WO2014142213A1 - Vehicle provided with belt-type electronically controlled continuously variable transmission - Google Patents

Vehicle provided with belt-type electronically controlled continuously variable transmission Download PDF

Info

Publication number
WO2014142213A1
WO2014142213A1 PCT/JP2014/056586 JP2014056586W WO2014142213A1 WO 2014142213 A1 WO2014142213 A1 WO 2014142213A1 JP 2014056586 W JP2014056586 W JP 2014056586W WO 2014142213 A1 WO2014142213 A1 WO 2014142213A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
engine
target
continuously variable
variable transmission
Prior art date
Application number
PCT/JP2014/056586
Other languages
French (fr)
Japanese (ja)
Inventor
和利 石岡
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2014142213A1 publication Critical patent/WO2014142213A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/24Inputs being a function of torque or torque demand dependent on the throttle opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • F16H2059/704Monitoring gear ratio in CVT's
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed

Definitions

  • the present invention relates to a vehicle equipped with a belt-type electronically controlled continuously variable transmission.
  • a belt type continuously variable transmission In a light-powered vehicle such as a saddle-ride type vehicle represented by a motorcycle, a belt type continuously variable transmission is widely used.
  • a belt-type electronically controlled continuously variable transmission that electronically controls the gear ratio of such a belt-type continuously variable transmission using an actuator is also in practical use.
  • FIG. 1 is a schematic diagram showing a configuration example of a vehicle 200 provided with a belt-type electronically controlled continuously variable transmission 1.
  • the belt-type electronically controlled continuously variable transmission 1 has a structure in which a V-belt 12 is wound between a primary pulley 10 and a secondary pulley 11, and a movable sheave of the primary pulley 10 (hereinafter referred to as a primary sheave 13).
  • the position in the axial direction is controlled by the actuator 14.
  • the movable sheave of the secondary pulley 11 (hereinafter referred to as the secondary sheave 15) is urged in the direction of sandwiching the V-belt 12 by an elastic body 16 such as a spring.
  • the primary pulley 10 is connected to the input shaft 3 that is the output shaft of the engine 2, and the secondary pulley 11 is connected to the output shaft 4, and transmits power to the drive wheels 6 via the centrifugal clutch 5.
  • a throttle valve 21 is provided in the intake pipe 20 connected to the engine 2.
  • an ECU (Electric Control Unit) 7 which is a controller for electronically controlling the operation of the entire vehicle 200 is provided.
  • the ECU 7 detects a throttle opening sensor 70 that detects the opening of the throttle valve 21, an input rotational speed sensor 71 that detects the rotational speed of the input shaft 3 that is the rotational speed of the engine 2, and a rotational speed of the output shaft 4. Detection results from the output speed sensor 72 and the vehicle speed sensor 73 that detects the vehicle speed of the vehicle 200 are input.
  • the ECU 7 controls the position of the primary sheave 13 by driving the actuator 14.
  • the gear ratio of the belt-type electronically controlled continuously variable transmission 1 is controlled by controlling the position of the primary sheave 13.
  • the position of the primary sheave 13 is not necessarily limited.
  • the speed ratio of the belt-type electronically controlled continuously variable transmission 1 does not correspond to 1: 1, and there is a problem that the speed ratio cannot be accurately controlled. Therefore, as shown in FIG. 2, a plurality of curves showing the relationship between the target gear ratio and the position of the primary sheave 13 are prepared, and the throttle is shown as indicating the load of the belt-type electronically controlled continuously variable transmission 1. Attempts have been made to correct the position of the primary sheave 13 by selecting a curve corresponding to the opening ⁇ .
  • the control of the belt-type electronically controlled continuously variable transmission 1 is advanced. For example, kickdown control that temporarily increases the gear ratio, low fuel consumption mode control that selects a gear ratio suitable for low fuel consumption, and high driving force are obtained.
  • kickdown control that temporarily increases the gear ratio
  • low fuel consumption mode control that selects a gear ratio suitable for low fuel consumption
  • high driving force are obtained.
  • the throttle opening does not necessarily reflect the load of the belt-type electronically controlled continuously variable transmission 1, and the gear ratio is There is a risk that it cannot be controlled accurately.
  • the present invention has been made in view of such a viewpoint, and an object thereof is to accurately control a gear ratio in a vehicle including a belt-type electronically controlled continuously variable transmission.
  • a belt-type electronically controlled continuously variable transmission having an actuator for controlling the position in the axial direction, an engine, and the primary sheave according to an output of the engine and a target speed ratio of the belt-type electronically controlled continuously variable transmission
  • a controller for controlling the actuator by obtaining a target position in the axial direction of the vehicle.
  • the controller obtains the output of the engine based on the target throttle opening or throttle opening and the target engine speed or engine speed.
  • the target position in the axial direction of the primary sheave is after correction by multiplying the target gear ratio by a correction coefficient obtained from the belt tension determined based on the output of the engine.
  • the tension of the belt includes the output of the engine, the inertia torque of the belt type electronically controlled continuously variable transmission, the loss of the belt type electronically controlled continuously variable transmission, and the inertial force of the belt.
  • the gear ratio can be accurately controlled in the vehicle equipped with the belt-type electronically controlled continuously variable transmission.
  • any one of the aspects (2) to (4) of the present invention it is possible to correctly estimate the load of the belt type electronically controlled continuously variable transmission.
  • 1 is a side view of a vehicle according to an embodiment of the present invention. It is a mimetic diagram showing an example of composition of vehicles concerning an embodiment of the present invention. It is a control block diagram showing a part of vehicle control realized by an ECU. It is a figure which shows the example of an engine speed map. It is a figure which shows the example of an engine torque map. It is the control block diagram which showed another part of control of the vehicle implement
  • FIG. 3 is a side view of the vehicle 100 according to the embodiment of the present invention.
  • the vehicle 100 shown here is a motorcycle, this is shown as an example of the vehicle 100, and the form will not be specifically limited if it is a vehicle provided with the belt-type electronically controlled continuously variable transmission 1.
  • the belt type continuously variable transmission including the presence or absence of electronic control is often provided in a light-powered vehicle, and the light-powered vehicle is often a straddle-type vehicle. It can be said that it is suitable for.
  • the saddle-ride type vehicle refers to a motor vehicle having a saddle on which an occupant is seated. Is included.
  • the belt-type electronically controlled continuously variable transmission refers to a belt-type continuously variable transmission that can electronically control the gear ratio using an actuator.
  • the vehicle 100 travels by transmitting the rotational power generated by the engine 2 to the driving wheels 6 as rear wheels via the belt-type electronically controlled continuously variable transmission 1.
  • a clutch and a final speed reduction mechanism (not shown) are arranged between the belt-type electronically controlled continuously variable transmission 1 and the drive wheels 6.
  • the output generated by the engine 2 is detected by an accelerator sensor using an accelerator grip rotation operation amount (not shown in FIG. 1) as an accelerator operation amount, and the ECU 7 is provided in the intake pipe of the engine 2 based on the accelerator operation amount and the state of the vehicle 100. It is controlled by adjusting the opening of the electronically controlled throttle valve.
  • the engine 2 is a general reciprocating engine, and its type, for example, 2 strokes or 4 strokes, and the number of cylinders are not particularly limited.
  • the ECU 7 is a controller that controls the operation of the entire vehicle 100, and is a general computer including a CPU (Central Processing Unit), a memory, a so-called microcontroller, a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array). PLD (Programmable Logic Device) or other electronic circuits may be used.
  • the ECU 7 sends commands to the actuators of the electronically controlled throttle valve and the belt type electronically controlled continuously variable transmission 1 described above, and receives signals from various sensors described later.
  • the electronic board on which the ECU 7 is mounted is disposed at an appropriate position of the vehicle 100, in the illustrated example, below the passenger seat.
  • FIG. 4 is a schematic diagram showing a configuration example of the vehicle 100 according to the embodiment of the present invention. Since the configuration of vehicle 100 is substantially the same as the configuration shown in FIG. 1, members that are common to each other are assigned the same reference numerals, and redundant descriptions thereof are omitted.
  • the vehicle 100 is provided with an accelerator sensor 74 that detects an accelerator operation amount, and the signal is input to the ECU 7.
  • the intake pipe 20 of the engine 2 is driven by a throttle actuator 22 and is an electronic device that adjusts its opening.
  • a controlled throttle valve 23 is provided.
  • FIG. 5 is a control block diagram showing a part of the control of the vehicle 100 realized by the ECU 7.
  • control is virtually realized by software executed on the ECU 7, and each block shown in the figure does not physically exist. It can be realized by a typical electric circuit.
  • FIG. 4 will be referred to as appropriate.
  • the control shown in FIG. 5 is based on the target throttle opening and the target speed ratio, which are command values (or converted values) to the throttle actuator 22 and the actuator 14 of the belt-type electronically controlled continuously variable transmission 1 from the accelerator operation amount and the vehicle speed. Is derived.
  • the target throttle opening is the opening of the electronically controlled throttle valve 23 to be realized by the control
  • the target speed ratio is the speed ratio of the belt-type electronically controlled continuously variable transmission 1 to be realized by the control. is there.
  • the ECU 7 includes a reference rotation speed calculation unit 7a, a rotation speed correction unit 7b, and a target gear ratio calculation unit 7c shown in FIG.
  • the reference rotational speed calculation unit 7a calculates the reference engine rotational speed based on the accelerator operation amount and the vehicle speed detected by the accelerator sensor 74.
  • the reference engine speed is a target value of the speed of the engine 2 which is uniquely converted from information on the vehicle speed and other information, here information on the accelerator operation amount, that is, the speed of the input shaft 3. In this case, the correction is not made by the rotation speed correction unit 7b described later.
  • the information related to the accelerator operation amount refers to information corresponding to the accelerator operation amount on a one-to-one basis by appropriate conversion
  • the information related to the vehicle speed refers to the transmission (in this embodiment, the belt-type electronically controlled continuously variable transmission 1).
  • the members positioned on the downstream side of the transmission include the output shaft of the clutch 5, an arbitrary gear included in the final reduction mechanism, the drive wheels 6, the axles thereof, and the like. The rotation speed of these members is converted into a vehicle speed on a one-to-one basis by performing appropriate conversion.
  • the rotation speed of the drive wheel 6 is converted into the vehicle speed by multiplying the circumference of the drive wheel 6, and thus corresponds to information on the vehicle speed.
  • the rotation speed of the output shaft 4 and the secondary pulley 11 of the belt-type electronically controlled continuously variable transmission 1 may be handled according to the information on the vehicle speed only when the downstream centrifugal clutch 5 is connected.
  • the accelerator operation amount and the vehicle speed are used as the information about the accelerator operation amount and the information about the vehicle speed, respectively, but other information may be used.
  • the ECU 7 includes an information storage device such as a semiconductor memory, and the information storage device stores a map (hereinafter referred to as an engine speed map) relating the accelerator operation amount, the vehicle speed, and the engine speed.
  • the reference rotation speed calculation unit 7a refers to the engine rotation speed map, obtains the engine rotation speed according to the accelerator operation amount and the vehicle speed, and sets it as the reference engine rotation speed.
  • FIG. 6 is a diagram showing an example of an engine speed map.
  • the ECU 7 stores data obtained by digitizing the map.
  • the horizontal axis represents the vehicle speed
  • the vertical axis represents the engine speed
  • curves Ac1 to Ac3 that are curves corresponding to the accelerator operation amount are illustrated.
  • the curves Ac1 to Ac3 are associated with specific accelerator operation amounts. For example, in a specific state where the accelerator operation amount is large, the curve Ac1 is selected and the specific state where the accelerator operation amount is small. Then, the curve Ac3 is selected, and the curve Ac2 is selected in the middle. Actually, a larger number of curves than those shown in the figure are prepared or an interpolation operation is performed in order to cope with a finer change in accelerator operation amount.
  • the engine speed is determined according to the vehicle speed at that time.
  • the curve selected when the accelerator operation amount is small is different (the lower curve is selected in the figure), and a smaller engine speed is obtained. It will be.
  • a straight line passing through the origin indicates a state where the gear ratio is constant.
  • the straight line indicated by Llow indicates the low gear state in which the belt-type electronically controlled continuously variable transmission 1 has the largest speed ratio
  • the straight line indicated by High indicates the highest speed ratio of the belt-type electronically controlled continuously variable transmission 1.
  • a small high gear state is indicated, and a straight line indicated by Lmid indicates an intermediate speed change state.
  • each curve increases the engine speed along a straight line Llow (low gear state) while the vehicle speed is low, and gradually reduces the engine speed when the vehicle speed reaches an intermediate value.
  • the engine speed increases along a straight line Lhigh (high gear state).
  • the rotational speed correction unit 7b can be used in various ways such as kick-down control for temporarily increasing the gear ratio, low fuel consumption mode control for selecting a gear ratio suitable for low fuel consumption, and power mode control for obtaining a high driving force. This is a part that performs a process of appropriately correcting the reference engine speed in order to realize the effect.
  • the reference engine speed is corrected in a direction in which the engine speed is increased in kick down control or power mode control, and is normally decreased in the fuel efficiency mode control.
  • a target engine speed can be obtained by performing correction related to the reference engine speed.
  • the target engine rotational speed is a target value to be controlled as the rotational speed of the output shaft of the engine 2, that is, the rotational speed of the input shaft 3.
  • the target gear ratio calculation unit 7c calculates the target gear ratio so that the rotational speed of the engine 2 becomes the target engine rotational speed. That is, the target gear ratio calculation unit 7c calculates the target gear ratio based on information regarding the target engine speed and the vehicle speed.
