WO2014146423A1 - 电子设备的充电底座、充电系统和充电方法 - Google Patents

电子设备的充电底座、充电系统和充电方法 Download PDF

Info

Publication number
WO2014146423A1
WO2014146423A1 PCT/CN2013/084992 CN2013084992W WO2014146423A1 WO 2014146423 A1 WO2014146423 A1 WO 2014146423A1 CN 2013084992 W CN2013084992 W CN 2013084992W WO 2014146423 A1 WO2014146423 A1 WO 2014146423A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
charging
electronic device
node
switch
Prior art date
Application number
PCT/CN2013/084992
Other languages
English (en)
French (fr)
Inventor
荆涛
任晨晓
葛泳敏
Original Assignee
Jing Tao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jing Tao filed Critical Jing Tao
Publication of WO2014146423A1 publication Critical patent/WO2014146423A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof

Definitions

  • the present invention relates to the field of electronic devices, and in particular to a charging base, a charging system and a charging method of an electronic device. Background technique
  • the polarity of the electrode of the charging device is fixed. Therefore, when charging using such a charging device, the electrode of the charging device cannot be charged according to the electronic device.
  • the polarity characteristics of the electrode automatically adjust the polarity, but the user needs to ensure that the polarity of the charging electrode of the electronic device is correct, and the user experience is poor.
  • the main object of the present invention is to provide a charging base, a charging system and a charging method for an electronic device, which solve the problem of poor user experience when the electronic device is charged in the prior art.
  • a charging base for an electronic device comprising: an electrode, the electrode comprising a first electrode and a second electrode, a control unit, wherein the control unit comprises: a control module, Outputting a first control signal at a first time and outputting a second control signal at a second time, wherein the first time is a time before the second time; the first switch module is connected to the control module, and is configured to receive the first When a control signal is turned on, the first electrode and the VDD are turned on, the second electrode and the VSS are turned on, and when the second control signal is received, the first electrode and the VSS are turned on, and the second electrode and the VDD are turned on; the first detecting module And connecting to the control module, configured to detect whether the first electrode and the second electrode are turned on, and output a first level signal when the first electrode and the second electrode are turned on, and output a second level signal when not being turned on;
  • the control module is further configured to output a third
  • the charging base of the electronic device further includes: a first prompting unit, connected to the control module, wherein the control module is further configured to control the first prompting unit to output the short circuit prompt information when only the first level signal is received.
  • the charging base further includes: a second prompting unit connected to the control module; the control unit further includes: The control module also controls the second bill of lading to output the charging completion signal when the third level signal is received.
  • the charging base of the electronic device further includes: a third prompting unit, connected to the control module; wherein, the control module is further configured to control the third prompting unit to output the no-load prompting information when only the second level signal is received .
  • the charging base of the electronic device further includes: a third detecting module, connected to the control module, configured to detect, after the control module outputs the third control signal or the fourth control signal, the charging current of the charging base, and the charging current When the third preset current is greater than the third preset current, the fourth level signal is output, wherein the control module is further configured to output a fifth control signal after receiving the fourth level signal, and the second switch module is further configured to receive the fifth When the signal is controlled, disconnect the electrode from VDD and VSS.
  • a third detecting module connected to the control module, configured to detect, after the control module outputs the third control signal or the fourth control signal, the charging current of the charging base, and the charging current When the third preset current is greater than the third preset current, the fourth level signal is output, wherein the control module is further configured to output a fifth control signal after receiving the fourth level signal, and the second switch module is further configured to receive the fifth When the signal is controlled, disconnect the electrode from VDD and VSS.
  • the second switch module includes: a first switch connected between the first electrode and VDD; a second switch connected between the first electrode and VSS; and a third switch connected between the second electrode and VDD And a fourth switch connected between the second electrode and the VSS, wherein the first switch and the third switch are P-channel FETs, and the second switch and the fourth switch are N-channel FETs.
  • the first detecting module includes: a first comparator, wherein the first input is used to input the voltage of the first electrode, the second input is used to input the reference voltage, the output is used to connect the control module; and the second comparator The first input is used to input the voltage of the second electrode, the second input is used to input the reference voltage, and the output is used to connect the control module.
  • a charging system for an electronic device including: a charging base, which is any one of the charging bases provided by the above content of the present invention, wherein the charging base The first electrode and the second electrode are both made of a plate-shaped conductive material; the charging device and the casing of the device to be charged, wherein the casing comprises: a charging electrode, comprising a first charging electrode and a second charging electrode, the first charging The electrode and the second charging electrode are adapted to be matched with the electrode of the charging base; the power receiving unit is connected to the charging electrode for receiving the electric energy obtained by the charging electrode; and the electric energy output unit is connected with the electric energy receiving unit, The power received by the power receiving unit is output to the power storage device of the device to be charged.
  • the power receiving unit includes: a switch module disposed between the charging electrode and the power output unit, configured to control a positive voltage path between the charging electrode and the power output unit to be turned on, and a negative voltage path to be turned off.
  • the power output unit has a first power output end and a second power output end
  • the switch module includes: a switch tube, the first end is connected to the first charging electrode, and the second end is connected to the first power output end, wherein The second power output terminal is connected to the second charging electrode.
  • the power receiving unit further includes: a first resistor, the first end is connected to the first node, and the second end is connected to the second node, where the first node is the second a node between the charging electrode and the second power output end, the second node is a node between the first charging electrode and the first end of the switch tube; the comparator, the first input end is connected to the second node, the second input end Connected to the third node, the output end is connected to the control end of the switch tube, wherein the third node is a node between the second end of the switch tube and the first power output end; and the second resistor is connected to the first end The third node is connected to the fourth node, wherein the fourth node is a node between the output end of the comparator and the control end of the switch.
  • the power receiving unit further includes: a debounce circuit, the first end is connected to the output end of the comparator, and the second end is connected to the fourth node; the first protection circuit, the first end is opposite to the first end of the switch tube Connecting, the second end of the first protection circuit is connected to the second end of the switch tube; the second protection circuit, the first end is connected to the first node, the second end is connected to the second node; and the diode is first The first node is connected, and the second end is connected to the second node.
  • the riser module includes a diode, the diode is set in a ten positive voltage path, and the anode of the diode is connected to the charging electrode, the cathode of the diode is connected to the power output unit, or the diode is disposed in the negative voltage path, and the diode is The anode of the diode is connected to the power output unit, and the cathode of the diode is connected to the charging electrode.
  • a charging method of an electronic device uses any one of the charging bases provided by the above content of the present invention to charge the electronic device.
  • the charging method includes: controlling the first electrode of the charging base to be turned on with VDD at the first time, controlling the second electrode of the charging base to be turned on with VSS, and controlling the second electrode to be turned on with VDD at the second time, controlling the first
  • the first time is a time before the second time; detecting whether the first electrode and the second electrode are turned on; when detecting that the first electrode and the second electrode are turned on at the first time, and When the first electrode and the second electrode are not turned on at the second time, the first electrode is connected to VDD, the second electrode is connected to VSS; and when it is detected that the first electrode and the second electrode are not turned on at the first time, And when the first electrode and the second electrode are turned on at the second time, the first electrode is connected to VSS, and the
  • the charging method of the electronic device further includes: when detecting that the first electrode and the second electrode are both turned on at the first time and the second time, controlling the charging base to output the short circuit prompt information; and when detecting the first electrode When the second electrode is not turned on at the first time and the second time, the charging base is controlled to output no load prompt information.
  • the charging method of the electronic device further includes: detecting a charging current of the charging base after connecting the first electrode or the second electrode to the VDD; and controlling the charging base output charging when the charging current is less than the first preset current Prompt message.
  • the present invention employs a charging base including an electronic device having the following structure: an electrode, the electrode includes a first electrode and a second electrode, and a control unit, wherein the control unit includes: a control module, configured to output the first control signal at the first time, The second time outputting the second control signal, wherein the first time is the time before the second time; the first switch module is connected to the control module, and is configured to turn on the first electrode when receiving the first control signal VDD, turning on the second electrode and VSS, turning on the first electrode and VSS when the second control signal is received, turning on the second electrode and VDD; the first detecting module is connected to the control module, and is used for detecting Whether an electrode and the second electrode are turned on, and outputting a first level signal when the first electrode and the second electrode are turned on, and outputting a second level signal when not conducting; the control module is further configured to receive the first level a first control signal is outputted when the first level signal and the second level signal are received, and the fourth control signal is output when the second
  • FIG. 1 is a schematic diagram showing the principle of a control unit in a charging base according to a first embodiment of the present invention
  • FIGS. 2(a) and 2(b) are schematic diagrams showing the connection of a charging base according to a second embodiment of the present invention.
  • FIG. 3 is a schematic illustration of a charging base in accordance with a third embodiment of the present invention
  • 6 is a view showing the charging device in the charging system according to the fourth embodiment of the present invention
  • FIG. 7 is a schematic diagram showing the principle of a charging system according to a fifth embodiment of the present invention.
  • FIGS. 8(a) to 8(d) are diagrams showing the connection of a power receiving unit in a charging system according to an embodiment of the present invention.
  • FIG. 9 is a flow chart of a charging method in accordance with a sixth embodiment of the present invention. detailed description
  • the charging base of the electronic device of the first embodiment provided in this embodiment includes an electrode and a control unit, wherein the electrode includes a first electrode and a second electrode.
  • the control unit includes a control module and a first switch. The module, the first detection module and the second switch module.
  • the first switch module includes a switch connected between the first electrode and VDD, the first electrode and VSS, the second electrode and VDD, and the second electrode and VSS, and the state of each switch is controlled by a control signal output by the control module.
  • the control module may be a control chip, and alternately output two control signals in a non-charged idle state.
  • the first and second control signals may be pulse signals, and the first control signal is used to control the first electrode and the VDD guide. Turn-on, turn off VSS, the second electrode is turned on with VSS, and turned off with VDD. The second control signal is used to control the second electrode to turn on with VDD, turn off with VSS, turn on the first electrode and VSS, and VDD. Turning off, when the control module alternately outputs the first control signal and the second control signal, the first switching module causes the first electrode to alternately conduct with VDD and VSS, and the second electrode alternately turns on with VSS and VDD.
  • the first switch module when the first switch module receives the first control signal, the first electrode is turned on with VDD, is positive, the second electrode is turned on with VSS, is a negative pole, and when the first switch module receives the second control signal, The second electrode is electrically connected to VDD and is a positive electrode, and the first electrode is electrically connected to VSS and is a negative electrode.
  • the first detecting module detects whether the first electrode and the second electrode are turned on in real time, and can detect whether an electronic device is placed on the charging base. Specifically, the first detecting module is at the first electrode and the second electrode. When turned on, a first level signal is output, such as a high level signal, and when not turned on, a second level signal, such as a low level signal, is output, so that the first detecting module outputs the detected result to the control module.
  • the first control signal is output at t1, and the second control signal is output at t2, where t1 is the time before t2.
  • the first electrode is a positive electrode
  • the second electrode is a negative electrode
  • the first electrode is a negative electrode
  • the second electrode is a positive electrode.
  • the control module receives a high-low level signal
  • the first electrode is a positive electrode.
  • the second electrode is a negative electrode
  • the two electrodes are turned on.
  • the first electrode is a negative electrode and the second electrode is a positive electrode
  • the two electrodes are not conductive. Therefore, it can be determined that the first charging electrode is a positive electrode and the second charging electrode is a negative electrode.
  • the control module outputs a third control signal; if the control module receives a low level At this time, the control module outputs a fourth control signal.
  • the second switch module is a switch module connected to the control module, and performs a switch action according to a control signal output by the control module.
  • the switch module includes a switch coupled between the first electrode and VDD, the first electrode and VSS, the second electrode and VDD, and the second electrode and VSS.
  • the polarity of the charging electrode of the electronic device is detected by the first switching module and the first detecting module, and the detection result is transmitted to the control module, and the control module outputs a control signal for controlling the second switching module according to the detection result.
  • the second switch module is configured to connect the two electrodes of the charging base to VDD and VSS according to the control signal, thereby achieving the purpose of automatically adjusting the polarity of the electrode of the charging base according to the polarity of the charging electrode of the electronic device.
  • the charging base provided by the embodiment when used for charging, the user does not need to pay attention to the problem of polarity matching between the electronic device and the charging base, and the electrode of the charging base can be automatically adjusted according to the polarity characteristics of the charging electrode of the electronic device, thereby improving the user.
