WO2014142559A1 - Apparatus and method for detecting and counting rare cells in blood - Google Patents

Apparatus and method for detecting and counting rare cells in blood Download PDF

Info

Publication number
WO2014142559A1
WO2014142559A1 PCT/KR2014/002086 KR2014002086W WO2014142559A1 WO 2014142559 A1 WO2014142559 A1 WO 2014142559A1 KR 2014002086 W KR2014002086 W KR 2014002086W WO 2014142559 A1 WO2014142559 A1 WO 2014142559A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
cells
counting
measurement kit
detecting
Prior art date
Application number
PCT/KR2014/002086
Other languages
French (fr)
Korean (ko)
Inventor
신세현
한창수
장대호
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140029109A external-priority patent/KR101568573B1/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US14/775,860 priority Critical patent/US9995738B2/en
Publication of WO2014142559A1 publication Critical patent/WO2014142559A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components

Definitions

  • the present invention relates to a device and method for detecting and counting rare cells present in blood. More specifically, the present invention relates to a complex material in which blood rare cells such as circulating vascular endothelial cells (CEC) are combined with a simple target antibody and a label, and An apparatus and method for detecting and counting rare cells using a microgap plate.
  • blood rare cells such as circulating vascular endothelial cells (CEC) are combined with a simple target antibody and a label
  • An apparatus and method for detecting and counting rare cells using a microgap plate An apparatus and method for detecting and counting rare cells using a microgap plate.
  • red blood cells Although the population of the blood is very small compared to known blood cells such as red blood cells, white blood cells, and platelets, there are very few cells that can play an important role in the spread of disease or can be used as biomarkers. It is called (rare cells).
  • Representative rare cells include CTC (Circulating Tumor Cell), and one or two of billions of blood cells are known to exist.
  • CTC Compute Tumor Cell
  • a blood test can diagnose a very definitive clue that can be determined to have cancer, and various blood test methods have been developed.
  • CECs circulating endothelial cells
  • the cardiovascular group was found to have about five times more CEC than the healthy group. If the number increases above a certain number, it is reported that early diagnosis of a disease such as a heart attack may occur within two weeks.
  • CTC or CEC detection methods are methods for detecting rare cells using antigen-antibody responses with very high selectivity. That is, by coating an antibody capable of attaching to an antigen of a specific rare cell on the surface of the magnetic nanoparticle and stirring it with a blood sample, the nanoparticle is attached to a specific rare cell in the blood. After strong fixation using magnetic force, the remaining cells can be washed to isolate specific rare cells. The isolated rare cells can be identified through a microscope using a staining technique for verification, and individual cell numbers can be counted.
  • an object of the present invention is to solve the problems of the prior art as described above, and to provide an apparatus and a method capable of quickly and accurately detecting and counting the rare cells existing in a small amount from a certain amount of blood.
  • the present invention collects a blood sample, a sample collection unit for receiving a complex material combined with a target antibody and a label; A measurement kit connected to the sample collection unit for injecting a mixture of the blood sample and the composite material, and individually trapping blood cells; And a detector for detecting and counting the rare cells having generated the antigen-antibody reaction with the target antibody among the blood cells captured in the measurement kit.
  • the target antibody may specifically recognize and bind to rare cells in the blood.
  • Labeling material in the present invention is a fluorescent material; Quantum dots; Micro size beads in which quantum dots are integrated; It may include one or more selected from metal nanoparticles.
  • the blood sample collected in the sample collection unit may be stirred with the dispersion of the composite material.
  • the measurement kit includes two plates having a micro-sized gap, thereby allowing blood samples to be moved by capillary action.
  • the plate may be manufactured in a rigid plate-like structure or a flexible film-like structure.
  • one end of the measurement kit is formed with an injection hole into which a blood sample is injected, and the other end may be provided with a capillary tube formed with an opening through which air passes.
  • the opening of the capillary may be connected to a flow driving mechanism to inject and flow the blood sample into the measurement kit.
  • At least one of the two plates in the present invention may be provided with an uneven portion so that blood cells are individually captured.
  • a stepped stepped step is formed in the concave-convex portion to capture small cells at the bottom, and large cells can be captured at the top.
  • the detector includes a light source capable of exciting one or more of fluorescent materials, quantum dots, and micro-sized beads in which quantum dots are integrated;
  • An image sensor for measuring excited fluorescence;
  • a fluorescence filter for passing light of a specific wavelength band, it may be a fluorescence scanning device for detecting the position and number of blood cells that emit light.
  • the light source may include at least one selected from a mercury lamp, a laser diode (LD), and a laser light emitting diode (LED).
  • a mercury lamp a laser diode (LD)
  • a laser light emitting diode LED
  • the image sensor may include at least one selected from a photo diode array, a charge coupled device (CCD) array, and a complementary metal oxide semiconductor (CMOS) array.
  • CMOS complementary metal oxide semiconductor
  • a zoom lens may be mounted on the image sensor to acquire an optically enlarged image.
  • the light source and the image sensor may be installed in a form in which they are continuously coupled.
  • the detector is one selected from an optical device, a micro-sized prism array, and a nano-sized grating array, which can cause surface plasmon resonance of metal nanoparticles.
  • it can be a surface plasmon resonance imaging scanning apparatus which detects the position and number of blood cells in which surface plasmon resonance occurs.
  • the surface plasmon resonance imaging scanning apparatus includes a light source for injecting parallel light into the measurement kit; And a camera for measuring light reflected from the measurement kit.
  • the measurement kit may be integrated with a micro-sized prism array or a nano-sized grating array.
  • the device according to the invention comprises a moving rail connected to the detector and guiding the movement of the detector for scanning of the measurement kit; A mobile collection device for sampling after detection; And a two-axis moving rail connected to the mobile collecting device and guiding the movement of the mobile collecting device.
  • the present invention using the apparatus described above, the step of collecting a blood sample with a sample collection unit; Stirring the collected blood sample to be mixed with a complex material combined with a target antibody and a label; Injecting a mixture of the blood sample and the complex into a measurement kit to capture blood cells individually; And detecting and counting the rare cells in which the antigen-antibody reaction has occurred with the target antibody among the blood cells captured in the measurement kit by using a detector.
  • a blood sample tube which can be used for one-time use is mixed with the target antibody and the labeling substance, and the blood is mixed, and then the number of micro traps that emits light while being injected into the measurement kit plate is quickly and easily and conveniently.
  • detecting and counting rare cells it is also possible for a healthcare practitioner to objectify and standardize detection and counting with simple operation. In particular, the time required for one test is short, so a large amount of test is possible.
  • FIG. 1 schematically shows an apparatus and method for detecting and counting rare cells in blood according to the present invention.
  • FIG. 2 is a plan view of a measurement kit according to the invention.
  • FIG. 3 is a cross-sectional view showing a mechanism in which cells are captured in a measurement kit having a concave-convex structure according to the present invention.
  • Figure 4 is a cross-sectional view showing a mechanism for trapping cells in the measurement kit having a step-shaped concave-convex structure in accordance with the present invention.
  • FIG. 5 is a plan view of a device for detecting and counting rare cells in the blood according to the present invention.
  • FIG. 6 is a front view of a device for detecting and counting rare cells in the blood according to the present invention.
  • FIG. 7 is a block diagram of a fluorescence scanning device among detectors according to the present invention.
  • FIG. 8 is a block diagram of a surface plasmon resonance imaging scanning apparatus of the detector according to the present invention.
  • FIG. 9 is a perspective view showing that a micro-sized prism array or a nano-sized grating array used in the surface plasmon resonance imaging method according to the present invention is integrated with a measurement kit.
  • Figure 1 schematically shows the apparatus and method for detecting and counting blood rare cells according to the present invention
  • the apparatus for detecting and counting blood rare cells 100 according to the present invention is a rare cell diagnostic system, the sample collection unit 10 ), A measurement kit 20, a detector 30, and the like.
  • the sample collection unit 10 collects a blood sample and also serves to receive the composite material 11. That is where the blood sample is loaded.
  • the sample collection unit 10 may be formed in a tube shape and may have a stopper.
  • the sample collection unit 10 may have a structure of a blood collection tube of 7.5 ml volume, which is generally widely used.
  • the blood sample may include a plurality of blood cells (B), and the blood cells (B) may be largely divided into small cells (S) such as red blood cells and large cells (L) such as white blood cells and rare cells.
  • S small cells
  • L large cells
  • the composite material 11 may be in the form of combining the labeling material 12 and the target antibody 13.
  • the labeling substance 12 and the target antibody 13 may be chemically or physically coupled through a linker.
  • the linker is not particularly limited, and conventional linkers may be used. For example, peptide linkers, hydrazine linkers, disulfide linkers, and the like may be used.
  • the composite material 11 may be provided in the form of a solution containing the composite material 11, preferably in the form of a dispersion in which the composite material 11 is dispersed in a dispersion medium.
  • the composite material dispersion may include a dispersant such as the composite material 11, a dispersion medium such as water, a dispersant such as a surfactant, and the like.
  • one or more of 1) fluorescent material, 2) quantum dots, 3) micro-sized beads in which quantum dots are integrated, and 4) metal nanoparticles may be selected and used.
  • the fluorescent material is not particularly limited and conventional fluorescent materials can be used, for example, fluorescein, isothiocyanate, rhodamine, phycoerythrin, and phycoerythine. Phycocyanin, allophycocyanin, phthaldehyde, fluorescamine and the like can be used.
  • the size of the fluorescent material is not particularly limited, and may be, for example, 1 to 900 nm, preferably 10 to 500 nm, more preferably 30 to 300 nm.
  • the quantum dot may include a central particle and a ligand bound to the surface of the central particle.
  • the material forming the core particles include II-VI compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, III- such as GaN, GaP, GaAs, InP, InAs.
  • the central particle may have a core / shell structure, and each of the core and shell of the central particle may include the compounds exemplified above. Exemplary compounds may be included in the core or shell each alone or in combination of two or more.
  • the central particle may have a CdSe-ZnS (core / shell) structure having a core comprising CdSe and a shell comprising ZnS.
  • the ligand can prevent the central particles adjacent to each other from easily agglomerated and quenched with each other.
  • the ligand may bind to the central particle so that the central particle has hydrophobicity.
  • a ligand an amine compound, a carboxylic acid compound, etc. which have a C6-C30 alkyl group are mentioned.
  • the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkenyl group are mentioned.
  • the size of the quantum dots is not particularly limited and may be, for example, 1 to 900 nm, preferably 10 to 500 nm, more preferably 30 to 300 nm.
  • the micro-sized beads in which the quantum dots are integrated may be a capsule structure surrounding a quantum dot integrated body in which a plurality of quantum dots are integrated.
  • Capsules can be prepared using gelatin, cellulosic compounds, or the like.
  • the size of the microbeads is not particularly limited and may be, for example, 0.1 to 900 ⁇ m, preferably 0.5 to 500 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the metal constituting the metal nanoparticles is not particularly limited, and all conventional metals may be used. For example, gold, silver, copper, iron, platinum, tungsten, titanium, tin, nickel, chromium, cobalt, zinc, iridium Etc. can be used. Moreover, a metal oxide, a metal salt, etc. can be used, or an alloy can also be used.
  • the size of the metal nanoparticles is not particularly limited, and may be, for example, 1 to 900 nm, preferably 10 to 500 nm, more preferably 30 to 300 nm.
  • an antibody capable of specifically recognizing and binding rare cells in the blood such as CTC and CEC may be used.
  • Anti-EpCAM antibodies can be used.
  • the blood sample may be stirred to mix with the composite dispersion therein.
  • the stirring may be performed by a manual method of shaking by hand, or may be performed by an automatic method using a stirrer or the like.
  • the mixing order of the blood sample and the composite material dispersion is not particularly limited, and the blood sample may be first put into the sample collection unit 10 or the composite material dispersion may be put first. If a specific blood rare cell is present during the stirring process, a large amount of the complex material 11 to which the labeling substance 12 and the target antibody 13 are bound may be attached through an antigen-antibody reaction around the cell membrane.
