WO2014142009A1 - Encoding apparatus - Google Patents

Encoding apparatus Download PDF

Info

Publication number
WO2014142009A1
WO2014142009A1 PCT/JP2014/055839 JP2014055839W WO2014142009A1 WO 2014142009 A1 WO2014142009 A1 WO 2014142009A1 JP 2014055839 W JP2014055839 W JP 2014055839W WO 2014142009 A1 WO2014142009 A1 WO 2014142009A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoded data
value
encoding
bit
electronic shelf
Prior art date
Application number
PCT/JP2014/055839
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 前田
Original Assignee
株式会社イシダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イシダ filed Critical 株式会社イシダ
Publication of WO2014142009A1 publication Critical patent/WO2014142009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • H04L25/4908Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes

Definitions

  • the present invention relates to an encoding device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-103898 discloses that the code efficiency is better than the PPM (Pulse Position Modulation) method and the CMI (Coded Mark Inversion) method, and the receiving circuit is synchronized with the encoded data.
  • PPM Pulse Position Modulation
  • CMI Coded Mark Inversion
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-103898
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-103898
  • encoded data is transmitted using infrared communication to a receiving circuit 100 having a photodiode 101, a current-voltage converter 102, an amplifier 103, and a comparator 104 as shown in FIG. explain.
  • infrared light as an input signal is converted from an optical signal to an electric signal (current) by the photodiode 101.
  • the current output from the photodiode 101 is converted into a voltage by the current-voltage converter 102 and amplified by the amplifier 103.
  • the voltage after being amplified by the amplifier 103 is expressed as a voltage V1.
  • the comparator 104 compares the voltage V1 with a predetermined threshold value, and outputs the predetermined voltage Vo when the voltage V1 exceeds the threshold value.
  • the receiving circuit 100 has poor high-frequency characteristics, or if the level difference between “1” and “0” of the received optical signal is extremely large because the installation distance to the transmitter is short, the encoded data Among them, the larger the number of consecutive bits having a value of “1”, the larger the amplitude of the voltage V1 (see FIG. 10B).
  • the threshold value of the comparator 104 is Th1 (see FIG. 10B)
  • an output Vo1 as shown in FIG. 10C is obtained.
  • the threshold value of the comparator 104 is Th2 (see FIG. 10B)
  • an output Vo2 as shown in FIG. 10D is obtained.
  • the receiving circuit 100 may misrecognize a bit having a value of “1” as a bit having a value of “0”.
  • the output Vo2 from the transmission time t1 of the input signal corresponding to the portion (M2 in FIG. 10A) in which the bit having the value “1” continues in the encoded data, the output Vo2 in FIG. Since the output time t2 of the voltage Vo2 at the portion corresponding to M2 is longer (see FIG. 10D), the receiving circuit 100 misrecognizes a bit having a value of “0” as a bit having a value of “1”. there's a possibility that.
  • the input signal needs to be retransmitted to the receiving circuit, and it may take time until the receiving circuit receives the correct encoded data.
  • An object of the present invention is an encoding device that encodes information data in accordance with a predetermined signal rule, and generates encoded data that is less likely to cause erroneous recognition of bit values regardless of conditions on the receiving circuit side. It is an object to provide an encoding device.
  • the encoding device includes conversion means.
  • the converting means converts the 4-bit information data into N-bit (N ⁇ 5) encoded data according to a predetermined coding rule.
  • N N ⁇ 5
  • bits having a value of “1” are not consecutive in the encoded data, and the number of bits having a value of “1” in the encoded data is 1 or 2, and the N is 7.
  • 4-bit information data is converted into encoded data in which bits having a value of “1” are not consecutive.
  • the amplitude of the output of the receiving circuit is always constant with respect to the input signal corresponding to the bit having a value of “1” regardless of the conditions on the receiving circuit side.
  • the present encoding device can generate encoded data in which the receiving circuit is unlikely to erroneously recognize bit values regardless of the conditions on the receiving circuit side.
  • the number of bits having a value of “1” in 1 encoded data (7-bit encoded data) is 1 or 2
  • the duty ratio of the signal can be suppressed.
  • the average output of the transmitter that transmits the encoded data can be suppressed.
  • one encoded data always includes a bit having a value of “1”
  • a receiving circuit that receives a signal can easily synchronize.
  • the 4-bit information data is converted to 7-bit code data here, the time required for signal transmission is reduced compared to the case where 4-bit information data is converted to encoded data of 8 bits or more. It can be shortened.
  • 4-bit information data is converted into encoded data in which bits having a value of “1” are not consecutive.
  • the amplitude of the output of the receiving circuit is always constant with respect to the input signal corresponding to the bit having a value of “1” regardless of the conditions on the receiving circuit side.
  • the present encoding device can generate encoded data in which the receiving circuit is unlikely to erroneously recognize bit values regardless of the conditions on the receiving circuit side.
  • FIG. 1 It is a figure which shows the electronic shelf label system in which the encoding apparatus which concerns on one Embodiment of this invention is used. It is a figure which shows the example of arrangement
  • the communication device incorporates an encoding device according to an embodiment of the present invention. It is a block diagram which shows schematic structure of the communication part of the electronic shelf label used with the electronic shelf label system of FIG.
  • the communication unit incorporates an encoding device according to an embodiment of the present invention.
  • FIG. 8 is an example of encoded data reproduced by the receiving circuit (light receiving / reproducing unit) of FIG. 6 when the encoded data obtained using the encoding rule shown in FIG. 7 is transmitted as an infrared signal.
  • FIG. 8A shows encoded data and an input signal (infrared signal) transmitted based on the encoded data.
  • FIG. 8B shows a voltage V1 obtained by converting the infrared signal of FIG.
  • FIG. 8A into an electrical signal by the photodiode of the receiving circuit and further amplifying it by the amplifier of the receiving circuit.
  • FIG. 8C shows an output signal obtained by inputting the voltage V1 of FIG. 8B to the comparator.
  • Coding that is obtained by using a conventional coding rule and is reproduced by the receiving circuit (light receiving reproduction unit) in FIG. 6 when coded data having consecutive bits having a value of “1” is transmitted as an infrared signal. It is an example of data.
  • FIG. 10A shows encoded data and an input signal (infrared signal) transmitted based on the encoded data.
  • FIG. 10B shows a voltage V1 obtained by converting the infrared signal of FIG. 10A into an electrical signal by the photodiode of the receiving circuit and further amplifying it by the amplifier of the receiving circuit.
  • FIG. 10C shows an output signal obtained by inputting the voltage V1 of FIG. 10B to the comparator.
  • FIG. 10C shows an output signal when Th1 is used as the threshold value.
  • FIG. 10D shows an output signal obtained by inputting the voltage V1 of FIG. 10B to the comparator.
  • FIG. 10D shows an output signal when Th2 is used as the threshold value.
  • the encoding device 50 according to the present embodiment is merely an example of the encoding device of the present invention, and the encoding device according to the present invention is not limited to the contents described below. Other modes can be adopted as long as they do not contradict the gist of the invention.
  • the encoding device 50 constitutes a part of the electronic shelf label system 1 shown in FIG.
  • the present invention is not limited to this, and the encoding device 50 can be applied to various systems that require signal encoding.
  • the electronic shelf label system 1 is used in stores such as supermarkets and convenience stores.
  • the electronic shelf label system 1 displays the product information (the sales price of the product in this embodiment) managed by the electronic shelf label server 10 on the electronic shelf label 40 arranged corresponding to the product displayed on the sales floor. It is a system to do.
  • the electronic shelf label 40 is a portable device, and is a display device arranged corresponding to each of a plurality of products P handled in the store.
  • the electronic shelf label 40 is arranged in the vicinity of the corresponding product P among the plurality of types of products P displayed on the store floor of the store, and displays the product information regarding the corresponding product P on the display unit 41 described later ( 2 and 3).
  • Each electronic shelf label 40 is given a unique ID (device ID) for identifying the electronic shelf label 40 and other electronic shelf labels 40.
  • the electronic shelf label system 1 mainly includes an electronic shelf label server 10, a plurality of electronic shelf labels 40, 40,..., A plurality of communication devices 30, 30,. It is composed of The number of electronic shelf labels 40 and communication devices 30 included in the electronic shelf label system 1 is not limited to the number shown in FIG.
  • the communication device 30 and the electronic shelf label 40 include an encoding device 50 according to an embodiment of the present application (see FIGS. 4 and 5).
  • the electronic shelf label server 10 is a computer that comprehensively controls the electronic shelf label system 1.
  • the electronic shelf label server 10 is disposed, for example, in a store backyard.
  • the electronic shelf label server 10 stores product information displayed on the electronic shelf label 40 (here, numerical data of the sales price of the product P).
  • the electronic shelf label server 10 transmits product information to the electronic shelf label 40 via the communication device 30 when the electronic shelf label system 1 is activated or when the display change of the electronic shelf label 40 is necessary.
  • the display change of the electronic shelf label 40 is necessary, for example, when the content of the product information stored in the electronic shelf label server 10 is updated or during the sale period of the product P, the price is changed from the normal selling price to the special price. This is when the price is changed to the selling price or when the price is changed from the special selling price to the normal selling price at the end of the special sale period of the product P.
  • the electronic shelf label server 10 stores the device ID of the electronic shelf label 40 and the product ID of the product P (the product ID attached to the product P with a barcode or the like) in association (linked). ing.
  • the product information of a product P is transmitted to the electronic shelf label 40 via the communication device 30
  • the device ID (product information of the product information) of the electronic shelf label 40 associated with the product P is displayed together with the product information.
  • the device ID of the electronic shelf label 40 of the transmission destination) is transmitted as an identifier.
  • the electronic shelf label 40 determines whether the transmitted product information has been transmitted to itself by comparing the transmitted identifier with its own device ID.
  • the communication device 30 is an infrared transceiver.
  • the communication device 30 exchanges various signals with the electronic shelf label 40 using infrared rays.
  • the communication device 30 is attached to a ceiling in a store, for example, with a certain interval.
  • the installation location and the installation interval of the communication device 30 are determined so that the electronic shelf label 40 installed in the store can communicate with any one of the communication devices 30.
  • the communication device 30 is connected to the electronic shelf label server 10 via a network 2 such as a LAN (Local Area Network).
  • a network 2 such as a LAN (Local Area Network).
  • the communication device 30 mainly includes an encoding device 50, a decoding device 60, a drive unit 31, an infrared light emitting element 32, and a light receiving / reproducing unit 33, as shown in FIG.
  • the encoding device 50 receives product information and an identifier transmitted as information data from the electronic shelf label server 10 and encodes them according to a coding rule described later. In other words, the encoding device 50 converts the information data transmitted from the electronic shelf label server 10 into encoded data according to a predetermined encoding rule.
  • the encoding device 50 will be described in detail later.
  • the encoded data encoded by the encoding device 50 is output to the drive unit 31.
  • the drive unit 31 drives the infrared light emitting element 32 based on the encoded data input from the encoding device 50.
  • the infrared light emitting element 32 is, for example, an LED (Light Emitting Diode).
  • the infrared light emitting element 32 is driven by the drive unit 31 and outputs an infrared signal modulated with encoded data. Specifically, the infrared light emitting element 32 is driven by the drive unit 31 and blinks at a predetermined frequency while the value of “1” is indicated in the encoded data. On the other hand, the infrared light emitting element 32 is turned off while the encoded data indicates a bit having a value of “0”.