  • the electrode of the charging base can be automatically adjusted according to the polarity characteristics of the charging electrode of the electronic device, thereby improving the user.
  • the charging base of the electronic device of the second embodiment provided in this embodiment includes an electrode and a control unit, wherein the electrode includes a first electrode and a second electrode, and the control unit includes a control module, a first switch module, and a first detecting module And a second switch module.
  • the second switch module includes a first switch connected between the first electrode and VDD, a second switch connected between the first electrode and VSS, a third switch connected between the second electrode and VDD, and a connection a fourth switch between the second electrode and VSS, specifically, as shown in FIG. 2(a), the first switch is a P-channel FET PFET_A, the second switch is an N-channel FET NFET_A, and a third switch The P-channel FET PFET_B and the fourth switch are N-channel FETs NFET_B.
  • the control terminals of the FETs are respectively connected to the control module, and the FETs are controlled to be turned on and off by the control module.
  • the first detecting module includes two comparators, wherein a first input terminal of the first comparator is used for inputting a voltage of the first electrode A, and a second input terminal is used for inputting a reference voltage, The output end is used to connect the control module; the first input end of the second comparator is used to input the voltage of the second electrode B, the second input end is used for inputting the reference voltage, and the output end is used for connecting the control module.
  • the first switch module includes a fifth switch K5, a sixth switch ⁇ 6, a seventh switch ⁇ 7, an eighth switch ⁇ 8, a third resistor R3, and a fourth resistor R4, and the fifth switch K5 and the
  • the three resistors R3 are connected in series, one end of the series is connected to the first electrode A, and the other end is connected to VDD;
  • the sixth switch K6 has one end connected to the first electrode A and the other end connected to VSS;
  • the seventh switch K7 is connected in series with the fourth resistor R4, and the other end is connected in series Connecting the second electrode B, the other end is connected to VDD; one end of the eighth switch K8 is connected to the second electrode B, and the other end is connected to VSS, wherein the fifth switch K5, the sixth switch ⁇ 6, the seventh switch ⁇ 7 and the eighth switch ⁇ 8
  • the switch status is controlled by the control module.
  • the parameter of the reference voltage of the two comparators in the first detection module is determined by the parameters of the first switch module.
  • the third resistor R3 and the fourth resistor R4 respectively adopt a resistance of 200 ohms, and the electrode is connected to VSS, the circuit is pulled to lmA, and the reference voltage is preferably It is 0.1V.
  • the control module first initializes, and after initialization, detects whether an electronic device is connected to the charging base in real time. Specifically, the control module alternately outputs two kinds of control signals to the first switching mode. 1 mA, when the first rising module receives the second control signal, the ⁇ _ _ _ K5 and the eighth swell K8 are off, the sixth swell K6 and the seventh switch K7 are turned on, and the second electrode B is connected to VDD, the first electrode A is pulled to lmA.
  • the first electrode A and the second electrode B When no load is connected to the charging base, the first electrode A and the second electrode B are not turned on, and the voltages on the first electrode A and the second electrode B are both less than the reference voltage of 0.1 V, and the two comparators of the first detecting module Outputting a low level; when a load is connected to the charging base, the first electrode A and the second electrode B are turned on, and the voltage on the first electrode A or the second electrode B is greater than a reference voltage of 0.1 V, the first detecting module One comparator outputs a high level. The input of the comparator inputs the voltage of the electrode connected to VDD, and the other comparator outputs a low level. The input of the comparator inputs the voltage of the electrode connected to VSS.
  • the first comparator when the first comparator outputs a high level, the first electrode A is turned on with the second electrode B when the VDD is connected, and when the second comparator outputs a high level, the first electrode A is connected to the VDD when the second electrode B is connected to the VDD. It is electrically connected to the second electrode B.
  • the control module determines the polarity of the charging electrode of the load (ie, the electronic device) according to the timing of the output control signal and the timing of receiving the level signal of the first detecting module, where M represents the first control signal, and N represents the second control signal, A high level is indicated by 1 and a low level is indicated by 0. (1, 0) indicates that the first comparator outputs a high level and the second comparator outputs a low level.
  • Example 1 (a): If the timing of the control signal is MM NMMNN..., the timing of the level signal output by the first detection module is (1, 0) ( 1, 0) (0, 0) (0, 0) ( 1, 0) ( 1, 0) (0, 0) ..., when the first electrode A is connected to VDD and the second electrode B is connected to VSS, the two electrodes are turned on, that is, the load charging electrode The polarity of the electrode is matched with the polarity of the electrode of the charging base when the first electrode A is connected to VDD and the second electrode B is connected to VSS. It can be determined that the charging electrode connected to the first electrode A is positive and the charging is connected to the second electrode B.
  • the electrode is a negative electrode, and the polarity of the charging electrode is automatically recognized. Further, the control module controls the PFET_A and the NFET_B to be turned on, the PFET_B and the NFET_A are turned off by controlling the FETs in the second switching module, and the charging base starts to charge the load. , Automatically adjust the polarity of the charging base according to the polarity identification result.
  • the polarity is matched with the polarity of the electrode of the charging base when the first electrode A is connected to VSS and the second electrode B is connected to VDD, and the charging electrode connected to the first electrode A is determined to be the negative electrode, and the charging electrode connected to the second electrode B is determined.
  • the control module controls the FETs in the second switching module to turn off the PFET_A and the NFET_B, and the PFET_B and the NFET_A are turned on, and the charging base starts to charge the load.
  • the polarity of the charging base is automatically adjusted according to the polarity recognition result.
  • the present invention does not limit the timing of the control signal, as long as the control module can obtain the polarity identification result by comparing the timing of the output control signal with the timing of the received level signal.
  • the control module when the first detection module detects the load determination When the 1" of the W electrode of the charging base is short-circuited, in particular, the control module outputs the first control signal or the second control signal, that is, no matter which electrode is connected to VDD, the first electrode and the second electrode are in a conducting phase. Therefore, when the first detecting module detects that the first electrode and the second electrode are continuously turned on, the first detecting module can determine that the charging base is short-circuited.
  • the charging base in the first or second embodiment further includes a first prompting unit connected to the control module, and the control module is further configured to output the first electrode and the second electrode only when the first detecting module is received.
  • the control module is further configured to output the first electrode and the second electrode only when the first detecting module is received.
  • the signal is turned on, for example, in the second embodiment, the level signals output by the first comparator and the second comparator are logically ORed and output to the control module, and when the control module receives only the high level signal, the control unit A prompt unit outputs a short circuit prompt message.
  • the first prompting unit may be a speaker, a display screen, a digital tube, a signal light, or the like.
  • the charging base in the first or second embodiment further includes a third prompting unit connected to the control module, and the control module is further configured to output the first electrode and the second electrode only when the third detecting module is received.
  • the third prompting unit is controlled to output a no-load prompt message.
  • the third prompting unit may be a speaker, a display screen, a digital tube, a signal light, or the like.
  • the charging base in the first or second embodiment further includes a second prompting unit and a second detecting module respectively connected to the control module, wherein the second detecting module is configured to output the third control in the control module.
  • the signal or the fourth control signal that is, after the charging base starts charging, detecting the charging current of the charging base, for example, monitoring the charging current flowing through the FET, and outputting the third when the charging current is less than the first preset current.
  • a level signal where the first preset current is a critical current for completion of charging, where the third level signal is high level or low level
  • the control module obtains charging when receiving the third level signal The current is less than the critical current detection result, and the second prompting unit is controlled to output the charging completion prompt information.
  • the control module is further configured to: after receiving the third level signal, output the first control signal and the second control signal to the first switch module again, when the first detection module outputs only the second level signal, indicating the electronic The device has been removed from the charging base, and the charging base enters the non-charging idle state again, thereby continuing to alternately output two kinds of control signals, so that polarity recognition and polarity are automatically performed when the electronic device is charged again on the charging base.
  • the control module controls the second prompting unit to output the charging completion.
  • a prompt message to enable the user to remove the electronic device in time.
  • the charging base in the first or second embodiment further includes a third detecting module connected to the control module, wherein the third detecting module is used to After the control module outputs the third control signal or the fourth control signal, that is, after the charging base starts charging, the charging current of the charging base is detected, and when the charging current is greater than the third preset current, the fourth level signal is output, where The second preset current is the limit current of the overcurrent protection, where the fourth level signal is a high level or a low level, wherein the control module is further configured to output the fourth level signal after receiving the fourth level signal
  • the fifth control module is further configured to disconnect the electrode from VDD and B VSS when receiving the fifth control signal.
  • the voltage of the second electrode B when the first electrode is connected to VDD or the second electrode B (when the second electrode is connected to VDD when charging) is compared with the threshold current of the charging completion by voltage comparison.
  • the third detecting module includes a comparator, one input of the comparator inputs the reference voltage V_OC, and the other end is input to the first electrode A (the first electrode when charging)
  • the comparison between the charging current and the limiting current of the overcurrent protection is achieved by voltage comparison.
  • the control module When the charging current is greater than the limiting current of the overcurrent protection, the control module outputs a control signal for cutting off all the FETs, then the four FETs are all turned off, and the charging is interrupted. Further preferably, the warning state of the fault state is performed by setting a prompting unit such as a speaker, a display screen, a digital tube, a signal light, or the like.
  • the charging base 200 includes a power input interface (not shown), a control unit 221, and an electrode 210.
  • the power input interface is the interface of the charging base to the external power supply device. It can be a USB interface, connected to an external power supply device, or it can be a power adapter interface to directly connect to the mains.
  • control unit 221 The input end of the control unit 221 is connected to the power input interface, and the output end is connected to the electrode through a wire.
  • the control unit 221 can be the control unit of the charging base in any of the above embodiments, and details are not described herein.
  • the electrode 210 of the charging base of the embodiment is composed of two electrode plates, and the first electrode plate 212 is connected to the first output end of the control unit 221 via a wire 223, wherein the conductive point 214 on the first electrode plate 212 is an electrode.
  • the second electrode plate 211 is connected to the second output end of the control unit 221 via a wire 222.
  • the conductive point 213 on the second electrode plate 211 is a connection on the electrode plate, and the two electrode plates are two.
  • a large conductive layer which is made of a plate-shaped conductive material with high brightness, wear resistance and good electrical conductivity.
  • the charging base of the embodiment When the charging base of the embodiment is used to charge the electronic device, as shown in FIG. 4, only the electronic device 400 corresponding to the two charging electrodes 401 and 402 is placed on the charging base 210, so that the charging electrode of the electronic device is When the electrodes of the charging base are in contact, the charging of the electronic device can be completed.
  • the direct contact type wireless charging avoids the damage of the charging interface of the electronic device when the plugging and unplugging connector is wired, and at the same time, the direct charging method, Compared with electromagnetic induction charging, the electric energy conversion efficiency is high, no heat is generated, and the battery life is not affected.
  • the charging speed of direct charging is fast, and there is no need to provide electromagnetic and magnetoelectric conversion devices, and the product cost is low and convenient to carry.
  • control unit can identify the polarity of the electrode of the electronic device regardless of the direction in which the electronic device is placed on the charging base, and automatically adjust the polarity of the electrode of the charging base according to the polarity identification result to complete the electronic device. Charging.
  • the charging system of the electronic device of the fourth embodiment provided in the present embodiment includes a charging base and a charged device (i.e., an electronic device) and a casing of the device to be charged.
  • the charging base in this embodiment is the charging base provided in the above third embodiment, and details are not described herein again.
  • the electronic device and the casing of the embodiment are as shown in FIG. 6, wherein the casing comprises a casing 400.
  • the electronic device is labeled as 400 in the above third embodiment, which is convenient for description herein.
  • the housing is also labeled 400, which does not constitute an improper definition), a charging electrode, a power receiving unit (not shown), and a power output unit 403.
  • the charging electrode disposed on the housing 400 includes a first charging electrode 402 and The second charging electrode 401 is respectively connected to the first electrode of the charging base 210
  • the apparatus 600 of the apparatus in the embodiment has a power storage device 601 and a power receiving portion 602 capable of receiving external power and charging the power storage device 601.
  • the jacket to be charged may be the outer casing of the device to be charged or a protective cover that is adapted to the outer casing of the device to be charged.
  • the charged casing is the outer casing of the charged device, when charging the charged device, the charged device and its outer casing are simply placed on the charging base, so that the two charging electrodes and the charging base on the outer casing The upper electrode plates can be in contact.
  • the protective cover of the charged device when charging the charged device, the protective sleeve needs to be placed on the charged device, so that the two charging electrodes on the protective cover and the electrode plate on the charging base Just touch it.
  • the principle of charging the electronic device through the casing is as follows: After the electronic device is placed on the charging base, and the first charging electrode 402 and the second charging electrode 401 are respectively in contact with the electrode plates of the charging base, the control unit of the charging base is The polarity determination of the charging electrode is performed, and according to the determination result, the polarity of the first electrode plate and the second electrode plate are matched with the polarity of the charging electrode, and charging is started.