  • a scanning image for cell counting (Cell Counting) is illustrated, where a black portion of the plurality of grids represents a hybrid rare cells (Hybridized RC) to which the composite material is bound.
  • Hybridized RC hybrid rare cells
  • Figure 2 is a plan view of the measurement kit according to the present invention, the measurement kit 20 is provided with a flat plate 21, 22, inlet 23, capillary 24, uneven structure (25, 26, 27, 28), etc. can do.
  • the measurement kit 20 serves to individually trap cells in the blood.
  • the measurement kit 20 may be connected to the sample collection unit 10 to inject a mixture of the blood sample and the composite material 11.
  • an injection hole 23 into which a blood sample is injected may be formed at one end of the measurement kit 20.
  • the injection port 23 may be configured, for example, in the form of a needle, or may include a needle structure.
  • the plug of the sample collecting unit 10 is plugged into the needle-shaped injection hole 23 or the needle structure of the injection hole 23, and the sample collecting unit 10
  • a mixture of the blood sample and the composite material stirred in the sample collection unit 10 may be injected into the measurement kit 20.
  • the measurement kit 20 may be composed of a microfluidic sheet for cell spreading.
  • the measurement kit 20 includes two plates 21, 22 with micro-sized gaps, thereby allowing blood samples to be moved by capillary action.
  • the present invention is not limited thereto, and the measurement kit 20 may be composed of one flat plate or three or more flat plates.
  • the gap between the two plates 21, 22 may be for example 1 to 500 ⁇ m, preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the plates 21 and 22 can be made of rigid plate-like structures or flexible film-like structures.
  • the flat plates 21 and 22 may be made of metal, plastic, glass, ceramic, or the like, and may be preferably transparent to facilitate detection.
  • the thicknesses of the flat plates 21, 22 can be, for example, from 1 ⁇ m to 10 mm, preferably from 10 ⁇ m to 5 mm, more preferably from 50 ⁇ m to 3 mm.
  • the edge portion between the two plates 21 and 22, that is, the left and right sides and the front and rear surfaces between the two plates 21 and 22 may be opened.
  • This open portion may be sealed using a sealing material or the like.
  • the injection port 23 and the capillary tube 24 may be formed separately.
  • Capillary tube 24 may serve to allow a mixture of blood sample and composite to flow well between two plates 21, 22 of measurement kit 20.
  • the capillary tube 24 may be formed at the other end of the measurement kit 20, for example opposite the inlet 23.
  • the capillary tube 24 may have an opening through which air is communicated with the outside. The opening may for example be formed at the end of the capillary tube 24.
  • the diameter of the capillary tube 24 may be, for example, 0.01 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m, such that only air can pass therethrough.
  • a flow drive mechanism may be connected to the distal opening of the capillary 24 to inject the blood sample into the measurement kit 20 at a suitable rate and also to flow the blood sample inside the measurement kit 20.
  • the flow drive mechanism may comprise a vacuum pump, for example. For example, if a vacuum is applied to the inside of the measurement kit 20 by using a vacuum pump and then stopped, the blood sample flow may be advanced and then reversed (backflow), so that the overall blood sample may be spread evenly. In addition, by adjusting the pressure of the vacuum pump, it is possible to control the injection rate and the flow rate of the blood sample.
  • FIG. 3 is a cross-sectional view illustrating a mechanism in which cells are captured in a measurement kit having a concave-convex structure according to the present invention, in which at least one of the two plates 21 and 22 is trapped so that blood cells B are individually trapped.
  • Parts 25 and 26 may be provided.
  • the uneven portions 25 and 26 are formed in the lower plate 22 in the drawing, the present invention is not limited thereto, and the uneven portions 25 and 26 may be formed in the upper plate 21, and both flat plates 21 and 22 may be formed. ) May be formed on both.
  • Concave-convex portions 25 and 26 are composed of concave portion 25 and convex portion 26, and preferably, may be formed in a microstructure of micro units.
  • the number of the uneven parts 25 and 26 is not particularly limited and depends on the size of the measurement kit 20, preferably 10 or more, more preferably 100 or more. As many as 10,000, 100,000, or more than 1 million are possible.
  • the width, length, and height (depth) of the uneven parts 25 and 26 may be each independently, for example, 0.1 to 200 ⁇ m, preferably 0.5 to 70 ⁇ m, and more preferably 1 to 30 ⁇ m.
  • the movement direction of the blood sample is indicated by an arrow, and it can be confirmed that blood cells B are captured by the lumbar portion 25.
  • the flow driving mechanism allows the flow of the blood sample between the two plates 21 and 22 to be forward or backward to flow backward so that the blood cells B are individually captured in the traps of the uneven portions 25 and 26. By repeatedly inducing one cell (B) can be trapped in one uneven portion (25, 26).
  • FIG. 4 is a cross-sectional view showing a mechanism in which the cells are captured in the measurement kit having a step-shaped concave-convex structure according to the present invention, the step-shaped step is formed in the concave-convex portions (25, 26, 27, 28) small cells (S ) Can be captured at the bottom, and large cells (L) can be captured at the top.
  • the stepped concave-convex structure may be a structure in which a small concave portion 27 is further formed below the bottom of the large concave portion 25.
  • both upper side surfaces of the large convex portion 26 may be cut to form a small convex portion 28, or a small convex portion 28 may protrude from both lower sides of the large convex portion 26.
  • the uneven parts 25, 26, 27, and 28 are formed in a step shape so that a step is formed, and as shown in the drawing, small cells S, such as red blood cells, are captured in the small recesses 27 that are lower.
  • small cells S such as red blood cells
  • the large cells L such as leukocytes and rare cells, can be captured in the large lumbar portion 25 directly above.
  • the uneven parts 25, 26, 27, and 28 may optimally form the depth (height), the width (width), and the like so that the captured cells S and L do not escape by the external flow.
  • the size of the red blood cells is about 1 to 8 ⁇ m
  • the size of the white blood cells is about 12 to 25 ⁇ m
  • the width and depth of the small recesses 27 can be configured to about 1 to 10 ⁇ m
  • the width of the large recesses 25 is The depth can be configured to about 11 to 30 ⁇ m.
  • a blood sample may be injected so that individual cells B may be captured in each micro trap structure.
  • the measurement kit 20 to check the number of cells that emit light or surface plasmon resonance phenomenon in response to the composite material 11 among the cells captured in the uneven portion (25, 26, 27, 28) May be mounted on a pedestal or the like of the device 100.
  • FIG. 5 is a plan view of a blood rare cell detection and counting device according to the present invention
  • Figure 6 is a front view
  • the blood rare cell detection and counting device 100 is a sample collector 10, the measurement kit 20,
  • a moving rail 34, a movable collecting device 40, a biaxial moving rail 41, and the like may be provided.
  • the detector 30 detects and counts the rare cells in which the antigen-antibody reaction has occurred with the target antibody 13 among the blood cells B captured by the measurement kit 20.
  • the detector 30 may detect the location and number of cells in the blood by an optical method.
  • the detector 30 may include, for example, an ultra-precision CCD sensor array, and scan the measurement kit 20 to inspect the position and number of cells emitting light.
  • the detector 30 may be configured as a fluorescence scanning device or a surface plasmon resonance imaging scanning device according to the type of the labeling material 12, which will be described later.
  • the moving rail 34 serves to guide the movement of the detector 30 for the scanning of the measurement kit 20.
  • one end of the moving rail 34 may be mounted on a pedestal of the apparatus 100, and the other end may be connected to the detector 30.
  • the detector 30 may move in the up and down direction of the drawing along the moving rail 34.
  • the detector 30 may be provided with wheels, rollers, etc. to be movable along the moving rail 34.
  • the moving rail 34 is fixed and may not move.
  • the movement of the detector 30 may be manual movement by hand or automatic movement using a motor or the like.
  • the mobile collection device 40 serves to take a sample after detection.
  • the collecting device 40 may be configured in the form of, for example, a syringe. In the case of using a syringe, a sample may be taken by drilling the upper plate 21 of the measurement kit 20.
  • the collecting device 40 can also be moved manually or automatically using a motor or the like.
  • the two-axis moving rail 41 serves to guide the movement of the movable collecting device 40.
  • the biaxial moving rail 41 may be composed of a vertical rail and a horizontal rail, and the collecting device 40 may be mounted at an intersection point of the two rails.
  • the movable collecting device 40 may move along the biaxial moving rail 41 in the up and down direction and the left and right direction of the drawing.
  • the two-axis moving rail 41 may be installed to move on its own without being fixed to a pedestal of the apparatus 100, and may move together with the movable collecting device 40.
  • the detection position of the rare cells may be addressed so that the mobile collection device 40 may move to the target position along the biaxial movement rail 41 to collect the rare cells.
  • the collected sample can be used as a sample for secondary precision analysis.
  • the detector 30 may be configured as a fluorescence scanning device.
  • the fluorescence scanning device 30 includes a light source 31 capable of exciting one or more kinds of fluorescent materials, quantum dots, and micro-sized beads in which quantum dots are integrated; An image sensor 32 capable of measuring excited fluorescence; By providing the fluorescent filter 33 which can pass light of a specific wavelength band, it is possible to detect the position and number of blood cells which emit light.
  • the light source 31 may include at least one selected from a mercury lamp, a laser diode (LD), and a laser light emitting diode (LED).
  • the image sensor 32 may include at least one selected from a photo diode array, a charge coupled device (CCD) array, and a complementary metal oxide semiconductor (CMOS) array.
  • CMOS complementary metal oxide semiconductor
  • the image sensor 32 may be equipped with a zoom lens to acquire an optically enlarged image.
  • the light source 31 and the image sensor 32 may be installed in a form in which they are continuously coupled.
  • the wavelength band of light that the fluorescent filter 33 can pass may vary depending on the type of fluorescent material or quantum dots used.
  • the measurement kit 20 having completed the detection process, it is possible to check the appearance of the cell at the point of light emission using an optical device such as a microscope.
  • the detector 30 may be configured as the surface plasmon resonance imaging scanning apparatus 50. have.
  • the surface plasmon resonance imaging scanning device 50 is an optical device capable of generating surface plasmon resonance of metal nanoparticles, a micro-sized prism array, and a nano-sized grating array. By providing at least 1 sort (s) chosen from the inside, the position and number of the blood cells which surface plasmon resonance phenomenon generate
  • the surface plasmon resonance imaging scanning apparatus 50 includes a light source 51 for injecting parallel light 53 into the measurement kit 20, as shown in the figure; And a camera 52 measuring the reflected light 54 reflected from the measurement kit 20.
  • the surface plasmon resonance imaging scan device 50 may inject parallel light 53 into the measurement kit 20 and measure the reflected light 54 with the camera 52.
  • the metal nanoparticles When the metal nanoparticles are attached to the rare cells in the blood in a large amount, and the light comes in at a specific incident angle at the location, the light is absorbed only at the location, and the amount of reflected light is different from other parts of the measurement kit 20. Can be detected.
  • light of 400 to 900 nm wavelength may be incident at an angle of 10 to 80 degrees.
  • light of 600 to 800 nm wavelength may be incident at an angle of 30 to 70 degrees.
  • FIG. 9 is a perspective view showing that the micro-sized prism array or the nano-sized grating array used in the surface plasmon resonance imaging method according to the present invention is integrated with the measurement kit, and the measurement kit 20 generates the surface plasmon resonance phenomenon.
  • the measurement kit 20 may be integrated with a micro sized prism array 60 or a nano sized grating array.
  • the prism array 60 or the grating array is integrated with the outer surface of the measurement kit 20. Specifically, the prism array 60 or the grating array may be bonded to the outer surface of the upper plate 21 or the lower plate 22 by bonding, welding, injection, extrusion, or the like. Can be integrated.
  • the size of the prism array 60 may be, for example, 1 ⁇ m to 1 mm, preferably 10 to 500 ⁇ m, more preferably 100 to 200 ⁇ m.
  • the size of the grating array can be for example 1 nm to 10 ⁇ m, preferably 10 nm to 3 ⁇ m, more preferably 100 nm to 1 ⁇ m.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to an apparatus and a method for detecting and counting rare cells in blood. The apparatus according to the present invention comprises a blood sample collection tube, a measurement kit, a detector, and the like, wherein a complex material in which a target antibody and a tracer are combined, and blood are dispersed and mixed in the blood sample collection tube, blood is injected and individual cells are captured at respective micro-trap structures in the measurement kit, and the number of the micro-trap structures, which emit light by the occurrence of an antigen-antibody reaction and the adhering of tracers to the surface of cells, can be counted in the detector. According to the present invention, it is possible to easily and conveniently detect and count the number of rare cells through a normal blood test at clinical practice and test multiple samples.