  • vehicle speed is used as information related to vehicle speed.
  • the target speed ratio may be obtained by dividing the target engine speed by a value obtained by dividing the vehicle speed by the circumference of the drive wheel 6 and multiplying by the speed reduction ratio of the final speed reduction mechanism 7.
  • the upper limit or the lower limit may be set as the target speed ratio.
  • torque engine torque
  • power power
  • narrowly-defined output the term “output” is used to indicate some quantitative index indicating kinetic energy obtained from the engine 2 including not only the output in a narrow sense but also the torque.
  • the ECU 7 includes an accelerator operation amount-reference throttle opening conversion unit 7d, a reference engine torque calculation unit 7e, a reference engine torque-reference driving force conversion unit 7f, a driving force correction unit 7g, a target driving force-target engine torque conversion unit 7h, A target throttle opening calculation unit 7i is provided.
  • the accelerator operation amount-reference throttle opening conversion portion 7d is a portion that converts the accelerator operation amount into a throttle opening.
  • the throttle opening obtained by the accelerator operation amount-reference throttle opening conversion unit 7d is referred to as a reference throttle opening.
  • There is a one-to-one relationship between the reference throttle opening and the accelerator operation amount and the accelerator operation amount is converted into the reference throttle opening by using an arbitrary conversion formula or by referring to a table or a map. The Here, conversion is performed so that the reference throttle opening is also increased if the accelerator operation amount is larger.
  • the reference engine torque calculator 7e calculates the reference engine torque based on the reference throttle opening and the reference engine speed obtained by the reference speed calculator 7a.
  • the ECU 7 stores a map indicating the relationship between the throttle opening, the engine speed, and the engine torque, which is determined by the output characteristics of the engine 2 (hereinafter, this map is referred to as an engine torque map).
  • the reference engine torque calculation unit 7e uniquely calculates the reference engine torque from the reference throttle opening and the reference engine speed by referring to the engine torque map.
  • the reference engine speed calculation unit 7a calculates the reference engine speed from the accelerator operation amount and the vehicle speed
  • the accelerator operation amount-reference throttle opening conversion unit 7d calculates the accelerator operation amount. Since the reference throttle opening is converted, the reference engine torque calculation unit 7e eventually calculates the reference engine torque based on the accelerator operation amount and the vehicle speed.
  • FIG. 7 is a diagram showing an example of an engine torque map.
  • curves Th1 to Th4 which are curves corresponding to the throttle opening, are illustrated with the horizontal axis representing the engine speed and the vertical axis representing the engine torque.
  • the curves Th1 to Th4 are associated with a specific throttle opening. For example, in a specific state where the throttle opening is large, the curve Th4 is selected and a specific state where the throttle opening is small. Then, the curve Th1 is selected, and in the middle, the curves Th2 and Th3 are selected. Actually, more curves than those shown in the figure are prepared or interpolation calculation is performed in order to cope with a more detailed change in the throttle opening.
  • the reference engine torque calculation unit 7e refers to the engine torque map and calculates a reference engine torque corresponding to the reference throttle opening and the reference engine speed. That is, if a curve corresponding to a certain reference throttle opening, here, for example, a curve Th4 is selected, the reference engine torque is obtained according to the reference engine speed at that time.
  • the obtained reference engine torque is converted into a driving force (this is referred to as a reference driving force) by the reference engine torque-reference driving force conversion unit 7f, and necessary correction is performed by the driving force correction unit 7g. Then, it is converted again by the target driving force-target engine torque conversion unit 7h and converted to the target engine torque.
  • the target engine torque is a target value of engine torque obtained by the ECU 7 controlling the engine 2.
  • the reference engine torque-reference driving force conversion unit 7f subtracts the inertia loss of the engine 2 and the loss of the belt-type electronically controlled continuously variable transmission 1 from the reference engine torque, and then changes the speed of the belt-type electronically controlled continuously variable transmission 1 By multiplying the ratio and the reduction ratio of the final reduction mechanism (referred to as final reduction ratio), it is converted into a reference driving force.
  • the inertia loss of the engine 2 is an inertia loss (or gain) caused by a change in the engine speed
  • the loss of the belt type electronically controlled continuously variable transmission 1 is the transmission loss in the belt type electronically controlled continuously variable transmission 1. Thus, it is calculated based on the reference engine speed.
  • the driving force correction unit 7g gives a rider an unnatural impression or discomfort due to the temporal change in the driving force of the vehicle 100 generated by the reference engine torque obtained by the reference engine torque calculation unit 7e.
  • the reference driving force is corrected so as not to impair the operation, and mainly functions as a time filter.
  • a waveform shaping process of the reference driving force for shaping a steep change (for example, a step-like change) in the reference driving force into a gentle change can be exemplified.
  • the reason why the driving force correction unit 7g does not directly correct the reference engine torque but corrects the reference driving force obtained by converting the reference engine torque is that the driving force is corrected with respect to the engine torque. This is because the actual behavior of the vehicle 100 is more faithfully reflected because the loss of the engine 2 and the belt-type electronically controlled continuously variable transmission 1 can be taken into account.
  • the target driving force-target engine torque conversion unit 7h performs reverse conversion of the reference engine torque-reference driving force conversion unit 7f, and divides the target driving force by the final reduction gear ratio and the transmission gear ratio to reduce the inertia loss of the engine 2.
  • the target engine torque is obtained by adding the losses of the belt-type electronically controlled continuously variable transmission 1.
  • the inertia loss of the engine 2 and the loss of the belt-type electronically controlled continuously variable transmission 1 at this time are calculated based on the target engine speed.
  • the obtained target engine torque is input to the target throttle opening calculation unit 7i together with the target engine speed.
  • the target throttle opening calculator 7i calculates the target throttle opening based on the target engine torque and the target engine speed. This calculation is an inverse conversion of the reference engine torque calculation unit 7e. That is, the target throttle opening calculation unit 7i refers to the engine torque map shown in FIG. 7 again, and a point on the map specified by the target engine torque and the target engine speed is on a curve indicating which throttle opening.
  • the target throttle opening is obtained by checking whether it is located.
  • the reference engine torque-target engine torque conversion unit 7h may be omitted, and the reference engine torque may be used as it is as the target engine torque.
  • the engine torque calculation unit 7e, the reference engine torque-reference driving force conversion unit 7f, the driving force correction unit 7g, the target driving force-target engine torque conversion unit 7h, and the target throttle opening calculation unit 7i are all omitted, and the reference throttle opening Can also be used as the target throttle opening as it is.
  • the ECU 7 converts the target throttle opening obtained in this way into the drive amount of the throttle actuator 22 and sends a signal to the throttle actuator 22 to control the opening of the electronically controlled throttle valve 23.
  • the target gear ratio is simply converted into the drive amount of the actuator 14 of the belt-type electronically controlled continuously variable transmission 1 and controlled, the correction to the reference engine speed is performed by the rotation speed correction unit 7b. For the reasons described above, the actually obtained gear ratio is different from the target gear ratio.
  • the ECU 7 obtains the target position in the axial direction of the primary sheave 13 from the target gear ratio by taking into account the output of the engine 2 by the processing described below, and thereby the difference between the target gear ratio and the actually obtained gear ratio. Is small.
  • FIG. 8 is a control block diagram showing another part of the control of the vehicle 100 realized by the ECU 7.
  • the control shown in FIG. 8 determines the engine torque from the throttle opening and the engine speed, and determines the axial target position of the primary sheave 13 according to the engine torque and the target gear ratio. Similar to the control shown in FIG. 5, such control is also virtually realized by software executed on the ECU 7. Of course, some or all of the blocks shown in the figure may be realized by a physical electric circuit.
  • the engine torque calculation unit 7j calculates the current engine torque from the throttle opening and the engine speed. This calculation is performed by referring to the engine torque map shown in FIG. 5 in the same manner as the reference engine torque calculation unit 7e described above.
  • the throttle opening is the actual opening of the throttle valve 23 detected by the throttle opening sensor in this embodiment, and what is used as the engine rotational speed is detected by the input rotational speed sensor 71.
  • the actual engine torque can be accurately calculated by using the actual throttle opening and the actual engine speed as the throttle opening and the engine speed.
  • the target engine torque described above may be used as the engine torque.
  • the engine torque is calculated using the target throttle opening as the throttle opening and the target engine rotation as the engine speed, or the target drive.
  • the target engine torque converted by the force-target engine torque conversion unit 7h may be used.
  • the engine torque calculator 7j obtains the engine torque based on the target throttle opening or throttle opening and the target engine speed or engine speed.
  • the corrected gear ratio calculating unit 7k performs correction based on the engine torque calculated by the engine torque calculating unit 7j on the target gear ratio calculated by the target gear ratio calculating unit 7c shown in FIG.
  • the gear ratio is calculated. As described above, even if the actuator 14 is driven so that the primary sheave 13 comes to a position where the transmission ratio of the belt-type electronically controlled continuously variable transmission 1 geometrically becomes the target transmission ratio, the actual transmission ratio is obtained. Deviates from the target gear ratio under the influence of the load.
  • the corrected gear ratio is obtained by appropriately correcting the target gear ratio, and the actuator 14 is driven so that the gear ratio of the belt-type electronically controlled continuously variable transmission 1 geometrically becomes the corrected gear ratio. In this case, the gear ratio is such that the actually obtained gear ratio becomes the target gear ratio or the gear ratio that is practically equivalent to the target gear ratio.
  • the corrected gear ratio calculating unit 7k When calculating the corrected gear ratio, the corrected gear ratio calculating unit 7k first determines the tension acting on the belt 12 of the belt-type electronically controlled continuously variable transmission 1 determined based on the engine torque calculated by the engine torque calculating unit 7j. Is calculated. Subsequently, the corrected gear ratio is calculated by multiplying the target gear ratio by a correction coefficient obtained from the tension of the belt 12. The tension of the belt 12 is determined based on the output of the engine, the inertia torque of the belt type electronically controlled continuously variable transmission 1, the loss of the belt type electronically controlled continuously variable transmission 1, and the inertial force of the belt 12. This calculation procedure will be described in detail below.
  • the corrected gear ratio calculation unit 7k calculates the tension F belt of the belt 12 from the following equation.
  • T eng is the engine torque
  • T inner is the inertia torque of the belt type electronically controlled continuously variable transmission
  • T loss is the loss of the belt type electronically controlled continuously variable transmission
  • F acc is the acceleration resistance of the belt 12.
  • the engine torque T eng is a value obtained by the engine torque calculation unit 7j.
  • the inertia torque T inner is a torque generated by a change in angular velocity between the primary pulley 10 of the belt-type electronically controlled continuously variable transmission 1 and the input shaft 3 (including the crankshaft of the engine 2)
  • the acceleration resistance F acc is the inertial resistance of the belt 12 and is obtained by multiplying the weight of the belt 12 by the acceleration of the belt 12. These values can be easily obtained by calculation by measuring the moment of inertia and internal resistance of each part of the belt-type electronically controlled continuously variable transmission 1 in advance.
  • the primary winding radius R pri is defined in association with the corrected gear ratio I cor by the following equation.
  • ⁇ pri is the angular velocity of the primary pulley 10
  • ⁇ sec is the angular velocity of the secondary pulley 11
  • the primary winding radius R pri and the secondary winding radius R sec are applied to the belt-type electronically controlled continuously variable transmission 1.
  • transformation etc. it means the winding radius of the belt 12 with respect to each of the primary pulley 10 and the secondary pulley 11 which implement
  • the post-correction gear ratio calculation unit 7k further calculates a correction coefficient ⁇ by the following equation.
  • is a constant obtained experimentally.
  • the corrected gear ratio I cor is obtained from the target gear ratio I obj and the correction coefficient ⁇ as follows.
  • Equation 1 in order to calculate Equation 1, it is necessary to provide the primary winding radius R pri, that is, the corrected gear ratio I cor .
  • the primary winding radius R pri based on the corrected gear ratio I cor obtained one cycle before in the processing of the ECU 7 may be used. That is, since the ECU 7 repeatedly executes the processes shown in FIGS. 5 and 8 at a preset cycle, the corrected gear ratio I cor or the primary winding radius R pri calculated in a certain cycle is stored. It can be used for calculation in the next cycle.
  • the gear ratio of the current belt-type electronically controlled continuously variable transmission 1 or the target speed change is set as the corrected gear ratio I cor.
  • the ratio I obj can be used.
  • the target position conversion unit 7l obtains the target position in the axial direction of the primary sheave 13 according to the corrected gear ratio. Since the target position in the axial direction of the primary sheave 13 corresponds to the drive amount of the actuator 14 on a one-to-one basis, the ECU 7 sends an appropriate drive signal to the actuator 14 so that the position in the axial direction of the primary sheave 13 becomes the target position. Control.
  • Conversion from the corrected gear ratio to the target position in the axial direction of the primary sheave 13 is based on the assumption that the belt-type electronically controlled continuously variable transmission 1 is not slipped or deformed.
  • a gear ratio after correction is geometrically realized. More specifically, the conversion is performed by performing calculation using an appropriate conversion formula or referring to an appropriate table or map.
  • the target position in the axial direction of the primary sheave 13 is controlled according to the corrected gear ratio obtained by taking the output of the engine 2 into account, and thus the target gear ratio and the actual gear ratio are actually obtained.
  • the difference from the gear ratio is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