  • the power receiving unit 405 acquires the power provided by the charging base via the first charging electrode 402 and the second charging electrode 401, and outputs the acquired electric energy to the power receiving portion 602 of the electronic device via the power output unit 403, thereby charging the two charging electrodes
  • the obtained electric energy is output to the electric storage device 601 of the electronic device, and the charging of the electric storage device 601 of the electronic device is completed.
  • the charging electrode is arranged on the outer casing or the protective sleeve of the electronic device to be charged with the electrode plate of the charging base to form a direct contact charging system, and the electric energy conversion is compared with the electromagnetic induction charging.
  • High efficiency no heat, no impact on battery life, direct charging, fast charging, no need to set up electromagnetic and magnetoelectric conversion devices, low cost and easy to carry.
  • by providing a charging electrode on the outer casing or the protective cover it is convenient for the user to carry.
  • the electronic device and the casing thereof are simply placed on the charging base, thereby increasing the convenience of charging, and at the same time, There is no need to plug and unplug the charging interface during charging, which can avoid damage to the charging interface caused by repeated insertion and removal of the charging interface.
  • the polarity of the electrode plate is automatically adjusted by automatically identifying the polarity of the charging electrode, so that the user does not need to consider the polarity of the charging electrode and the polarity of the electrode plate during charging, thereby further increasing the convenience of charging and improving the user experience. .
  • FIG. 7 is a schematic diagram of a charging system according to a fifth embodiment of the present invention.
  • a power interface (not shown) of the charging base 200 is connected to an interface of an external power supply device, such as a mobile power source or a commercial power source.
  • the power interface is connected to the control unit 221 (ie, IC1), and the control unit 221 is connected to the first electrode plate 212 and the second electrode plate 211 of the charging base 200; the first electrode plate 212 and the housing 400 of the electronic device
  • the first charging electrode 402 is in contact with the second charging plate 402, and the second electrode plate 211 is in contact with the second charging electrode 401 disposed on the housing 400 of the electronic device.
  • the power receiving unit 405 obtains electric energy through the two charging electrodes, and passes through the power output unit (
  • the power management device 603 provided inside the movement 600 of the electronic device is connected to the power storage device 601, thereby being controlled by the control unit 221, the power receiving unit 405, and the power management device 603. , charging the power storage device 601 of the electronic device is completed.
  • the control module in the control unit is IC1, IC1 first detects whether there is an object on the charging stand, then determines whether the object is a valid electronic device, and determines the polarity of the two electrodes of the effective electronic device, after the polarity is determined IC1 turns on a pair of power switches whose polarity of the output voltage matches the polarity of the device to be charged.
  • the charging base correctly charges the battery of the device in the manner recommended by the manufacturer of the electronic device.
  • the circuit takes appropriate action when the battery is fully charged: including reducing the output current and sending a "full" indication signal.
  • the circuit can also monitor in real time whether the device to be charged is located on the charging stand.
  • IC1 is the transmitter part of the charging system, which periodically sends a detection signal to the charging electrode.
  • the corresponding power supply electrode is turned on to the switch of the electronic device.
  • IC1 monitors the charging current in real time. When it detects that the charging current is small enough, it indicates that charging has been completed, it will give an indication to complete charging.
  • IC1 turns on the power switch, it begins to monitor in real time whether the electronic device is removed from the pedestal. When it is detected that the electronic device is removed from the pedestal, it returns to the idle state: The detection signal is periodically sent to the charging electrode until the active electronic device is placed on the charging base.
  • IC2 is the receiver part of the charging system, which is placed on the side of the electronic device.
  • the hardware connection of IC2 and the electronic device is set in advance.
  • IC2 sends the voltage to IC3, and the battery inside the electronics begins to charge.
  • IC1 is implemented by the circuit shown in Figure 2 (a) and Figure 2 (b). IC1 has the following two stages in detecting the effectiveness of electronic equipment and the polarity of electronic equipment:
  • Stage 1 connecting the first electrode A (ie, the first electrode plate 212) to VDD, and the second electrode B (ie, the second electrode plate 211) is pulled to lmA. If A to B can be turned on, IC1 is valid. Value 1, otherwise it is not turned on, IC1 gets a valid value of 0;
  • Phase 2 Connect the second electrode B to VDD, the first electrode A is pulled to lmA, if it can be turned on from B to A, IC1 gets a valid value 1, otherwise it is not turned on, and IC1 gets a valid value of 0.
  • IC1 can determine the four conditions of its load by the obtained effective value as follows:
  • Case 3 When the transmitter gets a value of 1 in phase 1, and a value of 0 in phase 2, the load on the charging base is the payload, that is, there is an electronic device between A and B, and the transmitter gets The electrode A is connected to the positive electrode of the charging electrode, and the electrode B is connected to the negative electrode of the charging electrode. For the sake of accuracy, the transmitter performs the above-mentioned phase 1 and phase 2 again. If the same information is obtained, the transmitter will connect A" to VDD (by turning on PFET_A), connecting B" to VSS (by turning on NFET_B), initializing the charging action, charging begins.
  • Case 4 When the transmitter gets a value of 0 in phase 1, and a value of 1 in phase 2, the load on the charging base is the payload, that is, there is an electronic device between A and B, and the transmitter gets The electrode A is connected to the negative electrode of the charging electrode, and the electrode B is connected to the positive electrode of the charging electrode. To determine the accuracy, the transmitter performs the above phase 1 and phase 2 again. If the same information is obtained, the transmitter will connect B to VDD. (By turning on PFET_B), connect A to VSS (by turning on NFET_A), initialize the charging action, and charge starts.
  • the power receiving unit in the fourth or fifth embodiment includes a switch module disposed between the charging electrode and the power output unit for controlling the positive voltage path between the charging electrode and the power output unit to be turned on and off.
  • the voltage path is turned off, so that the conduction current from the positive charging electrode to the negative charging electrode is ensured on one side of the electronic device, and the reverse conducting current is zero.
  • connection diagram of the power receiving unit in the charging system is as shown in Figs. 8(a) to 8(d). Pole) connection.
  • the power receiving unit (set to IC2) is the receiver part of the charging system, including the MN (also known as the N-channel FET), the first resistor R1, the intelligent comparator COMP, and the second resistor R2. Debounce circuit, first protection circuit, second protection circuit, initialization circuit POR and diode D1.
  • connection relationship of each part is as follows: the first end of the switch tube MN is connected to the negative pole, and the second end is connected to the VSS; the first end of the first resistor R1 is connected to the first node, and the second end is connected to the second node, wherein The first node is a node between the positive pole and VDD, the second node is a node between the negative pole and the first end of the switch tube; the positive input end of the intelligent comparator C0MP is connected to the second node, and the negative input end is connected to the a third node, the output end is connected to the control end of the switch tube MN, wherein the third node is a node between the second end of the switch tube MN and VSS; the first end of the second resistor R2 is connected to the third node, the second The end is connected to the fourth node, wherein the fourth node is a node between the output end of the smart comparator COMP and the control end of the switch tube MN; the first end of the debounce circuit
  • the circuit works as follows:
  • the base control terminal of the circuit initial switch MN is at the same potential as its source.
  • the body diode of MN will be forwarded.
  • the intelligent comparator will judge that the negative pole is low and the power supply is from the positive pole and the negative pole. After waiting for a while, turn on the MN to fully turn on. status.
  • the power supply enters from VDD and VSS the MN body diode is reversed, and the negative pole is pulled to the same level as the positive pole.
  • the intelligent comparator determines that the negative pole is high and the power supply comes in from VDD and VSS, and keeps the MN switch. The tube is closed.
  • the power output unit has a first power output terminal VDD and a second power output terminal VSS, the second power output terminal VSS is connected to the second charging electrode (negative electrode), and the second power output terminal VSS is The first charging electrode (positive electrode) is connected.
  • the power receiving unit includes a switch tube MP (ie, a P-channel field effect transistor), a first resistor R1, an intelligent comparator COM, a second resistor R2, a debounce circuit, a first protection circuit, a second protection circuit, an initialization circuit, and a diode. Dl.
  • connection relationship of each part is as follows: the first end of the switch tube MP is connected to the positive pole, and the second end is connected to VDD; the first end of the first resistor R1 is connected to the first node, and the second end is connected to the second node, wherein The first node is a node between the positive pole and VDD, the second node is a node between the negative pole and the first end of the switch tube; the positive input end of the intelligent comparator COMP is connected to the second node, and the negative input terminal is connected to the a third node, the output end is connected to the control end of the switch tube MP, wherein the third node is a node between the second end of the switch tube MP and VDD; the first end of the second resistor R2 is connected to the third node, the second The end is connected to the fourth node, wherein the fourth node is a node between the output end of the smart comparator COMP and the control end of the switch tube MP; the first end of the debounce circuit is connected to the output end of
  • the base control terminal of the circuit initial switching transistor PN is at the same potential as its source.
  • the body diode of the MP will be forwarded.
  • the intelligent comparator will judge that the positive pole is high and the power supply is from the positive and negative poles. After waiting for a while, turn on the MN to fully conduct. status.
  • the MP body diode is reversed, and the positive pole is pulled to the same point on the negative pole.
  • the intelligent comparator will judge that the positive pole is the first potential and the power supply comes in from VDD and VSS, and keeps the MP switch. The tube is closed.
  • the power output unit has a first power output terminal VSS and a second power output terminal VDD, and the first power output terminal VSS is connected to the first charging electrode (negative electrode) to form a negative voltage path, and second The power output terminal VDD is connected to the second charging electrode (positive electrode), a positive voltage path.
  • the power receiving unit includes a Zener diode, the Zener diode is disposed in the positive voltage path, and the anode of the diode is connected to the second charging electrode, and the cathode of the diode is connected to VDD.
  • the power output unit has a first power output terminal VSS and a second power output terminal VDD, and the first power output terminal VSS is connected to the first charging electrode (negative electrode) to form a negative voltage path, and second The power output terminal VDD is connected to the second charging electrode (positive electrode), a positive voltage path.
  • the power receiving unit includes a Zener diode, the Zener diode is disposed in the negative voltage path, and the anode of the diode is connected to the VSS, and the cathode of the diode is connected to the first charging electrode.
  • the charging method in this embodiment can be implemented by any of the above charging bases and charging systems.
  • FIG 9 is a flow chart showing a charging method according to a sixth embodiment of the present invention. As shown in Figure 9, the method includes the following steps S102 to S112.
  • Step S102 Control the first electrode of the charging base to be turned on with VDD at the first time, control the second electrode of the charging base to be turned on with VSS, control the second electrode to be turned on with VDD at the second time, and control the first electrode and VSS. Turning on, wherein the first time is the time before the second time.
  • Step S104 Detect whether the first electrode and the second electrode are turned on.
  • Step S106 When the condition a is detected, that is, the first electrode and the second electrode are turned on at the first time, and the first electrode and the second electrode are not turned on at the second time, the first electrode is connected to the VDD, The second electrode is brought to VSS to start charging.
  • Step S108 When the condition b is detected, that is, the first electrode and the second electrode are not turned on at the first time, and the first electrode and the second electrode are turned on at the second time, the first electrode is connected to the VSS, Connect the second electrode to VDD and start charging.
  • Step S110 When the condition c is detected, that is, when the first electrode and the second electrode are both turned on at the first time and the second time, the charging base outputs a short circuit prompt message;
  • Step S112 When the condition d is detected, that is, when the first electrode and the second electrode are not turned on at the first time and the second time, the charging base is controlled to output no load prompt information.
  • the user does not need to pay attention to the problem of polarity matching between the electronic device and the charging base, and the electrode of the charging base can be automatically adjusted according to the polarity characteristics of the charging electrode of the electronic device, thereby improving the user experience.
  • step S110 and step S112 are adopted, the load condition on the charging base can be provided to the user.
  • the charging base outputs a short circuit prompt information or no load.
  • the charging current of the charging base is detected, and when the charging current is less than the first preset current, the charging base outputs a charging completion prompt message, where the first preset current is The critical current that is completed for charging.
  • the user can be provided with information that the charging has been completed in time.
  • step S106 or step S108 detecting a charging current of the charging base, when detecting that the charging current is greater than the second preset current, controlling the connection of the electrode to VDD and VSS, where the second preset current is Limit current for overcurrent protection.
  • the charging can be stopped in time when the current exceeds the normal charging current, and the charging current is prevented from being too large to cause damage to the electronic device.
  • step S106 or step S108 detecting a charging current of the charging base, when the charging current is less than the first preset current, performing step S102 and step S104 again, wherein when the condition d is detected by step S104, Indicates that the user has removed the electronic device from the charging dock, and thus proceeds to step S102 and step S104 until condition a or case b is detected again.
  • the charging base is controlled to output the charging completion prompt message.
  • the charging base can automatically recognize the polarity of the charging electrode of the electronic device, and automatically adjust the polarity of the charging base electrode according to the recognition result, so that the charging base and the charging base
  • the electronic device is adapted so that the user does not need to pay attention to the polarity matching between the electronic device and the charging base during charging, and the electrode of the charging base can be automatically adjusted according to the polarity characteristics of the charging electrode of the electronic device, thereby improving the user experience.