Description

혈중 희소 세포의 검출 및 계수 장치와 방법Apparatus and method for detecting and counting rare cells in blood
본 발명은 혈액 내 존재하는 희소 세포를 검출하고 계수하는 장치 및 방법에 관한 것으로, 더욱 상세하게는 순환혈관 내피세포(CEC)와 같은 혈중 희소세포를 간단한 표적항체와 표지물질이 결합된 복합물질 그리고 마이크로 간극의 평판을 이용하여 희소세포를 검출하고 계수하는 장치 및 방법에 관한 것이다.The present invention relates to a device and method for detecting and counting rare cells present in blood. More specifically, the present invention relates to a complex material in which blood rare cells such as circulating vascular endothelial cells (CEC) are combined with a simple target antibody and a label, and An apparatus and method for detecting and counting rare cells using a microgap plate.
혈액 내부에는 적혈구, 백혈구, 혈소판과 같이 기존에 알려진 혈구 들에 비하여 개체수가 매우 적지만, 질환의 전이에 중요한 역할을 하거나 바이오 마커로 사용할 수 있는 극소수의 세포가 존재하는 것으로 알려져 있는데, 이를 희소 세포 (Rare cells)라고 한다.Although the population of the blood is very small compared to known blood cells such as red blood cells, white blood cells, and platelets, there are very few cells that can play an important role in the spread of disease or can be used as biomarkers. It is called (rare cells).
대표적인 희소세포로는 CTC(Circulating Tumor Cell, 혈중 암세포)가 있으며, 수십억 개의 혈구 세포 중 한 두 개가 존재하는 것으로 알려져 있다. CTC가 많을 경우, 암을 보유하고 있는 것으로 판정할 수 있는 매우 결정적인 단서를 혈액 검사에서 진단할 수 있기 때문에, 이에 대한 혈액검사 방법이 다양하게 개발되고 있다.Representative rare cells include CTC (Circulating Tumor Cell), and one or two of billions of blood cells are known to exist. In the case of a large number of CTCs, a blood test can diagnose a very definitive clue that can be determined to have cancer, and various blood test methods have been developed.
최근에는 CEC(Circulating Endothelial Cell, 혈중 혈관내피세포)가 심장 마비 등과 같은 심혈관 질환의 조기진단에 바이오마커로 사용될 수 있다는 임상논문 및 관련 기술들이 보고됨에 따라, CTC 유사 또는 관련 기술이 급격히 발달하고 있는 추세이다.Recently, as clinical papers and related technologies have been reported that circulating endothelial cells (CECs) can be used as biomarkers for early diagnosis of cardiovascular diseases such as heart failure, CTC-like or related technologies are rapidly developing. It is a trend.
실례로, 2012년도 3월 Science Translational Medicine에 발표된 "Characterization of circulating endothelial cells in acute myocardial infarction"에 따르면, 심장혈관 질환군이 건강군에 비하여 CEC를 5배 정도 많은 수량으로 가진다고 밝혀졌고, 이러한 CEC 수가 일정 수 이상으로 많아지면, 2주 이내 심장마비 등과 같은 질환이 올 수 있음을 사전에 조기 진단할 수도 있다고 보고하였다.For example, according to the "Characterization of circulating endothelial cells in acute myocardial infarction" published in Science Translational Medicine in March 2012, the cardiovascular group was found to have about five times more CEC than the healthy group. If the number increases above a certain number, it is reported that early diagnosis of a disease such as a heart attack may occur within two weeks.
CTC 또는 CEC 등과 같은 세포의 특징은 혈중에 존재하기는 하나, 그 수량이 매우 극소량이어서 일반 기술로는 분리 또는 검출하기가 매우 어렵지만, 암과 심혈관 질환과 같은 인류사망 원인의 핵심 질환 두 개가 모두 관여하고 있는 희소세포라는 점에서 매우 중요한 희소세포인 것이다. 검출 기술은 어려울 수 있지만, 환자의 입장에서는 소량의 혈액(7.5 ml)만을 제공하면, 암 검사 및 심혈관 질환의 검사를 받을 수 있다는 점에서, 매우 혁신적이고 시장이 기다리는 기술이기도 하다.Although the characteristics of cells such as CTC or CEC are present in the blood, but their quantity is very small, it is very difficult to separate or detect them by general technology, but both core diseases of human death cause such as cancer and cardiovascular disease are involved. It is a very important rare cell in that it is a rare cell. Detection technology can be difficult, but for the patient, providing only a small amount of blood (7.5 ml) allows for cancer screening and cardiovascular disease testing, which is a very innovative and market-waiting technology.
현재 알려진 CTC 또는 CEC 검출방법은 매우 높은 선택도(selectivity)를 갖는 항원-항체 반응을 이용하여 희소세포를 검출하는 방법이다. 즉, 특정 희소세포의 항원에 반응하여 부착할 수 있는 항체를 자성을 띠는 나노 입자의 표면에 코팅하고 이를 혈액 샘플과 혼합 교반하면, 혈액 내 존재하는 특정 희소세포에 나노입자가 부착되며, 이를 자력을 이용하여 강하게 고정시킨 후, 나머지 세포를 씻어내면 특정 희소세포만을 분리할 수 있게 된다. 이렇게 분리된 희소세포는 검증을 위하여 염색(Staining) 기법을 이용해서 현미경 등을 통하여 확인할 수 있으며, 개별적인 세포 개체수를 계수할 수 있다.Currently known CTC or CEC detection methods are methods for detecting rare cells using antigen-antibody responses with very high selectivity. That is, by coating an antibody capable of attaching to an antigen of a specific rare cell on the surface of the magnetic nanoparticle and stirring it with a blood sample, the nanoparticle is attached to a specific rare cell in the blood. After strong fixation using magnetic force, the remaining cells can be washed to isolate specific rare cells. The isolated rare cells can be identified through a microscope using a staining technique for verification, and individual cell numbers can be counted.
그러나, 이러한 종래의 방법들은 전처리 및 후처리 등의 별도 공정을 요구하고 있으며, 이러한 공정에 매우 오랜 시간이 소요되는 불편함이 있다. 또한, 이러한 공정을 다루기 위해서는 숙련된 검사자가 반드시 필요하다는 점 등으로 인하여, 임상 현장에서 사용하기란 매우 어려운 형편이다. 따라서, 임상현장에서 실시간으로 사용할 수 있도록 검사가 좀 더 간편하고 빠르며, 의료인이 쉽게 검사할 수 있도록 정량화되고 객관화된 측정장치와 방법이 요구되고 있다.However, these conventional methods require separate processes such as pretreatment and posttreatment, and there is an inconvenience in that such a process takes a very long time. In addition, it is very difficult to use in the clinical field due to the necessity of skilled inspectors to deal with such a process. Therefore, there is a need for a quantitative and objective measurement device and method for a simpler and faster test and a medical practitioner for easy real-time use in a clinical setting.
따라서, 본 발명의 목적은 상술한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 일정량의 혈액으로부터 극소수로 존재하는 희소세포를 신속하고 정확하게 검출 및 계수할 수 있는 장치와 방법을 제공하는 것이다.Accordingly, an object of the present invention is to solve the problems of the prior art as described above, and to provide an apparatus and a method capable of quickly and accurately detecting and counting the rare cells existing in a small amount from a certain amount of blood.
본 발명은 상술한 목적을 달성하기 위해, 혈액 샘플을 채집하고, 표적항체와 표지물질이 결합된 복합물질을 수용하는 샘플 채집부; 혈액 샘플과 복합물질의 혼합물이 주입되도록 샘플 채집부와 연결되고, 혈중 세포를 개별적으로 포획(trapping)하는 측정 키트; 및 측정 키트에서 포획된 혈중 세포 중에서, 표적항체와 항원-항체반응이 발생한 희소 세포를 검출 및 계수하는 검출기를 포함하는 혈중 희소 세포의 검출 및 계수 장치를 제공하는 것이다.In order to achieve the above object, the present invention collects a blood sample, a sample collection unit for receiving a complex material combined with a target antibody and a label; A measurement kit connected to the sample collection unit for injecting a mixture of the blood sample and the composite material, and individually trapping blood cells; And a detector for detecting and counting the rare cells having generated the antigen-antibody reaction with the target antibody among the blood cells captured in the measurement kit.
본 발명에서 표적항체는 혈중 희소 세포를 특이적으로 인지하여 결합할 수 있다.In the present invention, the target antibody may specifically recognize and bind to rare cells in the blood.
본 발명에서 표지물질은 형광 물질; 양자점(Quantum Dot); 양자점이 집적되어 있는 마이크로 사이즈의 비드; 금속 나노입자 중에서 선택되는 1종 이상을 포함할 수 있다.Labeling material in the present invention is a fluorescent material; Quantum dots; Micro size beads in which quantum dots are integrated; It may include one or more selected from metal nanoparticles.
본 발명에서 샘플 채집부에 채집된 혈액 샘플은 복합물질의 분산액과 교반될 수 있다.In the present invention, the blood sample collected in the sample collection unit may be stirred with the dispersion of the composite material.
본 발명에서 측정 키트는 마이크로 크기의 간극을 가진 두 개의 평판을 구비함으로써, 모세관 현상에 의해 혈액 샘플을 이동시킬 수 있다.In the present invention, the measurement kit includes two plates having a micro-sized gap, thereby allowing blood samples to be moved by capillary action.
본 발명에서 평판은 단단한 판형 구조 또는 유연한 필름형 구조로 제작될 수 있다.In the present invention, the plate may be manufactured in a rigid plate-like structure or a flexible film-like structure.
본 발명에서 측정 키트의 일단에는 혈액 샘플이 주입되는 주입구가 형성되며, 타단에는 외부와 연통하여 공기가 통과되는 개구부가 형성된 모세관이 구비될 수 있다.In the present invention, one end of the measurement kit is formed with an injection hole into which a blood sample is injected, and the other end may be provided with a capillary tube formed with an opening through which air passes.
본 발명에서 모세관의 개구부에는 유동 구동 메커니즘이 연결되어 혈액 샘플을 측정 키트에 주입 및 유동시킬 수 있다.In the present invention, the opening of the capillary may be connected to a flow driving mechanism to inject and flow the blood sample into the measurement kit.
본 발명에서 두 개의 평판 중 적어도 하나에는 혈중 세포가 개별적으로 포획되도록 요철부가 구비될 수 있다.At least one of the two plates in the present invention may be provided with an uneven portion so that blood cells are individually captured.
본 발명에서 요철부에는 계단 형태의 단차가 형성되어 작은 세포가 하부에 포획되고, 큰 세포가 그 상부에 포획될 수 있다.In the present invention, a stepped stepped step is formed in the concave-convex portion to capture small cells at the bottom, and large cells can be captured at the top.
본 발명에서 검출기는 형광물질, 양자점, 양자점이 집적되어 있는 마이크로 사이즈의 비드 중 1종 이상을 여기시킬 수 있는 광원; 여기된 형광을 측정하는 이미지 센서; 특정 파장대의 광을 통과시키는 형광필터를 구비함으로써, 광을 발산하는 혈중 세포의 위치와 개수를 검출하는 형광 스캔장치일 수 있다.In the present invention, the detector includes a light source capable of exciting one or more of fluorescent materials, quantum dots, and micro-sized beads in which quantum dots are integrated; An image sensor for measuring excited fluorescence; By providing a fluorescence filter for passing light of a specific wavelength band, it may be a fluorescence scanning device for detecting the position and number of blood cells that emit light.
본 발명에서 광원은 머큐리 램프, 레이저 다이오드(LD), 레이저 발광 다이오드(LED) 중에서 선택되는 1종 이상을 포함할 수 있다.In the present invention, the light source may include at least one selected from a mercury lamp, a laser diode (LD), and a laser light emitting diode (LED).
본 발명에서 이미지 센서는 포토 다이오드 어레이, CCD(Charge Coupled Device) 어레이, CMOS(Complementary Metal Oxide Semiconductor) 어레이 중에서 선택되는 1종 이상을 포함할 수 있다.In the present invention, the image sensor may include at least one selected from a photo diode array, a charge coupled device (CCD) array, and a complementary metal oxide semiconductor (CMOS) array.
본 발명에서 이미지 센서에는 줌(Zoom) 렌즈가 장착되어 광학적으로 확대된 이미지를 획득할 수 있다.In the present invention, a zoom lens may be mounted on the image sensor to acquire an optically enlarged image.
본 발명에서 광원과 이미지 센서는 연속으로 결합되어 있는 형태로 설치될 수 있다.In the present invention, the light source and the image sensor may be installed in a form in which they are continuously coupled.
본 발명에서 검출기는 금속 나노입자의 표면 플라즈몬 공명(Surface Plasmon Resonance) 현상을 발생시킬 수 있는 광학장치, 마이크로 크기의 프리즘 어레이(Prism Array), 나노 크기의 그레이팅 어레이(Grating Array) 중에서 선택되는 1종 이상을 구비함으로써, 표면 플라즈몬 공명 현상이 발생되는 혈중 세포의 위치와 개수를 검출하는 표면 플라즈몬 공명 이미징 스캔 장치일 수 있다.In the present invention, the detector is one selected from an optical device, a micro-sized prism array, and a nano-sized grating array, which can cause surface plasmon resonance of metal nanoparticles. By providing the above, it can be a surface plasmon resonance imaging scanning apparatus which detects the position and number of blood cells in which surface plasmon resonance occurs.
본 발명에서 표면 플라즈몬 공명 이미징 스캔 장치는 평행광을 측정 키트로 입사시키는 광원; 및 측정 키트로부터 반사되는 광을 측정하는 카메라를 구비할 수 있다.In the present invention, the surface plasmon resonance imaging scanning apparatus includes a light source for injecting parallel light into the measurement kit; And a camera for measuring light reflected from the measurement kit.
본 발명에서 측정 키트는 마이크로 크기의 프리즘 어레이 또는 나노 크기의 그레이팅 어레이와 일체화될 수 있다.In the present invention, the measurement kit may be integrated with a micro-sized prism array or a nano-sized grating array.
본 발명에 따른 장치는 검출기에 연결되고, 측정 키트의 스캐닝을 위해 검출기의 이동을 안내하는 이동 레일; 검출 후 샘플 채취를 위한 이동형 채집 장치; 및 이동형 채집 장치에 연결되고, 이동형 채집 장치의 이동을 안내하는 2축 이동 레일을 추가로 포함할 수 있다.The device according to the invention comprises a moving rail connected to the detector and guiding the movement of the detector for scanning of the measurement kit; A mobile collection device for sampling after detection; And a two-axis moving rail connected to the mobile collecting device and guiding the movement of the mobile collecting device.