This belt-type electronically controlled continuously variable transmission (1) is provided with a primary pulley (10) connected to the input shaft (3) and having a primary sheave (13), a second pulley (11) connected to an output shaft (4) and having a secondary sheave (15), a belt (12) which is wrapped between the primary pulley (10) and the secondary pulley (11), and an actuator (14) which controls the position in the axial direction of the primary sheave (13); this vehicle is provided with said belt-type electronically controlled continuously variable transmission (1), an engine (2), and a controller which calculates a target position in the axial direction of the primary sheave (13) depending on the output of the engine (2) and the target gear ratio of the belt-type electronically controlled continuously variable transmission (1), and controls the actuator (14).

Description

ベルト式電子制御無段変速機を備えた車両Vehicle with belt-type electronically controlled continuously variable transmission
 本発明は、ベルト式電子制御無段変速機を備えた車両に関する。 The present invention relates to a vehicle equipped with a belt-type electronically controlled continuously variable transmission.
 自動二輪車に代表される鞍乗型車両等の軽動力車両においては、ベルト式無段変速機が広く用いられている。そして、かかるベルト式無段変速機の変速比をアクチュエータを用い電子的に制御する、ベルト式電子制御無段変速機も実用に供されている。 In a light-powered vehicle such as a saddle-ride type vehicle represented by a motorcycle, a belt type continuously variable transmission is widely used. A belt-type electronically controlled continuously variable transmission that electronically controls the gear ratio of such a belt-type continuously variable transmission using an actuator is also in practical use.
 図1は、ベルト式電子制御無段変速機1を備えた車両200の構成例を示す模式図である。ベルト式電子制御無段変速機1は、プライマリプーリ10とセカンダリプーリ11の間にVベルト12を掛け回した構造となっており、プライマリプーリ10の可動シーブ(これを以降プライマリシーブ13と称する)の軸方向の位置はアクチュエータ14により制御される。また、セカンダリプーリ11の可動シーブ(これを以降セカンダリシーブ15と称する)はバネ等の弾性体16によりVベルト12を挟みつける方向に付勢される。プライマリプーリ10はエンジン2の出力軸である入力軸3に接続され、また、セカンダリプーリ11は出力軸4に接続され、遠心クラッチ5を介して駆動輪6に動力を伝達する。エンジン2に接続された吸気管20にはスロットル弁21が設けられる。 FIG. 1 is a schematic diagram showing a configuration example of a vehicle 200 provided with a belt-type electronically controlled continuously variable transmission 1. The belt-type electronically controlled continuously variable transmission 1 has a structure in which a V-belt 12 is wound between a primary pulley 10 and a secondary pulley 11, and a movable sheave of the primary pulley 10 (hereinafter referred to as a primary sheave 13). The position in the axial direction is controlled by the actuator 14. Further, the movable sheave of the secondary pulley 11 (hereinafter referred to as the secondary sheave 15) is urged in the direction of sandwiching the V-belt 12 by an elastic body 16 such as a spring. The primary pulley 10 is connected to the input shaft 3 that is the output shaft of the engine 2, and the secondary pulley 11 is connected to the output shaft 4, and transmits power to the drive wheels 6 via the centrifugal clutch 5. A throttle valve 21 is provided in the intake pipe 20 connected to the engine 2.
 さらに、車両200全体の動作を電子的に制御するためのコントローラであるECU(Electric Control Unit)7が設けられている。ECU7には、スロットル弁21の開度を検出するスロットル開度センサ70、エンジン2の回転数である入力軸3の回転数を検出する入力回転数センサ71、出力軸4の回転数を検出する出力回転数センサ72及び車両200の車速を検出する車速センサ73からの検出結果が入力される。また、ECU7はアクチュエータ14を駆動することにより、プライマリシーブ13の位置を制御する。 Furthermore, an ECU (Electric Control Unit) 7 which is a controller for electronically controlling the operation of the entire vehicle 200 is provided. The ECU 7 detects a throttle opening sensor 70 that detects the opening of the throttle valve 21, an input rotational speed sensor 71 that detects the rotational speed of the input shaft 3 that is the rotational speed of the engine 2, and a rotational speed of the output shaft 4. Detection results from the output speed sensor 72 and the vehicle speed sensor 73 that detects the vehicle speed of the vehicle 200 are input. The ECU 7 controls the position of the primary sheave 13 by driving the actuator 14.
 このような車両200では、ベルト式電子制御無段変速機1の変速比は、プライマリシーブ13の位置を制御することにより制御される。しかしながら、ベルト式電子制御無段変速機1の負荷により、Vベルト12とプライマリプーリ10又はセカンダリプーリ11の間に滑りが生じたり、Vベルト12が変形したりするため、必ずしもプライマリシーブ13の位置とベルト式電子制御無段変速機1の変速比は1対1に対応せず、変速比を正確に制御できない問題がある。そこで、図2に示すように、目標とする変速比とプライマリシーブ13の位置との関係を示す曲線を複数用意しておき、ベルト式電子制御無段変速機1の負荷を示すものとして、スロットル開度θに応じた曲線を選択することによりプライマリシーブ13の位置を補正することが試みられている。 In such a vehicle 200, the gear ratio of the belt-type electronically controlled continuously variable transmission 1 is controlled by controlling the position of the primary sheave 13. However, since the slip of the V belt 12 and the primary pulley 10 or the secondary pulley 11 is caused by the load of the belt type electronically controlled continuously variable transmission 1 or the V belt 12 is deformed, the position of the primary sheave 13 is not necessarily limited. And the speed ratio of the belt-type electronically controlled continuously variable transmission 1 does not correspond to 1: 1, and there is a problem that the speed ratio cannot be accurately controlled. Therefore, as shown in FIG. 2, a plurality of curves showing the relationship between the target gear ratio and the position of the primary sheave 13 are prepared, and the throttle is shown as indicating the load of the belt-type electronically controlled continuously variable transmission 1. Attempts have been made to correct the position of the primary sheave 13 by selecting a curve corresponding to the opening θ.
 しかしながら、ベルト式電子制御無段変速機1の制御が高度となり、例えば一時的に変速比を増すキックダウン制御、低燃費に適した変速比を選択する低燃費モード制御、高い駆動力を得ることを目的としたパワーモード制御等の種々の運転モードの切り替えがなされる場合には、スロットル開度が必ずしもベルト式電子制御無段変速機1の負荷を反映したものとはならず、変速比を正確に制御できない恐れがある。 However, the control of the belt-type electronically controlled continuously variable transmission 1 is advanced. For example, kickdown control that temporarily increases the gear ratio, low fuel consumption mode control that selects a gear ratio suitable for low fuel consumption, and high driving force are obtained. When the switching of various operation modes such as power mode control is performed, the throttle opening does not necessarily reflect the load of the belt-type electronically controlled continuously variable transmission 1, and the gear ratio is There is a risk that it cannot be controlled accurately.
 本発明はかかる観点に鑑みてなされたものであって、その目的は、ベルト式電子制御無段変速機を備えた車両において、変速比を正確に制御することである。 The present invention has been made in view of such a viewpoint, and an object thereof is to accurately control a gear ratio in a vehicle including a belt-type electronically controlled continuously variable transmission.
 本出願において開示される発明は種々の側面を有しており、それら側面の代表的なものの概要は以下のとおりである。 The invention disclosed in the present application has various aspects, and outlines of representative aspects of the aspects are as follows.
 (1)入力軸に接続され、プライマリシーブを有するプライマリプーリと、出力軸に接続され、セカンダリシーブを有するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリ間に掛け回されるベルトと、前記プライマリシーブの軸方向の位置を制御するアクチュエータと、を有するベルト式電子制御無段変速機と、エンジンと、前記エンジンの出力及び前記ベルト式電子制御無段変速機の目標変速比に応じて前記プライマリシーブの軸方向の目標位置を求め、前記アクチュエータを制御するコントローラと、を備えた車両。 (1) A primary pulley connected to an input shaft and having a primary sheave, a secondary pulley connected to an output shaft and having a secondary sheave, a belt wound around the primary pulley and the secondary pulley, and the primary sheave A belt-type electronically controlled continuously variable transmission having an actuator for controlling the position in the axial direction, an engine, and the primary sheave according to an output of the engine and a target speed ratio of the belt-type electronically controlled continuously variable transmission And a controller for controlling the actuator by obtaining a target position in the axial direction of the vehicle.
 (2)(1)において、前記コントローラは、目標スロットル開度又はスロットル開度並びに目標エンジン回転数又はエンジン回転数に基づいて前記エンジンの出力を求める車両。 (2) In (1), the controller obtains the output of the engine based on the target throttle opening or throttle opening and the target engine speed or engine speed.
 (3)(1)又は(2)において、前記プライマリシーブの軸方向の目標位置は、前記エンジンの出力に基づいて定まる前記ベルトの張力から得られる補正係数を前記目標変速比に乗じた補正後変速比に応じて定まる車両。 (3) In (1) or (2), the target position in the axial direction of the primary sheave is after correction by multiplying the target gear ratio by a correction coefficient obtained from the belt tension determined based on the output of the engine. A vehicle that is determined according to the gear ratio.
 (4)(3)において、前記ベルトの張力は、前記エンジンの出力、前記ベルト式電子制御無段変速機の慣性トルク、前記ベルト式電子制御無段変速機の損失、及び前記ベルトの慣性力に基づいて定まる車両。 (4) In (3), the tension of the belt includes the output of the engine, the inertia torque of the belt type electronically controlled continuously variable transmission, the loss of the belt type electronically controlled continuously variable transmission, and the inertial force of the belt. Vehicles determined based on
 上記本発明の(1)の側面によれば、ベルト式電子制御無段変速機を備えた車両において、変速比を正確に制御することができる。 According to the above aspect (1) of the present invention, the gear ratio can be accurately controlled in the vehicle equipped with the belt-type electronically controlled continuously variable transmission.
 上記本発明の(2)乃至(4)のいずれかの側面によれば、ベルト式電子制御無段変速機の負荷を正しく推定できる。 According to any one of the aspects (2) to (4) of the present invention, it is possible to correctly estimate the load of the belt type electronically controlled continuously variable transmission.
ベルト式電子制御無段変速機を備えた車両の構成例を示す模式図である。It is a mimetic diagram showing an example of composition of vehicles provided with a belt type electronically controlled continuously variable transmission. 目標とする変速比とプライマリシーブの位置との関係を示す曲線を示す図である。It is a figure which shows the curve which shows the relationship between the target gear ratio and the position of a primary sheave. 本発明の実施形態に係る車両の側面図である。1 is a side view of a vehicle according to an embodiment of the present invention. 本発明の実施形態に係る車両の構成例を示す模式図である。It is a mimetic diagram showing an example of composition of vehicles concerning an embodiment of the present invention. ECUにより実現される車両の制御の一部分を示した制御ブロック図である。It is a control block diagram showing a part of vehicle control realized by an ECU. エンジン回転数マップの例を示す図である。It is a figure which shows the example of an engine speed map. エンジントルクマップの例を示す図である。It is a figure which shows the example of an engine torque map. ECUにより実現される車両の制御の別の一部分を示した制御ブロック図である。It is the control block diagram which showed another part of control of the vehicle implement | achieved by ECU.
 以下、本発明の実施形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図3は、本発明の実施形態に係る車両100の側面図である。なお、ここで示した車両100は自動二輪車であるが、これは車両100の一例として示したものであり、ベルト式電子制御無段変速機1を備えた車両であればその形式は特に限定されない。一般には、電子制御の有無を含め、ベルト式無段変速機は軽動力車両に備えられることが多く、軽動力車両は鞍乗型車両であることが多いため、本発明は、鞍乗型車両に適しているといえる。ここで鞍乗型車両とは、乗員が跨るように着座するサドルを有する自動車両を指しており、自動二輪車、自動三輪車、ATV(All Terrain Vehicle)等と呼ばれる三輪又は四輪バギーやスノーモービルを含むものである。また、ベルト式電子制御無段変速機とは、前述の通り、変速比をアクチュエータを用い電子的に制御することができるベルト式無段変速機を指す。 FIG. 3 is a side view of the vehicle 100 according to the embodiment of the present invention. In addition, although the vehicle 100 shown here is a motorcycle, this is shown as an example of the vehicle 100, and the form will not be specifically limited if it is a vehicle provided with the belt-type electronically controlled continuously variable transmission 1. . In general, the belt type continuously variable transmission including the presence or absence of electronic control is often provided in a light-powered vehicle, and the light-powered vehicle is often a straddle-type vehicle. It can be said that it is suitable for. Here, the saddle-ride type vehicle refers to a motor vehicle having a saddle on which an occupant is seated. Is included. Further, as described above, the belt-type electronically controlled continuously variable transmission refers to a belt-type continuously variable transmission that can electronically control the gear ratio using an actuator.
 車両100は、後輪である駆動輪6に、エンジン2が発生する回転動力をベルト式電子制御無段変速機1を介して伝達し走行する。ベルト式電子制御無段変速機1の下流には、図示されないクラッチ及び最終減速機構が駆動輪6との間に配置されている。エンジン2が発生する出力は、図1に示されないアクセルグリップの回転操作量をアクセル操作量としてアクセルセンサにより検出し、かかるアクセル操作量と車両100の状態から、ECU7がエンジン2の吸気管に設けられた電子制御式スロットル弁の開度を調節することにより制御される。エンジン2は一般的なレシプロエンジンであり、その形式、例えば、2ストロークあるいは4ストロークの別や、シリンダ数は特に問わない。 The vehicle 100 travels by transmitting the rotational power generated by the engine 2 to the driving wheels 6 as rear wheels via the belt-type electronically controlled continuously variable transmission 1. A clutch and a final speed reduction mechanism (not shown) are arranged between the belt-type electronically controlled continuously variable transmission 1 and the drive wheels 6. The output generated by the engine 2 is detected by an accelerator sensor using an accelerator grip rotation operation amount (not shown in FIG. 1) as an accelerator operation amount, and the ECU 7 is provided in the intake pipe of the engine 2 based on the accelerator operation amount and the state of the vehicle 100. It is controlled by adjusting the opening of the electronically controlled throttle valve. The engine 2 is a general reciprocating engine, and its type, for example, 2 strokes or 4 strokes, and the number of cylinders are not particularly limited.
