WO2014142558A1 - Long-distance optical axis alignment apparatus and long-distance optical axis alignment method using same - Google Patents

Long-distance optical axis alignment apparatus and long-distance optical axis alignment method using same Download PDF

Info

Publication number
WO2014142558A1
WO2014142558A1 PCT/KR2014/002085 KR2014002085W WO2014142558A1 WO 2014142558 A1 WO2014142558 A1 WO 2014142558A1 KR 2014002085 W KR2014002085 W KR 2014002085W WO 2014142558 A1 WO2014142558 A1 WO 2014142558A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical axis
target plate
light source
reflected
Prior art date
Application number
PCT/KR2014/002085
Other languages
French (fr)
Korean (ko)
Inventor
최원석
이영호
신욱현
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Publication of WO2014142558A1 publication Critical patent/WO2014142558A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Definitions

  • the present invention relates to an optical axis alignment device and a method for aligning a remote optical axis using the same. More particularly, the optical axis alignment device compares the irradiation position and the light receiving position of the light beam, and adjusts the position of the light source so that the optical axis can be easily aligned at a far distance. An apparatus and a method for aligning a far optical axis using the same.
  • the alignment state of the optical axis is determined according to whether the optical axis and the reference axis coincide, and it may be determined whether the equipment is correctly mounted according to the alignment state of the optical axis.
  • the optical axis When the optical axis is not aligned, the optical axis is out of the intended position, and the optical axis is used to align the optical axis.
  • optical axis alignment is possible with the naked eye at a short distance, for example, a laboratory scale, it is difficult to visually recognize it at a long distance.
  • an object of the present invention is to provide a remote optical axis alignment method using a remote optical axis alignment device that can easily align the optical axis by checking the alignment state of the optical axis even at a distance.
  • a light source accommodated in the housing and irradiating light rays, and a rear surface is coupled to the end of the housing to be integrated with the light source, the light source
  • a light transmission hole through which the light beams radiated from the light source pass is formed to be spaced apart from the light source, and when the optical axis is aligned, a reflection plate of the light beams irradiated from the light source is incident on the light transmission hole, and a target plate perpendicular to the light beams, It is disposed to be spaced apart from the plate, and includes a reflector reflecting the light emitted from the light source to the target plate.
  • the light source and the target plate are moved. And align the optical axis by adjusting the angle of the light source and the target plate.
  • the light source and the target plate move in a direction from the light transmitting hole toward the light receiving position, and the front end of the housing and the target plate. Is rotated in the direction from the light receiving position toward the light transmitting hole.
  • the said light source is a laser generator.
  • an optical axis alignment determination step of checking whether the optical axis is aligned by comparing the light receiving position of the reflected light reflected by the reflector to the target plate with the position of the light transmitting hole, and the reflected light is not incident to the light transmitting hole. If the light receiving position and the position of the light-transmitting hole does not match, the optical axis position adjusting step of moving the light source and the target plate formed integrally with each other in parallel from the light-transmitting hole to the light-receiving position, and the target plate with respect to the light source And an optical axis angle adjusting step of rotating in the direction toward the light transmitting hole at the light receiving position.
  • the optical axis alignment determination step is performed again.
  • the optical axis position adjusting step and the optical axis angle adjusting step are performed again.
  • the optical axis alignment determination step when the light receiving position of the reflected light beam and the position of the light emitting hole coincide, the optical axis alignment is terminated.
  • the optical axis position adjusting step is performed after the optical axis angle adjusting step is performed.
  • Remote optical axis alignment device having the configuration as described above According to the remote optical axis alignment method using the same, it is possible to identify the fine alignment error even at a long distance, it becomes easy to align the optical axis.
  • the optical axis may be adjusted using the displayed position of the laser to match the reference axis.
  • FIG. 1 is a schematic view showing a far optical axis alignment device according to the present invention.
  • Figure 2 is a side view showing a state in which the optical axis and the reference axis in the far optical axis alignment device according to the present invention.
  • Figure 3 is a side view showing a state in which the optical axis is located below the reference axis in the far optical axis alignment device according to the present invention.
  • FIG. 4 is a side view illustrating a state in which the light source and the target plate are moved upward in the state of FIG. 3.
  • FIG. 5 is a side view illustrating a state in which an optical axis and a reference axis coincide by rotating the target plate downward with respect to the light source in the state of FIG. 4.
  • FIG. 5 is a side view illustrating a state in which an optical axis and a reference axis coincide by rotating the target plate downward with respect to the light source in the state of FIG. 4.
  • Figure 6 is a side view showing a state in which the optical axis is positioned on the reference axis in the far optical axis alignment device according to the present invention.
  • FIG. 7 is a flowchart illustrating a method of aligning a far optical axis according to the present invention.
  • the light source irradiation unit 110 in order to check whether the reference axis (S) and the optical axis (O) coincide, the light source irradiation unit 110 is irradiated with light rays and the reflected light is received, and the light source irradiation unit 110 It includes a reflector 120 for reflecting the light beam irradiated from).
  • the light irradiation unit 110 includes a light source 112 for irradiating light rays and a target plate 113 provided adjacent to the light source 112 to receive the reflected light rays.
  • the light source 112 is accommodated in the housing 111.
  • the light source 112 is accommodated in the housing 111, and when power is applied from the outside, light is emitted from the light source. Light rays emitted from the light source 112 are irradiated to the outside through one side of the housing 111.
  • the light beam is a laser beam excellent in the straightness
  • the light source 112 is preferably a laser generator.
  • the target plate 113 is coupled to the rear surface of the target plate 113 at an end of the housing 111 to be integrated with the light source 112.
  • the target plate 113 is reflected by the reflector 120, which will be described later, by the light beam emitted from the light source 112
  • the beam reflected by the reflector 120 is received by the target plate 113.
  • the target plate 113 has a light transmitting hole 113a is formed in the center so that the light beam emitted from the light source can pass.
  • the target plate 113 is installed to be substantially perpendicular to the optical axis O of the light beam, and whether the optical axis is aligned through the light receiving position P, which is a position where the light beam passing through the light transmission hole 113a is reflected. To judge.
