WO2014142486A1 - Junction box for solar cell module and driving method therefor - Google Patents

Junction box for solar cell module and driving method therefor Download PDF

Info

Publication number
WO2014142486A1
WO2014142486A1 PCT/KR2014/001944 KR2014001944W WO2014142486A1 WO 2014142486 A1 WO2014142486 A1 WO 2014142486A1 KR 2014001944 W KR2014001944 W KR 2014001944W WO 2014142486 A1 WO2014142486 A1 WO 2014142486A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
data
junction box
microprocessor
Prior art date
Application number
PCT/KR2014/001944
Other languages
French (fr)
Korean (ko)
Inventor
손병건
Original Assignee
레토 솔라 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 레토 솔라 코포레이션 filed Critical 레토 솔라 코포레이션
Publication of WO2014142486A1 publication Critical patent/WO2014142486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a junction box for a solar cell module and a method of operating the same, and more particularly, to control a solar cell module by receiving an administrator's command from the outside, and to monitor the operation state of the solar cell module and theft of the solar cell module.
  • the present invention relates to a junction box for a solar cell module and a driving method thereof for implementing a prevention function, a fire protection function, and the like.
  • Solar cells are devices that generate power from solar energy by using photovoltaic materials of various materials.
  • solar cells generate photovoltaic power using PN junction semiconductor cells, and connect multiple solar cells in series to form modules of a specific capacity, and connect modules to form an array to install in a power generation area. .
  • FIG. 1 is a schematic configuration diagram of a general photovoltaic power generation system.
  • the photovoltaic power generation system includes a plurality of solar cell modules 11a and 11b for producing direct current from solar energy, a plurality of junction boxes 12a and 12b each connected to one solar cell module, and a plurality of solar cell modules 11a and 11b.
  • Combiner 13 and the combiner 13 for receiving and coupling the DC current output from the plurality of solar cell modules (11a, 11b) through the junction boxes (12a, 12b), and generated in the combiner (13)
  • An inverter 14 converts DC power into AC power and supplies the load 15 to the load 15.
  • Such a photovoltaic power generation system is additionally equipped with equipment (ground fault protector, fuse switch, etc.) to stably operate the system.
  • junction boxes 12a and 12b are wired so that the current output from the solar cell modules 11a and 11b is supplied to the combiner 13, and a bypass element portion (bypass diode) is installed to reduce the amount of power generated. Bypass the solar cell module so that electricity flows, or a metal heat sink is installed to prevent overheating.
  • the monitoring unit 16 for managing, controlling, and monitoring the system is connected to the inverter 14, and the power generated by the plurality of solar cell modules 11a and 11b is combined.
  • the process of converting to commercial power in the inverter 14 after being combined at 13 can be managed, controlled and monitored.
  • the conventional photovoltaic power generation system is not provided with any means for monitoring or controlling the failure or degradation of the individual solar cell module, it was not possible to monitor the operating state of the individual solar cell module.
  • the failure of the individual solar cell module is detected even in the operating state where power is continuously generated from a plurality of solar cell modules, it is easy to manage the failure of the photovoltaic power generation system due to the risk of an accident such as electric shock or short circuit. There is a problem that cannot be done.
  • the photovoltaic power generation system is usually installed outdoors, the cost of the initial installation is expensive, but once installed, it generates electricity by continuously generating electricity by generating solar power. As a result, a theft event is generated for the purpose of stealing and reusing the solar cell module. Since the conventional solar cell module is compatible with other solar power generation systems and can be reused, theft of the solar cell module is spreading of the solar power generation system. Acts as a big problem.
  • An object of the present invention for solving the problems of the prior art described above, by monitoring and storing the driving state of the solar cell module, and interprets the signal received from the outside to display the operating state of the solar cell module,
  • the present invention provides a junction box for a solar cell module and a driving method thereof for controlling power generation and preventing the stolen solar cell module from being reused in other solar power generation systems.
  • junction box for a solar cell module for achieving the above object, the switching means for transmitting or blocking the generated power of the solar cell module to the combiner, and signal processing the AC component of the output of the solar cell module Signal processing means for extracting data, and a microprocessor for switching the switching means in accordance with the data extracted from the signal processing means.
  • the junction box for a solar cell module the signal processing means for extracting data by signal processing the AC component of the output of the solar cell module, and the aspect is delivered to the combiner of the output of the solar cell module
  • a voltage current sensing unit for sensing a generation current and a generation voltage of a battery module, receiving a generation current sensing value and a generation voltage sensing value from the voltage current sensing unit, writing the result into a memory, and writing the generation current sensing value recorded in the memory;
  • a microprocessor configured to determine an operating state of the solar cell module using a power generation voltage sensing value and output an operating state of the solar cell module according to data extracted through the signal processing means.
  • the method for driving a junction box for a solar cell module in the method for driving a junction box for a solar cell module for transmitting the generated power of the solar cell module to the combiner, the alternating current of the output of the solar cell module And a second step of extracting data by signal-processing the component, and a second step of transmitting or blocking the generated power of the solar cell module to the combiner according to the data extracted in the first step. do.
  • the method for driving a junction box for a solar cell module in the method for driving a junction box for a solar cell module for transmitting the generated power of the solar cell module to the combiner, the alternating current of the output of the solar cell module A first step of extracting data by signal processing a component, a second step of detecting a generation current and a generation voltage of the solar cell module delivered to the combiner, and a generation current sensing value detected at the second step And receiving and recording the generated voltage sensing value into a memory, and determining an operating state of the solar cell module using the generated current sensing value and the generated voltage sensing value recorded in the memory, and operating the solar cell module according to the data. And a third step of outputting a status.
  • each solar cell module it is possible to monitor the operating state of each solar cell module to display its operating state, and to cut off the output power of each solar cell module as necessary, thereby providing an efficient and safe solar power generation system. It has the effect of enabling management.
  • the solar cell module that is stolen or not imported in a formal procedure is prevented from operating normally, thereby preventing theft or smuggling in advance.
  • FIG. 1 is a schematic block diagram of a general photovoltaic power generation system.
  • FIG. 2 is a view illustrating the technical features of the present invention, (a) is a view showing a state in which sunlight is incident on the solar cell module, (b) is a data together with the sunlight in the solar cell module It is a diagram showing a state in which an optical signal is incident.
  • FIG 3 is an internal configuration block of a junction box for a solar cell module according to the present invention.
  • FIG. 4 is an operation flowchart illustrating a method of monitoring the generated power of the solar cell module and displaying the solar cell module state according to the present invention.
  • FIG. 5 is a flowchart illustrating a method in which a microprocessor according to the present invention cuts or connects output power of a solar cell module at the request of an administrator.
  • FIG. 6 is an operational flowchart illustrating a method for preventing theft of a solar cell module by a microprocessor according to the present invention.
  • FIG. 7 is an operational flow diagram illustrating a method for preventing a fire by a microprocessor according to the present invention.
  • band pass filter 212 blocking capacitor
  • demodulator 214 decoder
  • microprocessor 216 memory
  • FIG. 2 is a view illustrating the technical features of the present invention
  • (a) is a view showing a state in which sunlight is incident on the solar cell module
  • (b) is a data together with the sunlight in the solar cell module
  • It is a diagram showing a state in which an optical signal is incident.
  • solar light is incident on the solar cell module to generate an electrical signal as shown in FIGS. 2A and 2B.
  • a data optical signal is additionally incident on the solar cell module together with sunlight.
  • the junction box of the present invention provides a DC component of the output of the solar cell module to the combiner, and obtains externally input data from the AC component of the output of the solar cell module.
  • the junction box 200 for a solar cell module according to the present invention includes a relay 224 for transmitting or blocking a DC component of the output of the solar cell module 11a or 11b to the combiner 13 and the solar cell module.
  • Signal processing means for signal processing the AC component of the output of 11a or 11b to extract data
  • a microprocessor 215 for switching the relay 224 in accordance with the data extracted from the signal processing means.
  • a triac may be used instead of the relay 224, which is collectively referred to as a switching means.
  • the signal processing means includes a band pass filter 211 for extracting a predetermined frequency band from the output of the solar cell module 11a or 11b, and a blocking capacitor 212 for removing a DC component passing through the band pass filter 211. ), A demodulator 213 for demodulating the output signal of the predetermined frequency band, and a decoder 214 for extracting data included in the signal demodulated by the demodulator 213 and providing the data to the microprocessor 215. Include.
  • the signal processing means may further include an amplifier for amplifying the output signal of the frequency band passing through the band pass filter 211.
  • the junction box 200 for the solar cell module further includes a low pass filter 221 for extracting a frequency region lower than a preset frequency from the output of the solar cell module 11a or 11b to be delivered to the relay 224. do.
  • the junction box 200 for a solar cell module further includes a driving power supply unit 222 for providing driving power to each component including the signal processing means from an output passing through the low pass filter 221.
  • the driving power supply unit 222 preferably includes a charging circuit (not shown) for supplying driving power to the signal processing means for a predetermined time even when the solar cell module 11a or 11b does not generate electricity.
  • the junction box 200 for the solar cell module detects the generated current and the generated voltage of the solar cell module provided to the relay 224 through the low pass filter 221 and detects the voltage current provided to the microprocessor 215.
  • the microprocessor 215 further includes the microprocessor 215.
  • the microprocessor 215 periodically receives the generated current sensing value and the generated voltage sensing value from the voltage and current sensing unit 223, and writes the generated current sensing value and the generated voltage sensing value in the memory 216.
  • the operation state (normal, deterioration or failure, etc.) of the solar cell module is determined by using the integrated generation current sensing value and the generation voltage sensing value.
  • the microprocessor 215 may calculate and store a maximum value, a minimum value, or an average value with respect to the generation current sensing values and the generation voltage sensing values recorded for each day.
  • the junction box 200 for a solar cell module further includes an indicator 217 that displays an operation state of the solar cell module and whether output power is blocked under the control of the microprocessor 215.
  • the microprocessor 215 controls the display 217 based on the data extracted from the signal processing means to display the operation state of the solar cell module 11a or 11b and whether the output power is cut off.
  • the microprocessor 215 outputs the operation state information of the solar cell module 11a or 11b to the monitoring unit 16 according to a command input from an administrator through the optical signal transmitter 230 or periodically.
  • the microprocessor 215 may transmit operation state information of the solar cell module 11a or 11b to the monitoring unit 16 through power line communication (PLC).
  • PLC power line communication