 ECU7は、車両100全体の動作を制御するコントローラであり、CPU(Central Processing Unit)、メモリ等からなる一般的なコンピュータや、いわゆるマイクロコントローラ、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)その他の電子回路により構成してよい。ECU7は、前述の電子制御式スロットルバルブ及びベルト式電子制御無段変速機1のアクチュエータへ指令を送るほか、後述する各種センサからの信号が入力される。ECU7を搭載した電子基板は、車両100の適宜の位置、図示の例では乗員シートの下部に配置される。 The ECU 7 is a controller that controls the operation of the entire vehicle 100, and is a general computer including a CPU (Central Processing Unit), a memory, a so-called microcontroller, a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array). PLD (Programmable Logic Device) or other electronic circuits may be used. The ECU 7 sends commands to the actuators of the electronically controlled throttle valve and the belt type electronically controlled continuously variable transmission 1 described above, and receives signals from various sensors described later. The electronic board on which the ECU 7 is mounted is disposed at an appropriate position of the vehicle 100, in the illustrated example, below the passenger seat.
 図4は、本発明の実施形態に係る車両100の構成例を示す模式図である。車両100の構成は、図1で示した構成とおおむね同等であるため、互いに共通する部材については同符号を付し、その重複する説明は省略するものとする。車両100では、アクセル操作量を検知するアクセルセンサ74が設けられ、その信号がECU7に入力され、また、エンジン2の吸気管20には、スロットルアクチュエータ22により駆動され、その開度を調節する電子制御式スロットル弁23が設けられている。 FIG. 4 is a schematic diagram showing a configuration example of the vehicle 100 according to the embodiment of the present invention. Since the configuration of vehicle 100 is substantially the same as the configuration shown in FIG. 1, members that are common to each other are assigned the same reference numerals, and redundant descriptions thereof are omitted. The vehicle 100 is provided with an accelerator sensor 74 that detects an accelerator operation amount, and the signal is input to the ECU 7. The intake pipe 20 of the engine 2 is driven by a throttle actuator 22 and is an electronic device that adjusts its opening. A controlled throttle valve 23 is provided.
 図5は、ECU7により実現される車両100の制御の一部分を示した制御ブロック図である。かかる制御は、本実施形態ではECU7上で実行されるソフトウェアにより仮想的に実現されており、同図に示した各ブロックが物理的に存在するわけではないが、これらの一部又は全部を物理的な電気回路により実現しても差し支えない。なお、以降の説明では適宜図4を参照する。 FIG. 5 is a control block diagram showing a part of the control of the vehicle 100 realized by the ECU 7. In the present embodiment, such control is virtually realized by software executed on the ECU 7, and each block shown in the figure does not physically exist. It can be realized by a typical electric circuit. In the following description, FIG. 4 will be referred to as appropriate.
 図5に示す制御は、アクセル操作量及び車速から、スロットルアクチュエータ22及びベルト式電子制御無段変速機1のアクチュエータ14への指令値(又はその換算値)となる目標スロットル開度及び目標変速比を導出するものである。なお、目標スロットル開度は、制御により実現されるべき電子制御式スロットル弁23の開度であり、目標変速比は、制御により実現されるべきベルト式電子制御無段変速機1の変速比である。 The control shown in FIG. 5 is based on the target throttle opening and the target speed ratio, which are command values (or converted values) to the throttle actuator 22 and the actuator 14 of the belt-type electronically controlled continuously variable transmission 1 from the accelerator operation amount and the vehicle speed. Is derived. The target throttle opening is the opening of the electronically controlled throttle valve 23 to be realized by the control, and the target speed ratio is the speed ratio of the belt-type electronically controlled continuously variable transmission 1 to be realized by the control. is there.
 まず、目標変速比を得るための処理を説明する。ECU7は、図5に示す基準回転数算出部7a、回転数補正部7b及び目標変速比算出部7cを有している。基準回転数算出部7aは、アクセルセンサ74により検出されたアクセル操作量及び車速に基づいて、基準エンジン回転数を算出する。ここで、基準エンジン回転数とは、車速に関する情報とその他の情報、ここではアクセル操作量に関する情報から一義的に換算されるエンジン2の回転数、すなわち、入力軸3の回転数の目標値であって、後述する回転数補正部7bによる補正がなされていないものを指している。なお、アクセル操作量に関する情報とは、適当な換算によりアクセル操作量と一対一に対応する情報を指し、車速に関する情報とは、変速機(本実施形態では、ベルト式電子制御無段変速機1)より下流側に位置する部材の回転数又は該回転数から得られる情報であって、適当な換算により車速と一対一に対応する情報を指す。変速機より下流側に位置する部材には、クラッチ5の出力軸や、最終減速機構に含まれる任意のギア、駆動輪6やその車軸等が含まれる。これらの部材の回転数は、適当な換算をすることにより車速に1対1に換算される。例えば、駆動輪6の回転数は、駆動輪6の周長を乗ずることにより車速に換算されるため、車速に関する情報に該当する。なお、ベルト式電子制御無段変速機1の出力軸4やセカンダリプーリ11の回転数は、その下流の遠心クラッチ5が接続されている場合に限り、車速に関する情報に準じて取り扱ってもよい。本実施形態では、アクセル操作量に関する情報及び車速に関する情報としてそれぞれアクセル操作量及び車速を用いているが、これ以外の情報を用いるようにしてもよい。 First, the process for obtaining the target gear ratio will be described. The ECU 7 includes a reference rotation speed calculation unit 7a, a rotation speed correction unit 7b, and a target gear ratio calculation unit 7c shown in FIG. The reference rotational speed calculation unit 7a calculates the reference engine rotational speed based on the accelerator operation amount and the vehicle speed detected by the accelerator sensor 74. Here, the reference engine speed is a target value of the speed of the engine 2 which is uniquely converted from information on the vehicle speed and other information, here information on the accelerator operation amount, that is, the speed of the input shaft 3. In this case, the correction is not made by the rotation speed correction unit 7b described later. The information related to the accelerator operation amount refers to information corresponding to the accelerator operation amount on a one-to-one basis by appropriate conversion, and the information related to the vehicle speed refers to the transmission (in this embodiment, the belt-type electronically controlled continuously variable transmission 1). ) The number of rotations of a member located on the downstream side or information obtained from the number of rotations and corresponding to the vehicle speed on a one-to-one basis by appropriate conversion. The members positioned on the downstream side of the transmission include the output shaft of the clutch 5, an arbitrary gear included in the final reduction mechanism, the drive wheels 6, the axles thereof, and the like. The rotation speed of these members is converted into a vehicle speed on a one-to-one basis by performing appropriate conversion. For example, the rotation speed of the drive wheel 6 is converted into the vehicle speed by multiplying the circumference of the drive wheel 6, and thus corresponds to information on the vehicle speed. Note that the rotation speed of the output shaft 4 and the secondary pulley 11 of the belt-type electronically controlled continuously variable transmission 1 may be handled according to the information on the vehicle speed only when the downstream centrifugal clutch 5 is connected. In the present embodiment, the accelerator operation amount and the vehicle speed are used as the information about the accelerator operation amount and the information about the vehicle speed, respectively, but other information may be used.
 ECU7は半導体メモリ等の情報記憶装置を備えており、かかる情報記憶装置には、アクセル操作量及び車速とエンジン回転数を関係づけるマップ(以下、エンジン回転数マップ)が格納されている。基準回転数算出部7aは、かかるエンジン回転数マップを参照し、アクセル操作量及び車速に応じたエンジン回転数を求め、基準エンジン回転数とする。 The ECU 7 includes an information storage device such as a semiconductor memory, and the information storage device stores a map (hereinafter referred to as an engine speed map) relating the accelerator operation amount, the vehicle speed, and the engine speed. The reference rotation speed calculation unit 7a refers to the engine rotation speed map, obtains the engine rotation speed according to the accelerator operation amount and the vehicle speed, and sets it as the reference engine rotation speed.
 図6は、エンジン回転数マップの例を示す図である。ECU7には、かかるマップが数値化されたデータが格納されている。ここに示したエンジン回転数マップでは、横軸を車速、縦軸をエンジン回転数とし、アクセル操作量に応じた曲線である曲線Ac1乃至Ac3が例示されている。ここで、曲線Ac1乃至Ac3は、特定のアクセル操作量に対応付けられており、例えば、アクセル操作量が大である特定の状態では曲線Ac1が選択され、アクセル操作量が小である特定の状態では曲線Ac3が選択され、その中間では曲線Ac2が選択される、といった具合である。なお、実際にはより細かなアクセル操作量の変化に対応すべく、曲線は図示のものより多数用意されるか、補間演算がなされる。 FIG. 6 is a diagram showing an example of an engine speed map. The ECU 7 stores data obtained by digitizing the map. In the engine speed map shown here, the horizontal axis represents the vehicle speed, the vertical axis represents the engine speed, and curves Ac1 to Ac3 that are curves corresponding to the accelerator operation amount are illustrated. Here, the curves Ac1 to Ac3 are associated with specific accelerator operation amounts. For example, in a specific state where the accelerator operation amount is large, the curve Ac1 is selected and the specific state where the accelerator operation amount is small. Then, the curve Ac3 is selected, and the curve Ac2 is selected in the middle. Actually, a larger number of curves than those shown in the figure are prepared or an interpolation operation is performed in order to cope with a finer change in accelerator operation amount.
 ここで、あるアクセル操作量に対して対応する曲線、ここでは例として曲線Ac1を選択すると、その時点における車速に応じてエンジン回転数が求められることになる。同図より理解できるように、同じ車速であっても、アクセル操作量が小さいと選択される曲線が異なり(図中ではより下側の曲線が選択される)、より小さいエンジン回転数が得られることになる。 Here, when a curve corresponding to a certain accelerator operation amount, in this case, the curve Ac1 is selected, the engine speed is determined according to the vehicle speed at that time. As can be understood from the figure, even when the vehicle speed is the same, the curve selected when the accelerator operation amount is small is different (the lower curve is selected in the figure), and a smaller engine speed is obtained. It will be.
 なお、このエンジン回転数マップにおいて原点を通る直線は、変速比一定の状態を示している。図中Llowで示した直線は、ベルト式電子制御無段変速機1の変速比が最も大きいローギアの状態を示し、Lhighで示した直線はベルト式電子制御無段変速機1の変速比が最も小さいハイギアの状態を示し、Lmidで示した直線はその中間の変速状態を示している。同図より読み取れるように、各曲線は、この例では、車速が小さい間は直線Llow(ローギアの状態)に沿ってエンジン回転数を上昇させ、車速が中間的な値となるとエンジン回転数を緩やかに上昇させ、車速が大きくなると直線Lhigh(ハイギアの状態)に沿ってエンジン回転数を上昇させるような曲線となっている。 In this engine speed map, a straight line passing through the origin indicates a state where the gear ratio is constant. In the figure, the straight line indicated by Llow indicates the low gear state in which the belt-type electronically controlled continuously variable transmission 1 has the largest speed ratio, and the straight line indicated by High indicates the highest speed ratio of the belt-type electronically controlled continuously variable transmission 1. A small high gear state is indicated, and a straight line indicated by Lmid indicates an intermediate speed change state. As can be seen from the figure, in this example, each curve increases the engine speed along a straight line Llow (low gear state) while the vehicle speed is low, and gradually reduces the engine speed when the vehicle speed reaches an intermediate value. When the vehicle speed increases, the engine speed increases along a straight line Lhigh (high gear state).
 図5に戻り、基準回転数算出部7aにより得られた基準エンジン回転数は、回転数補正部7bに受け渡される。回転数補正部7bは、一時的に変速比を増すキックダウン制御、低燃費に適した変速比を選択する低燃費モード制御、高い駆動力を得ることを目的としたパワーモード制御等の種々の効果を実現すべく基準エンジン回転数に適宜の補正を施す処理を行う部分である。例えばキックダウン制御やパワーモード制御ではエンジン回転数を増す方向に、低燃費モード制御では通常はエンジン回転数を減じる方向に基準エンジン回転数を補正する。基準エンジン回転数にかかる補正を施すことにより目標エンジン回転数が得られる。ここで、目標エンジン回転数とは、エンジン2の出力軸の回転数、すなわち、入力軸3の回転数として制御すべき目標値である。 Referring back to FIG. 5, the reference engine speed obtained by the reference speed calculator 7a is transferred to the speed corrector 7b. The rotational speed correction unit 7b can be used in various ways such as kick-down control for temporarily increasing the gear ratio, low fuel consumption mode control for selecting a gear ratio suitable for low fuel consumption, and power mode control for obtaining a high driving force. This is a part that performs a process of appropriately correcting the reference engine speed in order to realize the effect. For example, the reference engine speed is corrected in a direction in which the engine speed is increased in kick down control or power mode control, and is normally decreased in the fuel efficiency mode control. A target engine speed can be obtained by performing correction related to the reference engine speed. Here, the target engine rotational speed is a target value to be controlled as the rotational speed of the output shaft of the engine 2, that is, the rotational speed of the input shaft 3.
 目標変速比算出部7cは、エンジン2の回転数が目標エンジン回転数となるように目標変速比を算出する。すなわち、目標変速比算出部7cは、目標エンジン回転数と車速に関する情報に基いて目標変速比を算出する。本実施形態では、車速に関する情報として車速を用いている。この算出は、例えば、車速を駆動輪6の周長で除し最終減速機構7の減速比を乗じた値で、目標エンジン回転数を除すことにより目標変速比を得るものとしてよい。なお、得られた目標変速比が、ベルト式電子制御無段変速機1の変速比の上限又は下限を越える場合には、その上限または下限を目標変速比としてよい。 The target gear ratio calculation unit 7c calculates the target gear ratio so that the rotational speed of the engine 2 becomes the target engine rotational speed. That is, the target gear ratio calculation unit 7c calculates the target gear ratio based on information regarding the target engine speed and the vehicle speed. In the present embodiment, vehicle speed is used as information related to vehicle speed. In this calculation, for example, the target speed ratio may be obtained by dividing the target engine speed by a value obtained by dividing the vehicle speed by the circumference of the drive wheel 6 and multiplying by the speed reduction ratio of the final speed reduction mechanism 7. When the obtained target speed ratio exceeds the upper limit or lower limit of the speed ratio of the belt-type electronically controlled continuously variable transmission 1, the upper limit or the lower limit may be set as the target speed ratio.