  • the light transmitting hole 113a is a path through which the light beam is irradiated, and when the optical axis O and the reference axis S are aligned to coincide with each other, the reflected light beam is a path through which the reflected light beam is incident to the housing 111 again.
  • the target plate 113 is formed in the shape of a disc having a constant diameter as a center, and by identifying the light receiving position (P), it is possible to easily determine the degree of separation between the optical axis (O) and the reference axis (S).
  • the reflector 120 is disposed to be spaced apart from the target plate 113.
  • the reflector 120 reflects light emitted from an image and a light source to the target plate 113.
  • the reflector 120 is spaced apart from the housing 111 and the target plate 113 which are assembled and integrated with each other in practical application.
  • the reflector 120 is not mechanically coupled to the housing 111 and the target plate 113, is disposed to be spaced apart from the housing 111 and the target plate 113, and has a superior laser beam.
  • the light beam since the reflector 120 can be located at a distance from the housing 111 and the target plate 113, it is possible to easily align the optical axis (O) even at a distance larger than the laboratory size.
  • the light irradiation step (S110) is irradiated so that the light beam irradiated from the light source 112 toward the reflector 120 through the light transmission hole 113a of the target plate 113.
  • an optical axis alignment to determine whether the optical axis O is aligned by comparing the light receiving position P of the light beam reflected by the reflector 120 to the target plate 113 and the position of the light transmitting hole 113a. Determination step (S120) and. If the positions of the light receiving position P and the light transmitting hole 113a do not coincide, the light source 112 and the target plate 113 are directed toward the light receiving position P from the light transmitting hole 113a.
  • Optical axis position adjusting step (S130) to move, and by rotating the target plate 113 with respect to the light source 112 toward the reference axis (S) with respect to the light source 112, the optical axis (O)
  • the optical axis angle adjusting step S140 coincident with the reference axis S is included.
  • the light irradiation step (S110) light rays are irradiated to the outside from the light source 112.
  • the light source 112 which is a laser generator
  • a laser beam is irradiated.
  • the optical axis O is formed by the laser beam.
  • the optical axis alignment determination step (S120) the optical axis O is aligned with the reference axis S to determine whether the optical axis O is aligned.
  • the reference axis S and the optical axis O overlap, and at this time, the laser beam irradiated from the light source 112 is The light is irradiated to the reflector 120 through the light-transmitting hole 113a, and then is incident on the light-transmitting hole 113a after being reflected by the reflector 120. Therefore, when the laser beam reflected from the reflector 120 is incident to the light transmission hole 113a, it is determined that the optical axis O is aligned.
  • the optical axis O and the reference axis S do not coincide.
  • the laser beam irradiated through the light-transmitting hole 113a is reflected by the reflector 120, the The light is received at an arbitrary position of the target plate 113.
  • the laser beam reflected by the light transmission hole 113a does not enter and is received at an arbitrary position of the target plate 113, it is determined that the optical axis is not aligned.
  • the optical axis O and the reference axis S do not coincide with each other, the positions of the light source 112 and the target plate 113 so that the optical axis O and the reference axis S coincide.
  • the optical axis O and the reference axis S are coincident with each other.
  • the light source irradiation unit 110 that is, the light source 112 and the target plate 113 together with the light transmitting hole 113a so as to move the position of the optical axis O in parallel.
  • the optical axis O is primarily adjusted by moving the light source irradiator 110 in the direction in which the light receiving position P is located in the light transmitting hole 113a.
  • the optical axis angle adjusting step S140 is secondarily adjusted to match the reference axis S by adjusting the angle of the optical axis O primarily adjusted in the optical axis position adjusting step S130.
  • the optical axis angle adjustment step (S140) by rotating the target plate 113 with respect to the light source 112 in the direction toward the light-transmitting hole (113a) from the light receiving position (P), the angle of the optical axis (O) Adjust
  • the light transmission hole 113a is positioned below the reference axis S, and the light receiving position P is the reference axis S with respect to the reference axis S. 4
  • the light source 112 and the target plate 113 are moved upwards as indicated by arrow A, and then the light source is shown as shown in FIG.
  • the target plate 113 is rotated clockwise (arrow B direction) with respect to 112.
  • the optical axis O due to the light beam radiated from the light source 112 does not coincide with the reference axis S, by moving the optical axis O in parallel, by adjusting the angle of the optical axis O, The optical axis O is made to coincide with the reference axis S.
  • the light transmitting hole 113a is positioned above the reference axis S, and the light receiving position P is the reference axis S.
  • the light source 112 and the target plate 113 are moved downward, and then the target plate 113 is rotated counterclockwise (arrow B 'direction) as shown by arrow A' of FIG. 6.
  • the optical axis O and the reference axis S are made to coincide.
  • the optical axis O and the reference axis S do not coincide, so that the light-transmitting hole 113a is located on the left side of the reference axis S, and the light receiving position P is located on the right side of the reference axis S.
  • the light source 112 and the target plate 113 is moved to the right, and then rotates the target plate 113 to the left
  • the light-transmitting hole 113a is the right side of the reference axis (S)
  • the light receiving position (P) ) Is located at the left side of the reference axis S
  • the light source 112 and the target plate 113 is moved to the left, and then rotates the target plate 113 to the right to align the optical axis.
  • optical axis (O) is located in the middle of the reference axis (S), rather than up, down, left, right, by adjusting the position and angle of the optical axis (O),
  • the reference axis S is made to coincide.
  • the optical axis alignment determining step S120 is performed again to adjust the optical axis O to the reference axis S. Check again for a match. If the optical axis O does not coincide with the reference axis S, the optical axis position adjusting step S130 and the optical axis angle adjusting step S140 are repeatedly performed.
  • the optical axis position adjusting step (S130), the optical axis position adjusting step (S130) and the optical axis angle adjusting step (S140) are repeatedly performed, so that the optical axis (O) and the reference axis (S) coincide, and finally the optical axis If (O) and the reference axis S coincide, the operation of aligning the optical axis is finished.
  • the optical axis position adjusting step (S130) and the optical axis angle adjusting step (S140) may be performed in a reversed order, the optical axis position adjusting step (S140) after the optical axis angle adjusting step (S140) is performed ( S130) may be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