  • the junction box 200 for a solar cell module further includes a temperature sensor 218 for sensing a temperature inside the junction box and providing the temperature to the microprocessor 215, and the microprocessor 215 is detected by the temperature sensor 218.
  • the relay 224 is controlled to block the output power.
  • a bypass diode (not shown) is preferably located between the relay 224 and the combiner 13.
  • the memory 216 includes a country code assigned to the solar cell module, an installation location code assigned to the solar cell module, a plurality of command codes, an execution process corresponding to each command code, and a plurality of periodically inputted codes.
  • the generated current sensing value, the generated voltage sensing value, the theft confirmation period, the latest theft confirmation reset date, the internal threshold temperature, and the like are stored.
  • the country code is stored so that it cannot be operated by the solar power system operator
  • the installation location code is stored so that it can be set, changed and deleted by the solar power system operator.
  • the optical signal transmitter 230 encodes data including a country code of the optical signal transmitter, an installation location code of the solar cell module to be inspected, and a command code, modulates the data into an optical carrier, and then converts the solar cell module 11a or 11b).
  • the optical carrier uses a frequency absorbable by the solar cell module 11a or 11b, and may use invisible light including visible light or infrared light.
  • Command codes include theft confirmation cycle setting code, theft confirmation reset code, installation location code change code, solar module status check code, and output power cutoff / connection code.
  • junction box for a solar cell module configured as described above will be described.
  • Solar light is incident on the solar cell module 11a or 11b according to the present invention, as shown in FIG.
  • a direct current is output from the solar cell module 11a or 11b, and the direct current is blocked by the band pass filter 211 and passes through the low pass filter 221 to pass through the driving power supply unit 222 and the relay.
  • Via 224 is supplied to the combiner 13.
  • the driving power supply unit 222 produces and provides driving power required for each component of the junction box for the solar cell module.
  • the voltage current detecting unit 223 detects the generated voltage and the generated current supplied to the combiner 13 through the relay 224, and provides the generated voltage sensing value and the generated current sensing value to the microprocessor 215. do.
  • the microprocessor 215 stores the generated voltage sensing value and the generated current sensing value in the memory 216.
  • the microprocessor 215 accumulates and stores the generated voltage sensing value and the generated current sensing value at each cycle set by the administrator, and the corresponding solar cell based on the generated voltage sensing value and the generated current sensing value integrated in the memory 216. It is determined whether the operating state of the module 11a or 11b is normal, deteriorated or failure.
  • the optical signal transmitter 230 is operated by an administrator and encodes data including a country code of the optical signal transmitter and an installation location code and a command code of the solar cell module to be inspected, modulated into an optical carrier, and then modulated the solar cell module. It sends out to 11a or 11b. Then, as shown in (b) of FIG. 2, a data optical signal is incident on the solar cell module 11a or 11b and outputs an alternating current corresponding to the data optical signal.
  • the alternating current output from the solar cell module 11a or 11b is blocked by the low pass filter 221 but passes through the band pass filter 211, and the signal from the blocking capacitor 212, the demodulator 213, and the decoder 214 is used.
  • the data is processed to extract the data.
  • the microprocessor 215 extracts the country code of the optical signal transmitter and the installation location code and command code of the solar cell module from this data.
  • the microprocessor 215 checks whether the country code inputted from the optical signal transmitter 230 and the country code preset in the solar cell module are the same, and then installs the position code and the solar input inputted from the optical signal transmitter 230. It is checked whether the installation location codes preset in the battery module 11a or 11b are the same. If the two country codes and the two installation location codes are the same, the operation corresponding to the command code is normally performed. If any one of them is different, the relay 224 is cut off to generate power generated by the solar cell module 11a or 11b. To prevent it from being provided to the binner 13.
  • the reason for comparing the country code of the optical signal transmission device 230 and the country code of the solar cell module 11a or 11b in the present invention is that the price of the solar cell module 11a or 11b is different in each country.
  • solar cell modules can be bought at low prices and traded to Japan and other countries at high prices. Therefore, a country code is provided to prevent operation by an administrator for each country, and if the country code of the optical signal transmitter 230 and the country code of the solar cell module 11a or 11b are different, the relay 224 is blocked to block the traffic. The solar cell module 11a or 11b is made useless.
  • the microprocessor 215 changes the installation location code stored in the memory 216 into a new installation location code.
  • the change may also include an initial setting.
  • the installation location code is a code arbitrarily assigned to each photovoltaic power generation facility installed and managed by a manager (for example, a solar energy company).
  • the microprocessor 215 changes the theft confirmation period stored in the memory 216 to a new theft confirmation period.
  • the change may also include an initial setting.
  • Theft confirmation period is a period in which theft confirmation reset should be input, and the microprocess 215 cuts off the relay 224 when the theft confirmation period is exceeded from the latest theft confirmation reset date, thereby generating power from the solar cell module 11a or 11b. Prevents power from being supplied to the combiner 13.
  • the microprocessor 215 stores the date as the latest theft reset reset date in the memory if the command code is the theft reset reset code.
  • the relay 224 is blocked so that the generated power is not output. To make the stolen solar cell module 11a or 11b useless.
  • the microprocessor 215 is in a normal state based on the generation voltage sensing value and generation current sensing value integrated in the memory 216 for a specific period. It is determined whether it is a recognition state, a degraded state, or a failure state, and the operation state of the determined solar cell module 11a or 11b is displayed on the display 217. In addition, the microprocessor 215 may output the operation state of the solar cell module 11a or 11b to the outside through a separate port.
  • the microprocessor 215 blocks the relay 224 if the command code is an output power cutoff code so that the generated power of the solar cell module is not output to the combiner 13.
  • the microprocessor 215 connects the relay 224 when the command code is an output power connection code while the relay 224 is blocked, so that the generated power of the solar cell module is output to the combiner 13.
  • the junction box for a solar cell module of the present invention together with the general function of providing the combiner 13 with the power output from the solar cell module 11a or 11b, monitors the generated power of the solar cell module and the state of the solar cell module. It includes a function to display, cut off or connect the output power of the solar cell module at the request of the administrator, anti-theft function, cross-border trade prevention function, fire prevention function. The operation of the microprocessor for implementing each function will be described in detail.
  • FIG. 4 is a flowchart illustrating a method in which the microprocessor according to the present invention monitors the generated power of the solar cell module and displays the state of the solar cell module.
  • the microprocessor receives the generated voltage sensing value and the generated current sensing value which detect the generated voltage and generated current of the solar cell module and stores them in the memory (S41).
  • the maximum, minimum, and average values for the period may be calculated and stored for each specific period (eg, daily, weekly, monthly, etc.).
  • the microprocessor determines whether the operation state of the solar cell module is a normal state, a degraded state, or a fault state (S42). To this end, the microprocessor preferably stores the monthly maximum power generation value, the minimum power generation value and the average power generation value of the normal solar cell module.
  • the microprocessor outputs the operation state information of the solar cell module when the solar cell module status check code is input from the outside through the signal processing means (S43).
  • the microprocessor may display the operation state of the solar cell module through the indicator 217 or may be output to the outside through a separate output port.
  • the microprocessor outputs the operation state information of the solar cell module to the monitoring unit in accordance with a separate command input from the administrator through the optical signal transmission device or periodically.
  • FIG. 5 is a flowchart illustrating a method in which a microprocessor according to the present invention cuts or connects output power of a solar cell module at the request of an administrator.
  • FIG. 6 is an operational flowchart illustrating a method for preventing theft of a solar cell module by a microprocessor according to the present invention.
  • the microprocessor When a theft confirmation period setting code is input from the outside through the signal processing means, the microprocessor sets a theft confirmation period (for example, one month, three months, six months, etc.) and stores it in the memory (S61). When the anti-theft reset code is input from the outside through the signal processing means (S62), the microprocessor updates the anti-theft reset date stored in the memory (S63). Thereafter, it is determined whether the theft confirmation period is exceeded from the theft confirmation reset date stored in the memory (S64), and when it is exceeded (S65), the relay is blocked to prevent the generated power from being output (S66).
  • a theft confirmation period setting code is input from the outside through the signal processing means
  • the microprocessor updates the anti-theft reset date stored in the memory (S63). Thereafter, it is determined whether the theft confirmation period is exceeded from the theft confirmation reset date stored in the memory (S64), and when it is exceeded (S65), the relay is blocked to prevent the generated power from being output (S66).
  • the microprocessor determines whether the theft confirmation reset code is input after theft confirmation reset is exceeded and the theft confirmation period is exceeded. If the theft confirmation reset code is input periodically, the microprocessor generates output power of the solar cell module normally and confirms theft. If the theft confirmation reset code is not inputted so that the period is exceeded, the generated power of the solar cell module is cut off so that the solar cell module becomes useless. According to this invention, the stolen solar cell module does not use solar power even if it is installed in other solar power plants, it is not useful, there is an effect that can prevent theft in advance.
  • the microprocessor is a country code and memory received with a command code (solar module status check code, output power cutoff code, output power connection code, theft confirmation period setting code, theft confirmation reset code, etc.) Comparing the country codes stored in the, if the two country codes are different, the relay is blocked so that the generated power of the solar cell module is not provided to the combiner (13).
  • the microprocessor compares the installation location code received with the command code with the installation location code stored in the memory. If the two installation location codes are different, the microprocessor blocks the relay so that the generated power of the solar cell module is not provided to the combiner 13. do.
  • FIG. 7 is an operational flow diagram illustrating a method for preventing a fire by a microprocessor according to the present invention.
  • the microprocessor senses the current temperature inside the junction box (S71). If the current temperature exceeds the threshold temperature stored in the memory (S72), the relay is cut off so that the generated power is not output (S73). In general, there is a risk of fire caused by overheating of the bypass diode inside the junction box. According to the present invention, when the temperature inside the junction box exceeds the threshold temperature and exceeds the threshold temperature, the relay is cut off, thereby preventing the fire from occurring by cutting off the power applied to the bypass diode.
  • the solar cell module includes a first solar cell unit and a second solar cell unit, the power generation of the first solar cell unit is connected to the relay and is delivered to the combiner, and the second solar cell unit
  • the data light signal may be configured to be incident.
  • the first solar cell unit is configured to face the sun and the second solar cell unit is preferably configured to be located on the rear of the first solar cell unit.

