WO2014141998A1 - Charge-transporting varnish - Google Patents

Charge-transporting varnish Download PDF

Info

Publication number
WO2014141998A1
WO2014141998A1 PCT/JP2014/055781 JP2014055781W WO2014141998A1 WO 2014141998 A1 WO2014141998 A1 WO 2014141998A1 JP 2014055781 W JP2014055781 W JP 2014055781W WO 2014141998 A1 WO2014141998 A1 WO 2014141998A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
charge transporting
charge
Prior art date
Application number
PCT/JP2014/055781
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 中家
春香 古賀
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015505434A priority Critical patent/JP6135752B2/en
Priority to CN201480013891.2A priority patent/CN105074949B/en
Priority to KR1020157028180A priority patent/KR102270150B1/en
Publication of WO2014141998A1 publication Critical patent/WO2014141998A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a charge transporting varnish. More specifically, the present invention relates to a charge transporting varnish containing a charge transporting material composed of a predetermined aniline derivative, a dopant material composed of a heteropolyacid, and an organosilane compound.
  • organic electroluminescence (hereinafter referred to as organic EL) element a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
  • the method for forming the charge transporting thin film is roughly classified into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with the dry process and the wet process, the wet process can efficiently produce a thin film with a large area and high flatness. Therefore, in the field where a large area of the thin film such as an organic EL element is desired, the thin film is obtained by the wet process. Is often formed.
  • the present invention has been made in view of the above circumstances, and can be fired at a temperature lower than 200 ° C., and the thin film produced under such firing conditions has high flatness and high charge transportability.
  • An object of the present invention is to provide a charge transporting varnish capable of exhibiting excellent luminance characteristics when applied to an organic EL element.
  • a charge transporting varnish containing a charge transporting material composed of a predetermined aniline derivative, a dopant material composed of a heteropolyacid, and an organosilane compound can be fired at a low temperature of less than 200 ° C., the thin film produced under such firing conditions has high flatness and high charge transportability, and the thin film is applied to the hole injection layer. In this case, it was found that an organic EL element capable of realizing excellent luminance characteristics was obtained, and the present invention was completed.
  • a charge transporting varnish comprising a charge transporting material comprising an aniline derivative represented by formula (1), a dopant material comprising a heteropolyacid, an organosilane compound, and an organic solvent;
  • X 1 represents —NY 1 —, —O—, —S—, — (CR 7 R 8 ) 1 — or a single bond
  • Y 1 independently of each other, represents a hydrogen atom.
  • R 1 to R 8 independently of one another are a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, A hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 ; Z 2 may be substituted with, ants having 6 to 20 carbon atoms Le group or heteroaryl group having a
  • Z 1 is a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or Z 3
  • An optionally substituted aryl group having 6 to 20 carbon atoms or 2 to 2 carbon atoms Represents 0 heteroaryl group
  • Z 2 is a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, may be substituted with a carboxylic acid group or Z 3
  • Z 3 represents a halogen atom, nitro group, cyano
  • R 1 to R 4 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 1 , or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 2.
  • R 5 and R 6 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 1 , or a carbon atom having 6 to 14 carbon atoms which may be substituted with Z 2 .
  • 1 charge transporting varnish which is an aryl group or a diphenylamino group optionally substituted with Z 2 ; 3.
  • An organic electroluminescence device having six charge transporting thin films 9. 8. The organic electroluminescence device according to 8, wherein the charge transporting thin film is a hole injection layer or a hole transport layer; 10. A method for producing a charge-transporting thin film, characterized in that the charge-transporting varnish according to any one of 1 to 5 is applied onto a substrate and baked; 11. 10. A method for producing a charge-transporting thin film, characterized by firing at less than 200 ° C., 12 And a method for producing an organic electroluminescence device using the charge transporting thin film.
  • the charge transport varnish of the present invention has a high flatness and a high charge transport property even when fired at a low temperature of less than 200 ° C.
  • An organic EL element capable of realizing excellent luminance characteristics can be obtained. Therefore, by using the charge transporting varnish of the present invention, it is possible to achieve high yield and low cost by reducing the manufacturing process conditions, or to reduce the weight and size of the device.
  • the charge transporting varnish of the present invention can produce a thin film excellent in charge transporting properties with good reproducibility even when using various wet processes capable of forming a film over a large area such as a spin coating method or a slit coating method. It can sufficiently cope with recent progress in the field of organic EL elements.
  • the thin film obtained from the charge transporting varnish of the present invention can be used as an antistatic film, an anode buffer layer of an organic thin film solar cell, or the like.
  • the charge transporting varnish according to the present invention includes a charge transporting material composed of an aniline derivative represented by the formula (1), a dopant material composed of a heteropolyacid, an organic silane compound, and an organic solvent.
  • the charge transportability is synonymous with conductivity and is synonymous with hole transportability.
  • the charge transporting substance itself may be charge transporting, or may be charge transporting when used with an electron accepting substance.
  • the charge transporting varnish may itself have a charge transporting property, and the resulting solid film may have a charge transporting property.
  • X 1 represents —NY 1 —, —O—, —S—, — (CR 7 R 8 ) 1 — or a single bond, and when m or n is 0, NY 1 -is represented.
  • Y 1 is independently of each other a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 , or It represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 .
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic.
  • alkenyl group having 2 to 20 carbon atoms include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n- 1-pentenyl group, n-1-decenyl group, n-1-eicocenyl group and the like can be mentioned.
  • alkynyl group having 2 to 20 carbon atoms examples include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, and n-3-butynyl.
  • aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, and the like.
  • R 7 and R 8 are independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or Z 1.
  • An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 2 to 20 represents an alkynyl group, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 .
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group of R 7 to R 8 and Y 2 to Y 13 are the same as those described above.
  • R 7 and R 8 a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 is preferable, and a hydrogen atom or a methyl group which may be substituted with Z 1 Groups are more preferred, both of which are hydrogen atoms.
  • l represents the number of repeating units of a divalent alkylene group represented by — (CR 7 R 8 ) — and is an integer of 1 to 20, preferably 1 to 10, more preferably 1 to 5, ⁇ 2 is even more preferred, with 1 being optimal.
  • the plurality of R 7 may be the same as or different from each other, and the plurality of R 8 may be the same as or different from each other.
  • X 1 is preferably —NY 1 — or a single bond.
  • Y 1 is preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , more preferably a hydrogen atom or a methyl group optionally substituted with Z 1 , Hydrogen atoms are optimal.
  • R 1 to R 6 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or Z 1.
  • R 1 to R 4 may be substituted with a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 1 , or Z 2.
  • An aryl group having 6 to 14 carbon atoms is preferable, a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 10 carbon atoms which may be substituted with a fluorine atom is more preferable, and all hydrogen atoms are optimal.
  • R 5 and R 6 are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms that may be substituted with Z 1 , or an aryl group having 6 to 14 carbon atoms that may be substituted with Z 2 Or a diphenylamino group optionally substituted with Z 2 (Y 3 and Y 4 are phenyl groups optionally substituted with Z 2 —NY 3 Y 4 group), preferably a hydrogen atom, a fluorine atom Or a diphenylamino group optionally substituted with a fluorine atom, more preferably a hydrogen atom or a diphenylamino group.
  • R 1 to R 4 are hydrogen atoms, fluorine atoms, alkyl groups having 1 to 10 carbon atoms which may be substituted with fluorine atoms
  • R 5 and R 6 are hydrogen atoms, fluorine atoms, Diphenylamino group optionally substituted with a fluorine atom
  • X 1 is —NY 1 — or a single bond
  • Y 1 is preferably a hydrogen atom or a combination of methyl groups
  • R 1 to R 4 are hydrogen atoms
  • R 5 and R 6 are simultaneously a hydrogen atom or a diphenylamino group
  • X 1 is more preferably a combination of —NH— or a single bond.
  • m and n each independently represent an integer of 0 or more and satisfy 1 ⁇ m + n ⁇ 20, but considering the balance between the charge transportability of the resulting thin film and the solubility of the aniline derivative. Then, it is preferable to satisfy 2 ⁇ m + n ⁇ 8, more preferably 2 ⁇ m + n ⁇ 6, and still more preferably satisfy 2 ⁇ m + n ⁇ 4.
  • the alkyl group, alkenyl group and alkynyl group of Y 1 to Y 13 and R 1 to R 8 are a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group.
  • Y 1 to Y 13 may be substituted with an acid group or Z 1 which is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 3.
  • aryl group and heteroaryl group of R 1 to R 8 are substituted with a halogen atom, nitro group, cyano group, amino group, aldehyde group, hydroxyl group, thiol group, sulfonic acid group, carboxylic acid group, or Z 3 may be an alkyl group having 1 to 20 carbon atoms, may be substituted with Z 2 is an alkenyl group or an alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms, these radicals Furthermore halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group or may be substituted with Z 3 is a carboxylic acid group, (halogen atom, similar to the above Stuff.)
  • the substituent Z 1 is preferably a halogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 3.
  • a phenyl group which may be substituted with 3 is more preferred, and optimally absent (ie, unsubstituted).
  • the substituent Z 2 is a halogen atom or preferably an alkyl group which may having 1 to 20 carbon atoms optionally substituted by Z 3, halogen atoms or carbon atoms and optionally substituted by Z 3 1 ⁇ 4,, It is more preferable that the alkyl group is not present (that is, unsubstituted).
  • Z 3 is preferably a halogen atom, more preferably fluorine, and optimally not present (that is, unsubstituted).
  • the alkyl group, alkenyl group, and alkynyl group preferably have 10 or less carbon atoms, more preferably 6 or less, and even more preferably 4 or less.
  • the carbon number of the aryl group and heteroaryl group is preferably 14 or less, more preferably 10 or less, and even more preferably 6 or less.
  • the molecular weight of the aniline derivative used in the present invention is usually 300 to 5,000, but is preferably 4000 or less, more preferably 3000 or less, and still more preferably 2000 or less, from the viewpoint of enhancing the solubility.
  • the method for synthesizing the aniline derivative used in the present invention is not particularly limited, but Bulletin of Chemical Society of Japan (1994, Vol. 67 p. 1749-1752), Synthetic Metals (1997, 84, 119-120), Thin Solid Films (2012, 520 (24) 7157-7163), International Publication No. 2008/032617. , International Publication No. 2008-032616, International Publication No. 2008-129947, and the like.
  • the charge transporting varnish of the present invention contains a heteropolyacid.
  • a heteropolyacid has a structure in which a heteroatom is located at the center of a molecule, typically represented by a Keggin type represented by formula (A) or a Dawson type chemical structure represented by formula (B), and vanadium ( V), molybdenum (Mo), tungsten (W), and other polyacids such as isopolyacids that are oxygen acids and oxygenates of different elements are condensed.
  • the oxygen acid of such a different element mainly include silicon (Si), phosphorus (P), and arsenic (As) oxygen acids.
  • heteropolyacid examples include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, silicotungstic acid, and lintongue molybdic acid. These may be used alone or in combination of two or more. Good.
  • the heteropolyacid used by this invention is available as a commercial item, and can also be synthesize
  • the one type of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable.
  • one of the two or more types of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
  • Heteropolyacids are available as commercial products in quantitative analysis such as elemental analysis, even if the number of elements is large or small from the structure represented by the general formula, or appropriate according to known synthesis methods. As long as it is synthesized, it can be used in the present invention.
  • phosphotungstic acid is represented by the chemical formula H 3 (PW 12 O 40 ) ⁇ nH 2 O
  • phosphomolybdic acid is represented by the chemical formula H 3 (PMo 12 O 40 ) ⁇ nH 2 O, respectively.
  • P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product, Alternatively, as long as it is appropriately synthesized according to a known synthesis method, it can be used in the present invention.
  • the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthesized product or commercially available product, but a commercially available form and a known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydration water and other impurities.
  • the heteropolyacid preferably phosphotungstic acid
  • the heteropolyacid is about 1.0 to 11.0, preferably about 1.5 to 10.0, more preferably, with respect to the charge transporting substance 1 in terms of mass ratio.
  • the charge transporting substance 1 in terms of mass ratio.
  • the ratio of the mass (W D ) of the heteropolyacid to the mass (W H ) of the charge transport material is 1.0 ⁇ W D / W H ⁇ 11.0, preferably 1.5 ⁇ W D / W H ⁇ 10.0, more preferably 2.0 ⁇ W D / W H ⁇ 9.5, even more preferably 2.5 ⁇ W D / W H ⁇ 9.0, Preferably, 3.0 ⁇ W D / W H ⁇ 8.5 is satisfied.
  • charge transporting varnish of the present invention in addition to the above-mentioned aniline derivatives and heteropolyacids, other known charge transporting substances and dopant substances may be used.
  • the charge transporting varnish of the present invention contains an organosilane compound.
  • organosilane compound include dialkoxysilane compounds, trialkoxysilane compounds, and tetraalkoxysilane compounds, which may be used alone or in combination of two or more.
  • a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable.
  • Examples of the tetraalkoxysilane compound, trialkoxysilane compound, and dialkoxysilane compound include those represented by the formulas (2) to (4).
  • R 9 s may be substituted with Z 4 , an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, or Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 5 , and R 10 may be independently substituted with Z 6 , An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 7 or 2 carbon atoms Represents ⁇ 20 heteroaryl groups.
  • Z 4 represents a halogen atom or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 8
  • Z 5 represents a halogen atom or Z 8 It represents an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms.
  • Z 6 is a halogen atom, optionally substituted by Z 8 , an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, an epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido Represents a group (—NHCONH 2 ), thiol group, isocyanate group (—NCO), amino group, —NHY 14 group, or —NY 15 Y 16 group, and Z 7 may be substituted with a halogen atom or Z 8
  • a halogen atom an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and Examples of the heteroaryl group having 2 to 20 carbon atoms are the same as those described above.