The long-distance optical axis alignment apparatus according to the present invention comprises: a light source (112) which is stored in a housing (111) and radiates a beam; a target plate (113) having the rear thereof coupled to the end of the housing (111) and having, formed therein, a light transmission hole (113a) through which the beam radiated from the light source (112) passes; and a reflector (120) which is spaced apart from the target plate (113) and reflects the beam radiated from the light source to the target plate (113). This long-distance optical axis alignment method using the apparatus comprises: a beam radiation step (S110) for radiating a beam such that the beam radiated from the light source (112) is directed toward the reflector (120) after passing through the light transmission hole (113a) of the target plate (113); an optical axis alignment determination step (S120) for comparing the light reception position (P) of the beam, which has reached the target plate (113) after being reflected by the reflector (120), with the position of the light transmission hole (113a) so as to check the status of optical axis alignment; an optical axis position adjustment step (S130) for parallelly moving the light source (112) and the target plate (113) in case the light reception position (P) does not match with the position of the light transmission hole (113a); and an optical axis angle adjustment step (S140) for rotating the target plate (113) relative to the light source (112).

Description

원거리 광축 정렬장치 이를 이용한 원거리 광축 정렬방법Far optical axis alignment device Far optical axis alignment method using this
본 발명은 광축 정렬장치 및 이를 이용한 원거리 광축 정렬방법에 관한 것으로서, 더욱 상세하게는 광선의 조사위치와 수광위치를 비교하여, 광원의 위치를 조정함으로써 원거리에서도 쉽게 광축을 정렬시킬 수 있는 원거리 광축 정렬장치 및 이를 이용한 원거리 광축 정렬방법에 관한 것이다.The present invention relates to an optical axis alignment device and a method for aligning a remote optical axis using the same. More particularly, the optical axis alignment device compares the irradiation position and the light receiving position of the light beam, and adjusts the position of the light source so that the optical axis can be easily aligned at a far distance. An apparatus and a method for aligning a far optical axis using the same.
장비가 정위치에 정확한 상태로 장착되었는지를 판단하기 위한 방법의 하나로서, 광축 정렬 장치를 이용하여 광축의 정렬상태를 점검하여 장비의 장착상태를 판단할 수 있다. 즉, 광축과 기준축이 일치하는지 여부에 따라 광축의 정렬상태를 파악하게 되고, 상기 광축의 정렬상태에 따라 장비가 정확하게 장착되었는지를 판단할 수 있다.As a method for determining whether the equipment is correctly mounted in the correct position, it is possible to determine the mounting state of the equipment by checking the alignment of the optical axis using the optical axis alignment device. That is, the alignment state of the optical axis is determined according to whether the optical axis and the reference axis coincide, and it may be determined whether the equipment is correctly mounted according to the alignment state of the optical axis.
광축이 정렬되지 않은 상태에서는 광축이 원래 의도하는 위치와 벗어나게 되고, 이를 이용하여 광축을 정렬하도록 하고 있다.When the optical axis is not aligned, the optical axis is out of the intended position, and the optical axis is used to align the optical axis.
그러나, 단거리, 예컨대 실험실 규모에서는 광축 정렬이 육안으로 가능하지만, 원거리에서는 이를 육안으로 학인하기가 어려운 문제점이 있다.However, although optical axis alignment is possible with the naked eye at a short distance, for example, a laboratory scale, it is difficult to visually recognize it at a long distance.
특히, 광축과 기준축이 1도 내외로 정렬되지 않은 상태에서는 더더욱 기준축에 대한 광축의 정렬상태를 파악하기 어려운 문제점이 있다.In particular, when the optical axis and the reference axis are not aligned within about 1 degree, it is more difficult to grasp the alignment of the optical axis with respect to the reference axis.
본 발명은 상기와 같은 문제점을 해결하기 위해 발명된 것으로서, 원거리에도 광축의 정렬상태를 용이하게 확인하여, 광축을 정렬시킬 수 있는 원거리 광축 정렬장치 이를 이용한 원거리 광축 정렬방법을 제공하는데 목적이 있다.The present invention has been invented to solve the above problems, an object of the present invention is to provide a remote optical axis alignment method using a remote optical axis alignment device that can easily align the optical axis by checking the alignment state of the optical axis even at a distance.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 원거리 광축 정렬장치는, 하우징에 수납되어 광선을 조사(照射)하는 광원과, 후면이 상기 하우징의 단부에 결합되어 상기 광원과 일체가 되고, 상기 광원으로부터 조사된 광선이 통과하는 투광홀이 상기 광원과 이격되게 형성되고, 광축이 정렬되면 상기 광원으로부터 조사된 광선의 반사광이 상기 투광홀로 입사되며, 상기 광선과 수직하게 설치되는 표적판과, 상기 표적판과 이격되게 배치되고, 상기 광원으로부터 조사된 광선을 상기 표적판으로 반사시키는 반사경을 포함한다.In the remote optical axis alignment device according to the present invention for achieving the above object, a light source accommodated in the housing and irradiating light rays, and a rear surface is coupled to the end of the housing to be integrated with the light source, the light source A light transmission hole through which the light beams radiated from the light source pass is formed to be spaced apart from the light source, and when the optical axis is aligned, a reflection plate of the light beams irradiated from the light source is incident on the light transmission hole, and a target plate perpendicular to the light beams, It is disposed to be spaced apart from the plate, and includes a reflector reflecting the light emitted from the light source to the target plate.
상기 광원으로부터 조사된 광선이 상기 반사경에 반사되어 상기 표적판에 수광된 위치와 상기 투광홀의 위치를 비교하고, 상기 반사경에서 반사된 광선이 상기 투광홀로 반사되지 않으면, 상기 광원와 상기 표적판을 이동시키고, 상기 광원과 상기 표적판의 각도를 조절하여 광축을 정렬시키는 것을 특징으로 한다.When the light beam irradiated from the light source is reflected by the reflector to compare the position of the light receiving hole with the position received by the target plate, and if the light reflected by the reflector is not reflected into the light hole, the light source and the target plate are moved. And align the optical axis by adjusting the angle of the light source and the target plate.
상기 반사경에 반사되어 상기 표적판에 수광된 광선이 상기 투광홀과 일치하지 않으면, 상기 광원과 상기 표적판은 상기 투광홀로부터 상기 수광위치를 향하는 방향으로 이동시키고, 상기 하우징의 전단과 상기 표적판은 상기 수광위치로부터 상기 투광홀을 향하는 방향으로 회전시키는 것을 특징으로 한다.If the light reflected by the reflector and received by the target plate does not coincide with the light transmitting hole, the light source and the target plate move in a direction from the light transmitting hole toward the light receiving position, and the front end of the housing and the target plate. Is rotated in the direction from the light receiving position toward the light transmitting hole.
상기 광원은 레이저 발생기인 것이 바람직하다.It is preferable that the said light source is a laser generator.