또한, 본 발명은 상술한 장치를 이용하고, 샘플 채집부로 혈액 샘플을 채집하는 단계; 채집된 혈액 샘플을 표적항체와 표지물질이 결합된 복합물질과 혼합되도록 교반하는 단계; 혈액 샘플과 복합물의 혼합물을 측정 키트에 주입하여 혈중 세포를 개별적으로 포획하는 단계; 및 측정 키트에서 포획된 혈중 세포 중에서, 표적항체와 항원-항체반응이 발생한 희소 세포를 검출기를 이용하여 검출 및 계수하는 단계를 포함하는 혈중 희소 세포의 검출 및 계수 방법을 제공한다.In addition, the present invention using the apparatus described above, the step of collecting a blood sample with a sample collection unit; Stirring the collected blood sample to be mixed with a complex material combined with a target antibody and a label; Injecting a mixture of the blood sample and the complex into a measurement kit to capture blood cells individually; And detecting and counting the rare cells in which the antigen-antibody reaction has occurred with the target antibody among the blood cells captured in the measurement kit by using a detector.
본 발명에 따르면, 일회용으로 사용이 가능한 혈액 채혈관에서 표적항체와 표지물질이 결합된 복합물질 및 혈액이 혼합된 후, 측정 키트 평판에 주입되면서 발광하는 마이크로 트랩의 개수를 검사함으로써, 빠르고 쉽고 간편하게 희소세포를 검출 및 계수할 수 있을 뿐 아니라, 일반 의료인이 간단한 작동법으로도 객관화되고 표준화된 검출 및 계수가 가능하다. 특히 하나의 검사에 소요되는 시간이 짧아 대량의 검사도 가능하다.According to the present invention, a blood sample tube which can be used for one-time use is mixed with the target antibody and the labeling substance, and the blood is mixed, and then the number of micro traps that emits light while being injected into the measurement kit plate is quickly and easily and conveniently. In addition to detecting and counting rare cells, it is also possible for a healthcare practitioner to objectify and standardize detection and counting with simple operation. In particular, the time required for one test is short, so a large amount of test is possible.
도 1은 본 발명에 따른 혈중 희소 세포의 검출 및 계수 장치와 방법을 개략적으로 나타낸 것이다.1 schematically shows an apparatus and method for detecting and counting rare cells in blood according to the present invention.
도 2는 본 발명에 따른 측정 키트의 평면도이다.2 is a plan view of a measurement kit according to the invention.
도 3은 본 발명에 따라 요철구조를 갖는 측정 키트에서 세포가 포획되는 메커니즘을 나타낸 단면도이다.3 is a cross-sectional view showing a mechanism in which cells are captured in a measurement kit having a concave-convex structure according to the present invention.
도 4는 본 발명에 따라 계단 형태의 요철구조를 갖는 측정 키트에서 세포가 포획되는 메커니즘을 나타낸 단면도이다.Figure 4 is a cross-sectional view showing a mechanism for trapping cells in the measurement kit having a step-shaped concave-convex structure in accordance with the present invention.
도 5는 본 발명에 따른 혈중 희소 세포의 검출 및 계수 장치의 평면도이다.5 is a plan view of a device for detecting and counting rare cells in the blood according to the present invention.
도 6은 본 발명에 따른 혈중 희소 세포의 검출 및 계수 장치의 정면도이다.6 is a front view of a device for detecting and counting rare cells in the blood according to the present invention.
도 7은 본 발명에 따른 검출기 중 형광 스캔 장치의 구성도이다.7 is a block diagram of a fluorescence scanning device among detectors according to the present invention.
도 8은 본 발명에 따른 검출기 중 표면 플라즈몬 공명 이미징 스캔 장치의 구성도이다.8 is a block diagram of a surface plasmon resonance imaging scanning apparatus of the detector according to the present invention.
도 9는 본 발명에 따른 표면 플라즈몬 공명 이미징 방법에 사용되는 마이크로 크기의 프리즘 어레이 또는 나노 크기의 그레이팅 어레이가 측정 키트와 일체화된 것을 도시한 사시도이다.9 is a perspective view showing that a micro-sized prism array or a nano-sized grating array used in the surface plasmon resonance imaging method according to the present invention is integrated with a measurement kit.
이하, 첨부 도면을 참조하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 혈중 희소 세포의 검출 및 계수 장치와 방법을 개략적으로 나타낸 것으로, 본 발명에 따른 혈중 희소 세포의 검출 및 계수 장치(100)는 희소세포 진단 시스템으로서, 샘플 채집부(10), 측정 키트(20), 검출기(30) 등을 구비할 수 있다.Figure 1 schematically shows the apparatus and method for detecting and counting blood rare cells according to the present invention, the apparatus for detecting and counting blood rare cells 100 according to the present invention is a rare cell diagnostic system, the sample collection unit 10 ), A measurement kit 20, a detector 30, and the like.
샘플 채집부(10)는 혈액 샘플을 채집하고, 또한 복합물질(11)을 수용하는 역할을 한다. 즉, 혈액 샘플이 로딩되는 곳이다.The sample collection unit 10 collects a blood sample and also serves to receive the composite material 11. That is where the blood sample is loaded.
샘플 채집부(10)는 관 형태로 이루어질 수 있고, 마개를 구비할 수 있다. 바람직하게는, 샘플 채집부(10)는 일반적으로 널리 사용되는 7.5 ml 부피의 혈액 채혈관의 구조를 가질 수 있다.The sample collection unit 10 may be formed in a tube shape and may have a stopper. Preferably, the sample collection unit 10 may have a structure of a blood collection tube of 7.5 ml volume, which is generally widely used.
혈액 샘플은 다수의 혈중 세포(B)를 포함하고, 혈중 세포(B)는 크게 구분하여 적혈구 등의 작은 세포(S) 그리고 백혈구와 희소세포 등의 큰 세포(L)를 포함할 수 있다.The blood sample may include a plurality of blood cells (B), and the blood cells (B) may be largely divided into small cells (S) such as red blood cells and large cells (L) such as white blood cells and rare cells.
복합물질(11)은 표지물질(12)과 표적항체(13)가 결합된 형태일 수 있다. 표지물질(12)과 표적항체(13)는 링커(Lingker)를 통해 화학적으로 결합되거나, 물리적으로 결합될 수 있다. 링커로는 특별히 제한되지 않고 통상적인 링커를 사용할 수 있으며, 예를 들어 펩티드 링커, 히드라진 링커, 디설파이드 링커 등을 사용할 수 있다.The composite material 11 may be in the form of combining the labeling material 12 and the target antibody 13. The labeling substance 12 and the target antibody 13 may be chemically or physically coupled through a linker. The linker is not particularly limited, and conventional linkers may be used. For example, peptide linkers, hydrazine linkers, disulfide linkers, and the like may be used.
복합물질(11)은 복합물질(11)을 포함하는 용액, 바람직하게는 복합물질(11)이 분산매에 분산되어 있는 분산액 형태로 제공될 수 있다. 예를 들어, 복합물질 분산액은 복합물질(11) 등의 분산질, 물 등의 분산매, 계면활성제 등의 분산제 등을 포함할 수 있다.The composite material 11 may be provided in the form of a solution containing the composite material 11, preferably in the form of a dispersion in which the composite material 11 is dispersed in a dispersion medium. For example, the composite material dispersion may include a dispersant such as the composite material 11, a dispersion medium such as water, a dispersant such as a surfactant, and the like.
표지물질(12)로는 1) 형광물질, 2) 양자점, 3) 양자점이 집적되어 있는 마이크로 사이즈의 비드(Bead), 4) 금속 나노입자 중에서 1종 이상을 선택하여 사용할 수 있다.As the labeling material 12, one or more of 1) fluorescent material, 2) quantum dots, 3) micro-sized beads in which quantum dots are integrated, and 4) metal nanoparticles may be selected and used.
형광물질로는 특별히 제한되지 않고 통상적인 형광물질을 사용할 수 있으며, 예를 들어 플루오레세인(fluorescein), 이소티오시아네이트(isothiocyanate), 로다민(rhodamine), 피코에리트린(phycoerythrin), 피코시아닌(phycocyanin), 알로피코시아닌(allophycocyanin), 프탈데히드(phthaldehyde), 플루오레스사민(fluorescamine) 등을 사용할 수 있다. 형광물질의 크기는 특별히 제한되지 않고, 예를 들어 1 내지 900 nm, 바람직하게는 10 내지 500 nm, 더욱 바람직하게는 30 내지 300 nm일 수 있다.The fluorescent material is not particularly limited and conventional fluorescent materials can be used, for example, fluorescein, isothiocyanate, rhodamine, phycoerythrin, and phycoerythine. Phycocyanin, allophycocyanin, phthaldehyde, fluorescamine and the like can be used. The size of the fluorescent material is not particularly limited, and may be, for example, 1 to 900 nm, preferably 10 to 500 nm, more preferably 30 to 300 nm.
양자점은 중심입자와 이 중심입자의 표면에 결합된 리간드를 포함할 수 있다. 중심입자를 형성하는 물질의 예로서는, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe과 같은 II-VI족 화합물 반도체 나노결정, GaN, GaP, GaAs, InP, InAs와 같은 III-V족 화합물 반도체 나노결정 또는 이들의 혼합물 등을 들 수 있다. 중심입자는 코어/쉘 구조를 가질 수 있고, 중심입자의 코어 및 쉘(Shell) 각각은 위에서 예시한 화합물들을 포함할 수 있다. 예시한 화합물들은 각각 단독으로 또는 2 이상이 조합되어 코어나 쉘에 포함될 수 있다. 예를 들어, 중심입자는 CdSe를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 CdSe-ZnS(코어/쉘) 구조를 가질 수 있다. 리간드는 서로 인접한 중심입자들이 쉽게 서로 응집되어 소광되는 것을 방지할 수 있다. 또한, 리간드는 중심입자와 결합하여 중심입자가 소수성을 갖도록 할 수 있다. 리간드의 예로서는, 탄소수 6 내지 30의 알킬기를 갖는 아민계 화합물이나 카르복시산 화합물 등을 들 수 있다. 리간드의 또 다른 예로서, 탄소수 6 내지 30의 알케닐기를 갖는 아민계 화합물이나 카르복시산 화합물 등을 들 수 있다. 양자점의 크기는 특별히 제한되지 않고, 예를 들어 1 내지 900 nm, 바람직하게는 10 내지 500 nm, 더욱 바람직하게는 30 내지 300 nm일 수 있다.The quantum dot may include a central particle and a ligand bound to the surface of the central particle. Examples of the material forming the core particles include II-VI compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, III- such as GaN, GaP, GaAs, InP, InAs. And group V compound semiconductor nanocrystals or mixtures thereof. The central particle may have a core / shell structure, and each of the core and shell of the central particle may include the compounds exemplified above. Exemplary compounds may be included in the core or shell each alone or in combination of two or more. For example, the central particle may have a CdSe-ZnS (core / shell) structure having a core comprising CdSe and a shell comprising ZnS. The ligand can prevent the central particles adjacent to each other from easily agglomerated and quenched with each other. In addition, the ligand may bind to the central particle so that the central particle has hydrophobicity. As an example of a ligand, an amine compound, a carboxylic acid compound, etc. which have a C6-C30 alkyl group are mentioned. As another example of a ligand, the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkenyl group are mentioned. The size of the quantum dots is not particularly limited and may be, for example, 1 to 900 nm, preferably 10 to 500 nm, more preferably 30 to 300 nm.
양자점이 집적되어 있는 마이크로 사이즈의 비드는 다수의 양자점이 집적된 양자점 집적체를 둘러싸는 캡슐 구조일 수 있다. 캡슐은 젤라틴, 셀룰로오스계 화합물 등을 사용하여 제조할 수 있다. 마이크로 비드의 크기는 특별히 제한되지 않고, 예를 들어 0.1 내지 900 ㎛, 바람직하게는 0.5 내지 500 ㎛, 더욱 바람직하게는 1 내지 100 ㎛일 수 있다.The micro-sized beads in which the quantum dots are integrated may be a capsule structure surrounding a quantum dot integrated body in which a plurality of quantum dots are integrated. Capsules can be prepared using gelatin, cellulosic compounds, or the like. The size of the microbeads is not particularly limited and may be, for example, 0.1 to 900 μm, preferably 0.5 to 500 μm, more preferably 1 to 100 μm.
금속 나노입자를 구성하는 금속으로는 특별히 제한되지 않고 통상적인 금속을 모두 사용할 수 있으며, 예를 들어 금, 은, 동, 철, 백금, 텅스텐, 티타늄, 주석, 니켈, 크롬, 코발트, 아연, 이리듐 등을 사용할 수 있다. 또한, 금속 산화물이나 금속 염 등을 사용하거나, 합금을 사용할 수도 있다. 금속 나노입자의 크기는 특별히 제한되지 않고, 예를 들어 1 내지 900 nm, 바람직하게는 10 내지 500 nm, 더욱 바람직하게는 30 내지 300 nm일 수 있다.The metal constituting the metal nanoparticles is not particularly limited, and all conventional metals may be used. For example, gold, silver, copper, iron, platinum, tungsten, titanium, tin, nickel, chromium, cobalt, zinc, iridium Etc. can be used. Moreover, a metal oxide, a metal salt, etc. can be used, or an alloy can also be used. The size of the metal nanoparticles is not particularly limited, and may be, for example, 1 to 900 nm, preferably 10 to 500 nm, more preferably 30 to 300 nm.
표적항체(13)로는 CTC, CEC 등과 같은 혈중 희소 세포를 특이적으로 인지하여 결합할 수 있는 항체를 사용할 수 있다. 예를 들어, Anti-EpCAM 항체를 사용할 수 있다.As the target antibody 13, an antibody capable of specifically recognizing and binding rare cells in the blood such as CTC and CEC may be used. For example, Anti-EpCAM antibodies can be used.
샘플 채집부(10)에 일정량의 혈액 샘플이 채집된 후, 혈액 샘플은 내부에 있는 복합물질 분산액과 혼합되도록 교반될 수 있다. 교반은 손으로 흔드는 수동적인 방법으로 수행할 수 있고, 또한 교반기 등을 이용하는 자동적인 방법으로 수행할 수도 있다. 혈액 샘플과 복합물질 분산액의 혼합 순서는 특별히 제한되지 않으며, 샘플 채집부(10)에 혈액 샘플을 먼저 넣거나, 복합물질 분산액을 먼저 넣을 수도 있다. 교반 과정에서 특정 혈중 희소세포가 존재한다면, 그 세포막 주변에 항원-항체 반응을 통하여 표지물질(12)과 표적항체(13)이 결합된 복합물질(11)이 다량으로 부착될 수 있다.After a certain amount of blood sample is collected in the sample collection unit 10, the blood sample may be stirred to mix with the composite dispersion therein. The stirring may be performed by a manual method of shaking by hand, or may be performed by an automatic method using a stirrer or the like. The mixing order of the blood sample and the composite material dispersion is not particularly limited, and the blood sample may be first put into the sample collection unit 10 or the composite material dispersion may be put first. If a specific blood rare cell is present during the stirring process, a large amount of the complex material 11 to which the labeling substance 12 and the target antibody 13 are bound may be attached through an antigen-antibody reaction around the cell membrane.