  • the light receiving / reproducing unit 33 receives an infrared signal (for example, an ACK signal described later) transmitted from the electronic shelf label 40, and reproduces encoded data from the infrared signal. Specifically, the light receiving / reproducing unit 33 first converts the received infrared signal into an electrical signal. Next, the light receiving / reproducing unit 33 amplifies the electric signal. Further, the light receiving / reproducing unit 33 reproduces the encoded data based on the amplified electrical signal.
  • the receiving circuit 100 including the photodiode 101, the current-voltage converter 102, the amplifier 103, and the comparator 104 shown in FIG. 6 is used.
  • the encoded data reproduced by the light receiving / reproducing unit 33 is output to the decoding device 60.
  • the decoding device 60 decodes the encoded data input from the light receiving / reproducing unit 33 (converts it into information data) and transmits it to the electronic shelf label server 10.
  • the decryption device 60 will be described later.
  • the electronic shelf label 40 is arranged corresponding to each of the plurality of products P handled in the store, and displays product information regarding the corresponding product P (see FIG. 2). ). The sales price of the product P is displayed on the electronic shelf label 40 as product information (see FIG. 3).
  • the electronic shelf label 40 is driven by a built-in battery (not shown).
  • the electronic shelf label 40 includes, as main components, a display unit 41 on which product information is displayed, a communication unit 42 that communicates with the communication device 30, and a control unit 43 that controls each unit of the electronic shelf label 40. .
  • the display unit 41 is a segment type liquid crystal display.
  • the present invention is not limited to this, and may be, for example, dot matrix electronic paper.
  • the communication unit 42 communicates with the communication device 30 using infrared rays.
  • the communication unit 42 mainly includes an encoding device 50, a decoding device 60, a driving unit 42a, an infrared light emitting element 42b, and a light receiving / reproducing unit 42c. Since the communication unit 42 has the same configuration as that of the communication device 30, the difference between the two is mainly described here, and a part of the description is omitted for the common points.
  • the light receiving and reproducing unit 42c receives the product information transmitted from the electronic shelf label server 10 via the communication device 30 and the identifier transmitted together with the product information in the form of an infrared signal.
  • the light receiving / reproducing unit 42c reproduces the encoded data from the infrared signal in the same manner as the light receiving / reproducing unit 33 described above.
  • the encoded data reproduced by the light receiving / reproducing unit 42 c is output to the decoding device 60.
  • the decoding device 60 decodes the encoded data input from the light receiving / reproducing unit 42 c, converts it into information data, and transmits the information data to the control unit 43.
  • the encoding device 50 of the communication unit 42 encodes a signal (for example, an ACK signal described later) input from the control unit 43 according to a coding rule described later.
  • the encoded data encoded by the encoding device 50 is output to the drive unit 42a.
  • the drive unit 42a drives the infrared light emitting element 42b made of, for example, an LED based on the encoded data input from the encoding device 50. Since the drive part 42a and the infrared light emitting element 42b are the same as the drive part 31 and the infrared light emitting element 32 of the communication apparatus 30, description is abbreviate
  • the control unit 43 is mainly configured by a CPU.
  • the control unit 43 controls each unit of the electronic shelf label 40 by executing a program stored in a storage unit (not shown).
  • the control unit 43 controls the communication unit 42 to receive infrared rays transmitted from the communication device 30 and causes the control unit 43 to transmit information data obtained by decoding the infrared data.
  • the control unit 43 compares the identifier transmitted together with the product information from the electronic shelf label server 10 with the device ID stored in the storage unit.
  • the control unit 43 determines that the product information addressed to itself (addressed to the electronic shelf label 40 to which the control unit 43 belongs) has been received. .
  • the control unit 43 transmits a signal (ACK signal) notifying that the product information has been received to the communication unit 42.
  • the control unit 43 stores the product information addressed to itself received by the communication unit 42 in the storage unit.
  • the control unit 43 controls the display unit 41 so that the product information stored in the storage unit is displayed on the display unit 41.
  • the encoding device 50 and the decoding device 60 are mainly composed of logic circuits.
  • the encoding device 50 mainly includes an encoding unit 50a.
  • the encoding unit 50a is an example of a conversion unit that converts 4-bit information data into encoded data of 5 bits or more according to a coding rule.
  • the decoding device 60 mainly includes a decoding unit 60a.
  • the decoding unit 60a converts the encoded data into 4-bit information data according to a decoding rule. Note that the coding rule and the decoding rule correspond to each other, and it is determined that original information data can be obtained by converting encoded data obtained by converting certain information data according to the coding rule according to the decoding rule.
  • FIG. 7 shows a coding rule used in the coding device 50.
  • the encoding unit 50a uses the coding rule of FIG. 7 to convert the information data described on the left side of FIG. 7 into 7-bit encoded data described on the right side of FIG.
  • the decoding rule corresponding to this coding rule is that the encoded data described on the right side in FIG. 7 is converted to 4-bit information data described on the left side in FIG. Omitted.
  • bits having a value of “1” are continuous. There is no (see FIG. 7).
  • “bits having a value of“ 1 ”are not consecutive in encoded data” means that bits having a value of “1” are consecutive in one encoded data (7-bit encoded data). Not only does this mean, but also means that bits having a value of “1” do not continue between adjacent encoded data. The reason why the bit having a value of “1” does not continue between adjacent encoded data is that the last bit of the encoded data is always “0”.
  • infrared light as an input signal is converted from an optical signal to an electric signal (current) by the photodiode 101.
  • the current output from the photodiode 101 is converted into a voltage by the current-voltage converter 102 and amplified by the amplifier 103.
  • the voltage after being amplified by the amplifier 103 is represented by a voltage V1.
  • the comparator 104 compares the voltage V1 with a predetermined threshold value, and outputs an “H” level to the output voltage Vo when the voltage V1 exceeds the threshold value, and outputs an “L” level when the voltage V1 does not exceed the threshold value. Thereby, the encoded data is reproduced from the infrared signal.
  • Conditions that affect the reception characteristics of the light receiving / reproducing unit 42c include, for example, the distance between the electronic shelf label 40 and the communication device 30 (more precisely, the distance between the light receiving / reproducing unit 42c and the communication device 30).
  • the level difference between “1” and “0” of the optical signal received by the light receiving / reproducing unit 42c becomes extremely large, and the encoded data includes As the number of consecutive bits having a value of “1” increases, the amplitude of the voltage V1 may increase.
  • the threshold value of the comparator 104 is Th1 (see FIG. 10B)
  • an output Vo1 as shown in FIG. 10C is obtained.
  • the threshold value of the comparator 104 is Th2 (see FIG. 10B)
  • an output Vo2 as shown in FIG. 10D is obtained.
  • the receiving circuit 100 may misrecognize a bit having a value of “1” as a bit having a value of “0”.
  • the output Vo2 from the transmission time t1 of the input signal corresponding to the portion (M2 in FIG. 10A) in which the bit having the value “1” continues in the encoded data, the output Vo2 in FIG. Since the output time t2 of the voltage Vo2 at the portion corresponding to M2 is longer (see FIG. 10D), the receiving circuit 100 misrecognizes a bit having a value of “0” as a bit having a value of “1”. there's a possibility that.
  • the duty ratio (the ratio of the number of bits whose value is “1” to the total number of bits) is suppressed. can do.
  • the duty ratio is 25% in the quaternary PPM system (quaternary pulse position modulation (Pulse-Position Modulation) system), which is a generally known encoding system, and the duty ratio is 50 in the CMI (Coded Mark Inversion) system. %.
  • the duty ratio can be reduced to about 20%. As a result, it is possible to suppress the average output of the communication unit 30 and the communication unit 42 of the electronic shelf label 40 when transmitting the encoded data.
  • one encoded data always includes a bit having a value of “1”
  • the communication device 30 and the communication unit 42 of the electronic shelf label 40 may be synchronized with the encoded data. Easy.
  • the quaternary PPM method and the CMI method have a feature that the number of bits of encoded data is twice that of information data. On the other hand, according to this coding rule, the number of bits of encoded data is only 1.75 times the number of bits of information data. Therefore, the time required for signal transmission can be shortened compared to the 4-value PPM method and the CMI method.
  • the 4-bit information data may be converted into 8-bit or more encoded data.
  • the coding rule is to convert 4-bit information data into 7-bit encoded data.
  • the encoding device 50 includes an encoding unit 50a.
  • the converting means converts the 4-bit information data into N-bit (N ⁇ 5) encoded data according to a predetermined coding rule.
  • N N-bit
  • bits having a value of “1” are not consecutive in the encoded data, and the number of bits having a value of “1” in the encoded data is 1 or 2, and the N is 7.
  • 4-bit information data is converted into encoded data in which bits having a value of “1” are not consecutive.
  • the conditions on the receiving circuit (the light receiving / reproducing unit 33 of the communication device 30 and the light receiving / reproducing unit 42 c of the communication unit 42) are satisfied.
  • the amplitude of the output of the receiving circuit with respect to an input signal corresponding to a bit having a value of “1” tends to be always constant. That is, the encoding device 50 can generate encoded data in which the receiving circuit is less likely to misrecognize the bit value regardless of the conditions on the receiving circuit side.
  • the number of bits having a value of “1” in one encoded data is 1 or 2
  • the duty ratio of the signal can be suppressed low.
  • the average output of the communication device 30 and the communication unit 42 that transmit the encoded data can be suppressed.
  • one encoded data always includes a bit having a value of “1”, a receiving circuit that receives a signal can easily synchronize.
  • the 4-bit information data is converted to 7-bit code data here, the time required for signal transmission is reduced compared to the case where 4-bit information data is converted to encoded data of 8 bits or more. It can be shortened.
  • FIG. 7 is shown as an example of the coding rule, but the present invention is not limited to this.
  • the correspondence between the information data and the encoded data can be arbitrarily rearranged.
  • it is desirable that the correspondence between the information data and the encoded data is determined based on a rule (for example, a Gray code) that hardly causes an error.
  • FIG. 7 is shown as an example of the coding rule, but the present invention is not limited to this.
  • the coding rule may be as shown in FIG. Also in the coding rule of FIG. 9, the bits having the value “1” in the encoded data are not consecutive, and the number of bits having the value “1” in one encoded data is 1 or 2, and 4 bits. Are converted into 7-bit encoded data.
  • the encoding device 50 and the decoding device 60 are used for the communication unit 42 and the communication device 30 of the electronic shelf label 40 that perform communication using infrared rays, but are not limited thereto.
  • the encoding device 50 and the decoding device 60 may be used for a communication unit and a communication device of an electronic shelf label that performs communication using radio waves.
  • encoded data in which bits having a value of “1” are continuous and encoded data in which the number of bits having a value of “1” is 3 or more are not particularly used.
  • the present invention is not limited to this.
  • encoded data with consecutive bits having a value of “1” and encoded data with 3 or more bits having a value of “1” are used for error detection purposes, receiver circuit synchronization, and communication control. May be used for the purpose.
  • the encoding apparatus according to the present invention is useful as an encoding apparatus that generates encoded data in which the receiving circuit is unlikely to cause erroneous recognition of bit values regardless of conditions on the receiving circuit side.