Abstract

一种电子设备的充电底座、充电系统和充电方法,其充电方法包括:在第一时间控制充电底座的第一电极与VDD导通,第二电极与VSS导通,在第二时间控制第二电极与VDD导通,第一电极与VSS导通,当检测到第一电极在第一时间导通而在第二时间未导通时,将第一电极连接至VDD,第二电极连接至VSS;当检测到第一电极在第一时间未导通而在第二时间导通时,将第一电极连接至VSS,第二电极连接至VDD。该充电底座可自动根据电池极性调整充电极性。

Description

电子设备的充电底座、 充电系统和充电方法 技术领域
本发明涉及电子设备领域, 具体而言, 涉及一种电子设备的充电底座、 充电系统和充电 方法。 背景技术
随着智能电子产品功能的日新月异, 电子产品对电源能量的消耗急速增加。 如何使各种 功能强大的智能电子产品 (包括智能手机、 平板电脑和便携式仪器仪表等) 能够得到更有效 的电源供应, 同时又保持其灵活便携的特征成为目前各大智能电子产品生产商最迫切解决的 难题。
目前, 在采用充电器、 充电底座等充电设备对电子设备进行充电时, 充电设备的电极极 性是固定的, 因而, 在使用该类充电设备进行充电时, 充电设备的电极无法根据电子设备充 电电极的极性特点自动调节极性, 而是需要用户保证电子设备的充电电极的极性正确, 用户 体验感差。
针对的现有技术中电子设备充电时用户体验感差的问题, 目前尚未提出有效的解决方案。 发明内容
本发明的主要目的在于提供一种电子设备的充电底座、 充电系统和充电方法, 以解决现 有技术中电子设备充电时用户体验感差的问题。
为了实现上述目的, 根据本发明的一个方面, 提供了一种电子设备的充电底座, 包括: 电极, 电极包括第一电极和第二电极, 控制单元, 其中, 控制单元包括: 控制模块, 用于在 第一时间输出第一控制信号, 在第二时间输出第二控制信号, 其中, 第一时间是第二时间之 前的时间; 第一开关模块, 与控制模块相连接, 用于在接收到第一控制信号时, 导通第一电 极与 VDD, 导通第二电极与 VSS, 在接收到第二控制信号时, 导通第一电极与 VSS, 导通第 二电极与 VDD;第一检测模块,与控制模块相连接,用于检测第一电极与第二电极是否导通, 并在第一电极与第二电极导通时输出第一电平信号, 未导通时输出第二电平信号; 控制模块 还用于在先后接收到第一电平信号和第二电平信号时, 输出第三控制信号, 在先后接收到第 二电平信号和第一电平信号时, 输出第四控制信号; 第二开关模块, 与控制模块相连接, 用 于在接收到第三控制信号时, 将第一电极连接至 VDD, 将第二电极至 VSS, 在接收到第四控 制信号, 将第一电极连接至 VSS, 将第二电极连接至 VDD。
进一步地, 电子设备的充电底座还包括: 第一提示单元, 与控制模块相连接, 其中, 控 制模块还用于在仅接收到第一电平信号时, 控制第一提示单元输出短路提示信息。
进一步地, 充电底座还包括: 第二提示单元, 与控制模块相连接; 控制单元还包括: 第 控制模块还用十在接收到第三电平信号时, 控制第二提 单兀输出充电完成提 信恳。
进一步地, 电子设备的充电底座还包括: 第三提示单元, 与控制模块相连接; 其中, 控 制模块还用于在仅接收到第二电平信号时, 控制第三提示单元输出无负载提示信息。
进一步地, 电子设备的充电底座还包括: 第三检测模块, 与控制模块相连接, 用于在控 制模块输出第三控制信号或第四控制信号之后, 检测充电底座的充电电流, 并在充电电流大 于第三预设电流时, 输出第四电平信号, 其中, 控制模块还用于在接收到第四电平信号后, 输出第五控制信号,第二开关模块还用于在接收到第五控制信号时,断开电极与 VDD和 VSS 的连接。
进一步地, 第二开关模块包括: 第一开关, 连接在第一电极与 VDD 之间; 第二开关, 连接在第一电极与 VSS之间; 第三开关, 连接在第二电极与 VDD之间; 以及第四开关, 连 接在第二电极与 VSS之间, 其中, 第一开关与第三开关为 P沟道场效应管, 第二开关与第四 开关为 N沟道场效应管。
进一步地, 第一检测模块包括: 第一比较器, 第一输入端用于输入第一电极的电压, 第 二输入端用于输入参考电压, 输出端用于连接控制模块; 以及第二比较器, 第一输入端用于 输入第二电极的电压, 第二输入端用于输入参考电压, 输出端用于连接控制模块。
为了实现上述目的, 根据本发明的另一方面, 提供了一种电子设备的充电系统, 包括: 充电底座, 该充电底座为本发明上述内容所提供的任一种充电底座, 其中, 充电底座的第一 电极和第二电极均采用板状导电材料制成; 被充电设备及被充电设备的壳套, 其中, 壳套包 括: 充电电极, 包括第一充电电极和第二充电电极, 第一充电电极和第二充电电极, 用于与 充电底座的电极相适配; 电能接收单元, 与充电电极相连接, 用于接收充电电极获取的电能; 以及电能输出单元, 与电能接收单元相连接, 用于将电能接收单元接收的电能输出至被充电 设备的储电装置。
进一步地, 电能接收单元包括: 开关模块, 设置在充电电极与电能输出单元之间, 用于 控制充电电极与电能输出单元之间的正电压通路导通、 负电压通路关断。
进一步地, 电能输出单元具有第一电能输出端和第二电能输出端, 开关模块包括: 开关 管, 第一端与第一充电电极相连接, 第二端与第一电能输出端相连接, 其中, 第二电能输出 端与第二充电电极相连接; 电能接收单元还包括: 第一电阻, 第一端连接至第一节点, 第二 端连接至第二节点, 其中, 第一节点为第二充电电极与第二电能输出端之间的节点, 第二节 点为第一充电电极与开关管的第一端之间的节点; 比较器, 第一输入端连接至第二节点, 第 二输入端连接至第三节点, 输出端连接至开关管的控制端, 其中, 第三节点为开关管的第二 端与第一电能输出端之间的节点; 以及第二电阻, 第一端连接至第三节点, 第二端连接至第 四节点, 其中, 第四节点为比较器的输出端与开关管的控制端之间的节点。
进一步地, 电能接收单元还包括: 去抖动电路, 第一端与比较器的输出端相连接, 第二 端连接至第四节点; 第一保护电路, 第一端与开关管的第一端相连接, 第一保护电路的第二 端与开关管的第二端相连接; 第二保护电路, 第一端与第一节点相连接, 第二端与第二节点 相连接; 以及二极管, 第一端第一节点相连接, 第二端与第二节点相连接。 迸一歩地, 升夫模块包拈二极管, 二极管设置十正电压通路中, 且二极管的正极与充电 电极相连接, 二极管的负极与电能输出单元相连接; 或者二极管设置于负电压通路中, 且二 极管的正极与电能输出单元相连接, 二极管的负极与充电电极相连接。
为了实现上述目的, 根据本发明的另一方面, 提供了一种电子设备的充电方法, 电子设 备为被充电设备, 充电方法采用本发明上述内容所提供的任一种充电底座向电子设备充电, 其中, 充电方法包括: 在第一时间控制充电底座的第一电极与 VDD 导通, 控制充电底座的 第二电极与 VSS导通, 在第二时间控制第二电极与 VDD导通, 控制第一电极与 VSS导通, 其中, 第一时间是第二时间之前的时间; 检测第一电极与第二电极是否导通; 当检测到第一 电极与第二电极在第一时间导通, 且第一电极与第二电极在第二时间未导通时, 将第一电极 连接至 VDD,将第二电极连接至 VSS;以及当检测到第一电极与第二电极在第一时间未导通, 且第一电极与第二电极在第二时间导通时,将第一电极连接至 VSS,将第二电极连接至 VDD。
进一步地, 电子设备的充电方法还包括: 当检测到第一电极与第二电极在第一时间和第 二时间均导通时, 控制充电底座输出短路提示信息; 以及当检测到第一电极与第二电极在第 一时间和第二时间均未导通时, 控制充电底座输出无负载提示信息。
进一步地, 电子设备的充电方法还包括: 在将第一电极或第二电极连接至 VDD 之后, 检测充电底座的充电电流; 以及在充电电流小于第一预设电流时, 控制充电底座输出充电完 成提示信息。
本发明采用包括以下结构的电子设备的充电底座: 电极, 电极包括第一电极和第二电极, 控制单元, 其中, 控制单元包括: 控制模块, 用于在第一时间输出第一控制信号, 在第二时 间输出第二控制信号, 其中, 第一时间是第二时间之前的时间; 第一开关模块, 与控制模块 相连接, 用于在接收到第一控制信号时, 导通第一电极与 VDD, 导通第二电极与 VSS, 在接 收到第二控制信号时, 导通第一电极与 VSS, 导通第二电极与 VDD; 第一检测模块, 与控制 模块相连接, 用于检测第一电极与第二电极是否导通, 并在第一电极与第二电极导通时输出 第一电平信号, 未导通时输出第二电平信号; 控制模块还用于在先后接收到第一电平信号和 第二电平信号时, 输出第三控制信号, 在先后接收到第二电平信号和第一电平信号时, 输出 第四控制信号; 第二开关模块, 与控制模块相连接, 用于在接收到第三控制信号时, 将第一 电极连接至 VDD, 将第二电极至 VSS, 在接收到第四控制信号, 将第一电极连接至 VSS, 将 第二电极连接至 VDD。解决了现有技术中电子设备充电时用户体验感差的问题, 进而达到了 提升用户体验的效果。 附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实施例及 其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1是根据本发明第一实施例的充电底座中控制单元的原理示意图;
图 2 (a) 和图 2 (b) 是根据本发明第二实施例的充电底座的连接示意图;
图 3是根据本发明第三实施例的充电底座的示意图; 图 6是报据本发明第四实施例的充电糸统中电于设备及壳套的 意图;
图 7是根据本发明第五实施例的充电系统的原理示意图;
图 8 (a) 至图 8 (d)是根据本发明实施例的充电系统中电能接收单元的连接示意图; 以 及
图 9是根据本发明第六实施例的充电方法的流程图。 具体实施方式
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。
首先介绍本具体实施方式提供的充电底座的实施例。
本具体实施方式中提供的第一实施例的电子设备的充电底座包括电极和控制单元,其中, 电极包括第一电极和第二电极, 如图 1所示, 控制单元包括控制模块、 第一开关模块、 第一 检测模块和第二开关模块。
第一开关模块包括连接在第一电极与 VDD、 第一电极与 VSS、 第二电极与 VDD、 第二 电极与 VSS之间的开关, 各开关的状态由控制模块输出的控制信号来控制。
控制模块可以为控制芯片, 在非充电的空闲状态, 交替输出两种控制信号, 具体地, 该 第一和第二控制信号可以为脉冲信号,第一控制信号用于控制第一电极与 VDD导通、与 VSS 关断, 第二电极与 VSS导通、 与 VDD关断, 第二控制信号用于控制第二电极与 VDD导通、 与 VSS关断, 第一电极与 VSS导通、 与 VDD关断, 当控制模块交替输出第一控制信号和第 二控制信号时, 第一开关模块使得第一电极交替与 VDD和 VSS导通, 第二电极对应地交替 与 VSS和 VDD导通。
因此, 第一开关模块在接收到第一控制信号时, 第一电极与 VDD 导通, 为正极, 第二 电极与 VSS导通, 为负极, 第一开关模块在接收到第二控制信号时, 第二电极与 VDD导通, 为正极, 第一电极与 VSS导通, 为负极。
在第一电极交替为正负极, 第二电极对应地交替为负正极的过程中, 假设用户将被充电 设备置于充电底座上充电时, 第一充电电极与第一电极相接触, 第二充电电极与第二电极相 接触, 如果第一充电电极与第一电极、 第二充电电极与第二电极的电极极性相匹配时, 第一 电极与第二电极之间必然处于导通的状态。 因而, 第一检测模块实时检测第一电极与第二电 极之间是否导通, 便可检测到是否有电子设备置于充电底座上, 具体地, 第一检测模块在第 一电极与第二电极导通时输出第一电平信号, 例如高电平信号, 未导通时输出第二电平信号, 例如低电平信号, 从而第一检测模块将检测到的结果输出给控制模块。
例如, 在 tl输出第一控制信号, 在 t2输出第二控制信号, tl为 t2之前的时间。在 tl时, 第一电极为正极, 第二电极为负极, 在 t2时, 第一电极为负极, 第二电极为正极, 如果控制 模块先后接收到高低电平信号, 则说明第一电极为正极、 第二电极为负极时两电极导通, 第 一电极为负极、 第二电极为正极时两电极不能导通, 因而, 可确定第一充电电极为正极, 第 二充电电极为负极, 此时, 控制模块输出第三控制信号; 如果控制模块先后接收到低高电平 此时, 控制模块输出第四控制信号。