Abstract

The present invention relates to: a junction box for a solar cell module which can control the solar cell module by receiving a command of a manager from the outside, display an operation state of the solar cell module, and implement an anti-theft function, a fire prevention function, and the like of the solar cell module; and a driving method therefor. The junction box for the solar cell module according to the present invention comprises: a switching means for supplying or cutting off the power generated from the solar cell module to/from a combiner; a signal processing means signal-processing an alternating current component of the output of the solar cell module so as to extract data; and a microprocessor for switching the switching means according to the data extracted by the signal processing means.

Description

태양전지모듈용 정션박스 및 그의 구동방법Junction box for solar cell module and its driving method
이 발명은 태양전지모듈용 정션박스 및 그의 동작방법에 관한 것으로서, 보다 상세하게는 외부로부터 관리자의 명령을 수신하여 태양전지모듈을 제어하고, 태양전지모듈의 동작 상태 모니터링 기능, 태양전지모듈의 도난방지기능, 화재방지기능 등을 구현할 수 있도록 하는 태양전지모듈용 정션박스 및 그의 구동방법에 관한 것이다.The present invention relates to a junction box for a solar cell module and a method of operating the same, and more particularly, to control a solar cell module by receiving an administrator's command from the outside, and to monitor the operation state of the solar cell module and theft of the solar cell module. The present invention relates to a junction box for a solar cell module and a driving method thereof for implementing a prevention function, a fire protection function, and the like.
태양전지는 여러 소재의 광전 효과 물질을 이용하여 태양광 에너지로부터 전력을 생산하는 소자이다. 통상적으로 태양전지는 P-N접합 반도체 셀을 이용하여 광기전력을 발생시키며, 여러 개의 태양전지 셀을 직병렬로 연결하여 특정 용량의 모듈을 구성하고, 모듈들을 연결하여 어레이로 구성하여 발전지역에 설치한다.Solar cells are devices that generate power from solar energy by using photovoltaic materials of various materials. In general, solar cells generate photovoltaic power using PN junction semiconductor cells, and connect multiple solar cells in series to form modules of a specific capacity, and connect modules to form an array to install in a power generation area. .
도 1은 일반적인 태양광 발전시스템의 개략적인 구성도이다.1 is a schematic configuration diagram of a general photovoltaic power generation system.
태양광 발전시스템은 태양광 에너지로부터 직류전류를 생산하는 다수의 태양전지모듈들(11a, 11b)과, 각각이 하나의 태양전지모듈과 연결된 다수의 정션박스들(12a, 12b)과, 다수의 정션박스들(12a, 12b)을 통해 상기 다수의 태양전지모듈들(11a, 11b)에서 출력된 직류전류를 입력받아 결합하는 컴바이너(13)와, 상기 컴바이너(13)에서 생성된 직류전력을 교류전력으로 변환하여 부하(15)에 공급하는 인버터(14)를 포함한다. 이러한 태양광 발전시스템은 시스템을 안정적으로 운영하기 위한 장비(접지오류보호기, 퓨즈스위치 등)가 추가적으로 구비된다.The photovoltaic power generation system includes a plurality of solar cell modules 11a and 11b for producing direct current from solar energy, a plurality of junction boxes 12a and 12b each connected to one solar cell module, and a plurality of solar cell modules 11a and 11b. Combiner 13 and the combiner 13 for receiving and coupling the DC current output from the plurality of solar cell modules (11a, 11b) through the junction boxes (12a, 12b), and generated in the combiner (13) An inverter 14 converts DC power into AC power and supplies the load 15 to the load 15. Such a photovoltaic power generation system is additionally equipped with equipment (ground fault protector, fuse switch, etc.) to stably operate the system.
정션박스(12a, 12b)는 태양전지모듈(11a, 11b)에서 출력되는 전류가 컴바이너(13)로 공급되도록 배선되어 있으며, 바이패스 소자부(바이패스 다이오드)가 설치되어 발전량이 저하되는 태양전지모듈을 우회하여 전기가 흐르도록 하거나, 금속재질의 히트싱크가 설치되어 과열되지 않도록 한다.The junction boxes 12a and 12b are wired so that the current output from the solar cell modules 11a and 11b is supplied to the combiner 13, and a bypass element portion (bypass diode) is installed to reduce the amount of power generated. Bypass the solar cell module so that electricity flows, or a metal heat sink is installed to prevent overheating.
한편, 종래의 태양광 발전시스템은 인버터(14)에 시스템을 관리, 제어, 모니터링하는 모니터링부(16)가 연결되는 바, 다수의 태양전지모듈(11a, 11b)에서 생산된 전력이 컴바이너(13)에서 결합된 후 인버터(14)에서 상용전력으로 변환하는 과정은 관리, 제어 및 모니터링될 수 있다.Meanwhile, in the conventional photovoltaic power generation system, the monitoring unit 16 for managing, controlling, and monitoring the system is connected to the inverter 14, and the power generated by the plurality of solar cell modules 11a and 11b is combined. The process of converting to commercial power in the inverter 14 after being combined at 13 can be managed, controlled and monitored.
그러나, 종래의 태양광 발전시스템은 개별 태양전지모듈의 고장이나 성능저하를 모니터링하거나 제어하는 수단이 전혀 구비되지 않아, 개별 태양전지모듈의 동작 상태를 모니터링할 수 없었다. 또한, 설사 개별 태양전지모듈의 고장을 감지하더라도 다수의 태양전지모듈로부터 지속적으로 전력이 발전되는 운영중 상태에서는, 전기쇼크나 누전 등의 사고 발생 위험으로 인하여 태양광 발전시스템의 고장 관리를 원할하게 수행할 수 없는 문제점이 있다.However, the conventional photovoltaic power generation system is not provided with any means for monitoring or controlling the failure or degradation of the individual solar cell module, it was not possible to monitor the operating state of the individual solar cell module. In addition, even when the failure of the individual solar cell module is detected even in the operating state where power is continuously generated from a plurality of solar cell modules, it is easy to manage the failure of the photovoltaic power generation system due to the risk of an accident such as electric shock or short circuit. There is a problem that cannot be done.
또한, 태양광 발전시스템은 통상적으로 옥외에 설치되며, 초기 설치를 위한 비용은 많이 소요되지만 일단 설치를 해놓으면 태양광을 발전하여 지속적으로 전기를 생산하여 수익이 발생된다. 이로 인해, 태양전지모듈을 훔쳐서 재이용하려는 목적으로 도난 사건이 발생되는데, 종래의 태양전지모듈은 다른 태양광 발전시스템에 호환되어 재사용될 수 있기 때문에, 태양전지모듈의 절도는 태양광 발전시스템의 보급에 큰 문제로 작용한다.In addition, the photovoltaic power generation system is usually installed outdoors, the cost of the initial installation is expensive, but once installed, it generates electricity by continuously generating electricity by generating solar power. As a result, a theft event is generated for the purpose of stealing and reusing the solar cell module. Since the conventional solar cell module is compatible with other solar power generation systems and can be reused, theft of the solar cell module is spreading of the solar power generation system. Acts as a big problem.
상술한 종래기술의 문제점을 해결하기 위한 이 발명의 목적은, 태양전지모듈의 구동 상태를 모니터링하여 저장하고, 외부로부터 수신된 신호를 해석하여 태양전지모듈의 작동 상태를 표시하며, 태양전지모듈의 발전을 제어하고, 도난된 태양전지모듈은 다른 태양광 발전시스템에 재사용되지 못하도록 하는 태양전지모듈용 정션박스 및 그의 구동방법을 제공하기 위한 것이다.An object of the present invention for solving the problems of the prior art described above, by monitoring and storing the driving state of the solar cell module, and interprets the signal received from the outside to display the operating state of the solar cell module, The present invention provides a junction box for a solar cell module and a driving method thereof for controlling power generation and preventing the stolen solar cell module from being reused in other solar power generation systems.
상기한 목적을 달성하기 위한 이 발명에 따른 태양전지모듈용 정션박스는, 태양전지모듈의 발전전력을 컴바이너로 전달 또는 차단하는 스위칭수단과, 상기 태양전지모듈의 출력 중 교류성분을 신호처리하여 데이터를 추출하는 신호처리수단과, 상기 신호처리수단에서 추출된 데이터에 따라 상기 스위칭수단을 스위칭하는 마이크로프로세서를 포함한 것을 특징으로 한다.Junction box for a solar cell module according to the present invention for achieving the above object, the switching means for transmitting or blocking the generated power of the solar cell module to the combiner, and signal processing the AC component of the output of the solar cell module Signal processing means for extracting data, and a microprocessor for switching the switching means in accordance with the data extracted from the signal processing means.
또한, 이 발명에 따른 태양전지모듈용 정션박스는, 태양전지모듈의 출력 중 교류성분을 신호처리하여 데이터를 추출하는 신호처리수단과, 상기 태양전지모듈의 출력 중 컴바이너로 전달되는 상기 태양전지모듈의 발전전류와 발전전압을 감지하는 전압전류감지부와, 상기 전압전류감지부로부터 발전전류 센싱값과 발전전압 센싱값을 입력받아 메모리에 기록하고 상기 메모리에 기록된 상기 발전전류 센싱값과 발전전압 센싱값을 이용하여 상기 태양전지모듈의 동작 상태를 판단하며 상기 신호처리수단을 통해 추출된 데이터에 따라 상기 태양전지모듈의 동작 상태를 출력하는 마이크로프로세서를 포함한 것을 특징으로 한다.In addition, the junction box for a solar cell module according to the present invention, the signal processing means for extracting data by signal processing the AC component of the output of the solar cell module, and the aspect is delivered to the combiner of the output of the solar cell module A voltage current sensing unit for sensing a generation current and a generation voltage of a battery module, receiving a generation current sensing value and a generation voltage sensing value from the voltage current sensing unit, writing the result into a memory, and writing the generation current sensing value recorded in the memory; And a microprocessor configured to determine an operating state of the solar cell module using a power generation voltage sensing value and output an operating state of the solar cell module according to data extracted through the signal processing means.
또한, 이 발명에 따른 태양전지모듈용 정션박스의 구동방법은, 태양전지모듈의 발전전력을 컴바이너로 전달하는 태양전지모듈용 정션박스의 구동방법에 있어서, 상기 태양전지모듈의 출력 중 교류성분을 신호처리하여 데이터를 추출하는 제1단계와, 상기 제1단계에서 추출된 데이터에 따라 상기 태양전지모듈의 발전전력이 상기 컴바이너로 전달 또는 차단되도록 하는 제2단계를 포함한 것을 특징으로 한다.In addition, the method for driving a junction box for a solar cell module according to the present invention, in the method for driving a junction box for a solar cell module for transmitting the generated power of the solar cell module to the combiner, the alternating current of the output of the solar cell module And a second step of extracting data by signal-processing the component, and a second step of transmitting or blocking the generated power of the solar cell module to the combiner according to the data extracted in the first step. do.
또한, 이 발명에 따른 태양전지모듈용 정션박스의 구동방법은, 태양전지모듈의 발전전력을 컴바이너로 전달하는 태양전지모듈용 정션박스의 구동방법에 있어서, 상기 태양전지모듈의 출력 중 교류성분을 신호처리하여 데이터를 추출하는 제1단계와, 상기 컴바이너로 전달되는 상기 태양전지모듈의 발전전류와 발전전압을 감지하는 제2단계와, 상기 제2단계에서 감지된 발전전류 센싱값과 발전전압 센싱값을 입력받아 메모리에 기록하고 상기 메모리에 기록된 상기 발전전류 센싱값과 발전전압 센싱값을 이용하여 상기 태양전지모듈의 동작 상태를 판단하며 상기 데이터에 따라 상기 태양전지모듈의 동작 상태를 출력하는 제3단계를 포함한 것을 특징으로 한다.In addition, the method for driving a junction box for a solar cell module according to the present invention, in the method for driving a junction box for a solar cell module for transmitting the generated power of the solar cell module to the combiner, the alternating current of the output of the solar cell module A first step of extracting data by signal processing a component, a second step of detecting a generation current and a generation voltage of the solar cell module delivered to the combiner, and a generation current sensing value detected at the second step And receiving and recording the generated voltage sensing value into a memory, and determining an operating state of the solar cell module using the generated current sensing value and the generated voltage sensing value recorded in the memory, and operating the solar cell module according to the data. And a third step of outputting a status.
