WO2014142187A1 - Adsorbing/desorbing material - Google Patents

Adsorbing/desorbing material Download PDF

Info

Publication number
WO2014142187A1
WO2014142187A1 PCT/JP2014/056538 JP2014056538W WO2014142187A1 WO 2014142187 A1 WO2014142187 A1 WO 2014142187A1 JP 2014056538 W JP2014056538 W JP 2014056538W WO 2014142187 A1 WO2014142187 A1 WO 2014142187A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
porous carbon
nitrogen
gas
micropores
Prior art date
Application number
PCT/JP2014/056538
Other languages
French (fr)
Japanese (ja)
Inventor
広典 折笠
森下 隆広
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to BR112015021122A priority Critical patent/BR112015021122A2/en
Priority to CN201480006311.7A priority patent/CN104968603A/en
Priority to SG11201507403TA priority patent/SG11201507403TA/en
Priority to JP2015505523A priority patent/JP6350918B2/en
Priority to US14/764,355 priority patent/US20150367323A1/en
Priority to CA2899135A priority patent/CA2899135A1/en
Priority to EP14763195.6A priority patent/EP2975002A4/en
Publication of WO2014142187A1 publication Critical patent/WO2014142187A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3057Use of a templating or imprinting material ; filling pores of a substrate or matrix followed by the removal of the substrate or matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to an adsorption / desorption agent.
  • Carbon materials are used.
  • activated carbon, zeolite, or the like when activated carbon, zeolite, or the like is used as the carbon material, it has a structure in which many small pores are formed (structure with a large surface area), so that the gas is easily adsorbed and the adsorption capacity is increased. It had the problem that separation would be difficult.
  • the carbon material having large pores has a smaller surface area than the above activated carbon or the like, it has a problem that it is difficult to adsorb gas and the adsorption capacity becomes small. For this reason, there is no material that can easily adsorb gas and can easily desorb gas.
  • the adsorbent for canister described in Patent Document 1 has a configuration in which a meltable core material is subjected to thermal influence during firing and substantially disappears by vaporization, sublimation, or decomposition, thereby forming pores of 100 nm or more.
  • activated carbon may not necessarily be present in the vicinity of the pores formed by vaporization of the meltable core substance, and even if it is present, the amount of activated carbon becomes non-uniform. For this reason, there existed a subject that adsorption and desorption of gas could not be performed smoothly.
  • an object of the present invention is to provide an adsorption / desorption agent containing porous carbon that can smoothly adsorb and desorb gas and liquid.
  • the present invention comprises micropores, mesopores and / or macropores, and the outline of these three types of pores is composed of a carbonaceous wall, and the mesopores and / or macropores are provided.
  • x is x and mass transfer coefficient (K sap ) is y
  • x is in the range of 1.0 ⁇ 10 ⁇ 5 ⁇ x ⁇ 1.0 ⁇ 10 ⁇ 4
  • the relationship between x and y is (1 ) Is satisfied.
  • the rate-determining process of adsorption and desorption phenomena on gas or liquid porous solids is generally considered to be a mass transfer process in the pores or in the boundary film. Therefore, the magnitude of the adsorption / desorption rate can be evaluated by the mass transfer coefficient.
  • P the relative pressure
  • P 0 the saturated vapor pressure
  • K sap the mass transfer coefficient
  • Adsorption and desorption of gas or liquid on porous carbon are performed smoothly. Specifically, it is as follows.
  • the mass transfer coefficient (K sap ) is an index representing the speed of mass transfer when the substance moves using the concentration (pressure) difference as a driving force.
  • gas or liquid can be easily adsorbed to the porous carbon, while if mesopores and / or macropores exist in the porous carbon, the gas or liquid can be made porous. It can be easily desorbed from carbon. However, simply by the presence of micropores and mesopores and / or macropores, gas and liquid cannot move smoothly between micropores and mesopores and / or macropores. Can be adsorbed, but gas and liquid are difficult to desorb. However, if the micropores are formed so as to communicate with the mesopores and / or macropores as described above, the gas or liquid adsorbed in the micropores can easily move to the mesopores or macropores.
  • the range of x was limited to 1.0 ⁇ 10 ⁇ 5 ⁇ x ⁇ 1.0 ⁇ 10 ⁇ 4 because the adsorption phenomenon to fine micropores that effectively function as an adsorption site even at a small relative pressure. This is for indexing.
  • the reason for limiting to 1.0 ⁇ 10 ⁇ 5 ⁇ x is that if the value of x is too small, the pores are too fine and the number of effective pores in many adsorbent materials becomes extremely small. .
  • the reason for limiting x ⁇ 1.0 ⁇ 10 ⁇ 4 is that if the value of x is too large, not only the phenomenon of adsorption to micropores but also the phenomenon of adsorption of larger pores with respect to the value of y It is considered that the influence of.
  • those having a pore diameter of less than 2 nm are referred to as micropores
  • those having a pore diameter of 2 to 50 nm are referred to as mesopores
  • those having a pore diameter exceeding 50 nm are referred to as macropores.
  • the tap bulk density is 0.1 g / ml or more and 0.18 g / ml or less.
  • the tap bulk density is less than 0.1 g / ml, the amount that can be adsorbed per volume is small, and when the tap bulk density exceeds 0.18 g / ml, coarse pores that serve as diffusion paths for the adsorbed substance. This is because of the decrease.
  • the pore volume is the sum of the micropore volume and the mesopore volume, and does not include the macropore volume.
  • the macropore volume calculated using the tap bulk density and the pore volume is 3.0 ml / g or more and 10 ml / g or less. If the macropore capacity is less than 3.0 ml / g, gas or liquid may not be diffused smoothly in the pores, but if the macropore capacity exceeds 10 ml / g, adsorption is possible. This is because the amount is significantly reduced.
  • the micropore capacity calculated from the nitrogen adsorption isotherm measured at 77K using nitrogen as an adsorption gas is 0.2 ml / g or more and 1.0 ml / g or less.
  • the micropore capacity is less than 0.2 ml / g, the adsorption amount of gas or liquid is small, and it does not function effectively as a gas adsorbent having a particularly small molecular diameter.
  • the micropore capacity exceeds 1.0 ml / g, the tap bulk density and the following mesopore values cannot be satisfied simultaneously.
  • the mesopore capacity calculated from the nitrogen adsorption isotherm measured at 77K using nitrogen as an adsorption gas is 0.8 ml / g or more and 1.5 ml / g or less. If the mesopore capacity is less than 0.8 ml / g, gas or liquid diffusion or relatively large molecule adsorption may not be performed smoothly, while the mesopore capacity exceeds 1.5 ml / g. This is because the capacity of the micropores is reduced.
  • the carbonaceous wall preferably has a three-dimensional network structure. If the carbonaceous wall has a three-dimensional network structure, the flow of gas or liquid is not hindered, so that the adsorption ability of gas or liquid is improved.
  • the mesopores are open pores and that the pore portions are continuous. With such a configuration, the flow of gas or liquid becomes smoother.
  • FIG. 1 It is a figure which shows the manufacturing process of the porous carbon of this invention, Comprising: The figure (a) is explanatory drawing which shows the state which mixed polyvinyl alcohol and magnesium oxide, The figure (b) shows the state which heat-processed the mixture. Explanatory drawing and the same figure (c) are explanatory drawings which show porous carbon. Expansion explanatory drawing of the porous carbon of this invention.
  • TEM transmission electron microscope
  • an organic resin is wet or dry mixed with an oxide (template particle) in a solution or powder state, and the mixture is carbonized in a non-oxidizing atmosphere or a reduced-pressure atmosphere, for example, at a temperature of 500 ° C. or higher. Thereafter, it can be manufactured by removing the oxide by washing.
  • the porous carbon has a large number of mesopores and / or macropores having substantially the same size, and the mesopores and / or macropores in the carbonaceous wall formed between the mesopores and / or macropores. Micropores communicating with mesopores and / or macropores are formed at the facing positions.
  • a polyimide containing at least one or more nitrogen or fluorine atoms in the unit structure or a resin having a carbonization yield of 40 wt% or more and 85 wt% or less, such as a phenol resin or pitch, is preferably used.
  • the polyimide containing at least one nitrogen or fluorine atom in the unit structure can be obtained by polycondensation of an acid component and a diamine component.
  • a polyamic acid film which is a polyimide precursor is formed, and the solvent is removed by heating to obtain a polyamic acid film.
  • a polyimide can be manufactured by thermally imidating the obtained polyamic acid film at 200 ° C. or higher.
  • diamine examples include 2,2-bis (4-aminophenyl) hexafluoropropane [2,2-Bis (4-aminophenyl) hexafluoropropane], 2,2-bis (trifluoromethyl) -benzidine [2,2 ′.
  • the acid component includes 4,4-hexafluoroisopropylidenediphthalic anhydride (6FDA) containing a fluorine atom and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride containing no fluorine atom.
  • 6FDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • BPDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • PMDA pyromellitic dianhydride
  • the organic solvent used as a solvent for the polyimide precursor include N-methyl-2-pyrrolidone and dimethylformamide.
  • the imidization method is shown in a known method (for example, see “New Polymer Experimental Science” edited by the Society of Polymer Science, Kyoritsu Shuppan, March 28, 1996, Volume 3, Synthesis and Reaction of Polymers (2), page 158). Thus, either heating or chemical imidization may be followed, and the present invention is not affected by this imidization method. Furthermore, as resins other than polyimide, those having a carbon yield of 40% or more, such as petroleum tar pitch and acrylic resin, can be used.
  • the raw material used as the oxide is a metal organic acid (magnesium citrate, Magnesium oxalate, calcium citrate, calcium oxalate, etc.) can also be used.
  • a general inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, acetic acid, formic acid is used, and it is preferably used as a dilute acid of 2 mol / l or less. It is also possible to use hot water of 80 ° C. or higher.
  • the diameter of the oxide is preferably 10 nm or more and 5 ⁇ m or less, and particularly preferably 50 nm or more and 5 ⁇ m or less. If the oxide diameter is too small, the number of macropores may be too small, while if the oxide diameter is too large, the surface area of the porous carbon may be too small.
  • the weight ratio of the oxide (template particle) to the organic resin is preferably 1: 9 to 9: 1, and particularly preferably 3: 7 to 8: 2, and among these, 5: 5-7: 3 is desirable.
  • Example 1-1 First, as shown in FIG. 1A, magnesium oxide (MgO, average particle diameter is 50 nm) 2 as a template particle and polyvinyl alcohol 1 as a carbon precursor were mixed at a weight ratio of 3: 2. . Next, as shown in FIG.1 (b), this mixture was heat-processed at 1000 degreeC in nitrogen atmosphere for 2 hours, and the baked material provided with the carbonaceous wall 3 was obtained by thermally decomposing polyvinyl alcohol. Next, as shown in FIG. 1C, the obtained fired product was washed with a sulfuric acid solution added at a rate of 1 mol / l to completely elute MgO.
  • MgO magnesium oxide
  • porous porous carbon 5 having a large number of mesopores (or macropores) 4 having a pore diameter of around 50 nm was obtained.
  • the porous carbon material thus produced is hereinafter referred to as the present invention material A.
  • the material A of the present invention has a three-dimensional network structure (sponge-like carbon shape), and the mesopores (or macros) It was recognized that the pores were open pores and the pore portions were continuous. Further, when the mesopore (or macropore) is enlarged, the mesopore (or macropore) 4 communicates with the carbonaceous wall 3 constituting the outline of the mesopore (or macropore) 4 as shown in FIG. Thus, a large number of micropores 7 are formed.
  • Example 1-2 Porous carbon was prepared in the same manner as in Example 1-1, but in a different lot.
  • the porous carbon material thus produced is hereinafter referred to as the present invention material A ′.
  • Example 2-1 The above procedure was performed except that the heat treatment was performed on magnesium citrate nonahydrate having both the function as the template particle and the function as the carbon precursor, instead of heat treatment after adding and mixing the template particle and the carbon precursor.
  • Porous carbon was produced in the same manner as in Example 1. In the magnesium citrate nonahydrate, the citric acid portion becomes a carbon precursor and the magnesium portion becomes a template precursor.
  • the porous carbon material thus produced is hereinafter referred to as the present invention material B.
  • the material B of the present invention has a three-dimensional network structure (sponge-like carbon shape), and the template particles are eluted. Since the diameter of the subsequent holes was around 10 nm, it was found that the holes formed directly from the template particles were mesopores. However, like the above-mentioned material A of the present invention, the mesopores are open pores, and the pore portions are continuous.
  • the pores directly formed by the template particles may be macropores, but the macropores may be formed by combining the mesopores.
  • the mesopores (or macropores) of the material B of the present invention are enlarged, the mesopores (or macropores) are formed in the carbonaceous wall constituting the outline of the mesopores (or macropores) as in the case of the material A of the present invention. In this structure, a large number of micropores communicating with each other are formed.
  • Example 2-2 Porous carbon was prepared in the same manner as in Example 2-1 above, but in a different lot.
  • the porous carbon material thus produced is hereinafter referred to as the present invention material B ′.
  • Comparative Example 1 Y-type zeolite (HS-320 manufactured by Wako Pure Chemical Industries, Ltd.) was used. Hereinafter, such a material is referred to as a comparative material Z.
  • Comparative Example 2 A phenol resin was used as a raw material, and after heat treatment at 900 ° C. for 1 hour in a nitrogen stream, activation treatment was performed at 900 ° C. for 1 hour in a steam stream to produce activated carbon.
  • a comparative material Y such a material is referred to as a comparative material Y.
  • the inventive materials A, A ′, B, and B ′ have a larger pore volume and mesopore volume than the comparative materials Y and Z. Further, it can be seen that the inventive materials A, A ′, B and B ′ have sufficiently developed micropores and a BET specific surface area of 580 ml / g or more, which is sufficiently large. Furthermore, compared with the comparative material Y, the inventive materials A, A ′, B and B ′ have a very large macropore capacity, and due to this, the tap bulk density is low. It is done.
  • the materials A, A ′, B and B ′ of the present invention show a relatively large mass transfer coefficient.
  • the mass transfer coefficients of the materials A and A ′ of the present invention were 2 to 5 times the mass transfer coefficient of activated carbon conventionally used.
  • the mass transfer coefficient of the inventive materials A, A ′, B, and B ′ increases as shown in Experiment 1 above, while maintaining the capacity of the micropores to a certain extent and the capacity of the mesopores and macropores. This is thought to be due to the improvement in the area (particularly the macropore capacity).
  • the values of a and b were calculated by drawing approximate curves from four or three survey points.
  • This line segment Z is shown in FIG.
  • This line segment Y is shown in FIG.
  • the line segment is above the line segment Y and the line segment Z, below the line segment B and the line segment B ′, and in the range of 1.0 ⁇ 10 ⁇ 5 ⁇ x ⁇ 1.0 ⁇ 10 ⁇ 4.
  • a line segment C not intersecting with B, B ′, Y, Z was obtained.
  • the reason for limiting to 1.0 ⁇ 10 ⁇ 5 ⁇ x is that if the value of x is too small, the pores are too fine and the number of effective pores in many adsorbent materials becomes extremely small. .
  • the reason for limiting x ⁇ 1.0 ⁇ 10 ⁇ 4 is that if the value of x is too large, not only the phenomenon of adsorption to micropores but also the phenomenon of adsorption of larger pores with respect to the value of y It is considered that the influence of.
  • the line is above the line segment B and the line segment B ′, below the line segment A and the line segment A ′, and in the range of 1.0 ⁇ 10 ⁇ 5 ⁇ x ⁇ 1.0 ⁇ 10 ⁇ 4.
  • a line segment D not intersecting with the minutes A, A ′, B, B ′ was obtained.
  • the line segments C and D are shown in FIG.
  • the line segments C and D were obtained as follows. First, the mass transfer coefficient (K sap ) when the relative pressure (P / P 0 ) was 1.00 ⁇ 10 ⁇ 5 and 1.00 ⁇ 10 ⁇ 4 was set as shown in Table 3 below.
  • the present invention can be used for canisters, chemical heat pump gases, and the like.