第二开关模块是与控制模块相连接的开关模块, 根据控制模块输出的控制信号执行开关 动作。 该开关模块包括连接在第一电极与 VDD、 第一电极与 VSS、 第二电极与 VDD、 第二 电极与 VSS之间的开关。 当第二开关模块接收到第三控制信号时, 将第一电极连接至 VDD, 将第二电极至 VSS, 在接收到第四控制信号, 将第一电极连接至 VSS, 将第二电极连接至 VDD, 充电底座开始向电子设备充电。
在该实施例中, 通过第一开关模块和第一检测模块检测得到电子设备的充电电极极性, 并将检测结果传输给控制模块,控制模块根据该检测结果输出控制第二开关模块的控制信号, 使得第二开关模块根据控制信号将充电底座的两个电极相应连接至 VDD和 VSS, 从而达到 根据电子设备的充电电极极性自动调整充电底座的电极极性的目的。
因此, 采用该实施例提供的充电底座进行充电时, 无需用户关注电子设备与充电底座之 间极性匹配的问题, 充电底座的电极能够根据电子设备充电电极的极性特点自动调节, 提升 了用户体验。
本具体实施方式中提供的第二实施例的电子设备的充电底座包括电极和控制单元,其中, 电极包括第一电极和第二电极, 控制单元包括控制模块、 第一开关模块、 第一检测模块和第 二开关模块。
其中, 第二开关模块包括连接在第一电极与 VDD 之间的第一开关、 连接在第一电极与 VSS之间的第二开关、 连接在第二电极与 VDD之间的第三开关和连接在第二电极与 VSS之 间的第四开关, 具体地, 如图 2 (a) 所示, 第一开关为 P沟道场效应管 PFET_A、 第二开关 为 N沟道场效应管 NFET_A、第三开关为 P沟道场效应管 PFET_B、第四开关为 N沟道场效 应管 NFET_B, 各场效应管的控制端分别与控制模块相连接, 通过控制模块控制各场效应管 的通断。
如图 2 (a) 所示, 第一检测模块包括两个比较器, 其中, 第一比较器的第一输入端用于 输入第一电极 A的电压, 第二输入端用于输入参考电压, 输出端用于连接控制模块; 第二比 较器的第一输入端用于输入第二电极 B的电压, 第二输入端用于输入参考电压, 输出端用于 连接控制模块。
如图 2 (b) 所示, 第一开关模块包括第五开关 K5、 第六开关 Κ6、 第七开关 Κ7、 第八 开关 Κ8、 第三电阻 R3和第四电阻 R4, 第五开关 K5与第三电阻 R3串联, 串联后一端连接 第一电极 A, 另一端连接 VDD; 第六开关 K6的一端连接第一电极 A, 另一端连接 VSS; 第 七开关 K7与第四电阻 R4串联, 串联后一端连接第二电极 B, 另一端连接 VDD; 第八开关 K8的一端连接第二电极 B, 另一端连接 VSS, 其中, 第五开关 K5、 第六开关 Κ6、 第七开关 Κ7和第八开关 Κ8的开关状态由控制模块控制。
第一检测模块中两比较器的参考电压的参数由第一开关模块的参数确定, 当第三电阻 R3 和第四电阻 R4分别采用 200欧电阻, 且电极连接 VSS时拉到 lmA, 参考电压优选为 0.1V。
以上述参数为例, 充电底座通电后, 控制模块首先进行初始化, 初始化之后, 实时检测 是否有电子设备连接到充电底座上, 具体地, 控制模块交替输出两种控制信号至第一开关模 1mA, 第一升夫模块在接收到第二控制信号时, 第 ±_升夫 K5与第八升夫 K8断升, 第六升夫 K6与第七开关 K7导通, 第二电极 B连接至 VDD, 第一电极 A拉到 lmA。
当充电底座上没有连接负载时,第一电极 A与第二电极 B不导通,第一电极 A和第二电 极 B上的电压均小于参考电压 0.1V, 第一检测模块的两个比较器均输出低电平; 当充电底座 上连接有负载时, 第一电极 A与第二电极 B导通, 第一电极 A或第二电极 B上的电压大于 参考电压 0.1V, 第一检测模块的一个比较器输出高电平, 该比较器的输入端输入的是连接 VDD的电极电压, 另一个比较器输出低电平, 该比较器的输入端输入的是连接 VSS的电极 电压。 因而, 在第一比较器输出高电平时, 第一电极 A在连接 VDD时与第二电极 B导通, 在第二比较器输出高电平时, 第一电极 A在第二电极 B连接 VDD时与第二电极 B导通。
控制模块根据输出控制信号的时序和接收到第一检测模块的电平信号的时序确定负载 (即电子设备) 充电电极的极性, 以 M表示第一控制信号, 以 N表示第二控制信号, 以 1 表示高电平, 0表示低电平, (1, 0) 表示第一比较器输出高电平, 第二比较器输出低电平。
例 1 (a): 如果控制信号的时序为 MM NMMNN... , 第一检测模块输出的电平信号的时 序为 (1, 0) ( 1, 0) (0, 0) (0, 0) ( 1, 0) ( 1, 0) (0, 0) (0, 0) …时, 可得到当第一电 极 A连接 VDD、 第二电极 B连接 VSS时两电极导通, 也即负载充电电极的极性在第一电极 A连接 VDD、 第二电极 B连接 VSS时与充电底座的电极极性相匹配, 可确定与第一电极 A 连接的充电电极为正极, 与第二电极 B连接的充电电极为负极, 实现了充电电极极性的自动 识别,进一步地,控制模块通过控制第二开关模块中的各场效应管,使得 PFET_A与NFET_B 导通、 PFET_B与 NFET_A截止, 充电底座开始向负载充电, 实现了根据极性识别结果自动 调节充电底座极性。
例 1 (b): 如果控制信号的时序为 MMNNMMNN... , 第一检测模块输出的电平信号的时 序为 (0, 0) (0, 0) (0, 1 ) (0, 1 ) (0, 0) (0, 0) (0, 1 ) (0, 1 ) …时, 可得到当第一电 极 A连接 VSS、 第二电极 B连接 VDD时两电极导通, 也即负载充电电极的极性在第一电极 A连接 VSS、 第二电极 B连接 VDD时与充电底座的电极极性相匹配, 可确定与第一电极 A 连接的充电电极为负极, 与第二电极 B连接的充电电极为正极, 实现了充电电极极性的自动 识别,进一步地,控制模块通过控制第二开关模块中的各场效应管,使得 PFET_A与NFET_B 截止、 PFET_B与 NFET_A导通, 充电底座开始向负载充电, 实现了根据极性识别结果自动 调节充电底座极性。
例 2 (a): 如果控制信号的时序为 MNMNMN... , 第一检测模块输出的电平信号的时序 为 (1, 0) (0, 0) ( 1, 0) (0, 0) ( 1, 0) (0, 0) …时, 负载极性识别的充电底座极性控制 的过程与上述例 1 (a) 的情况相同, 此处不再重复。
例 2 (b): 如果控制信号的时序为 MNMNMN..., 第一检测模块输出的电平信号的时序 为 (0, 0) (0, 1 ) (0, 0) (0, 1 ) (0, 0) (0, 1 ) …时, 负载极性识别的充电底座极性控制 的过程与上述例 1 (b) 的情况相同, 此处不再重复。
其中, 本发明并不限制控制信号的时序, 只要控制模块能够对比输出的控制信号的时序 和接收到的电平信号的时序得到极性识别结果即可。 其中, 当第一检测模块检测到负载确定 当充电底座的 W电极之 1」短路时, 尤论控制模块输出第一控制信号还是第二控制信号, 也即无论哪个电极连接 VDD, 第一电极与第二电极之间均处于导通阶段, 因此, 当第一检测 模块检测到第一电极与第二电极持续导通, 则第一检测模块便可确定充电底座短路。优选地, 上述的第一或第二实施例中的充电底座还包括与控制模块相连接的第一提示单元, 控制模块 还用于在仅接收到第一检测模块输出第一电极与第二电极导通的信号时,例如在第二实施例, 将第一比较器和第二比较器输出的电平信号逻辑或后输出至控制模块, 则控制模块仅接收到 高电平信号时, 控制第一提示单元输出短路提示信息。 该第一提示单元可以为扬声器, 也可 以为显示屏、 数码管、 信号灯等。
在充电底座上电后, 当充电底座的两电极之间无负载时, 无论控制模块输出第一控制信 号还是第二控制信号, 也即无论哪个电极连接 VDD, 第一电极与第二电极之间均不导通。 优 选地, 上述的第一或第二实施例中的充电底座还包括与控制模块相连接的第三提示单元, 控 制模块还用于在仅接收到第三检测模块输出第一电极与第二电极不导通的信号时, 控制第三 提示单元输出无负载提示信息。 该第三提示单元可以为扬声器, 也可以为显示屏、 数码管、 信号灯等。
优选地, 上述的第一或第二实施例中的充电底座还包括分别与控制模块相连接的第二提 示单元和第二检测模块, 其中, 第二检测模块用于在控制模块输出第三控制信号或第四控制 信号之后, 也即充电底座开始充电后, 检测充电底座的充电电流, 例如监测通过场效应管流 过的充电电流, 并在充电电流小于第一预设电流时, 输出第三电平信号, 该处的第一预设电 流为充电完成的临界电流, 该处的第三电平信号为高电平或低电平, 控制模块在接收到第三 电平信号时, 获得充电电流已小于临界电流检测结果, 此时控制第二提示单元输出充电完成 提示信息。
进一步优选地, 在第二检测模块输出第三电平信号时, 电子设备可能已经从充电底座上 移除, 或者充电已完成但未移除, 为了准确地确定电子设备是否已经从充电底座上移除, 控 制模块还用于在接收到第三电平信号后, 再次输出第一控制信号和第二控制信号至第一开关 模块, 当第一检测模块仅输出第二电平信号时, 表明电子设备已经从充电底座上移除, 由此 充电底座又进入非充电的空闲状态, 从而继续交替输出两种控制信号, 以使充电底座上再次 有电子设备充电时, 进行极性识别和极性自动调节; 当第一检测模块接收到第一电平信号和 第二电平信号时, 表明电子设备已经充电完成但未从充电底座上移除, 此时, 控制模块控制 第二提示单元输出充电完成提示信息, 以使用户及时移除电子设备。
为了避免充电电流太大对电子设备造成损坏, 优选地, 上述的第一或第二实施例中的充 电底座还包括与控制模块相连接的第三检测模块, 其中, 第三检测模块用于在控制模块输出 第三控制信号或第四控制信号之后, 也即充电底座开始充电后, 检测充电底座的充电电流, 并在充电电流大于第三预设电流时, 输出第四电平信号, 该处的第二预设电流为过流保护的 极限电流, 该处的第四电平信号为高电平或低电平, 其中, 控制模块还用于在接收到第四电 平信号后, 输出第五控制信号, 第二开关模块还用于在接收到第五控制信号时, 断开电极与 VDD禾 B VSS的连接。 电时第一电极连接 VDD时) 或第二电极 B (当充电时第二电极连接 VDD时) 的电压, 通过 电压比较来实现充电电流与充电完成的临界电流的比较。 设置参考电压 V_OC为表征第二预 设电流的参考电压, 第三检测模块包括一个比较器, 该比较器的一个输入端输入参考电压 V_OC, 另一端输入第一电极 A (当充电时第一电极连接 VDD时) 或第二电极 B (当充电时 第二电极连接 VDD 时) 的电压, 通过电压比较来实现充电电流与过流保护的极限电流的比 较。
当充电电流大于过流保护的极限电流时, 控制模块输出截止所有场效应管的控制信号, 则四个场效应管均截止, 充电中断。 进一步优选地, 通过设置扬声器、 显示屏、 数码管、 信 号灯等提示单元进行故障状态的警示。
图 3是根据本发明第三实施例的充电底座的示意图, 如图 3所示, 该充电底座 200包括 电源输入接口 (图中未示出)、 控制单元 221和电极 210。
电源输入接口是充电底座连接外部电源提供装置的接口, 可以为 USB 接口, 连接外部 电源提供装置, 也可以为电源适配器接口, 直接连接市电。
控制单元 221的输入端与电源输入接口相连接, 输出端可通过导线连接至电极, 其中, 控制单元 221可以为上述任意一种实施例中充电底座的控制单元, 此处不再赘述。
该实施例的充电底座的电极 210由两个电极板组成, 第一电极板 212与控制单元 221的 第一输出端经由导线 223相连接, 其中, 第一电极板 212上的导电点 214为电极板上的连接 点, 第二电极板 211与控制单元 221的第二输出端经由导线 222相连接, 其中, 第二电极板 211 上的导电点 213为电极板上的连接, 两电极板采用两个大块导电层, 即高亮、 耐磨、 导 电性能较好的板状导电材料制成。
采用该实施例的充电底座为电子设备充电时, 如图 4所示, 只需将对应设置两个充电电 极 401和 402的电子设备 400置于充电底座 210之上, 使电子设备的充电电极与充电底座的 电极相接触, 即可完成对电子设备的充电, 在充电过程中, 直接接触式无线充电避免有线充 电时插拔接头对电子设备充电接口的损坏, 同时, 这种直接充电的方式, 与电磁感应式充电 相比, 电能转化效率高, 无发热, 对电池寿命无影响, 直接充电的充电速度快, 无需设置电 磁、 磁电转换装置, 产品成本低且方便携带。