  • the alkyl group, alkenyl group, and alkynyl group preferably have 10 or less carbon atoms, more preferably 6 or less, and still more preferably 4 or less.
  • the carbon number of the aryl group and heteroaryl group is preferably 14 or less, more preferably 10 or less, and even more preferably 6 or less.
  • R 9 is an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 4 , or aryl having 6 to 20 carbon atoms which may be substituted with Z 5.
  • groups are preferred, it may be substituted with Z 4, alkyl group or alkenyl group having 2 to 6 carbon atoms having 1 to 6 carbon atoms or more preferably a phenyl group which may be substituted with Z 5,, Z 4 Is more preferably an alkyl group having 1 to 4 carbon atoms which may be substituted with, or a phenyl group which may be substituted with Z 5 , and further a methyl group or an ethyl group which may be substituted with Z 4 preferable.
  • R 10 is preferably an aryl group an alkyl group or Z carbon atoms 6 substituted 7 to 20, the to 1 carbon atoms which may be ⁇ 20 substituted with Z 6, substituted with Z 6 carbon atoms which may be have 1-10 alkyl group or more preferably an aryl group which may having 6 to 14 carbon atoms optionally substituted by Z 7, ⁇ 1 carbon atoms which may be substituted with Z 6 6, alkyl group, or more preferably more aryl group to 10 carbon atoms 6 optionally substituted by Z 7, alkyl groups of Z 6 is - 1 carbon atoms which may be 4-substituted, the substituents at or Z 7, More preferred is an optionally substituted phenyl group.
  • the plurality of R 9 may be all the same or different, and the plurality of R 10 may all be the same or different.
  • Z 4 is preferably a halogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 8 , more preferably a fluorine atom or a phenyl group which may be substituted with Z 8. Is optimal (ie, is unsubstituted).
  • Z 5 is preferably a halogen atom or an alkyl group having 6 to 20 carbon atoms which may be substituted with Z 8 , and is a fluorine atom or having 1 to 10 carbon atoms which may be substituted with Z 8 .
  • Alkyl groups are more preferred and optimally absent (ie, unsubstituted).
  • halogen atom Z alkyl group having 1 carbon atoms which may be 20 substituted by 8, which may be substituted furanyl group Z 8, epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, acryloxy group, ureido group, a thiol group, isocyanate group, amino group, phenyl amino group optionally substituted by Z 8 or better diphenylamino group preferably be substituted with Z 8,, more preferably a halogen atom, It is even more preferable that the fluorine atom or not exist (that is, unsubstituted).
  • Z 8 is preferably a halogen atom, more preferably a fluorine atom or not (ie, unsubstituted).
  • dialkoxysilane compounds include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diisopropyldimethoxysilane, and phenylmethyl.
  • Dimethoxysilane vinylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 3-methacryloxy Propylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane, ⁇ -aminopropyl Chill diethoxy silane, N- (2- aminoethyl) aminopropyl methyl dimethoxy silane, 3,3,3-trifluoropropyl methyl dimethoxy silane, and the like.
  • trialkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, Pentyltrimethoxysilane, pentyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxy Silane, octadecyltrimethoxysilane, o
  • tetraalkoxysilane compound examples include tetraethoxysilane, tetramethoxysilane, tetrapropoxysilane and the like.
  • the content of the organosilane compound in the charge transporting varnish of the present invention is usually 0. 0 with respect to the total mass of the charge transporting material and the heteropolyacid in consideration of maintaining the high charge transportability of the resulting thin film.
  • the amount is about 1 to 50% by mass, preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and still more preferably 1 to 20% by mass.
  • a highly soluble solvent that can dissolve the charge transporting substance and the dopant substance satisfactorily can be used.
  • highly soluble solvents include organic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and diethylene glycol monomethyl ether. Can be used. These solvents can be used alone or in combination of two or more, and the amount used can be 5 to 100% by mass with respect to the total solvent used in the varnish. Note that it is preferable that the charge transporting substance and the dopant substance are either completely dissolved in the solvent or uniformly dispersed.
  • the charge transport varnish of the present invention preferably contains other solvents for the purpose of improving wettability to the substrate, adjusting the surface tension, viscosity, boiling point, etc. of the varnish, and adding such solvents.
  • other solvents are not particularly limited, and examples thereof include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, triethylene glycol, and the like.
  • These solvents can be used singly or in combination of two or more, and the amount used is preferably within the range where no solid precipitates, and is usually 1 for the whole solvent used for varnish. It is ⁇ 95% by
  • the viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the solid content concentration of the charge transporting varnish in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc. In consideration of improving the coatability of the varnish, it is preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass.
  • a charge transporting thin film can be formed on a base material by applying the charge transporting varnish described above on the base material and baking it.
  • the coating method of the varnish is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish according to the above.
  • the firing atmosphere is not particularly limited, and the film formation surface is uniform not only in the air atmosphere but also in a condition where there is not enough oxygen such as an inert gas atmosphere or a vacuum.
  • a thin film having high charge transportability can be obtained.
  • the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, and the like.
  • it is preferably about 140 to 250 ° C., more preferably about 150 to 230 ° C., but the varnish of the present invention can be fired at a low temperature of less than 200 ° C., particularly 150 to 190 ° C.
  • two or more stages of temperature changes may be applied for the purpose of expressing higher uniform film forming properties or causing the reaction to proceed on the substrate.
  • the heating may be performed by, for example, a hot plate or an oven. What is necessary is just to perform using an appropriate apparatus.
  • the thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a hole injection layer in an organic EL device.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.
  • Examples of materials used and methods for producing an OLED element using the charge transporting varnish of the present invention include the following, but are not limited thereto.
  • the electrode substrate to be used is preferably cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like.
  • the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
  • the anode material is mainly composed of an organic material, the surface treatment may not be performed.
  • the example of the manufacturing method of the OLED element which has a positive hole injection layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
  • the charge transporting varnish of the present invention is applied on the anode substrate, and baked by the above method to form a hole injection layer on the electrode.
  • This is introduced into a vacuum deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode metal are sequentially deposited to form an OLED element.
  • a carrier block layer may be provided between arbitrary layers.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and those subjected to planarization treatment are preferable.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.
  • Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative (TPD), N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -NPD), [(tri Phenylamine) dimer] triarylamines such as spiro-dimer (Spiro-TAD), 4,4 ′, 4 ′′ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 Starburst amines such as', 4 "-tris [1-naphthyl (phenyl) amino] triphenylamine (1-TNATA), 5,5" -bis- ⁇ 4- [bis (4-methylphenyl) amino] Phenyl ⁇ -2,2 ′: 5 ′, 2 ′′ -terthiophene (BMA-3T) and the like.
  • TPD triphenylamine dimer derivative
  • Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato) ( p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi), and the like.
  • the light emitting layer may be formed by co-evaporation.
  • Examples of the electron transport material include Alq 3 , BAlq, DPVBi, (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole) (PBD), triazole derivatives ( TAZ), bathocuproine (BCP), silole derivatives and the like.
  • luminescent dopant examples include quinacridone, rubrene, coumarin 540, 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), tris (2-phenylpyridine) iridium ( III) (Ir (ppy) 3 ), (1,10-phenanthroline) -tris (4,4,4-trifluoro-1- (2-thienyl) -butane-1,3-dionate) europium (III) ( Eu (TTA) 3 phen) and the like.
  • Examples of the material for forming the carrier block layer include PBD, TAZ, and BCP.
  • Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), strontium fluoride (SrF 2 ), Liq, Li (acac), lithium acetate, lithium benzoate and the like.
  • Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • the manufacturing method of the PLED element using the charge transportable varnish of this invention is not specifically limited, The following methods are mentioned.
  • the hole transport polymer layer and the light emitting polymer layer are sequentially formed.
  • a PLED element comprising a charge transporting thin film formed by the charge transporting varnish of the invention can be produced.
  • the charge transporting varnish of the present invention is applied on the anode substrate to prepare a hole injection layer by the above method, and a hole transporting polymer layer and a light emitting polymer layer are sequentially formed thereon. Then, a cathode electrode is vapor-deposited to obtain a PLED element.
  • the hole transporting polymer layer and the light emitting polymer layer can be formed by adding a solvent to a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant substance to the hole transporting polymer material. And a method in which the film is uniformly dispersed and applied onto the hole injection layer or the hole transporting polymer layer, and then deposited by evaporation of the solvent.
  • Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). And polyphenylene vinylene derivatives such as -PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
  • polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH).
  • polyphenylene vinylene derivatives such as -PPV
  • polythiophene derivatives such as poly (3-alkylthiophene) (PAT)
  • PVCz polyvinylcarbazole
  • Examples of the solvent include toluene, xylene, chloroform, and the like.
  • Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
  • the application method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dipping method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating method.
  • the application is preferably performed under an inert gas such as nitrogen or argon.
  • Examples of the firing method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.
  • Examples 1-2 to 1-8 The amounts of aniline derivative and phosphotungstic acid used were 0.155 g and 0.464 g, 0.124 g and 0.495 g, 0.103 g and 0.515 g, 0.088 g and 0.530 g, respectively.
  • a charge transporting varnish was prepared in the same manner as in Example 1-1 except that 077 g and 0.541 g, 0.069 g and 0.550 g, 0.056 g and 0.562 g were used.
  • Example 1-9 0.309 g of the aniline derivative obtained in Synthesis Example 1 and 0.619 g of phosphotungstic acid were dissolved in 6.0 g of diethylene glycol monomethyl ether under a nitrogen atmosphere. To the obtained solution, 24.0 g of propylene glycol monomethyl ether was added and stirred, 0.028 g of pentafluorophenyltriethoxysilane (manufactured by Scientific Industrial Association Ltd.) was added thereto, and further stirred to obtain a charge transporting varnish. Prepared.
  • Examples 1-10 to 16 The amount of aniline derivative and the amount of phosphotungstic acid used were 0.232 g and 0.696 g, 0.186 g and 0.742 g, 0.155 g and 0.773 g, 0.133 g and 0.795 g, respectively.
  • a charge transporting varnish was prepared in the same manner as in Example 1-9 except that the amount was 116 g and 0.812 g, 0.103 g and 0.825 g, 0.084 g and 0.843 g.
  • Example 1-17 A charge transporting varnish was prepared in the same manner as in Example 1-11 except that the amount of pentafluorophenyltriethoxysilane used was 0.046 g.
  • Example 1-18 0.148 g of N, N′-diphenylbenzidine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.594 g of phosphotungstic acid are dissolved in 8.0 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere. I let you. To the obtained solution, 12.0 g of cyclohexanol and 4.0 g of propylene glycol were added and stirred, and 0.025 g of 3,3,3-trifluoropropyltrimethoxysilane and 0.049 g of phenyltrimethoxysilane were added thereto. The mixture was further stirred to prepare a charge transporting varnish. N, N′-diphenylbenzidine was recrystallized using 1,4-dioxane and then used after thoroughly drying under reduced pressure.
  • Example 1-19 A charge transporting varnish was prepared in the same manner as in Example 1-18, except that the amount of N, N′-diphenylbenzidine and the amount of phosphotungstic acid used were 0.124 g and 0.619 g.
  • Example 1 A charge transporting varnish was prepared in the same manner as in Example 1-1 except that 0.021 g of 3,3,3-trifluoropropyltrimethoxysilane and 0.041 g of phenyltrimethoxysilane were not added.
  • Example 2-1 Manufacture and characteristic evaluation of organic EL device
  • the varnish obtained in Example 1-1 was applied to an ITO substrate using a spin coater, then dried at 50 ° C. for 5 minutes, and further baked at 160 ° C. for 15 minutes in an air atmosphere. A uniform thin film of 30 nm was formed.
  • As the ITO substrate a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 t in which indium tin oxide (ITO) is patterned on the surface with a film thickness of 150 nm is used, and an O 2 plasma cleaning apparatus (150 W, 30 seconds) before use. To remove impurities on the surface.
  • ITO indium tin oxide
  • N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -) is applied to the ITO substrate on which the thin film has been formed using a vapor deposition apparatus (degree of vacuum: 1.0 ⁇ 10 ⁇ 5 Pa).
  • NPD tris (8-quinolinolato) aluminum (III) (Alq 3 ), lithium fluoride, and aluminum thin films were sequentially laminated to obtain an organic EL device.
  • the deposition rate was 0.2 nm / second for ⁇ -NPD, Alq 3 and aluminum, and 0.02 nm / second for lithium fluoride, and the film thicknesses were 30 nm, 40 nm, and 0.2 nm, respectively.
  • the thickness was 5 nm and 120 nm.
  • the characteristic was evaluated. Sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -85 ° C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is bonded with an adhesive (XNR5516Z-B1 manufactured by Nagase ChemteX Corporation). It was.
  • a water catching agent manufactured by Dynic Co., Ltd., HD-071010W-40 was placed in the sealing substrate together with the organic EL element.
  • the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • Examples 2-2 to 2-17 and Comparative Example 2 In the same manner as in Example 2-1, except that the varnish obtained in Examples 1-2 to 1-17 and Comparative Example 1 was used instead of the varnish obtained in Example 1-1, respectively. An organic EL device was produced.
  • Examples 2-18 to 2-19 instead of the varnish obtained in Example 1-1, the varnish obtained in Examples 1-18 to 1-19 was used, except that the varnish was calcined at 180 ° C. for 15 minutes instead of being calcined at 160 ° C. for 15 minutes. Produced an organic EL device by the same method as in Example 2-1.
  • the organic EL device provided with the charge transporting thin film produced in the example showed excellent durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a charge-transporting varnish that contains: a charge-transporting substance comprising an aniline derivative that is represented by formula (1); a dopant substance comprising a heteropoly acid; an organosilane compound; and an organic solvent. The charge-transporting varnish can be fired at temperatures below 200 °C, and a thin film that is produced under such firing conditions has a high degree of flatness, has high charge-transporting properties, and exhibits excellent luminance characteristics when applied to an organic EL element. (In the formula, X1 represents -NY1- or the like, Y1 and R1-R6 each independently represent a hydrogen atom or the like, m and n each independently represent an integer of 0 or more, and 1 ≤ m + n ≤ 20 is satisfied. When m or n is 0, X1 represents -NY1-.)