Abstract

The purpose of the present invention is to provide an adsorbing/desorbing material which comprises a porous carbon material and which can smoothly conduct the adsorption and desorption of gas or liquid. An adsorbing/desorbing material that comprises a porous carbon material which is provided with micropores and mesopores and/or macropores, these three kinds of pores being surrounded by carbonaceous walls, and in which the micropores are formed so as to connect to the mesopores and/or the macropores, characterized in that x falls within a range specified by the formula 1.0×10-5 ≤ x ≤ 1.0×10-4, and x and y satisfy formula (1) y ≥ 1.67×10-1x + 2.33×10-6 ··· (1) [wherein x is a relative pressure (P/P0) as determined using nitrogen as an adsorbate gas at 77K, and y is a mass transfer coefficient (Ksap) as determined similarly].

Description

吸着/脱離剤Adsorption / desorption agent
 本発明は吸着/脱離剤に関するものである。 The present invention relates to an adsorption / desorption agent.
 ガソリン蒸気の吸着、脱着を繰り返して大気汚染を抑制するキャニスターや、化学物質が再結合するときに出す反応熱を外部に取り出すと共に、該化学物質を再循環使用する仕組みのケミカルヒートポンプ等には、炭素材料等が用いられている。この場合、炭素材料として活性炭や、ゼオライト等を用いると、小さな孔が多数形成される構造(表面積が大きな構造)であるため、ガスが吸着され易く吸着容量が大きくなるが、ガスや液体の脱離が困難となるという課題を有していた。一方、大きな細孔を有する炭素材料は、上記活性炭等よりも表面積が小さくなってしまうので、ガスを吸着し難く、吸着容量が小さくなるという課題を有していた。このため、ガスを吸着し易く、しかも、ガスの脱離を容易に行うことができる材料は無かった。 For canisters that suppress the air pollution by repeatedly adsorbing and desorbing gasoline vapor, and for chemical heat pumps that take out reaction heat generated when chemical substances recombine and recycle the chemical substances, etc. Carbon materials are used. In this case, when activated carbon, zeolite, or the like is used as the carbon material, it has a structure in which many small pores are formed (structure with a large surface area), so that the gas is easily adsorbed and the adsorption capacity is increased. It had the problem that separation would be difficult. On the other hand, since the carbon material having large pores has a smaller surface area than the above activated carbon or the like, it has a problem that it is difficult to adsorb gas and the adsorption capacity becomes small. For this reason, there is no material that can easily adsorb gas and can easily desorb gas.
 ここで、表面積が大きな材料(活性炭等)と、大きな細孔を有する炭素材料とを混合すれば、上記課題を解決できるとも考えられる。しかしながら、単に2つの材料を混合するだけでは、ミクロ的にみると両材料は不均一に存在し、しかも、両材料の粒度の違いに起因して、時間経過と共に両材料が分離する。このため、キャニスター等の性能が劣化してしまう恐れがあった。 Here, it is considered that the above problem can be solved by mixing a material having a large surface area (eg, activated carbon) and a carbon material having large pores. However, when the two materials are simply mixed, the two materials are present non-uniformly from a microscopic viewpoint, and the two materials are separated over time due to the difference in particle size between the two materials. For this reason, there existed a possibility that performance, such as a canister, might deteriorate.
 また、活性炭とバインダーとメルタブルコア物質とを混合、成形した後、焼成することにより、吸着材を作製する方法が提案されている(下記特許文献1参照)。 In addition, a method for producing an adsorbent by mixing activated carbon, a binder, and a meltable core substance, molding, and then firing is proposed (see Patent Document 1 below).
特開2011-132903号公報JP 2011-132903 A
 上記特許文献1に記載のキャニスター用吸着材では、メルタブルコア物質が焼成時の熱的影響を受けて気化、昇華または分解によって実質的に消失することにより、100nm以上の細孔を形成する構成である。しかしながら、このような方法で作製すると、メルタブルコア物質の気化等により形成された細孔の近傍に、必ずしも活性炭が存在しない場合があり、また、存在していても活性炭の量が不均一となる。このため、ガスの吸着、脱離を円滑に行うことができないという課題があった。 The adsorbent for canister described in Patent Document 1 has a configuration in which a meltable core material is subjected to thermal influence during firing and substantially disappears by vaporization, sublimation, or decomposition, thereby forming pores of 100 nm or more. . However, when produced by such a method, activated carbon may not necessarily be present in the vicinity of the pores formed by vaporization of the meltable core substance, and even if it is present, the amount of activated carbon becomes non-uniform. For this reason, there existed a subject that adsorption and desorption of gas could not be performed smoothly.
 そこで本発明は、ガスや液体の吸着、脱離を円滑に行うことができる多孔質炭素を含む吸着/脱離剤を提供することを目的としている。 Therefore, an object of the present invention is to provide an adsorption / desorption agent containing porous carbon that can smoothly adsorb and desorb gas and liquid.
 上記目的を達成するために本発明は、ミクロ孔と、メソ孔及び/又はマクロ孔とを備え、これら3種の孔の外郭は炭素質壁で構成されると共に、上記メソ孔及び/又はマクロ孔と連通するように上記ミクロ孔が形成される構造の多孔質炭素を含む吸着/脱離剤であって、窒素を吸着ガスとして用い、77Kで測定した際の相対圧(P/P)をxとし、物質移動係数(Ksap)をyとした場合、xが1.0×10-5≦x≦1.0×10-4の範囲で、xとyとの関係が下記(1)式を満たしていることを特徴とする。
 y≧1.67×10-1x+2.33×10-6・・・(1)
In order to achieve the above object, the present invention comprises micropores, mesopores and / or macropores, and the outline of these three types of pores is composed of a carbonaceous wall, and the mesopores and / or macropores are provided. An adsorption / desorption agent containing porous carbon having a structure in which the micropores are formed so as to communicate with the pores, using nitrogen as an adsorption gas, and a relative pressure (P / P 0 ) measured at 77K Where x is x and mass transfer coefficient (K sap ) is y, x is in the range of 1.0 × 10 −5 ≦ x ≦ 1.0 × 10 −4 , and the relationship between x and y is (1 ) Is satisfied.
y ≧ 1.67 × 10 −1 x + 2.33 × 10 −6 (1)
 気体又は液体の多孔質固体(多孔質炭素等)への吸着、脱離現象の律速過程は、一般に、細孔内や境膜での物質移動過程であると考えられている。したがって、吸着、脱離速度の大小は、物質移動係数によって評価することができる。上記構成の如く、相対圧(P/Pであり、Pは吸着平衡圧、Pは飽和蒸気圧)と物質移動係数(Ksap)との関係が(1)式を満たしていれば、気体又は液体の多孔質炭素への吸着、脱離が円滑に行われることになる。具体的には、以下の通りである。尚、物質移動係数(Ksap)とは、物質が濃度(圧力)差を駆動力として移動する時の、物質移動の速さを表わす指標である。 The rate-determining process of adsorption and desorption phenomena on gas or liquid porous solids (porous carbon or the like) is generally considered to be a mass transfer process in the pores or in the boundary film. Therefore, the magnitude of the adsorption / desorption rate can be evaluated by the mass transfer coefficient. As in the above configuration, if the relationship between the relative pressure (P / P 0 , P is the adsorption equilibrium pressure, P 0 is the saturated vapor pressure) and the mass transfer coefficient (K sap ) satisfies the equation (1), Adsorption and desorption of gas or liquid on porous carbon are performed smoothly. Specifically, it is as follows. The mass transfer coefficient (K sap ) is an index representing the speed of mass transfer when the substance moves using the concentration (pressure) difference as a driving force.
 多孔質炭素にミクロ孔が存在すれば、気体や液体を多孔質炭素に容易に吸着させることができる一方、多孔質炭素にメソ孔及び/又はマクロ孔が存在すれば、気体や液体を多孔質炭素から容易に脱離させることができる。しかしながら、単に、ミクロ孔とメソ孔及び/又はマクロ孔とが存在するだけでは、ミクロ孔とメソ孔及び/又はマクロ孔との間で、気体や液体が円滑に移動できなくなって、気体や液体を吸着できるが、気体や液体が脱離し難くなる。しかしながら、上記構成の如く、メソ孔及び/又はマクロ孔と連通するようにミクロ孔が形成されていれば、ミクロ孔で吸着された気体や液体は、メソ孔やマクロ孔に容易に移動することができる。したがって、ミクロ孔によって気体や液体を容易に吸着できると共に、メソ孔及び/又はマクロ孔によって気体又は液体の脱離も極めて円滑に行われる。このことから、上記の如く、相対圧(P/P)と物質移動係数(Ksap)との関係が(1)式を満たすことが可能となる。 If micropores exist in the porous carbon, gas or liquid can be easily adsorbed to the porous carbon, while if mesopores and / or macropores exist in the porous carbon, the gas or liquid can be made porous. It can be easily desorbed from carbon. However, simply by the presence of micropores and mesopores and / or macropores, gas and liquid cannot move smoothly between micropores and mesopores and / or macropores. Can be adsorbed, but gas and liquid are difficult to desorb. However, if the micropores are formed so as to communicate with the mesopores and / or macropores as described above, the gas or liquid adsorbed in the micropores can easily move to the mesopores or macropores. Can do. Therefore, gas and liquid can be easily adsorbed by the micropores, and gas or liquid can be desorbed very smoothly by the mesopores and / or macropores. From this, as described above, the relationship between the relative pressure (P / P 0 ) and the mass transfer coefficient (K sap ) can satisfy the expression (1).
 尚、xの範囲を1.0×10-5≦x≦1.0×10-4に限定したのは、小さな相対圧でも吸着サイトとして有効に働くような微細なミクロ孔への吸着現象を指標化するためである。1.0×10-5≦xに限定したのは、xの値が余りに小さいと、細孔は微細すぎて、多くの吸着材料で有効な細孔が極めて少なくなることを考慮したものである。また、x≦1.0×10-4に限定したのは、xの値があまりにも大きいと、yの値に対して、ミクロ細孔への吸着現象だけでなくより大きな細孔の吸着現象の影響が現れることを考慮したものである。
 ここで、本明細書においては、孔径が2nm未満のものをミクロ孔、孔径が2~50nmのものをメソ孔、孔径が50nmを超えるものをマクロ孔と称する。