并且如图 5所示, 无论电子设备以什么方向置于充电底座上, 控制单元均可识别电子设 备的电极极性, 并根据极性识别结果自动调节充电底座的电极极性, 完成电子设备的充电。
其次介绍本具体实施方式提供的充电系统的实施例。
本具体实施方式中提供的第四实施例的电子设备的充电系统包括充电底座和被充电设备 (也即电子设备) 及被充电设备的壳套。
该实施例中的充电底座为上述第三实施例所提供的充电底座, 此处不再赘述。
该实施例中的电子设备及其壳套如图 6所示, 其中, 壳套包括壳体 400 (需要说明的是, 在上述第三实施例中将电子设备标记为 400, 此处为描述方便将壳体也标记为 400, 并不构成 不当限定)、充电电极、 电能接收单元(图中未示出)以及电能输出单元 403, 设置在壳体 400 上的充电电极包括第一充电电极 402和第二充电电极 401, 分别与充电底座 210的第一电极 施例中的电于设备的机芯 600具有储电装置 601和能够接收外界电能且为该储电装置 601充 电的电能接收部 602。
被充电的壳套可以为被充电设备的外壳或与被充电设备外壳相适配的保护套。 当被充电 的壳套为被充电设备的外壳时, 对该被充电设备进行充电时, 只需将被充电设备及其外壳置 于充电底座之上, 使外壳上的两个充电电极与充电底座上的电极板相接触即可。 当被充电的 壳套为被充电设备的保护套时, 对该被充电设备进行充电时, 需将保护套套在被充电设备上, 使保护套上的两个充电电极与充电底座上的电极板相接触即可。
电子设备通过其壳套进行充电的原理如下: 将电子设备置于充电底座上, 并使第一充电 电极 402、 第二充电电极 401与充电底座的电极板分别相接触后, 充电底座的控制单元进行 充电电极的极性判断, 并根据判断结果控制第一电极板与第二电极板与充电电极的极性相适 配, 开始充电。 电能接收单元 405经由第一充电电极 402和第二充电电极 401获取充电底座 提供的电能, 并将获取到的电能经由电能输出单元 403输出至电子设备的电能接收部 602, 从而将两个充电电极获取到的电能输出至电子设备的储电装置 601, 完成对电子设备的储电 装置 601的充电。
采用该实施例提供的充电系统, 电子设备的外壳或保护套上设置充电电极与充电底座的 电极板接触进行充电, 构成一种直接接触式的充电系统, 与电磁感应式充电相比, 电能转化 效率高, 无发热, 对电池寿命无影响, 直接充电的充电速度快, 无需设置电磁、 磁电转换装 置, 产品成本低且方便携带。 此外, 通过在外壳或保护套上设置充电电极, 方便用户携带, 在对电子设备进行充电时, 只需将电子设备及其壳套置于充电底座上, 增加了充电的便利性, 同时, 在充电时无需插拔充电接口, 能够避免反复插拔充电接口对充电接口造成的损坏。 进 一步地, 通过自动识别充电电极的极性来自动调整电极板的极性, 无需用户在充电时考虑充 电电极极性与电极板极性的匹配问题, 进一步增加了充电的便利性, 提升用户体验。
图 7是根据本发明第五实施例的充电系统的原理示意图, 如图 7所示, 充电底座 200的 电源接口 (图中未示出) 连接外部电源提供装置的接口, 例如移动电源或市电等, 电源接口 同时连接控制单元 221 (也即 IC1 ), 控制单元 221与充电底座 200的第一电极板 212和第二 电极板 211相连接;第一电极板 212与电子设备的壳体 400上设置的第一充电电极 402接触, 第二电极板 211与电子设备的壳体 400上设置的第二充电电极 401相接触,电能接收单元 405 通过两个充电电极获取电能, 并经由电能输出单元(图中未示出)提供给电子设备的机芯 600 内部的电能管理装置 603,电能管理装置 603与储电装置 601相连接,从而通过控制单元 221、 电能接收单元 405和电能管理装置 603的控制, 完成对电子设备的储电装置 601的充电。
其中, 控制单元中的控制模块为 IC1, IC1先检测充电座上是否有物体, 然后确定该物体 是否为有效的电子设备, 并确定有效电子设备的两个电极的极性, 在极性确定后, IC1 打开 输出电压的极性与待充电设备的极性相匹配的一对电源开关, 充电底座按照电子设备的制造 商建议的方式为设备的电池正确充电。 当电池充满时电路将采取适当的措施: 包括减小输出 电流, 发送 "充满"指示信号。 电路还能实时监控待充电设备是否位于充电座上。 当待充电 设备被从充电座上移开时, 打开电源开关, 回到检测有效电子设备的状态。 充电自作还可以 其中, IC1 是充电糸统中的发送器部分, 它周期性地给充电电极发送检测信号。 当检测 到有效电子设备已经放在基板上且获得正确的充电电极极性时, 打开相应的电源电极连接到 电子设备的开关。 在充电时, IC1 实时监控充电电流, 当它检测到充电电流足够小了就表明 充电已经完成, 它将给出完成充电的指示。 当 IC1打开电源开关之后, 它开始实时监测电子 设备是否从基座上取走。 当检测到电子设备从基座上移走了, 返回到空闲状态: 给充电电极 周期性地发送检测信号, 直到有效电子设备放置在充电基座上。
IC2是充电系统中的接收器部分, 设置于电子设备一侧, IC2和电子设备的硬件连接预先 在里面设置好了。 当发送器得到了正确的极性并打开了相应通向 IC2的开关, IC2将电压送 给 IC3, 电子设备内部的电池便开始充电。
具体地, IC1采用图 2 (a) 和图 2 (b) 所示的电路实现, IC1在检测电子设备有效性以 及电子设备极性的过程中, 存在以下两个阶段:
阶段 1 : 连接第一电极 A (也即第一电极板 212) 到 VDD, 第二电极 B (也即第二电极 板 211 ) 拉到 lmA, 如果从 A到 B可以导通, IC1得到一个有效值 1, 否则没有导通, IC1 得到一个有效值 0;
阶段 2: 连接第二电极 B到 VDD, 第一电极 A拉到 lmA, 如果从 B到 A可以导通, IC1 得到一个有效值 1, 否则没有导通, IC1得到一个有效值 0。
因此, IC1通过得到的有效值即可判断其上负载的 4种情况如下:
情况 1 : 当阶段 1和阶段 2发送器均得到 0值, 则 A和 B没有连接有效负载, 此时充电 底座上的负载为无效负载。
情况 2: 当阶段 1和阶段 2发送器均得到 1值, 则 A和 B之间短路, 此时充电底座上的 负载为无效负载。
情况 3: 当在阶段 1发送器得到一个 1值, 在阶段 2得到一个 0值, 此时充电底座上的 负载为有效负载,也即在 A和 B之间有电子设备, 同时发送器得到与电极 A连接的是充电电 极的正极, 与电极 B连接的是充电电极的负极, 为了判断准确, 发送器再次执行上述的阶段 1和阶段 2, 如果得到同样的信息, 发送器将连接 A"到 VDD (通过打开 PFET_A), 连接 B" 到 VSS (通过打开 NFET_B), 初始化充电动作, 充电开始。
情况 4: 当在阶段 1发送器得到一个 0值, 在阶段 2得到一个 1值, 此时充电底座上的 负载为有效负载,也即在 A和 B之间有电子设备, 同时发送器得到与电极 A连接的是充电电 极的负极, 与电极 B连接的是充电电极的正极, 为了判断准确, 发送器再次执行上述的阶段 1和阶段 2, 如果得到同样的信息, 发送器将连接 B到 VDD (通过打开 PFET_B), 连接 A到 VSS (通过打开 NFET_A), 初始化充电动作, 充电开始。
优选地, 上述第四或第五实施例中的电能接收单元包括开关模块, 设置在充电电极与电 能输出单元之间, 用于控制充电电极与电能输出单元之间的正电压通路导通、 负电压通路关 断, 从而有效得保证电子设备一侧只有从正极充电电极到负极充电电极的导通电流, 反向导 通电流机会为 0。
进一步优选地, 充电系统中电能接收单元的连接示意图如图 8 (a) 至图 8 (d) 所示。 极) 连接。 电能接收单兀 (设为 IC2) 是充电糸统中的接收器部分, 包拈升夫管 MN (也即 N 沟道场效应管)、 第一电阻 Rl、 智能比较器 COMP、 第二电阻 R2、 去抖动电路、 第一保护电 路、 第二保护电路、 初始化电路 POR和二极管 Dl。
各部分连接关系如下: 开关管 MN的第一端与负极相连接, 第二端与 VSS相连接; 第一 电阻 R1的第一端连接至第一节点, 第二端连接至第二节点, 其中, 第一节点为正极与 VDD 之间的节点, 第二节点为负极与开关管的第一端之间的节点; 智能比较器 C0MP的正输入端 连接至第二节点, 负输入端连接至第三节点, 输出端连接至开关管 MN的控制端, 其中, 第 三节点为开关管 MN的第二端与 VSS之间的节点; 第二电阻 R2的第一端连接至第三节点, 第二端连接至第四节点, 其中, 第四节点为智能比较器 COMP的输出端与开关管 MN的控制 端之间的节点; 去抖动电路的第一端与智能比较器 COMP的输出端相连接, 第二端连接至第 四节点; 第一保护电路的第一端与开关管 MN的第一端相连接, 第一保护电路的第二端与开 关管 MN的第二端相连接; 第二保护电路的第一端与第一节点相连接, 第二端与第二节点相 连接; 二极管 D1的第一端与第一节点相连接, 第二端与第二节点相连接; 初始化电路 P0R 的第一端与第一节点相连接, 第二端与第二节点相连接, 第三端与智能比较器相连接, 用于 对智能比较器进行初始化。
该电路的工作原理如下:
电路初始开关管 MN 的基极控制端与其源断同电位。 当电源从正极和负极进入时, MN 的体二极管会正向导通,智能比较器会判断到负极是低电位而得之电源是从正极和负极进入, 等待一段时间后, 打开 MN进入完全导通状态。 当电源从 VDD和 VSS进入时, MN体二极 管反向截止, 负极会被拉到正极相同点位, 智能比较器会判断到负极是高电位而得之电源是 从 VDD和 VSS进来, 保持 MN开关管关闭。
如图 8 (b) 所示, 电能输出单元具有第一电能输出端 VDD和第二电能输出端 VSS, 第 二电能输出端 VSS与第二充电电极(负极)连接, 第二电能输出端 VSS与第一充电电极(正 极) 连接。 电能接收单元包括开关管 MP (也即 P沟道场效应管)、 第一电阻 Rl、 智能比较 器 C0MP、 第二电阻 R2、 去抖动电路、 第一保护电路、 第二保护电路、 初始化电路和二极管 Dl。
各部分连接关系如下: 开关管 MP的第一端与正极相连接, 第二端与 VDD相连接; 第一 电阻 R1的第一端连接至第一节点, 第二端连接至第二节点, 其中, 第一节点为正极与 VDD 之间的节点, 第二节点为负极与开关管的第一端之间的节点; 智能比较器 COMP的正输入端 连接至第二节点, 负输入端连接至第三节点, 输出端连接至开关管 MP的控制端, 其中, 第 三节点为开关管 MP的第二端与 VDD之间的节点; 第二电阻 R2的第一端连接至第三节点, 第二端连接至第四节点, 其中, 第四节点为智能比较器 COMP的输出端与开关管 MP的控制 端之间的节点; 去抖动电路的第一端与智能比较器 COMP的输出端相连接, 第二端连接至第 四节点; 第一保护电路的第一端与开关管 MP的第一端相连接, 第一保护电路的第二端与开 关管 MP的第二端相连接; 第二保护电路的第一端与第一节点相连接, 第二端与第二节点相 连接; 二极管 D1 的第一端与第一节点相连接, 第二端与第二节点相连接; 初始化电路的第 该电路的工作原理如 卜:
电路初始开关管 PN的基极控制端与其源断同电位。 当电源从正极和负极进入时, MP的 体二极管会正向导通, 智能比较器会判断到正极是高电位而得之电源是从正极和负极进入, 等待一段时间后, 打开 MN进入完全导通状态。 当电源从 VDD和 VSS进入时, MP体二极 管反向截止, 正极会被拉到负极相同点位, 智能比较器会判断到正极是第电位而得之电源是 从 VDD和 VSS进来, 保持 MP开关管关闭。
如图 8 (c) 所示, 电能输出单元具有第一电能输出端 VSS和第二电能输出端 VDD, 第 一电能输出端 VSS与第一充电电极 (负极) 连接, 构成负电压通路, 第二电能输出端 VDD 与第二充电电极 (正极) 连接, 正电压通路。 电能接收单元包括稳压二极管, 该稳压二极管 设置于正电压通路中, 且二极管的正极与第二充电电极相连接, 二极管的负极与 VDD 相连 接。