Description

電荷輸送性ワニスCharge transport varnish
 本発明は、電荷輸送性ワニスに関し、さらに詳述すると、所定のアニリン誘導体からなる電荷輸送性物質と、ヘテロポリ酸からなるドーパント物質と、有機シラン化合物とを含む電荷輸送性ワニスに関する。 The present invention relates to a charge transporting varnish. More specifically, the present invention relates to a charge transporting varnish containing a charge transporting material composed of a predetermined aniline derivative, a dopant material composed of a heteropolyacid, and an organosilane compound.
 有機エレクトロルミネッセンス(以下、有機ELという)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。
 この電荷輸送性薄膜の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスに大別される。ドライプロセスとウェットプロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できることから、有機EL素子といった薄膜の大面積化が望まれる分野においては、ウェットプロセスにより薄膜が形成されることが多い。
In an organic electroluminescence (hereinafter referred to as organic EL) element, a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
The method for forming the charge transporting thin film is roughly classified into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with the dry process and the wet process, the wet process can efficiently produce a thin film with a large area and high flatness. Therefore, in the field where a large area of the thin film such as an organic EL element is desired, the thin film is obtained by the wet process. Is often formed.
 この点に鑑み、本発明者らは、各種電子デバイスに適用可能な電荷輸送性薄膜を、ウェットプロセスで作製するための電荷輸送性ワニスの開発をしてきている(特許文献1参照)。
 しかし、近年の有機EL素子分野においては、デバイスの軽量化や薄型化の潮流から、ガラス基板の代わりに有機化合物からなる基板が用いられるようになってきており、従来よりも低温で焼成でき、またその場合にも良好な電荷輸送性を有する薄膜を与えるワニスも求められているが、既存のワニスではこれらの要求に十分対応できないことがあった。
In view of this point, the present inventors have developed a charge transporting varnish for producing a charge transporting thin film applicable to various electronic devices by a wet process (see Patent Document 1).
However, in the recent organic EL element field, a substrate made of an organic compound has come to be used instead of a glass substrate because of the trend toward lighter and thinner devices, and it can be fired at a lower temperature than before, In such a case, a varnish that provides a thin film having good charge transportability is also demanded. However, existing varnishes may not sufficiently meet these requirements.
特開2002-151272号公報JP 2002-151272 A
 本発明は、上記事情に鑑みてなされたものであり、200℃を下回る低温で焼成可能であるとともに、そのような焼成条件下で作製した薄膜が、高平坦性かつ高電荷輸送性を有し、有機EL素子に適用した場合に優れた輝度特性を発揮させ得る電荷輸送性ワニスを提供することを目的とする。 The present invention has been made in view of the above circumstances, and can be fired at a temperature lower than 200 ° C., and the thin film produced under such firing conditions has high flatness and high charge transportability. An object of the present invention is to provide a charge transporting varnish capable of exhibiting excellent luminance characteristics when applied to an organic EL element.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、所定のアニリン誘導体からなる電荷輸送性物質と、ヘテロポリ酸からなるドーパント物質と、有機シラン化合物とを含む電荷輸送性ワニスを用いることで、200℃未満の低温で焼成可能であるとともに、そのような焼成条件下で作製した薄膜が高平坦性および高電荷輸送性を有すること、並びに当該薄膜を正孔注入層に適用した場合に、優れた輝度特性を実現し得る有機EL素子が得られることを見出し、本発明を完成させた。 As a result of intensive studies in order to achieve the above object, the present inventors have determined that a charge transporting varnish containing a charge transporting material composed of a predetermined aniline derivative, a dopant material composed of a heteropolyacid, and an organosilane compound. Can be fired at a low temperature of less than 200 ° C., the thin film produced under such firing conditions has high flatness and high charge transportability, and the thin film is applied to the hole injection layer. In this case, it was found that an organic EL element capable of realizing excellent luminance characteristics was obtained, and the present invention was completed.
 すなわち、本発明は、
1. 式(1)で表されるアニリン誘導体からなる電荷輸送性物質と、ヘテロポリ酸からなるドーパント物質と、有機シラン化合物と、有機溶媒とを含むことを特徴とする電荷輸送性ワニス、
Figure JPOXMLDOC01-appb-C000002
(式(1)中、X1は、-NY1-、-O-、-S-、-(CR78l-または単結合を表し、Y1は、互いに独立して、水素原子、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、R1~R8は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY2、-NY34、-C(O)Y5、-OY6、-SY7、-SO38、-C(O)OY9、-OC(O)Y10、-C(O)NHY11、または-C(O)NY1213基を表し、Y2~Y13は、互いに独立して、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表し、lは、1~20の整数を表し、mおよびnは、互いに独立して、0以上の整数を表し、1≦m+n≦20を満たす。但し、mまたはnが0であるときは、X1は、-NY1-を表す。)
2. 前記R1~R4が、水素原子、ハロゲン原子、Z1で置換されていてもよい炭素数1~10のアルキル基、またはZ2で置換されていてもよい炭素数6~14のアリール基であり、前記R5およびR6が、水素原子、ハロゲン原子、Z1で置換されていてもよい炭素数1~10のアルキル基、Z2で置換されていてもよい炭素数6~14のアリール基、またはZ2で置換されていてもよいジフェニルアミノ基である1の電荷輸送性ワニス、
3. 前記ヘテロポリ酸が、リンタングステン酸を含む1または2の電荷輸送性ワニス、
4. 前記電荷輸送性物質の質量(WH)に対する前記ドーパント物質の質量(WD)の比(WD/WH)が、1.0≦WD/WH≦11.0を満たす1~3のいずれかの電荷輸送性ワニス、
5. 前記有機シラン化合物が、ジアルコキシシラン化合物、トリアルコキシシラン化合物またはテトラアルコキシシラン化合物である1~4のいずれかの電荷輸送性ワニス、
6. 1~5のいずれかの電荷輸送性ワニスを用いて作製される電荷輸送性薄膜、
7. 6の電荷輸送性薄膜を有する電子デバイス、
8. 6の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子、
9. 前記電荷輸送性薄膜が、正孔注入層または正孔輸送層である8の有機エレクトロルミネッセンス素子、
10. 1~5のいずれかの電荷輸送性ワニスを基材上に塗布して焼成することを特徴とする電荷輸送性薄膜の製造方法、
11. 200℃未満で焼成することを特徴とする10の電荷輸送性薄膜の製造方法、
12. 6の電荷輸送性薄膜を用いる有機エレクトロルミネッセンス素子の製造方法
を提供する。
That is, the present invention
1. A charge transporting varnish comprising a charge transporting material comprising an aniline derivative represented by formula (1), a dopant material comprising a heteropolyacid, an organosilane compound, and an organic solvent;
Figure JPOXMLDOC01-appb-C000002
(In formula (1), X 1 represents —NY 1 —, —O—, —S—, — (CR 7 R 8 ) 1 — or a single bond, and Y 1 , independently of each other, represents a hydrogen atom. it may be substituted with Z 1, an alkyl group having 1 to 20 carbon atoms, optionally substituted alkenyl or alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms or Z 2,, carbon Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and R 1 to R 8 independently of one another are a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, A hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 ; Z 2 may be substituted with, ants having 6 to 20 carbon atoms Le group or heteroaryl group having a carbon number of 2 ~ 20, -NHY 2, -NY 3 Y 4, -C (O) Y 5, -OY 6, -SY 7, -SO 3 Y 8, -C (O) Represents an OY 9 , —OC (O) Y 10 , —C (O) NHY 11 , or —C (O) NY 12 Y 13 group, and Y 2 to Y 13 are each independently substituted with Z 1 An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms that may be substituted with Z 2. Z 1 is a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or Z 3 An optionally substituted aryl group having 6 to 20 carbon atoms or 2 to 2 carbon atoms Represents 0 heteroaryl group, Z 2 is a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, may be substituted with a carboxylic acid group or Z 3, Represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, and Z 3 represents a halogen atom, nitro group, cyano group, amino group, aldehyde group, hydroxyl group , A thiol group, a sulfonic acid group, or a carboxylic acid group, l represents an integer of 1 to 20, m and n each independently represent an integer of 0 or more, and satisfy 1 ≦ m + n ≦ 20 Provided that when m or n is 0, X 1 represents —NY 1 —. )
2. R 1 to R 4 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 1 , or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 2. Wherein R 5 and R 6 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 1 , or a carbon atom having 6 to 14 carbon atoms which may be substituted with Z 2 . 1 charge transporting varnish which is an aryl group or a diphenylamino group optionally substituted with Z 2 ;
3. 1 or 2 charge transporting varnishes wherein the heteropolyacid comprises phosphotungstic acid;
4). The ratio (W D / W H ) of the mass (W D ) of the dopant material to the mass (W H ) of the charge transporting material satisfies 1.0 ≦ W D / W H ≦ 11.0. Any charge transport varnish,
5. The charge transporting varnish according to any one of 1 to 4, wherein the organosilane compound is a dialkoxysilane compound, a trialkoxysilane compound, or a tetraalkoxysilane compound,
6). A charge transporting thin film produced using any one of the charge transporting varnishes 1 to 5,
7). An electronic device having six charge transporting thin films;
8). An organic electroluminescence device having six charge transporting thin films,
9. 8. The organic electroluminescence device according to 8, wherein the charge transporting thin film is a hole injection layer or a hole transport layer;
10. A method for producing a charge-transporting thin film, characterized in that the charge-transporting varnish according to any one of 1 to 5 is applied onto a substrate and baked;
11. 10. A method for producing a charge-transporting thin film, characterized by firing at less than 200 ° C.,
12 And a method for producing an organic electroluminescence device using the charge transporting thin film.
 本発明の電荷輸送性ワニスは、200℃未満の低温で焼成した場合であっても得られる薄膜が高平坦性および高電荷輸送性を有し、当該薄膜を正孔注入層に適用したときに優れた輝度特性を実現し得る有機EL素子が得られる。そのため、本発明の電荷輸送性ワニスを用いることで、製造プロセス条件の温和化による高歩留化や低コスト化、あるいは素子の軽量化、コンパクト化等を図り得る。
 また、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法など、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
 さらに、本発明の電荷輸送性ワニスから得られる薄膜は、帯電防止膜や有機薄膜太陽電池の陽極バッファ層等としても使用できる。
The charge transport varnish of the present invention has a high flatness and a high charge transport property even when fired at a low temperature of less than 200 ° C. When the thin film is applied to a hole injection layer An organic EL element capable of realizing excellent luminance characteristics can be obtained. Therefore, by using the charge transporting varnish of the present invention, it is possible to achieve high yield and low cost by reducing the manufacturing process conditions, or to reduce the weight and size of the device.
In addition, the charge transporting varnish of the present invention can produce a thin film excellent in charge transporting properties with good reproducibility even when using various wet processes capable of forming a film over a large area such as a spin coating method or a slit coating method. It can sufficiently cope with recent progress in the field of organic EL elements.
Furthermore, the thin film obtained from the charge transporting varnish of the present invention can be used as an antistatic film, an anode buffer layer of an organic thin film solar cell, or the like.
 以下、本発明についてさらに詳しく説明する。
 本発明に係る電荷輸送性ワニスは、式(1)で表されるアニリン誘導体からなる電荷輸送性物質と、ヘテロポリ酸からなるドーパント物質と、有機シラン化合物と、有機溶媒とを含むものである。
 ここで、電荷輸送性とは、導電性と同義であり、正孔輸送性と同義である。電荷輸送性物質は、それ自体に電荷輸送性があるものでもよく、電子受容性物質と共に用いた際に電荷輸送性があるものでもよい。電荷輸送性ワニスは、それ自体に電荷輸送性があるものでもよく、それにより得られる固形膜が電荷輸送性を有するものでもよい。
Hereinafter, the present invention will be described in more detail.
The charge transporting varnish according to the present invention includes a charge transporting material composed of an aniline derivative represented by the formula (1), a dopant material composed of a heteropolyacid, an organic silane compound, and an organic solvent.
Here, the charge transportability is synonymous with conductivity and is synonymous with hole transportability. The charge transporting substance itself may be charge transporting, or may be charge transporting when used with an electron accepting substance. The charge transporting varnish may itself have a charge transporting property, and the resulting solid film may have a charge transporting property.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)において、X1は、-NY1-、-O-、-S-、-(CR78l-または単結合を表すが、mまたはnが0であるときは、-NY1-を表す。 In the formula (1), X 1 represents —NY 1 —, —O—, —S—, — (CR 7 R 8 ) 1 — or a single bond, and when m or n is 0, NY 1 -is represented.
 Y1は、互いに独立して、水素原子、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表す。 Y 1 is independently of each other a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 , or It represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 .
 炭素数1~20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基などが挙げられる。 The alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s Linear or branched having 1 to 20 carbon atoms such as -butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group Chain alkyl group: cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, bicyclooctyl And a cyclic alkyl group having 3 to 20 carbon atoms such as a group, a bicyclononyl group and a bicyclodecyl group.
 炭素数2~20のアルケニル基の具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。 Specific examples of the alkenyl group having 2 to 20 carbon atoms include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n- 1-pentenyl group, n-1-decenyl group, n-1-eicocenyl group and the like can be mentioned.
 炭素数2~20のアルキニル基の具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。 Specific examples of the alkynyl group having 2 to 20 carbon atoms include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, and n-3-butynyl. Group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4-pentynyl group, 1-methyl-n-butynyl group, 2- Methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, n-1-decynyl group, n-1-pentadecynyl group, n- Examples include 1-eicosinyl group.
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。 Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。 Specific examples of the heteroaryl group having 2 to 20 carbon atoms include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, and the like.
 R7およびR8は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY2、-NY34、-C(O)Y5、-OY6、-SY7、-SO38、-C(O)OY9、-OC(O)Y10、-C(O)NHY11、または-C(O)NY1213基を表し、Y2~Y13は、互いに独立して、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表す。 R 7 and R 8 are independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or Z 1. Or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , or carbon Heteroaryl groups of 2 to 20, —NHY 2 , —NY 3 Y 4 , —C (O) Y 5 , —OY 6 , —SY 7 , —SO 3 Y 8 , —C (O) OY 9 , — Represents an OC (O) Y 10 , —C (O) NHY 11 , or —C (O) NY 12 Y 13 group, and Y 2 to Y 13 may each independently be substituted with Z 1. An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 2 to 20 represents an alkynyl group, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 .
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 その他、R7~R8およびY2~Y13のアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基としては、上記と同様のものが挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In addition, examples of the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group of R 7 to R 8 and Y 2 to Y 13 are the same as those described above.
 これらの中でも、R7およびR8としては、水素原子、またはZ1で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子、またはZ1で置換されていてもよいメチル基がより好ましく、共に水素原子が最適である。 Among these, as R 7 and R 8 , a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 is preferable, and a hydrogen atom or a methyl group which may be substituted with Z 1 Groups are more preferred, both of which are hydrogen atoms.
 lは、-(CR78)-で表される2価のアルキレン基の繰り返し単位数を表し、1~20の整数であるが、1~10が好ましく、1~5がより好ましく、1~2がより一層好ましく、1が最適である。
 なお、lが2以上である場合、複数のR7は、互いに同一であっても異なっていてもよく、複数のR8も、互いに同一であっても異なっていてもよい。
l represents the number of repeating units of a divalent alkylene group represented by — (CR 7 R 8 ) — and is an integer of 1 to 20, preferably 1 to 10, more preferably 1 to 5, ˜2 is even more preferred, with 1 being optimal.
When l is 2 or more, the plurality of R 7 may be the same as or different from each other, and the plurality of R 8 may be the same as or different from each other.
 とりわけ、X1としては、-NY1-または単結合が好ましい。また、Y1としては、水素原子、またはZ1で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子、またはZ1で置換されていてもよいメチル基がより好ましく、水素原子が最適である。 In particular, X 1 is preferably —NY 1 — or a single bond. Y 1 is preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , more preferably a hydrogen atom or a methyl group optionally substituted with Z 1 , Hydrogen atoms are optimal.
 R1~R6は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY2、-NY34、-C(O)Y5、-OY6、-SY7、-SO38、-C(O)OY9、-OC(O)Y10、-C(O)NHY11、または-C(O)NY1213基を表し(Y2~Y13は、上記と同じ意味を表す。)、これらハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基としては、上記と同様のものが挙げられる。 R 1 to R 6 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or Z 1. Or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , or carbon Heteroaryl groups of 2 to 20, —NHY 2 , —NY 3 Y 4 , —C (O) Y 5 , —OY 6 , —SY 7 , —SO 3 Y 8 , —C (O) OY 9 , — Represents an OC (O) Y 10 , —C (O) NHY 11 , or —C (O) NY 12 Y 13 group (Y 2 to Y 13 are as defined above), and these halogen atoms, alkyls A group, an alkenyl group, an alkynyl group, an aryl group and a heteroaryl group Te include those similar to the above.