도 1의 우측 하부를 보면, 세포 계수(Cell Counting)를 위한 스캐닝 이미지가 예시되어 있는데, 여기서 다수의 격자 중 흑색 부위는 복합물질이 결합되어 있는 하이브리드 희소세포(Hybridized RC)를 나타낸 것이다.In the lower right of Figure 1, a scanning image for cell counting (Cell Counting) is illustrated, where a black portion of the plurality of grids represents a hybrid rare cells (Hybridized RC) to which the composite material is bound.
도 2는 본 발명에 따른 측정 키트의 평면도로서, 측정 키트(20)는 평판(21, 22), 주입구(23), 모세관(24), 요철구조(25, 26, 27, 28) 등을 구비할 수 있다.Figure 2 is a plan view of the measurement kit according to the present invention, the measurement kit 20 is provided with a flat plate 21, 22, inlet 23, capillary 24, uneven structure (25, 26, 27, 28), etc. can do.
측정 키트(20)는 혈중 세포를 개별적으로 포획(trapping)하는 역할을 한다. 측정 키트(20)는 혈액 샘플과 복합물질(11)의 혼합물이 주입되도록 샘플 채집부(10)와 연결될 수 있다. 이를 위해, 측정 키트(20)의 일단에는 혈액 샘플이 주입되는 주입구(23)가 형성될 수 있다. 주입구(23)는 예를 들어 바늘(Needle) 형태로 구성되거나, 바늘 구조를 포함할 수 있다. 예를 들어, 샘플 채집부(10)를 거꾸로 세운 후에, 샘플 채집부(10)의 마개를 바늘 형태의 주입구(23) 또는 주입구(23)의 바늘 구조에 꽂으면, 샘플 채집부(10)와 측정 키트(20)가 연결되면서, 샘플 채집부(10)에서 교반된 혈액 샘플과 복합물질의 혼합물이 측정 키트(20)에 주입될 수 있다.The measurement kit 20 serves to individually trap cells in the blood. The measurement kit 20 may be connected to the sample collection unit 10 to inject a mixture of the blood sample and the composite material 11. To this end, an injection hole 23 into which a blood sample is injected may be formed at one end of the measurement kit 20. The injection port 23 may be configured, for example, in the form of a needle, or may include a needle structure. For example, after the sample collecting unit 10 is upside down, the plug of the sample collecting unit 10 is plugged into the needle-shaped injection hole 23 or the needle structure of the injection hole 23, and the sample collecting unit 10 As the measurement kit 20 is connected, a mixture of the blood sample and the composite material stirred in the sample collection unit 10 may be injected into the measurement kit 20.
측정 키트(20)는 세포 스프레딩(Cell Spreading)을 위한 마이크로 유동 시트(Microfluidic Sheet)로 구성될 수 있다. 바람직하게는, 측정 키트(20)는 마이크로 크기의 간극을 가진 두 개의 평판(21, 22)을 구비함으로써, 모세관 현상에 의해 혈액 샘플을 이동시킬 수 있다. 그러나, 이에 제한되는 것은 아니고, 측정 키트(20)는 하나의 평판으로 구성될 수도 있으며, 또한 3개 이상의 평판으로 구성될 수도 있다. 두 평판(21, 22) 사이의 간극은 예를 들어 1 내지 500 ㎛, 바람직하게는 5 내지 100 ㎛, 더욱 바람직하게는 10 내지 50 ㎛일 수 있다.The measurement kit 20 may be composed of a microfluidic sheet for cell spreading. Preferably, the measurement kit 20 includes two plates 21, 22 with micro-sized gaps, thereby allowing blood samples to be moved by capillary action. However, the present invention is not limited thereto, and the measurement kit 20 may be composed of one flat plate or three or more flat plates. The gap between the two plates 21, 22 may be for example 1 to 500 μm, preferably 5 to 100 μm, more preferably 10 to 50 μm.
평판(21, 22)은 단단한 판형 구조 또는 유연한 필름형 구조로 제작될 수 있다. 평판(21, 22)은 금속, 플라스틱, 유리, 세라믹 등으로 이루어질 수 있으며, 검출이 용이하도록 바람직하게는 투명하게 제작할 수 있다. 평판(21, 22)의 두께는 예를 들어 1 ㎛ 내지 10 mm, 바람직하게는 10 ㎛ 내지 5 mm, 더욱 바람직하게는 50 ㎛ 내지 3 mm일 수 있다.The plates 21 and 22 can be made of rigid plate-like structures or flexible film-like structures. The flat plates 21 and 22 may be made of metal, plastic, glass, ceramic, or the like, and may be preferably transparent to facilitate detection. The thicknesses of the flat plates 21, 22 can be, for example, from 1 μm to 10 mm, preferably from 10 μm to 5 mm, more preferably from 50 μm to 3 mm.
두 평판(21, 22)이 일정한 간격을 두고 평행하게 배치되면, 두 평판(21, 22) 사이의 테두리 부분, 즉 두 평판(21, 22) 사이의 좌우 측면 및 전후면은 개방될 수 있는데, 이 개방 부분은 밀봉재료 등을 이용하여 밀봉될 수 있다. 또한, 개방 부위 없이 측정 키트(20)를 매우 얇은 육면체 형태의 일체화된 구조물로 제작할 수도 있다. 물론, 주입구(23) 및 모세관(24)은 별도로 형성할 수 있다.When the two plates 21 and 22 are arranged in parallel at regular intervals, the edge portion between the two plates 21 and 22, that is, the left and right sides and the front and rear surfaces between the two plates 21 and 22 may be opened. This open portion may be sealed using a sealing material or the like. It is also possible to fabricate the measurement kit 20 as an integral structure in the form of a very thin cube without openings. Of course, the injection port 23 and the capillary tube 24 may be formed separately.
모세관(24)은 측정 키트(20)의 두 평판(21, 22) 사이에서 혈액 샘플과 복합물질의 혼합물이 잘 흐르도록 하는 역할을 할 수 있다. 이를 위해, 모세관(24)은 측정 키트(20)의 타단, 예를 들어 주입구(23)의 반대편에 형성될 수 있다. 모세관(24)은 외부와 연통하여 공기가 통과되는 개구부를 구비할 수 있다. 개구부는 예를 들어 모세관(24)의 말단에 형성될 수 있다. 모세관(24)의 직경은 바람직하게는 공기만 통과할 수 있도록, 예를 들어 0.01 내지 100 ㎛, 바람직하게는 0.1 내지 50 ㎛, 더욱 바람직하게는 0.5 내지 20 ㎛일 수 있다. Capillary tube 24 may serve to allow a mixture of blood sample and composite to flow well between two plates 21, 22 of measurement kit 20. To this end, the capillary tube 24 may be formed at the other end of the measurement kit 20, for example opposite the inlet 23. The capillary tube 24 may have an opening through which air is communicated with the outside. The opening may for example be formed at the end of the capillary tube 24. The diameter of the capillary tube 24 may be, for example, 0.01 to 100 μm, preferably 0.1 to 50 μm, more preferably 0.5 to 20 μm, such that only air can pass therethrough.
모세관(24)의 말단 개구부에는 유동 구동 메커니즘이 연결되어 혈액 샘플을 적당한 속도로 측정 키트(20)에 주입시킬 수 있고, 또한 혈액 샘플을 측정 키트(20) 내부에서 유동시킬 수 있다. 유동 구동 메커니즘은 예를 들어 진공펌프를 포함할 수 있다. 예를 들어, 진공펌프를 이용하여 측정 키트(20) 내부에 진공을 가했다가 정지했다가 하면, 혈액 샘플 유동이 전진했다가 후진(역류)할 수 있어 전체적으로 혈액 샘플이 골고루 퍼지는 효과를 가져올 수 있다. 또한, 진공펌프의 압력을 조절함으로써, 혈액 샘플의 주입 속도 및 유동 속도를 조절할 수 있다.A flow drive mechanism may be connected to the distal opening of the capillary 24 to inject the blood sample into the measurement kit 20 at a suitable rate and also to flow the blood sample inside the measurement kit 20. The flow drive mechanism may comprise a vacuum pump, for example. For example, if a vacuum is applied to the inside of the measurement kit 20 by using a vacuum pump and then stopped, the blood sample flow may be advanced and then reversed (backflow), so that the overall blood sample may be spread evenly. In addition, by adjusting the pressure of the vacuum pump, it is possible to control the injection rate and the flow rate of the blood sample.
도 3은 본 발명에 따라 요철구조를 갖는 측정 키트에서 세포가 포획되는 메커니즘을 나타낸 단면도로서, 두 개의 평판(21, 22) 중 적어도 하나에는 혈중 세포(B)가 개별적으로 포획(trapping)되도록 요철부(25, 26)가 구비될 수 있다. 도면에는 요철부(25, 26)가 하부 평판(22)에 형성되었지만, 이에 제한되지 않고, 요철부(25, 26)가 상부 평판(21)에 형성될 수 있으며, 또한 양쪽 평판(21, 22) 모두에 형성될 수도 있다.3 is a cross-sectional view illustrating a mechanism in which cells are captured in a measurement kit having a concave-convex structure according to the present invention, in which at least one of the two plates 21 and 22 is trapped so that blood cells B are individually trapped. Parts 25 and 26 may be provided. Although the uneven portions 25 and 26 are formed in the lower plate 22 in the drawing, the present invention is not limited thereto, and the uneven portions 25 and 26 may be formed in the upper plate 21, and both flat plates 21 and 22 may be formed. ) May be formed on both.
요철부(25, 26)는 요부(25) 및 철부(26)로 구성되고, 바람직하게는, 마이크로 단위의 미세 구조로 형성될 수 있다. 요철부(25, 26)의 개수는 특별히 제한되지 않고 측정 키트(20)의 크기에 따라 달라지며, 바람직하게는 10개 이상, 더욱 바람직하게는 100개 이상일 수 있다. 많게는 만개 이상, 십만개 이상, 백만개 이상도 가능하다.Concave- convex portions 25 and 26 are composed of concave portion 25 and convex portion 26, and preferably, may be formed in a microstructure of micro units. The number of the uneven parts 25 and 26 is not particularly limited and depends on the size of the measurement kit 20, preferably 10 or more, more preferably 100 or more. As many as 10,000, 100,000, or more than 1 million are possible.
요철부(25, 26)의 폭, 길이, 높이(깊이)는 각각 독립적으로 예를 들어 0.1 내지 200 ㎛, 바람직하게는 0.5 내지 70 ㎛, 더욱 바람직하게는 1 내지 30 ㎛일 수 있다.The width, length, and height (depth) of the uneven parts 25 and 26 may be each independently, for example, 0.1 to 200 µm, preferably 0.5 to 70 µm, and more preferably 1 to 30 µm.
도면에는 혈액 샘플의 이동 방향이 화살표로 표시되어 있고, 혈중 세포(B)는 요부(25)에 포획되어 있는 것을 확인할 수 있다.In the figure, the movement direction of the blood sample is indicated by an arrow, and it can be confirmed that blood cells B are captured by the lumbar portion 25.
한편, 유동구동 메커니즘은 요철부(25, 26)의 트랩에 혈중 세포(B)가 개별적으로 포획되도록, 두 평판(21, 22) 사이에서 혈액 샘플의 유동을 전방으로 유동 또는 후방으로의 역류 등을 반복적으로 유도함으로써, 하나의 세포(B)가 하나의 요철부(25, 26)에 포획되도록 할 수 있다.On the other hand, the flow driving mechanism allows the flow of the blood sample between the two plates 21 and 22 to be forward or backward to flow backward so that the blood cells B are individually captured in the traps of the uneven portions 25 and 26. By repeatedly inducing one cell (B) can be trapped in one uneven portion (25, 26).
도 4는 본 발명에 따라 계단 형태의 요철구조를 갖는 측정 키트에서 세포가 포획되는 메커니즘을 나타낸 단면도로서, 요철부(25, 26, 27, 28)에는 계단 형태의 단차가 형성되어 작은 세포(S)가 하부에 포획되고, 큰 세포(L)가 그 상부에 포획될 수 있다.4 is a cross-sectional view showing a mechanism in which the cells are captured in the measurement kit having a step-shaped concave-convex structure according to the present invention, the step-shaped step is formed in the concave-convex portions (25, 26, 27, 28) small cells (S ) Can be captured at the bottom, and large cells (L) can be captured at the top.
계단 형태의 요철구조는 도시된 바와 같이, 큰 요부(25)의 저면 하부에 작은 요부(27)가 추가로 형성된 구조일 수 있다. 또한, 큰 철부(26)의 상부 양 측면이 깎여서 작은 철부(28)가 형성되거나, 큰 철부(26)의 하부 양 측면으로부터 작은 철부(28)가 돌출된 구조일 수 있다.As shown in the figure, the stepped concave-convex structure may be a structure in which a small concave portion 27 is further formed below the bottom of the large concave portion 25. In addition, both upper side surfaces of the large convex portion 26 may be cut to form a small convex portion 28, or a small convex portion 28 may protrude from both lower sides of the large convex portion 26.
이와 같이, 요철부(25, 26, 27, 28)는 단차가 형성되도록 계단 형태로 구성함으로써, 도면에 도시된 바와 같이, 적혈구와 같은 작은 세포(S)는 하부인 작은 요부(27)에 포획되고, 백혈구와 희소세포 등과 같은 큰 세포(L)는 바로 위인 큰 요부(25)에 포획될 수 있다.As such, the uneven parts 25, 26, 27, and 28 are formed in a step shape so that a step is formed, and as shown in the drawing, small cells S, such as red blood cells, are captured in the small recesses 27 that are lower. The large cells L, such as leukocytes and rare cells, can be captured in the large lumbar portion 25 directly above.
또한, 요철부(25, 26, 27, 28)는 포획된 세포(S, L)가 외부 유동에 의하여 빠져나가지 못하도록 그 깊이(높이)와 너비(폭) 등을 최적으로 형성할 수 있다. 적혈구의 크기는 1 내지 8 ㎛ 정도이고, 백혈구의 크기는 12 내지 25 ㎛ 정도이므로, 작은 요부(27)의 폭과 깊이는 1 내지 10 ㎛ 정도로 구성할 수 있고, 큰 요부(25)의 폭과 깊이는 11 내지 30 ㎛ 정도로 구성할 수 있다. 이와 같이, 측정 키트(20)에서는 혈액 샘플이 주입되어 개별 세포(B)가 각각의 미세 트랩 구조물에 포획될 수 있다.In addition, the uneven parts 25, 26, 27, and 28 may optimally form the depth (height), the width (width), and the like so that the captured cells S and L do not escape by the external flow. Since the size of the red blood cells is about 1 to 8 μm, and the size of the white blood cells is about 12 to 25 μm, the width and depth of the small recesses 27 can be configured to about 1 to 10 μm, and the width of the large recesses 25 is The depth can be configured to about 11 to 30 ㎛. As such, in the measurement kit 20, a blood sample may be injected so that individual cells B may be captured in each micro trap structure.
한편, 요철부(25, 26, 27, 28)에 포획된 세포 중에서 복합물질(11)과 반응하여 광을 발산하거나 표면 플라즈몬 공명 현상이 발생하는 세포의 개수를 확인할 수 있도록, 측정 키트(20)는 장치(100)의 받침대 등에 장착될 수 있다.On the other hand, the measurement kit 20 to check the number of cells that emit light or surface plasmon resonance phenomenon in response to the composite material 11 among the cells captured in the uneven portion (25, 26, 27, 28) May be mounted on a pedestal or the like of the device 100.
