (% v/v) are reported in Table 3.
Table 3
Comparative
Examples 24-27
The effect of the concentration of rheology modifier was determined keeping constant the oil/aqueous phase volume ratio (40/60) and the concentration of emulsifier (sorbitan trioleate).
Different HIPR invert emulsions were prepared using the procedure of Example 10 and adding different amounts (% wt of emulsion) of the 2-ethyl-hexyl acrylate copolymer (RM 1).
The amount of rheology modifier and the separation of the oil phase observed after the thermal treatment of 72 hours at 120 °C are reported in Table 4. No separation of the aqueous phase was observed.
Table 4
Rheology % Oil
Example Modifier (% Separation
wt)
24 3.8 4.3
25 1.9 3.9
26 1.3 4.0
27 0.65 4.8 Examples 28-31
The effect of the chemical naure of the brine on the stability of the HIPR invert emulsions was determined keeping constant the oil/aqueous phase volume ratio (40/60), the concentration of emulsifier (sorbitan trioleate) and of the 2-ethyl- hexyl acrylate copolymer (RM 1) .
The emulsions were prepared using the procedure of Example 10.
The kind of brines and the separation of the oil phase observed after the thermal treatment of 72 hours at 120 °C are reported in Table 5. No separation of the aqueous phase was observed .
Table 5
Figure imgf000012_0001
Examples 32-35
The stability of HIPR invert emulsions with different oil phase/aqueous phase volume ratio was determined maintaining in all the Examples the same component ratios aqueous phase/emulsifier (v/w) and oil/rheology modifier (v/w) as in Example 10.
The HIPR invert emulsions were prepared with the same procedure of Exa mple 10.
The amounts of oil and brine and the separation of the oil phase after 72 hours of thermal treatment are reported in Table 6.
All the tests demonstrate that the emulsifying system of the invention allow the preparation of very stable HIPR invert emulsions both with various oil phase/aqueous phase ratio and with different brines.
Table 6
Oil Brine Oil/Brine % Oil
Example
(ml) (ml) (% v/v) Separation
32 152 152 50/50 3.2
33 122 185 40/60 4.0
34 93 217 30/70 3.8
35 62 248 20/80 5.0

Claims

1) Invert emulsion subterranean treatment fluid comprising :
a) an oil phase;
b) an aqueous phase;
c) from 0.5 to 10 % by weight of a ester obtained by reaction of a linear or branched, saturated or unsaturated, C6-C24 aliphatic monocarboxylic acid with a linear or branched, C4-Ci2 aliphatic polyol having from 4 to 7 hydroxyls (n), with a degree of esterification comprised between 1 and n- n/4;
d) from 0.1 to 5 % by weight of an oil soluble acrylic copolymer obtained by reaction of from 90 to 99.5% by weight of a C4-Ci2 alkyl (meth)acrylate and from 0.5 to 10% by weight of a ethylenically unsaturated acid;
wherein the oil phase/aqueous phase ratio by volume is in the range of from 50/50 to 20/80.
2) The invert emulsion subterranean treatment fluid of Claim 1, comprising : a) an oil phase;
b) an aqueous phase;
c) from 2 to 6 % by weight of said ester;
d) from 0.2 to 3 % by weight of said oil soluble acrylic copolymer.
3) The invert emulsion subterranean treatment fluid of Claim 1 or 2, wherein the oil/ aqueous phase ratio by volume ranges from 45/55 to 30/70.
4) The invert emulsion subterranean treatment fluid of Claim 1, wherein said ester c) is obtained by reaction of a linear or branched, saturated or unsaturated, C6-C24 aliphatic monoca rboxylic acid with a linear or branched, C4-Ci2 aliphatic polyol having from 4 to 6 hydroxyls, with a degree of esterification comprised between 1 and 3.
5) The invert emulsion subterranean treatment fluid of Claim 4, wherein said C6- C24 aliphatic monocarboxylic acid is a mixture of C6-C24 saturated and unsaturated linear monocarboxylic acids comprising at least 55 % by weight of oleic acid.
6) The invert emulsion subterranean treatment fluid of Claim 1, wherein said oil soluble copolymer d) is obtained by reaction of from 90 to 99.5% by weight of C6-Cio alkyl (meth)acrylate and from 0.5 to 10% by weight of an ethylenically unsaturated acid which is (meth)acrylic acid. 7) The invert emulsion subterranean treatment fluid of Claim 6, wherein said oil soluble copolymer obtained by reaction of from 95 to 99.5 % by weight of C6- Cio (meth)acrylate and from 0.5 to 5 % by weight of (meth)acrylic acid.
8) Method for subterranean treatments comprising :
III) providing an invert emulsion subterranean treatment fluid according to Claims from 1 to 7 and
IV) introducing said fluid into at least a portion of a subterranean formation.
PCT/EP2014/055192 2013-03-18 2014-03-14 Invert emulsion treatment fluids WO2014146991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000017A ITVA20130017A1 (en) 2013-03-18 2013-03-18 TREATMENT FLUIDS BASED ON REVERSE EMULSIONS
ITVA2013A000017 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014146991A1 true WO2014146991A1 (en) 2014-09-25