본 발명에 따른 원거리 광축 정렬장치은, 상기 반사경에서 반사되어 표적판에 도달한 반사광의 수광위치를 투광홀의 위치와 비교하여 광축의 정렬여부를 확인하는 광축 정렬 판단단계와, 반사광이 상기 투광홀로 입사되지 않아 상기 수광위치와 상기 투광홀의 위치가 일치하지 않으면, 서로 일체로 형성된 상기 광원과 상기 표적판을 상기 투광홀로부터 상기 수광위치로 평행 이동시키는 광축 위치 조절단계와, 상기 광원에 대하여 상기 표적판을 상기 수광위치에서 상기 투광홀을 향하는 방향으로 회전시키는 광축 각도 조절단계를 포함한다.In the far optical axis alignment device according to the present invention, an optical axis alignment determination step of checking whether the optical axis is aligned by comparing the light receiving position of the reflected light reflected by the reflector to the target plate with the position of the light transmitting hole, and the reflected light is not incident to the light transmitting hole. If the light receiving position and the position of the light-transmitting hole does not match, the optical axis position adjusting step of moving the light source and the target plate formed integrally with each other in parallel from the light-transmitting hole to the light-receiving position, and the target plate with respect to the light source And an optical axis angle adjusting step of rotating in the direction toward the light transmitting hole at the light receiving position.
상기 광축 각도 조절단계가 수행된 이후에는 상기 광축 정렬 판단단계가 다시 수행되는 것을 특징으로 한다.After the optical axis angle adjustment step is performed, the optical axis alignment determination step is performed again.
상기 수광위치와 상기 투광홀의 위치가 일치하지 않으면, 상기 광축 위치 조절단계와 상기 광축 각도 조절단계가 다시 수행되는 것을 특징으로 한다.When the light receiving position and the position of the light emitting hole do not coincide, the optical axis position adjusting step and the optical axis angle adjusting step are performed again.
상기 광축 정렬 판단단계에서, 반사된 광선의 수광위치와 투광홀의 위치가 일치하면, 광축 정렬을 종료하는 것을 특징으로 한다.In the optical axis alignment determination step, when the light receiving position of the reflected light beam and the position of the light emitting hole coincide, the optical axis alignment is terminated.
상기 광축 각도 조절단계가 수행된 이후에 상기 광축 위치 조절단계가 수행되는 것을 특징으로 한다.The optical axis position adjusting step is performed after the optical axis angle adjusting step is performed.
상기와 같은 구성을 갖는 본 발명에 따른 원거리 광축 정렬장치 이를 이용한 원거리 광축 정렬방법에 따르면, 원거리에서도 미세한 정렬오차를 식별할 수 있어서, 광축 정렬작업이 용이해진다.Remote optical axis alignment device according to the present invention having the configuration as described above According to the remote optical axis alignment method using the same, it is possible to identify the fine alignment error even at a long distance, it becomes easy to align the optical axis.
또한, 표적판에 반사된 광선인 레이저의 위치가 표시되므로, 표시된 레이저의 위치를 이용하여 광축을 조절하여 기준축과 일치되도록 할 수 있다.In addition, since the position of the laser beam, which is the reflected light on the target plate, is displayed, the optical axis may be adjusted using the displayed position of the laser to match the reference axis.
도 1은 본 발명에 따른 원거리 광축 정렬장치를 도시한 개략도.1 is a schematic view showing a far optical axis alignment device according to the present invention.
도 2는 본 발명에 따른 원거리 광축 정렬장치에서 광축과 기준축이 일치한 상태를 도시한 측면도.Figure 2 is a side view showing a state in which the optical axis and the reference axis in the far optical axis alignment device according to the present invention.
도 3은 본 발명에 따른 원거리 광축 정렬장치에서 광축이 기준축의 아래에 위치한 상태를 도시한 측면도.Figure 3 is a side view showing a state in which the optical axis is located below the reference axis in the far optical axis alignment device according to the present invention.
도 4는 도 3의 상태에서 광원과 표적판을 상방향으로 이동시킨 상태를 도시한 측면도.4 is a side view illustrating a state in which the light source and the target plate are moved upward in the state of FIG. 3.
도 5는 도 4의 상태에서 광원에 대하여 표적판을 아래로 회전시켜 광축과 기준축이 일치되게 한 상태를 도시한 측면도.FIG. 5 is a side view illustrating a state in which an optical axis and a reference axis coincide by rotating the target plate downward with respect to the light source in the state of FIG. 4. FIG.
도 6은 본 발명에 따른 원거리 광축 정렬장치에서 광축이 기준축의 위에 위치한 상태를 도시한 측면도.Figure 6 is a side view showing a state in which the optical axis is positioned on the reference axis in the far optical axis alignment device according to the present invention.
도 7은 본 발명에 따른 원거리 광축 정렬방법을 도시한 순서도.7 is a flowchart illustrating a method of aligning a far optical axis according to the present invention.
이하 첨부된 도면을 참조로 하여 본 발명에 따른 원거리 광축 정렬장치에 대하여 자세히 설명하기로 한다.Hereinafter, a long distance optical axis alignment device according to the present invention with reference to the accompanying drawings will be described in detail.
본 발명에 따른 원거리 광축 정렬장치는 기준축(S)과 광축(O)이 일치하는지 여부를 확인하여 위하여, 광선이 조사되고 반사된 광선이 수광되는 광원조사부(110)와, 상기 광원조사부(110)에서 조사된 광선을 반사시키는 반사경(120)을 포함한다.In the far optical axis alignment device according to the present invention, in order to check whether the reference axis (S) and the optical axis (O) coincide, the light source irradiation unit 110 is irradiated with light rays and the reflected light is received, and the light source irradiation unit 110 It includes a reflector 120 for reflecting the light beam irradiated from).
광선조사부(110)는 광선을 조사하는 광원(112)과, 상기 광원(112)에 인접하게 설치되어, 반사된 광선을 수광하는 표적판(113)을 포함한다.The light irradiation unit 110 includes a light source 112 for irradiating light rays and a target plate 113 provided adjacent to the light source 112 to receive the reflected light rays.
광원(112)은 하우징(111)의 내부에 수납된다. 상기 광원(112)은 하우징(111)의 내부에 수납되어, 외부로부터 전원이 인가되면, 상기 광원에서는 광선(光線)이 조사(照射)된다. 상기 광원(112)으로부터 조사된 광선은 상기 하우징(111)의 일측으로 통하여 외부로 조사된다. 이때, 상기 광선은 직진성이 우수한 레이저 빔이고, 상기 광원(112)은 레이저 발생기인 것이 바람직하다. The light source 112 is accommodated in the housing 111. The light source 112 is accommodated in the housing 111, and when power is applied from the outside, light is emitted from the light source. Light rays emitted from the light source 112 are irradiated to the outside through one side of the housing 111. In this case, the light beam is a laser beam excellent in the straightness, the light source 112 is preferably a laser generator.