 次に、目標スロットル開度を得るための処理を説明する。なお、以降の説明では、エンジン2から得られる動力を示す量として、トルク(エンジントルク)を用いているが、これに換えていわゆる出力(動力のこと。ここでは、エンジントルクに回転数を乗じたもの。以降、狭義の出力と称する)を用いても差し支えない。本明細書では、「出力」という用語を、狭義の出力のみならず、トルクを含め、エンジン2から得られる運動エネルギーを示す何らかの定量的な指標を指し示すものとして使用することとする。ECU7は、アクセル操作量-基準スロットル開度換算部7d、基準エンジントルク算出部7e、基準エンジントルク-基準駆動力換算部7f、駆動力補正部7g、目標駆動力-目標エンジントルク換算部7h及び目標スロットル開度算出部7iを有している。アクセル操作量-基準スロットル開度換算部7dは、アクセル操作量をスロットル開度に換算する部分である。ここで、アクセル操作量-基準スロットル開度換算部7dにより得られるスロットル開度を基準スロットル開度と称する。この基準スロットル開度とアクセル操作量との間には一対一の関係があり、任意の換算式を用いたり、テーブル或いはマップを参照したりすることによりアクセル操作量は基準スロットル開度に換算される。ここでは、アクセル操作量がより大きければ基準スロットル開度もまた大きいものとなるような換算がなされる。 Next, the process for obtaining the target throttle opening will be described. In the following description, torque (engine torque) is used as an amount indicating the power obtained from the engine 2, but instead of this, a so-called output (power). Here, the engine torque is multiplied by the number of revolutions. (Hereinafter referred to as narrowly-defined output) may be used. In this specification, the term “output” is used to indicate some quantitative index indicating kinetic energy obtained from the engine 2 including not only the output in a narrow sense but also the torque. The ECU 7 includes an accelerator operation amount-reference throttle opening conversion unit 7d, a reference engine torque calculation unit 7e, a reference engine torque-reference driving force conversion unit 7f, a driving force correction unit 7g, a target driving force-target engine torque conversion unit 7h, A target throttle opening calculation unit 7i is provided. The accelerator operation amount-reference throttle opening conversion portion 7d is a portion that converts the accelerator operation amount into a throttle opening. Here, the throttle opening obtained by the accelerator operation amount-reference throttle opening conversion unit 7d is referred to as a reference throttle opening. There is a one-to-one relationship between the reference throttle opening and the accelerator operation amount, and the accelerator operation amount is converted into the reference throttle opening by using an arbitrary conversion formula or by referring to a table or a map. The Here, conversion is performed so that the reference throttle opening is also increased if the accelerator operation amount is larger.
 基準エンジントルク算出部7eは、基準スロットル開度及び基準回転数算出部7aにより得られた基準エンジン回転数に基づいて、基準エンジントルクを算出する。ECU7には、エンジン2の出力特性により定まる、スロットル開度及びエンジン回転数とエンジントルクとの関係を示すマップが格納されている(以下、このマップをエンジントルクマップと称する)。基準エンジントルク算出部7eは、このエンジントルクマップを参照することにより、基準スロットル開度及び基準エンジン回転数から基準エンジントルクを一意に算出する。なお、先に説明したように、基準回転数算出部7aは、アクセル操作量と車速から基準エンジン回転数を算出するものであり、アクセル操作量-基準スロットル開度換算部7dはアクセル操作量を基準スロットル開度に換算するものであるため、基準エンジントルク算出部7eは、結局、アクセル操作量及び車速に基いて基準エンジントルクを算出していることになる。 The reference engine torque calculator 7e calculates the reference engine torque based on the reference throttle opening and the reference engine speed obtained by the reference speed calculator 7a. The ECU 7 stores a map indicating the relationship between the throttle opening, the engine speed, and the engine torque, which is determined by the output characteristics of the engine 2 (hereinafter, this map is referred to as an engine torque map). The reference engine torque calculation unit 7e uniquely calculates the reference engine torque from the reference throttle opening and the reference engine speed by referring to the engine torque map. As described above, the reference engine speed calculation unit 7a calculates the reference engine speed from the accelerator operation amount and the vehicle speed, and the accelerator operation amount-reference throttle opening conversion unit 7d calculates the accelerator operation amount. Since the reference throttle opening is converted, the reference engine torque calculation unit 7e eventually calculates the reference engine torque based on the accelerator operation amount and the vehicle speed.
 図7はエンジントルクマップの例を示す図である。ここに示したエンジントルクマップでは、横軸をエンジン回転数、縦軸をエンジントルクとし、スロットル開度に応じた曲線である曲線Th1乃至Th4が例示されている。ここで、曲線Th1乃至Th4は、特定のスロットル開度に対応付けられており、例えば、スロットル開度が大である特定の状態では曲線Th4が選択され、スロットル開度が小である特定の状態では曲線Th1が選択され、その中間では曲線Th2やTh3が選択される、といった具合である。なお、実際にはより細かなスロットル開度の変化に対応すべく、曲線は図示のものより多数用意されるか、補間演算がなされる。 FIG. 7 is a diagram showing an example of an engine torque map. In the engine torque map shown here, curves Th1 to Th4, which are curves corresponding to the throttle opening, are illustrated with the horizontal axis representing the engine speed and the vertical axis representing the engine torque. Here, the curves Th1 to Th4 are associated with a specific throttle opening. For example, in a specific state where the throttle opening is large, the curve Th4 is selected and a specific state where the throttle opening is small. Then, the curve Th1 is selected, and in the middle, the curves Th2 and Th3 are selected. Actually, more curves than those shown in the figure are prepared or interpolation calculation is performed in order to cope with a more detailed change in the throttle opening.
 基準エンジントルク算出部7eはこのエンジントルクマップを参照し、基準スロットル開度と基準エンジン回転数とに対応する基準エンジントルクを算出する。すなわち、ある基準スロットル開度に対して対応する曲線、ここでは例として曲線Th4を選択すると、その時点における基準エンジン回転数に応じて基準エンジントルクが求められることになる。 The reference engine torque calculation unit 7e refers to the engine torque map and calculates a reference engine torque corresponding to the reference throttle opening and the reference engine speed. That is, if a curve corresponding to a certain reference throttle opening, here, for example, a curve Th4 is selected, the reference engine torque is obtained according to the reference engine speed at that time.
 得られた基準エンジントルクは、基準エンジントルク-基準駆動力換算部7fにより駆動力(これを基準駆動力と称する)へと換算され、駆動力補正部7gにより必要な補正を施されて目標駆動力とされた後、目標駆動力-目標エンジントルク換算部7hにより再度換算され、目標エンジントルクへと変換される。目標エンジントルクは、ECU7がエンジン2を制御することにより得られるエンジントルクの目標値である。 The obtained reference engine torque is converted into a driving force (this is referred to as a reference driving force) by the reference engine torque-reference driving force conversion unit 7f, and necessary correction is performed by the driving force correction unit 7g. Then, it is converted again by the target driving force-target engine torque conversion unit 7h and converted to the target engine torque. The target engine torque is a target value of engine torque obtained by the ECU 7 controlling the engine 2.
 基準エンジントルク-基準駆動力換算部7fは、基準エンジントルクから、エンジン2の慣性損失、ベルト式電子制御無段変速機1の損失を減じたのち、ベルト式電子制御無段変速機1の変速比及び最終減速機構の減速比(最終減速比と称する)を乗ずることにより基準駆動力へと換算するものである。なお、エンジン2の慣性損失は、エンジン回転数の変化により生じる慣性損失(又は利得)であり、ベルト式電子制御無段変速機1の損失は、ベルト式電子制御無段変速機1における伝達損失であって、基準エンジン回転数に基づいて算出される。 The reference engine torque-reference driving force conversion unit 7f subtracts the inertia loss of the engine 2 and the loss of the belt-type electronically controlled continuously variable transmission 1 from the reference engine torque, and then changes the speed of the belt-type electronically controlled continuously variable transmission 1 By multiplying the ratio and the reduction ratio of the final reduction mechanism (referred to as final reduction ratio), it is converted into a reference driving force. The inertia loss of the engine 2 is an inertia loss (or gain) caused by a change in the engine speed, and the loss of the belt type electronically controlled continuously variable transmission 1 is the transmission loss in the belt type electronically controlled continuously variable transmission 1. Thus, it is calculated based on the reference engine speed.
 駆動力補正部7gは、必要に応じて、基準エンジントルク算出部7eにより得られる基準エンジントルクにより発生する車両100の駆動力の時間変化が、乗員に不自然な印象や違和感を与えて乗り心地を損なうことがないよう、基準駆動力を補正するものであり、主として時間に関するフィルターとして機能するものである。ここで行われる処理としては、例えば、基準駆動力の急峻な変化(例えばステップ状の変化)をなだらかな変化へと整形する、基準駆動力の波形整形処理を例示できる。なお、駆動力補正部7gが直接基準エンジントルクを補正するものでなく、基準エンジントルクを変換して得られる基準駆動力に対して補正を施すものとしている理由は、エンジントルクに対して駆動力はエンジン2やベルト式電子制御無段変速機1の損失を加味したものとできるため、車両100の実挙動をより忠実に反映したものだからである。 If necessary, the driving force correction unit 7g gives a rider an unnatural impression or discomfort due to the temporal change in the driving force of the vehicle 100 generated by the reference engine torque obtained by the reference engine torque calculation unit 7e. The reference driving force is corrected so as not to impair the operation, and mainly functions as a time filter. As the processing performed here, for example, a waveform shaping process of the reference driving force for shaping a steep change (for example, a step-like change) in the reference driving force into a gentle change can be exemplified. The reason why the driving force correction unit 7g does not directly correct the reference engine torque but corrects the reference driving force obtained by converting the reference engine torque is that the driving force is corrected with respect to the engine torque. This is because the actual behavior of the vehicle 100 is more faithfully reflected because the loss of the engine 2 and the belt-type electronically controlled continuously variable transmission 1 can be taken into account.
 目標駆動力-目標エンジントルク換算部7hは、基準エンジントルク-基準駆動力換算部7fの逆換算を行うものであり、目標駆動力を最終減速比及び変速比で除し、エンジン2の慣性損失及びベルト式電子制御無段変速機1の損失を加算して目標エンジントルクを得るものである。このときのエンジン2の慣性損失及びベルト式電子制御無段変速機1の損失は、目標エンジン回転数に基づいて算出される。 The target driving force-target engine torque conversion unit 7h performs reverse conversion of the reference engine torque-reference driving force conversion unit 7f, and divides the target driving force by the final reduction gear ratio and the transmission gear ratio to reduce the inertia loss of the engine 2. The target engine torque is obtained by adding the losses of the belt-type electronically controlled continuously variable transmission 1. The inertia loss of the engine 2 and the loss of the belt-type electronically controlled continuously variable transmission 1 at this time are calculated based on the target engine speed.
 得られた目標エンジントルクは、目標エンジン回転数と共に目標スロットル開度算出部7iに入力される。そして、目標スロットル開度算出部7iは目標エンジントルク、目標エンジン回転数に基づいて目標スロットル開度を算出する。この算出は、基準エンジントルク算出部7eの逆換算となる。すなわち、目標スロットル開度算出部7iは図7に示したエンジントルクマップを再度参照し、目標エンジントルク及び目標エンジン回転数により特定されるマップ上の点が、どのスロットル開度を示す曲線上に位置するかを調べることにより目標スロットル開度を得るのである。 The obtained target engine torque is input to the target throttle opening calculation unit 7i together with the target engine speed. Then, the target throttle opening calculator 7i calculates the target throttle opening based on the target engine torque and the target engine speed. This calculation is an inverse conversion of the reference engine torque calculation unit 7e. That is, the target throttle opening calculation unit 7i refers to the engine torque map shown in FIG. 7 again, and a point on the map specified by the target engine torque and the target engine speed is on a curve indicating which throttle opening. The target throttle opening is obtained by checking whether it is located.
 なお、駆動力補正部7gにおける基準駆動力の補正を行わない場合には、これを省略してもよい。この場合であっても、基準エンジントルク-基準駆動力換算部7fにより基準エンジントルクを基準エンジン回転数に基づいて駆動力に換算した後、目標駆動力-目標エンジントルク換算部7hにより、駆動力を目標エンジン回転数に基づいて目標エンジントルクへと換算していることから、回転数補正部7bによる基準エンジン回転数への補正がなされている場合にも所望の駆動力が得られることになる。しかしながら、基準エンジントルク-基準駆動力換算部7f、駆動力補正部7g及び目標駆動力-目標エンジントルク換算部7hを全て省略し、基準エンジントルクをそのまま目標エンジントルクとしてもよく、さらには、基準エンジントルク算出部7e、基準エンジントルク-基準駆動力換算部7f、駆動力補正部7g、目標駆動力-目標エンジントルク換算部7h、目標スロットル開度算出部7iを全て省略し、基準スロットル開度をそのまま目標スロットル開度として用いることも可能である。 In addition, when not correcting the reference driving force in the driving force correcting unit 7g, this may be omitted. Even in this case, after the reference engine torque is converted into the driving force based on the reference engine speed by the reference engine torque-reference driving force converting unit 7f, the driving force is converted by the target driving force-target engine torque converting unit 7h. Is converted into the target engine torque based on the target engine speed, so that a desired driving force can be obtained even when the reference speed is corrected by the speed correction unit 7b. . However, the reference engine torque-reference driving force conversion unit 7f, the driving force correction unit 7g, and the target driving force-target engine torque conversion unit 7h may be omitted, and the reference engine torque may be used as it is as the target engine torque. The engine torque calculation unit 7e, the reference engine torque-reference driving force conversion unit 7f, the driving force correction unit 7g, the target driving force-target engine torque conversion unit 7h, and the target throttle opening calculation unit 7i are all omitted, and the reference throttle opening Can also be used as the target throttle opening as it is.
 ECU7は、このようにして得られた目標スロットル開度をスロットルアクチュエータ22の駆動量に換算し、スロットルアクチュエータ22へと信号を送り電子制御式スロットル弁23の開度を制御する。一方で、目標変速比を単純にベルト式電子制御無段変速機1のアクチュエータ14の駆動量に換算し制御すると、回転数補正部7bによる基準エンジン回転数への補正がなされている場合には、前述した理由により、実際に得られる変速比は目標変速比と異なるものとなる。 The ECU 7 converts the target throttle opening obtained in this way into the drive amount of the throttle actuator 22 and sends a signal to the throttle actuator 22 to control the opening of the electronically controlled throttle valve 23. On the other hand, when the target gear ratio is simply converted into the drive amount of the actuator 14 of the belt-type electronically controlled continuously variable transmission 1 and controlled, the correction to the reference engine speed is performed by the rotation speed correction unit 7b. For the reasons described above, the actually obtained gear ratio is different from the target gear ratio.