이상과 같이 이 발명에 따르면, 각 태양전지모듈별로 작동 상태를 모니터링하여 그 작동 상태를 표시할 수 있으며, 필요에 따라 각 태양전지모듈의 출력 전력을 차단할 수 있게 하여 효율적이고 안전한 태양광 발전시스템의 관리가 가능하게 하는 효과가 있다.As described above, according to the present invention, it is possible to monitor the operating state of each solar cell module to display its operating state, and to cut off the output power of each solar cell module as necessary, thereby providing an efficient and safe solar power generation system. It has the effect of enabling management.
또한, 도난되거나 정식절차로 수입되지 않은 태양전지모듈은 정상적으로 동작하지 못하도록 하여 도난이나 밀무역을 미연에 방지할 수 있는 효과가 있다.In addition, the solar cell module that is stolen or not imported in a formal procedure is prevented from operating normally, thereby preventing theft or smuggling in advance.
또한, 태양전지모듈용 정션박스 내부의 온도를 감지하여 임계온도가 초과하면 태양전지모듈의 출력 전력을 차단함으로써, 바이패스 다이오드의 과열로 인한 화재를 미연에 방지할 수 있는 효과가 있다.In addition, by detecting the temperature inside the junction box for the solar cell module to cut off the output power of the solar cell module when the threshold temperature is exceeded, it is possible to prevent the fire due to overheating of the bypass diode in advance.
도 1은 일반적인 태양광 발전시스템의 개략적인 구성 블록도이다.1 is a schematic block diagram of a general photovoltaic power generation system.
도 2는 이 발명의 기술적 특징을 설명하기 위해 도시한 도면으로서, (a)는 태양전지모듈에 태양광이 입사되는 상태를 도시한 도면이고, (b)는 태양전지모듈에 태양광과 함께 데이터 광신호가 입사되는 상태를 도시한 도면이다.2 is a view illustrating the technical features of the present invention, (a) is a view showing a state in which sunlight is incident on the solar cell module, (b) is a data together with the sunlight in the solar cell module It is a diagram showing a state in which an optical signal is incident.
도 3은 이 발명에 따른 태양전지모듈용 정션박스의 내부 구성 블록이다.3 is an internal configuration block of a junction box for a solar cell module according to the present invention.
도 4는 이 발명에 따른 마이크로프로세서가 태양전지모듈의 발전전력을 모니터링하고 태양전지모듈 상태를 표시하는 방법을 도시한 동작 흐름도이다.4 is an operation flowchart illustrating a method of monitoring the generated power of the solar cell module and displaying the solar cell module state according to the present invention.
도 5는 이 발명에 따른 마이크로프로세서가 관리자의 요청에 따라 태양전지모듈의 출력전력을 차단하거나 연결하는 방법을 도시한 동작 흐름도이다.FIG. 5 is a flowchart illustrating a method in which a microprocessor according to the present invention cuts or connects output power of a solar cell module at the request of an administrator.
도 6은 이 발명에 따른 마이크로프로세서가 태양전지모듈의 도난을 방지하기 위한 방법을 도시한 동작 흐름도이다.6 is an operational flowchart illustrating a method for preventing theft of a solar cell module by a microprocessor according to the present invention.
도 7은 이 발명에 따른 마이크로프로세서가 화재를 방지하기 위한 방법을 도시한 동작 흐름도이다.7 is an operational flow diagram illustrating a method for preventing a fire by a microprocessor according to the present invention.
[부호의 설명][Description of the code]
11a, 11b : 태양전지모듈 12a, 12b : 정션박스11a, 11b: solar cell module 12a, 12b: junction box
13 : 컴바이너 14 : 인버터13: combiner 14: inverter
211 : 대역통과필터 212 : 블록킹커패시터211: band pass filter 212: blocking capacitor
213 : 복조기 214 : 디코더213: demodulator 214: decoder
215 : 마이크로프로세서 216 : 메모리215: microprocessor 216: memory
217 : 표시기 218 : 온도센서217: indicator 218: temperature sensor
221 : 저역통과필터 222 : 구동전력공급부221: low pass filter 222: drive power supply
223 : 전압전류감지부 224 : 릴레이223: voltage and current detection unit 224: relay
230 : 광신호송신장치230: optical signal transmission device
이하, 첨부된 도면을 참조하며 이 발명에 따른 태양전지모듈용 정션박스 및 그의 구동 방법을 보다 상세하게 설명한다.Hereinafter, a junction box for a solar cell module and a driving method thereof according to the present invention will be described in detail with reference to the accompanying drawings.
도 2는 이 발명의 기술적 특징을 설명하기 위해 도시한 도면으로서, (a)는 태양전지모듈에 태양광이 입사되는 상태를 도시한 도면이고, (b)는 태양전지모듈에 태양광과 함께 데이터 광신호가 입사되는 상태를 도시한 도면이다. 일반적으로 태양전지모듈에는 도 2의 (a)와 (b)에 도시된 바와 같이 태양광이 입사되어 전기신호가 생성된다. 이 발명에서는 도 2의 (b)에 도시된 바와 같이 태양전지모듈에 태양광과 함께 데이터 광신호가 추가로 입사된다. 이 발명의 정션박스는 태양전지모듈의 출력 중 직류성분은 컴바이너로 제공하고, 태양전지모듈의 출력 중 교류성분으로부터 외부에서 입력된 데이터를 획득한다.2 is a view illustrating the technical features of the present invention, (a) is a view showing a state in which sunlight is incident on the solar cell module, (b) is a data together with the sunlight in the solar cell module It is a diagram showing a state in which an optical signal is incident. Generally, solar light is incident on the solar cell module to generate an electrical signal as shown in FIGS. 2A and 2B. In the present invention, as shown in FIG. 2B, a data optical signal is additionally incident on the solar cell module together with sunlight. The junction box of the present invention provides a DC component of the output of the solar cell module to the combiner, and obtains externally input data from the AC component of the output of the solar cell module.
도 3은 이 발명에 따른 태양전지모듈용 정션박스의 내부 구성 블록도이다. 이 발명에 따른 태양전지모듈용 정션박스(200)는, 태양전지모듈(11a or 11b)의 출력 중 직류성분을 컴바이너(13)로 전달 또는 차단하는 릴레이(224)와, 상기 태양전지모듈(11a or 11b)의 출력 중 교류성분을 신호처리하여 데이터를 추출하는 신호처리수단과, 상기 신호처리수단에서 추출된 데이터에 따라 릴레이(224)를 스위칭하는 마이크로프로세서(215)를 포함한다. 여기서, 릴레이(224) 대신 트라이악을 사용할 수도 있으며, 이를 통칭하여 스위칭수단이라 한다.3 is a block diagram illustrating an internal configuration of a junction box for a solar cell module according to the present invention. The junction box 200 for a solar cell module according to the present invention includes a relay 224 for transmitting or blocking a DC component of the output of the solar cell module 11a or 11b to the combiner 13 and the solar cell module. Signal processing means for signal processing the AC component of the output of 11a or 11b to extract data, and a microprocessor 215 for switching the relay 224 in accordance with the data extracted from the signal processing means. Here, a triac may be used instead of the relay 224, which is collectively referred to as a switching means.
신호처리수단은 상기 태양전지모듈(11a or 11b)의 출력 중 기설정된 주파수대역을 추출하는 대역통과필터(211)와, 상기 대역통과필터(211)를 통과한 직류성분을 제거하는 블록킹커패시터(212)와, 상기 기설정된 주파수대역의 출력신호를 복조하는 복조기(213)와, 상기 복조기(213)에서 복조된 신호에 포함된 데이터를 추출하여 상기 마이크로프로세서(215)에게 제공하는 디코더(214)를 포함한다. 신호처리수단은 대역통과필터(211)를 통과한 주파수대역의 출력신호를 증폭하는 증폭기를 더 포함할 수 있다.The signal processing means includes a band pass filter 211 for extracting a predetermined frequency band from the output of the solar cell module 11a or 11b, and a blocking capacitor 212 for removing a DC component passing through the band pass filter 211. ), A demodulator 213 for demodulating the output signal of the predetermined frequency band, and a decoder 214 for extracting data included in the signal demodulated by the demodulator 213 and providing the data to the microprocessor 215. Include. The signal processing means may further include an amplifier for amplifying the output signal of the frequency band passing through the band pass filter 211.
태양전지모듈용 정션박스(200)는 상기 태양전지모듈(11a or 11b)의 출력 중 기설정된 주파수보다 낮은 주파수 영역을 추출하여 상기 릴레이(224)에 전달되도록 하는 저역통과필터(221)가 더 포함된다.The junction box 200 for the solar cell module further includes a low pass filter 221 for extracting a frequency region lower than a preset frequency from the output of the solar cell module 11a or 11b to be delivered to the relay 224. do.
태양전지모듈용 정션박스(200)는 저역통과필터(221)를 통과한 출력으로부터 상기 신호처리수단을 포함한 각 구성요소에 구동전력을 제공하는 구동전력공급부(222)를 더 포함한다. 이 구동전력공급부(222)에는 상기 태양전지모듈(11a or 11b)이 전기를 발전하지 않더라도 일정 시간동안 상기 신호처리수단에 구동전력을 공급하는 충전회로(미도시)가 포함되는 것이 바람직하다.The junction box 200 for a solar cell module further includes a driving power supply unit 222 for providing driving power to each component including the signal processing means from an output passing through the low pass filter 221. The driving power supply unit 222 preferably includes a charging circuit (not shown) for supplying driving power to the signal processing means for a predetermined time even when the solar cell module 11a or 11b does not generate electricity.
태양전지모듈용 정션박스(200)는 저역통과필터(221)를 통과하여 릴레이(224)로 제공되는 상기 태양전지모듈의 발전전류와 발전전압을 감지하여 마이크로프로세서(215)에게 제공하는 전압전류감지부(223)를 더 포함하고, 상기 마이크로프로세서(215)는 주기적으로 전압전류감지부(223)로부터 상기 발전전류 센싱값과 발전전압 센싱값을 입력받아 메모리(216)에 기록하고, 기설정된 기간동안 집적된 발전전류 센싱값과 발전전압 센싱값을 이용하여 상기 태양전지모듈의 동작 상태(정상, 성능저하 또는 고장 등)를 판단한다. 마이크로프로세서(215)는 일자별로 기록된 발전전류 센싱값들과 발전전압 센싱값들에 대해, 최대값, 최소값 또는 평균값을 산출하여 저장할 수도 있다.The junction box 200 for the solar cell module detects the generated current and the generated voltage of the solar cell module provided to the relay 224 through the low pass filter 221 and detects the voltage current provided to the microprocessor 215. The microprocessor 215 further includes the microprocessor 215. The microprocessor 215 periodically receives the generated current sensing value and the generated voltage sensing value from the voltage and current sensing unit 223, and writes the generated current sensing value and the generated voltage sensing value in the memory 216. The operation state (normal, deterioration or failure, etc.) of the solar cell module is determined by using the integrated generation current sensing value and the generation voltage sensing value. The microprocessor 215 may calculate and store a maximum value, a minimum value, or an average value with respect to the generation current sensing values and the generation voltage sensing values recorded for each day.
태양전지모듈용 정션박스(200)는 마이크로프로세서(215)의 제어를 받아 상기 태양전지모듈의 동작상태와 출력전력 차단 여부를 표시하는 표시기(217)를 더 포함한다. 마이크로프로세서(215)는 신호처리수단에서 추출된 데이터를 기반으로 표시기(217)를 제어하여 태양전지모듈(11a 또는 11b)의 동작 상태와, 출력전력 차단 여부를 표시한다. 또한, 마이크로프로세서(215)는 광신호송신장치(230)를 통해 관리자로부터 입력되는 명령에 따라 또는 주기적으로 태양전지모듈(11a 또는 11b)의 동작 상태 정보를 모니터링부(16)에게 출력한다. 이때, 마이크로프로세서(215)는 태양전지모듈(11a 또는 11b)의 동작 상태 정보를 모니터링부(16)에게 전력선통신(PLC)으로 전송할 수 있다.The junction box 200 for a solar cell module further includes an indicator 217 that displays an operation state of the solar cell module and whether output power is blocked under the control of the microprocessor 215. The microprocessor 215 controls the display 217 based on the data extracted from the signal processing means to display the operation state of the solar cell module 11a or 11b and whether the output power is cut off. In addition, the microprocessor 215 outputs the operation state information of the solar cell module 11a or 11b to the monitoring unit 16 according to a command input from an administrator through the optical signal transmitter 230 or periodically. In this case, the microprocessor 215 may transmit operation state information of the solar cell module 11a or 11b to the monitoring unit 16 through power line communication (PLC).