표적판(113)은 상기 하우징(111)의 단부에 상기 표적판(113)의 후면이 결합되어 상기 광원(112)와 일체가 된다. 상기 표적판(113)은 상기 광원(112)으로부터 조사된 광선이 후술되는 반사경(120)에 반사되면, 상기 표적판(113)에 반사경(120)에서 반사된 광선이 수광된다. 상기 표적판(113)은 중심에 상기 광원으로부터 조사된 광선이 통과할 수 있도록 투광홀(113a)이 형성된다. 상기 표적판(113)은 상기 광선의 광축(O)과 실질적으로 수직하게 설치되는 것으로서, 상기 투광홀(113a)을 통과한 광선이 반사되는 위치인 수광위치(P)를 통하여 광축의 정렬여부를 판단한다. 상기 투광홀(113a)은 상기 광선이 조사되는 통로인 동시에, 광축(O)과 기준축(S)이 일치하도록 정렬되면, 반사된 광선이 다시 하우징(111)으로 입사되는 통로가 된다. 상기 표적판(113)은 중심으로 일정한 직경을 갖는 원판의 형상으로 형성됨으로써, 상기 수광위치(P)를 식별함으로써, 광축(O)과 기준축(S)의 이격정도를 용이하게 파악할 수 있다.The target plate 113 is coupled to the rear surface of the target plate 113 at an end of the housing 111 to be integrated with the light source 112. When the target plate 113 is reflected by the reflector 120, which will be described later, by the light beam emitted from the light source 112, the beam reflected by the reflector 120 is received by the target plate 113. The target plate 113 has a light transmitting hole 113a is formed in the center so that the light beam emitted from the light source can pass. The target plate 113 is installed to be substantially perpendicular to the optical axis O of the light beam, and whether the optical axis is aligned through the light receiving position P, which is a position where the light beam passing through the light transmission hole 113a is reflected. To judge. The light transmitting hole 113a is a path through which the light beam is irradiated, and when the optical axis O and the reference axis S are aligned to coincide with each other, the reflected light beam is a path through which the reflected light beam is incident to the housing 111 again. The target plate 113 is formed in the shape of a disc having a constant diameter as a center, and by identifying the light receiving position (P), it is possible to easily determine the degree of separation between the optical axis (O) and the reference axis (S).
반사경(120)은 상기 표적판(113)과 이격되게 배치된다. 상기 반사경(120)은 상과 광원으로부터 조사된 광선을 상기 표적판(113)으로 반사시킨다. 상기 반사경(120)는 실제 적용에 있어서는 조립되어 서로 일체가 되는 상기 하우징(111) 및 표적판(113)으로부터 이격되어 위치한다. 상기 반사경(120)이 상기 하우징(111) 및 상기 표적판(113)에 기구적으로 결합되어 있지 않고, 상기 하우징(111)과 표적판(113)으로부터 이격되게 배치되어 있으며, 직진성이 우수한 레이저빔을 광선을 사용하는 바, 상기 반사경(120)은 상기 하우징(111)과 표적판(113)으로부터 원거리에 위치할 수 있으므로, 실험실 크기 이상의 원거리에서도 용이하게 광축(O)을 정렬시킬 수 있다. The reflector 120 is disposed to be spaced apart from the target plate 113. The reflector 120 reflects light emitted from an image and a light source to the target plate 113. The reflector 120 is spaced apart from the housing 111 and the target plate 113 which are assembled and integrated with each other in practical application. The reflector 120 is not mechanically coupled to the housing 111 and the target plate 113, is disposed to be spaced apart from the housing 111 and the target plate 113, and has a superior laser beam. Using the light beam, since the reflector 120 can be located at a distance from the housing 111 and the target plate 113, it is possible to easily align the optical axis (O) even at a distance larger than the laboratory size.
이하에서는 상기 원거리 광축 정렬장치를 이용하는 원거리 광축 정렬방법에 대하여 살펴보기로 한다.Hereinafter, a method of aligning a far optical axis using the far optical axis alignment device will be described.
본 발명에 따른 원거리 광축 정렬방법은, 상기 광원(112)에서 조사된 광선이 표적판(113)의 투광홀(113a)을 통하여 반사경(120)을 향하도록 광선이 조사되는 광선조사단계(S110)와, 상기 반사경(120)에서 반사되어 상기 표적판(113)에 도달한 광선의 수광위치(P)와 상기 투광홀(113a)의 위치를 비교하여 광축(O)의 정렬여부를 판단하는 광축 정렬 판단단계(S120)와. 상기 수광위치(P)와 상기 투광홀(113a)의 위치가 일치하지 않으면, 상기 광원(112)과 상기 표적판(113)을 상기 투광홀(113a)에서 상기 수광위치(P)를 향하는 방향으로 이동시키는 광축 위치 조절단계(S130)와, 상기 광원(112)을 중심으로 상기 표적판(113)을 상기 광원(112)에 대하여 기준축(S)을 향하도록 회전시켜, 광축(O)을 상기 기준축(S)에 일치하는 광축 각도 조절단계(S140)를 포함한다.In the far optical axis alignment method according to the present invention, the light irradiation step (S110) is irradiated so that the light beam irradiated from the light source 112 toward the reflector 120 through the light transmission hole 113a of the target plate 113. And an optical axis alignment to determine whether the optical axis O is aligned by comparing the light receiving position P of the light beam reflected by the reflector 120 to the target plate 113 and the position of the light transmitting hole 113a. Determination step (S120) and. If the positions of the light receiving position P and the light transmitting hole 113a do not coincide, the light source 112 and the target plate 113 are directed toward the light receiving position P from the light transmitting hole 113a. Optical axis position adjusting step (S130) to move, and by rotating the target plate 113 with respect to the light source 112 toward the reference axis (S) with respect to the light source 112, the optical axis (O) The optical axis angle adjusting step S140 coincident with the reference axis S is included.
광선조사단계(S110)에서는 광원(112)으로부터 광선이 외부로 조사된다. 레이저 발생기인 상기 광원(112)에 전원이 인가되면, 레이저빔이 조사된다. 상기 광원(112)으로부터 레이저빔이 조사되면, 상기 레이저빔은 직진성을 가지고 있으므로, 상기 레이저빔에 의해서 광축(O)이 형성된다.In the light irradiation step (S110), light rays are irradiated to the outside from the light source 112. When power is applied to the light source 112 which is a laser generator, a laser beam is irradiated. When the laser beam is irradiated from the light source 112, since the laser beam has a straightness, the optical axis O is formed by the laser beam.
광축 정렬 판단단계(S120)에서는 광축(O)이 기준축(S)에 일치하는지를 확인하여 광축(O)의 정렬여부를 판단한다.In the optical axis alignment determination step (S120), the optical axis O is aligned with the reference axis S to determine whether the optical axis O is aligned.
상기 광축(O)와 기준축(S)이 일치하면, 도 2에 도시된 바와 같이, 기준축(S)와 광축(O)은 중첩되고, 이때에는 상기 광원(112)으로부터 조사된 레이저빔이 투광홀(113a)을 통하여 상기 반사경(120)으로 조사되고, 상기 반사경(120)에서 반사된 후에 다시 투광홀(113a)로 입사된다. 따라서, 반사경(120)에서 반사된 레이저빔이 다시 투광홀(113a)로 입사되면 광축(O)이 정렬된 것으로 판단한다.When the optical axis O and the reference axis S coincide with each other, as shown in FIG. 2, the reference axis S and the optical axis O overlap, and at this time, the laser beam irradiated from the light source 112 is The light is irradiated to the reflector 120 through the light-transmitting hole 113a, and then is incident on the light-transmitting hole 113a after being reflected by the reflector 120. Therefore, when the laser beam reflected from the reflector 120 is incident to the light transmission hole 113a, it is determined that the optical axis O is aligned.
그러나, 여러 가지 요인에 의해서, 상기 광축(O)와 기준축(S)이 일치하지 않게 되고, 이때에는 상기 투광홀(113a)을 통하여 조사된 레이저빔이 반사경(120)에서 반사된 후, 상기 표적판(113)의 임의의 위치로 수광된다. 상기 투광홀(113a)로 반사된 레이저빔이 입사되지 않고 상기 표적판(113)의 임의의 위치에 수광되면, 이를 광축이 정렬되지 않은 것으로 판단한다.However, due to various factors, the optical axis O and the reference axis S do not coincide. In this case, after the laser beam irradiated through the light-transmitting hole 113a is reflected by the reflector 120, the The light is received at an arbitrary position of the target plate 113. When the laser beam reflected by the light transmission hole 113a does not enter and is received at an arbitrary position of the target plate 113, it is determined that the optical axis is not aligned.