 特に、式(1)において、R1~R4としては、水素原子、ハロゲン原子、Z1で置換されていてもよい炭素数1~10のアルキル基、またはZ2で置換されていてもよい炭素数6~14のアリール基が好ましく、水素原子、フッ素原子、またはフッ素原子で置換されていてもよい炭素数1~10のアルキル基がより好ましく、全て水素原子が最適である。
 また、R5およびR6としては、水素原子、ハロゲン原子、Z1で置換されていてもよい炭素数1~10のアルキル基、Z2で置換されていてもよい炭素数6~14のアリール基、またはZ2で置換されていてもよいジフェニルアミノ基(Y3およびY4がZ2で置換されていてもよいフェニル基である-NY34基)が好ましく、水素原子、フッ素原子、またはフッ素原子で置換されていてもよいジフェニルアミノ基がより好ましく、同時に水素原子またはジフェニルアミノ基がより一層好ましい。
In particular, in the formula (1), R 1 to R 4 may be substituted with a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 1 , or Z 2. An aryl group having 6 to 14 carbon atoms is preferable, a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 10 carbon atoms which may be substituted with a fluorine atom is more preferable, and all hydrogen atoms are optimal.
R 5 and R 6 are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms that may be substituted with Z 1 , or an aryl group having 6 to 14 carbon atoms that may be substituted with Z 2 Or a diphenylamino group optionally substituted with Z 2 (Y 3 and Y 4 are phenyl groups optionally substituted with Z 2 —NY 3 Y 4 group), preferably a hydrogen atom, a fluorine atom Or a diphenylamino group optionally substituted with a fluorine atom, more preferably a hydrogen atom or a diphenylamino group.
 そして、これらの中でも、R1~R4が、水素原子、フッ素原子、フッ素原子で置換されていてもよい炭素数1~10のアルキル基、R5およびR6が、水素原子、フッ素原子、フッ素原子で置換されていてもよいジフェニルアミノ基、X1が、-NY1-または単結合、かつ、Y1が、水素原子またはメチル基の組み合わせが好ましく、R1~R4が、水素原子、R5およびR6が、同時に水素原子またはジフェニルアミノ基、X1が、-NH-または単結合の組み合わせがより好ましい。 Among these, R 1 to R 4 are hydrogen atoms, fluorine atoms, alkyl groups having 1 to 10 carbon atoms which may be substituted with fluorine atoms, R 5 and R 6 are hydrogen atoms, fluorine atoms, Diphenylamino group optionally substituted with a fluorine atom, X 1 is —NY 1 — or a single bond, and Y 1 is preferably a hydrogen atom or a combination of methyl groups, and R 1 to R 4 are hydrogen atoms R 5 and R 6 are simultaneously a hydrogen atom or a diphenylamino group, and X 1 is more preferably a combination of —NH— or a single bond.
 式(1)において、mおよびnは、互いに独立して、0以上の整数を表し、1≦m+n≦20を満たすが、得られる薄膜の電荷輸送性とアニリン誘導体の溶解性とのバランスを考慮すると、2≦m+n≦8を満たすことが好ましく、2≦m+n≦6を満たすことがより好ましく、2≦m+n≦4を満たすことがより一層好ましい。 In the formula (1), m and n each independently represent an integer of 0 or more and satisfy 1 ≦ m + n ≦ 20, but considering the balance between the charge transportability of the resulting thin film and the solubility of the aniline derivative. Then, it is preferable to satisfy 2 ≦ m + n ≦ 8, more preferably 2 ≦ m + n ≦ 6, and still more preferably satisfy 2 ≦ m + n ≦ 4.
 なお、上記Y1~Y13およびR1~R8のアルキル基、アルケニル基およびアルキニル基は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基であるZ1で置換されていてもよく、上記Y1~Y13およびR1~R8のアリール基およびヘテロアリール基は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基であるZ2で置換されていてもよく、これらの基は、さらにハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基であるZ3で置換されていてもよい(ハロゲン原子としては、上記と同様のものが挙げられる。)。 The alkyl group, alkenyl group and alkynyl group of Y 1 to Y 13 and R 1 to R 8 are a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group. Y 1 to Y 13 may be substituted with an acid group or Z 1 which is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 3. And the aryl group and heteroaryl group of R 1 to R 8 are substituted with a halogen atom, nitro group, cyano group, amino group, aldehyde group, hydroxyl group, thiol group, sulfonic acid group, carboxylic acid group, or Z 3 may be an alkyl group having 1 to 20 carbon atoms, may be substituted with Z 2 is an alkenyl group or an alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms, these radicals Furthermore halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group or may be substituted with Z 3 is a carboxylic acid group, (halogen atom, similar to the above Stuff.)
 特に、Y1~Y13およびR1~R8において、置換基Z1は、ハロゲン原子、またはZ3で置換されていてもよい炭素数6~20のアリール基が好ましく、ハロゲン原子、またはZ3で置換されていてもよいフェニル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 また、置換基Z2は、ハロゲン原子、またはZ3で置換されていてもよい炭素数1~20のアルキル基が好ましく、ハロゲン原子、またはZ3で置換されていてもよい炭素数1~4のアルキル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 そして、Z3は、ハロゲン原子が好ましく、フッ素がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
In particular, in Y 1 to Y 13 and R 1 to R 8 , the substituent Z 1 is preferably a halogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 3. A phenyl group which may be substituted with 3 is more preferred, and optimally absent (ie, unsubstituted).
Further, the substituent Z 2 is a halogen atom or preferably an alkyl group which may having 1 to 20 carbon atoms optionally substituted by Z 3, halogen atoms or carbon atoms and optionally substituted by Z 3 1 ~ 4,, It is more preferable that the alkyl group is not present (that is, unsubstituted).
Z 3 is preferably a halogen atom, more preferably fluorine, and optimally not present (that is, unsubstituted).
 Y1~Y13およびR1~R8では、アルキル基、アルケニル基およびアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。
 また、アリール基およびヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
In Y 1 to Y 13 and R 1 to R 8 , the alkyl group, alkenyl group, and alkynyl group preferably have 10 or less carbon atoms, more preferably 6 or less, and even more preferably 4 or less.
The carbon number of the aryl group and heteroaryl group is preferably 14 or less, more preferably 10 or less, and even more preferably 6 or less.
 本発明で用いるアニリン誘導体の分子量は、通常300~5000であるが、溶解性を高める観点から、好ましくは4000以下であり、より好ましくは3000以下であり、より一層好ましくは2000以下である。
 なお、本発明で用いられるアニリン誘導体の合成法としては、特に限定されるものではないが、ブレティン・オブ・ケミカル・ソサエティ・オブ・ジャパン(Bulletin of Chemical Society of Japan)(1994年 第67巻 p.1749-1752)、シンセティック・メタルズ(Synthetic Metals)(1997年、第84巻、p.119-120)、Thin Solid Films(2012年、520(24)7157-7163)、国際公開2008/032617号、国際公開2008-032616号、国際公開2008-129947号などに記載の方法が挙げられる。
The molecular weight of the aniline derivative used in the present invention is usually 300 to 5,000, but is preferably 4000 or less, more preferably 3000 or less, and still more preferably 2000 or less, from the viewpoint of enhancing the solubility.
The method for synthesizing the aniline derivative used in the present invention is not particularly limited, but Bulletin of Chemical Society of Japan (1994, Vol. 67 p. 1749-1752), Synthetic Metals (1997, 84, 119-120), Thin Solid Films (2012, 520 (24) 7157-7163), International Publication No. 2008/032617. , International Publication No. 2008-032616, International Publication No. 2008-129947, and the like.
 以下、本発明において、好適なアニリン誘導体を挙げるが、これらに限定されるわけではない。 Hereinafter, in the present invention, preferred aniline derivatives are listed, but not limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の電荷輸送性ワニスは、ヘテロポリ酸を含む。
 ヘテロポリ酸とは、代表的に式(A)で示されるKeggin型あるいは式(B)で示されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
The charge transporting varnish of the present invention contains a heteropolyacid.
A heteropolyacid has a structure in which a heteroatom is located at the center of a molecule, typically represented by a Keggin type represented by formula (A) or a Dawson type chemical structure represented by formula (B), and vanadium ( V), molybdenum (Mo), tungsten (W), and other polyacids such as isopolyacids that are oxygen acids and oxygenates of different elements are condensed. Examples of the oxygen acid of such a different element mainly include silicon (Si), phosphorus (P), and arsenic (As) oxygen acids.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ヘテロポリ酸の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。なお、本発明で用いるヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。
 特に、ドーパント物質が1種類のヘテロポリ酸単独からなる場合、その1種類のヘテロポリ酸は、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、ドーパント物質が2種類以上のヘテロポリ酸からなる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。
 なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多くまたは少ないものであっても、それが市販品として入手し、あるいは、公知の合成方法に従い適切に合成したものである限り、本発明において用いることができる。
 すなわち、例えば、一般的には、リンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ示されるが、定量分析において、この式中のP(リン)、O(酸素)またはW(タングステン)もしくはMo(モリブデン)の数が多く、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法に従い適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態および公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。
Specific examples of the heteropolyacid include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, silicotungstic acid, and lintongue molybdic acid. These may be used alone or in combination of two or more. Good. In addition, the heteropolyacid used by this invention is available as a commercial item, and can also be synthesize | combined by a well-known method.
In particular, when the dopant substance is composed of only one type of heteropolyacid, the one type of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable. Further, when the dopant substance is composed of two or more types of heteropolyacids, one of the two or more types of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
Heteropolyacids are available as commercial products in quantitative analysis such as elemental analysis, even if the number of elements is large or small from the structure represented by the general formula, or appropriate according to known synthesis methods. As long as it is synthesized, it can be used in the present invention.
That is, for example, in general, phosphotungstic acid is represented by the chemical formula H 3 (PW 12 O 40 ) · nH 2 O, and phosphomolybdic acid is represented by the chemical formula H 3 (PMo 12 O 40 ) · nH 2 O, respectively. In the quantitative analysis, even if the number of P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product, Alternatively, as long as it is appropriately synthesized according to a known synthesis method, it can be used in the present invention. In this case, the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthesized product or commercially available product, but a commercially available form and a known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydration water and other impurities.
 本発明においては、ヘテロポリ酸、好ましくはリンタングステン酸を、質量比で、電荷輸送性物質1に対して1.0~11.0程度、好ましくは1.5~10.0程度、より好ましくは2.0~9.5程度、より一層好ましくは2.5~9.0程度、さらに好ましくは3.0~8.5程度とすることで、有機EL素子に用いた場合に高輝度を与える電荷輸送性薄膜を再現性よく得ることができる。
 すなわち、そのような電荷輸送性ワニスは、電荷輸送性物質の質量(WH)に対するヘテロポリ酸の質量(WD)の比が、1.0≦WD/WH≦11.0、好ましくは1.5≦WD/WH≦10.0、より好ましくは2.0≦WD/WH≦9.5、より一層好ましくは2.5≦WD/WH≦9.0、さらに好ましくは3.0≦WD/WH≦8.5を満たす。
In the present invention, the heteropolyacid, preferably phosphotungstic acid, is about 1.0 to 11.0, preferably about 1.5 to 10.0, more preferably, with respect to the charge transporting substance 1 in terms of mass ratio. By setting it to about 2.0 to 9.5, more preferably about 2.5 to 9.0, and more preferably about 3.0 to 8.5, high brightness is obtained when used in an organic EL device. A charge transporting thin film can be obtained with good reproducibility.
That is, in such a charge transporting varnish, the ratio of the mass (W D ) of the heteropolyacid to the mass (W H ) of the charge transport material is 1.0 ≦ W D / W H ≦ 11.0, preferably 1.5 ≦ W D / W H ≦ 10.0, more preferably 2.0 ≦ W D / W H ≦ 9.5, even more preferably 2.5 ≦ W D / W H ≦ 9.0, Preferably, 3.0 ≦ W D / W H ≦ 8.5 is satisfied.
 本発明の電荷輸送性ワニスには、上述したアニリン誘導体やヘテロポリ酸の他に、公知のその他の電荷輸送性物質やドーパント物質を用いることもできる。 For the charge transporting varnish of the present invention, in addition to the above-mentioned aniline derivatives and heteropolyacids, other known charge transporting substances and dopant substances may be used.
 本発明の電荷輸送性ワニスは、有機シラン化合物を含む。
 この有機シラン化合物としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物またはテトラアルコキシシラン化合物が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。
 とりわけ、有機シラン化合物としては、ジアルコキシシラン化合物またはトリアルコキシシラン化合物が好ましく、トリアルコキシシラン化合物がより好ましい。
The charge transporting varnish of the present invention contains an organosilane compound.
Examples of the organosilane compound include dialkoxysilane compounds, trialkoxysilane compounds, and tetraalkoxysilane compounds, which may be used alone or in combination of two or more.
In particular, as the organosilane compound, a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable.
 テトラアルコキシシラン化合物、トリアルコキシシラン化合物およびジアルコキシシラン化合物としては、例えば、式(2)~(4)で示されるものが挙げられる。
   Si(OR94        (2)
   SiR10(OR93      (3)
   Si(R102(OR92   (4)
Examples of the tetraalkoxysilane compound, trialkoxysilane compound, and dialkoxysilane compound include those represented by the formulas (2) to (4).
Si (OR 9 ) 4 (2)
SiR 10 (OR 9 ) 3 (3)
Si (R 10 ) 2 (OR 9 ) 2 (4)
 式中、R9は、互いに独立して、Z4で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ5で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、R10は、互いに独立して、Z6で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ7で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表す。 In the formula, R 9 s , independently of each other, may be substituted with Z 4 , an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, or Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 5 , and R 10 may be independently substituted with Z 6 , An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 7 or 2 carbon atoms Represents ~ 20 heteroaryl groups.
 Z4は、ハロゲン原子、またはZ8で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z5は、ハロゲン原子、またはZ8で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表す。 Z 4 represents a halogen atom or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 8 , and Z 5 represents a halogen atom or Z 8 It represents an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms.
 Z6は、ハロゲン原子、Z8で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(-NHCONH2)、チオール基、イソシアネート基(-NCO)、アミノ基、-NHY14基、または-NY1516基を表し、Z7は、ハロゲン原子、Z8で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(-NHCONH2)、チオール基、イソシアネート基(-NCO)、アミノ基、-NHY14基、または-NY1516基を表し、Y14~Y16は、互いに独立して、Z8で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、または炭素数2~20のヘテロアリール基を表す。
 Z8は、ハロゲン原子、アミノ基、ニトロ基、シアノ基、チオール基を表す。
Z 6 is a halogen atom, optionally substituted by Z 8 , an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, an epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido Represents a group (—NHCONH 2 ), thiol group, isocyanate group (—NCO), amino group, —NHY 14 group, or —NY 15 Y 16 group, and Z 7 may be substituted with a halogen atom or Z 8 Preferably an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, an epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido group (—NHCONH 2 ), Represents a thiol group, an isocyanate group (—NCO), an amino group, —NHY 14 group, or —NY 15 Y 16 group, 14 to Y 16 are independently of each other, optionally substituted with Z 8 , an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, a carbon number An aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms is represented.
Z 8 represents a halogen atom, an amino group, a nitro group, a cyano group, or a thiol group.
 式(2)~(4)における、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、および炭素数2~20のヘテロアリール基としては、上記と同様のものが挙げられる。
 R9およびR10において、アルキル基、アルケニル基およびアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。
 また、アリール基およびヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
In formulas (2) to (4), a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and Examples of the heteroaryl group having 2 to 20 carbon atoms are the same as those described above.
In R 9 and R 10 , the alkyl group, alkenyl group, and alkynyl group preferably have 10 or less carbon atoms, more preferably 6 or less, and still more preferably 4 or less.
The carbon number of the aryl group and heteroaryl group is preferably 14 or less, more preferably 10 or less, and even more preferably 6 or less.
 R9としては、Z4で置換されていてもよい、炭素数1~20のアルキル基もしくは炭素数2~20のアルケニル基、またはZ5で置換されていてもよい炭素数6~20のアリール基が好ましく、Z4で置換されていてもよい、炭素数1~6のアルキル基もしくは炭素数2~6のアルケニル基、またはZ5で置換されていてもよいフェニル基がより好ましく、Z4で置換されていてもよい炭素数1~4のアルキル基、またはZ5で置換されていてもよいフェニル基がより一層好ましく、Z4で置換されていてもよい、メチル基またはエチル基がさらに好ましい。
 また、R10としては、Z6で置換されていてもよい炭素数1~20のアルキル基、またはZ7で置換されていてもよい炭素数6~20のアリール基が好ましく、Z6で置換されていてもよい炭素数1~10のアルキル基、またはZ7で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z6で置換されていてもよい炭素数1~6のアルキル基、またはZ7で置換されていてもよい炭素数6~10のアリール基がより一層好ましく、Z6で置換されていてもよい炭素数1~4のアルキル基、またはZ7で置換されていてもよいフェニル基がさらに好ましい。
 なお、複数のR9は、全て同一であっても異なっていてもよく、複数のR10も、全て同一であっても異なっていてもよい。