도 5는 본 발명에 따른 혈중 희소 세포의 검출 및 계수 장치의 평면도이고, 도 6은 정면도로서, 혈중 희소 세포의 검출 및 계수 장치(100)는 샘플 채집부(10), 측정 키트(20), 검출기(30) 이외에 이동 레일(34), 이동형 채집 장치(40), 2축 이동 레일(41) 등을 구비할 수 있다.5 is a plan view of a blood rare cell detection and counting device according to the present invention, Figure 6 is a front view, the blood rare cell detection and counting device 100 is a sample collector 10, the measurement kit 20, In addition to the detector 30, a moving rail 34, a movable collecting device 40, a biaxial moving rail 41, and the like may be provided.
검출기(30)는 측정 키트(20)에서 포획된 혈중 세포(B) 중에서, 표적항체(13)와 항원-항체반응이 발생한 희소 세포를 검출 및 계수하는 역할을 한다. 검출기(30)는 광학적 방법으로 혈중 세포의 위치와 개수를 검출할 수 있다. 검출기(30)는 예를 들어 초정밀 CCD 센서 어레이를 구비하고, 측정 키트(20)를 스캐닝(scanning)하여 광을 발산하는 세포의 위치와 개수를 검사할 수 있다. 검출기(30)는 표지물질(12)의 종류에 따라 형광 스캔장치 또는 표면 플라즈몬 공명 이미징 스캔장치로 구성할 수 있으며, 이에 대해서는 후술하기로 한다.The detector 30 detects and counts the rare cells in which the antigen-antibody reaction has occurred with the target antibody 13 among the blood cells B captured by the measurement kit 20. The detector 30 may detect the location and number of cells in the blood by an optical method. The detector 30 may include, for example, an ultra-precision CCD sensor array, and scan the measurement kit 20 to inspect the position and number of cells emitting light. The detector 30 may be configured as a fluorescence scanning device or a surface plasmon resonance imaging scanning device according to the type of the labeling material 12, which will be described later.
이동 레일(34)은 측정 키트(20)의 스캐닝을 위해 검출기(30)의 이동을 안내하는 역할을 한다. 이를 위해, 이동 레일(34)의 일단은 장치(100)의 받침대 등에 장착되고, 타단은 검출기(30)에 연결될 수 있다. 검출기(30)는 이동 레일(34)을 따라 도면의 상하 방향으로 이동할 수 있다. 검출기(30)는 이동 레일(34)을 따라 이동 가능하도록 바퀴나 롤러 등을 구비할 수도 있다. 이동 레일(34)은 고정되어 움직이지 않을 수 있다. 검출기(30)의 이동은 손으로 움직이는 수동적인 이동 또는 모터 등을 이용한 자동적인 이동일 수 있다.The moving rail 34 serves to guide the movement of the detector 30 for the scanning of the measurement kit 20. To this end, one end of the moving rail 34 may be mounted on a pedestal of the apparatus 100, and the other end may be connected to the detector 30. The detector 30 may move in the up and down direction of the drawing along the moving rail 34. The detector 30 may be provided with wheels, rollers, etc. to be movable along the moving rail 34. The moving rail 34 is fixed and may not move. The movement of the detector 30 may be manual movement by hand or automatic movement using a motor or the like.
이동형 채집 장치(40)는 검출 후 샘플을 채취하는 역할을 한다. 채집 장치(40)는 예를 들어 주사기 등과 같은 형태로 구성할 수 있다. 주사기를 이용할 경우 측정 키트(20)의 상부 평판(21)을 뚫어서 샘플을 채취할 수 있다. 채집 장치(40)도 수동적으로 이동시키거나 모터 등을 이용하여 자동적으로 이동시킬 수 있다.The mobile collection device 40 serves to take a sample after detection. The collecting device 40 may be configured in the form of, for example, a syringe. In the case of using a syringe, a sample may be taken by drilling the upper plate 21 of the measurement kit 20. The collecting device 40 can also be moved manually or automatically using a motor or the like.
2축 이동 레일(41)은 이동형 채집 장치(40)의 이동을 안내하는 역할을 한다. 2축 이동 레일(41)은 도면에 예시된 바와 같이, 수직 레일과 수평 레일로 구성될 수 있고, 두 레일의 교차점에 채집 장치(40)가 장착될 수 있다. 이동형 채집 장치(40)는 2축 이동 레일(41)을 따라 도면의 상하 방향 및 좌우 방향으로 이동할 수 있다. 2축 이동 레일(41)은 장치(100)의 받침대 등에 고정되지 않고 자체적으로 이동하게 설치될 수 있으며, 이동형 채집 장치(40)와 함께 이동할 수 있다.The two-axis moving rail 41 serves to guide the movement of the movable collecting device 40. As illustrated in the drawings, the biaxial moving rail 41 may be composed of a vertical rail and a horizontal rail, and the collecting device 40 may be mounted at an intersection point of the two rails. The movable collecting device 40 may move along the biaxial moving rail 41 in the up and down direction and the left and right direction of the drawing. The two-axis moving rail 41 may be installed to move on its own without being fixed to a pedestal of the apparatus 100, and may move together with the movable collecting device 40.
검출기(30)의 스캐닝이 종료되면, 희소 세포의 검출 위치를 어드레싱하여 이동형 채집장치(40)가 2축 이동 레일(41)을 따라 목표 위치로 이동한 후 희소 세포를 채집할 수 있다. 채집된 샘플은 2차 정밀 분석용 시료로 사용될 수 있다.When the scanning of the detector 30 is completed, the detection position of the rare cells may be addressed so that the mobile collection device 40 may move to the target position along the biaxial movement rail 41 to collect the rare cells. The collected sample can be used as a sample for secondary precision analysis.
도 7은 본 발명에 따른 검출기 중 형광 스캔 장치의 구성도로서, 표지물질(12)이 1) 형광물질, 2) 양자점, 3) 양자점이 집적되어 있는 마이크로 사이즈의 비드(Bead) 중 1종 이상일 경우, 검출기(30)는 형광 스캔장치로 구성될 수 있다.7 is a block diagram of a fluorescence scanning device among detectors according to the present invention, wherein the labeling material 12 is at least one of 1) fluorescent material, 2) quantum dots, and 3) micro-sized beads in which the quantum dots are integrated. In this case, the detector 30 may be configured as a fluorescence scanning device.
형광 스캔장치(30)는 형광물질, 양자점, 양자점이 집적되어 있는 마이크로 사이즈의 비드 중 1종 이상을 여기시킬 수 있는 광원(31); 여기된 형광을 측정할 수 있는 이미지 센서(32); 특정 파장대의 광을 통과시킬 수 있는 형광필터(33)를 구비함으로써, 광을 발산하는 혈중 세포의 위치와 개수를 검출할 수 있다.The fluorescence scanning device 30 includes a light source 31 capable of exciting one or more kinds of fluorescent materials, quantum dots, and micro-sized beads in which quantum dots are integrated; An image sensor 32 capable of measuring excited fluorescence; By providing the fluorescent filter 33 which can pass light of a specific wavelength band, it is possible to detect the position and number of blood cells which emit light.
광원(31)은 머큐리 램프, 레이저 다이오드(LD), 레이저 발광 다이오드(LED) 중에서 선택되는 1종 이상을 포함할 수 있다.The light source 31 may include at least one selected from a mercury lamp, a laser diode (LD), and a laser light emitting diode (LED).
이미지 센서(32)는 포토 다이오드 어레이, CCD(Charge Coupled Device) 어레이, CMOS(Complementary Metal Oxide Semiconductor) 어레이 중에서 선택되는 1종 이상을 포함할 수 있다.The image sensor 32 may include at least one selected from a photo diode array, a charge coupled device (CCD) array, and a complementary metal oxide semiconductor (CMOS) array.
이미지 센서(32)에는 줌(Zoom) 렌즈가 장착되어 광학적으로 확대된 이미지를 획득할 수 있다.The image sensor 32 may be equipped with a zoom lens to acquire an optically enlarged image.
광원(31)과 이미지 센서(32)는 연속으로 결합되어 있는 형태로 설치될 수 있다.The light source 31 and the image sensor 32 may be installed in a form in which they are continuously coupled.
형광필터(33)가 통과시킬 수 있는 광의 파장대역은 사용되는 형광물질 또는 양자점의 종류에 따라 달라질 수 있다.The wavelength band of light that the fluorescent filter 33 can pass may vary depending on the type of fluorescent material or quantum dots used.
검출 과정을 마친 측정 키트(20)에 대해, 별도의 현미경 등의 광학장치를 이용하여 발광하는 지점에서의 세포 모습을 확인할 수 있다.With respect to the measurement kit 20 having completed the detection process, it is possible to check the appearance of the cell at the point of light emission using an optical device such as a microscope.
도 8은 본 발명에 따른 검출기 중 표면 플라즈몬 공명 이미징 스캔 장치의 구성도로서, 표지물질(12)이 금속 나노입자일 경우, 검출기(30)는 표면 플라즈몬 공명 이미징 스캔 장치(50)로 구성할 수 있다.8 is a block diagram of the surface plasmon resonance imaging scanning apparatus of the detector according to the present invention. When the labeling material 12 is a metal nanoparticle, the detector 30 may be configured as the surface plasmon resonance imaging scanning apparatus 50. have.
표면 플라즈몬 공명 이미징 스캔 장치(50)는 금속 나노입자의 표면 플라즈몬 공명(Surface Plasmon Resonance) 현상을 발생시킬 수 있는 광학장치, 마이크로 크기의 프리즘 어레이(Prism Array), 나노 크기의 그레이팅 어레이(Grating Array) 중에서 선택되는 1종 이상을 구비함으로써, 표면 플라즈몬 공명 현상이 발생되는 혈중 세포의 위치와 개수를 검출할 수 있다.The surface plasmon resonance imaging scanning device 50 is an optical device capable of generating surface plasmon resonance of metal nanoparticles, a micro-sized prism array, and a nano-sized grating array. By providing at least 1 sort (s) chosen from the inside, the position and number of the blood cells which surface plasmon resonance phenomenon generate | occur | produce can be detected.
표면 플라즈몬 공명 이미징 스캔 장치(50)는 도면에 도시된 바와 같이, 평행광(53)을 측정 키트(20)로 입사시키는 광원(51); 및 측정 키트(20)로부터 반사되는 반사광(54)을 측정하는 카메라(52)를 구비할 수 있다.The surface plasmon resonance imaging scanning apparatus 50 includes a light source 51 for injecting parallel light 53 into the measurement kit 20, as shown in the figure; And a camera 52 measuring the reflected light 54 reflected from the measurement kit 20.
이와 같이, 표면 플라즈몬 공명 이미징 스캔 장치(50)는 평행광(53)을 측정 키트(20)로 입사시키고 반사되는 광(54)을 카메라(52)로 측정할 수 있다. 금속 나노입자가 혈중 희소세포에 다량으로 부착되고, 그 위치에 특정 입사각으로 광이 들어오면, 그 위치만 광이 흡수되어 측정키트(20)의 다른 부위와 반사광량이 차이가 발생되며, 이러한 차이를 이용하여 검출할 수 있다. 예를 들어, 400 내지 900 nm 파장의 광이 10 내지 80도의 각도로 입사될 수 있다. 바람직하게는, 600 내지 800 nm 파장의 광이 30 내지 70도의 각도로 입사될 수 있다.As such, the surface plasmon resonance imaging scan device 50 may inject parallel light 53 into the measurement kit 20 and measure the reflected light 54 with the camera 52. When the metal nanoparticles are attached to the rare cells in the blood in a large amount, and the light comes in at a specific incident angle at the location, the light is absorbed only at the location, and the amount of reflected light is different from other parts of the measurement kit 20. Can be detected. For example, light of 400 to 900 nm wavelength may be incident at an angle of 10 to 80 degrees. Preferably, light of 600 to 800 nm wavelength may be incident at an angle of 30 to 70 degrees.
도 9는 본 발명에 따른 표면 플라즈몬 공명 이미징 방법에 사용되는 마이크로 크기의 프리즘 어레이 또는 나노 크기의 그레이팅 어레이가 측정 키트와 일체화된 것을 도시한 사시도로서, 측정 키트(20)는 표면 플라즈몬 공명 현상이 발생될 수 있는 조건을 만들기 위해, 마이크로 크기의 프리즘 어레이(60) 또는 나노 크기의 그레이팅 어레이와 일체화될 수 있다.9 is a perspective view showing that the micro-sized prism array or the nano-sized grating array used in the surface plasmon resonance imaging method according to the present invention is integrated with the measurement kit, and the measurement kit 20 generates the surface plasmon resonance phenomenon. In order to create a condition that may be, it may be integrated with a micro sized prism array 60 or a nano sized grating array.
프리즘 어레이(60) 또는 그레이팅 어레이는 측정 키트(20)의 외표면과 일체화되는데, 구체적으로 상부 평판(21) 또는 하부 평판(22)의 외표면과 접착, 용접, 사출, 압출 등의 방법을 통해 일체화될 수 있다.The prism array 60 or the grating array is integrated with the outer surface of the measurement kit 20. Specifically, the prism array 60 or the grating array may be bonded to the outer surface of the upper plate 21 or the lower plate 22 by bonding, welding, injection, extrusion, or the like. Can be integrated.
프리즘 어레이(60) 또는 그레이팅 어레이의 형상은 도시된 바와 같이, 그 단면이 삼각형인 것이 바람직하나, 필요에 따라 원형, 타원형, 다각형 등으로 변경할 수 있다.The shape of the prism array 60 or the grating array, as shown in the figure, it is preferable that the cross section is a triangle, but can be changed to a circle, oval, polygon, etc. as necessary.
프리즘 어레이(60)의 크기는 예를 들어 1 ㎛ 내지 1 mm, 바람직하게는 10 내지 500 ㎛, 더욱 바람직하게는 100 내지 200 ㎛일 수 있다. 그레이팅 어레이의 크기는 예를 들어 1 nm 내지 10 ㎛, 바람직하게는 10 nm 내지 3 ㎛, 더욱 바람직하게는 100 nm 내지 1 ㎛일 수 있다.The size of the prism array 60 may be, for example, 1 μm to 1 mm, preferably 10 to 500 μm, more preferably 100 to 200 μm. The size of the grating array can be for example 1 nm to 10 μm, preferably 10 nm to 3 μm, more preferably 100 nm to 1 μm.
[부호의 설명][Description of the code]
10: 샘플 채집부10: sample collector
11: 복합물질11: composite material
12: 표지물질12: Labeling Substance
13: 표적항체13: target antibody
20: 측정 키트20: measuring kit
21, 22: 평판21, 22: reputation
23: 주입구23: injection hole
24: 모세관24: capillary
25, 26, 27, 28: 요철부25, 26, 27, 28: uneven portion
30: 검출기(형광 스캔장치)30: detector (fluorescence scanning device)
31: 광원31: light source
32: 이미지 센서32: image sensor
33: 형광필터33: fluorescent filter
34: 이동 레일34: moving rail
40: 이동형 채집장치40: mobile collection device
41: 2축 이동레일41: 2-axis movable rail
50: 표면 플라즈몬 공명 이미징 스캔 장치50: surface plasmon resonance imaging scanning device
51: 광원51: light source
52: 카메라52: camera
53: 평행광53: parallel light
54: 반사광54: reflected light
60: 프리즘 어레이(그레이팅 어레이)60: prism array (grating array)
100: 희소세포 검출/계수장치(희소세포 진단시스템)100: rare cell detection / counting device (rare cell diagnosis system)