Note that the range of x was limited to 1.0 × 10 −5 ≦ x ≦ 1.0 × 10 −4 because the adsorption phenomenon to fine micropores that effectively function as an adsorption site even at a small relative pressure. This is for indexing. The reason for limiting to 1.0 × 10 −5 ≦ x is that if the value of x is too small, the pores are too fine and the number of effective pores in many adsorbent materials becomes extremely small. . Further, the reason for limiting x ≦ 1.0 × 10 −4 is that if the value of x is too large, not only the phenomenon of adsorption to micropores but also the phenomenon of adsorption of larger pores with respect to the value of y It is considered that the influence of.
Here, in this specification, those having a pore diameter of less than 2 nm are referred to as micropores, those having a pore diameter of 2 to 50 nm are referred to as mesopores, and those having a pore diameter exceeding 50 nm are referred to as macropores.
 上記xとyとの関係が下記(2)式を満たしていることが望ましい。
 y≧6.00×10-1x・・(2)
 (2)式を満たしていれば、気体又は液体の吸着、脱離が、一層円滑に行われることになる。
It is desirable that the relationship between x and y satisfies the following formula (2).
y ≧ 6.00 × 10 −1 x ·· (2)
If the formula (2) is satisfied, the adsorption or desorption of gas or liquid will be performed more smoothly.
 タップかさ密度が0.1g/ml以上0.18g/ml以下であることが望ましい。
 タップかさ密度が0.1g/ml未満であると、体積あたりの吸着可能な量が少なく、タップかさ密度が0.18g/mlを超えると、吸着される物質の拡散通路となる粗大な細孔が減少するからである。
It is desirable that the tap bulk density is 0.1 g / ml or more and 0.18 g / ml or less.
When the tap bulk density is less than 0.1 g / ml, the amount that can be adsorbed per volume is small, and when the tap bulk density exceeds 0.18 g / ml, coarse pores that serve as diffusion paths for the adsorbed substance. This is because of the decrease.
 窒素を吸着ガスとして用い、77Kで測定した際に、相対圧P/P=0.95での吸着量から求めた細孔容量が、1.3ml/g以上2.1ml/g未満であることが望ましい。
 細孔容量が1.3ml/g未満であると、重量当たりの吸着可能な量が小さすぎる一方、細孔容量が2.1ml/gを超えると、平均細孔径が大きくなり、分子の吸着に有効なミクロ孔が減少するためである。
 尚、ここにいう細孔容量とは、ミクロ孔の容量とメソ孔の容量との和であり、マクロ孔の容量は含まない。
When using nitrogen as an adsorption gas and measuring at 77K, the pore volume determined from the adsorption amount at a relative pressure P / P 0 = 0.95 is 1.3 ml / g or more and less than 2.1 ml / g. It is desirable.
When the pore volume is less than 1.3 ml / g, the adsorbable amount per weight is too small. On the other hand, when the pore volume exceeds 2.1 ml / g, the average pore diameter is increased, and the molecule is adsorbed. This is because effective micropores are reduced.
Here, the pore volume is the sum of the micropore volume and the mesopore volume, and does not include the macropore volume.
 上記タップかさ密度と上記細孔容量とを用いて算出した上記マクロ孔の容量が、3.0ml/g以上10ml/g以下であることが望ましい。
 マクロ孔の容量が3.0ml/g未満であると、気体又は液体の細孔内での拡散が円滑に行われなくなることがある一方、マクロ孔の容量が10ml/gを超えると、吸着可能な量が著しく低下するためである。
It is desirable that the macropore volume calculated using the tap bulk density and the pore volume is 3.0 ml / g or more and 10 ml / g or less.
If the macropore capacity is less than 3.0 ml / g, gas or liquid may not be diffused smoothly in the pores, but if the macropore capacity exceeds 10 ml / g, adsorption is possible. This is because the amount is significantly reduced.
 窒素を吸着ガスとして用い、77Kで測定した窒素吸着等温線より算出されるミクロ孔の容量が0.2ml/g以上1.0ml/g以下であることが望ましい。
 ミクロ孔の容量が0.2ml/g未満であると、気体又は液体の吸着量が少なく、特に分子径の小さなガス吸着剤として有効に機能しない。一方、ミクロ孔の容量が1.0ml/gを超えると、上記タップかさ密度と下記メソ孔の値を同時に満たすことができなくなる。
It is desirable that the micropore capacity calculated from the nitrogen adsorption isotherm measured at 77K using nitrogen as an adsorption gas is 0.2 ml / g or more and 1.0 ml / g or less.
When the micropore capacity is less than 0.2 ml / g, the adsorption amount of gas or liquid is small, and it does not function effectively as a gas adsorbent having a particularly small molecular diameter. On the other hand, if the micropore capacity exceeds 1.0 ml / g, the tap bulk density and the following mesopore values cannot be satisfied simultaneously.
 窒素を吸着ガスとして用い、77Kで測定した窒素吸着等温線より算出されるメソ孔の容量が0.8ml/g以上1.5ml/g以下であることが望ましい。
 メソ孔の容量が0.8ml/g未満であると、気体又は液体の拡散や比較的大きな分子の吸着が円滑に行われなくなることがある一方、メソ孔の容量が1.5ml/gを超えると、ミクロ孔の容量が減少するためである。
It is desirable that the mesopore capacity calculated from the nitrogen adsorption isotherm measured at 77K using nitrogen as an adsorption gas is 0.8 ml / g or more and 1.5 ml / g or less.
If the mesopore capacity is less than 0.8 ml / g, gas or liquid diffusion or relatively large molecule adsorption may not be performed smoothly, while the mesopore capacity exceeds 1.5 ml / g. This is because the capacity of the micropores is reduced.
(その他の事項)
 上記炭素質壁は3次元網目構造を成すことが望ましい。炭素質壁が3次元網目構造であれば、気体や液体の流れを阻害しないので、気体や液体の吸着能が向上する。
(Other matters)
The carbonaceous wall preferably has a three-dimensional network structure. If the carbonaceous wall has a three-dimensional network structure, the flow of gas or liquid is not hindered, so that the adsorption ability of gas or liquid is improved.
 上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが望ましい。このような構成であれば、気体や液体の流れがより円滑になる。 It is desirable that the mesopores are open pores and that the pore portions are continuous. With such a configuration, the flow of gas or liquid becomes smoother.
 本発明によれば、ガスや液体の吸着、脱離を円滑に行うことができる多孔質炭素を含む吸着/脱離剤を提供できるといった優れた効果を奏する。 According to the present invention, there is an excellent effect that it is possible to provide an adsorption / desorption agent containing porous carbon that can smoothly adsorb and desorb gas and liquid.
本発明の多孔質炭素の製造工程を示す図であって、同図(a)はポリビニルアルコールと酸化マグネシウムとを混合した状態を示す説明図、同図(b)は混合物を熱処理した状態を示す説明図、同図(c)は多孔質炭素を示す説明図である。It is a figure which shows the manufacturing process of the porous carbon of this invention, Comprising: The figure (a) is explanatory drawing which shows the state which mixed polyvinyl alcohol and magnesium oxide, The figure (b) shows the state which heat-processed the mixture. Explanatory drawing and the same figure (c) are explanatory drawings which show porous carbon. 本発明の多孔質炭素の拡大説明図。Expansion explanatory drawing of the porous carbon of this invention. 本発明材料AのTEM(透過型電子顕微鏡)写真。TEM (transmission electron microscope) photograph of the material A of the present invention. 本発明材料BのTEM写真。TEM photograph of invention material B. 相対圧力とNの物質移動係数との関係を示すグラフ。Graph showing the relationship between the mass transfer coefficient of the relative pressure and N 2.
 以下、本発明の実施形態を以下に説明する。
 本発明の多孔質炭素は、有機質樹脂を、酸化物(鋳型粒子)と溶液または粉末状態において湿式もしくは乾式混合し、混合物を非酸化雰囲気或いは減圧雰囲気で、例えば500℃以上の温度で炭化させた後、洗浄処理することで酸化物を取り除いて作製することができる。
Embodiments of the present invention will be described below.
In the porous carbon of the present invention, an organic resin is wet or dry mixed with an oxide (template particle) in a solution or powder state, and the mixture is carbonized in a non-oxidizing atmosphere or a reduced-pressure atmosphere, for example, at a temperature of 500 ° C. or higher. Thereafter, it can be manufactured by removing the oxide by washing.
 上記多孔質炭素は、大きさが略同等である多数のメソ孔及び/マクロ孔を有しており、このメソ孔及び/マクロ孔間に形成された炭素質壁におけるメソ孔及び/マクロ孔に臨む位置には、メソ孔及び/マクロ孔と連通するミクロ孔が形成されている。 The porous carbon has a large number of mesopores and / or macropores having substantially the same size, and the mesopores and / or macropores in the carbonaceous wall formed between the mesopores and / or macropores. Micropores communicating with mesopores and / or macropores are formed at the facing positions.
 上記有機質樹脂としては、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドもしくは炭素化収率が40重量%以上85重量%以下の樹脂、例えばフェノール樹脂やピッチが好ましく用いられる。
 ここで、上記単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドは、酸成分とジアミン成分との重縮合により得ることができる。但し、この場合、酸成分及びジアミン成分のいずれか一方又は両方に、一つ以上の窒素原子もしくはフッ素原子を含む必要がある。
 具体的には、ポリイミドの前駆体であるポリアミド酸を成膜し、溶媒を加熱除去することによりポリアミド酸膜を得る。次に、得られたポリアミド酸膜を200℃以上で熱イミド化することによりポリイミドを製造することができる。
As the organic resin, a polyimide containing at least one or more nitrogen or fluorine atoms in the unit structure, or a resin having a carbonization yield of 40 wt% or more and 85 wt% or less, such as a phenol resin or pitch, is preferably used.
Here, the polyimide containing at least one nitrogen or fluorine atom in the unit structure can be obtained by polycondensation of an acid component and a diamine component. However, in this case, it is necessary that one or both of the acid component and the diamine component contain one or more nitrogen atoms or fluorine atoms.