如图 8 (d) 所示, 电能输出单元具有第一电能输出端 VSS和第二电能输出端 VDD, 第 一电能输出端 VSS与第一充电电极 (负极) 连接, 构成负电压通路, 第二电能输出端 VDD 与第二充电电极 (正极) 连接, 正电压通路。 电能接收单元包括稳压二极管, 该稳压二极管 设置于负电压通路中,且二极管的正极与 VSS相连接,二极管的负极与第一充电电极相连接。
最后介绍本具体实施方式提供的充电方法的实施例, 本具体实施方式中的充电方法可通 过上述的任意一种充电底座和充电系统实现。
图 9是根据本发明第六实施例的充电方法的流程图, 如图 9所示, 该方法包括如下的步 骤 S102至步骤 S112。
步骤 S102: 在第一时间控制充电底座的第一电极与 VDD导通, 控制充电底座的第二电 极与 VSS导通, 在第二时间控制第二电极与 VDD导通, 控制第一电极与 VSS导通, 其中, 第一时间是第二时间之前的时间。
步骤 S104: 检测第一电极与第二电极是否导通。
步骤 S106: 当检测到情况 a, 也即第一电极与第二电极在第一时间导通, 且第一电极与 第二电极在第二时间未导通时, 将第一电极连接至 VDD, 将第二电极至 VSS, 开始充电。
步骤 S108: 当检测到情况 b, 也即第一电极与第二电极在第一时间未导通, 且第一电极 与第二电极在第二时间导通时,将第一电极连接至 VSS,将第二电极连接至 VDD,开始充电。
步骤 S110: 当检测到情况 c, 也即第一电极与第二电极在第一时间和第二时间均导通时, 控制充电底座输出短路提示信息; 以及
步骤 S112: 当检测到情况 d, 也即第一电极与第二电极在第一时间和第二时间均未导通 时, 控制充电底座输出无负载提示信息。
采用该实施例提供的充电方法进行充电时, 无需用户关注电子设备与充电底座之间极性 匹配的问题, 充电底座的电极能够根据电子设备充电电极的极性特点自动调节, 提升了用户 体验。
进一步, 由于采用步骤 S110和步骤 S112, 能够向用户提供充电底座上的负载情况, 例 如, 当用户将电子设备置于充电底座上进行充电时, 充电底座输出短路提示信息或无负载提 优选地, 在执仃歩骤 S106或歩骤 S108之后, 检测充电底座的充电电流, 在充电电流小 于第一预设电流时, 控制充电底座输出充电完成提示信息, 该处的第一预设电流为充电完成 的临界电流。 采用该优选实施方式能够及时向用户提供充电已完成的信息。
优选地, 在执行步骤 S106或步骤 S108之后, 检测充电底座的充电电流, 在检测到充电 电流大于第二预设电流时, 控制电极与 VDD和 VSS的连接, 该处的第二预设电流为过流保 护的极限电流。 采用该优选实施方式能够在电流超出正常的充电电流时, 及时停止充电, 避 免充电电流太大对电子设备造成损坏。
优选地, 在执行步骤 S106或步骤 S108之后, 检测充电底座的充电电流, 在充电电流小 于第一预设电流时, 再次执行步骤 S102和步骤 S104, 其中, 当通过步骤 S104检测到情况 d 时, 表明用户已将电子设备从充电底座上移除, 因而继续执行步骤 S102和步骤 S104, 直到 再次检测到情况 a或情况 b。 当通过步骤 S104检测到情况 a或情况 b时, 表明电子设备已充 电完成, 但未从充电底座上移除, 此时控制充电底座输出充电完成提示信息。
从以上的描述中, 可以看出, 本发明实现了如下技术效果: 充电底座能够自动识别电子 设备的充电电极的极性, 并根据识别结果自动调节充电底座电极的极性, 以使充电底座与电 子设备相适配, 从而在充电时, 无需用户关注电子设备与充电底座之间极性匹配的问题, 充 电底座的电极能够根据电子设备充电电极的极性特点自动调节, 提升了用户体验。
需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机 系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可以以不同于此 处的顺序执行所示出或描述的步骤。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人员 来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等 同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电子设备的充电底座, 其特征在于, 包括:
电极, 所述电极包括第一电极和第二电极,
控制单元, 其中, 所述控制单元包括:
控制模块, 用于在第一时间输出第一控制信号, 在第二时间输出第二控 制信号, 其中, 所述第一时间是所述第二时间之前的时间;
第一开关模块, 与所述控制模块相连接, 用于在接收到所述第一控制信 号时, 导通所述第一电极与 VDD, 导通所述第二电极与 VSS, 在接收到所述 第二控制信号时, 导通所述第一电极与 VSS, 导通所述第二电极与 VDD; 第一检测模块, 与所述控制模块相连接, 用于检测所述第一电极与所述 第二电极是否导通, 并在所述第一电极与所述第二电极导通时输出第一电平 信号, 未导通时输出第二电平信号;
所述控制模块还用于在先后接收到所述第一电平信号和所述第二电平信 号时, 输出第三控制信号, 在先后接收到所述第二电平信号和所述第一电平 信号时, 输出第四控制信号;
第二开关模块, 与所述控制模块相连接, 用于在接收到所述第三控制信 号时, 将所述第一电极连接至 VDD, 将所述第二电极至 VSS, 在接收到所述 第四控制信号, 将所述第一电极连接至 VSS, 将所述第二电极连接至 VDD。
2. 根据权利要求 1所述的电子设备的充电底座, 其特征在于, 还包括:
第一提示单元, 与所述控制模块相连接,
其中, 所述控制模块还用于在仅接收到所述第一电平信号时, 控制所述第一 提示单元输出短路提示信息。
3. 根据权利要求 1所述的电子设备的充电底座, 其特征在于,
所述充电底座还包括: 第二提示单元, 与所述控制模块相连接;
所述控制单元还包括: 第二检测模块, 与所述控制模块相连接, 用于在所述 控制模块输出所述第三控制信号或所述第四控制信号之后, 检测充电底座的充电 电流, 并在所述充电电流小于第一预设电流时, 输出第三电平信号,
其中, 所述控制模块还用于在接收到所述第三电平信号时, 控制所述第二提 示单元输出充电完成提示信息。
4. 根据权利要求 1所述的电子设备的充电底座, 其特征在于, 还包括:
第三提示单元, 与所述控制模块相连接;
其中, 所述控制模块还用于在仅接收到所述第二电平信号时, 控制所述第三 提示单元输出无负载提示信息。 根据权利要求 1所述的电子设备的充电底座, 其特征在于, 还包括: 流大十第三预设电流时, 输出第四电平信号,
其中, 所述控制模块还用于在接收到所述第四电平信号后, 输出第五控制信 号, 所述第二开关模块还用于在接收到所述第五控制信号时, 断开所述电极与 VDD禾 Π VSS的连接。 根据权利要求 1所述的电子设备的充电底座, 其特征在于, 所述第二开关模块包 括:
第一开关, 连接在所述第一电极与 VDD之间;
第二开关, 连接在所述第一电极与 VSS之间;
第三开关, 连接在所述第二电极与 VDD之间; 以及
第四开关, 连接在所述第二电极与 VSS之间,
其中, 所述第一开关与所述第三开关为 P沟道场效应管, 所述第二开关与所 述第四开关为 N沟道场效应管。 根据权利要求 1所述的电子设备的充电底座, 其特征在于, 所述第一检测模块包 括:
第一比较器, 第一输入端用于输入所述第一电极的电压, 第二输入端用于输 入参考电压, 输出端用于连接所述控制模块; 以及
第二比较器, 第一输入端用于输入所述第二电极的电压, 第二输入端用于输 入所述参考电压, 输出端用于连接所述控制模块。 一种电子设备的充电系统, 其特征在于, 包括:
充电底座, 所述充电底座为权利要求 1至 7中任一项所述的充电底座, 其中, 所述充电底座的第一电极和第二电极均采用板状导电材料制成;
被充电设备及所述被充电设备的壳套, 其中, 所述壳套包括:
充电电极, 包括第一充电电极和第二充电电极, 所述第一充电电极和所述第 二充电电极, 用于与所述充电底座的电极相适配;
电能接收单元, 与所述充电电极相连接, 用于接收所述充电电极获取的电能; 以及
电能输出单元, 与所述电能接收单元相连接, 用于将所述电能接收单元接收 的电能输出至所述被充电设备的储电装置。
根据权利要求 8所述的电子设备的充电系统, 其特征在于, 所述电能接收单元包 括:
开关模块, 设置在所述充电电极与所述电能输出单元之间, 用于控制所述充 电电极与所述电能输出单元之间的正电压通路导通、 负电压通路关断。 所述升夫模块包拈: 升夫管, 第一端与所述第一充电电极相连接, 第二端与 所述第一电能输出端相连接, 其中, 所述第二电能输出端与所述第二充电电极相 连接;
所述电能接收单元还包括:
第一电阻, 第一端连接至第一节点, 第二端连接至第二节点, 其中, 所 述第一节点为所述第二充电电极与所述第二电能输出端之间的节点, 所述第 二节点为所述第一充电电极与所述开关管的第一端之间的节点;
比较器, 第一输入端连接至所述第二节点, 第二输入端连接至第三节点, 输出端连接至所述开关管的控制端, 其中, 所述第三节点为所述开关管的第 二端与所述第一电能输出端之间的节点; 以及
第二电阻, 第一端连接至所述第三节点, 第二端连接至第四节点, 其中, 所述第四节点为所述比较器的输出端与所述开关管的控制端之间的节点。
11. 根据权利要求 10所述的电子设备的充电系统,其特征在于,所述电能接收单元还 包括:
去抖动电路, 第一端与所述比较器的输出端相连接, 第二端连接至所述第四 节点;
第一保护电路, 第一端与所述开关管的第一端相连接, 所述第一保护电路的 第二端与所述开关管的第二端相连接;
第二保护电路, 第一端与所述第一节点相连接, 第二端与所述第二节点相连 接; 以及
二极管, 第一端所述第一节点相连接, 第二端与所述第二节点相连接。
12. 根据权利要求 10或 11所述的电子设备的充电系统, 其特征在于,
所述开关管为 P沟道场效应管, 设置于所述正电压通路中; 或者
所述开关管为 N沟道场效应管, 设置于所述负电压通路中。
13. 根据权利要求 9所述的电子设备的充电系统, 其特征在于, 所述开关模块包括二 极管,
所述二极管设置于所述正电压通路中, 且所述二极管的正极与所述充电电极 相连接, 所述二极管的负极与所述电能输出单元相连接; 或者
所述二极管设置于所述负电压通路中, 且所述二极管的正极与所述电能输出 单元相连接, 所述二极管的负极与所述充电电极相连接。
14. 一种电子设备的充电方法, 其特征在于, 所述电子设备为被充电设备, 所述充电 方法采用权利要求 1至 7中任一项所述的充电底座向所述电子设备充电, 其中, 所述充电方法包括: 一电极与 vss导通, 其中, 所述第一时 |」是所述第二时 |」之前的时 I'曰 J ;
检测所述第一电极与所述第二电极是否导通;
当检测到所述第一电极与所述第二电极在所述第一时间导通, 且第一电极与 所述第二电极在所述第二时间未导通时, 将所述第一电极连接至 VDD, 将所述第 二电极连接至 VSS; 以及
当检测到所述第一电极与所述第二电极在所述第一时间未导通, 且第一电极 与所述第二电极在所述第二时间导通时, 将所述第一电极连接至 VSS, 将所述第 二电极连接至 VDD。
15. 根据权利要求 14所述的电子设备的充电方法, 其特征在于, 还包括:
当检测到所述第一电极与所述第二电极在所述第一时间和所述第二时间均导 通时, 控制所述充电底座输出短路提示信息; 以及
当检测到所述第一电极与所述第二电极在所述第一时间和所述第二时间均未 导通时, 控制所述充电底座输出无负载提示信息。
16. 根据权利要求 14所述的电子设备的充电方法, 其特征在于, 还包括:
在将所述第一电极或所述第二电极连接至 VDD之后,检测所述充电底座的充 电电流; 以及
在所述充电电流小于第一预设电流时, 控制所述充电底座输出充电完成提示 信息。
PCT/CN2013/084992 2013-03-21 2013-10-10 电子设备的充电底座、充电系统和充电方法 WO2014146423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310092855.7 2013-03-21
CN201310092855.7A CN104065110B (zh) 2013-03-21 2013-03-21 电子设备的充电底座、充电系统和充电方法