태양전지모듈용 정션박스(200)는 정션박스 내부의 온도를 감지하여 마이크로프로세서(215)에게 제공하는 온도센서(218)를 더 포함하고, 마이크로프로세서(215)는 온도센서(218)에서 감지된 정션박스 내부의 온도가 기설정된 임계온도를 초과하면 상기 릴레이(224)를 제어하여 출력전력이 차단되도록 한다. 이를 위해, 릴레이(224)와 컴바이너(13) 사이에 바이패스 다이오드(미도시)가 위치하는 것이 바람직하다.The junction box 200 for a solar cell module further includes a temperature sensor 218 for sensing a temperature inside the junction box and providing the temperature to the microprocessor 215, and the microprocessor 215 is detected by the temperature sensor 218. When the temperature inside the junction box exceeds a preset threshold temperature, the relay 224 is controlled to block the output power. To this end, a bypass diode (not shown) is preferably located between the relay 224 and the combiner 13.
메모리(216)에는 상기 태양전지모듈에 부여된 국가코드와, 상기 태양전지모듈에 부여된 설치위치코드와, 다수의 명령코드 및 각각의 명령코드에 대응하는 수행프로세스와, 상기 주기적으로 입력된 다수의 발전전류 센싱값과 발전전압 센싱값과, 도난확인주기와, 최근에 이루어진 도난확인리셋일자, 내부 임계온도 등의 정보가 저장된다. 국가코드는 태양광 발전시스템 운영자에 의해 조작이 불가능하도록 저장되고, 설치위치코드는 태양광 발전시스템 운영자에 의해 설정, 변경, 삭제가 가능하도록 저장된다.The memory 216 includes a country code assigned to the solar cell module, an installation location code assigned to the solar cell module, a plurality of command codes, an execution process corresponding to each command code, and a plurality of periodically inputted codes. The generated current sensing value, the generated voltage sensing value, the theft confirmation period, the latest theft confirmation reset date, the internal threshold temperature, and the like are stored. The country code is stored so that it cannot be operated by the solar power system operator, and the installation location code is stored so that it can be set, changed and deleted by the solar power system operator.
광신호송신장치(230)는 상기 광신호송신장치의 국가코드와, 검사대상 태양전지모듈의 설치위치코드와, 명령코드를 포함하는 데이터를 인코딩하고 광캐리어로 변조한 후 태양전지모듈(11a 또는 11b)로 송출한다. 광캐리어는 태양전지모듈(11a 또는 11b)에서 흡수 가능한 주파수를 이용하는 바, 가시광선 또는 적외선을 포함하는 비가시광선을 이용할 수 있다. 명령코드에는 도난확인주기 설정 코드, 도난확인 리셋 코드, 설치위치코드 변경 코드, 태양전지모듈 상태 확인 코드, 출력전력 차단/연결 코드가 포함된다.The optical signal transmitter 230 encodes data including a country code of the optical signal transmitter, an installation location code of the solar cell module to be inspected, and a command code, modulates the data into an optical carrier, and then converts the solar cell module 11a or 11b). The optical carrier uses a frequency absorbable by the solar cell module 11a or 11b, and may use invisible light including visible light or infrared light. Command codes include theft confirmation cycle setting code, theft confirmation reset code, installation location code change code, solar module status check code, and output power cutoff / connection code.
상기와 같이 구성된 이 발명에 따른 태양전지모듈용 정션박스의 동작을 설명한다.The operation of the junction box for a solar cell module according to the present invention configured as described above will be described.
이 발명에 따른 태양전지모듈(11a 또는 11b)에는 통상적으로 도 2의 (a)에 도시된 바와 같이 태양광이 입사된다. 이 경우, 태양전지모듈(11a 또는 11b)에서는 직류전류가 출력되는 바, 이 직류전류는 대역통과필터(211)에서는 차단되고, 저역통과필터(221)를 통과하여 구동전력공급부(222)와 릴레이(224)를 통해 컴바이너(13)로 공급된다. 구동전력공급부(222)는 태양전지모듈용 정션박스의 각 구성요소에 필요한 구동전력을 생산하여 제공한다. 전압전류감지부(223)는 릴레이(224)를 통해 컴바이너(13)로 공급되는 발전전압과 발전전류를 감지하여, 그 발전전압 센싱값과 발전전류 센싱값을 마이크로프로세서(215)에게 제공한다. 그러면, 마이크로프로세서(215)는 발전전압 센싱값과 발전전류 센싱값을 메모리(216)에 저장한다. 마이크로프로세서(215)는 이 발전전압 센싱값과 발전전류 센싱값을 관리자에 의해 설정된 주기마다 집적하여 저장하며, 메모리(216)에 집적된 발전전압 센싱값과 발전전류 센싱값을 기준으로 해당 태양전지모듈(11a 또는 11b)의 동작 상태가 정상인지, 성능저하인지, 고장인지를 판단한다.Solar light is incident on the solar cell module 11a or 11b according to the present invention, as shown in FIG. In this case, a direct current is output from the solar cell module 11a or 11b, and the direct current is blocked by the band pass filter 211 and passes through the low pass filter 221 to pass through the driving power supply unit 222 and the relay. Via 224 is supplied to the combiner 13. The driving power supply unit 222 produces and provides driving power required for each component of the junction box for the solar cell module. The voltage current detecting unit 223 detects the generated voltage and the generated current supplied to the combiner 13 through the relay 224, and provides the generated voltage sensing value and the generated current sensing value to the microprocessor 215. do. Then, the microprocessor 215 stores the generated voltage sensing value and the generated current sensing value in the memory 216. The microprocessor 215 accumulates and stores the generated voltage sensing value and the generated current sensing value at each cycle set by the administrator, and the corresponding solar cell based on the generated voltage sensing value and the generated current sensing value integrated in the memory 216. It is determined whether the operating state of the module 11a or 11b is normal, deteriorated or failure.
광신호송신장치(230)는 관리자에 의해 조작되며, 광신호송신장치의 국가코드와 검사대상 태양전지모듈의 설치위치코드와 명령코드를 포함하는 데이터를 인코딩하고 광캐리어로 변조한 후 태양전지모듈(11a 또는 11b)로 송출한다. 그러면, 태양전지모듈(11a 또는 11b)에는 도 2의 (b)에 도시된 바와 같이 태양광과 함께 데이터 광신호가 입사되고, 그 데이터 광신호에 대응하는 교류전류를 출력한다.The optical signal transmitter 230 is operated by an administrator and encodes data including a country code of the optical signal transmitter and an installation location code and a command code of the solar cell module to be inspected, modulated into an optical carrier, and then modulated the solar cell module. It sends out to 11a or 11b. Then, as shown in (b) of FIG. 2, a data optical signal is incident on the solar cell module 11a or 11b and outputs an alternating current corresponding to the data optical signal.
태양전지모듈(11a 또는 11b)에서 출력되는 교류전류는 저역통과필터(221)에서는 차단되지만 대역통과필터(211)를 통과하고, 블록킹커패시터(212), 복조기(213) 및 디코더(214)에서 신호처리되어 데이터가 추출된다. 마이크로프로세서(215)는 이 데이터로부터 광신호송신장치의 국가코드와 태양전지모듈의 설치위치코드와 명령코드를 추출한다.The alternating current output from the solar cell module 11a or 11b is blocked by the low pass filter 221 but passes through the band pass filter 211, and the signal from the blocking capacitor 212, the demodulator 213, and the decoder 214 is used. The data is processed to extract the data. The microprocessor 215 extracts the country code of the optical signal transmitter and the installation location code and command code of the solar cell module from this data.
먼저, 마이크로프로세서(215)는 광신호송신장치(230)로부터 입력된 국가코드와 태양전지모듈에 기설정된 국가코드가 동일한지를 체크하고, 광신호송신장치(230)로부터 입력된 설치위치코드와 태양전지모듈(11a 또는 11b)에 기설정된 설치위치코드가 동일한지를 체크한다. 두 국가코드와 두 설치위치코드가 모두 동일하면 명령코드에 대응하는 동작을 정상적으로 수행하고, 둘 중 하나라도 다를 경우에는 릴레이(224)를 차단하여 태양전지모듈(11a 또는 11b)에서 발전된 전력이 컴바이너(13)로 제공되지 못하도록 한다.First, the microprocessor 215 checks whether the country code inputted from the optical signal transmitter 230 and the country code preset in the solar cell module are the same, and then installs the position code and the solar input inputted from the optical signal transmitter 230. It is checked whether the installation location codes preset in the battery module 11a or 11b are the same. If the two country codes and the two installation location codes are the same, the operation corresponding to the command code is normally performed. If any one of them is different, the relay 224 is cut off to generate power generated by the solar cell module 11a or 11b. To prevent it from being provided to the binner 13.
이 발명에서 광신호송신장치(230)의 국가코드와 태양전지모듈(11a 또는 11b)의 국가코드를 비교하는 이유는, 국가마다 태양전지모듈(11a 또는 11b)의 가격이 다르게 형성되어 있기 때문에 유럽이나 미국에서 태양전지모듈을 싼 값에 구입하여 일본 등지로 밀무역하여 비싼 가격으로 판매하는 경우가 있기 때문이다. 따라서, 국가마다 관리자에 의해 조작이 불가능하도록 국가코드를 부여하고, 광신호송신장치(230)의 국가코드와 태양전지모듈(11a 또는 11b)의 국가코드가 다르면 릴레이(224)를 차단하여 해당 밀무역된 태양전지모듈(11a 또는 11b)이 무용지물이 되도록 한다.The reason for comparing the country code of the optical signal transmission device 230 and the country code of the solar cell module 11a or 11b in the present invention is that the price of the solar cell module 11a or 11b is different in each country. In the US, solar cell modules can be bought at low prices and traded to Japan and other countries at high prices. Therefore, a country code is provided to prevent operation by an administrator for each country, and if the country code of the optical signal transmitter 230 and the country code of the solar cell module 11a or 11b are different, the relay 224 is blocked to block the traffic. The solar cell module 11a or 11b is made useless.
마이크로프로세서(215)는 명령코드가 설치위치코드 변경 코드이면, 메모리(216)에 저정된 설치위치코드를 새로이 입력되는 설치위치코드로 변경한다. 여기서, 변경이라 함은 초기 설정도 포함할 수 있다. 설치위치코드는 관리자(예컨대 태양광에너지 사업자)가 설치 및 관리하는 태양광 발전 설비마다에게 임의로 부여하는 코드이다.If the instruction code is an installation location code change code, the microprocessor 215 changes the installation location code stored in the memory 216 into a new installation location code. Here, the change may also include an initial setting. The installation location code is a code arbitrarily assigned to each photovoltaic power generation facility installed and managed by a manager (for example, a solar energy company).
마이크로프로세서(215)는 명령코드가 도난확인주기 설정 코드이면, 메모리(216)에 저장된 도난확인주기를 새로이 입력되는 도난확인주기로 변경한다. 여기서, 변경이라 함은 초기 설정도 포함할 수 있다. 도난확인주기는 도난확인 리셋이 입력되어야 하는 주기로서, 마이크로프로세스(215)는 최근의 도난확인 리셋일자로부터 도난확인주기가 초과되면 릴레이(224)를 차단하여 태양전지모듈(11a 또는 11b)에서 발전된 전력이 컴바이너(13)로 제공되지 못하도록 한다. 마이크로프로세서(215)는 명령코드가 도난확인 리셋 코드이면 해당 일자를 메모리의 최근 도난확인 리셋일자로 저장한다. 이 발명에 따르면 도난된 태양전지모듈(11a 또는 11b)이 다른 태양광 발전소에 설치되어 도난확인주기가 지나도록 도난확인 리셋 코드가 입력되지 않으면 릴레이(224)를 차단하여 발전전력이 출력되지 않도록 함으로써, 도난된 태양전지모듈(11a 또는 11b)이 무용지물이 되도록 한다. If the command code is a theft confirmation period setting code, the microprocessor 215 changes the theft confirmation period stored in the memory 216 to a new theft confirmation period. Here, the change may also include an initial setting. Theft confirmation period is a period in which theft confirmation reset should be input, and the microprocess 215 cuts off the relay 224 when the theft confirmation period is exceeded from the latest theft confirmation reset date, thereby generating power from the solar cell module 11a or 11b. Prevents power from being supplied to the combiner 13. The microprocessor 215 stores the date as the latest theft reset reset date in the memory if the command code is the theft reset reset code. According to the present invention, if the stolen solar cell module 11a or 11b is installed in another solar power plant and the burglar confirmation reset code is not inputted so that the burglar confirmation cycle passes, the relay 224 is blocked so that the generated power is not output. To make the stolen solar cell module 11a or 11b useless.
마이크로프로세서(215)는 명령코드가 태양전지모듈 상태 확인 코드이면, 메모리(216)에 특정 주기동안 집적된 발전전압 센싱값과 발전전류 센싱값을 기준으로 태양전지모듈(11a 또는 11b)이 정상 상태인지, 성능저하 상태인지, 혹은 고장 상태인지를 판단하고, 그 판단된 태양전지모듈(11a 또는 11b)의 동작 상태를 표시기(217)에 표시한다. 또한, 마이크로프로세서(215)는 태양전지모듈(11a 또는 11b)의 동작 상태를 별도의 포트를 통해 외부로 출력할 수도 있다.If the command code is a solar cell module status check code, the microprocessor 215 is in a normal state based on the generation voltage sensing value and generation current sensing value integrated in the memory 216 for a specific period. It is determined whether it is a recognition state, a degraded state, or a failure state, and the operation state of the determined solar cell module 11a or 11b is displayed on the display 217. In addition, the microprocessor 215 may output the operation state of the solar cell module 11a or 11b to the outside through a separate port.