R 9 is an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 4 , or aryl having 6 to 20 carbon atoms which may be substituted with Z 5. groups are preferred, it may be substituted with Z 4, alkyl group or alkenyl group having 2 to 6 carbon atoms having 1 to 6 carbon atoms or more preferably a phenyl group which may be substituted with Z 5,, Z 4 Is more preferably an alkyl group having 1 to 4 carbon atoms which may be substituted with, or a phenyl group which may be substituted with Z 5 , and further a methyl group or an ethyl group which may be substituted with Z 4 preferable.
Further, as R 10 is preferably an aryl group an alkyl group or Z carbon atoms 6 substituted 7 to 20, the to 1 carbon atoms which may be ~ 20 substituted with Z 6, substituted with Z 6 carbon atoms which may be have 1-10 alkyl group or more preferably an aryl group which may having 6 to 14 carbon atoms optionally substituted by Z 7, ~ 1 carbon atoms which may be substituted with Z 6 6, alkyl group, or more preferably more aryl group to 10 carbon atoms 6 optionally substituted by Z 7, alkyl groups of Z 6 is - 1 carbon atoms which may be 4-substituted, the substituents at or Z 7, More preferred is an optionally substituted phenyl group.
The plurality of R 9 may be all the same or different, and the plurality of R 10 may all be the same or different.
 Z4としては、ハロゲン原子、またはZ8で置換されていてもよい炭素数6~20のアリール基が好ましく、フッ素原子、またはZ8で置換されていてもよいフェニル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 また、Z5としては、ハロゲン原子、またはZ8で置換されていてもよい炭素数6~20のアルキル基が好ましく、フッ素原子、またはZ8で置換されていてもよい炭素数1~10のアルキル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
Z 4 is preferably a halogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 8 , more preferably a fluorine atom or a phenyl group which may be substituted with Z 8. Is optimal (ie, is unsubstituted).
Z 5 is preferably a halogen atom or an alkyl group having 6 to 20 carbon atoms which may be substituted with Z 8 , and is a fluorine atom or having 1 to 10 carbon atoms which may be substituted with Z 8 . Alkyl groups are more preferred and optimally absent (ie, unsubstituted).
 一方、Z6としては、ハロゲン原子、Z8で置換されていてもよいフェニル基、Z8で置換されていてもよいフラニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z8で置換されていてもよいフェニルアミノ基、またはZ8で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子、または存在しないこと(すなわち、非置換であること)がより一層好ましい。
 また、Z7としては、ハロゲン原子、Z8で置換されていてもよい炭素数1~20のアルキル基、Z8で置換されていてもよいフラニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z8で置換されていてもよいフェニルアミノ基、またはZ8で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子、または存在しないこと(すなわち、非置換であること)がより一層好ましい。
 そして、Z8としては、ハロゲン原子が好ましく、フッ素原子または存在しないこと(すなわち、非置換であること)がより好ましい。
On the other hand, the Z 6, a halogen atom, a phenyl group which may be substituted with Z 8, which may be substituted furanyl group Z 8, epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido group, thiol group, isocyanate group, an amino group, an optionally substituted phenylamino group Z 8 or better diphenylamino group optionally substituted by Z 8 are preferably, more preferably a halogen atom, a fluorine atom or absent, (That is, unsubstituted) is even more preferred.
As the Z 7, halogen atom, Z alkyl group having 1 carbon atoms which may be 20 substituted by 8, which may be substituted furanyl group Z 8, epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, acryloxy group, ureido group, a thiol group, isocyanate group, amino group, phenyl amino group optionally substituted by Z 8 or better diphenylamino group preferably be substituted with Z 8,, more preferably a halogen atom, It is even more preferable that the fluorine atom or not exist (that is, unsubstituted).
Z 8 is preferably a halogen atom, more preferably a fluorine atom or not (ie, unsubstituted).
 以下、本発明で使用可能な有機シラン化合物の具体例を挙げるが、これらに限定されるものではない。
 ジアルコキシシラン化合物の具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジイソプロピルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシシラン、3-グリシドキシプロピルメチルジエトキシシシラン、3-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシラン等が挙げられる。
Specific examples of the organosilane compound that can be used in the present invention will be given below, but the present invention is not limited thereto.
Specific examples of dialkoxysilane compounds include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diisopropyldimethoxysilane, and phenylmethyl. Dimethoxysilane, vinylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 3-methacryloxy Propylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane, γ-aminopropyl Chill diethoxy silane, N- (2- aminoethyl) aminopropyl methyl dimethoxy silane, 3,3,3-trifluoropropyl methyl dimethoxy silane, and the like.
 トリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、ドデシルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、(トリエトキシシリル)シクロヘキサン、パーフルオロオクチルエチルトリエトキシシラン、トリエトキシフルオロシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシラン、ペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシラン、3-(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリエトキシシラン、トリエトキシ-2-チエニルシラン、3-(トリエトキシシリル)フラン等が挙げられる。 Specific examples of trialkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, Pentyltrimethoxysilane, pentyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxy Silane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, Nyltrimethoxysilane, vinyltriethoxysilane, γ-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, γ-methacryloxy Propyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, triethoxy (4- (trifluoromethyl) phenyl) silane, dodecyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, (triethoxysilyl) Cyclohexane, perfluorooctylethyltriethoxysilane, triethoxyfluorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane, pentafluorophenyltrimethoxysila Pentafluorophenyltriethoxysilane, 3- (heptafluoroisopropoxy) propyltriethoxysilane, heptadecafluoro-1,1,2,2-tetrahydrodecyltriethoxysilane, triethoxy-2-thienylsilane, 3- ( And triethoxysilyl) furan.
 テトラアルコキシシラン化合物の具体例としては、テトラエトキシシラン、テトラメトキシシラン、テトラプロポキシシラン等が挙げられる。 Specific examples of the tetraalkoxysilane compound include tetraethoxysilane, tetramethoxysilane, tetrapropoxysilane and the like.
 これらの中でも、3,3,3-トリフルオロプロピルメチルジメトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、ペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシランが好ましい。 Among these, 3,3,3-trifluoropropylmethyldimethoxysilane, triethoxy (4- (trifluoromethyl) phenyl) silane, 3,3,3-trifluoropropyltrimethoxysilane, perfluorooctylethyltriethoxysilane Pentafluorophenyltrimethoxysilane and pentafluorophenyltriethoxysilane are preferred.
 本発明の電荷輸送性ワニス中における有機シラン化合物の含有量は、得られる薄膜の高電荷輸送性を維持する点を考慮すると、電荷輸送性物質およびヘテロポリ酸の総質量に対して、通常0.1~50質量%程度であるが、好ましくは0.5~40質量%程度、より好ましくは0.8~30質量%程度、より一層好ましくは1~20質量%である。 The content of the organosilane compound in the charge transporting varnish of the present invention is usually 0. 0 with respect to the total mass of the charge transporting material and the heteropolyacid in consideration of maintaining the high charge transportability of the resulting thin film. The amount is about 1 to 50% by mass, preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and still more preferably 1 to 20% by mass.
 電荷輸送性ワニスを調製する際に用いられる溶媒としては、電荷輸送性物質およびドーパント物質を良好に溶解し得る高溶解性溶媒を用いることができる。このような高溶解性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジエチレングリコールモノメチルエーテル等の有機溶媒を用いることができる。これらの溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5~100質量%とすることができる。
 なお、電荷輸送性物質およびドーパント物質は、いずれも上記溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましい。
As the solvent used in preparing the charge transporting varnish, a highly soluble solvent that can dissolve the charge transporting substance and the dopant substance satisfactorily can be used. Examples of such highly soluble solvents include organic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and diethylene glycol monomethyl ether. Can be used. These solvents can be used alone or in combination of two or more, and the amount used can be 5 to 100% by mass with respect to the total solvent used in the varnish.
Note that it is preferable that the charge transporting substance and the dopant substance are either completely dissolved in the solvent or uniformly dispersed.
 また、本発明の電荷輸送性ワニスは、基板に対する濡れ性の向上、ワニスの表面張力、粘度、沸点等の調整などを目的として、その他の溶媒を含むことが好ましく、このような溶媒を加えることで、用いる塗布方法や焼成温度等に応じたワニス調製が容易になり、高平坦性および高電荷輸送性を有する薄膜を再現性よく得ることができる。
 そのようなその他の溶媒としては、特に限定されるものではなく、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられる。これらの溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、固体が析出しない範囲内であることが好ましく、ワニスに使用する溶媒全体に対して、通常1~95質量%、好ましくは5~90質量%である。
In addition, the charge transport varnish of the present invention preferably contains other solvents for the purpose of improving wettability to the substrate, adjusting the surface tension, viscosity, boiling point, etc. of the varnish, and adding such solvents. Thus, it becomes easy to prepare a varnish according to the coating method used, the firing temperature, and the like, and a thin film having high flatness and high charge transportability can be obtained with good reproducibility.
Such other solvents are not particularly limited, and examples thereof include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, triethylene glycol, and the like. Propylene glycol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol Monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol Bruno methyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, .gamma.-butyrolactone, ethyl lactate, n- hexyl acetate, and the like. These solvents can be used singly or in combination of two or more, and the amount used is preferably within the range where no solid precipitates, and is usually 1 for the whole solvent used for varnish. It is ˜95% by mass, preferably 5 to 90% by mass.
 本発明のワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるものではあるが、通常、25℃で1~50mPa・sである。
 また、本発明における電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~5.0質量%、より好ましくは1.0~3.0質量%である。
The viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa · s at 25 ° C.
The solid content concentration of the charge transporting varnish in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc. In consideration of improving the coatability of the varnish, it is preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass.
 以上で説明した電荷輸送性ワニスを基材上に塗布し、焼成することで基材上に電荷輸送性薄膜を形成させることができる。
 ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
A charge transporting thin film can be formed on a base material by applying the charge transporting varnish described above on the base material and baking it.
The coating method of the varnish is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish according to the above.
 また、本発明のワニスを用いる場合、焼成雰囲気も特に限定されるものではなく、大気雰囲気だけでなく、不活性ガス雰囲気下や真空下といった酸素が十分に存在しない条件下でも均一な成膜面および高い電荷輸送性を有する薄膜を得ることができる。 Further, when the varnish of the present invention is used, the firing atmosphere is not particularly limited, and the film formation surface is uniform not only in the air atmosphere but also in a condition where there is not enough oxygen such as an inert gas atmosphere or a vacuum. In addition, a thin film having high charge transportability can be obtained.
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度等を勘案して、概ね100~260℃の範囲内で適宜設定されるものではあるが、有機EL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、150~230℃程度がより好ましいが、本発明のワニスでは、200℃未満、特に150~190℃の低温焼成が可能である。この場合、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。 The firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, and the like. When used as a hole injection layer, it is preferably about 140 to 250 ° C., more preferably about 150 to 230 ° C., but the varnish of the present invention can be fired at a low temperature of less than 200 ° C., particularly 150 to 190 ° C. In this case, two or more stages of temperature changes may be applied for the purpose of expressing higher uniform film forming properties or causing the reaction to proceed on the substrate. The heating may be performed by, for example, a hot plate or an oven. What is necessary is just to perform using an appropriate apparatus.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子内で正孔注入層として用いる場合、5~200nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。 The thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a hole injection layer in an organic EL device. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.
 本発明の電荷輸送性ワニスを用いてOLED素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
Examples of materials used and methods for producing an OLED element using the charge transporting varnish of the present invention include the following, but are not limited thereto.
The electrode substrate to be used is preferably cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like. For example, the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable. However, when the anode material is mainly composed of an organic material, the surface treatment may not be performed.
 本発明の電荷輸送性ワニスから得られる薄膜からなる正孔注入層を有するOLED素子の作製方法の例は、以下のとおりである。
 陽極基板上に本発明の電荷輸送性ワニスを塗布し、上記の方法により焼成を行い、電極上に正孔注入層を作製する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子注入層、陰極金属を順次蒸着してOLED素子とする。発光領域をコントロールするために任意の層間にキャリアブロック層を設けてもよい。
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
The example of the manufacturing method of the OLED element which has a positive hole injection layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
The charge transporting varnish of the present invention is applied on the anode substrate, and baked by the above method to form a hole injection layer on the electrode. This is introduced into a vacuum deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode metal are sequentially deposited to form an OLED element. In order to control the light emitting region, a carrier block layer may be provided between arbitrary layers.
Examples of the anode material include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and those subjected to planarization treatment are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体(TPD)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)、[(トリフェニルアミン)ダイマー]スピロダイマー(Spiro-TAD)等のトリアリールアミン類、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のスターバーストアミン類、5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”-ターチオフェン(BMA-3T)等のオリゴチオフェン類などが挙げられる。 Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative (TPD), N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (α-NPD), [(tri Phenylamine) dimer] triarylamines such as spiro-dimer (Spiro-TAD), 4,4 ′, 4 ″ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 Starburst amines such as', 4 "-tris [1-naphthyl (phenyl) amino] triphenylamine (1-TNATA), 5,5" -bis- {4- [bis (4-methylphenyl) amino] Phenyl} -2,2 ′: 5 ′, 2 ″ -terthiophene (BMA-3T) and the like.
 発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)(Znq2)、ビス(2-メチル-8-キノリノラート)(p-フェニルフェノラート)アルミニウム(III)(BAlq)、4,4’-ビス(2,2-ジフェニルビニル)ビフェニル(DPVBi)等が挙げられ、電子輸送材料または正孔輸送材料と発光性ドーパントとを共蒸着することによって、発光層を形成してもよい。
 電子輸送材料としては、Alq3、BAlq、DPVBi、(2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール)(PBD)、トリアゾール誘導体(TAZ)、バソクプロイン(BCP)、シロール誘導体等が挙げられる。
Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato) ( p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi), and the like. The light emitting layer may be formed by co-evaporation.
Examples of the electron transport material include Alq 3 , BAlq, DPVBi, (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole) (PBD), triazole derivatives ( TAZ), bathocuproine (BCP), silole derivatives and the like.
 発光性ドーパントとしては、キナクリドン、ルブレン、クマリン540、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン(DCM)、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、(1,10-フェナントロリン)-トリス(4,4,4-トリフルオロ-1-(2-チエニル)-ブタン-1,3-ジオナート)ユーロピウム(III)(Eu(TTA)3phen)等が挙げられる。 Examples of the luminescent dopant include quinacridone, rubrene, coumarin 540, 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), tris (2-phenylpyridine) iridium ( III) (Ir (ppy) 3 ), (1,10-phenanthroline) -tris (4,4,4-trifluoro-1- (2-thienyl) -butane-1,3-dionate) europium (III) ( Eu (TTA) 3 phen) and the like.
 キャリアブロック層を形成する材料としては、PBD、TAZ、BCP等が挙げられる。
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化ストロンチウム(SrF2)、Liq、Li(acac)、酢酸リチウム、安息香酸リチウム等が挙げられる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