 そこで、ECU7は以下に説明する処理により、エンジン2の出力を加味して目標変速比からプライマリシーブ13の軸方向の目標位置を求めることにより、目標変速比と実際に得られる変速比との差を小さいものとしている。 Therefore, the ECU 7 obtains the target position in the axial direction of the primary sheave 13 from the target gear ratio by taking into account the output of the engine 2 by the processing described below, and thereby the difference between the target gear ratio and the actually obtained gear ratio. Is small.
 図8は、ECU7により実現される車両100の制御の別の一部分を示した制御ブロック図である。図8に示す制御は、スロットル開度及びエンジン回転数からエンジントルクを求め、かかるエンジントルク及び目標変速比に応じてプライマリシーブ13の軸方向の目標位置を求めるものである。かかる制御もまた図5に示した制御と同様に、ECU7上で実行されるソフトウェアにより仮想的に実現される。もちろん、同図に示した各ブロックの一部又は全部を物理的な電気回路により実現しても差し支えない。 FIG. 8 is a control block diagram showing another part of the control of the vehicle 100 realized by the ECU 7. The control shown in FIG. 8 determines the engine torque from the throttle opening and the engine speed, and determines the axial target position of the primary sheave 13 according to the engine torque and the target gear ratio. Similar to the control shown in FIG. 5, such control is also virtually realized by software executed on the ECU 7. Of course, some or all of the blocks shown in the figure may be realized by a physical electric circuit.
 まず、エンジントルク算出部7jはスロットル開度及びエンジン回転数から、現在のエンジントルクを算出する。この算出は、前述の基準エンジントルク算出部7eと同様に、図5に示したエンジントルクマップを参照することによりなされる。このとき、スロットル開度として用いるのは、本実施形態ではスロットル開度センサにより検知されるスロットル弁23の実際の開度であり、エンジン回転数として用いるのは、入力回転数センサ71により検知される入力軸3の回転数、すなわち、エンジン2の実回転数である(図4参照)。このようにスロットル開度及びエンジン回転数として、実スロットル開度及び実エンジン回転数を用いることにより、現時点でのエンジントルクを正確に算出することができる。ただし、エンジントルクとして前述の目標エンジントルクを用いてもよく、その場合にはスロットル開度として目標スロットル開度を、エンジン回転数として目標エンジン回転数を用いてエンジントルクを求めるか、或いは目標駆動力-目標エンジントルク換算部7hにより換算された目標エンジントルクを用いるとよい。いずれにせよ、エンジントルク算出部7jは目標スロットル開度又はスロットル開度並びに目標エンジン回転数又はエンジン回転数に基づいてエンジントルクを求める。 First, the engine torque calculation unit 7j calculates the current engine torque from the throttle opening and the engine speed. This calculation is performed by referring to the engine torque map shown in FIG. 5 in the same manner as the reference engine torque calculation unit 7e described above. At this time, what is used as the throttle opening is the actual opening of the throttle valve 23 detected by the throttle opening sensor in this embodiment, and what is used as the engine rotational speed is detected by the input rotational speed sensor 71. The rotation speed of the input shaft 3, that is, the actual rotation speed of the engine 2 (see FIG. 4). As described above, the actual engine torque can be accurately calculated by using the actual throttle opening and the actual engine speed as the throttle opening and the engine speed. However, the target engine torque described above may be used as the engine torque. In this case, the engine torque is calculated using the target throttle opening as the throttle opening and the target engine rotation as the engine speed, or the target drive. The target engine torque converted by the force-target engine torque conversion unit 7h may be used. In any case, the engine torque calculator 7j obtains the engine torque based on the target throttle opening or throttle opening and the target engine speed or engine speed.
 補正後変速比算出部7kは、図5に示した目標変速比算出部7cにより算出された目標変速比に、エンジントルク算出部7jにより算出されたエンジントルクに基づく補正を施すことにより、補正後変速比を算出する。前述したように、ベルト式電子制御無段変速機1の変速比が幾何学的に目標変速比となる位置にプライマリシーブ13がくるようにアクチュエータ14を駆動したとしても、実際に得られる変速比は、負荷の影響を受けて目標変速比からずれる。補正後変速比とは、目標変速比に適切な補正を施すことによって得られ、ベルト式電子制御無段変速機1の変速比が幾何学的に補正後変速比となるようにアクチュエータ14を駆動した際に、実際に得られる変速比が目標変速比となるか、又は実用上目標変速比と同等の変速比となるような変速比のことを指す。 The corrected gear ratio calculating unit 7k performs correction based on the engine torque calculated by the engine torque calculating unit 7j on the target gear ratio calculated by the target gear ratio calculating unit 7c shown in FIG. The gear ratio is calculated. As described above, even if the actuator 14 is driven so that the primary sheave 13 comes to a position where the transmission ratio of the belt-type electronically controlled continuously variable transmission 1 geometrically becomes the target transmission ratio, the actual transmission ratio is obtained. Deviates from the target gear ratio under the influence of the load. The corrected gear ratio is obtained by appropriately correcting the target gear ratio, and the actuator 14 is driven so that the gear ratio of the belt-type electronically controlled continuously variable transmission 1 geometrically becomes the corrected gear ratio. In this case, the gear ratio is such that the actually obtained gear ratio becomes the target gear ratio or the gear ratio that is practically equivalent to the target gear ratio.
 補正後変速比算出部7kは、補正後変速比を算出するにあたり、まずエンジントルク算出部7jにより算出されたエンジントルクに基づいて定まるベルト式電子制御無段変速機1のベルト12に作用する張力を計算により求める。続いてベルト12の張力から得られる補正係数を目標変速比に乗じることにより、補正後変速比が計算される。ベルト12の張力は、エンジンの出力、ベルト式電子制御無段変速機1の慣性トルク、ベルト式電子制御無段変速機1の損失、及びベルト12の慣性力に基づいて定まる。以下にこの計算手順をより詳細に説明する。 When calculating the corrected gear ratio, the corrected gear ratio calculating unit 7k first determines the tension acting on the belt 12 of the belt-type electronically controlled continuously variable transmission 1 determined based on the engine torque calculated by the engine torque calculating unit 7j. Is calculated. Subsequently, the corrected gear ratio is calculated by multiplying the target gear ratio by a correction coefficient obtained from the tension of the belt 12. The tension of the belt 12 is determined based on the output of the engine, the inertia torque of the belt type electronically controlled continuously variable transmission 1, the loss of the belt type electronically controlled continuously variable transmission 1, and the inertial force of the belt 12. This calculation procedure will be described in detail below.
 まず、補正後変速比算出部7kは次式よりベルト12の張力Fbeltを算出する。 First, the corrected gear ratio calculation unit 7k calculates the tension F belt of the belt 12 from the following equation.
Figure JPOXMLDOC01-appb-M000001
ここで、Tengはエンジントルク、Tinerはベルト式電子制御無段変速機1の慣性トルク、Tlossはベルト式電子制御無段変速機1の損失、Faccはベルト12の加速抵抗を示す。エンジントルクTengはエンジントルク算出部7jにより求められた値である。その他の値については、慣性トルクTinerはベルト式電子制御無段変速機1のプライマリプーリ10と入力軸3(エンジン2のクランク軸を含む)の角速度の変化により生じるトルクであり、損失Tlossはベルト式電子制御無段変速機1内部の摩擦やベルト12の屈曲等の内部抵抗による損失として発生するトルクである。加速抵抗Faccはベルト12の慣性抵抗であり、ベルト12の重量にベルト12の加速度を乗じたものである。これらの値は、事前にベルト式電子制御無段変速機1の各部の慣性モーメントや内部抵抗を測定しておくことにより、計算により容易に求めることができる。
Figure JPOXMLDOC01-appb-M000001
Here, T eng is the engine torque, T inner is the inertia torque of the belt type electronically controlled continuously variable transmission 1, T loss is the loss of the belt type electronically controlled continuously variable transmission 1, and F acc is the acceleration resistance of the belt 12. . The engine torque T eng is a value obtained by the engine torque calculation unit 7j. For other values, the inertia torque T inner is a torque generated by a change in angular velocity between the primary pulley 10 of the belt-type electronically controlled continuously variable transmission 1 and the input shaft 3 (including the crankshaft of the engine 2), and the loss T loss Is a torque generated as a loss due to internal resistance such as friction in the belt type electronically controlled continuously variable transmission 1 or bending of the belt 12. The acceleration resistance F acc is the inertial resistance of the belt 12 and is obtained by multiplying the weight of the belt 12 by the acceleration of the belt 12. These values can be easily obtained by calculation by measuring the moment of inertia and internal resistance of each part of the belt-type electronically controlled continuously variable transmission 1 in advance.
 プライマリ巻掛半径Rpriについては、次式により補正後変速比Icorと関連付けられ、定義される。 The primary winding radius R pri is defined in association with the corrected gear ratio I cor by the following equation.
Figure JPOXMLDOC01-appb-M000002
ここで、ωpriはプライマリプーリ10の角速度、ωsecはセカンダリプーリ11の角速度であり、プライマリ巻掛半径Rpri及びセカンダリ巻掛半径Rsecは、ベルト式電子制御無段変速機1にスリップや変形等がないと仮定したときに、補正後変速比Icorを実現するようなプライマリプーリ10及びセカンダリプーリ11それぞれに対するベルト12の巻掛半径を意味している。
Figure JPOXMLDOC01-appb-M000002
Here, ω pri is the angular velocity of the primary pulley 10, ω sec is the angular velocity of the secondary pulley 11, and the primary winding radius R pri and the secondary winding radius R sec are applied to the belt-type electronically controlled continuously variable transmission 1. When it assumes that there is no deformation | transformation etc., it means the winding radius of the belt 12 with respect to each of the primary pulley 10 and the secondary pulley 11 which implement | achieves the corrected gear ratio Icor.
 補正後変速比算出部7kは、さらに、次式により補正係数σを求める。 The post-correction gear ratio calculation unit 7k further calculates a correction coefficient σ by the following equation.
Figure JPOXMLDOC01-appb-M000003
ここで、αは実験的に求めた定数である。
Figure JPOXMLDOC01-appb-M000003
Here, α is a constant obtained experimentally.
 そして、補正後変速比Icorは、目標変速比Iobj及び補正係数σより次のように求められる。 The corrected gear ratio I cor is obtained from the target gear ratio I obj and the correction coefficient σ as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ところで、上掲の数1及び数2より明らかなように、数1の計算をするためには、プライマリ巻掛半径Rpriすなわち補正後変速比Icorが与えられている必要がある。この点に関しては、数1の計算をする際には、ECU7の処理において1サイクル前に求めた補正後変速比Icorに基づくプライマリ巻掛半径Rpriを用いればよい。すなわち、ECU7は図5、図8に示す処理をあらかじめ設定した周期で繰り返し実行するようになっているため、あるサイクルにおいて算出した補正後変速比Icor又はプライマリ巻掛半径Rpriを記憶しておけば次のサイクルにおいて計算に利用できるのである。なお、初回実行時にはベルト式電子制御無段変速機1に負荷が作用していないと考えられるため、補正後変速比Icorとして現在のベルト式電子制御無段変速機1の変速比又は目標変速比Iobjを使用して差し支えない。 By the way, as apparent from Equations 1 and 2 above, in order to calculate Equation 1, it is necessary to provide the primary winding radius R pri, that is, the corrected gear ratio I cor . In this regard, when calculating Equation 1, the primary winding radius R pri based on the corrected gear ratio I cor obtained one cycle before in the processing of the ECU 7 may be used. That is, since the ECU 7 repeatedly executes the processes shown in FIGS. 5 and 8 at a preset cycle, the corrected gear ratio I cor or the primary winding radius R pri calculated in a certain cycle is stored. It can be used for calculation in the next cycle. Since it is considered that no load is applied to the belt-type electronically controlled continuously variable transmission 1 at the time of the first execution, the gear ratio of the current belt-type electronically controlled continuously variable transmission 1 or the target speed change is set as the corrected gear ratio I cor. The ratio I obj can be used.
 最後に目標位置換算部7lは、補正後変速比に応じてプライマリシーブ13の軸方向の目標位置を求める。プライマリシーブ13の軸方向の目標位置は、アクチュエータ14の駆動量と一対一に対応するため、ECU7はアクチュエータ14に適切な駆動信号を送り、プライマリシーブ13の軸方向の位置が目標位置となるよう制御する。 Finally, the target position conversion unit 7l obtains the target position in the axial direction of the primary sheave 13 according to the corrected gear ratio. Since the target position in the axial direction of the primary sheave 13 corresponds to the drive amount of the actuator 14 on a one-to-one basis, the ECU 7 sends an appropriate drive signal to the actuator 14 so that the position in the axial direction of the primary sheave 13 becomes the target position. Control.
 補正後変速比からプライマリシーブ13の軸方向の目標位置への換算は、ベルト式電子制御無段変速機1にスリップや変形等がないと仮定したときに、プライマリシーブ13の軸方向の位置が幾何学的に補正後変速比を実現するようになされる。より具体的には、適当な換算式による計算を行うか、適当なテーブルまたはマップを参照することにより換算がなされる。 Conversion from the corrected gear ratio to the target position in the axial direction of the primary sheave 13 is based on the assumption that the belt-type electronically controlled continuously variable transmission 1 is not slipped or deformed. A gear ratio after correction is geometrically realized. More specifically, the conversion is performed by performing calculation using an appropriate conversion formula or referring to an appropriate table or map.
 以上説明した制御により、プライマリシーブ13の軸方向の目標位置は、エンジン2の出力を加味して得られる補正後変速比に応じて制御されることとなり、これにより目標変速比と実際に得られる変速比との差が小さいものとなる。 Through the control described above, the target position in the axial direction of the primary sheave 13 is controlled according to the corrected gear ratio obtained by taking the output of the engine 2 into account, and thus the target gear ratio and the actual gear ratio are actually obtained. The difference from the gear ratio is small.
 以上説明した実施形態は、本発明に係る車両の一具体例を示すものであり、例示された具体例に本発明が限定されるものではない。各部材の詳細な形状や配置、その数等は当業者が必要に応じて任意に変更してよい。また、具体例として示された機能ブロック図或いは制御ブロック図は一例を示すものであり、同等の機能を発揮する構成であれば任意の変形を行って差し支えない。 The embodiment described above shows a specific example of the vehicle according to the present invention, and the present invention is not limited to the illustrated specific example. A person skilled in the art may arbitrarily change the detailed shape and arrangement of each member and the number thereof as necessary. In addition, the functional block diagram or control block diagram shown as a specific example shows an example, and any modification can be made as long as the configuration exhibits the same function.