마이크로프로세서(215)는 릴레이(224)가 연결된 상태에서, 명령코드가 출력전력 차단 코드이면 릴레이(224)를 차단하여 태양전지모듈의 발전전력이 컴바이너(13)로 출력되지 않도록 한다. 마이크로프로세서(215)는 릴레이(224)가 차단된 상태에서, 명령코드가 출력전력 연결 코드이면 릴레이(224)를 연결하여 태양전지모듈의 발전전력이 컴바이너(13)로 출력되도록 한다.In the state in which the relay 224 is connected, the microprocessor 215 blocks the relay 224 if the command code is an output power cutoff code so that the generated power of the solar cell module is not output to the combiner 13. The microprocessor 215 connects the relay 224 when the command code is an output power connection code while the relay 224 is blocked, so that the generated power of the solar cell module is output to the combiner 13.
이 발명의 태양전지모듈용 정션박스는 태양전지모듈(11a or 11b)에서 출력된 전력을 컴바이너(13)에게 제공하는 일반적인 기능과 아울러, 태양전지모듈의 발전전력을 모니터링하고 태양전지모듈 상태를 표시하는 기능과, 관리자의 요청에 따라 태양전지모듈의 출력전력을 차단하거나 연결하는 기능과, 도난방지기능과, 국가간 밀무역 방지기능과, 화재발생방지기능을 포함한다. 각 기능을 구현하기 위한 마이크로프로세서의 동작에 대해 상세하게 설명한다.The junction box for a solar cell module of the present invention, together with the general function of providing the combiner 13 with the power output from the solar cell module 11a or 11b, monitors the generated power of the solar cell module and the state of the solar cell module. It includes a function to display, cut off or connect the output power of the solar cell module at the request of the administrator, anti-theft function, cross-border trade prevention function, fire prevention function. The operation of the microprocessor for implementing each function will be described in detail.
도 4는 이 발명에 따른 마이크로프로세서가 태양전지모듈의 발전전력을 모니터링하고 태양전지모듈 상태를 표시하는 방법을 도시한 도작 흐름도이다.FIG. 4 is a flowchart illustrating a method in which the microprocessor according to the present invention monitors the generated power of the solar cell module and displays the state of the solar cell module.
마이크로프로세서는 태양전지모듈의 발전전압과 발전전류를 감지한 발전전압 센싱값과 발전전류 센싱값을 입력받아 메모리에 기록하여 저장한다(S41). 특정 주기(예컨대, 매일, 매주, 매월 등)마다 해당 주기동안의 최대값과 최소값과 평균값이 산출되어 저장될 수도 있다.The microprocessor receives the generated voltage sensing value and the generated current sensing value which detect the generated voltage and generated current of the solar cell module and stores them in the memory (S41). The maximum, minimum, and average values for the period may be calculated and stored for each specific period (eg, daily, weekly, monthly, etc.).
마이크로프로세서는 태양전지모듈의 동작 상태가 정상 상태인지, 성능저하 상태인지, 혹은 고장 상태인지를 판단한다(S42). 이를 위해, 마이크로프로세서는 해당 정상적인 태양전지모듈의 월별 발전 최대값, 발전 최소값 및 발전 평균값 등을 저장하고 있는 것이 바람직하다.The microprocessor determines whether the operation state of the solar cell module is a normal state, a degraded state, or a fault state (S42). To this end, the microprocessor preferably stores the monthly maximum power generation value, the minimum power generation value and the average power generation value of the normal solar cell module.
마이크로프로세서는 신호처리수단을 통해 외부로부터 태양전지모듈 상태확인 코드가 입력되면(S43), 태양전지모듈의 동작 상태 정보를 출력한다(S44). 이때, 마이크로프로세서는 태양전지모듈의 동작 상태를 표시기(217)를 통해 표시할 수도 있고, 별도의 출력 포트를 통해 외부로 출력할 수도 있다.The microprocessor outputs the operation state information of the solar cell module when the solar cell module status check code is input from the outside through the signal processing means (S43). In this case, the microprocessor may display the operation state of the solar cell module through the indicator 217 or may be output to the outside through a separate output port.
또한, 마이크로프로세서는 광신호송신장치를 통해 관리자로부터 입력되는 별도의 명령에 따라 또는 주기적으로 태양전지모듈의 동작 상태 정보를 모니터링부에게 출력한다.In addition, the microprocessor outputs the operation state information of the solar cell module to the monitoring unit in accordance with a separate command input from the administrator through the optical signal transmission device or periodically.
도 5는 이 발명에 따른 마이크로프로세서가 관리자의 요청에 따라 태양전지모듈의 출력전력을 차단하거나 연결하는 방법을 도시한 동작 흐름도이다.FIG. 5 is a flowchart illustrating a method in which a microprocessor according to the present invention cuts or connects output power of a solar cell module at the request of an administrator.
마이크로프로세서는 릴레이가 연결되어 태양전지모듈의 발전전력이 컴바이너(13)로 출력되는 상태(S51)에서, 신호처리수단을 통해 외부로부터 출력전력 차단 코드가 입력되면(S52), 릴레이를 차단하여 태양전지모듈의 발전전력이 컴바이너(13)로 출력되지 못하도록 한다(S53). 한편, 릴레이가 차단된 상태에서 신호처리수단을 통해 외부로부터 출력전력 연결 코드가 입력되면(S54), 릴레이를 연결하여 태양전지모듈의 발전전력이 컴바이너로 출력되도록 한다(S55).When the microprocessor is connected to a relay and the generated power of the solar cell module is output to the combiner 13 (S51), when the output power blocking code is input from the outside through the signal processing means (S52), the relay is blocked. Thus, the generated power of the solar cell module is not output to the combiner 13 (S53). On the other hand, when the output power connection code is input from the outside through the signal processing means in the state that the relay is blocked (S54), by connecting the relay so that the generated power of the solar cell module is output to the combiner (S55).
도 6은 이 발명에 따른 마이크로프로세서가 태양전지모듈의 도난을 방지하기 위한 방법을 도시한 동작 흐름도이다.6 is an operational flowchart illustrating a method for preventing theft of a solar cell module by a microprocessor according to the present invention.
마이크로프로세서는 신호처리수단을 통해 외부로부터 도난확인주기 설정 코드가 입력되면, 도난확인주기(예컨대, 1개월, 3개월, 6개월 등)를 설정하여 메모리에 저장한다(S61). 마이크로프로세서는 신호처리수단을 통해 외부로부터 도난확인 리셋 코드가 입력되면(S62), 메모리에 저장된 도난확인 리셋 일자를 업데이트한다(S63). 이후, 메모리에 저장된 도난확인 리셋 일자로부터 도난확인주기가 초과되는지 판단하여(S64), 초과되면(S65), 릴레이를 차단하여 발전전력이 출력되지 못하도록 한다(S66). 즉, 마이크로프로세서는 도난확인 리셋 후 도난확인주기가 초과되기 전에 도난확인 리셋 코드가 입력되는지가 판단하며, 주기적으로 도난확인 리셋 코드가 입력되면 태양전지모듈의 발전전력이 정상적으로 출력되도록 하고, 도난확인주기가 초과되도록 도난확인 리셋 코드가 입력되지 않으면 태양전지모듈의 발전전력을 차단하여 해당 태양전지모듈이 무용지물이 되도록 한다. 이러한 이 발명에 따르면 도난된 태양전지모듈은 타 태양광 발전소에 설치되더라도 태양광 발전을 하지 못하여 쓸모없게 되므로, 도난을 미연에 방지할 수 있는 효과가 있다.When a theft confirmation period setting code is input from the outside through the signal processing means, the microprocessor sets a theft confirmation period (for example, one month, three months, six months, etc.) and stores it in the memory (S61). When the anti-theft reset code is input from the outside through the signal processing means (S62), the microprocessor updates the anti-theft reset date stored in the memory (S63). Thereafter, it is determined whether the theft confirmation period is exceeded from the theft confirmation reset date stored in the memory (S64), and when it is exceeded (S65), the relay is blocked to prevent the generated power from being output (S66). That is, the microprocessor determines whether the theft confirmation reset code is input after theft confirmation reset is exceeded and the theft confirmation period is exceeded.If the theft confirmation reset code is input periodically, the microprocessor generates output power of the solar cell module normally and confirms theft. If the theft confirmation reset code is not inputted so that the period is exceeded, the generated power of the solar cell module is cut off so that the solar cell module becomes useless. According to this invention, the stolen solar cell module does not use solar power even if it is installed in other solar power plants, it is not useful, there is an effect that can prevent theft in advance.
도 4 내지 도 6에서, 마이크로프로세서는 명령코드(태양전지모듈 상태확인코드, 출력전력 차단 코드, 출력전력 연결 코드, 도난확인주기 설정 코드, 도난확인 리셋 코드 등)와 함께 수신된 국가코드와 메모리에 저장된 국가코드를 비교하여, 두 국가코드가 다르면 릴레이를 차단하여 태양전지모듈의 발전전력이 컴바이너(13)로 제공되지 못하도록 한다. 마이크로프로세서는 명령코드와 함께 수신된 설치위치코드와 메모리에 저장된 설치위치코드를 비교하여, 두 설치위치코드가 다르면 릴레이를 차단하여 태양전지모듈의 발전전력이 컴바이너(13)로 제공되지 못하도록 한다.4 to 6, the microprocessor is a country code and memory received with a command code (solar module status check code, output power cutoff code, output power connection code, theft confirmation period setting code, theft confirmation reset code, etc.) Comparing the country codes stored in the, if the two country codes are different, the relay is blocked so that the generated power of the solar cell module is not provided to the combiner (13). The microprocessor compares the installation location code received with the command code with the installation location code stored in the memory. If the two installation location codes are different, the microprocessor blocks the relay so that the generated power of the solar cell module is not provided to the combiner 13. do.
도 7은 이 발명에 따른 마이크로프로세서가 화재를 방지하기 위한 방법을 도시한 동작 흐름도이다.7 is an operational flow diagram illustrating a method for preventing a fire by a microprocessor according to the present invention.
마이크로프로세서는 정션박스 내부의 현재온도를 감지한다(S71). 현재온도가 메모리에 저장된 임계온도를 초과하면(S72), 릴레이를 차단하여 발전전력이 출력되지 못하도록 한다(S73). 통상적으로 정션박스 내부에서는 바이패스 다이오드의 과열에 의해 화재가 발생할 위험이 있다. 이 발명에 따르면 정션박스 내부의 온도가 정상범위를 벗어나 임계온도를 초과하면 릴레이가 차단되기 때문에 바이패스 다이오드로 인가되는 전력을 차단하여 화재를 미연을 방지할 수 있다.The microprocessor senses the current temperature inside the junction box (S71). If the current temperature exceeds the threshold temperature stored in the memory (S72), the relay is cut off so that the generated power is not output (S73). In general, there is a risk of fire caused by overheating of the bypass diode inside the junction box. According to the present invention, when the temperature inside the junction box exceeds the threshold temperature and exceeds the threshold temperature, the relay is cut off, thereby preventing the fire from occurring by cutting off the power applied to the bypass diode.
상술한 실시예들에서, 태양전지모듈은 제1태양전지부와 제2태양전지부를 포함하고, 제1태양전지부의 발전전력이 릴레이에 연결되어 컴바이어로 전달되며, 제2태양전지부에는 데이터 광신호가 입사되도록 구성될 수 있다. 이때, 제1태양전지부는 태양과 대면하도록 구성되고 제2태양전지부는 제1태양전지부의 후면에 위치하도록 구성되는 것이 바람직하다.In the above-described embodiments, the solar cell module includes a first solar cell unit and a second solar cell unit, the power generation of the first solar cell unit is connected to the relay and is delivered to the combiner, and the second solar cell unit The data light signal may be configured to be incident. At this time, the first solar cell unit is configured to face the sun and the second solar cell unit is preferably configured to be located on the rear of the first solar cell unit.
이상에서 본 발명에 대한 기술사상을 첨부도면과 함께 서술하였지만, 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.The technical spirit of the present invention has been described above with reference to the accompanying drawings, but this is by way of example only for describing the best embodiment of the present invention and not for limiting the present invention. In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