Examples of the material for forming the carrier block layer include PBD, TAZ, and BCP.
Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), strontium fluoride (SrF 2 ), Liq, Li (acac), lithium acetate, lithium benzoate and the like.
Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
 本発明の電荷輸送性ワニスを用いたPLED素子の作製方法は、特に限定されないが、以下の方法が挙げられる。
 上記OLED素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、正孔輸送性高分子層、発光性高分子層を順次形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を含むPLED素子を作製することができる。
 具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して上記の方法により正孔注入層を作製し、その上に正孔輸送性高分子層、発光性高分子層を順次形成し、さらに陰極電極を蒸着してPLED素子とする。
Although the manufacturing method of the PLED element using the charge transportable varnish of this invention is not specifically limited, The following methods are mentioned.
In the preparation of the OLED element, instead of performing the vacuum deposition operation of the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer, the hole transport polymer layer and the light emitting polymer layer are sequentially formed. A PLED element comprising a charge transporting thin film formed by the charge transporting varnish of the invention can be produced.
Specifically, the charge transporting varnish of the present invention is applied on the anode substrate to prepare a hole injection layer by the above method, and a hole transporting polymer layer and a light emitting polymer layer are sequentially formed thereon. Then, a cathode electrode is vapor-deposited to obtain a PLED element.
 使用する陰極および陽極材料としては、上記OLED素子作製時と同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。
 正孔輸送性高分子層および発光性高分子層の形成法としては、正孔輸送性高分子材料もしくは発光性高分子材料、またはこれらにドーパント物質を加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔注入層または正孔輸送性高分子層の上に塗布した後、それぞれ溶媒の蒸発により成膜する方法が挙げられる。
 正孔輸送性高分子材料としては、正孔輸送性高分子材料としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,1’-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1’-ペンテン-5’-イル}フルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。
 発光性高分子材料としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2’-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)などのポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。
As the cathode and anode material to be used, the same materials as those used in the production of the OLED element can be used, and the same cleaning treatment and surface treatment can be performed.
The hole transporting polymer layer and the light emitting polymer layer can be formed by adding a solvent to a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant substance to the hole transporting polymer material. And a method in which the film is uniformly dispersed and applied onto the hole injection layer or the hole transporting polymer layer, and then deposited by evaporation of the solvent.
As the hole transporting polymer material, as the hole transporting polymer material, poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N′-bis {p -Butylphenyl} -1,4-diaminophenylene)], poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N′-bis {p-butylphenyl} -1 , 1'-biphenylene-4,4-diamine)], poly [(9,9-bis {1'-penten-5'-yl} fluorenyl-2,7-diyl) -co- (N, N'- Bis {p-butylphenyl} -1,4-diaminophenylene)], poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) -benzidine] -endcapped with polysilicon Ruschixoxane, poly [(9,9-didioctylfluoreni -2,7-diyl) -co- (4,4 ′-(N- (p-butylphenyl)) diphenylamine)] and the like.
Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). And polyphenylene vinylene derivatives such as -PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
 溶媒としては、トルエン、キシレン、クロロホルム等を挙げることができ、溶解または均一分散法としては撹拌、加熱撹拌、超音波分散等の方法が挙げられる。
 塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
 焼成する方法としては、不活性ガス下または真空中、オーブンまたはホットプレートで加熱する方法が挙げられる。
Examples of the solvent include toluene, xylene, chloroform, and the like. Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
The application method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dipping method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating method. The application is preferably performed under an inert gas such as nitrogen or argon.
Examples of the firing method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.
 以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。 
(1)1H-NMR測定:バリアン製高分解能核磁気共鳴装置
(2)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(3)ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(4)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(5)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(6)EL素子の輝度等の測定:(有)テック・ワールド製 I-V-L測定システム
(7)EL素子の寿命測定:(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
Hereinafter, although a synthesis example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. In addition, the apparatus used is as follows.
(1) 1 H-NMR measurement: High resolution nuclear magnetic resonance apparatus manufactured by Varian (2) Substrate cleaning: Substrate cleaning apparatus manufactured by Choshu Sangyo Co., Ltd. (low pressure plasma method)
(3) Varnish application: Mikasa Co., Ltd. spin coater MS-A100
(4) Film thickness measurement: Fine shape measuring machine Surfcorder ET-4000 manufactured by Kosaka Laboratory Ltd.
(5) Fabrication of EL element: Multi-function vapor deposition system C-E2L1G1-N manufactured by Choshu Industry Co., Ltd.
(6) Measurement of EL element luminance, etc .: IV World measurement system manufactured by Tech World (7) Measurement of EL element life: Organic EL luminance life evaluation system PEL-105S manufactured by Eetchy Co., Ltd.
[1]電荷輸送性物質の合成
[合成例1]アニリン誘導体の合成
Figure JPOXMLDOC01-appb-C000007
[1] Synthesis of charge transport material [Synthesis Example 1] Synthesis of aniline derivative
Figure JPOXMLDOC01-appb-C000007
 4,4’-ジアミノジフェニルアミン10.00g(50.19mmol)、4-ブロモトリフェニルアミン34.17g(105.40mmol)、およびキシレン(100g)の混合懸濁液に、テトラキス(トリフェニルホスフィン)パラジウム0.5799g(0.5018mmol)とターシャルブトキシナトリウム10.13g(105.40mmol)とを加え、窒素下130℃で14時間撹拌した。
 その後、反応混合液を濾過し、その濾液に飽和食塩水を加えて分液処理をした後、有機層から溶媒を留去して得られた固体を1,4-ジオキサンを用いて再結晶し、目的のアニリン誘導体を得た(収量:22.37g、収率:65%)。
1H-NMR(CDCl3):δ7.83(S,2H),7.68(S,1H),7.26-7.20(m,8H),7.01-6.89(m,28H).
To a mixed suspension of 4,4′-diaminodiphenylamine 10.00 g (50.19 mmol), 4-bromotriphenylamine 34.17 g (105.40 mmol), and xylene (100 g), tetrakis (triphenylphosphine) palladium was added. 0.5799 g (0.5018 mmol) and 10.33 g (105.40 mmol) of tertiary butoxy sodium were added, and the mixture was stirred at 130 ° C. for 14 hours under nitrogen.
Thereafter, the reaction mixture was filtered, and saturated brine was added to the filtrate for separation, and then the solid obtained by distilling off the solvent from the organic layer was recrystallized using 1,4-dioxane. The desired aniline derivative was obtained (yield: 22.37 g, yield: 65%).
1 H-NMR (CDCl 3 ): δ 7.83 (S, 2H), 7.68 (S, 1H), 7.26-7.20 (m, 8H), 7.01-6.89 (m, 28H).
[2]電荷輸送性ワニスの調製
[実施例1-1]
 合成例1で得られたアニリン誘導体0.206gと、リンタングステン酸(関東化学(株)製)0.412gとを、窒素雰囲気下でジエチレングリコールモノメチルエーテル4.0gに溶解させた。得られた溶液に、プロピレングリコールモノメチルエーテル16.0gを加えて撹拌し、そこへ3,3,3-トリフルオロプロピルトリメトキシシラン(信越化学工業(株)製)0.021gおよびフェニルトリメトキシシラン(信越化学工業(株)製)0.041gを加えてさらに撹拌し、電荷輸送性ワニスを調製した。
[2] Preparation of charge transporting varnish [Example 1-1]
0.206 g of the aniline derivative obtained in Synthesis Example 1 and 0.412 g of phosphotungstic acid (manufactured by Kanto Chemical Co., Inc.) were dissolved in 4.0 g of diethylene glycol monomethyl ether under a nitrogen atmosphere. To the obtained solution, 16.0 g of propylene glycol monomethyl ether was added and stirred, and 0.021 g of 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and phenyltrimethoxysilane were added thereto. 0.041 g (manufactured by Shin-Etsu Chemical Co., Ltd.) was added and further stirred to prepare a charge transporting varnish.
[実施例1-2~1-8]
 アニリン誘導体の使用量およびリンタングステン酸の使用量を、それぞれ、0.155gおよび0.464g、0.124gおよび0.495g、0.103gおよび0.515g、0.088gおよび0.530g、0.077gおよび0.541g、0.069gおよび0.550g、0.056gおよび0.562gとした以外は、実施例1-1と同様の方法で電荷輸送性ワニスを調製した。
[Examples 1-2 to 1-8]
The amounts of aniline derivative and phosphotungstic acid used were 0.155 g and 0.464 g, 0.124 g and 0.495 g, 0.103 g and 0.515 g, 0.088 g and 0.530 g, respectively. A charge transporting varnish was prepared in the same manner as in Example 1-1 except that 077 g and 0.541 g, 0.069 g and 0.550 g, 0.056 g and 0.562 g were used.
[実施例1-9]
 合成例1で得られたアニリン誘導体0.309gと、リンタングステン酸0.619gとを、窒素雰囲気下でジエチレングリコールモノメチルエーテル6.0gに溶解させた。得られた溶液に、プロピレングリコールモノメチルエーテル24.0gを加えて撹拌し、そこへペンタフルオロフェニルトリエトキシシラン(Scientific Industrial Association Ltd.製)0.028gを加えてさらに撹拌し、電荷輸送性ワニスを調製した。
[Example 1-9]
0.309 g of the aniline derivative obtained in Synthesis Example 1 and 0.619 g of phosphotungstic acid were dissolved in 6.0 g of diethylene glycol monomethyl ether under a nitrogen atmosphere. To the obtained solution, 24.0 g of propylene glycol monomethyl ether was added and stirred, 0.028 g of pentafluorophenyltriethoxysilane (manufactured by Scientific Industrial Association Ltd.) was added thereto, and further stirred to obtain a charge transporting varnish. Prepared.
[実施例1-10~16]
 アニリン誘導体の使用量およびリンタングステン酸の使用量を、それぞれ、0.232gおよび0.696g、0.186gおよび0.742g、0.155gおよび0.773g、0.133gおよび0.795g、0.116gおよび0.812g、0.103gおよび0.825g、0.084gおよび0.843gとした以外は、実施例1-9と同様の方法で電荷輸送性ワニスを調製した。
[Examples 1-10 to 16]
The amount of aniline derivative and the amount of phosphotungstic acid used were 0.232 g and 0.696 g, 0.186 g and 0.742 g, 0.155 g and 0.773 g, 0.133 g and 0.795 g, respectively. A charge transporting varnish was prepared in the same manner as in Example 1-9 except that the amount was 116 g and 0.812 g, 0.103 g and 0.825 g, 0.084 g and 0.843 g.
[実施例1-17]
 ペンタフルオロフェニルトリエトキシシランの使用量を0.046gとした以外は、実施例1-11と同様の方法で電荷輸送性ワニスを調製した。
[Example 1-17]
A charge transporting varnish was prepared in the same manner as in Example 1-11 except that the amount of pentafluorophenyltriethoxysilane used was 0.046 g.
[実施例1-18]
 N,N’-ジフェニルベンジジン(東京化成工業(株)製)0.148gと、リンタングステン酸0.594gとを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン8.0gに溶解させた。得られた溶液に、シクロヘキサノール12.0gおよびプロピレングリコール4.0gを加えて撹拌し、そこへ3,3,3-トリフルオロプロピルトリメトキシシラン0.025gおよびフェニルトリメトキシシラン0.049gを加えてさらに撹拌し、電荷輸送性ワニスを調製した。
 なお、N,N’-ジフェニルベンジジンは、1,4-ジオキサンを用いて再結晶し、その後、減圧下でよく乾燥してから用いた。
[Example 1-18]
0.148 g of N, N′-diphenylbenzidine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.594 g of phosphotungstic acid are dissolved in 8.0 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere. I let you. To the obtained solution, 12.0 g of cyclohexanol and 4.0 g of propylene glycol were added and stirred, and 0.025 g of 3,3,3-trifluoropropyltrimethoxysilane and 0.049 g of phenyltrimethoxysilane were added thereto. The mixture was further stirred to prepare a charge transporting varnish.
N, N′-diphenylbenzidine was recrystallized using 1,4-dioxane and then used after thoroughly drying under reduced pressure.
[実施例1-19]
 N,N’-ジフェニルベンジジンの使用量およびリンタングステン酸の使用量を、0.124gおよび0.619gとした以外は、実施例1-18と同様の方法で電荷輸送性ワニスを調製した。
[Example 1-19]
A charge transporting varnish was prepared in the same manner as in Example 1-18, except that the amount of N, N′-diphenylbenzidine and the amount of phosphotungstic acid used were 0.124 g and 0.619 g.
[比較例1]
 3,3,3-トリフルオロプロピルトリメトキシシラン0.021gおよびフェニルトリメトキシシラン0.041gを加えなかった以外は、実施例1-1と同様の方法で電荷輸送性ワニスを調製した。
[Comparative Example 1]
A charge transporting varnish was prepared in the same manner as in Example 1-1 except that 0.021 g of 3,3,3-trifluoropropyltrimethoxysilane and 0.041 g of phenyltrimethoxysilane were not added.
[3]有機EL素子の製造および特性評価
[実施例2-1]
 実施例1-1で得られたワニスを、スピンコーターを用いてITO基板に塗布した後、50℃で5分間乾燥し、さらに、大気雰囲気下、160℃で15分間焼成し、ITO基板上に30nmの均一な薄膜を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、フッ化リチウム、およびアルミニウムの薄膜を順次積層し、有機EL素子を得た。この際、蒸着レートは、α-NPD,Alq3およびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ30nm、40nm、0.5nmおよび120nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。
 酸素濃度2ppm以下、露点-85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着材(ナガセケムテックス(株)製,XNR5516Z-B1)により貼り合わせた。この際、捕水剤(ダイニック(株)製,HD-071010W-40)を有機EL素子と共に封止基板内に収めた。
 貼り合わせた封止基板に対し、UV光を照射(波長:365nm,照射量:6000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
[3] Manufacture and characteristic evaluation of organic EL device [Example 2-1]
The varnish obtained in Example 1-1 was applied to an ITO substrate using a spin coater, then dried at 50 ° C. for 5 minutes, and further baked at 160 ° C. for 15 minutes in an air atmosphere. A uniform thin film of 30 nm was formed. As the ITO substrate, a glass substrate of 25 mm × 25 mm × 0.7 t in which indium tin oxide (ITO) is patterned on the surface with a film thickness of 150 nm is used, and an O 2 plasma cleaning apparatus (150 W, 30 seconds) before use. To remove impurities on the surface.
Next, N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (α-) is applied to the ITO substrate on which the thin film has been formed using a vapor deposition apparatus (degree of vacuum: 1.0 × 10 −5 Pa). NPD), tris (8-quinolinolato) aluminum (III) (Alq 3 ), lithium fluoride, and aluminum thin films were sequentially laminated to obtain an organic EL device. At this time, the deposition rate was 0.2 nm / second for α-NPD, Alq 3 and aluminum, and 0.02 nm / second for lithium fluoride, and the film thicknesses were 30 nm, 40 nm, and 0.2 nm, respectively. The thickness was 5 nm and 120 nm.
In addition, in order to prevent the characteristic deterioration by the influence of oxygen in the air, water, etc., after sealing the organic EL element with the sealing substrate, the characteristic was evaluated. Sealing was performed according to the following procedure.
In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -85 ° C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is bonded with an adhesive (XNR5516Z-B1 manufactured by Nagase ChemteX Corporation). It was. At this time, a water catching agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was placed in the sealing substrate together with the organic EL element.
The bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
[実施例2-2~2-17および比較例2]
 実施例1-1で得られたワニスの代わりに、それぞれ、実施例1~2~1-17、比較例1で得られたワニスを用いた以外は、実施例2-1と同様の方法で有機EL素子を作製した
[Examples 2-2 to 2-17 and Comparative Example 2]
In the same manner as in Example 2-1, except that the varnish obtained in Examples 1-2 to 1-17 and Comparative Example 1 was used instead of the varnish obtained in Example 1-1, respectively. An organic EL device was produced.
[実施例2-18~2-19]
 実施例1-1で得られたワニスの代わりに、それぞれ、実施例1-18~1-19で得られたワニスを用い、160℃で15分間焼成する代わりに180℃で15分間焼成した以外は、実施例2-1と同様の方法で有機EL素子を作製した。
[Examples 2-18 to 2-19]
Instead of the varnish obtained in Example 1-1, the varnish obtained in Examples 1-18 to 1-19 was used, except that the varnish was calcined at 180 ° C. for 15 minutes instead of being calcined at 160 ° C. for 15 minutes. Produced an organic EL device by the same method as in Example 2-1.
 上記で作製した有機EL素子の駆動電圧5Vにおける電流密度および輝度を測定した。結果を表1に示す。
 また、実施例2-1~2-6で作製した有機EL素子の耐久性試験を行った。輝度の半減期(初期輝度5000cd/m2)を表2に示す。
The current density and luminance at a driving voltage of 5 V of the organic EL device produced above were measured. The results are shown in Table 1.
In addition, a durability test of the organic EL elements produced in Examples 2-1 to 2-6 was performed. The luminance half-life (initial luminance 5000 cd / m 2 ) is shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示されるように、所定のアニリン誘導体およびヘテロポリ酸の他に、有機シラン化合物を含む本発明の電荷輸送性ワニスを用いた場合、160~180℃という200℃未満の低温で焼成しても優れた輝度特性を有するEL素子を製造できたのに対し、有機シラン化合物を含まない電荷輸送性ワニス(比較例2)を用いた場合、良好な輝度特性を実現できなかった。 As shown in Table 1, when the charge transporting varnish of the present invention containing an organosilane compound in addition to a predetermined aniline derivative and heteropolyacid is used, it is fired at a low temperature of less than 200 ° C. of 160 to 180 ° C. In contrast, an EL device having excellent luminance characteristics could be produced, whereas when a charge transporting varnish containing no organosilane compound (Comparative Example 2) was used, good luminance characteristics could not be realized.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2に示されるように、実施例で作製した電荷輸送性薄膜を備える有機EL素子は、優れた耐久性を示した。 As shown in Table 2, the organic EL device provided with the charge transporting thin film produced in the example showed excellent durability.