한편, 상기와 같이, 광축(O)과 기준축(S)이 일치하지 않는 경우에는 광축(O)과 기준축(S)이 일치하도록, 상기 광원(112)과 상기 표적판(113)의 위치를 이동시키고, 각도를 조정함으로써, 상기 광축(O)과 기준축(S)이 일치되도록 한다.As described above, when the optical axis O and the reference axis S do not coincide with each other, the positions of the light source 112 and the target plate 113 so that the optical axis O and the reference axis S coincide. By moving and adjusting the angle, the optical axis O and the reference axis S are coincident with each other.
먼저, 광축 위치 조절단계(S130)는 상기 광축(O)의 위치를 평행하게 이동되도록, 상기 광원조사부(110), 즉 상기 광원(112)과 표적판(113)을 함께 상기 투광홀(113a)에서 상기 수광위치(P)를 향하는 방향으로 이동시킨다. 상기 광원조사부(110)를 투광홀(113a)에서 수광위치(P)가 있는 방향으로 이동시킴으로써, 광축(O)이 1차적으로 조정되도록 한다.First, in the optical axis position adjusting step (S130), the light source irradiation unit 110, that is, the light source 112 and the target plate 113 together with the light transmitting hole 113a so as to move the position of the optical axis O in parallel. In the direction toward the light receiving position (P). The optical axis O is primarily adjusted by moving the light source irradiator 110 in the direction in which the light receiving position P is located in the light transmitting hole 113a.
광축 각도 조절단계(S140)는 상기 광축 위치 조절단계(S130)에서 1차적으로 조정된 광축(O)의 각도를 조정하여 기준축(S)과 일치되도록 2차 조정한다. 상기 광축 각도 조절단계(S140)에서는 상기 광원(112)에 대하여 상기 표적판(113)을 상기 수광위치(P)에서 상기 투광홀(113a)을 향하는 방향으로 회전시킴으로써, 광축(O)의 각도를 조절한다.The optical axis angle adjusting step S140 is secondarily adjusted to match the reference axis S by adjusting the angle of the optical axis O primarily adjusted in the optical axis position adjusting step S130. In the optical axis angle adjustment step (S140), by rotating the target plate 113 with respect to the light source 112 in the direction toward the light-transmitting hole (113a) from the light receiving position (P), the angle of the optical axis (O) Adjust
예컨대, 도 3에 도시된 바와 같이, 상기 기준축(S)을 중심으로 하여, 투광홀(113a)이 상기 기준축(S)의 아래에 위치하고, 수광위치(P)가 상기 기준축(S)의 상부에 위치하는 경우에는, 도 4에 도시된 바와 같이, 상기 광원(112)과 표적판(113)을 화살표A로 도시된 상방향으로 이동시킨 후에, 도 5에 도시된 바와 같이, 상기 광원(112)에 대하여 상기 표적판(113)을 시계방향(화살표 B 방향)으로 회전시키도록 한다.For example, as shown in FIG. 3, the light transmission hole 113a is positioned below the reference axis S, and the light receiving position P is the reference axis S with respect to the reference axis S. 4, the light source 112 and the target plate 113 are moved upwards as indicated by arrow A, and then the light source is shown as shown in FIG. The target plate 113 is rotated clockwise (arrow B direction) with respect to 112.
상기와 같이, 상기 광원(112)으로부터 조사된 광선에 의한 광축(O)이 기준축(S)과 일치하지 않으면, 광축(O)을 평행이동시킨 후에, 광축(O)의 각도를 조절함으로써, 상기 광축(O)이 기준축(S)에 일치되게 한다.As described above, if the optical axis O due to the light beam radiated from the light source 112 does not coincide with the reference axis S, by moving the optical axis O in parallel, by adjusting the angle of the optical axis O, The optical axis O is made to coincide with the reference axis S.
만약, 도 6에 도시된 바와 같이, 상기 기준축(S)을 중심으로 하여, 투광홀(113a)이 상기 기준축(S)의 상부에 위치하고, 수광위치(P)가 상기 기준축(S)의 하부에 위치하는 경우에는 도 6의 화살표 A'와 같이, 광원(112)과 표적판(113)을 아래로 이동시킨 다음, 표적판(113)을 반시계방향(화살표 B' 방향)으로 회전시켜, 광축(O)과 기준축(S)이 일치하도록 한다.6, with the reference axis S as the center, the light transmitting hole 113a is positioned above the reference axis S, and the light receiving position P is the reference axis S. 6, the light source 112 and the target plate 113 are moved downward, and then the target plate 113 is rotated counterclockwise (arrow B 'direction) as shown by arrow A' of FIG. 6. The optical axis O and the reference axis S are made to coincide.
마찬가지 원리로, 광축(O)과 기준축(S)이 일치하지 않아서, 상기 투광홀(113a)이 기준축(S)의 좌측, 수광위치(P)가 기준축(S)의 우측에 위치하는 경우에는 상기 광원(112)과 표적판(113)은 우측으로 이동시킨 후, 표적판(113)을 좌측으로 회전시키고, 상기 투광홀(113a)이 기준축(S)의 우측, 수광위치(P)가 기준축(S)의 좌측에 위치하는 경우에는 상기 광원(112)과 표적판(113)은 좌측으로 이동시킨 후, 표적판(113)을 우측으로 회전시켜 광축을 정렬하게 된다.In the same principle, the optical axis O and the reference axis S do not coincide, so that the light-transmitting hole 113a is located on the left side of the reference axis S, and the light receiving position P is located on the right side of the reference axis S. In this case, the light source 112 and the target plate 113 is moved to the right, and then rotates the target plate 113 to the left, the light-transmitting hole 113a is the right side of the reference axis (S), the light receiving position (P) ) Is located at the left side of the reference axis S, the light source 112 and the target plate 113 is moved to the left, and then rotates the target plate 113 to the right to align the optical axis.
아울러, 상기 광축(O)이 상기 기준축(S)에 대하여 상, 하, 좌, 우가 아닌 그 중간에 위치하는 경우에도, 상기 광축(O)의 위치와 각도를 조절함으로써, 광축(O)과 기준축(S)이 일치되도록 한다.In addition, even when the optical axis (O) is located in the middle of the reference axis (S), rather than up, down, left, right, by adjusting the position and angle of the optical axis (O), The reference axis S is made to coincide.
이와 같이, 상기 광축 위치 조절단계(S130)와 상기 광축 각도 조절단계(S140)가 수행된 이후에는 상기 광축 정렬 판단단계(S120)가 다시 수행되어 조정된 광축(O)이 기준축(S)과 일치하는지를 다시 확인한다. 만약, 광축(O)이 기준축(S)과 일치하지 않는 다면, 상기 광축 위치 조절단계(S130)와 광축 각도 조절단계(S140)가 반복적으로 수행된다. As described above, after the optical axis position adjusting step S130 and the optical axis angle adjusting step S140 are performed, the optical axis alignment determining step S120 is performed again to adjust the optical axis O to the reference axis S. Check again for a match. If the optical axis O does not coincide with the reference axis S, the optical axis position adjusting step S130 and the optical axis angle adjusting step S140 are repeatedly performed.
상기 광축 위치 조절단계(S130), 광축 위치 조절단계(S130)와 광축 각도 조절단계(S140)가 반복적으로 수행되면서, 상기 광축(O)과 기준축(S)이 일치되도록 하여, 최종적으로 상기 광축(O)과 기준축(S)이 일치하면, 상기 광축을 정렬하는 작업을 종료한다. The optical axis position adjusting step (S130), the optical axis position adjusting step (S130) and the optical axis angle adjusting step (S140) are repeatedly performed, so that the optical axis (O) and the reference axis (S) coincide, and finally the optical axis If (O) and the reference axis S coincide, the operation of aligning the optical axis is finished.
한편, 상기 광축 위치 조절단계(S130)와 상기 광축 각도 조절단계(S140)는 그 순서가 바뀌어 수행될 수 도 있는 것으로서, 상기 광축 각도 조절단계(S140)가 수행된 이후에 상기 광축 위치 조절단계(S130)가 수행될 수도 있다.On the other hand, the optical axis position adjusting step (S130) and the optical axis angle adjusting step (S140) may be performed in a reversed order, the optical axis position adjusting step (S140) after the optical axis angle adjusting step (S140) is performed ( S130) may be performed.