Abstract

Provided is an encoding apparatus for encoding information data according to prescribed signal rules, the encoding apparatus generating encoding data for which a reception circuit is unlikely to cause an incorrect recognition of a bit value regardless of conditions on the reception circuit side. An encoding apparatus (50) is provided with an encoding unit (50a). The encoding unit converts 4-bit information data into N-bit (N ≥ 5) encoding data according to prescribed code rules. Under the code rules, bits in the encoding data having a value of "1" are not consecutive, and the number of bits in the encoding data having the value of "1" is 1 or 2, N being 7.

Description

符号化装置Encoder
 本発明は、符号化装置に関する。 The present invention relates to an encoding device.
 従来、伝送路に伝送するデータの符号化方法として、様々な方法が知られている。例えば、特許文献1(特開2008-103898号公報)には、PPM(Pulse Position Modulation)方式やCMI(Coded Mark Inversion)方式に比べ、符号効率が良く、かつ、受信回路が符号化データと同期をとることが容易な符号化方法が開示されている。 Conventionally, various methods are known as a method of encoding data to be transmitted on a transmission line. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-103898) discloses that the code efficiency is better than the PPM (Pulse Position Modulation) method and the CMI (Coded Mark Inversion) method, and the receiving circuit is synchronized with the encoded data. An encoding method that is easy to take is disclosed.
 しかし、特許文献1(特開2008-103898号公報)の符号化方法により符号化されたデータが、受信回路に対して送信される場合に、受信回路側の条件によっては(例えば、受信回路の特性や、受信回路と送信器との距離等の受信回路の設置状態によっては)、下記の様な問題が発生する場合がある。 However, when data encoded by the encoding method of Patent Document 1 (Japanese Patent Laid-Open No. 2008-103898) is transmitted to the receiving circuit, depending on the conditions on the receiving circuit side (for example, the receiving circuit Depending on the characteristics and the installation state of the receiving circuit such as the distance between the receiving circuit and the transmitter), the following problems may occur.
 ここでは、図6のような、フォトダイオード101、電流電圧変換器102、アンプ103、およびコンパレータ104を有する受信回路100に対し、赤外線通信を用いて、符号化データが送信される場合を例に説明する。 Here, as an example, encoded data is transmitted using infrared communication to a receiving circuit 100 having a photodiode 101, a current-voltage converter 102, an amplifier 103, and a comparator 104 as shown in FIG. explain.
 受信回路100では、入力信号としての赤外線は、フォトダイオード101で光信号から電気信号(電流)へと変換される。フォトダイオード101から出力される電流は、電流電圧変換器102により電圧に変換され、アンプ103で増幅される。アンプ103で増幅された後の電圧を、ここでは電圧V1と表す。コンパレータ104は、電圧V1と、所定の閾値との比較を行い、電圧V1が閾値を超える場合に、所定電圧Voを出力する。 In the receiving circuit 100, infrared light as an input signal is converted from an optical signal to an electric signal (current) by the photodiode 101. The current output from the photodiode 101 is converted into a voltage by the current-voltage converter 102 and amplified by the amplifier 103. Here, the voltage after being amplified by the amplifier 103 is expressed as a voltage V1. The comparator 104 compares the voltage V1 with a predetermined threshold value, and outputs the predetermined voltage Vo when the voltage V1 exceeds the threshold value.
 特許文献1(特開2008-103898号公報)の符号化方法では、値が“1”のビットが複数連続する可能性のある符号化データが生成される。例えば、この符号化方法により、“01001100”という符号化データが生成され、受信回路100に対し、図10(a)のような入力信号として送信されるとする。 In the encoding method disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-103898), encoded data in which a plurality of bits having a value of “1” may continue is generated. For example, it is assumed that encoded data “01001100” is generated by this encoding method and transmitted to the receiving circuit 100 as an input signal as shown in FIG.
 この時、受信回路100が、その高周波特性が悪い場合や、送信器との設置距離が近くて受信光信号の“1”と“0”のレベル差が極端に大きい場合などでは、符号化データ中で値が“1”のビットが連続する数が多いほど、電圧V1の振幅が大きくなる(図10(b)参照)。このような電圧V1をコンパレータ104に加えた場合、コンパレータ104の閾値をTh1(図10(b)参照)とすれば、図10(c)のような出力Vo1が得られる。一方、コンパレータ104の閾値をTh2(図10(b)参照)とすれば、図10(d)のような出力Vo2が得られる。 At this time, if the receiving circuit 100 has poor high-frequency characteristics, or if the level difference between “1” and “0” of the received optical signal is extremely large because the installation distance to the transmitter is short, the encoded data Among them, the larger the number of consecutive bits having a value of “1”, the larger the amplitude of the voltage V1 (see FIG. 10B). When such a voltage V1 is applied to the comparator 104, if the threshold value of the comparator 104 is Th1 (see FIG. 10B), an output Vo1 as shown in FIG. 10C is obtained. On the other hand, when the threshold value of the comparator 104 is Th2 (see FIG. 10B), an output Vo2 as shown in FIG. 10D is obtained.
 出力Vo1では、符号化データ中で値が“1”のビットが単独で存在する部分(図10(a)中のM1)に対応する部分の電圧値が0となっているため(図10(c)参照)、受信回路100は、値が“1”のビットを、値が“0” のビットと誤認識する可能性がある。一方、出力Vo2では、符号化データ中で値が“1”のビットが連続する部分(図10(a)中のM2)に対応する入力信号の送信時間t1より、図10(a)中のM2に対応する部分の電圧Vo2の出力時間t2の方が長いため(図10(d)参照)、受信回路100は、値が“0” のビットを、値が“1”のビットと誤認識する可能性がある。 In the output Vo1, the voltage value of the portion corresponding to the portion (M1 in FIG. 10A) where the bit having the value “1” exists alone in the encoded data is 0 (FIG. 10 ( c)), the receiving circuit 100 may misrecognize a bit having a value of “1” as a bit having a value of “0”. On the other hand, in the output Vo2, from the transmission time t1 of the input signal corresponding to the portion (M2 in FIG. 10A) in which the bit having the value “1” continues in the encoded data, the output Vo2 in FIG. Since the output time t2 of the voltage Vo2 at the portion corresponding to M2 is longer (see FIG. 10D), the receiving circuit 100 misrecognizes a bit having a value of “0” as a bit having a value of “1”. there's a possibility that.
 このようなビットの値の誤認識が発生した場合、受信回路に対し、入力信号が再送信される必要があり、正しい符号化データを受信回路が受信するまでに時間を要する可能性がある。 When such a misrecognition of the bit value occurs, the input signal needs to be retransmitted to the receiving circuit, and it may take time until the receiving circuit receives the correct encoded data.
 本発明の課題は、所定の信号則に従って情報データを符号化する符号化装置であって、受信回路側の条件によらず、受信回路がビットの値の誤認識を起こしにくい符号化データを生成する符号化装置を提供することにある。 An object of the present invention is an encoding device that encodes information data in accordance with a predetermined signal rule, and generates encoded data that is less likely to cause erroneous recognition of bit values regardless of conditions on the receiving circuit side. It is an object to provide an encoding device.
 本発明に係る符号化装置は、変換手段を備える。変換手段は、4ビットの情報データを所定の符号則に従ってNビット(N≧5)の符号化データに変換する。符号則においては、符号化データにおいて値が“1”のビットが連続せず、かつ、符号化データにおいて値が“1”のビットの数が1又は2であり、前記Nは7である。 The encoding device according to the present invention includes conversion means. The converting means converts the 4-bit information data into N-bit (N ≧ 5) encoded data according to a predetermined coding rule. In the coding rule, bits having a value of “1” are not consecutive in the encoded data, and the number of bits having a value of “1” in the encoded data is 1 or 2, and the N is 7.
 ここでは、4ビットの情報データが、値が“1”のビットが連続しない符号化データに変換される。このような符号化データが送信器から送信される場合、受信回路側の条件によらず、値が“1”のビットに対応する入力信号に対し、受信回路の出力の振幅が常に一定になりやすい。つまり、本符号化装置は、受信回路側の条件によらず、受信回路がビットの値の誤認識を起こしにくい符号化データを生成できる。 Here, 4-bit information data is converted into encoded data in which bits having a value of “1” are not consecutive. When such encoded data is transmitted from the transmitter, the amplitude of the output of the receiving circuit is always constant with respect to the input signal corresponding to the bit having a value of “1” regardless of the conditions on the receiving circuit side. Cheap. That is, the present encoding device can generate encoded data in which the receiving circuit is unlikely to erroneously recognize bit values regardless of the conditions on the receiving circuit side.
 また、ここでは、1の符号化データ(7ビットの符号化データ)の中の、値が“1”のビット数が1又は2であるため、信号のデューティ比を抑制することができる。その結果、符号化データを送信する送信器の平均出力を抑制することができる。さらに、1の符号化データの中に、値が“1”のビットが常に含まれるので、信号を受信する受信回路が同期をとりやすい。 Also, here, since the number of bits having a value of “1” in 1 encoded data (7-bit encoded data) is 1 or 2, the duty ratio of the signal can be suppressed. As a result, the average output of the transmitter that transmits the encoded data can be suppressed. Further, since one encoded data always includes a bit having a value of “1”, a receiving circuit that receives a signal can easily synchronize.
 また、ここでは、4ビットの情報データが7ビットの符号データに変換されるため、4ビットの情報データが8ビット以上の符号化データに変換される場合に比べ、信号送信に必要な時間を短縮することが可能である。 Also, since the 4-bit information data is converted to 7-bit code data here, the time required for signal transmission is reduced compared to the case where 4-bit information data is converted to encoded data of 8 bits or more. It can be shortened.
 本発明に係る符号化装置では、4ビットの情報データが、値が“1”のビットが連続しない符号化データに変換される。このような符号化データが送信器から送信される場合、受信回路側の条件によらず、値が“1”のビットに対応する入力信号に対し、受信回路の出力の振幅が常に一定になりやすい。つまり、本符号化装置は、受信回路側の条件によらず、受信回路がビットの値の誤認識を起こしにくい符号化データを生成できる。 In the encoding apparatus according to the present invention, 4-bit information data is converted into encoded data in which bits having a value of “1” are not consecutive. When such encoded data is transmitted from the transmitter, the amplitude of the output of the receiving circuit is always constant with respect to the input signal corresponding to the bit having a value of “1” regardless of the conditions on the receiving circuit side. Cheap. That is, the present encoding device can generate encoded data in which the receiving circuit is unlikely to erroneously recognize bit values regardless of the conditions on the receiving circuit side.