Family

ID=48145625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/055192 WO2014146991A1 (en) 2013-03-18 2014-03-14 Invert emulsion treatment fluids

Country Status (2)

Country Link
IT (1) ITVA20130017A1 (en)
WO (1) WO2014146991A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140662A1 (en) * 2015-03-04 2016-09-09 Halliburton Energy Services, Inc. Invert emulsion treatment fluids comprising polar organic compounds and methods of use in subterranean operations
US10550304B2 (en) 2013-08-01 2020-02-04 M-I Drilling Fluids Uk Limited Quaternary ammonium compounds and gas hydrate inhibitor compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709819A (en) * 1971-05-14 1973-01-09 Milchem Inc Oil phase drilling fluid additive, composition and process
EP0344818A2 (en) * 1984-05-16 1989-12-06 Ciba Specialty Chemicals Water Treatments Limited A method of using polymeric compositions
US20040043905A1 (en) * 2000-12-29 2004-03-04 Jeff Miller Drilling fluid and method for enhanced suspension
FR2859215A1 (en) * 2003-08-28 2005-03-04 Inst Francais Du Petrole OIL-BASED WELL FLUID COMPRISING A NON-POLLUTING EMULSIFYING SYSTEM, USEFUL FOR ANY BASIC TYPE AND STABLE WITH REGARD TO THE FORMATION OF GAS HYDRATE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709819A (en) * 1971-05-14 1973-01-09 Milchem Inc Oil phase drilling fluid additive, composition and process
EP0344818A2 (en) * 1984-05-16 1989-12-06 Ciba Specialty Chemicals Water Treatments Limited A method of using polymeric compositions
US20040043905A1 (en) * 2000-12-29 2004-03-04 Jeff Miller Drilling fluid and method for enhanced suspension
FR2859215A1 (en) * 2003-08-28 2005-03-04 Inst Francais Du Petrole OIL-BASED WELL FLUID COMPRISING A NON-POLLUTING EMULSIFYING SYSTEM, USEFUL FOR ANY BASIC TYPE AND STABLE WITH REGARD TO THE FORMATION OF GAS HYDRATE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550304B2 (en) 2013-08-01 2020-02-04 M-I Drilling Fluids Uk Limited Quaternary ammonium compounds and gas hydrate inhibitor compositions
WO2016140662A1 (en) * 2015-03-04 2016-09-09 Halliburton Energy Services, Inc. Invert emulsion treatment fluids comprising polar organic compounds and methods of use in subterranean operations
GB2550513A (en) * 2015-03-04 2017-11-22 Halliburton Energy Services Inc Invert emulsion treatment fluids comprising polar organic compounds and methods of use in subterranean operations
US10119062B2 (en) 2015-03-04 2018-11-06 Halliburton Energy Services, Inc. Invert emulsion treatment fluids comprising polar organic compounds and methods of use in subterranean operations
GB2550513B (en) * 2015-03-04 2021-09-15 Halliburton Energy Services Inc Invert emulsion treatment fluids comprising polar organic compounds and methods of use in subterranean operations

Also Published As

Publication number Publication date
ITVA20130017A1 (en) 2014-09-19

Similar Documents

Publication Publication Date Title
US9982182B2 (en) Drilling composition, process for its preparation, and applications thereof
CA2767426C (en) Emulsion stabilizing agents for drilling and completion fluids
RU2514866C2 (en) Control of equivalent circulating density (ecd) at deep water drilling
EP2892973B1 (en) Salt-free invert emulsion drilling fluids and methods of drilling boreholes
CA3052272A1 (en) Emulsified drilling fluids and methods of making and use thereof
US7507694B2 (en) Surfactant-free emulsions and methods of use thereof
CA3089245C (en) Maleated amido-amine reaction product-containing emulsifiers and drilling fluids comprising the same
WO2014070340A1 (en) Wellbore servicing compositions and methods of making and using same
US8691733B2 (en) Suspension characteristics in invert emulsions
MX2008016454A (en) Fluid loss additive for oil-based muds.
EP1846531A1 (en) Spotting fluid compositions and associated methods
EP1838803A2 (en) Spotting fluid compositions and associated methods
CA2875750A1 (en) Rheology modifier for drilling and well treatment fluids
US20140171346A1 (en) Drilling fluid for enhanced rate of penetration
US10738230B2 (en) Invert emulsion drilling fluids
WO2014146991A1 (en) Invert emulsion treatment fluids
WO2009127589A1 (en) Drilling and well treatment fluids
WO2019036227A1 (en) Oil-based drilling fluids for high pressure and high temperature drilling operations
WO2018125651A1 (en) Effective pour point depressants for amidoamine emulsifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14714184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14714184

Country of ref document: EP

Kind code of ref document: A1