Claims (12)

  1.  式(1)で表されるアニリン誘導体からなる電荷輸送性物質と、ヘテロポリ酸からなるドーパント物質と、有機シラン化合物と、有機溶媒とを含むことを特徴とする電荷輸送性ワニス。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、X1は、-NY1-、-O-、-S-、-(CR78l-または単結合を表し、
     Y1は、互いに独立して、水素原子、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、
     R1~R8は、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY2、-NY34、-C(O)Y5、-OY6、-SY7、-SO38、-C(O)OY9、-OC(O)Y10、-C(O)NHY11、または-C(O)NY1213基を表し、
     Y2~Y13は、互いに独立して、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、
     Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、
     Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、
     Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表し、
     lは、1~20の整数を表し、mおよびnは、互いに独立して、0以上の整数を表し、1≦m+n≦20を満たす。但し、mまたはnが0であるときは、X1は、-NY1-を表す。)
    A charge transporting varnish comprising a charge transporting material comprising an aniline derivative represented by the formula (1), a dopant material comprising a heteropolyacid, an organosilane compound, and an organic solvent.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), X 1 represents —NY 1 —, —O—, —S—, — (CR 7 R 8 ) 1 — or a single bond,
    Y 1 is independently of each other a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 , or Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 ;
    R 1 to R 8 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or Z 1. Or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , or carbon Heteroaryl groups of 2 to 20, —NHY 2 , —NY 3 Y 4 , —C (O) Y 5 , —OY 6 , —SY 7 , —SO 3 Y 8 , —C (O) OY 9 , — Represents an OC (O) Y 10 , —C (O) NHY 11 , or —C (O) NY 12 Y 13 group;
    Y 2 to Y 13 each independently represent an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 , or Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 ;
    Z 1 is a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or an aryl having 6 to 20 carbon atoms which may be substituted with Z 3 Group or a heteroaryl group having 2 to 20 carbon atoms,
    Z 2 is a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, a carboxylic acid group, or an alkyl having 1 to 20 carbon atoms which may be substituted with Z 3 A alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms,
    Z 3 represents a halogen atom, a nitro group, a cyano group, an amino group, an aldehyde group, a hydroxyl group, a thiol group, a sulfonic acid group, or a carboxylic acid group,
    l represents an integer of 1 to 20, m and n each independently represents an integer of 0 or more, and satisfies 1 ≦ m + n ≦ 20. However, when m or n is 0, X 1 represents —NY 1 —. )
  2.  前記R1~R4が、水素原子、ハロゲン原子、Z1で置換されていてもよい炭素数1~10のアルキル基、またはZ2で置換されていてもよい炭素数6~14のアリール基であり、
     前記R5およびR6が、水素原子、ハロゲン原子、Z1で置換されていてもよい炭素数1~10のアルキル基、Z2で置換されていてもよい炭素数6~14のアリール基、またはZ2で置換されていてもよいジフェニルアミノ基である請求項1記載の電荷輸送性ワニス。
    R 1 to R 4 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 1 , or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 2. And
    R 5 and R 6 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms that may be substituted with Z 1 , an aryl group having 6 to 14 carbon atoms that may be substituted with Z 2 , 2. The charge transporting varnish according to claim 1, which is a diphenylamino group which may be substituted with Z2.
  3.  前記ヘテロポリ酸が、リンタングステン酸を含む請求項1または2記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 1 or 2, wherein the heteropolyacid contains phosphotungstic acid.
  4.  前記電荷輸送性物質の質量(WH)に対する前記ドーパント物質の質量(WD)の比(WD/WH)が、1.0≦WD/WH≦11.0を満たす請求項1~3のいずれか1項記載の電荷輸送性ワニス。 The ratio (W D / W H ) of the mass (W D ) of the dopant material to the mass (W H ) of the charge transport material satisfies 1.0 ≦ W D / W H ≦ 11.0. 4. The charge transporting varnish according to any one of items 1 to 3.
  5.  前記有機シラン化合物が、ジアルコキシシラン化合物、トリアルコキシシラン化合物またはテトラアルコキシシラン化合物である請求項1~4のいずれか1項記載の電荷輸送性ワニス。 The charge transporting varnish according to any one of claims 1 to 4, wherein the organic silane compound is a dialkoxysilane compound, a trialkoxysilane compound, or a tetraalkoxysilane compound.
  6.  請求項1~5のいずれか1項記載の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。 A charge transporting thin film produced using the charge transporting varnish according to any one of claims 1 to 5.
  7.  請求項6記載の電荷輸送性薄膜を有する電子デバイス。 An electronic device having the charge transporting thin film according to claim 6.
  8.  請求項6記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the charge transporting thin film according to claim 6.
  9.  前記電荷輸送性薄膜が、正孔注入層または正孔輸送層である請求項8記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
  10.  請求項1~5のいずれか1項記載の電荷輸送性ワニスを基材上に塗布して焼成することを特徴とする電荷輸送性薄膜の製造方法。 A method for producing a charge-transporting thin film, comprising applying the charge-transporting varnish according to any one of claims 1 to 5 onto a base material and baking.
  11.  200℃未満で焼成することを特徴とする請求項10記載の電荷輸送性薄膜の製造方法。 The method for producing a charge transporting thin film according to claim 10, wherein baking is performed at less than 200 ° C.
  12.  請求項6記載の電荷輸送性薄膜を用いる有機エレクトロルミネッセンス素子の製造方法。 A method for producing an organic electroluminescence device using the charge transporting thin film according to claim 6.
PCT/JP2014/055781 2013-03-11 2014-03-06 Charge-transporting varnish WO2014141998A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015505434A JP6135752B2 (en) 2013-03-11 2014-03-06 Charge transport varnish
CN201480013891.2A CN105074949B (en) 2013-03-11 2014-03-06 Charge-transporting varnish
KR1020157028180A KR102270150B1 (en) 2013-03-11 2014-03-06 Charge-transporting varnish