本発明の一実施形態に係る符号化装置が使用される電子棚札システムを示す図である。It is a figure which shows the electronic shelf label system in which the encoding apparatus which concerns on one Embodiment of this invention is used. 図1の電子棚札システムで使用される電子棚札の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the electronic shelf label used with the electronic shelf label system of FIG. 図1の電子棚札システムで使用される電子棚札の外観を示す図である。It is a figure which shows the external appearance of the electronic shelf label used with the electronic shelf label system of FIG. 図1の電子棚札システムで使用される通信装置の概略構成を示すブロック図である。通信装置には、本発明の一実施形態に係る符号化装置が内蔵されている。It is a block diagram which shows schematic structure of the communication apparatus used with the electronic shelf label system of FIG. The communication device incorporates an encoding device according to an embodiment of the present invention. 図1の電子棚札システムで使用される電子棚札の通信部の概略構成を示すブロック図である。通信部には、本発明の一実施形態に係る符号化装置が内蔵されている。It is a block diagram which shows schematic structure of the communication part of the electronic shelf label used with the electronic shelf label system of FIG. The communication unit incorporates an encoding device according to an embodiment of the present invention. 赤外線信号の受信回路(受光再生部)の一例を示す図である。It is a figure which shows an example of the receiving circuit (light-receiving / reproducing part) of an infrared signal. 本発明の一実施形態に係る符号化装置で使用される符号則の一例である。It is an example of the code rule used with the encoding apparatus which concerns on one Embodiment of this invention. 図7で示した符号則を用いて得られる符号化データが、赤外線信号として送信される場合に、図6の受信回路(受光再生部)により再生される符号化データの例である。図8(a)は、符号化データと、符号化データに基づいて発信される入力信号(赤外線信号)とを示している。図8(b)は、図8(a)の赤外線信号を、受信回路のフォトダイオードで電気信号に変換し、更に受信回路のアンプで増幅することで得られる電圧V1を示している。図8(c)は、図8(b)の電圧V1をコンパレータに入力することで得られる出力信号を示している。FIG. 8 is an example of encoded data reproduced by the receiving circuit (light receiving / reproducing unit) of FIG. 6 when the encoded data obtained using the encoding rule shown in FIG. 7 is transmitted as an infrared signal. FIG. 8A shows encoded data and an input signal (infrared signal) transmitted based on the encoded data. FIG. 8B shows a voltage V1 obtained by converting the infrared signal of FIG. 8A into an electrical signal by the photodiode of the receiving circuit and further amplifying it by the amplifier of the receiving circuit. FIG. 8C shows an output signal obtained by inputting the voltage V1 of FIG. 8B to the comparator. 変形例Bに係る符号化装置で使用される符号則の一例である。It is an example of the code rule used with the encoding apparatus which concerns on the modification B. 従来の符号則を用いて得られる、値が“1”のビットが連続する符号化データが、赤外線信号として送信される場合に、図6の受信回路(受光再生部)により再生される符号化データの例である。図10(a)は、符号化データと、符号化データに基づいて発信される入力信号(赤外線信号)とを示している。図10(b)は、図10(a)の赤外線信号を、受信回路のフォトダイオードで電気信号に変換し、更に受信回路のアンプで増幅することで得られる電圧V1を示している。図10(c)は、図10(b)の電圧V1をコンパレータに入力することで得られる出力信号を示している。図10(c)は、閾値としてTh1を用いる場合の出力信号を示している。図10(d)は、図10(b)の電圧V1をコンパレータに入力することで得られる出力信号を示している。図10(d)は、閾値としてTh2を用いる場合の出力信号を示している。Coding that is obtained by using a conventional coding rule and is reproduced by the receiving circuit (light receiving reproduction unit) in FIG. 6 when coded data having consecutive bits having a value of “1” is transmitted as an infrared signal. It is an example of data. FIG. 10A shows encoded data and an input signal (infrared signal) transmitted based on the encoded data. FIG. 10B shows a voltage V1 obtained by converting the infrared signal of FIG. 10A into an electrical signal by the photodiode of the receiving circuit and further amplifying it by the amplifier of the receiving circuit. FIG. 10C shows an output signal obtained by inputting the voltage V1 of FIG. 10B to the comparator. FIG. 10C shows an output signal when Th1 is used as the threshold value. FIG. 10D shows an output signal obtained by inputting the voltage V1 of FIG. 10B to the comparator. FIG. 10D shows an output signal when Th2 is used as the threshold value.
 以下、図面を参照しながら、本発明の一実施形態に係る符号化装置50について説明する。 Hereinafter, an encoding apparatus 50 according to an embodiment of the present invention will be described with reference to the drawings.
 なお、本実施形態に係る符号化装置50は、本発明の符号化装置の例示に過ぎず、本発明に係る符号化装置は、以下に記載する内容に限定されるものではない。発明の趣旨と矛盾しない範囲で、その他の態様も採用可能である。 Note that the encoding device 50 according to the present embodiment is merely an example of the encoding device of the present invention, and the encoding device according to the present invention is not limited to the contents described below. Other modes can be adopted as long as they do not contradict the gist of the invention.
 (1)全体概要
 本実施形態では、符号化装置50は、図1に示した電子棚札システム1の一部を構成する。ただし、これに限定されるものではなく、符号化装置50は、信号の符号化を必要とする各種のシステムに適用可能である。
(1) Overall Overview In the present embodiment, the encoding device 50 constitutes a part of the electronic shelf label system 1 shown in FIG. However, the present invention is not limited to this, and the encoding device 50 can be applied to various systems that require signal encoding.
 (2)電子棚札システムの概要
 以下に、符号化装置50が用いられる電子棚札システム1について概説する。
(2) Overview of Electronic Shelf Label System The following is an overview of the electronic shelf label system 1 in which the encoding device 50 is used.
 電子棚札システム1は、スーパーマーケットやコンビニエンスストアのような店舗において使用される。電子棚札システム1は、電子棚札サーバ10により管理される商品情報(本実施形態では、商品の販売価格)を、売り場に陳列される商品に対応して配置された電子棚札40に表示するためのシステムである。 The electronic shelf label system 1 is used in stores such as supermarkets and convenience stores. The electronic shelf label system 1 displays the product information (the sales price of the product in this embodiment) managed by the electronic shelf label server 10 on the electronic shelf label 40 arranged corresponding to the product displayed on the sales floor. It is a system to do.
 なお、電子棚札40は、可搬性の装置であり、店舗で取り扱われる複数の商品Pのそれぞれに対応して配置される表示装置である。電子棚札40は、店舗の売り場に陳列される複数の種類の商品Pのうち、対応する商品Pの近傍に配置され、対応する商品Pに関する商品情報を、後述する表示部41に表示する(図2および図3参照)。なお、各電子棚札40には、その電子棚札40と、他の電子棚札40とを識別するための固有のID(装置ID)が付されている。 Note that the electronic shelf label 40 is a portable device, and is a display device arranged corresponding to each of a plurality of products P handled in the store. The electronic shelf label 40 is arranged in the vicinity of the corresponding product P among the plurality of types of products P displayed on the store floor of the store, and displays the product information regarding the corresponding product P on the display unit 41 described later ( 2 and 3). Each electronic shelf label 40 is given a unique ID (device ID) for identifying the electronic shelf label 40 and other electronic shelf labels 40.
 電子棚札システム1は、図1に示すように、主として、電子棚札サーバ10と、複数の電子棚札40,40,・・・と、複数の通信装置30,30,・・・と、から構成されている。電子棚札システム1に含まれる電子棚札40および通信装置30の台数は、図1に示される数に限定されるものではない。通信装置30および電子棚札40は、内部に、本願の一実施形態に係る符号化装置50を備えている(図4および図5参照)。 As shown in FIG. 1, the electronic shelf label system 1 mainly includes an electronic shelf label server 10, a plurality of electronic shelf labels 40, 40,..., A plurality of communication devices 30, 30,. It is composed of The number of electronic shelf labels 40 and communication devices 30 included in the electronic shelf label system 1 is not limited to the number shown in FIG. The communication device 30 and the electronic shelf label 40 include an encoding device 50 according to an embodiment of the present application (see FIGS. 4 and 5).
 (2-1)電子棚札サーバ
 電子棚札サーバ10は、電子棚札システム1を統括的に制御するコンピュータである。電子棚札サーバ10は、例えば、店舗のバックヤードに配置される。
(2-1) Electronic Shelf Label Server The electronic shelf label server 10 is a computer that comprehensively controls the electronic shelf label system 1. The electronic shelf label server 10 is disposed, for example, in a store backyard.
 電子棚札サーバ10には、電子棚札40に表示される商品情報(ここでは、商品Pの販売価格の数値データ)が記憶されている。電子棚札サーバ10は、電子棚札システム1の起動時や、電子棚札40の表示変更が必要な時に、通信装置30を介して、電子棚札40に商品情報を送信する。電子棚札40の表示変更が必要な時とは、例えば、電子棚札サーバ10に記憶されている商品情報の内容が更新される時や、商品Pの特売期間に価格を通常販売価格から特別販売価格へと変更する時や、商品Pの特売期間終了時に価格を特別販売価格から通常販売価格へと変更する時である。 The electronic shelf label server 10 stores product information displayed on the electronic shelf label 40 (here, numerical data of the sales price of the product P). The electronic shelf label server 10 transmits product information to the electronic shelf label 40 via the communication device 30 when the electronic shelf label system 1 is activated or when the display change of the electronic shelf label 40 is necessary. When the display change of the electronic shelf label 40 is necessary, for example, when the content of the product information stored in the electronic shelf label server 10 is updated or during the sale period of the product P, the price is changed from the normal selling price to the special price. This is when the price is changed to the selling price or when the price is changed from the special selling price to the normal selling price at the end of the special sale period of the product P.