Claims (20)

  1. 혈액 샘플을 채집하고, 표적항체와 표지물질이 결합된 복합물질을 수용하는 샘플 채집부;A sample collecting unit for collecting a blood sample and containing a complex material in which a target antibody and a labeling substance are combined;
    혈액 샘플과 복합물질의 혼합물이 주입되도록 샘플 채집부와 연결되고, 혈중 세포를 개별적으로 포획(trapping)하는 측정 키트; 및A measurement kit connected to the sample collection unit for injecting a mixture of the blood sample and the composite material, and individually trapping blood cells; And
    측정 키트에서 포획된 혈중 세포 중에서, 표적항체와 항원-항체반응이 발생한 희소 세포를 검출 및 계수하는 검출기를 포함하는 혈중 희소 세포의 검출 및 계수 장치.A device for detecting and counting blood rare cells, comprising a detector for detecting and counting rare cells in which an antigen-antibody reaction has occurred, among blood cells captured in a measurement kit.
  2. 제1항에 있어서,The method of claim 1,
    표적항체는 혈중 희소 세포를 특이적으로 인지하여 결합할 수 있는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.Target antibody is a detection and counting device for rare cells in the blood, characterized in that to specifically recognize and bind the rare cells in the blood.
  3. 제1항에 있어서,The method of claim 1,
    표지물질은 형광 물질; 양자점(Quantum Dot); 양자점이 집적되어 있는 마이크로 사이즈의 비드; 금속 나노입자 중에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The labeling substance is a fluorescent substance; Quantum dots; Micro size beads in which quantum dots are integrated; Device for detecting and counting rare cells in the blood, characterized in that it comprises one or more selected from metal nanoparticles.
  4. 제1항에 있어서,The method of claim 1,
    샘플 채집부에 채집된 혈액 샘플은 복합물질의 분산액과 교반되는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The blood sample collected in the sample collection unit is a device for detecting and counting rare cells in the blood, characterized in that the agitated with a dispersion of the composite material.
  5. 제1항에 있어서,The method of claim 1,
    측정 키트는 마이크로 크기의 간극을 가진 두 개의 평판을 구비함으로써, 모세관 현상에 의해 혈액 샘플을 이동시킬 수 있는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The measuring kit is provided with two plates having a micro-sized gap, whereby the blood sample can be moved by capillary action.
  6. 제5항에 있어서,The method of claim 5,
    평판은 단단한 판형 구조 또는 유연한 필름형 구조로 제작될 수 있는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.A device for detecting and counting rare cells in blood, wherein the plate may be made of a rigid plate-like structure or a flexible film-like structure.
  7. 제5항에 있어서,The method of claim 5,
    측정 키트의 일단에는 혈액 샘플이 주입되는 주입구가 형성되며, 타단에는 외부와 연통하여 공기가 통과되는 개구부가 형성된 모세관이 구비되는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.One end of the measurement kit is formed with an injection port for injecting a blood sample, the other end of the blood rare cell detection and counting device, characterized in that the capillary formed with an opening through which the air passes.
  8. 제7항에 있어서,The method of claim 7, wherein
    모세관의 개구부에는 유동 구동 메커니즘이 연결되어 혈액 샘플을 측정 키트에 주입 및 유동시키는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.A flow driving mechanism is connected to the opening of the capillary tube to inject and flow a blood sample into the measurement kit.
  9. 제5항에 있어서,The method of claim 5,
    두 개의 평판 중 적어도 하나에는 혈중 세포가 개별적으로 포획되도록 요철부가 구비되는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수장치.At least one of the two plates is provided with a concave-convex portion so that blood cells are captured separately, the blood rare cells detection and counting apparatus.
  10. 제9항에 있어서,The method of claim 9,
    요철부에는 계단 형태의 단차가 형성되어 작은 세포가 하부에 포획되고, 큰 세포가 그 상부에 포획되는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.An uneven portion is formed in a stepped step, small cells are captured in the lower portion, large cells are detected and counting devices, characterized in that the large cells are captured in the upper portion.
  11. 제3항에 있어서,The method of claim 3,
    검출기는 형광물질, 양자점, 양자점이 집적되어 있는 마이크로 사이즈의 비드 중 1종 이상을 여기시킬 수 있는 광원; 여기된 형광을 측정하는 이미지 센서; 특정 파장대의 광을 통과시키는 형광필터를 구비함으로써, 광을 발산하는 혈중 세포의 위치와 개수를 검출하는 형광 스캔장치인 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The detector includes a light source capable of exciting one or more of fluorescent materials, quantum dots, and micro-sized beads in which the quantum dots are integrated; An image sensor for measuring excited fluorescence; A fluorescence scanning device for detecting the position and number of blood cells that emit light by providing a fluorescence filter for passing light of a specific wavelength band, wherein the detection and counting device for rare blood cells in blood.
  12. 제11항에 있어서,The method of claim 11,
    광원은 머큐리 램프, 레이저 다이오드(LD), 레이저 발광 다이오드(LED) 중에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The light source includes at least one selected from a mercury lamp, a laser diode (LD), and a laser light emitting diode (LED).
  13. 제11항에 있어서,The method of claim 11,
    이미지 센서는 포토 다이오드 어레이, CCD(Charge Coupled Device) 어레이, CMOS(Complementary Metal Oxide Semiconductor) 어레이 중에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.An image sensor includes at least one selected from a photo diode array, a charge coupled device (CCD) array, and a complementary metal oxide semiconductor (CMOS) array.
  14. 제11항에 있어서,The method of claim 11,
    이미지 센서에는 줌(Zoom) 렌즈가 장착되어 광학적으로 확대된 이미지를 획득할 수 있는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The image sensor is equipped with a zoom lens to detect and count the rare cells in the blood, characterized in that to obtain an optically enlarged image.
  15. 제11항에 있어서,The method of claim 11,
    광원과 이미지 센서는 연속으로 결합되어 있는 형태로 설치되는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.And a light source and an image sensor are installed in a continuous coupling form.
  16. 제3항에 있어서,The method of claim 3,
    검출기는 금속 나노입자의 표면 플라즈몬 공명(Surface Plasmon Resonance) 현상을 발생시킬 수 있는 광학장치, 마이크로 크기의 프리즘 어레이(Prism Array), 나노 크기의 그레이팅 어레이(Grating Array) 중에서 선택되는 1종 이상을 구비함으로써, 표면 플라즈몬 공명 현상이 발생되는 혈중 세포의 위치와 개수를 검출하는 표면 플라즈몬 공명 이미징 스캔 장치인 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The detector is provided with at least one selected from optical devices, micro-sized prismatic arrays and nano-sized grating arrays, which can generate surface plasmon resonance of metal nanoparticles. And a surface plasmon resonance imaging scanning device for detecting the position and number of blood cells in which surface plasmon resonance occurs.
  17. 제16항에 있어서,The method of claim 16,
    표면 플라즈몬 공명 이미징 스캔 장치는 평행광을 측정 키트로 입사시키는 광원; 및 측정 키트로부터 반사되는 광을 측정하는 카메라를 구비하는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.The surface plasmon resonance imaging scanning apparatus includes a light source for injecting parallel light into the measurement kit; And a camera for measuring light reflected from the measurement kit.
  18. 제16항에 있어서,The method of claim 16,
    측정 키트는 마이크로 크기의 프리즘 어레이 또는 나노 크기의 그레이팅 어레이와 일체화되어 있는 것을 특징으로 하는 혈중 희소 세포의 검출 및 계수 장치.And a measurement kit is integrated with a micro-sized prism array or a nano-sized grating array.
  19. 제1항에 있어서,The method of claim 1,
    검출기에 연결되고, 측정 키트의 스캐닝을 위해 검출기의 이동을 안내하는 이동 레일;A moving rail coupled to the detector and guiding movement of the detector for scanning of the measurement kit;
    검출 후 샘플 채취를 위한 이동형 채집 장치; 및A mobile collection device for sampling after detection; And
    이동형 채집 장치에 연결되고, 이동형 채집 장치의 이동을 안내하는 2축 이동 레일을 추가로 포함하는 혈중 희소 세포의 검출 및 계수 장치.A device for detecting and counting rare cells in blood, coupled to a mobile collection device, further comprising a biaxial moving rail for guiding the movement of the mobile collection device.
  20. 제1항의 장치를 이용하고,Using the apparatus of claim 1,
    샘플 채집부로 혈액 샘플을 채집하는 단계;Collecting a blood sample with a sample collector;
    채집된 혈액 샘플을 표적항체와 표지물질이 결합된 복합물질과 혼합되도록 교반하는 단계;Stirring the collected blood sample to be mixed with a complex material combined with a target antibody and a label;
    혈액 샘플과 복합물의 혼합물을 측정 키트에 주입하여 혈중 세포를 개별적으로 포획하는 단계; 및Injecting a mixture of the blood sample and the complex into a measurement kit to capture blood cells individually; And
    측정 키트에서 포획된 혈중 세포 중에서, 표적항체와 항원-항체반응이 발생한 희소 세포를 검출기를 이용하여 검출 및 계수하는 단계를 포함하는 혈중 희소 세포의 검출 및 계수 방법.A method for detecting and counting rare cells in blood, the method comprising detecting and counting rare cells having generated an antigen-antibody reaction with a target antibody among blood cells captured in a measurement kit.
PCT/KR2014/002086 2013-03-13 2014-03-13 Apparatus and method for detecting and counting rare cells in blood WO2014142559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/775,860 US9995738B2 (en) 2013-03-13 2014-03-13 Apparatus and method for detecting and counting rare cells in blood