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047847 2013-03-11
JP2013-047847 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014141998A1 true WO2014141998A1 (en) 2014-09-18

Family

ID=51536661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055781 WO2014141998A1 (en) 2013-03-11 2014-03-06 Charge-transporting varnish

Country Status (5)

Country Link
JP (1) JP6135752B2 (en)
KR (1) KR102270150B1 (en)
CN (1) CN105074949B (en)
TW (1) TWI620731B (en)
WO (1) WO2014141998A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050253A1 (en) 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
WO2015053320A1 (en) 2013-10-09 2015-04-16 日産化学工業株式会社 Arylsulfonic acid compound, use thereof, and method for producing arylsulfonic acid compound
WO2016148184A1 (en) * 2015-03-17 2016-09-22 日産化学工業株式会社 Composition for forming hole collecting layer of photosensor element, and photosensor element
CN106660939A (en) * 2014-09-29 2017-05-10 日产化学工业株式会社 Charge-transporting varnish
WO2017135117A1 (en) 2016-02-03 2017-08-10 日産化学工業株式会社 Charge transport varnish
WO2017150412A1 (en) 2016-03-03 2017-09-08 日産化学工業株式会社 Charge-transporting varnish
WO2017164158A1 (en) 2016-03-24 2017-09-28 日産化学工業株式会社 Arylamine derivative and use thereof
WO2018147204A1 (en) 2017-02-07 2018-08-16 日産化学工業株式会社 Charge transporting varnish
WO2018186340A1 (en) 2017-04-05 2018-10-11 日産化学株式会社 Charge-transporting varnish
WO2018216507A1 (en) 2017-05-25 2018-11-29 日産化学株式会社 Method for producing charge transporting thin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102270673B1 (en) * 2013-04-16 2021-06-30 닛산 가가쿠 가부시키가이샤 Hole transporting varnish for metal positive electrodes and composite metal positive electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129947A1 (en) * 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. Oligoaniline compound
WO2010041701A1 (en) * 2008-10-09 2010-04-15 日産化学工業株式会社 Charge-transporting varnishes
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish
WO2010058776A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge-transporting material and charge-transporting varnish

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868099B2 (en) 2000-11-09 2012-02-01 日産化学工業株式会社 Electroluminescent device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129947A1 (en) * 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. Oligoaniline compound
WO2010041701A1 (en) * 2008-10-09 2010-04-15 日産化学工業株式会社 Charge-transporting varnishes
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish
WO2010058776A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge-transporting material and charge-transporting varnish

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050253A1 (en) 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
WO2015053320A1 (en) 2013-10-09 2015-04-16 日産化学工業株式会社 Arylsulfonic acid compound, use thereof, and method for producing arylsulfonic acid compound
CN106660939B (en) * 2014-09-29 2019-11-12 日产化学工业株式会社 Charge-transporting varnish
CN106660939A (en) * 2014-09-29 2017-05-10 日产化学工业株式会社 Charge-transporting varnish
EP4109573A1 (en) 2015-03-17 2022-12-28 Nissan Chemical Corporation Photosensor element
KR102530903B1 (en) * 2015-03-17 2023-05-10 닛산 가가쿠 가부시키가이샤 A composition for forming a hole trapping layer of an optical sensor device and an optical sensor device
US10340461B2 (en) 2015-03-17 2019-07-02 Nissan Chemical Industries, Ltd. Composition for forming hole collecting layer of photosensor element, and photosensor element
KR20170128409A (en) * 2015-03-17 2017-11-22 닛산 가가쿠 고교 가부시키 가이샤 Composition and method for forming a hole trapping layer of an optical sensor element
JPWO2016148184A1 (en) * 2015-03-17 2017-12-28 日産化学工業株式会社 Composition for forming hole collection layer of optical sensor element and optical sensor element
US20180114915A1 (en) * 2015-03-17 2018-04-26 Nissan Chemical Industries, Ltd. Composition for forming hole collecting layer of photosensor element, and photosensor element
JP2022153435A (en) * 2015-03-17 2022-10-12 日産化学株式会社 Optical sensor element
JP7141826B2 (en) 2015-03-17 2022-09-26 日産化学株式会社 COMPOSITION FOR FORMING HOLE COLLECTING LAYER OF OPTICAL SENSOR ELEMENT AND OPTICAL SENSOR ELEMENT
WO2016148184A1 (en) * 2015-03-17 2016-09-22 日産化学工業株式会社 Composition for forming hole collecting layer of photosensor element, and photosensor element
WO2017135117A1 (en) 2016-02-03 2017-08-10 日産化学工業株式会社 Charge transport varnish
WO2017150412A1 (en) 2016-03-03 2017-09-08 日産化学工業株式会社 Charge-transporting varnish
WO2017164158A1 (en) 2016-03-24 2017-09-28 日産化学工業株式会社 Arylamine derivative and use thereof
WO2018147204A1 (en) 2017-02-07 2018-08-16 日産化学工業株式会社 Charge transporting varnish
WO2018186340A1 (en) 2017-04-05 2018-10-11 日産化学株式会社 Charge-transporting varnish
WO2018216507A1 (en) 2017-05-25 2018-11-29 日産化学株式会社 Method for producing charge transporting thin film

Also Published As

Publication number Publication date
KR102270150B1 (en) 2021-06-28
KR20150127675A (en) 2015-11-17
TW201500333A (en) 2015-01-01
JPWO2014141998A1 (en) 2017-02-16
CN105074949A (en) 2015-11-18
CN105074949B (en) 2018-04-10
JP6135752B2 (en) 2017-05-31
TWI620731B (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6135752B2 (en) Charge transport varnish
JP6350288B2 (en) Charge transport varnish
JP6048571B2 (en) Charge transport varnish
JP6004083B2 (en) Charge transport varnish
EP3118191A1 (en) Aniline derivative and use thereof
JP6168142B2 (en) Hole transport varnish for metal anode and composite metal anode
JP6760455B2 (en) Aniline derivative and its manufacturing method
JP6424835B2 (en) Aryl sulfonic acid compound and use thereof
WO2015141585A1 (en) Oligoaniline derivative, charge-transporting varnish, and organic electroluminescent element
JP6402724B2 (en) Arylsulfonic acid compounds and uses thereof
WO2020158410A1 (en) Charge-transporting varnish
WO2015137391A1 (en) Aniline derivative and use thereof
JP6558373B2 (en) Charge transport varnish

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013891.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157028180

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14764036

Country of ref document: EP

Kind code of ref document: A1