 また、電子棚札サーバ10には、電子棚札40の装置IDと、商品Pの商品ID(商品Pにバーコード等で付された商品ID)とが、関連付けて(リンク付けて)記憶されている。ある商品Pの商品情報が、通信装置30を介して、電子棚札40に送信される際には、商品情報と共に、その商品Pと関連付けられている電子棚札40の装置ID(商品情報の送信先の電子棚札40の装置ID)が識別子として送信される。電子棚札40は、送信されてきた識別子と、自己の装置IDとを比較することで、送信されてきた商品情報が自己宛に送信されてきたものか否かを判定する。 The electronic shelf label server 10 stores the device ID of the electronic shelf label 40 and the product ID of the product P (the product ID attached to the product P with a barcode or the like) in association (linked). ing. When the product information of a product P is transmitted to the electronic shelf label 40 via the communication device 30, the device ID (product information of the product information) of the electronic shelf label 40 associated with the product P is displayed together with the product information. The device ID of the electronic shelf label 40 of the transmission destination) is transmitted as an identifier. The electronic shelf label 40 determines whether the transmitted product information has been transmitted to itself by comparing the transmitted identifier with its own device ID.
 (2-2)通信装置
 通信装置30は、赤外線の送受信器である。通信装置30は、電子棚札40との間で、赤外線により各種信号の授受を行う。通信装置30は、例えば店舗内の天井に、一定の間隔を空けて取り付けられる。通信装置30の設置場所や設置間隔は、店舗内に設置された電子棚札40が、いずれかの通信装置30と通信可能となるように決定される。通信装置30は、LAN(Local Area Network)等のネットワーク2を介して、電子棚札サーバ10と接続されている。
(2-2) Communication Device The communication device 30 is an infrared transceiver. The communication device 30 exchanges various signals with the electronic shelf label 40 using infrared rays. The communication device 30 is attached to a ceiling in a store, for example, with a certain interval. The installation location and the installation interval of the communication device 30 are determined so that the electronic shelf label 40 installed in the store can communicate with any one of the communication devices 30. The communication device 30 is connected to the electronic shelf label server 10 via a network 2 such as a LAN (Local Area Network).
 通信装置30は、図4に示されるように、主に、符号化装置50と、復号化装置60と、駆動部31と、赤外線発光素子32と、受光再生部33とを有する。 The communication device 30 mainly includes an encoding device 50, a decoding device 60, a drive unit 31, an infrared light emitting element 32, and a light receiving / reproducing unit 33, as shown in FIG.
 符号化装置50は、電子棚札サーバ10から情報データとして送信される商品情報および識別子を受け付け、後述する符号則に従って符号化する。言い換えれば、符号化装置50は、電子棚札サーバ10から送信される情報データを、所定の符号則に従って符号化データに変換する。符号化装置50については、後ほど詳述する。 The encoding device 50 receives product information and an identifier transmitted as information data from the electronic shelf label server 10 and encodes them according to a coding rule described later. In other words, the encoding device 50 converts the information data transmitted from the electronic shelf label server 10 into encoded data according to a predetermined encoding rule. The encoding device 50 will be described in detail later.
 符号化装置50により符号化された符号化データは、駆動部31に出力される。駆動部31は、符号化装置50から入力された符号化データに基づいて、赤外線発光素子32を駆動する。赤外線発光素子32は、例えばLED(Light Emitting Diode)である。赤外線発光素子32は、駆動部31により駆動され、符号化データで変調された赤外線信号を出力する。具体的には、赤外線発光素子32は、駆動部31により駆動され、符号化データの中で値が“1”のビットを示す間、所定の周波数で点滅させられる。一方、符号化データの中で値が“0”のビットを示す間は、赤外線発光素子32は消灯させられる。 The encoded data encoded by the encoding device 50 is output to the drive unit 31. The drive unit 31 drives the infrared light emitting element 32 based on the encoded data input from the encoding device 50. The infrared light emitting element 32 is, for example, an LED (Light Emitting Diode). The infrared light emitting element 32 is driven by the drive unit 31 and outputs an infrared signal modulated with encoded data. Specifically, the infrared light emitting element 32 is driven by the drive unit 31 and blinks at a predetermined frequency while the value of “1” is indicated in the encoded data. On the other hand, the infrared light emitting element 32 is turned off while the encoded data indicates a bit having a value of “0”.
 受光再生部33は、電子棚札40から送信される赤外線信号(例えば後述するACK信号)を受信し、赤外線信号から符号化データを再生する。具体的には、受光再生部33は、まず、受信した赤外線信号を電気信号へと変換する。次に、受光再生部33は、電気信号を増幅する。更に、受光再生部33は、増幅した電気信号に基づいて符号化データを再生する。受光再生部33には、例えば、図6で示した、フォトダイオード101、電流電圧変換器102、アンプ103、およびコンパレータ104を有する受信回路100が用いられる。 The light receiving / reproducing unit 33 receives an infrared signal (for example, an ACK signal described later) transmitted from the electronic shelf label 40, and reproduces encoded data from the infrared signal. Specifically, the light receiving / reproducing unit 33 first converts the received infrared signal into an electrical signal. Next, the light receiving / reproducing unit 33 amplifies the electric signal. Further, the light receiving / reproducing unit 33 reproduces the encoded data based on the amplified electrical signal. For the light receiving / reproducing unit 33, for example, the receiving circuit 100 including the photodiode 101, the current-voltage converter 102, the amplifier 103, and the comparator 104 shown in FIG. 6 is used.
 受光再生部33により再生された符号化データは、復号化装置60に対して出力される。復号化装置60は、受光再生部33から入力される符号化データを復号化し(情報データに変換し)、電子棚札サーバ10に送信する。復号化装置60については、後ほど説明する。 The encoded data reproduced by the light receiving / reproducing unit 33 is output to the decoding device 60. The decoding device 60 decodes the encoded data input from the light receiving / reproducing unit 33 (converts it into information data) and transmits it to the electronic shelf label server 10. The decryption device 60 will be described later.
 (2-3)電子棚札
 電子棚札40は、上述のように、店舗で取り扱われる複数の商品Pのそれぞれに対応して配置され、対応する商品Pに関する商品情報を表示する(図2参照)。電子棚札40には、商品Pの販売価格が、商品情報として表示される(図3参照)。
(2-3) Electronic Shelf Label As described above, the electronic shelf label 40 is arranged corresponding to each of the plurality of products P handled in the store, and displays product information regarding the corresponding product P (see FIG. 2). ). The sales price of the product P is displayed on the electronic shelf label 40 as product information (see FIG. 3).
 電子棚札40は、図示されない内蔵の電池により駆動される。電子棚札40は、主な構成として、商品情報が表示される表示部41と、通信装置30との通信を行う通信部42と、電子棚札40の各部を制御する制御部43とを有する。 The electronic shelf label 40 is driven by a built-in battery (not shown). The electronic shelf label 40 includes, as main components, a display unit 41 on which product information is displayed, a communication unit 42 that communicates with the communication device 30, and a control unit 43 that controls each unit of the electronic shelf label 40. .
 表示部41は、セグメント方式の液晶ディスプレイである。ただし、これに限定されるものではなく、例えばドットマトリクス方式の電子ペーパであってもよい。 The display unit 41 is a segment type liquid crystal display. However, the present invention is not limited to this, and may be, for example, dot matrix electronic paper.
 通信部42は、通信装置30と、赤外線により通信を行う。通信部42は、図5に示すように、主に、符号化装置50と、復号化装置60と、駆動部42aと、赤外線発光素子42bと、受光再生部42cとを有する。通信部42は、通信装置30と同様の構成であるので、ここでは、両者の相違点について主に説明し、共通点については説明を一部省略する。 The communication unit 42 communicates with the communication device 30 using infrared rays. As shown in FIG. 5, the communication unit 42 mainly includes an encoding device 50, a decoding device 60, a driving unit 42a, an infrared light emitting element 42b, and a light receiving / reproducing unit 42c. Since the communication unit 42 has the same configuration as that of the communication device 30, the difference between the two is mainly described here, and a part of the description is omitted for the common points.
 受光再生部42cは、電子棚札サーバ10から通信装置30を介して送信される商品情報や、商品情報と共に送信される識別子を、赤外線信号の形で受信する。受光再生部42cは、前述の受光再生部33と同様に、赤外線信号から符号化データを再生する。受光再生部42cにより再生された符号化データは、復号化装置60に対して出力される。復号化装置60は、受光再生部42cから入力された符号化データを復号化して情報データに変換し、制御部43に送信する。 The light receiving and reproducing unit 42c receives the product information transmitted from the electronic shelf label server 10 via the communication device 30 and the identifier transmitted together with the product information in the form of an infrared signal. The light receiving / reproducing unit 42c reproduces the encoded data from the infrared signal in the same manner as the light receiving / reproducing unit 33 described above. The encoded data reproduced by the light receiving / reproducing unit 42 c is output to the decoding device 60. The decoding device 60 decodes the encoded data input from the light receiving / reproducing unit 42 c, converts it into information data, and transmits the information data to the control unit 43.
 通信部42の符号化装置50は、制御部43から入力される信号(例えば、後述するACK信号)を、後述する符号則に従って符号化する。符号化装置50により符号化された符号化データは、駆動部42aに出力される。駆動部42aは、符号化装置50から入力された符号化データに基づいて、例えばLEDからなる赤外線発光素子42bを駆動する。駆動部42aおよび赤外線発光素子42bは、通信装置30の駆動部31および赤外線発光素子32と同様であるため、ここでは説明を省略する。 The encoding device 50 of the communication unit 42 encodes a signal (for example, an ACK signal described later) input from the control unit 43 according to a coding rule described later. The encoded data encoded by the encoding device 50 is output to the drive unit 42a. The drive unit 42a drives the infrared light emitting element 42b made of, for example, an LED based on the encoded data input from the encoding device 50. Since the drive part 42a and the infrared light emitting element 42b are the same as the drive part 31 and the infrared light emitting element 32 of the communication apparatus 30, description is abbreviate | omitted here.
 制御部43は、主にCPUにより構成される。制御部43は、図示しない記憶部に記憶されたプログラムを実行することで、電子棚札40の各部を制御する。 The control unit 43 is mainly configured by a CPU. The control unit 43 controls each unit of the electronic shelf label 40 by executing a program stored in a storage unit (not shown).