Specifically, a polyamic acid film which is a polyimide precursor is formed, and the solvent is removed by heating to obtain a polyamic acid film. Next, a polyimide can be manufactured by thermally imidating the obtained polyamic acid film at 200 ° C. or higher.
 前記ジアミンとしては、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン〔2,2-Bis(4-aminophenyl)hexafluoropropane〕、2,2-ビス(トリフルオロメチル)-ベンジジン〔2,2’-Bis(trifluoromethyl)-benzidine〕、4,4’-ジアミノオクタフルオロビフェニルや、3,3’-ジフルオロ-4,4’-ジアミノジフェニルメタン,3,3’-ジフルオロ-4,4’-ジアミノジフェニルエーテル、3,3’-ジ(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、3,3’-ジフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’-ジフルオロ-4,4’-ジアミノジフェニルヘキサフルオロプロパン、3,3’-ジフルオロ-4,4’-ジアミノベンゾフェノン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラフルオロ-4,4-ジアミノジフェニルヘキサフルオロプロパン、1,3-ジアミノ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフロオロー5-(パ-フルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロノネニルオキシ)べンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2一ジアミノ-4-ブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロノネニルオキシ)べンゼン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4一ジアミノ-2-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-プロモ-5-(パーフルオロヘキセニルオキシ)ベンゼンやフッ素原子を含まないp-フェニレンジアミン(PPD)、ジオキシジアニリン等の芳香族ジアミンが例示できる。また、上記ジアミン成分は上記各芳香族ジアミンを2種以上組み合わせて使用してもよい。 Examples of the diamine include 2,2-bis (4-aminophenyl) hexafluoropropane [2,2-Bis (4-aminophenyl) hexafluoropropane], 2,2-bis (trifluoromethyl) -benzidine [2,2 ′. -Bis (trifluoromethyl) -benzidine], 4,4'-diaminooctafluorobiphenyl, 3,3'-difluoro-4,4'-diaminodiphenylmethane, 3,3'-difluoro-4,4'-diaminodiphenyl ether, 3,3′-di (trifluoromethyl) -4,4′-diaminodiphenyl ether, 3,3′-difluoro-4,4′-diaminodiphenylpropane, 3,3′-difluoro-4,4′-diaminodiphenyl Hexafluoropropane, 3,3 ' Difluoro-4,4′-diaminobenzophenone, 3,3 ′, 5,5′-tetrafluoro-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetra (trifluoromethyl) -4, 4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetrafluoro-4,4'-diaminodiphenylpropane, 3,3', 5,5'-tetra (trifluoromethyl) -4,4'- Diaminodiphenylpropane, 3,3 ′, 5,5′-tetrafluoro-4,4-diaminodiphenylhexafluoropropane, 1,3-diamino-5- (perfluorononenyloxy) benzene, 1,3-diamino- 4-methyl-5- (perfluorononenyloxy) benzene, 1,3-diamino-4-methoxy-5- (perfluorononenyloxy) benzene, , 3-Diamino-2,4,6-trifluoro-5- (perfluorononenyloxy) benzene, 1,3-diamino-4-chloro-5- (perfluorononenyloxy) benzene, 1,3-diamino -4-Pubromo-5- (perfluorononenyloxy) benzene, 1,2-diamino-4- (perfluorononenyloxy) benzene, 1,2-diamino-4-methyl-5- (perfluorononenyl) Oxy) benzene, 1,2-diamino-4-methoxy-5- (perfluorononenyloxy) benzene, 1,2-diamino-3,4,6-trifluoro-5- (perfluorononenyloxy) , 1,2-diamino-4-chloro-5- (perfluorononenyloxy) benzene, 1,2-diamino-4-bromo-5- (perfluorononenyl) Oxy) benzene, 1,4-diamino-3- (perfluorononenyloxy) benzene, 1,4-diamino-2-methyl-5- (perfluorononenyloxy) benzene, 1,4-diamino-2 -Methoxy-5- (perfluorononenyloxy) benzene, 1,4-diamino-2,3,6-trifluoro-5- (perfluorononenyloxy) benzene, 1,4-diamino-2-chloro- 5- (perfluorononenyloxy) benzene, 1,4-diamino-2-pbromo-5- (perfluorononenyloxy) benzene, 1,3-diamino-5- (perfluorohexenyloxy) benzene, 1, 3-diamino-4-methyl-5- (perfluorohexenyloxy) benzene, 1,3-diamino-4-methoxy-5- (perfluorohexenyl) Oxy) benzene, 1,3-diamino-2,4,6-trifluoro-5- (perfluorohexenyloxy) benzene, 1,3-diamino-4-chloro-5- (perfluorohexenyloxy) benzene, 1 , 3-Diamino-4-bromo-5- (perfluorohexenyloxy) benzene, 1,2-diamino-4- (perfluorohexenyloxy) benzene, 1,2-diamino-4-methyl-5- (perfluoro Hexenyloxy) benzene, 1,2-diamino-4-methoxy-5- (perfluorohexenyloxy) benzene, 1,2-diamino-3,4,6-trifluoro-5- (perfluorohexenyloxy) benzene, 1,2-diamino-4-chloro-5- (perfluorohexenyloxy) benzene, 1,2-diamino-4 Bromo-5- (perfluorohexenyloxy) benzene, 1,4-diamino-3- (perfluorohexenyloxy) benzene, 1,4-diamino-2-methyl-5- (perfluorohexenyloxy) benzene, 1, 4-diamino-2-methoxy-5- (perfluorohexenyloxy) benzene, 1,4-diamino-2,3,6-trifluoro-5- (perfluorohexenyloxy) benzene, 1,4-diamino-2 -Chloro-5- (perfluorohexenyloxy) benzene, 1,4-diamino-2-promo-5- (perfluorohexenyloxy) benzene, p-phenylenediamine (PPD) containing no fluorine atom, dioxydianiline An aromatic diamine such as The diamine component may be used in combination of two or more of the above aromatic diamines.
 一方、酸成分としては、フッ素原子を含む4,4-ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、およびフッ素原子を含まない3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)等が挙げられる。
 また、ポリイミド前駆体の溶媒として用いる有機溶媒は、N-メチル-2-ピロリドン、ジメチルホルムアミド等が挙げられる。
On the other hand, the acid component includes 4,4-hexafluoroisopropylidenediphthalic anhydride (6FDA) containing a fluorine atom and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride containing no fluorine atom. Product (BPDA), pyromellitic dianhydride (PMDA) and the like.
Examples of the organic solvent used as a solvent for the polyimide precursor include N-methyl-2-pyrrolidone and dimethylformamide.
 イミド化の手法としては公知の方法〔例えば高分子学会編「新高分子実験学」共立出版、1996年3月28日、第3巻高分子の合成・反応(2)158頁参照〕に示されるように、加熱あるいは化学イミド化のどちらの方法に従ってもよく、本発明はこのイミド化の方法には左右されない。
 更に、ポリイミド以外の樹脂としては、石油系タールピッチ、アクリル樹脂等40%以上の炭素収率を持つものが使用できる。
The imidization method is shown in a known method (for example, see “New Polymer Experimental Science” edited by the Society of Polymer Science, Kyoritsu Shuppan, March 28, 1996, Volume 3, Synthesis and Reaction of Polymers (2), page 158). Thus, either heating or chemical imidization may be followed, and the present invention is not affected by this imidization method.
Furthermore, as resins other than polyimide, those having a carbon yield of 40% or more, such as petroleum tar pitch and acrylic resin, can be used.
 一方、上記酸化物として用いる原料はアルカリ土類金属酸化物(酸化マグネシウム、酸化カルシウム等)の他に、熱処理により熱分解過程で酸化マグネシウムへと状態が変化する、金属有機酸(クエン酸マグネシウム、シュウ酸マグネシウム、クエン酸カルシウム、シュウ酸カルシウム等)を使用することもできる。
 また、酸化物を取り除く洗浄液としては、塩酸、硫酸、硝酸、クエン酸、酢酸、ギ酸など一般的な無機酸を使用し、2mol/l以下の希酸として用いるのが好ましい。また、80℃以上の熱水を使用することも可能である。
On the other hand, in addition to alkaline earth metal oxides (magnesium oxide, calcium oxide, etc.), the raw material used as the oxide is a metal organic acid (magnesium citrate, Magnesium oxalate, calcium citrate, calcium oxalate, etc.) can also be used.
Further, as the cleaning liquid for removing oxides, a general inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, acetic acid, formic acid is used, and it is preferably used as a dilute acid of 2 mol / l or less. It is also possible to use hot water of 80 ° C. or higher.
 尚、酸化物(鋳型粒子)の径は、10nm以上5μm以下が好ましく、特に50nm以上5μm以下が望ましい。酸化物の径が小さ過ぎると、マクロ孔が少なくなり過ぎることがある一方、酸化物の径が大き過ぎると、多孔質炭素の表面積が小さくなり過ぎることがある。 In addition, the diameter of the oxide (template particle) is preferably 10 nm or more and 5 μm or less, and particularly preferably 50 nm or more and 5 μm or less. If the oxide diameter is too small, the number of macropores may be too small, while if the oxide diameter is too large, the surface area of the porous carbon may be too small.
 また、酸化物(鋳型粒子)と有機質樹脂との重量比率は、1:9~9:1であることが望ましく、特に、3:7~8:2であることが望ましく、その中でも、5:5~7:3であることが望ましい。 The weight ratio of the oxide (template particle) to the organic resin is preferably 1: 9 to 9: 1, and particularly preferably 3: 7 to 8: 2, and among these, 5: 5-7: 3 is desirable.
(実施例1-1)
 先ず、図1(a)に示すように、鋳型粒子としての酸化マグネシウム(MgO、平均粒径は50nm)2と、炭素前駆体としてのポリビニルアルコール1とを、3:2の重量比で混合した。次に、図1(b)に示すように、この混合物を窒素雰囲気中1000℃で2時間熱処理して、ポリビニルアルコールを熱分解させることにより炭素質壁3を備えた焼成物を得た。次いで、図1(c)に示すように、得られた焼成物を1mol/lの割合で添加された硫酸溶液で洗浄して、MgOを完全に溶出させた。これにより、孔径が50nm前後の多数のメソ孔(或いはマクロ孔)4を有する非晶質の多孔質炭素5を得た。
 このようにして作製した多孔質炭素材料を、以下、本発明材料Aと称する。
Example 1-1
First, as shown in FIG. 1A, magnesium oxide (MgO, average particle diameter is 50 nm) 2 as a template particle and polyvinyl alcohol 1 as a carbon precursor were mixed at a weight ratio of 3: 2. . Next, as shown in FIG.1 (b), this mixture was heat-processed at 1000 degreeC in nitrogen atmosphere for 2 hours, and the baked material provided with the carbonaceous wall 3 was obtained by thermally decomposing polyvinyl alcohol. Next, as shown in FIG. 1C, the obtained fired product was washed with a sulfuric acid solution added at a rate of 1 mol / l to completely elute MgO. As a result, amorphous porous carbon 5 having a large number of mesopores (or macropores) 4 having a pore diameter of around 50 nm was obtained.