Claims (4)

  1.  入力軸に接続され、プライマリシーブを有するプライマリプーリと、
     出力軸に接続され、セカンダリシーブを有するセカンダリプーリと、
     前記プライマリプーリ及び前記セカンダリプーリ間に掛け回されるベルトと、
     前記プライマリシーブの軸方向の位置を制御するアクチュエータと、を有するベルト式電子制御無段変速機と、
     エンジンと、
     前記エンジンの出力及び前記ベルト式電子制御無段変速機の目標変速比に応じて前記プライマリシーブの軸方向の目標位置を求め、前記アクチュエータを制御するコントローラと、を備えた車両。
    A primary pulley connected to the input shaft and having a primary sheave;
    A secondary pulley connected to the output shaft and having a secondary sheave;
    A belt hung between the primary pulley and the secondary pulley;
    An actuator for controlling the axial position of the primary sheave, and a belt-type electronically controlled continuously variable transmission,
    Engine,
    And a controller that controls the actuator by obtaining a target position in the axial direction of the primary sheave in accordance with an output of the engine and a target gear ratio of the belt-type electronically controlled continuously variable transmission.
  2.  前記コントローラは、目標スロットル開度又はスロットル開度並びに目標エンジン回転数又はエンジン回転数に基づいて前記エンジンの出力を求める請求項1記載の車両。 2. The vehicle according to claim 1, wherein the controller obtains an output of the engine based on a target throttle opening or throttle opening and a target engine speed or engine speed.
  3.  前記プライマリシーブの軸方向の目標位置は、前記エンジンの出力に基づいて定まる前記ベルトの張力から得られる補正係数を前記目標変速比に乗じた補正後変速比に応じて定まる請求項1又は2記載の車両。 The target position in the axial direction of the primary sheave is determined according to a corrected gear ratio obtained by multiplying the target gear ratio by a correction coefficient obtained from the belt tension determined based on the output of the engine. Vehicle.
  4.  前記ベルトの張力は、前記エンジンの出力、前記ベルト式電子制御無段変速機の慣性トルク、前記ベルト式電子制御無段変速機の損失、及び前記ベルトの慣性力に基づいて定まる請求項3記載の車両。 The tension of the belt is determined based on an output of the engine, an inertia torque of the belt-type electronically controlled continuously variable transmission, a loss of the belt-type electronically controlled continuously variable transmission, and an inertial force of the belt. Vehicle.
PCT/JP2014/056586 2013-03-12 2014-03-12 Vehicle provided with belt-type electronically controlled continuously variable transmission WO2014142213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-049641 2013-03-12
JP2013049641 2013-03-12