 制御部43は、通信部42を制御して、通信装置30から送信される赤外線を受信させ、赤外線データを復号化して得られる情報データを、制御部43に対して送信させる。制御部43は、通信部42から情報データが送信されてくると、電子棚札サーバ10から商品情報と共に送信されてくる識別子を、記憶部に記憶されている装置IDと比較する。制御部43は、識別子と、記憶部に記憶されている装置IDとが一致する場合には、自己宛の(その制御部43が属する電子棚札40宛の)商品情報を受信したと判定する。制御部43は、自己宛の商品情報を受信したと判定すると、通信部42に対して、商品情報を受信した旨を知らせる信号(ACK信号)を送信する。また、制御部43は、通信部42が受信した自己宛の商品情報を、記憶部に記憶させる。更に、制御部43は、表示部41に、記憶部に記憶された商品情報が表示されるように、表示部41を制御する。 The control unit 43 controls the communication unit 42 to receive infrared rays transmitted from the communication device 30 and causes the control unit 43 to transmit information data obtained by decoding the infrared data. When the information data is transmitted from the communication unit 42, the control unit 43 compares the identifier transmitted together with the product information from the electronic shelf label server 10 with the device ID stored in the storage unit. When the identifier and the device ID stored in the storage unit match, the control unit 43 determines that the product information addressed to itself (addressed to the electronic shelf label 40 to which the control unit 43 belongs) has been received. . When determining that the product information addressed to itself is received, the control unit 43 transmits a signal (ACK signal) notifying that the product information has been received to the communication unit 42. Further, the control unit 43 stores the product information addressed to itself received by the communication unit 42 in the storage unit. Furthermore, the control unit 43 controls the display unit 41 so that the product information stored in the storage unit is displayed on the display unit 41.
 (3)符号化装置および復号化装置
 符号化装置50および復号化装置60について説明する。
(3) Encoding Device and Decoding Device The encoding device 50 and the decoding device 60 will be described.
 符号化装置50および復号化装置60は、主に論理回路からなる。符号化装置50は、主に符号化部50aを有する。符号化部50aは、4ビットの情報データを、符号則に従って5ビット以上の符号化データに変換する変換手段の一例である。復号化装置60は、主に復号化部60aを有する。復号化部60aは、符号化データを、復号則にしたがって、4ビットの情報データへと変換する。なお、符号則と復号則とは、互いに対応しており、符号則に従ってある情報データを変換した符号化データを、復号則に従って変換すると、元の情報データが得られるように決められている。 The encoding device 50 and the decoding device 60 are mainly composed of logic circuits. The encoding device 50 mainly includes an encoding unit 50a. The encoding unit 50a is an example of a conversion unit that converts 4-bit information data into encoded data of 5 bits or more according to a coding rule. The decoding device 60 mainly includes a decoding unit 60a. The decoding unit 60a converts the encoded data into 4-bit information data according to a decoding rule. Note that the coding rule and the decoding rule correspond to each other, and it is determined that original information data can be obtained by converting encoded data obtained by converting certain information data according to the coding rule according to the decoding rule.
 図7に、符号化装置50で用いられる符号則を示す。符号化部50aが、図7の符号則を用いることで、図7の左側に記載された情報データは、図7の右側に記載された7ビットの符号化データに変換される。なお、この符号則に対応する復号則は、図7において右側に記載された符号化データが、図7において左側に記載された4ビットの情報データに変換されるというものであるので、図面は省略する。 FIG. 7 shows a coding rule used in the coding device 50. The encoding unit 50a uses the coding rule of FIG. 7 to convert the information data described on the left side of FIG. 7 into 7-bit encoded data described on the right side of FIG. The decoding rule corresponding to this coding rule is that the encoded data described on the right side in FIG. 7 is converted to 4-bit information data described on the left side in FIG. Omitted.
 図7から判るように、この符号側には、主に3つの特徴がある。 As can be seen from FIG. 7, there are mainly three features on this code side.
 第1に、この符号則により生成される符号化データ(符号化部50aが、符号則に従って情報データを変換することで得られる符号化データ)において、値が“1”のビットが連続することがない(図7参照)。なお、「符号化データにおいて、値が“1”のビットが連続することがない」とは、1つの符号化データ(7ビットの符号化データ)の中で値が“1”のビットが連続しないだけではなく、隣り合う符号化データの間でも、値が“1”のビットが連続しないことも意味する。隣り合う符号化データの間でも値が“1”のビットが連続しないのは、符号化データの最後のビットが、必ず“0”であるためである。 First, in the encoded data generated by this encoding rule (encoded data obtained by the encoding unit 50a converting the information data according to the encoding rule), bits having a value of “1” are continuous. There is no (see FIG. 7). Note that “bits having a value of“ 1 ”are not consecutive in encoded data” means that bits having a value of “1” are consecutive in one encoded data (7-bit encoded data). Not only does this mean, but also means that bits having a value of “1” do not continue between adjacent encoded data. The reason why the bit having a value of “1” does not continue between adjacent encoded data is that the last bit of the encoded data is always “0”.
 第2に、この符号則により生成される符号化データでは、1つの符号化データの中で、値が“1”のビットは、1個又は2個である(図7参照)。 Second, in the encoded data generated by this encoding rule, one or two bits having a value “1” are included in one encoded data (see FIG. 7).
 第3に、この符号則では、4ビットの情報データが、7ビットの符号化データに変換される(図7参照)。 Third, in this coding rule, 4-bit information data is converted into 7-bit encoded data (see FIG. 7).
 これらの特徴により得られる効果について以下に説明する。 The effects obtained by these features will be described below.
 まず、値が“1”のビットが連続することがないために得られる効果について説明する。なお、ここでは、通信装置30から赤外線により送信される符号化データを、電子棚札40の受光再生部42cで受信する場合を例に説明する。また、ここでは、電子棚札40の受光再生部42cは、図6に示す受信回路100であるとする。 First, the effect obtained because the bit having the value “1” will not be continued will be described. Here, a case will be described as an example in which encoded data transmitted by infrared rays from the communication device 30 is received by the light receiving and reproducing unit 42c of the electronic shelf label 40. Here, it is assumed that the light receiving / reproducing unit 42c of the electronic shelf label 40 is the receiving circuit 100 shown in FIG.
 受信回路100では、入力信号としての赤外線は、フォトダイオード101で光信号から電気信号(電流)へと変換される。フォトダイオード101から出力される電流は、電流電圧変換器102により電圧に変換され、アンプ103で増幅される。アンプ103で増幅された後の電圧を電圧V1で表す。コンパレータ104は、電圧V1と、所定の閾値との比較を行い、電圧V1が閾値を超える場合に、出力電圧Voへ“H”レベルを、超えない場合に“L”レベルを出力する。これにより、赤外線信号から、符号化データが再生される。 In the receiving circuit 100, infrared light as an input signal is converted from an optical signal to an electric signal (current) by the photodiode 101. The current output from the photodiode 101 is converted into a voltage by the current-voltage converter 102 and amplified by the amplifier 103. The voltage after being amplified by the amplifier 103 is represented by a voltage V1. The comparator 104 compares the voltage V1 with a predetermined threshold value, and outputs an “H” level to the output voltage Vo when the voltage V1 exceeds the threshold value, and outputs an “L” level when the voltage V1 does not exceed the threshold value. Thereby, the encoded data is reproduced from the infrared signal.
 まず、受光再生部42cが、値が“1”のビットが連続するデータを赤外線信号で受信する場合の問題点について説明する。 First, a problem in the case where the light receiving / reproducing unit 42c receives data with consecutive bits having a value of “1” as an infrared signal will be described.
 値が“1”のビットが連続する符号化データを赤外線信号で受信する時に、受光再生部42cが、その高周波特性が悪い場合や、特定の条件下におかれていた場合、符号化データ中で値が“1”のビットが連続する数が多いほど、電圧V1の振幅が大きくなる(図10(b)参照)。受光再生部42cの受信特性に影響を与える条件には、例えば、電子棚札40と通信装置30との距離(より正確には、受光再生部42cと通信装置30との距離)がある。例えば、電子棚札40と通信装置30との距離が近い場合には、受光再生部42cの受信する光信号の“1”と“0”のレベル差が極端に大きくなり、符号化データの中で値が“1”のビットが連続する数が多いほど、電圧V1の振幅が大きくなる可能性がある。このような電圧V1をコンパレータ104に加えた場合、コンパレータ104の閾値をTh1(図10(b)参照)とすれば、図10(c)のような出力Vo1が得られる。一方、コンパレータ104の閾値をTh2(図10(b)参照)とすれば、図10(d)のような出力Vo2が得られる。 When receiving encoded data with consecutive bits having a value of “1” as an infrared signal, if the light receiving / reproducing unit 42c has poor high-frequency characteristics or has been subjected to specific conditions, As the number of consecutive bits having a value of “1” increases, the amplitude of the voltage V1 increases (see FIG. 10B). Conditions that affect the reception characteristics of the light receiving / reproducing unit 42c include, for example, the distance between the electronic shelf label 40 and the communication device 30 (more precisely, the distance between the light receiving / reproducing unit 42c and the communication device 30). For example, when the distance between the electronic shelf label 40 and the communication device 30 is short, the level difference between “1” and “0” of the optical signal received by the light receiving / reproducing unit 42c becomes extremely large, and the encoded data includes As the number of consecutive bits having a value of “1” increases, the amplitude of the voltage V1 may increase. When such a voltage V1 is applied to the comparator 104, if the threshold value of the comparator 104 is Th1 (see FIG. 10B), an output Vo1 as shown in FIG. 10C is obtained. On the other hand, when the threshold value of the comparator 104 is Th2 (see FIG. 10B), an output Vo2 as shown in FIG. 10D is obtained.
 出力Vo1では、符号化データ中で値が“1”のビットが単独で存在する部分(図10(a)中のM1)に対応する部分の電圧値が0となっているため(図10(c)参照)、受信回路100は、値が“1”のビットを、値が“0” のビットと誤認識する可能性がある。一方、出力Vo2では、符号化データ中で値が“1”のビットが連続する部分(図10(a)中のM2)に対応する入力信号の送信時間t1より、図10(a)中のM2に対応する部分の電圧Vo2の出力時間t2の方が長いため(図10(d)参照)、受信回路100は、値が“0”のビットを、値が“1”のビットと誤認識する可能性がある。 In the output Vo1, the voltage value of the portion corresponding to the portion (M1 in FIG. 10A) where the bit having the value “1” exists alone in the encoded data is 0 (FIG. 10 ( c)), the receiving circuit 100 may misrecognize a bit having a value of “1” as a bit having a value of “0”. On the other hand, in the output Vo2, from the transmission time t1 of the input signal corresponding to the portion (M2 in FIG. 10A) in which the bit having the value “1” continues in the encoded data, the output Vo2 in FIG. Since the output time t2 of the voltage Vo2 at the portion corresponding to M2 is longer (see FIG. 10D), the receiving circuit 100 misrecognizes a bit having a value of “0” as a bit having a value of “1”. there's a possibility that.