Claims (27)

  1. 컴바이너와 인버터와 모니터링부를 포함하는 태양광 발전시스템에서, 광신호송신장치로부터 데이터 광신호가 입사되어 발전되는 태양전지모듈에 연결되며, 상기 데이터 광신호에는 명령코드가 포함된 데이터가 실리는 태양전지모듈용 정션박스에 있어서,In a photovoltaic power generation system including a combiner, an inverter, and a monitoring unit, a solar cell module in which data light signals are incident and generated from an optical signal transmitter is connected to the solar cell module, wherein the data light signals carry data including a command code. In the junction box for the module,
    상기 태양전지모듈의 발전전력 중 직류성분을 상기 컴바이너로 전달 또는 차단하는 스위칭수단과,Switching means for transmitting or blocking the DC component of the power generation of the solar cell module to the combiner;
    상기 태양전지모듈의 발전전력 중 상기 데이터 광신호에 대응하는 교류성분을 신호처리하여 상기 광신호송신장치로부터 수신된 데이터를 추출하는 신호처리수단과,Signal processing means for extracting data received from the optical signal transmission apparatus by signal-processing an AC component corresponding to the data optical signal among the generated power of the solar cell module;
    상기 신호처리수단에서 추출된 상기 데이터에 포함된 명령코드에 따라 상기 스위칭수단을 스위칭하는 마이크로프로세서를 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.Junction box for a solar cell module, characterized in that it comprises a microprocessor for switching the switching means in accordance with the command code included in the data extracted from the signal processing means.
  2. 제 1 항에 있어서, 상기 마이크로프로세서는 도난확인주기를 저장하고, 상기 데이터에 포함된 명령코드가 도난확인 리셋 입력이면 도난확인 리셋 일자를 업데이트하며, 상기 도난확인 리셋 일자로부터 상기 도난확인주기가 초과되면 상기 스위칭수단을 차단하는 것을 특징으로 하는 태양전지모듈용 정션박스.2. The method of claim 1, wherein the microprocessor stores a theft confirmation period, and if the command code included in the data is a theft confirmation reset input, updates the theft confirmation reset date and exceeds the theft confirmation period from the theft confirmation reset date. Junction box for a solar cell module, characterized in that for blocking the switching means.
  3. 제 1 항에 있어서, 상기 마이크로프로세서는 상기 태양전지모듈에 부여된 국가코드를 저장하고, 상기 데이터에 포함된 국가코드와 상기 기저장된 국가코드가 다르면 상기 스위칭수단을 차단하는 것을 특징으로 하는 태양전지모듈용 정션박스.The solar cell of claim 1, wherein the microprocessor stores a country code assigned to the solar cell module, and cuts off the switching means if the country code included in the data is different from the previously stored country code. Junction box for the module.
  4. 제 1 항에 있어서, 상기 마이크로프로세서는 상기 태양전지모듈에 부여된 설치위치코드를 저장하고, 상기 데이터에 포함된 설치위치코드와 상기 기저장된 설치위치코드가 다르면 상기 스위칭수단을 차단하는 것을 특징으로 하는 태양전지모듈용 정션박스.The method of claim 1, wherein the microprocessor stores the installation location code assigned to the solar cell module, and if the installation location code and the pre-stored installation location code included in the data is different from the switching means characterized in that Junction box for solar cell module.
  5. 제 1 항에 있어서, 상기 스위칭수단을 통해 상기 컴바이너로 제공되는 상기 태양전지모듈의 발전전류와 발전전압을 감지하여 상기 마이크로프로세서에게 제공하는 전압전류감지부를 더 포함하고,The apparatus of claim 1, further comprising: a voltage current sensing unit configured to sense a generated current and a generated voltage of the solar cell module provided to the combiner through the switching means and provide the generated voltage to the microprocessor.
    상기 마이크로프로세서는 상기 전압전류감지부로부터 발전전류 센싱값과 발전전압 센싱값을 입력받아 메모리에 기록하고, 상기 메모리에 기록된 상기 발전전류 센싱값과 발전전압 센싱값을 이용하여 상기 태양전지모듈의 동작 상태를 판단하며, 상기 데이터에 포함된 명령코드에 따라 상기 태양전지모듈의 동작 상태를 출력하는 것을 특징으로 하는 태양전지모듈용 정션박스.The microprocessor receives a generation current sensing value and a generation voltage sensing value from the voltage current sensing unit, records the generated current sensing value and the generation voltage sensing value in a memory, and uses the generation current sensing value and the generation voltage sensing value recorded in the memory of the solar cell module. Judgment box for the solar cell module, characterized in that for outputting the operating state of the solar cell module according to the command code included in the data.
  6. 제 5 항에 있어서, 상기 마이크로프로세서의 제어를 받아 상기 태양전지모듈의 동작 상태를 표시하는 표시기를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.The junction box of claim 5, further comprising an indicator configured to display an operating state of the solar cell module under the control of the microprocessor.
  7. 제 5 항에 있어서, 상기 마이크로프로세서는 태양전지모듈의 동작 상태 정보를 상기 모니터링부에게 출력한 것을 특징으로 하는 태양전지모듈용 정션박스.The junction box of claim 5, wherein the microprocessor outputs operation state information of the solar cell module to the monitoring unit.
  8. 제 1 항에 있어서, 현재온도를 감지하여 상기 마이크로프로세서에게 제공하는 온도센서를 더 포함하고, 상기 마이크로프로세서는 임계온도를 저장하며 상기 현재온도가 상기 임계온도를 초과하면 상기 스위칭수단을 차단하는 것을 특징으로 하는 태양전지모듈용 정션박스.The method of claim 1, further comprising a temperature sensor for sensing a current temperature and providing the microprocessor to the microprocessor, wherein the microprocessor stores a threshold temperature and shuts off the switching means when the current temperature exceeds the threshold temperature. Junction box for solar cell module characterized in that.
  9. 컴바이너와 인버터와 모니터링부를 포함하는 태양광 발전시스템에서, 광신호송신장치로부터 데이터 광신호가 입사되어 발전되는 태양전지모듈에 연결되며, 상기 데이터 광신호에는 명령코드가 포함된 데이터가 실리는 태양전지모듈용 정션박스에 있어서,In a photovoltaic power generation system including a combiner, an inverter, and a monitoring unit, a solar cell module in which data light signals are incident and generated from an optical signal transmitter is connected to the solar cell module, wherein the data light signals carry data including a command code. In the junction box for the module,
    상기 태양전지모듈의 출력 중 상기 데이터 광신호에 대응하는 교류성분을 신호처리하여 상기 광신호송신장치로부터 수신된 데이터를 추출하는 신호처리수단과,Signal processing means for extracting data received from the optical signal transmitting apparatus by signal processing an AC component corresponding to the data optical signal among the outputs of the solar cell module;
    상기 태양전지모듈의 출력 중 상기 컴바이너로 전달되는 상기 태양전지모듈의 발전전류와 발전전압을 감지하는 전압전류감지부와,A voltage current sensing unit configured to detect a generated current and a generated voltage of the solar cell module delivered to the combiner among the outputs of the solar cell module;
    상기 전압전류감지부로부터 발전전류 센싱값과 발전전압 센싱값을 입력받아 메모리에 기록하고, 상기 메모리에 기록된 상기 발전전류 센싱값과 발전전압 센싱값을 이용하여 상기 태양전지모듈의 동작 상태를 판단하며, 상기 신호처리수단에서 추출된 상기 데이터에 포함된 명령코드에 따라 상기 태양전지모듈의 동작 상태를 출력하는 마이크로프로세서를 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.The power generation current sensing value and the power generation voltage sensing value are inputted from the voltage current sensing unit and recorded in a memory, and the operation state of the solar cell module is determined using the power generation current sensing value and the power generation voltage sensing value recorded in the memory. And a microprocessor for outputting an operating state of the solar cell module according to the command code included in the data extracted from the signal processing means.
  10. 제 9 항에 있어서, 상기 마이크로프로세서의 제어를 받아 상기 태양전지모듈의 동작 상태를 표시하는 표시기를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.10. The junction box of claim 9, further comprising an indicator for displaying an operating state of the solar cell module under control of the microprocessor.
  11. 제 9 항에 있어서, 상기 마이크로프로세서는 태양전지모듈의 동작 상태 정보를 상기 모니터링부에게 출력한 것을 특징으로 하는 태양전지모듈용 정션박스.The junction box of claim 9, wherein the microprocessor outputs operation state information of the solar cell module to the monitoring unit.
  12. 제 1 항 또는 제 9 항에 있어서, 상기 신호처리수단은 상기 태양전지모듈의 출력 중 기설정된 주파수대역을 추출하는 대역통과필터와, 상기 대역통과필터를 통과한 직류성분을 제거하는 블록킹커패시터와, 상기 기설정된 주파수대역의 출력신호를 복조하는 복조기와, 상기 복조기에서 복조된 신호에 포함된 상기 데이터를 추출하여 상기 마이크로프로세서에게 제공하는 디코더를 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.The method of claim 1 or 9, wherein the signal processing means is a band pass filter for extracting a predetermined frequency band of the output of the solar cell module, a blocking capacitor for removing the DC component passing through the band pass filter; And a demodulator for demodulating the output signal of the predetermined frequency band, and a decoder for extracting the data included in the demodulated signal from the demodulator and providing the data to the microprocessor.
  13. 제 12 항에 있어서, 상기 신호처리수단은 상기 대역통과필터를 통과한 주파수대역의 신호를 증폭하는 증폭기를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.13. The junction box of claim 12, wherein the signal processing means further comprises an amplifier for amplifying a signal in a frequency band passing through the bandpass filter.
  14. 제 1 항 또는 제 9 항에 있어서, 상기 태양전지모듈의 발전전력으로부터 구동전력을 생성하여 상기 신호처리수단과 상기 마이크로프로세서에게 제공하는 구동전력공급부를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.10. The junction box of claim 1 or 9, further comprising a driving power supply unit generating driving power from the generated power of the solar cell module and providing the driving power to the signal processor and the microprocessor. .
  15. 제 14 항에 있어서, 상기 구동전력공급부는 상기 구동전력을 충전하였다가 상기 신호처리수단과 상기 마이크로프로세서에게 공급하는 충전회로를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.15. The junction box of claim 14, wherein the driving power supply unit further comprises a charging circuit for charging the driving power and supplying the driving power to the signal processor and the microprocessor.
  16. 제 9 항에 있어서, 현재온도를 감지하여 상기 마이크로프로세서에게 제공하는 온도센서를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스.10. The junction box of claim 9, further comprising a temperature sensor for sensing a current temperature and providing the microprocessor to the microprocessor.
  17. 컴바이너와 인버터와 모니터링부를 포함하는 태양광 발전시스템에서, 광신호송신장치로부터 데이터 광신호가 입사되어 발전되는 태양전지모듈에 연결되고 상기 태양전지모듈의 발전전력을 상기 컴바이너로 전달하며, 상기 데이터 광신호에는 명령코드가 포함된 데이터가 실리는 태양전지모듈용 정션박스의 구동방법에 있어서,In a photovoltaic power generation system including a combiner, an inverter, and a monitoring unit, a data optical signal is inputted from an optical signal transmission device to a solar cell module that is generated and transfers the generated power of the solar cell module to the combiner. In a method of driving a junction box for a solar cell module in which data including a command code is carried on a data optical signal,
    상기 태양전지모듈의 출력 중 상기 데이터 광신호에 대응하는 교류성분을 신호처리하여 상기 광신호송신장치로부터 수신된 데이터를 추출하는 제1단계와,A first step of extracting data received from the optical signal transmitting apparatus by signal processing an AC component corresponding to the data optical signal among the outputs of the solar cell module;
    상기 제1단계에서 추출된 상기 데이터에 포함된 상기 명령코드에 따라 상기 태양전지모듈의 발전전력을 상기 컴바이너로 전달하거나 전달되지 못하도록 차단하는 제2단계를 포함한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.And a second step of blocking the transfer of the generated power of the solar cell module to or from the combiner according to the command code included in the data extracted in the first step. How to operate junction box.
  18. 제 17 항에 있어서, 상기 제2단계는 도난확인주기를 저장하고, 상기 데이터에 포함된 명령코드가 도난확인 리셋 입력이면 도난확인 리셋 일자를 업데이트하며, 상기 도난확인 리셋 일자로부터 상기 도난확인주기가 초과되면 상기 태양전지모듈의 발전전력이 상기 컴바이너로 전달되지 못하도록 차단하는 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.18. The method of claim 17, wherein the second step stores a theft confirmation period, and if the command code included in the data is a theft confirmation reset input, theft confirmation reset date is updated, and the theft confirmation period is set from the theft confirmation reset date. If exceeded, the method of driving a junction box for a solar cell module, characterized in that to block the power generation of the solar cell module is not transmitted to the combiner.
  19. 제 17 항에 있어서, 상기 제2단계는 상기 태양전지모듈에 부여된 국가코드를 저장하고, 상기 데이터에 포함된 국가코드와 상기 기저장된 국가코드가 다르면 상기 태양전지모듈의 발전전력이 상기 컴바이너로 전달되지 못하도록 차단하는 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.18. The method of claim 17, wherein the second step stores the country code assigned to the solar cell module, and if the country code included in the data is different from the previously stored country code, the generation power of the solar cell module is combined. Method of driving a junction box for a solar cell module, characterized in that blocked to be transmitted to you.
  20. 제 17 항에 있어서, 상기 제2단계는 상기 태양전지모듈에 부여된 설치위치코드를 저장하고, 상기 데이터에 포함된 설치위치코드와 상기 기저장된 설치위치코드가 다르면 상기 태양전지모듈의 발전전력이 상기 컴바이너로 전달되지 못하도록 차단하는 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.18. The method of claim 17, wherein the second step stores the installation location code assigned to the solar cell module, and if the installation location code included in the data and the previously stored installation location code is different from the generated power generation of the solar cell module Method for driving a junction box for a solar cell module, characterized in that the block to prevent delivery to the combiner.
  21. 제 17 항에 있어서, 상기 컴바이너로 제공되는 상기 태양전지모듈의 발전전류와 발전전압을 감지하는 제3단계와,18. The method of claim 17, further comprising: detecting a generated current and a generated voltage of the solar cell module provided to the combiner;
    상기 제3단계에서 감지된 발전전류 센싱값과 발전전압 센싱값을 메모리에 기록하고, 상기 메모리에 기록된 상기 발전전류 센싱값과 발전전압 센싱값을 이용하여 상기 태양전지모듈의 동작 상태를 판단하며, 상기 데이터에 포함된 명령코드에 따라 상기 태양전지모듈의 동작 상태를 출력하는 제4단계를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.The generation current sensing value and the generation voltage sensing value detected in the third step are recorded in a memory, and the operation state of the solar cell module is determined using the generation current sensing value and the generation voltage sensing value recorded in the memory. And a fourth step of outputting an operating state of the solar cell module according to the command code included in the data.
  22. 제 21 항에 있어서, 상기 태양전지모듈의 동작 상태 정보를 상기 모니터링부에게 출력한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.22. The method of claim 21, wherein the operation state information of the solar cell module is output to the monitoring unit.
  23. 제 17 항에 있어서, 현재온도를 감지하는 제5단계와,18. The method of claim 17, further comprising: detecting a current temperature;
    임계온도를 저장하며 상기 현재온도가 상기 임계온도를 초과하면 상기 태양전지모듈의 발전전력이 상기 컴바이너로 전달되지 못하도록 차단하는 제6단계를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.And a sixth step of storing a threshold temperature and blocking the generation power of the solar cell module from being transmitted to the combiner when the current temperature exceeds the threshold temperature. Driving method.
  24. 컴바이너와 인버터와 모니터링부를 포함하는 태양광 발전시스템에서, 광신호송신장치로부터 데이터 광신호가 입사되어 발전되는 태양전지모듈에 연결되고 상기 태양전지모듈의 발전전력을 상기 컴바이너로 전달하며, 상기 데이터 광신호에는 명령코드가 포함된 데이터가 실리는 태양전지모듈용 정션박스의 구동방법에 있어서,In a photovoltaic power generation system including a combiner, an inverter, and a monitoring unit, a data optical signal is inputted from an optical signal transmission device to a solar cell module that is generated and transfers the generated power of the solar cell module to the combiner. In a method of driving a junction box for a solar cell module in which data including a command code is carried on a data optical signal,
    상기 태양전지모듈의 출력 중 상기 데이터 광신호에 대응하는 교류성분을 신호처리하여 상기 광신호송신장치로부터 수신된 데이터를 추출하는 제1단계와,A first step of extracting data received from the optical signal transmitting apparatus by signal processing an AC component corresponding to the data optical signal among the outputs of the solar cell module;
    상기 컴바이너로 전달되는 상기 태양전지모듈의 발전전류와 발전전압을 감지하는 제2단계와,A second step of detecting a generation current and a generation voltage of the solar cell module delivered to the combiner;
    상기 제2단계에서 감지된 발전전류 센싱값과 발전전압 센싱값을 입력받아 메모리에 기록하고, 상기 메모리에 기록된 상기 발전전류 센싱값과 발전전압 센싱값을 이용하여 상기 태양전지모듈의 동작 상태를 판단하며, 상기 제1단계에서 추출된 상기 데이터에 포함된 명령코드에 따라 상기 태양전지모듈의 동작 상태를 출력하는 제3단계를 포함한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.The generation current sensing value and the generation voltage sensing value detected in the second step are received and recorded in a memory, and the operation state of the solar cell module is determined using the generation current sensing value and the generation voltage sensing value recorded in the memory. And determining, and outputting an operating state of the solar cell module according to the command code included in the data extracted in the first step.
  25. 제 23 항에 있어서, 상기 태양전지모듈의 동작 상태 정보를 상기 모니터링부에게 출력한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.24. The method of claim 23, wherein the operation state information of the solar cell module is output to the monitoring unit.
  26. 제 17 항 또는 제 24 항에 있어서, 상기 제1단계는 상기 태양전지모듈의 출력 중 기설정된 주파수대역을 추출하는 대역통과필터링단계와, 상기 대역통과필터링단계를 통과한 직류성분을 제거하는 블록킹단계와, 상기 기설정된 주파수대역의 출력신호를 복조하는 복조단계와, 상기 복조단계에서 복조된 신호에 포함된 상기 데이터를 추출하는 디코딩단계를 포함한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.25. The method of claim 17 or 24, wherein the first step includes a band pass filtering step of extracting a predetermined frequency band from the output of the solar cell module, and a blocking step of removing a DC component passing through the band pass filtering step. And a demodulation step of demodulating the output signal of the predetermined frequency band, and a decoding step of extracting the data included in the signal demodulated in the demodulation step.
  27. 제 26 항에 있어서, 상기 제1단계는 상기 대역통과필터링단계를 통과한 주파수대역의 신호를 증폭하는 증폭단계를 더 포함한 것을 특징으로 하는 태양전지모듈용 정션박스의 구동방법.27. The method of claim 26, wherein the first step further comprises an amplifying step of amplifying a signal of a frequency band passing through the bandpass filtering step.
PCT/KR2014/001944 2013-03-13 2014-03-10 Junction box for solar cell module and driving method therefor WO2014142486A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130026836 2013-03-13
KR10-2013-0026836 2013-03-13
KR10-2013-0032732 2013-03-27
KR20130032732A KR101378573B1 (en) 2013-03-13 2013-03-27 Junction box for a solar cell module and driving method thereof