Publications (1)

Publication Number Publication Date
WO2014146423A1 true WO2014146423A1 (zh) 2014-09-25

Family

ID=51552697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084992 WO2014146423A1 (zh) 2013-03-21 2013-10-10 电子设备的充电底座、充电系统和充电方法

Country Status (2)

Country Link
CN (1) CN104065110B (zh)
WO (1) WO2014146423A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917163B (zh) * 2020-09-30 2021-01-05 深圳英集芯科技有限公司 多口充电控制电路和方法、充电芯片及供电设备
CN115276192B (zh) * 2022-09-28 2023-01-10 深圳市微源半导体股份有限公司 一种电流控制电路、充电电路及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135102A (zh) * 1995-02-28 1996-11-06 京都陶瓷株式会社 防止电池组件充电端短路用电路
CN200983512Y (zh) * 2006-09-28 2007-11-28 胡一帆 手机电池通用充电器
CN200994070Y (zh) * 2006-12-20 2007-12-19 宋文丰 无极性充电器
CN202121345U (zh) * 2011-06-13 2012-01-18 深圳市博驰信电子有限责任公司 一种带电量检测的万能充电器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816113B (zh) * 2007-10-04 2013-01-23 罗姆股份有限公司 充电控制装置及利用该充电控制装置的电子设备
US7915987B2 (en) * 2007-10-19 2011-03-29 Apple Inc. Acoustic noise reduction in power supply inductors
CN201341034Y (zh) * 2009-01-19 2009-11-04 路华科技(深圳)有限公司 笔记本电脑电池充电器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135102A (zh) * 1995-02-28 1996-11-06 京都陶瓷株式会社 防止电池组件充电端短路用电路
CN200983512Y (zh) * 2006-09-28 2007-11-28 胡一帆 手机电池通用充电器
CN200994070Y (zh) * 2006-12-20 2007-12-19 宋文丰 无极性充电器
CN202121345U (zh) * 2011-06-13 2012-01-18 深圳市博驰信电子有限责任公司 一种带电量检测的万能充电器

Also Published As

Publication number Publication date
CN104065110A (zh) 2014-09-24
CN104065110B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
US10153652B2 (en) Charging system
JP6359459B2 (ja) 移動端末及びその充電装置、方法
US9847635B2 (en) Power supply module and soft start method
WO2018133537A1 (zh) 一种电子设备及基于电子设备的充电控制方法
TWI495226B (zh) 充電器及電子裝置
CN101800343A (zh) 电子设备、二次电池及控制二次电池的充电和放电的方法
US11641124B2 (en) Electronic device and charging method thereof
TWI628894B (zh) 充電器電路和功率系統
CN110226258A (zh) 电池组和包括该电池组的电力系统
CN105762898A (zh) 一种智能手机充电器
US8344702B2 (en) Battery having universal serial bus port
TW201424187A (zh) 電池充電控制系統
US10554058B2 (en) Systems and methods for monitoring an operating status of a connector
TW201509043A (zh) 保護電路及具有該保護電路之電子裝置
CN202153645U (zh) 一种基于otg接口充电的电子设备
TW201136095A (en) Battery state monitoring circuit and battery device
WO2014146423A1 (zh) 电子设备的充电底座、充电系统和充电方法
US6724173B2 (en) Circuits, apparatuses, electrochemical device charging methods, and lithium-mixed metal electrode cell charging methods
CN204441950U (zh) 可适配不同电子设备的充电装置及电子设备
CN102904325A (zh) 一种移动终端的一体化充电器和移动终端的充电方法
CN106487061B (zh) 充电电路及方法
US8947019B2 (en) Handheld device and power supply circuit thereof
CN203434605U (zh) 过充电保护装置
WO2014177109A2 (zh) 一种终端电池激活方法、装置和终端
TWI517519B (zh) 識別適配器種類的充電裝置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879090

Country of ref document: EP

Kind code of ref document: A1