 一方、符号化装置50が用いる図7の符号則では、値が“1”のビットが連続しないため、図8のように、値が“1”のビットに対応して得られる電圧V1の振幅は一定となる。そのため、受光再生部42cの高周波特性によらず、符号化データが誤って再生されにくい。 On the other hand, in the coding rule of FIG. 7 used by the encoding device 50, since the bits having the value “1” are not consecutive, the amplitude of the voltage V1 obtained corresponding to the bit having the value “1” as shown in FIG. Is constant. For this reason, the encoded data is unlikely to be reproduced erroneously regardless of the high frequency characteristics of the light receiving / reproducing unit 42c.
 次に、1つの符号化データの中で、値が“1”のビットが1個又は2個であるために得られる効果について説明する。 Next, an effect obtained because one or two bits having a value “1” in one encoded data will be described.
 まず、7ビットの符号化データの中で、最大でも2ビットしか値が“1”のビットが存在しないため、デューディ比(全ビット数に対する、値が“1”のビット数の割合)を抑制することができる。例えば、一般に知られた符号化方式である、4値PPM方式(4値パルス位置変調(Pulse Position Modulation)方式)ではデューティ比が25%であり、CMI(Coded Mark Inversion)方式ではデューティ比が50%である。これに対し、本符号則を用いる場合には、デューティ比を約20%まで低減できる。その結果、符号化データを送信する際の、通信装置30や電子棚札40の通信部42の平均出力を抑制することができる。 First, in 7-bit encoded data, there are only 2 bits whose value is “1” at the maximum, so the duty ratio (the ratio of the number of bits whose value is “1” to the total number of bits) is suppressed. can do. For example, the duty ratio is 25% in the quaternary PPM system (quaternary pulse position modulation (Pulse-Position Modulation) system), which is a generally known encoding system, and the duty ratio is 50 in the CMI (Coded Mark Inversion) system. %. On the other hand, when this code rule is used, the duty ratio can be reduced to about 20%. As a result, it is possible to suppress the average output of the communication unit 30 and the communication unit 42 of the electronic shelf label 40 when transmitting the encoded data.
 また、1つの符号化データの中に、必ず1つは値が“1”のビットが含まれるので、通信装置30や、電子棚札40の通信部42が符号化データと同期をとることが容易である。 In addition, since one encoded data always includes a bit having a value of “1”, the communication device 30 and the communication unit 42 of the electronic shelf label 40 may be synchronized with the encoded data. Easy.
 最後に、4ビットの情報データが、7ビットの符号化データに変換されることにより得られる効果について説明する。 Finally, the effect obtained by converting 4-bit information data into 7-bit encoded data will be described.
 4値PPM方式や、CMI方式では、情報データのビット数に対し、符号化データのビット数が2倍になるという特徴を有する。これに対し、本符号則では、情報データのビット数に対し、符号化データのビット数が1.75倍にしかならない。そのため、信号の送信に要する時間を、4値PPM方式や、CMI方式に比べ短縮することができる。 The quaternary PPM method and the CMI method have a feature that the number of bits of encoded data is twice that of information data. On the other hand, according to this coding rule, the number of bits of encoded data is only 1.75 times the number of bits of information data. Therefore, the time required for signal transmission can be shortened compared to the 4-value PPM method and the CMI method.
 なお、値が“1”のビットを連続させないことで得られる効果と、1つの符号化データの中に値が“1”のビットが1個又は2個存在することで得られる効果と、を得るうえでは、符号則は、4ビットの情報データを、8ビット以上の符号化データに変換するものであってもよい。ただし、上記のように、信号の送信時間の短縮という観点からは、符号則は、4ビットの情報データを、7ビットの符号化データに変換するものであることが望ましい。 It should be noted that the effect obtained by not consecutive bits having a value of “1” and the effect obtained by the presence of one or two bits having a value of “1” in one encoded data, In obtaining the coding rule, the 4-bit information data may be converted into 8-bit or more encoded data. However, as described above, from the viewpoint of shortening the signal transmission time, it is desirable that the coding rule is to convert 4-bit information data into 7-bit encoded data.
 (4)特徴
 本実施形態に係る符号化装置50は、符号化部50aを備える。変換手段は、4ビットの情報データを所定の符号則に従ってNビット(N≧5)の符号化データに変換する。符号則においては、符号化データにおいて値が“1”のビットが連続せず、かつ、符号化データにおいて値が“1”のビットの数が1又は2であり、前記Nは7である。
(4) Features The encoding device 50 according to the present embodiment includes an encoding unit 50a. The converting means converts the 4-bit information data into N-bit (N ≧ 5) encoded data according to a predetermined coding rule. In the coding rule, bits having a value of “1” are not consecutive in the encoded data, and the number of bits having a value of “1” in the encoded data is 1 or 2, and the N is 7.
 ここでは、4ビットの情報データが、値が“1”のビットが連続しない符号化データに変換される。このような符号化データが通信装置30や電子棚札40の通信部42から送信される場合、受信回路(通信装置30の受光再生部33および通信部42の受光再生部42c)側の条件によらず、値が“1”のビットに対応する入力信号に対する受信回路の出力の振幅が常に一定になりやすい。つまり、符号化装置50では、受信回路側の条件によらず、受信回路がビットの値の誤認識を起こしにくい符号化データを生成できる。 Here, 4-bit information data is converted into encoded data in which bits having a value of “1” are not consecutive. When such encoded data is transmitted from the communication device 30 or the communication unit 42 of the electronic shelf label 40, the conditions on the receiving circuit (the light receiving / reproducing unit 33 of the communication device 30 and the light receiving / reproducing unit 42 c of the communication unit 42) are satisfied. Regardless, the amplitude of the output of the receiving circuit with respect to an input signal corresponding to a bit having a value of “1” tends to be always constant. That is, the encoding device 50 can generate encoded data in which the receiving circuit is less likely to misrecognize the bit value regardless of the conditions on the receiving circuit side.
 また、ここでは、1つの符号化データの中の、値が“1”のビット数が1又は2であるため、信号のデューティ比を低く抑制することができる。その結果、符号化データを送信する通信装置30や通信部42の平均出力を抑制することができる。さらに、1の符号化データの中に、値が“1”のビットが常に含まれるので、信号を受信する受信回路が同期をとりやすい。 In addition, here, since the number of bits having a value of “1” in one encoded data is 1 or 2, the duty ratio of the signal can be suppressed low. As a result, the average output of the communication device 30 and the communication unit 42 that transmit the encoded data can be suppressed. Further, since one encoded data always includes a bit having a value of “1”, a receiving circuit that receives a signal can easily synchronize.
 また、ここでは、4ビットの情報データが7ビットの符号データに変換されるため、4ビットの情報データが8ビット以上の符号化データに変換される場合に比べ、信号送信に必要な時間を短縮することが可能である。 Also, since the 4-bit information data is converted to 7-bit code data here, the time required for signal transmission is reduced compared to the case where 4-bit information data is converted to encoded data of 8 bits or more. It can be shortened.
 (5)変形例
 以下に本実施形態の変形例について説明する。なお、矛盾しない範囲で、複数の変形例が組み合わされてもよい。
(5) Modification Examples of the present embodiment will be described below. Note that a plurality of modified examples may be combined as long as they do not contradict each other.
 (5-1)変形例A
 上記実施形態では、符号則の例として図7を示したが、これに限定されるものではない。図7において、情報データと符号化データとの対応は任意に組み替え可能である。ただし、情報データと符号化データとの対応は、誤りの起こりにくい規則(例えばグレイコードなど)に基づいて決定されることが望ましい。
(5-1) Modification A
In the above embodiment, FIG. 7 is shown as an example of the coding rule, but the present invention is not limited to this. In FIG. 7, the correspondence between the information data and the encoded data can be arbitrarily rearranged. However, it is desirable that the correspondence between the information data and the encoded data is determined based on a rule (for example, a Gray code) that hardly causes an error.
 (5-2)変形例B
 上記実施形態では、符号則の例として図7を示したが、これに限定されるものではない。例えば、符号則は、図9のようなものであってもよい。図9の符号則においても、符号化データにおいて値が“1”のビットが連続せず、1つの符号化データの中で値が“1”のビットの数が1又は2であり、4ビットの情報データが、7ビットの符号化データに変換される。
(5-2) Modification B
In the above embodiment, FIG. 7 is shown as an example of the coding rule, but the present invention is not limited to this. For example, the coding rule may be as shown in FIG. Also in the coding rule of FIG. 9, the bits having the value “1” in the encoded data are not consecutive, and the number of bits having the value “1” in one encoded data is 1 or 2, and 4 bits. Are converted into 7-bit encoded data.
 (5-3)変形例C
 上記実施形態では、符号化装置50および復号化装置60が、赤外線により通信を行う、電子棚札40の通信部42と通信装置30とに用いられているが、これに限定されるものではない。例えば、符号化装置50および復号化装置60は、電波により通信を行う電子棚札の通信部と通信装置とに用いられてもよい。
(5-3) Modification C
In the above-described embodiment, the encoding device 50 and the decoding device 60 are used for the communication unit 42 and the communication device 30 of the electronic shelf label 40 that perform communication using infrared rays, but are not limited thereto. . For example, the encoding device 50 and the decoding device 60 may be used for a communication unit and a communication device of an electronic shelf label that performs communication using radio waves.
 (5-4)変形例D
 上記実施形態では、値が“1”のビットが連続する符号化データや、値が“1”のビットの数が3以上の符号化データは特に利用されないが、これに限定されるものではない。例えば、値が“1”のビットが連続する符号化データや、値が“1”のビットの数が3以上ある符号化データは、誤り検出の目的や、受信回路の同期や、通信の制御を目的として使用されてもよい。
(5-4) Modification D
In the above embodiment, encoded data in which bits having a value of “1” are continuous and encoded data in which the number of bits having a value of “1” is 3 or more are not particularly used. However, the present invention is not limited to this. . For example, encoded data with consecutive bits having a value of “1” and encoded data with 3 or more bits having a value of “1” are used for error detection purposes, receiver circuit synchronization, and communication control. May be used for the purpose.
 本発明に係る符号化装置は、受信回路側の条件によらず、受信回路がビットの値の誤認識を起こしにくい符号化データを生成する符号化装置として有用である。 The encoding apparatus according to the present invention is useful as an encoding apparatus that generates encoded data in which the receiving circuit is unlikely to cause erroneous recognition of bit values regardless of conditions on the receiving circuit side.
50 符号化装置
50a 符号化部(変換手段)
50 Coding device 50a Encoding unit (conversion means)
特開2008-103898号公報JP 2008-103898 A