The porous carbon material thus produced is hereinafter referred to as the present invention material A.
 尚、図3(写真の左下にあるスケールバーは100nmである)に示すように、本発明材料Aは3次元網目構造(スポンジ状のカーボン形状)を成し、更に、上記メソ孔(或いはマクロ孔)は開気孔であって、気孔部分が連続するような構成となっていることが認められた。また、上記メソ孔(或いはマクロ孔)を拡大すると、図2に示すように、メソ孔(或いはマクロ孔)4の外郭を構成する炭素質壁3に、メソ孔(或いはマクロ孔)4と連通するミクロ孔7が多数形成される構造となっていた。 As shown in FIG. 3 (the scale bar in the lower left of the photograph is 100 nm), the material A of the present invention has a three-dimensional network structure (sponge-like carbon shape), and the mesopores (or macros) It was recognized that the pores were open pores and the pore portions were continuous. Further, when the mesopore (or macropore) is enlarged, the mesopore (or macropore) 4 communicates with the carbonaceous wall 3 constituting the outline of the mesopore (or macropore) 4 as shown in FIG. Thus, a large number of micropores 7 are formed.
(実施例1-2)
 上記実施例1-1と同様の方法であるが、別ロットで多孔質炭素を作製した。
 このようにして作製した多孔質炭素材料を、以下、本発明材料A´と称する。
Example 1-2
Porous carbon was prepared in the same manner as in Example 1-1, but in a different lot.
The porous carbon material thus produced is hereinafter referred to as the present invention material A ′.
(実施例2-1)
 鋳型粒子と炭素前駆体とを添加、混合した後に熱処理するのではなく、鋳型粒子としての機能と炭素前駆体としての機能とを兼ね備えたクエン酸マグネシウム9水和物を熱処理した以外は、上記実施例1と同様にして多孔質炭素を作製した。尚、上記クエン酸マグネシウム9水和物では、クエン酸部分が炭素前駆体となり、マグネシウム部分が鋳型前駆体となる。
 このようにして作製した多孔質炭素材料を、以下、本発明材料Bと称する。
Example 2-1
The above procedure was performed except that the heat treatment was performed on magnesium citrate nonahydrate having both the function as the template particle and the function as the carbon precursor, instead of heat treatment after adding and mixing the template particle and the carbon precursor. Porous carbon was produced in the same manner as in Example 1. In the magnesium citrate nonahydrate, the citric acid portion becomes a carbon precursor and the magnesium portion becomes a template precursor.
The porous carbon material thus produced is hereinafter referred to as the present invention material B.
 尚、図4(写真の左下にあるスケールバーは10nmである)に示すように、本発明材料Bは3次元網目構造(スポンジ状のカーボン形状)を成し、また、鋳型粒子を溶出させた後の孔の径は10nm前後であることから、鋳型粒子から直接的に形成される孔はメソ孔となっていることがわかった。但し、上記本発明材料Aと同様、メソ孔は開気孔であって、気孔部分が連続するような構成となっている。 In addition, as shown in FIG. 4 (the scale bar in the lower left of the photograph is 10 nm), the material B of the present invention has a three-dimensional network structure (sponge-like carbon shape), and the template particles are eluted. Since the diameter of the subsequent holes was around 10 nm, it was found that the holes formed directly from the template particles were mesopores. However, like the above-mentioned material A of the present invention, the mesopores are open pores, and the pore portions are continuous.
 また、上記本発明材料Aでは、鋳型粒子により直接的に形成される孔がマクロ孔の場合もあるが、メソ孔が合体することによるマクロ孔が形成される場合もある。更に、本発明材料Bのメソ孔(或いはマクロ孔)を拡大すると、上記本発明材料Aと同様、メソ孔(或いはマクロ孔)の外郭を構成する炭素質壁に、メソ孔(或いはマクロ孔)と連通するミクロ孔が多数形成される構造となっていた。 In the material A of the present invention, the pores directly formed by the template particles may be macropores, but the macropores may be formed by combining the mesopores. Further, when the mesopores (or macropores) of the material B of the present invention are enlarged, the mesopores (or macropores) are formed in the carbonaceous wall constituting the outline of the mesopores (or macropores) as in the case of the material A of the present invention. In this structure, a large number of micropores communicating with each other are formed.
(実施例2-2)
 上記実施例2-1と同様の方法であるが、別ロットで多孔質炭素を作製した。
 このようにして作製した多孔質炭素材料を、以下、本発明材料B´と称する。
(Example 2-2)
Porous carbon was prepared in the same manner as in Example 2-1 above, but in a different lot.
The porous carbon material thus produced is hereinafter referred to as the present invention material B ′.
(比較例1)
 Y型ゼオライト(和光純薬社製HS-320)を用いた。
 このような材料を、以下、比較材料Zと称する。
(Comparative Example 1)
Y-type zeolite (HS-320 manufactured by Wako Pure Chemical Industries, Ltd.) was used.
Hereinafter, such a material is referred to as a comparative material Z.
(比較例2)
 フェノール樹脂を原料に用い、窒素気流中で900℃、1時間の熱処理を行った後、水蒸気気流中で900℃、1時間の賦活処理を行い、活性炭を作製した。
 このような材料を、以下、比較材料Yと称する。
(Comparative Example 2)
A phenol resin was used as a raw material, and after heat treatment at 900 ° C. for 1 hour in a nitrogen stream, activation treatment was performed at 900 ° C. for 1 hour in a steam stream to produce activated carbon.
Hereinafter, such a material is referred to as a comparative material Y.
(実験1)
 上記本発明材料A、A´、B、B´及び比較材料Y、ZにおけるBET比表面積、ミクロ孔容量、メソ孔容量、吸着法による細孔容量、マクロ孔容量、タップかさ密度について、下記の方法で調べたので、それらの結果を表1に示す。
(Experiment 1)
The BET specific surface area, micropore volume, mesopore volume, pore volume by the adsorption method, macropore volume, and tap bulk density in the above invention materials A, A ′, B, B ′ and comparative materials Y and Z are as follows. The results are shown in Table 1.
(1)窒素を吸着ガスとして用い、77Kで測定した窒素吸着等温線からのBET比表面積、吸着法による細孔容量、ミクロ孔容量、及びメソ孔容量の導出
 77Kでの窒素吸着等温線を求め、その解析によりBET比表面積等を求めた。尚、吸着法による細孔容量は相対圧(P/P)0.95における吸着量から求め、ミクロ孔の容量はDubinin-Astakhov(DA)法によって求めた。また、メソ孔容量は上記細孔容量とミクロ孔の容量との差から求めた。
(1) Derivation of the BET specific surface area from the nitrogen adsorption isotherm measured at 77K using nitrogen as the adsorption gas, the pore volume, the micropore volume, and the mesopore volume by the adsorption method. Obtain the nitrogen adsorption isotherm at 77K. The BET specific surface area and the like were determined by the analysis. The pore volume by the adsorption method was determined from the amount of adsorption at a relative pressure (P / P 0 ) of 0.95, and the micropore volume was determined by the Dubinin-Astakhov (DA) method. The mesopore volume was determined from the difference between the pore volume and the micropore volume.
(2)マクロ孔容量の推算
 窒素吸着法ではマクロ孔の容量を求めることができない。そこで、かさ密度と窒素吸着法で求めたミクロ孔及びメソ孔の容量とからマクロ孔の容量を求めた。尚、この際、炭素の真比重を2.0g/mlと仮定して計算を行った。
(2) Estimation of macropore capacity The nitrogen adsorption method cannot determine the macropore capacity. Therefore, the macropore capacity was determined from the bulk density and the micropore and mesopore capacity determined by the nitrogen adsorption method. At this time, the calculation was performed assuming that the true specific gravity of carbon was 2.0 g / ml.
(3)タップかさ密度の測定
 タッピングマシーンを用い、測定値が十分に安定するまでタッピングを行ってから重量と体積とを測定することで、タップかさ密度を測定した。
(3) Measurement of tap bulk density The tap bulk density was measured by measuring the weight and volume after tapping until the measured value was sufficiently stabilized using a tapping machine.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明材料A、A´、B、B´は比較材料Y、Zに比べて、細孔容量とメソ孔容量とが大きくなっている。また、本発明材料A、A´、B、B´はミクロ孔もある程度発達しており、且つ、BET比表面積も580ml/g以上であって、十分に大きいことがわかる。更に、比較材料Yに比べて、本発明材料A、A´、B、B´はマクロ孔容量が極めて大きく、また、このこと等に起因して、タップかさ密度が低くなっていることが認められる。 As is clear from Table 1, the inventive materials A, A ′, B, and B ′ have a larger pore volume and mesopore volume than the comparative materials Y and Z. Further, it can be seen that the inventive materials A, A ′, B and B ′ have sufficiently developed micropores and a BET specific surface area of 580 ml / g or more, which is sufficiently large. Furthermore, compared with the comparative material Y, the inventive materials A, A ′, B and B ′ have a very large macropore capacity, and due to this, the tap bulk density is low. It is done.
(実験2)
 窒素を吸着ガスとして用い、77Kで測定した際の相対圧(P/P)をxとし、物質移動係数(Ksap)をyとした場合の、xとyとの関係を以下のようにして調べたので、その結果を表2、3及び図5に示す。
(Experiment 2)
The relationship between x and y is as follows when the relative pressure (P / P 0 ) measured at 77 K is x and the mass transfer coefficient (K sap ) is y using nitrogen as the adsorbed gas. The results are shown in Tables 2 and 3 and FIG.
・LDF近似による物質移動係数(Ksap)の導出
 窒素吸着等温線の測定における吸着平衡に達するまでの窒素の圧力変化を、物質移動係数を求めるために用いられる、簡略化されたLinear Drivi Force(LDF)モデルに基づいて整理し、窒素ガスの物質移動係数(Ksap)を求めた。そして、相対圧(P/P)が異なる場合の物質移動係数(Ksap)を、各材料につき2点ずつ(但し、材料A´では4点、材料B´では3点)求めたので、その結果を表2に示す。