Claims (9)

  1. 하우징에 수납되어 광선을 조사(照射)하는 광원과,A light source housed in the housing to irradiate light rays;
    후면이 상기 하우징의 단부에 결합되어 상기 광원과 일체가 되고, 상기 광원으로부터 조사된 광선이 통과하는 투광홀이 상기 광원과 이격되게 형성되고, 광축이 정렬되면 상기 광원으로부터 조사된 광선의 반사광이 상기 투광홀로 입사되며, 상기 광선과 수직하게 설치되는 표적판과,A rear surface is coupled to an end of the housing to be integral with the light source, and a light transmitting hole through which light emitted from the light source passes is formed to be spaced apart from the light source, and when the optical axis is aligned, the reflected light of the light emitted from the light source is A target plate incident to the light transmission hole and installed perpendicular to the light beam,
    상기 표적판과 이격되게 배치되고, 상기 광원으로부터 조사된 광선을 상기 표적판으로 반사시키는 반사경을 포함하는 원거리 광축 정렬장치.And a reflector disposed to be spaced apart from the target plate and reflecting the light emitted from the light source to the target plate.
  2. 제1항에 있어서,The method of claim 1,
    상기 광원으로부터 조사된 광선이 상기 반사경에 반사되어 상기 표적판에 수광된 위치와 상기 투광홀의 위치를 비교하고, 상기 반사경에서 반사된 광선이 상기 투광홀로 반사되지 않으면, 상기 광원와 상기 표적판을 이동시키고, 상기 광원과 상기 표적판의 각도를 조절하여 광축을 정렬시키는 것을 특징으로 하는 원거리 광축 정렬장치.When the light beam irradiated from the light source is reflected by the reflector to compare the position of the light receiving hole with the position received by the target plate, and if the light reflected by the reflector is not reflected into the light hole, the light source and the target plate are moved. And aligning an optical axis by adjusting an angle of the light source and the target plate.
  3. 제2항에 있어서,The method of claim 2,
    상기 반사경에 반사되어 상기 표적판에 수광된 광선이 상기 투광홀과 일치하지 않으면,If the light reflected by the reflector and received by the target plate does not coincide with the floodlight hole,
    상기 광원과 상기 표적판은 상기 투광홀로부터 상기 수광위치를 향하는 방향으로 이동시키고,The light source and the target plate is moved in the direction toward the light receiving position from the light transmitting hole,
    상기 하우징의 전단과 상기 표적판은 상기 수광위치로부터 상기 투광홀을 향하는 방향으로 회전시키는 것을 특징으로 하는 원거리 광축 정렬장치.And a front end of the housing and the target plate to rotate in a direction from the light receiving position toward the light transmitting hole.
  4. 제1항 내지 제3항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 광원은 레이저 발생기인 것을 특징으로 하는 원거리 광축 정렬장치.And the light source is a laser generator.
  5. 상기 반사경에서 반사되어 표적판에 도달한 반사광의 수광위치를 투광홀의 위치와 비교하여 광축의 정렬여부를 확인하는 광축 정렬 판단단계와,An optical axis alignment determination step of confirming whether the optical axis is aligned by comparing the light receiving position of the reflected light reflected by the reflector to the target plate with the position of the light transmitting hole;
    반사광이 상기 투광홀로 입사되지 않아 상기 수광위치와 상기 투광홀의 위치가 일치하지 않으면, 서로 일체로 형성된 상기 광원과 상기 표적판을 상기 투광홀로부터 상기 수광위치로 평행 이동시키는 광축 위치 조절단계와,An optical axis position adjusting step of moving the light source and the target plate formed integrally with each other in parallel to the light receiving position when the reflected light is not incident to the light transmitting hole so that the positions of the light receiving position and the light transmitting hole do not coincide;
    상기 광원에 대하여 상기 표적판을 상기 수광위치에서 상기 투광홀을 향하는 방향으로 회전시키는 광축 각도 조절단계를 포함하는 원거리 광축 정렬방법.And an optical axis angle adjusting step of rotating the target plate in the direction from the light receiving position toward the light transmitting hole with respect to the light source.
  6. 제5항에 있어서,The method of claim 5,
    상기 광축 각도 조절단계가 수행된 이후에는 상기 광축 정렬 판단단계가 다시 수행되는 것을 특징으로 하는 원거리 광축 정렬방법.After the optical axis angle adjustment step is performed, the optical axis alignment determination step is performed again.
  7. 제6항에 있어서,The method of claim 6,
    상기 수광위치와 상기 투광홀의 위치가 일치하지 않으면, 상기 광축 위치 조절단계와 상기 광축 각도 조절단계가 다시 수행되는 것을 특징으로 하는 원거리 광축 정렬 방법.And the optical axis position adjusting step and the optical axis angle adjusting step are performed again when the light receiving position and the position of the light transmitting hole do not coincide with each other.
  8. 제5항 또는 제6항에 있어서,The method according to claim 5 or 6,
    상기 광축 정렬 판단단계에서,In the optical axis alignment determination step,
    반사된 광선의 수광위치와 투광홀의 위치가 일치하면, 광축 정렬을 종료하는 것을 특징으로 하는 원거리 광축 정렬방법.And the optical axis alignment is terminated when the position of the reflected light beam and the position of the light-transmitting hole coincide with each other.
  9. 제5항 또는 제7항에 있어서,The method according to claim 5 or 7,
    상기 광축 각도 조절단계가 수행된 이후에 상기 광축 위치 조절단계가 수행되는 것을 특징으로 하는 원거리 광축 정렬방법.And the optical axis position adjusting step is performed after the optical axis angle adjusting step is performed.
PCT/KR2014/002085 2013-03-13 2014-03-13 Long-distance optical axis alignment apparatus and long-distance optical axis alignment method using same WO2014142558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0026773 2013-03-13
KR1020130026773A KR101415144B1 (en) 2013-03-13 2013-03-13 Remote optical axis alignment apparatus and method for aligning of optical axis using of the same