Publications (1)

Publication Number Publication Date
WO2014142486A1 true WO2014142486A1 (en) 2014-09-18

Family

ID=49455696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001944 WO2014142486A1 (en) 2013-03-13 2014-03-10 Junction box for solar cell module and driving method therefor

Country Status (2)

Country Link
KR (2) KR101378573B1 (en)
WO (1) WO2014142486A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411648B1 (en) * 2013-12-18 2014-06-25 (주)대연씨앤아이 Monitoring and Diagnostic Device For Solar Module and Driving Method Thereof
KR101643962B1 (en) * 2015-01-19 2016-08-10 한국에너지기술연구원 Solar cell apparatus having function of whole or part of solar cell module fault detection apparatus with thermo detector and the method thereof
KR101598205B1 (en) * 2015-02-13 2016-03-02 한국에너지기술연구원 Junction box having function of detecting inner heat for monitoring solar cell module and monitoring apparatus for monitoring solar cell module with said junction box and the monitoring method thereof
KR101772541B1 (en) * 2015-10-22 2017-09-12 엘지전자 주식회사 Power supply device, and power supply system including the same
CN106059483A (en) * 2016-06-28 2016-10-26 兰建龙 Photovoltaic connector, photovoltaic system and control method for photovoltaic system
KR101924478B1 (en) * 2017-10-12 2018-12-03 (주)솔루윈스 Junction box for a solar cell module contains the electric power state measurement and display functions and id setting method
KR102169185B1 (en) 2020-02-18 2020-10-23 주식회사 동남기술단 Auto fire control system for solar energy generation
KR102490234B1 (en) * 2021-09-29 2023-01-20 한국철도공사 Sola-cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090723A (en) * 2008-02-22 2009-08-26 (주)탑인프라디벨로퍼 Junction box for solar power system having monitoring and alarming function
JP2010258332A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Solar power generation system and solar cell module
KR20100136091A (en) * 2009-06-18 2010-12-28 다담마이크로 주식회사 Junction box of solar photovoltaic
JP2012256184A (en) * 2011-06-08 2012-12-27 Hitachi Cable Ltd Theft monitoring device for solar cell module and theft monitoring system using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992385B1 (en) 2010-08-09 2010-11-05 주식회사 이씨오 Antitheft system and method for a lending goods using an antitheft code
KR101008707B1 (en) 2010-08-23 2011-01-17 한빛디엔에스 주식회사 The steal prevention and monitoring system using rfid and zigbee and gps and the method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090723A (en) * 2008-02-22 2009-08-26 (주)탑인프라디벨로퍼 Junction box for solar power system having monitoring and alarming function
JP2010258332A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Solar power generation system and solar cell module
KR20100136091A (en) * 2009-06-18 2010-12-28 다담마이크로 주식회사 Junction box of solar photovoltaic
JP2012256184A (en) * 2011-06-08 2012-12-27 Hitachi Cable Ltd Theft monitoring device for solar cell module and theft monitoring system using the same

Also Published As

Publication number Publication date
KR101378573B1 (en) 2014-04-02
KR101306817B1 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
WO2014142486A1 (en) Junction box for solar cell module and driving method therefor
CN202513670U (en) Auxiliary control system of intelligent transformer substation
KR101106724B1 (en) Smart pannel board with blackbox and emergency-battery
KR101086005B1 (en) Photovoltaic monitoring system
WO2014129817A1 (en) Current transformer system with sensor ct and generator ct separately arranged in parallel in electric power line, and integrated system for controlling same in wireless communications network
KR102302262B1 (en) System for intelligent solar monitoring utilizing fire protection function and method thereof
KR101306772B1 (en) A protection system of solar power generation facility
CN202353876U (en) Integrated-type safe evacuation booting system
CN105868940A (en) Grid fault information issuing and processing system
CN104200587A (en) System and method for detecting outdoor wireless intrusion
WO2014200207A1 (en) Junction box for solar cell module and method for driving same
KR101529563B1 (en) Power Equipment Monitoring system using Mesh Network-Smart Sensor.
WO2016114613A1 (en) Power supply state automatic recording system, and recording method using same
CN102759941B (en) Moisture-proof device for electrical equipment
CN201138445Y (en) Multifunctional security monitoring apparatus
US20150280642A1 (en) Solar photovoltaic module monitoring and control system
CN110211339A (en) A kind of intelligent prewarning monitoring system and method for taking precautions against natural calamities based on cloud platform
CN102185385A (en) System and method thereof for detecting physical on/off state of power protection circuit
CN105762938B (en) A kind of distributed photovoltaic monitoring system of distribution network and its control method
CN211123730U (en) Intelligent control system for tunnel
KR20170103392A (en) thunderbolt identification breaker system
KR101652491B1 (en) multi ground detector for AC and DC
CN206610151U (en) Fire-fighting equipment power supply smart comprehensive monitoring system based on bus structures
CN213892237U (en) Electric bicycle sharing fills trades electric installation
CN205911831U (en) Monitored control system of unmanned on duty electric substation based on optic fibre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764041

Country of ref document: EP

Kind code of ref document: A1