-Derivation of mass transfer coefficient (K sap ) by LDF approximation Simplified linear drive force used to determine the mass transfer coefficient, the change in nitrogen pressure until reaching the adsorption equilibrium in the measurement of nitrogen adsorption isotherm ( Based on the (LDF) model, the mass transfer coefficient (K sap ) of nitrogen gas was determined. Then, since the mass transfer coefficient (K sap ) when the relative pressure (P / P 0 ) is different was obtained for each material by 2 points (however, 4 points for material A ′ and 3 points for material B ′), The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、本発明材料A、A´、B、B´では、比較的大きな物質移動係数を示し、特に本発明材料A、A´の物質移動係数は極めて大きい。具体的には、本発明材料A、A´の物質移動係数は、従来から用いられている活性炭の物質移動係数に対して、2~5倍となっていた。尚、本発明材料A、A´、B、B´で物質移動係数が大きくなるのは、上記実験1で示したように、ミクロ孔の容量をある程度大きく保ちつつ、メソ孔とマクロ孔の容量の向上(特に、マクロ孔の容量向上)を図ることができるためと考えられる。 As is clear from Table 2, the materials A, A ′, B and B ′ of the present invention show a relatively large mass transfer coefficient. Specifically, the mass transfer coefficients of the materials A and A ′ of the present invention were 2 to 5 times the mass transfer coefficient of activated carbon conventionally used. It should be noted that the mass transfer coefficient of the inventive materials A, A ′, B, and B ′ increases as shown in Experiment 1 above, while maintaining the capacity of the micropores to a certain extent and the capacity of the mesopores and macropores. This is thought to be due to the improvement in the area (particularly the macropore capacity).
 次に、相対圧(P/P)と物質移動係数(Ksap)との関係は正の関係にあると考えられるので、材料A、B、Y、Zにおける線分(例えば、材料Aであれば、調査点A1とA2とを結んだ線分)をy=ax+bとし、これに各調査点における値を代入して、aとbとの値を算出した。尚、材料A´、B´では4つ又は3つの調査点から近似曲線を描くことによって、aとbとの値を算出した。 Next, since the relationship between the relative pressure (P / P 0 ) and the mass transfer coefficient (K sap ) is considered to be a positive relationship, the line segments in the materials A, B, Y, and Z (for example, in the material A) If there is, the line segment connecting the survey points A1 and A2) is set to y = ax + b, and the value at each survey point is substituted for this to calculate the values of a and b. For materials A ′ and B ′, the values of a and b were calculated by drawing approximate curves from four or three survey points.
 その結果、本発明材料Aにおいて、a=9.12×10-1、b=6.73×10-7であったので、調査点A1とA2とを結んだ線分(以下、線分Aと称することがある)は、y=9.12×10-1x+6.73×10-7で表される。この線分Aを図5に示す。
 更に、本発明材料A´において、a=9.34×10-1、b=8.42×10-8であり、y=9.34×10-1x+8.42×10-8で表される線A´を得た。この線A´を図5に示す。
As a result, in the material A of the present invention, a = 9.12 × 10 −1 and b = 6.73 × 10 −7 , so the line segment connecting the survey points A1 and A2 (hereinafter, line segment A May be expressed as y = 9.12 × 10 −1 x + 6.73 × 10 −7 . This line segment A is shown in FIG.
Furthermore, in the material A ′ of the present invention, a = 9.34 × 10 −1 , b = 8.42 × 10 −8 , and y = 9.34 × 10 −1 x + 8.42 × 10 −8. A line A ′ was obtained. This line A ′ is shown in FIG.
 また、本発明材料Bにおいて、a=5.34×10-1、b=-3.70×10-7であったので、調査点B1とB2とを結んだ線分(以下、線分Bと称することがある)は、y=5.34×10-1x-3.70×10-7で表される。この線分Bを図5に示す。
 更に、本発明材料B´において、a=3.98×10-1、b=5.52×10-7であり、y=3.98×10-1x+5.52×10-7で表される線B´を得た。この線B´を図5に示す。
In the material B of the present invention, since a = 5.34 × 10 −1 and b = −3.70 × 10 −7 , the line segment connecting the survey points B1 and B2 (hereinafter referred to as line segment B) May be expressed as y = 5.34 × 10 −1 x−3.70 × 10 −7 . This line segment B is shown in FIG.
Furthermore, in the material B ′ of the present invention, a = 3.98 × 10 −1 , b = 5.52 × 10 −7 , and y = 3.98 × 10 −1 x + 5.52 × 10 −7 A line B ′ was obtained. This line B ′ is shown in FIG.
 また、比較材料Zにおいて、a=1.77×10-1、b=2.26×10-7であったので、調査点Z1とZ2とを結んだ線分(以下、線分Zと称することがある)は、y=1.77×10-1x+2.26×10-7で表される。この線分Zを図5に示す。
 更に、比較材料Yにおいて、a=3.00×10-2、b=2.09×10-6であったので、調査点Y1とY2とを結んだ線分(以下、線分Yと称することがある)は、y=3.00×10-2x+2.09×10-6で表される。この線分Yを図5に示す。
Further, in the comparative material Z, since a = 1.77 × 10 −1 and b = 2.26 × 10 −7 , a line segment connecting the survey points Z1 and Z2 (hereinafter referred to as a line segment Z) May be expressed as y = 1.77 × 10 −1 x + 2.26 × 10 −7 . This line segment Z is shown in FIG.
Further, in the comparative material Y, since a = 3.00 × 10 −2 and b = 2.09 × 10 −6 , a line segment connecting the survey points Y1 and Y2 (hereinafter referred to as a line segment Y) May be represented by y = 3.00 × 10 −2 x + 2.09 × 10 −6 . This line segment Y is shown in FIG.
 次いで、上記線分Y及び線分Zより上で、線分B及び線分B´より下となり、且つ、1.0×10-5≦x≦1.0×10-4の範囲で線分B、B´、Y、Zと交わらない線分Cを求めた。1.0×10-5≦xに限定したのは、xの値が余りに小さいと、細孔は微細すぎて、多くの吸着材料で有効な細孔が極めて少なくなることを考慮したものである。また、x≦1.0×10-4に限定したのは、xの値があまりにも大きいと、yの値に対して、ミクロ細孔への吸着現象だけでなくより大きな細孔の吸着現象の影響が現れることを考慮したものである。 Next, the line segment is above the line segment Y and the line segment Z, below the line segment B and the line segment B ′, and in the range of 1.0 × 10 −5 ≦ x ≦ 1.0 × 10 −4. A line segment C not intersecting with B, B ′, Y, Z was obtained. The reason for limiting to 1.0 × 10 −5 ≦ x is that if the value of x is too small, the pores are too fine and the number of effective pores in many adsorbent materials becomes extremely small. . Moreover, the reason for limiting x ≦ 1.0 × 10 −4 is that if the value of x is too large, not only the phenomenon of adsorption to micropores but also the phenomenon of adsorption of larger pores with respect to the value of y It is considered that the influence of.
 更に、上記線分B及び線分B´より上で、線分A及び線分A´より下となり、且つ、1.0×10-5≦x≦1.0×10-4の範囲で線分A、A´、B、B´と交わらない線分Dを求めた。上記線分C、Dを図5に示す。
 ここで、上記線分C、Dは、以下のようにして求めた。先ず、相対圧(P/P)が1.00×10-5と1.00×10-4との場合の物質移動係数(Ksap)を、下記表3のように設定した。
Further, the line is above the line segment B and the line segment B ′, below the line segment A and the line segment A ′, and in the range of 1.0 × 10 −5 ≦ x ≦ 1.0 × 10 −4. A line segment D not intersecting with the minutes A, A ′, B, B ′ was obtained. The line segments C and D are shown in FIG.
Here, the line segments C and D were obtained as follows. First, the mass transfer coefficient (K sap ) when the relative pressure (P / P 0 ) was 1.00 × 10 −5 and 1.00 × 10 −4 was set as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に、各線分C、Dをy=ax+bとし、これに各設定点における値を代入して、aとbとの値を算出した。 Next, each line segment C and D was set to y = ax + b, and the value at each set point was substituted for this to calculate the values of a and b.
 その結果、線分Cにおいて、a=1.67×10-1、b=2.33×10-6であったので、設定点C1とC2とを結んだ線分Cは、y=1.67×10-1x+2.33×10-6で表される。
 また、線分Dにおいて、a=6.00×10-1、b=0であったので、設定点D1とD2とを結んだ線分Cは、y=6.00×10-1xで表される。
As a result, since a = 1.67 × 10 −1 and b = 2.33 × 10 −6 in the line segment C, the line segment C connecting the set points C1 and C2 has y = 1. It is expressed by 67 × 10 −1 x + 2.33 × 10 −6 .
In line segment D, since a = 6.00 × 10 −1 and b = 0, the line segment C connecting the set points D1 and D2 is y = 6.00 × 10 −1 x. expressed.
 そして、y=1.67×10-1x+2.33×10-6で表される線分Cより上方の範囲(図5における右下がりのハッチング部)に物質移動係数(Ksap)が存在することが必要であるので、これを数式で表すと、y≧1.67×10-1x+2.33×10-6となる。また、y=6.00×10-1xで表される線分Dより上方の範囲(図5における右上がりのハッチング部)に物質移動係数(Ksap)が存在することが特に望ましいので、これを数式で表すと、y≧6.00×10-1xとなる。 Further, the mass transfer coefficient (K sap ) exists in the range above the line segment C represented by y = 1.67 × 10 −1 x + 2.33 × 10 −6 (the hatching portion on the lower right in FIG. 5). Therefore, when this is expressed by a mathematical expression, y ≧ 1.67 × 10 −1 x + 2.33 × 10 −6 . Further, since it is particularly desirable that the mass transfer coefficient (K sap ) exists in the range above the line segment D represented by y = 6.00 × 10 −1 x (the hatching portion rising to the right in FIG. 5), When this is expressed by a mathematical expression, y ≧ 6.00 × 10 −1 x.
 尚、x=1.0×10-5(下限)、及び、x=1.0×10-4(上限)における線分A、A´、B、B´、C、D、Y、ZのKsap(y)の値を求めたので、その結果を表4に示す。 Note that the line segments A, A ′, B, B ′, C, D, Y, and Z at x = 1.0 × 10 −5 (lower limit) and x = 1.0 × 10 −4 (upper limit) Since the value of K sap (y) was obtained, the result is shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表4から明らかなように、x=1.0×10-5及びx=1.0×10-4の場合におけるKsap(y)の値は、線分A、A´>線分D>線分B、B´>線分C>線分Y、Zとなっていることがわかる。 As apparent from Table 4 above, the values of K sap (y) in the case of x = 1.0 × 10 −5 and x = 1.0 × 10 −4 are the line segment A, A ′> line segment D It can be seen that> line segment B, B ′> line segment C> line segments Y, Z.
 本発明はキャニスターや、ケミカルヒートポンプガス等に用いることができる。 The present invention can be used for canisters, chemical heat pump gases, and the like.
 1:ポリビニルアルコール
 2:酸化マグネシウム
 3:炭素質壁
 4:メソ孔(マクロ孔)
 5:多孔質炭素
 6:ミクロ孔
1: Polyvinyl alcohol 2: Magnesium oxide 3: Carbonaceous wall 4: Mesopores (macropores)
5: Porous carbon 6: Micropores

Claims (7)

  1.  ミクロ孔と、メソ孔及び/又はマクロ孔とを備え、これら3種の孔の外郭は炭素質壁で構成されると共に、上記メソ孔及び/又はマクロ孔と連通するように上記ミクロ孔が形成される構造の多孔質炭素を含む吸着/脱離剤であって、
     窒素を吸着ガスとして用い、77Kで測定した際の相対圧(P/P)をxとし、物質移動係数(Ksap)をyとした場合、xが1.0×10-5≦x≦1.0×10-4の範囲で、xとyとの関係が下記(1)式を満たしていることを特徴とする多孔質炭素を含む吸着/脱離剤。
     y≧1.67×10-1x+2.33×10-6・・・(1)
    It has micropores and mesopores and / or macropores. The outline of these three types of pores is composed of carbonaceous walls, and the micropores are formed so as to communicate with the mesopores and / or macropores. An adsorption / desorption agent comprising porous carbon of the structure
    When nitrogen is used as an adsorption gas and x is the relative pressure (P / P 0 ) measured at 77K and y is the mass transfer coefficient (K sap ), x is 1.0 × 10 −5 ≦ x ≦ An adsorbent / desorbent containing porous carbon, wherein the relationship between x and y satisfies the following formula (1) within a range of 1.0 × 10 −4 .
    y ≧ 1.67 × 10 −1 x + 2.33 × 10 −6 (1)
  2.  上記xとyとの関係が下記(2)式を満たしている、請求項1に記載の多孔質炭素を含む吸着/脱離剤。
     y≧6.00×10-1x・・・(2)
    The adsorption / desorption agent containing porous carbon according to claim 1, wherein the relationship between x and y satisfies the following formula (2).
    y ≧ 6.00 × 10 −1 x (2)
  3.  タップかさ密度が0.1g/ml以上0.18g/ml以下である、請求項1又は2に記載の多孔質炭素を含む吸着/脱離剤。 The adsorption / desorption agent containing porous carbon according to claim 1 or 2, wherein the tap bulk density is 0.1 g / ml or more and 0.18 g / ml or less.
  4.  窒素を吸着ガスとして用い、77Kで測定した際に、相対圧P/P=0.95での吸着量から求めた細孔容量が、1.3ml/g以上2.1ml/g以下である、請求項1~3の何れか1項に記載の多孔質炭素を含む吸着/脱離剤。 When using nitrogen as an adsorption gas and measuring at 77K, the pore volume determined from the adsorption amount at a relative pressure P / P 0 = 0.95 is 1.3 ml / g or more and 2.1 ml / g or less. The adsorption / desorption agent comprising porous carbon according to any one of claims 1 to 3.
  5.  タップかさ密度と上記細孔容量とを用いて算出した上記マクロ孔の容量が、3.0ml/g以上10ml/g以下である、請求項4に記載の多孔質炭素を含む吸着/脱離剤。 The adsorption / desorption agent containing porous carbon according to claim 4, wherein the macropore capacity calculated by using the tap bulk density and the pore volume is 3.0 ml / g or more and 10 ml / g or less. .
  6.  窒素を吸着ガスとして用い、77Kで測定した窒素吸着等温線より算出されるミクロ孔の容量が0.2ml/g以上1.0ml/g以下である、請求項4又は5に記載の多孔質炭素を含む吸着/脱離剤。 The porous carbon according to claim 4 or 5, wherein the capacity of micropores calculated from a nitrogen adsorption isotherm measured at 77K using nitrogen as an adsorption gas is 0.2 ml / g or more and 1.0 ml / g or less. An adsorption / desorption agent comprising:
  7.  窒素を吸着ガスとして用い、77Kで測定した窒素吸着等温線より算出されるメソ孔の容量が0.8ml/g以上1.5ml/g以下である、請求項4~6の何れか1項に記載の多孔質炭素を含む吸着/脱離剤。 7. The mesopore capacity calculated from a nitrogen adsorption isotherm measured at 77 K using nitrogen as an adsorption gas is 0.8 ml / g or more and 1.5 ml / g or less according to any one of claims 4 to 6. Adsorption / desorption agent comprising the described porous carbon.
PCT/JP2014/056538 2013-03-13 2014-03-12 Adsorbing/desorbing material WO2014142187A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112015021122A BR112015021122A2 (en) 2013-03-13 2014-03-12 adsorption / desorption material
CN201480006311.7A CN104968603A (en) 2013-03-13 2014-03-12 Adsorbing/desorbing material
SG11201507403TA SG11201507403TA (en) 2013-03-13 2014-03-12 Adsorbing/desorbing agent
JP2015505523A JP6350918B2 (en) 2013-03-13 2014-03-12 Adsorption / desorption agent
US14/764,355 US20150367323A1 (en) 2013-03-13 2014-03-12 Adsorbing/desorbing agent
CA2899135A CA2899135A1 (en) 2013-03-13 2014-03-12 Adsorbing/desorbing agent
EP14763195.6A EP2975002A4 (en) 2013-03-13 2014-03-12 Adsorbing/desorbing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-050068 2013-03-13
JP2013050068 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014142187A1 true WO2014142187A1 (en) 2014-09-18

Family

ID=51536838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056538 WO2014142187A1 (en) 2013-03-13 2014-03-12 Adsorbing/desorbing material

Country Status (8)

Country Link
US (1) US20150367323A1 (en)
EP (1) EP2975002A4 (en)
JP (1) JP6350918B2 (en)
CN (1) CN104968603A (en)
BR (1) BR112015021122A2 (en)
CA (1) CA2899135A1 (en)
SG (1) SG11201507403TA (en)
WO (1) WO2014142187A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201546A (en) * 2015-09-21 2015-12-30 河南理工大学 Device and method for improving gas extraction concentration
WO2024024610A1 (en) * 2022-07-27 2024-02-01 株式会社クラレ Porous carbon and production method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193708A (en) * 2019-05-24 2020-12-03 パナソニックIpマネジメント株式会社 Gas adsorption-desorption device, object fixing device, drone, pressure control method, and object holding method
AU2022217266A1 (en) * 2021-02-08 2023-09-07 Chasm Advanced Materials, Inc. Carbon nanotube hybrid materials and methods of producing the hybrid materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224958A (en) * 2000-02-14 2001-08-21 Isuzu Ceramics Res Inst Co Ltd Co2 adsorbent
WO2010104102A1 (en) * 2009-03-10 2010-09-16 東洋炭素株式会社 Porous carbon and process for producing same
WO2010147087A1 (en) * 2009-06-19 2010-12-23 東洋炭素株式会社 Porous carbon and method for producing the same
JP2011132903A (en) 2009-12-25 2011-07-07 Mahle Filter Systems Japan Corp Adsorbent for canister
WO2012121363A1 (en) * 2011-03-09 2012-09-13 東洋炭素株式会社 Porous carbon and method for producing same
JP2012218999A (en) * 2011-04-13 2012-11-12 Toyo Tanso Kk Porous carbon, and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614637B2 (en) * 1998-01-29 2005-01-26 本田技研工業株式会社 Granular activated carbon for storing natural gas and method for producing the same
FR2865468B1 (en) * 2004-01-22 2006-04-28 Ceca Sa ACTIVE CHARCOAL WITH IMPROVED MECHANICAL STRENGTH, ITS USES, IN PARTICULAR AS A CATALYST SUPPORT.
US20090209418A1 (en) * 2008-02-18 2009-08-20 Nagoya Electrical Educational Foundation Adsorbent and method for manufacturing the same
CN102557009B (en) * 2012-02-29 2014-01-01 北京化工大学 Hierarchical porous structure carbon material for negative electrode of power lithium-ion battery and preparation method of hierarchical porous structure carbon material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224958A (en) * 2000-02-14 2001-08-21 Isuzu Ceramics Res Inst Co Ltd Co2 adsorbent
WO2010104102A1 (en) * 2009-03-10 2010-09-16 東洋炭素株式会社 Porous carbon and process for producing same
WO2010147087A1 (en) * 2009-06-19 2010-12-23 東洋炭素株式会社 Porous carbon and method for producing the same
JP2011132903A (en) 2009-12-25 2011-07-07 Mahle Filter Systems Japan Corp Adsorbent for canister
WO2012121363A1 (en) * 2011-03-09 2012-09-13 東洋炭素株式会社 Porous carbon and method for producing same
JP2012218999A (en) * 2011-04-13 2012-11-12 Toyo Tanso Kk Porous carbon, and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Shin Kobunshi Jikkengaku, Vol. 3, Kobunshi no Gosei·Hanno (2", 28 March 1996, KYORITSU SHUPPAN, pages: 158
See also references of EP2975002A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201546A (en) * 2015-09-21 2015-12-30 河南理工大学 Device and method for improving gas extraction concentration
WO2024024610A1 (en) * 2022-07-27 2024-02-01 株式会社クラレ Porous carbon and production method thereof

Also Published As

Publication number Publication date
CA2899135A1 (en) 2014-09-18
BR112015021122A2 (en) 2017-07-18
US20150367323A1 (en) 2015-12-24
EP2975002A4 (en) 2016-12-07
CN104968603A (en) 2015-10-07
EP2975002A1 (en) 2016-01-20
JP6350918B2 (en) 2018-07-04
JPWO2014142187A1 (en) 2017-02-16
SG11201507403TA (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP5695147B2 (en) Porous carbon, humidity-adsorbing adsorbent, adsorption heat pump, and fuel cell
US9156694B2 (en) Porous carbon and method of manufacturing same
JP5636171B2 (en) Porous carbon and method for producing the same
Meng et al. MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation
JP6350918B2 (en) Adsorption / desorption agent
Wang et al. Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration
Wang et al. Ordered mesoporous carbons with various pore sizes: Preparation and naphthalene adsorption performance
Liu et al. Efficient removal of tetrabromobisphenol A using microporous and mesoporous carbons: the role of pore structure
Banisheykholeslami et al. Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4 mixture
JP2012188311A (en) Porous carbon
JP2015057373A (en) Porous carbon and method for producing the same
Wang et al. Porous polydopamine nanospheres with yolk shell-like structure to effectively remove methylene blue, bisphenol A, and tetracycline from wastewaters
Meng et al. CO2 Adsorption capacity of activated N‐doping porous carbons prepared from graphite nanofibers/polypyrrole
KR101885249B1 (en) Method of preparing activated carbon
JP2016041656A (en) Porous carbon
TW201601995A (en) Porous carbon, method for producing same, and adsorption/desorption device using porous carbon
Meng et al. Effect of nano-silica spheres template on CO2 capture of exchange resin-based nanoporous carbons
WO2015137107A1 (en) Porous carbon sheet
WO2014038005A1 (en) Porous carbon and method for producing same
Lee et al. Carbonization of Nano Aluminosilicate-Resin Sphere under Water Vapor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505523

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2899135

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14764355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014763195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014763195

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015021122

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015021122

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150831