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130026810 2013-03-13
KR10-2013-0026810 2013-03-13
KR10-2014-0029109 2014-03-12
KR1020140029109A KR101568573B1 (en) 2013-03-13 2014-03-12 Apparatus and method for detection and enumeration of rare cells in whole blood

Publications (1)

Publication Number Publication Date
WO2014142559A1 true WO2014142559A1 (en) 2014-09-18

Family

ID=51537105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002086 WO2014142559A1 (en) 2013-03-13 2014-03-13 Apparatus and method for detecting and counting rare cells in blood

Country Status (1)

Country Link
WO (1) WO2014142559A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129676A1 (en) * 1998-02-12 2003-07-10 Terstappen Leon W.M.M. Methods and reagents for the rapid and efficient isolation of circulating cancer cells
KR20090131588A (en) * 2008-06-18 2009-12-29 고려대학교 산학협력단 Real-time detection devices by continuous monitoring
US20100178690A1 (en) * 2009-01-13 2010-07-15 Samsung Electro-Mechanics Co., Ltd. Biomolecule detection apparatus and biomolecule measurement system
KR20110013485A (en) * 2008-05-19 2011-02-09 베리덱스, 엘엘씨 Improved imaging of immunomagnetically enriched rare cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129676A1 (en) * 1998-02-12 2003-07-10 Terstappen Leon W.M.M. Methods and reagents for the rapid and efficient isolation of circulating cancer cells
KR100399475B1 (en) * 1998-02-12 2003-09-29 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Methods and reagents for the rapid and efficient isolation of circulating cancer cells
KR20110013485A (en) * 2008-05-19 2011-02-09 베리덱스, 엘엘씨 Improved imaging of immunomagnetically enriched rare cells
KR20090131588A (en) * 2008-06-18 2009-12-29 고려대학교 산학협력단 Real-time detection devices by continuous monitoring
US20100178690A1 (en) * 2009-01-13 2010-07-15 Samsung Electro-Mechanics Co., Ltd. Biomolecule detection apparatus and biomolecule measurement system

Similar Documents

Publication Publication Date Title
JP7227202B2 (en) Detecting and using light representative of the sample
EP3096125B1 (en) Cell detection device and cell detection method
JP5320510B2 (en) Cell analyzer
US20140152801A1 (en) Detecting and Using Light Representative of a Sample
US20090215072A1 (en) Methods and compositions related to determination and use of white blood cell counts
US20080050830A1 (en) Detecting multiple types of leukocytes
CN108387505A (en) A kind of multifunctional light tweezers system and method based on micro-fluidic chip
US20080038738A1 (en) Detecting tumor biomarker in oral cancer
US20150132766A1 (en) Imaging cell sorter
JP5580117B2 (en) Cell analyzer
WO2015173774A2 (en) A microscopy system and a method for analyzing fluids
US20160209406A1 (en) Apparatus for detecting an analyte using a fluid having magnetic particles with a binding ligand for binding the analyte
CA2651872A1 (en) Detecting multiple types of leukocytes
WO2023023033A1 (en) Methods for distinguishing particles in a fluid sample
US10429387B2 (en) Simple and affordable method for immuophenotyping using a microfluidic chip sample preparation with image cytometry
WO2014142559A1 (en) Apparatus and method for detecting and counting rare cells in blood
KR20180058052A (en) Cell detection device and cell detection method
KR101568573B1 (en) Apparatus and method for detection and enumeration of rare cells in whole blood
WO2019093542A1 (en) Microchip and device for quantitative analysis of antigen, and method for quantitative analysis of antigen using same
US12022236B2 (en) Detecting and using light representative of a sample
KR102418963B1 (en) Apparatus and method for microparticle analysis
WO2024043395A1 (en) Bio chip for cell analysis and cell analysis device using same
WO2017200175A1 (en) Hiv diagnostic method using cd4 and cd8 cell information
WO2013147398A1 (en) Apparatus for measuring cell activity and method for analyzing cell activity

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14775860

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763515

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14763515

Country of ref document: EP

Kind code of ref document: A1