Publications (1)

Publication Number Publication Date
WO2014142558A1 true WO2014142558A1 (en) 2014-09-18

Family

ID=51537104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002085 WO2014142558A1 (en) 2013-03-13 2014-03-13 Long-distance optical axis alignment apparatus and long-distance optical axis alignment method using same

Country Status (2)

Country Link
KR (1) KR101415144B1 (en)
WO (1) WO2014142558A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998570A1 (en) * 2014-09-22 2016-03-23 Siemens Aktiengesellschaft Arrangement to align a part of a wind turbine
CN106124169A (en) * 2016-06-29 2016-11-16 南京睿悦信息技术有限公司 A kind of VR helmet equipment angle of visual field measuring method
CN108195322A (en) * 2018-03-14 2018-06-22 中国人民解放军陆军工程大学 Multiband multi-optical-axis parallelism detection system and detection method thereof
CN111623960A (en) * 2020-06-05 2020-09-04 浙江水晶光电科技股份有限公司 Method and device for measuring optical axis of structured light module
WO2023070871A1 (en) * 2021-10-29 2023-05-04 中国科学院深圳先进技术研究院 Method and device for moving target in optical axis direction of camera

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495883B1 (en) * 2014-07-14 2015-02-25 엘아이지넥스원 주식회사 Inspection device and method for optical axis of guided aircraft
KR102551760B1 (en) * 2016-03-31 2023-07-06 한국전자통신연구원 Device and method for evaluating characteristics of optical lens
KR101861022B1 (en) 2016-12-23 2018-05-24 한국항공우주연구원 Apparatus to align fixing jig for supporting structure and method to align thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121539A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Image display device
JP2007156056A (en) * 2005-12-05 2007-06-21 Seiko Epson Corp Image display device
KR20110106937A (en) * 2009-02-26 2011-09-29 가부시키가이샤 히타치세이사쿠쇼 Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121539A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Image display device
JP2007156056A (en) * 2005-12-05 2007-06-21 Seiko Epson Corp Image display device
KR20110106937A (en) * 2009-02-26 2011-09-29 가부시키가이샤 히타치세이사쿠쇼 Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998570A1 (en) * 2014-09-22 2016-03-23 Siemens Aktiengesellschaft Arrangement to align a part of a wind turbine
CN105443320A (en) * 2014-09-22 2016-03-30 西门子公司 Arrangement to align a part of a wind turbine
US9784239B2 (en) 2014-09-22 2017-10-10 Siemens Aktiengesellschaft Arrangement to align a part of a wind turbine
CN105443320B (en) * 2014-09-22 2019-12-24 西门子歌美飒可再生能源公司 Structure for aligning a part of a wind turbine
CN106124169A (en) * 2016-06-29 2016-11-16 南京睿悦信息技术有限公司 A kind of VR helmet equipment angle of visual field measuring method
CN108195322A (en) * 2018-03-14 2018-06-22 中国人民解放军陆军工程大学 Multiband multi-optical-axis parallelism detection system and detection method thereof
CN108195322B (en) * 2018-03-14 2024-01-19 中国人民解放军陆军工程大学 Multi-band multi-optical axis parallelism detection system and detection method thereof
CN111623960A (en) * 2020-06-05 2020-09-04 浙江水晶光电科技股份有限公司 Method and device for measuring optical axis of structured light module
WO2023070871A1 (en) * 2021-10-29 2023-05-04 中国科学院深圳先进技术研究院 Method and device for moving target in optical axis direction of camera

Also Published As

Publication number Publication date
KR101415144B1 (en) 2014-07-04

Similar Documents

Publication Publication Date Title
WO2014142558A1 (en) Long-distance optical axis alignment apparatus and long-distance optical axis alignment method using same
WO2017099297A1 (en) Scanning lidar having optical system structure sharing light transmitting and receiving lens
US7626688B2 (en) Optical measuring system with a high-speed optical sensing device enabling to sense luminous intensity and chromaticity
KR101091791B1 (en) Integrating sphere photometer and measureing method of the same
KR20160075231A (en) Lidar system
US7548674B1 (en) Alignment method for circular multi-core optical fiber
CN103743412B (en) A kind of nondestructive detection device for light path of fiber-optic gyroscope
CN1071890C (en) Distnace determination device
WO2001045981A3 (en) Optical free space signalling system
CN103149016A (en) Stray light detection method and system for optical system to be detected
CN101034484A (en) Optical fiber illumination device and inspection apparatus
CN1991427A (en) Optical unit having a transmitter including a semiconductor source and fiber optic element and method of making same
CN104471455B (en) Photoelectric cell erecting device and installation method
KR20140102604A (en) Standard light source and measurement method
CN106104248B (en) Object exists and state-detection
US6834164B1 (en) Alignment of an optical transceiver for a free-space optical communication system
JP2011181298A5 (en)
WO2014200217A1 (en) Movable lamp-type collimator
EP1186928A3 (en) Optical distance measurement device with parallel processing
WO2018079921A1 (en) Light transmitting and receiving device and method
CN101171538A (en) Method and device for determining the position of a core in an optical fiber
WO2017090922A1 (en) Slit light source and vision inspecting device comprising same
WO2016068504A1 (en) Multi-function spectroscopic device
CN115014526B (en) Multichannel optical measurement equipment, installation method and application method
WO2022260350A1 (en) Light-emitting apparatus capable of sensitivity control, and curing apparatus employing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763200

Country of ref document: EP

Kind code of ref document: A1