Claims (1)

  1.  4ビットの情報データを所定の符号則に従ってNビット(N≧5)の符号化データに変換する変換手段を備え、
     前記符号則においては、前記符号化データにおいて値が“1”のビットが連続せず、かつ、前記符号化データにおいて値が“1”のビットの数が1又は2であり、前記Nは7である、
    符号化装置。
    Conversion means for converting 4-bit information data into N-bit (N ≧ 5) encoded data according to a predetermined encoding rule;
    In the coding rule, bits having a value of “1” are not consecutive in the encoded data, and the number of bits having a value of “1” in the encoded data is 1 or 2, and N is 7 Is,
    Encoding device.
PCT/JP2014/055839 2013-03-13 2014-03-06 Encoding apparatus WO2014142009A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-001369U 2013-03-13
JP2013085950A JP2014179964A (en) 2013-04-16 2013-04-16 Encoder
JP2013-085950 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014142009A1 true WO2014142009A1 (en) 2014-09-18

Family

ID=51538729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055839 WO2014142009A1 (en) 2013-03-13 2014-03-06 Encoding apparatus

Country Status (2)

Country Link
JP (1) JP2014179964A (en)
WO (1) WO2014142009A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311011A (en) * 1976-07-14 1978-02-01 Sperry Rand Corp Method and device for coding or decoding binary degital data
JPS55138950A (en) * 1979-04-17 1980-10-30 Mitsubishi Electric Corp Digital signal modulation and demodulation system
JPS58121855A (en) * 1982-01-14 1983-07-20 Matsushita Electric Ind Co Ltd Digital signal modulating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311011A (en) * 1976-07-14 1978-02-01 Sperry Rand Corp Method and device for coding or decoding binary degital data
JPS55138950A (en) * 1979-04-17 1980-10-30 Mitsubishi Electric Corp Digital signal modulation and demodulation system
JPS58121855A (en) * 1982-01-14 1983-07-20 Matsushita Electric Ind Co Ltd Digital signal modulating method

Also Published As

Publication number Publication date
JP2014179964A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP3958339B2 (en) Pulse modulation method
US8948600B2 (en) Transmitter for wireless optical communication system using light source
CN101960808B (en) Method for non-flutter transmission of digital data in a free-space optical transmission system
EP3190724A1 (en) Optical signal encoding and decoding methods, and device
JP5895236B2 (en) Optical signal transmitter
JP2621414B2 (en) Information processing device having cordless keyboard
KR101938391B1 (en) Apparatus and method for transmitting and receiving, for visible light communication
US20170180048A1 (en) Method for optical driving chip to control light-emitting device, and optical drive chip therefor
WO2014142009A1 (en) Encoding apparatus
KR101240347B1 (en) Device for digital information display using visible light communication
JP4540652B2 (en) Encoder
US7750827B2 (en) Coding device, pulse regenerating device, and communications system
KR102036539B1 (en) Pulse-Amplitude-Modulation-based Optical Transmitter for High-Efficiency Optical Signal Transmission
US5684479A (en) Communication device performing code conversion between binary data and serial data
JP6897666B2 (en) Transmission control device, reception control device and transmission / reception control system
US10666361B2 (en) Sending control apparatus, sending control method, signal synthesis apparatus, signal synthesis method, signal transmission system, and signal transmission method
US20060226245A1 (en) Encoding format for passive radio frequency identification (RFID) system
JP4243726B2 (en) Communication device
TWI718391B (en) Wireless power supply apparatus
JP2009105496A (en) Visible light communication terminal, visible light communication system and optical communication method
US8867925B2 (en) Reducing electrical current of a signal driver for an optical transmitter
EP1404041A1 (en) Signal strength display device for wireless hub
KR20210145483A (en) Data processing device, data driving device and system for driving display device
JP6091205B2 (en) Object detection device
JP2007329585A (en) Optical transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765409

Country of ref document: EP

Kind code of ref document: A1