Publications (1)

Publication Number Publication Date
WO2014142213A1 true WO2014142213A1 (en) 2014-09-18

Family

ID=51536864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056586 WO2014142213A1 (en) 2013-03-12 2014-03-12 Vehicle provided with belt-type electronically controlled continuously variable transmission

Country Status (1)

Country Link
WO (1) WO2014142213A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181666A (en) * 1989-12-11 1991-08-07 Mazda Motor Corp Control device of continuously variable transmission
JP2001108082A (en) * 1999-10-13 2001-04-20 Toyota Motor Corp Control device for winding transmission device
JP2001518171A (en) * 1997-03-25 2001-10-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for controlling automotive CVT

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181666A (en) * 1989-12-11 1991-08-07 Mazda Motor Corp Control device of continuously variable transmission
JP2001518171A (en) * 1997-03-25 2001-10-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for controlling automotive CVT
JP2001108082A (en) * 1999-10-13 2001-04-20 Toyota Motor Corp Control device for winding transmission device

Similar Documents

Publication Publication Date Title
JP2009228578A (en) Torque control device for internal combustion engine
JP6252356B2 (en) Engine speed control device
JP3589073B2 (en) Vehicle driving force control device
JP5299394B2 (en) Engine control device
JP6187220B2 (en) Control device for automatic transmission
JP5124398B2 (en) Torque estimation system and vehicle
WO2014142213A1 (en) Vehicle provided with belt-type electronically controlled continuously variable transmission
JP5359839B2 (en) Control device for internal combustion engine
JP6082805B2 (en) VEHICLE CONTROL DEVICE AND MOTORCYCLE EQUIPPED WITH THE SAME
JP4924214B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL SYSTEM, AND TRAVEL SUPPORT DEVICE
JP5999180B2 (en) Vehicle integrated control device
JP5953369B2 (en) Saddle type vehicle and control method of saddle type vehicle
JP5751344B2 (en) Control device for internal combustion engine
JP5946342B2 (en) Engine output control device
JP5816363B2 (en) Vehicle control apparatus, vehicle control method, and saddle riding type vehicle
JP2013241878A (en) Control device for vehicle driving system
JP5246451B2 (en) Vehicle output control device
JP5602684B2 (en) Accelerator pedal depression reaction force control device
JP5257624B2 (en) Vehicle output control device
JP2004308538A (en) Control device for vehicle
JP2011158066A (en) Control device for continuously variable transmission
JP4910934B2 (en) Vehicle motion control device
US9890733B2 (en) Control device for internal combustion engine
JP5246445B2 (en) Vehicle output control device
JP5157982B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP