WO2014141652A1 - Peptides smyd3 et vaccins les contenant - Google Patents

Peptides smyd3 et vaccins les contenant Download PDF

Info

Publication number
WO2014141652A1
WO2014141652A1 PCT/JP2014/001276 JP2014001276W WO2014141652A1 WO 2014141652 A1 WO2014141652 A1 WO 2014141652A1 JP 2014001276 W JP2014001276 W JP 2014001276W WO 2014141652 A1 WO2014141652 A1 WO 2014141652A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
present
amino acid
peptides
smyd3
Prior art date
Application number
PCT/JP2014/001276
Other languages
English (en)
Inventor
Takuya Tsunoda
Ryuji Osawa
Sachiko Yoshimura
Tomohisa Watanabe
Original Assignee
Oncotherapy Science, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncotherapy Science, Inc. filed Critical Oncotherapy Science, Inc.
Publication of WO2014141652A1 publication Critical patent/WO2014141652A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE

Definitions

  • the present invention relates to the field of biological science, more specifically to the field of cancer therapy.
  • the present invention relates to novel peptides that are effective as cancer vaccines, as well as drugs for either or both of the treatment and/or prophylaxis of tumors.
  • CD8 positive cytotoxic T lymphocytes have been shown to recognize epitope peptides derived from the tumor-associated antigens (TAAs) found on the major histocompatibility complex (MHC) class I molecule, and then kill the tumor cells.
  • TAAs tumor-associated antigens
  • MHC major histocompatibility complex
  • NPL 1-2 immunological approaches
  • TAAs are indispensable for the proliferation and survival of cancer cells.
  • the use of such TAAs as targets for immunotherapy may minimize the well-described risk of immune escape of cancer cells attributable to deletion, mutation, or down-regulation of TAAs as a consequence of therapeutically driven immune selection. Accordingly, the identification of new TAAs capable of inducing potent and specific anti-tumor immune responses warrants further development.
  • NPL 3-10 the clinical application of peptide vaccination strategies for various types of cancer is ongoing (NPL 3-10).
  • NPL 11-13 the clinical application of peptide vaccination strategies for various types of cancer is ongoing.
  • SYMD3 (GenBank Accession No:NM_022743.2, NM_001167740 or AB057595), a gene encoding SET- and MYND- domain containing proteins, also known as ZNFN3A1, has been suggested to possess histone methyltransferase activity and play a key role in transcriptional regulation as a member of an RNA polymerase complex (NPL 14, PTL 1, 3).
  • SYMD3 has been identified as overexpressed in hepatocellular carcinoma (HCC) and colorectal carcinoma cells (NPL 14, PTL 1) and up-regulated in breast cancer and bladder cancer (PTL 4, 5, 6), though not expressed in normal organs except for testis and skeletal muscle.
  • SMYD3 may be a suitable target for cancer immunotherapy protocols, particularly for cancer immunotherapy.
  • the present invention is based, at least in part, on the discovery of novel peptides that may serve as suitable targets of immunotherapy. Because TAAs are generally perceived by the immune system as "self” and therefore often have no innate immunogenicity, the discovery of appropriate targets is still of importance.
  • SMYD3 a typical amino acid sequence shown in SEQ ID NO: 60, 62 or 64; a typical nucleotide sequence shown in SEQ ID NO: 59, 61 or 63 (GenBank Accession No.
  • NM_022743.2, NM_001167740 or AB057595) is demonstrated to be specifically over-expressed in cancers, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • the present invention focuses on SMYD3 as a candidate target for cancer and /or tumor immunotherapy.
  • the present invention is directed, at least in part, to the identification of specific epitope peptides that possess the ability to induce CTLs specific to SMYD3 among peptides derived from SMYD3.
  • the results disclosed herein demonstrate that these peptides are HLA-A24 or HLA-A2 restricted epitope peptides that can induce potent and specific immune responses against cells expressing SMYD3.
  • SMYD3-derived peptides that can be used to induce CTLs in vitro, ex vivo or in vivo in HLA-A24 or HLA-A2 restricted manner, or to be directly administered to a subject so as to induce in vivo immune responses against cancers, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • the peptides of the present invention are generally less than 15, 14, 13, 12, 11, or 10 amino acids in length.
  • Preferred peptides are nonapeptides and decapeptides.
  • Particularly preferred nonapeptides and decapeptides have an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22.
  • the peptides having an amino sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22 are particularly preferred.
  • the present invention also contemplates modified peptides having an amino acid sequence in which one, two or more amino acids are substituted, deleted, inserted and/or added to an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22, provided the resulting modified peptides retain the requisite CTL inducibility of the original unmodified peptide.
  • the size of the modified peptide is preferably in the range of 9 to 40 amino acids, such as in the range of 9 to 20 amino acids, for example in the range of 9 to 15 amino acids.
  • the size of the modified peptide is preferably in the range of 10 to 40 amino acids, such as in the range of 10 to 20 amino acids, for example in the range of 10 to 15 amino acids.
  • the present invention further encompasses isolated polynucleotides encoding any one of the peptides of the present invention. These polynucleotides can be used to induce or prepare antigen presenting cells (APCs) having CTL inducibility. Like the peptides of the present invention, such APCs can be administered to a subject so as to induce an immune response against a cancer.
  • APCs antigen presenting cells
  • one object of the present invention is to provide compositions or agents including one or more peptides of the present invention, or polynucleotides encoding such peptides.
  • the composition of the present invention may be used for inducing a CTL.
  • Such compositions can be used for the treatment and/or prophylaxis of a cancer, and/or the prevention of a metastasis or post-operative recurrence thereof.
  • cancers contemplated by the present invention include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • the present invention further contemplates pharmaceutical compositions that include one or more peptides or polynucleotides of the present invention.
  • the pharmaceutical composition is preferably formulated for use in the treatment and/or prophylaxis of a cancer, more particularly a primary cancer, and/or prevention of a metastasis or post-operative recurrence thereof.
  • the pharmaceutical compositions of the present invention may include as active ingredients APCs and/or exosomes that present any of the peptides of the present invention.
  • the peptides or polynucleotides of the present invention may be used to induce APCs that present on the surface a complex of an human leukocyte antigen (HLA) and a peptide of the present invention, for example, by contacting APCs derived from a subject with a peptide of the present invention or by introducing a polynucleotide encoding a peptide of the present invention into APCs.
  • HLA human leukocyte antigen
  • Such APCs have the ability to induce CTLs that specifically recognize cells that present target peptides on the surface and thus are useful in the context of cancer immunotherapy.
  • the present invention encompasses the methods for inducing APCs with CTL inducibility as well as the APCs obtained by such methods.
  • the present invention also encompasses the agents or compositions that induce APCs having CTL inducibility, such agents or compositions including any peptides or polynucleotides of the present invention.
  • TCR T cell receptor
  • CTLs obtained by such methods can find use in the treatment and/or prevention of cancers, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer. Accordingly, the present invention encompasses both the methods for inducing CTLs and the CTLs obtained by such methods.
  • Yet another object of the present invention is to provide isolated APCs that present on the surface a complex of an HLA antigen and a peptide of the present invention.
  • the present invention further provides isolated CTLs that target peptides of the present invention.
  • Such CTLs may be also defined as CTLs that can recognize (or bind to) a complex of a peptide of the present invention and an HLA antigen on the cell surface.
  • One aspect of the present invention pertains to a peptide of the present invention, a composition containing such a peptide for use as a medicament.
  • the applicability of the present invention extends to any of a number of diseases relating to or arising from SMYD3 overexpression, such as cancer, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • the present invention provides followings: [1] An isolated peptide having cytotoxic T lymphocyte (CTL) inducibility, wherein the peptide comprises an amino acid sequence (a) or (b) bellow: (a) an amino acid sequence of an immunologically active fragment of SMYD3; (b) an amino acid sequence in which 1, 2, or several amino acid(s) are substituted, deleted, inserted and/or added in an amino acid sequence of an immunologically active fragment of SMYD3, wherein the CTL induced by the peptide has specific cytotoxic activity against a cell that presents a fragment derived from SMYD3; [2] The peptide of [1], wherein the peptide comprises an amino acid sequence (a) or (b) bellow: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22; (b) an amino acid sequence in which 1, 2, or several amino acid(s) are substituted, deleted, inserted and/or
  • the present application also provides following embodiments: [1] An isolated peptide having cytotoxic T lymphocyte (CTL) inducibility, wherein the CTL induced by the peptide has specific cytotoxic activity against a cell that presents a fragment derived from SMYD3, further wherein the peptide has an amino acid sequence (a) or (b) below: (a) an amino acid sequence of an immunologically active fragment of SMYD3; (b) an amino acid sequence of (a) in which 1, 2, or several amino acid(s) are substituted, deleted, inserted and/or added; [2] The peptide of [1], wherein the peptide has an amino acid sequence (a) or (b) below: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22; (b) an amino acid sequence of (a) in which 1, 2, or several amino acid(s) are substituted, deleted, inserted and/or added; [3] The peptide
  • the present application also provides following embodiments: [1] An isolated peptide having cytotoxic T lymphocyte (CTL) inducibility, wherein the peptide comprises an amino acid sequence (a) or (b) bellow: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22; (b) an amino acid sequence in which 1, 2, or several amino acid(s) are substituted, deleted, inserted and/or added in the amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22; [2] The peptide of [1], wherein the peptide is the following oligopeptide (i) or (ii): (i) a peptide that has one or both of the following characteristics: (a) the second amino acid from the N-terminus of the amino acid sequence of SEQ ID NO: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 or 19 is substituted with phenylalanine, t
  • Figure 1 is composed of a series of photographs, (a) to (l), depicting the results of interferon (IFN)-gamma enzyme-linked immunospot (ELISPOT) assay on CTLs that were induced with peptides derived from SMYD3.
  • IFN interferon
  • ELISPOT enzyme-linked immunospot
  • Figure 2 is composed of a series of photographs, (a) to (d), depicting the results of interferon (IFN)-gamma enzyme-linked immunospot (ELISPOT) assay on CTLs that were induced with another set of peptides derived from SMYD3.
  • IFN interferon
  • ELISPOT enzyme-linked immunospot
  • Figure 3 is composed of a series of line graphs, (a) to (f), depicting the IFN-gamma production of the CTL lines stimulated with SMYD3-A24-9-197 (SEQ ID NO: 2) (a), SMYD3-A24-9-130 (SEQ ID NO: 6) (b), SMYD3-A24-9-192 (SEQ ID NO: 7) (c), SMYD3-A24-9-118 (SEQ ID NO: 8) (d), SMYD3-A24-10-86 (SEQ ID NO: 17) (e) and SMYD3-A24-10-138 (SEQ ID NO: 19) (f).
  • FIG. 4 is a line graph depicting the IFN-gamma production of the CTL line stimulated with SMYD3-A02-9-335 (SEQ ID NO: 22).
  • IFN-gamma enzyme-linked immunosorbent assay ELISA
  • Figure 5 is composed of a series of line graphs, (a) to (c), depicting the IFN-gamma production of the CTL clones established by limiting dilution from the CTL lines stimulated with SMYD3-A24-9-197 (SEQ ID NO: 2) (a), SMYD3-A24-9-118 (SEQ ID NO: 8) (b) and SMYD3-A24-10-138 (SEQ ID NO:19) (c).
  • SEQ ID NO: 2 SMYD3-A24-9-197
  • SEQ ID NO: 8 SMYD3-A24-9-118
  • b SMYD3-A24-10-138
  • FIG. 6 is a line graph depicting the IFN-gamma production of the CTL clone established by limiting dilution from the CTL line stimulated with SMYD3-A02-9-335 (SEQ ID NO: 22). The results demonstrate that the CTL clone established by stimulation with this peptide showed potent IFN-gamma production as compared with the control.
  • FIG. 7 is a line graph depicting the specific CTL activity of CTL clones against target cells that express SMYD3 and HLA-A*2402.
  • COS7 cells transfected with HLA-A*2402 or the full length SMYD3 gene were prepared as the controls.
  • the CTL clone established with SMYD3-A24-9-197 (SEQ ID NO: 2) showed specific CTL activity against COS7 cells transfected with both SMYD3 and HLA-A*2402 (black lozenge).
  • Figure 8 is a line graph depicting the specific CTL activity of CTL line against the target cells that express SMYD3 and HLA-A*0201. COS7 cells transfected with HLA-A*0201 or the full length SMYD3 gene were prepared as the controls.
  • the CTL line established with SMYD3-A02-9-335 SEQ ID NO: 22
  • no significant specific CTL activity was detected against target cells expressing either HLA-A*0201 (triangle) or SMYD3 (circle).
  • isolated and purified used in relation with a substance indicates that the substance is substantially free from at least one substance that may else be included in the natural source.
  • an isolated or purified peptide refers to a peptide that are substantially free of cellular material such as carbohydrate, lipid, or other contaminating proteins from the cell or tissue source from which the peptide is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized.
  • substantially free of cellular material includes preparations of a peptide in which the peptide is separated from cellular components of the cells from which it is isolated or recombinantly produced.
  • a peptide that is substantially free of cellular material includes preparations of polypeptide having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein").
  • heterologous protein also referred to herein as a "contaminating protein”
  • the peptide is recombinantly produced, it is also preferably substantially free of culture medium, which includes preparations of peptide with culture medium less than about 20%, 10%, or 5% of the volume of the peptide preparation.
  • the peptide When the peptide is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, which includes preparations of peptide with chemical precursors or other chemicals involved in the synthesis of the peptide less than about 30%, 20%, 10%, 5% (by dry weight) of the volume of the peptide preparation. That a particular peptide preparation contains an isolated or purified peptide can be shown, for example, by the appearance of a single band following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the protein preparation and Coomassie Brilliant Blue staining or the like of the gel.
  • SDS sodium dodecyl sulfate
  • peptides and polynucleotides of the present invention are isolated or purified.
  • polypeptide polypeptide
  • peptide protein
  • amino acid polymers in which one or more amino acid residue(s) may be modified residue(s), or non-naturally occurring residue(s), such as artificial chemical mimetic(s) of corresponding naturally occurring amino acid(s), as well as to naturally occurring amino acid polymers.
  • oligopeptide refers to a peptide which is composed of 20 amino acid residues or fewer, typically 15 amino acid residues or fewer.
  • nonapeptide refers to a peptide which is composed of 9 amino acid residues and the term “decapeptide” refers to a peptide which is composed of 10 amino acid resides.
  • amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that similarly function to the naturally occurring amino acids.
  • Amino acids may be either L-amino acids or D-amino acids.
  • Naturally occurring amino acids are those encoded by the genetic code, as well as those modified after translation in cells (e.g., hydroxyproline, gamma-carboxyglutamate, and O-phosphoserine).
  • amino acid analog refers to compounds that have the same basic chemical structure (an alpha carbon bound to a hydrogen, a carboxy group, an amino group, and an R group) as a naturally occurring amino acid but have a modified R group or modified backbone (e.g., homoserine, norleucine, methionine, sulfoxide, methionine methyl sulfonium).
  • modified R group or modified backbone e.g., homoserine, norleucine, methionine, sulfoxide, methionine methyl sulfonium.
  • amino acid mimetic refers to chemical compounds that have different structures but similar functions to general amino acids.
  • Amino acids may be referred to herein by their commonly known three letter symbols or the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.
  • polynucleotide oligonucleotide
  • nucleic acid oligonucleotide
  • agent and “composition” are used interchangeably herein to refer to a product that includes specified ingredients in specified amounts, as well as any product that results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • pharmaceutical when used in relation to the modifier "pharmaceutical” (as in “pharmaceutical agent” and “pharmaceutical composition”) are intended to encompass a product that includes the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product that results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, in the context of the present invention, the terms “pharmaceutical agent” and “pharmaceutical composition” refer to any product made by admixing a molecule or compound of the present invention and a pharmaceutically or physiologically acceptable carrier.
  • active ingredient refers to a substance in an agent or a composition that is biologically or physiologically active.
  • active ingredient refers to a component substance that shows an objective pharmacological effect.
  • active ingredients in the agents or compositions may lead to at least one biological or physiological action on cancer cells and/or tissues directly or indirectly.
  • such action may include reducing or inhibiting cancer cell growth, damaging or killing cancer cells and/or tissues, and so on.
  • indirect effects of active ingredients are inductions of CTLs that can recognize or kill cancer cells.
  • the "active ingredient” may also be referred to as "bulk", “drug substance” or "technical product”.
  • pharmaceutically acceptable carrier or “physiologically acceptable carrier”, as used herein, means a pharmaceutically or physiologically acceptable material, composition, substance or vehicle, including, but are not limited to, a liquid or solid filler, diluent, excipient, solvent and encapsulating material.
  • vaccine also referred to as an "immunogenic composition” refers to an agent or a composition that has the function to improve, enhance and/or induce anti-tumor immunity upon inoculation into animals.
  • cancer refers to cancers or tumors that over-express the SMYD3 gene, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • cytotoxic T lymphocyte refers to a sub-group of T lymphocytes that are capable of recognizing non-self cells (e.g., tumor/cancer cells, virus-infected cells) and inducing the death of such cells.
  • non-self cells e.g., tumor/cancer cells, virus-infected cells
  • HLA-A24 refers to the subtypes, examples of which include, but are not limited to, HLA-A*2401, HLA-A*2402, HLA-A*2403, HLA-A*2404, HLA-A*2407, HLA-A*2408, HLA-A*2420, HLA-A*2425 and HLA-A*2488.
  • HLA-A2 refers to the subtypes , examples of which include, but are not limited to, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0204, HLA-A*0205, HLA-A*0206, HLA-A*0207, HLA-A*0210, HLA-A*0211, HLA-A*0213, HLA-A*0216, HLA-A*0218, HLA-A*0219, HLA-A*0228 and HLA-A*0250.
  • kit is used in reference to a combination of reagents and other materials. It is contemplated herein that the kit may include microarray, chip, marker, and so on. It is not intended that the term “kit” be limited to a particular combination of reagents and/or materials.
  • the phrase "subject's (or patient's) HLA antigen is HLA A24 or HLA-A2" refers to that the subject or patient homozygously or heterozygously possess HLA-A24 or HLA-A2 antigen gene, and HLA-A24 or HLA-A2 antigen is expressed in cells of the subject or patient as an HLA antigen.
  • a treatment is deemed “efficacious” if it leads to clinical benefit such as decrease in size, prevalence, or metastasis potential of cancer in a subject, prolongation of survival time, suppression of metastasis or post-operative recurrence and so on.
  • "efficacious” means that it retards or prevents cancer from forming or prevents or alleviates a clinical symptom of cancer. Efficaciousness is determined in association with any known method for diagnosing or treating the particular tumor type.
  • prevention and prophylaxis can occur “at primary, secondary and tertiary prevention levels.” While primary prevention and prophylaxis avoid the development of a disease, secondary and tertiary levels of prevention and prophylaxis encompass activities aimed at the prevention and prophylaxis of the progression of a disease and the emergence of symptoms as well as reducing the negative impact of an already established disease by restoring function and reducing disease-related complications. Alternatively, prevention and prophylaxis can include a wide range of prophylactic therapies aimed at alleviating the severity of the particular disorder, e.g. reducing the proliferation and metastasis of tumors.
  • the treatment and/or prophylaxis of cancer and/or the prevention of metastasis or post-operative recurrence thereof include any activity that leads to the following events, such as the surgical removal of cancer cells, the inhibition of the growth of cancerous cells, the involution or regression of a tumor, the induction of remission and suppression of occurrence of cancer, the tumor regression, and the reduction or inhibition of metastasis, the suppression of post operative recurrence of cancer, and prolongation of survival time.
  • Effective treatment and/or the prophylaxis of cancer decreases mortality and improves the prognosis of individuals having cancer, decreases the levels of tumor markers in the blood, and alleviates detectable symptoms accompanying cancer.
  • reduction or improvement of symptoms constitutes effectively treating and/or the prophylaxis include 10%, 20%, 30% or more reduction, or stable disease.
  • an antibody refers to immunoglobulins and fragments thereof that are specifically reactive to a designated protein or peptide thereof.
  • An antibody can include human antibodies, primatized antibodies, chimeric antibodies, bispecific antibodies, humanized antibodies, antibodies fused to other proteins or radiolabels, and antibody fragments.
  • an antibody herein is used in the broadest sense and specifically covers intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies) formed from at least two intact antibodies, and antibody fragments so long as they exhibit the desired biological activity.
  • An “antibody” indicates all classes (e.g., IgA, IgD, IgE, IgG and IgM).
  • Peptides of the present invention described in detail below may be referred to as "SMYD3 peptide(s) "or" SMYD3 polypeptide(s)".
  • peptides derived from SMYD3 function as an antigen recognized by CTLs
  • peptides derived from SMYD3 (SEQ ID NO: 60, 62 or 64) were analyzed to determine whether they were antigen epitopes restricted by HLA-A24 or HLA-A2 which are commonly encountered HLA alleles (Date Y et al., Tissue Antigens 47: 93-101, 1996; Kondo A et al., J Immunol 155: 4307-12, 1995; Kubo RT et al., J Immunol 152: 3913-24, 1994).
  • Candidates of HLA-A24 binding peptides derived from SMYD3 were identified based on their binding affinities to HLA-A24.
  • the following candidate peptides were identified: SEQ ID NOs: 2 to 19.
  • SMYD3-A24-9-197 SEQ ID NO: 2
  • SMYD3-A24-9-326 SEQ ID NO: 4
  • SMYD3-A24-9-138 SEQ ID NO: 5
  • SMYD3-A24-9-130 SEQ ID NO: 6
  • SMYD3-A24-9-192 SEQ ID NO: 7
  • SMYD3-A24-9-118 SEQ ID NO: 8
  • SMYD3-A24-9-301 SEQ ID NO: 9
  • SMYD3-A24-10-260 SEQ ID NO: 13
  • SMYD3-A24-10-266 SEQ ID NO: 14
  • SMYD3-A24-10-86 SEQ ID NO: 17
  • HLA-A2 binding peptides derived from SMYD3 were identified based on their binding affinities to HLA-A2.
  • the following peptides were identified as preferred: SEQ ID NOs: 21 to 58.
  • SMYD3-A02-9-335 SEQ ID NO: 22
  • SMYD3-A02-9-118 SEQ ID NO: 8
  • SMYD3-A02-10-76 SEQ ID NO: 16
  • SMYD3 is an antigen recognized by CTLs and that the above peptides are epitope peptides of SMYD3 restricted by HLA-A24 or HLA-A2; therefore, such peptides may be effective in cancer immunotherapy through the induction of cytotoxicity by CTLs for HLA-A24 or HLA-A2 positive patients.
  • the present invention provides nonapeptides (peptides composed of nine amino acid residues) and decapeptides (peptides composed of ten amino acid residues) corresponding to CTL-recognized epitopes from SMYD3.
  • the present invention provides isolated peptides that can induce CTLs, wherein the peptide is composed of an immunologically active fragment of SMYD3.
  • the present invention provides peptides having an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22.
  • the peptides of the present invention are nonapeptides or decapeptides including an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22.
  • the preferred examples of the peptides of the present invention include peptides consisting of an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22.
  • the peptides of the present invention may be flanked with additional amino acid residues, so long as the resulting peptide retains its CTL inducibility.
  • additional amino acid residues may be composed of any kind of amino acids, so long as they do not impair the CTL inducibility of the original peptide.
  • the present invention encompasses peptides having CTL inducibility, in particular peptides derived from SMYD3 (e.g., the peptides including the amino acid sequence of SEQ ID NO: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 or 22).
  • Such peptides are, for example, less than about 40 amino acids, often less than about 20 amino acids, and usually less than about 15 amino acids. More specifically, the size of such peptide is preferably in the range of 10 to 40 amino acids, such as in the range of 10 to 20 amino acids, for example in the range 10 to 15 amino acids.
  • modified peptides i.e., peptides composed of an amino acid sequence in which 1, 2 or several amino acid residues have been modified (i.e., substituted, added, deleted and/or inserted) as compared to an original reference sequence
  • modified peptides have been known to retain the biological activity of the original peptide (Mark et al., Proc Natl Acad Sci USA 1984, 81: 5662-6; Zoller and Smith, Nucleic Acids Res 1982, 10: 6487-500; Dalbadie-McFarland et al., Proc Natl Acad Sci USA 1982, 79: 6409-13).
  • the peptides of the present invention have both CTL inducibility and an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22, in which one, two or several amino acids are added, deleted, inserted and/or substituted.
  • the peptides of the present invention have both CTL inducibility and an amino acid sequence in which one, two or several amino acid(s) are substituted, deleted, inserted and/or added in the amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22, provided the modified peptides retain the CTL inducibility of the original reference peptide.
  • amino acid side-chains characteristics that are desirable to conserve include, for example: hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), and side-chains having the following functional groups or characteristics in common: an aliphatic side-chain (G, A, V, L, I, P); a hydroxyl group containing side-chain (S, T, Y); a sulfur atom containing side-chain (C, M); a carboxylic acid and amide containing side-chain (D, N, E, Q); a base containing side-chain (R, K, H); and an aromatic containing side-chain (H, F, Y, W).
  • hydrophobic amino acids A, I, L, M, F, P, W, Y, V
  • hydrophilic amino acids R, D, N, C, E, Q, G, H, K, S, T
  • the following eight groups each contain amino acids that are accepted in the art as conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins 1984).
  • Such conservatively modified peptides are also considered to be peptides of the present invention.
  • peptides of the present invention are not restricted thereto and may include non-conservative modifications, so long as the resulting modified peptide retains the requisite CTL inducibility of the original unmodified peptide.
  • the modified peptides should not exclude CTL inducible peptides derived from polymorphic variants, interspecies homologues, and alleles of SMYD3.
  • Amino acid residues may be inserted, substituted and/or added to the peptides of the present invention or, alternatively, amino acid residues may be deleted therefrom to achieve a higher binding affinity to an HLA antigen.
  • one of skill in the art preferably modifies (i.e., deletes, inserts, adds and/or substitutes) only a small number (for example, 1, 2 or several) or a small percentage of amino acids.
  • the term "several" means 5 or fewer amino acids, for example, 4 or 3 or fewer.
  • the percentage of amino acids to be modified may be, for example, 30% or less, preferably 20% or less, more preferably 15% of less, and even more preferably 10% or less, for example 1 to 5%.
  • the peptides of the present invention may be presented on the surface of a cell or exosome as a complex with an HLA antigen. Therefore, it is preferable to select peptides that not only induce CTLs but also possess high binding affinity to the HLA antigen. To that end, the peptides can be modified by substitution, insertion, deletion and/or addition of the amino acid residues to yield a modified peptide having improved binding affinity to the HLA antigen.
  • peptides possessing high HLA-A24 binding affinity tend to have the second amino acid from the N-terminus substituted with phenylalanine, tyrosine, methionine or tryptophan.
  • peptides in which the C-terminal amino acid is substituted with phenylalanine, leucine, isoleucine, tryptophan or methionine tend to have high HLA-A24 binding affinity.
  • peptides having an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19, in which the second amino acid from the N-terminus of the amino acid sequence of the SEQ ID NO is substituted with phenylalanine, tyrosine, methionine or tryptophan, and/or in which the C-terminus of the amino acid sequence of the SEQ ID NO is substituted with phenylalanine, leucine, isoleucine, tryptophan or methionine are encompassed by the present invention.
  • the present invention encompasses the peptides including an amino acid sequence in which one, two or several amino acid(s) are substituted, deleted, inserted and/or added in the amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19, such peptides having one or both of the following characteristic of (a) the second amino acid from the N-terminus is phenylalanine, tyrosine, methionine or tryptophan; and (b) the C-terminal amino acid is phenylalanine, leucine, isoleucine, tryptophan or methionine.
  • the peptides of the present invention include an amino acid sequence in which the second amino acid from the N-terminus is substituted with phenylalanine, tyrosine, methionine or tryptophan, and/or the C-terminal amino acid is substituted with phenylalanine, leucine, isoleucine, tryptophan or methionine in the amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19.
  • peptides possessing high HLA-A2 binding affinity tend to have the second amino acid from the N-terminus substituted with leucine or methionine and/or the amino acid at the C-terminus substituted with valine or leucine. Accordingly, it may be desirable to substitute the second amino acid from the N-terminus with leucine or methionine, and/or the amino acid at the C-terminus with valine or leucine in order to increase the HLA-A2 binding affinity.
  • peptides having an amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22, in which the second amino acid from the N-terminus of the amino acid sequence of the SEQ ID NO is substituted with leucine or methionine, and/or in which the C-terminus of the amino acid sequence of the SEQ ID NO is substituted with valine or leucine are encompassed by the present invention.
  • the present invention encompasses the peptides including an amino acid sequence in which one, two or several amino acid(s) are substituted, deleted, inserted and/or added in the amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22, such peptides having one or both of the following characteristic of (a) the second amino acid from the N-terminus is leucine or methionine; and (b) the C-terminal amino acid is valine or leucine.
  • the peptides of the present invention include an amino acid sequence in which the second amino acid from the N-terminus is substituted with leucine or methionine, and/or the C-terminal amino acid is substituted with valine or leucine in the amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22.
  • Substitutions can be introduced not only at the terminal amino acids but also at the positions of potential T cell receptor (TCR) recognition sites of peptides.
  • TCR T cell receptor
  • a peptide with amino acid substitutions may have equal to or better function than that of the original, for example, CAP1, p53 (264-272), Her-2/neu (369-377) or gp100 (209-217) (Zaremba et al. Cancer Res. 57, 4570-4577, 1997, T. K. Hoffmann et al. J Immunol. (2002);168(3):1338-47., S. O. Dionne et al. Cancer Immunol immunother. (2003) 52: 199-206 and S. O. Dionne et al. Cancer Immunology, Immunotherapy (2004) 53, 307-314).
  • the present invention also contemplates the addition of 1, 2 or several amino acids can also be added to the N and/or C-terminus of the peptides of the present invention. Such modified peptides retaining CTL inducibility are also included in the present invention.
  • the present invention provides an isolated peptide of less than 15, 14, 13, 12, 11, or 10 amino acids in length, which has CTL inducibility and an amino acid sequence selected from the group consisting of: (i) an amino acid sequence in which 1, 2 or several amino acid(s) are modified in the amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8 and 9, (ii) the amino acid sequence of (i), wherein the amino acid sequence has one or both of the following characteristics: (a) the second amino acid from the N-terminus of said SEQ ID NOs is or is modified to be an amino acid selected from the group consisting of phenylalanine, tyrosine, methionine and tryptophan, and (b) the C-terminal amino acid of said SEQ ID NOs is or is modified to be an amino acid selected from the group consisting of phenylalanine, leucine, isoleucine, tryptophan and methionine, (iii) the amino acid sequence in which 1, 2 or several amino acid
  • the present invention also provides an isolated peptide of less than 15, 14, 13, 12, or 11 amino acids in length, which has CTL inducibility and an amino acid sequence selected from the group consisting of: (i') an amino acid sequence in which 1, 2 or several amino acid(s) are modified in the amino acid sequence selected from the group consisting of SEQ ID NOs: 13, 14, 17 and 19, (ii') the amino acid sequence of (i'), wherein the amino acid sequence has one or both of the following characteristics: (a) the second amino acid from the N-terminus of said SEQ ID NOs is or is modified to be an amino acid selected from the group consisting of phenylalanine, tyrosine, methionine and tryptophan, and (b) the C-terminal amino acid of said SEQ ID NOs is or is modified to be an amino acid selected from the group consisting of phenylalanine, leucine, isoleucine, tryptophan, and methionine, (iii') an amino acid sequence in which 1, 2
  • These peptides are processed in an APC to present a peptide selected from the group consisting of (i) to (iv) and (i') to (iv') thereon, when these peptides are contacted with, or introduced in APC.
  • the peptide sequence is identical to a portion of the amino acid sequence of an endogenous or exogenous protein having a different function, negative side effects such as autoimmune disorders and/or allergic symptoms against specific substances may be induced. Therefore, it may be desirable to first perform homology searches using available databases to avoid situations in which the sequence of the peptide matches the amino acid sequence of another protein. When it becomes clear from the homology searches that no peptide identical to or having only 1 or 2 amino acid differences as compared to the objective peptide, the objective peptide can be modified in order to increase its binding affinity with HLA antigens, and/or increase its CTL inducibility without any danger of such side effects.
  • CTL inducibility indicates the ability of a peptide to induce a cytotoxic T lymphocyte (CTL) when presented on an antigen-presenting cell (APC).
  • CTL inducibility includes the ability of a peptide to induce CTL activation, CTL proliferation, to promote lysis of target cells by a CTL, and to increase IFN-gamma production by a CTL.
  • Confirmation of CTL inducibility is accomplished by inducing APCs carrying human MHC antigens (for example, B-lymphocytes, macrophages, and dendritic cells (DCs)), or more specifically DCs derived from human peripheral blood mononuclear leukocytes, and after stimulation of APCs with a test peptides, mixing the APCs with CD8 positive T cells to induce CTLs, and then measuring the IFN-gamma against the target cells produced and released by CTLs.
  • human MHC antigens for example, B-lymphocytes, macrophages, and dendritic cells (DCs)
  • DCs dendritic cells
  • transgenic animals that have been produced to express a human HLA antigen (for example, those described in BenMohamed L,et al., Hum Immunol 2000, 61(8): 764-79, Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) response) can be used.
  • the target cells may be radiolabeled with 51 Cr and such, and cytotoxic activity of CTLs may be calculated from radioactivity released from the target cells.
  • CTL inducibility can be assessed by measuring IFN-gamma produced and released by CTLs in the presence of cells that carry immobilized peptides, and visualizing the inhibition zone on the media using anti-IFN-gamma monoclonal antibodies.
  • the peptides of the present invention can also be linked to other peptides, so long as the resulting linked peptide retains the requisite CTL inducibility of the original peptide, and more preferably also retains the requisite HLA binding activity thereof.
  • suitable "other" peptides include: the peptides of the present invention or the CTL-inducible peptides derived from other TAAs.
  • the peptide of the present invention can be linked to one or more "other" peptides either directly or indirectly via a linker.
  • the linkers between the peptides are well known in the art and include, for example AAY (P. M.
  • polytopes i.e., groups of two or more potentially immunogenic or immune response stimulating peptides which can be joined together in various arrangements (e.g., concatenated, overlapping).
  • the polytope (or nucleic acid encoding the polytope) can be administered in accordance with a standard immunization protocol, e.g., to animals, to test the effectiveness of the polytope in stimulating, enhancing and/or provoking an immune response.
  • polytopes can be joined together directly or via the use of flanking sequences to form polytopes, and the use of polytopes as vaccines is well known in the art (see, e.g., Thomson et al., Proc. Natl. Acad. Sci USA 92(13):5845-5849, 1995; Gilbert et al., Nature Biotechnol. 15(12):1280-1284, 1997; Thomson et al., J Immunol. 157(2):822-826, 1996; Tarn et al., J Exp. Med. 171(l):299-306, 1990).
  • Polytopes containing various numbers and combinations of epitopes can be prepared and tested for recognition by CTLs and for efficacy in increasing an immune response.
  • the peptides of the present invention may also be linked to other substances, so long as the resulting linked peptide retains the requisite CTL inducibility of the original peptide.
  • suitable substances include, for example: peptides, lipids, sugar and sugar chains, acetyl groups, natural and synthetic polymers, etc.
  • the peptides may contain modifications such as glycosylation, side chain oxidation, or phosphorylation, etc., provided the modifications do not destroy the biological activity of the original peptide. These kinds of modifications may be performed to confer additional functions (e.g., targeting function, and delivery function) or to stabilize the peptide.
  • peptidases and various biological media such as human plasma and serum, can be used to test stability (see, e.g., Verhoef et al., Eur J Drug Metab Pharmacokin 1986, 11: 291-302).
  • modified peptides in which are substituted, deleted inserted and/or added by 1, 2 or several amino acid residues those having same or higher activity as compared to original peptides can be screened for or selected.
  • the present invention also provides the method of screening for or selecting modified peptides having same or higher activity as compared to originals.
  • An illustrative method includes the steps of: a: modifying (substituting, deleting, inserting and/or adding) at least one amino acid residue of a peptide of the present invention, b: determining the activity of the peptide modified in step a, and c: selecting the peptide having same or higher activity as compared to the original peptide.
  • the activity to be assayed may include MHC binding activity, APC or CTL inducibility and cytotoxic activity.
  • the activity of the peptide is CTL inducibility.
  • the present invention provides a method of screening for a peptide having an ability to induce a CTL that has specific cytotoxic activity against a cell that presents a fragment derived from SMYD3, wherein the method includes the steps of: (i) providing a candidate sequence consisting of an amino acid sequence modified by substituting, deleting, inserting and/or adding one, two or several amino acid residues to an original amino acid sequence, wherein the original amino acid sequence is selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22; (ii) selecting a candidate sequence that does not have substantial significant homology (or sequence identity) with the peptides derived from any known human gene products other than SMYD3; (iii) contacting a peptide consisting of the candidate sequence selected in step (ii) with an antigen presenting cell; (iv) contacting the antigen presenting cell of step (iii) with a CD8 positive T cell; and (v) identifying the
  • a peptide dimmer of the present invention may be formed by binding two SMYD3 peptide monomers through a disulfide bond between cysteine residues present in or added to the monomers.
  • cysteine residue Cys
  • a disulfide bond may be formed between such cysteine residues to form the oligomeric peptide of the present invention.
  • a disulfide bond may be formed between cysteine residues that are added into such amino acid sequence.
  • a cysteine residue(s) may be introduced into each peptide at either or both of C- and N- termini thereof, to form a disulfide bond.
  • one or more cysteine residues may also be inserted within the amino acid sequence of each peptide.
  • the peptides of the present invention can be prepared using well known techniques. For example, the peptides can be prepared synthetically, using recombinant DNA technology or chemical synthesis. The peptides of the present invention can be synthesized individually or as longer polypeptides including two or more peptides. The peptides can then be isolated i.e., purified or isolated so as to be substantially free of other naturally occurring host cell proteins and fragments thereof, or any other chemical substances.
  • the peptides of the present invention may contain modifications, such as glycosylation, side chain oxidation, or phosphorylation, provided the modifications do not destroy the biological activity of the original peptide.
  • modifications such as glycosylation, side chain oxidation, or phosphorylation
  • Other illustrative modifications include incorporation of one or more D-amino acids or other amino acid mimetics that can be used, for example, to increase the serum half life of the peptides.
  • Peptides of the present invention can be obtained through chemical synthesis based on the selected amino acid sequence.
  • conventional peptide synthesis methods that can be adopted for the synthesis include: (i) Peptide Synthesis, Interscience, New York, 1966; (ii) The Proteins, Vol. 2, Academic Press, New York, 1976; (iii) Peptide Synthesis (in Japanese), Maruzen Co., 1975; (iv) Basics and Experiment of Peptide Synthesis (in Japanese), Maruzen Co., 1985; (v) Development of Pharmaceuticals (second volume) (in Japanese), Vol. 14 (peptide synthesis), Hirokawa, 1991; (vi) WO99/67288; and (vii) Barany G. & Merrifield R.B., Peptides Vol. 2, "Solid Phase Peptide Synthesis", Academic Press, New York, 1980, 100-118.
  • the peptides of the present invention can be obtained adopting any known genetic engineering method for producing peptides (e.g., Morrison J, J Bacteriology 1977, 132: 349-51; Clark-Curtiss & Curtiss, Methods in Enzymology (eds. Wu et al.) 1983, 101: 347-62).
  • a suitable vector harboring a polynucleotide encoding the objective peptide in an expressible form e.g., downstream of a regulatory sequence corresponding to a promoter sequence
  • the host cell is then cultured to produce the peptide of interest.
  • the peptide can also be produced in vitro adopting an in vitro translation system.
  • the peptides of the present invention are peptide dimmers
  • such dimmers can be prepared using a method known in the art.
  • the peptide monomers include one pair of cysteine residues
  • the peptide dimer can be prepared, for example, by removing all the protecting groups including the ones on the cysteine side chains, and then subjecting the resulting monomer solution to air-oxidation under alkaline conditions, or adding an oxidant under alkaline or acidic conditions to form a disulfide bond.
  • the oxidants include iodine, dimethyl sulfoxide (DMSO) and potassium ferricyanide.
  • the peptide dimer of the present invention can also be prepared by the method as described above. In this case, isomers having different types of disulfide bonds are obtained.
  • the peptide dimer of the present invention can be prepared by selecting a combination of protecting groups for cysteine side chains. Examples of the combinations of the protecting groups include combinations of MeBzl (methylbenzyl) group and Acm (acetamidemethyl) group, Trt (trityl) group and Acm group, Npys (3-nitro-2-pyridylthio) group and Acm group, and S-Bu-t (S-tert-butyl) group and Acm group.
  • the peptide dimer preparation can be performed by removing the MeBzl group and the protecting group other than on the cysteine side chain, subjecting the resulting monomer solution to air-oxidation to form a disulfide bond between the de-protected cysteine residues, and then de-protecting and oxidizing using iodine to form a disulfide bond between the cysteine residues previously protected by Acm.
  • the present invention also provides polynucleotides that encode any of the aforementioned peptides of the present invention. These include polynucleotides derived from the natural occurring SMYD3 gene (e.g.GenBank Accession No. NM_022743.2 (SEQ ID NO: 59), NM_001167740 (SEQ ID NO: 61) or AB057595 (SEQ ID NO: 63)) as well as those having a conservatively modified nucleotide sequence thereof.
  • the phrase "conservatively modified nucleotide sequence” refers to sequences which encode identical or essentially identical amino acid sequences.
  • nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a peptide also describes every possible silent variation of the nucleic acid.
  • each codon in a nucleic acid can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid that encodes a peptide is implicitly described in each disclosed sequence.
  • the polynucleotides of the present invention can be composed of DNA, RNA, and derivatives thereof.
  • a DNA is suitably composed of bases such as A, T, C, and G, and T is replaced by U in an RNA.
  • bases such as A, T, C, and G
  • T is replaced by U in an RNA.
  • non-naturally occurring bases may be included in polynucleotides, as well.
  • the polynucleotides of the present invention can encode multiple peptides of the present invention with or without intervening amino acid sequences.
  • the intervening amino acid sequence can provide a cleavage site (e.g., enzyme recognition sequence) of the polynucleotide or the translated peptides.
  • a polynucleotide of the present invention can include any additional sequences to the coding sequence encoding a peptide of the present invention.
  • a polynucleotide of the present invention can be a recombinant polynucleotide that includes regulatory sequences required for the expression of the peptide or can be an expression vector (plasmid) with a marker gene and such.
  • such recombinant polynucleotides can be prepared by the manipulation of polynucleotides through conventional recombinant techniques using, for example, polymerases and endonucleases.
  • polynucleotides of the present invention can be produced by insertion into an appropriate vector, which can be expressed when transfected into a competent cell.
  • the polynucleotides of the present invention can be amplified using PCR techniques or expression in suitable hosts (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1989).
  • polynucleotide of the present invention can be synthesized using the solid phase techniques, as described in Beaucage SL & Iyer RP, Tetrahedron 1992, 48: 2223-311; Matthes et al., EMBO J 1984, 3: 801-5.
  • Exosomes The present invention further provides intracellular vesicles called exosomes that present complexes formed between the peptides of the present invention and HLA antigens on their surface. Exosomes can be prepared, for example, using the methods detailed in Japanese Patent Publication No.11-510507 and WO99/03499, and can be prepared using APCs obtained from patients who are subject to treatment and/or prevention. The exosomes of the present invention can be inoculated as vaccines, in a fashion similar to the peptides of the present invention.
  • HLA-A24 and HLA-A2 are prevalent and therefore would be appropriate for treatment of Japanese patients.
  • HLA-A24 or HLA-A2 type that are frequently expressed among the Japanese and Caucasian population is favorable for obtaining effective results, and subtypes such as HLA-A*2402, HLA-A*0201 and HLA-A*0206 also find use.
  • the type of HLA antigen of the patient requiring treatment is investigated in advance, which enables the appropriate selection of peptides having high levels of binding affinity to the particular antigen, or having CTL inducibility by antigen presentation. Furthermore, in order to obtain peptides having both high binding affinity for HLA antigen and CTL inducibility, substitution, insertion, deletion and/or addition of 1, 2, or several amino acids can be performed based on the amino acid sequence of the naturally occurring SMYD3 partial peptide.
  • peptides having an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19 have particular utility.
  • peptides having an amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22 have particular utility.
  • the exosomes of the present invention present a complex of the peptide of the present invention and an HLA-A24 or HLA-A2 antigen on their surface.
  • the exosome of the present invention presents a complex of a peptide having an amino acid sequence of SEQ ID NO: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 or 19 (or modified peptide thereof) and HLA-A24, or a complex of a peptide having an amino acid sequence of SEQ ID NO: 8, 16 or 22 (or modified peptide thereof) and HLA-A2 on its surface.
  • the present invention also provides isolated antigen-presenting cells (APCs) that present complexes formed between HLA antigens and the peptides of the present invention on its surface.
  • the APCs can be derived from patients who are subject to treatment and/or prevention, and can be administered as vaccines by themselves or in combination with other drugs including the peptides, exosomes, or CTLs of the present invention.
  • the APCs are not limited to a particular kind of cells and include dendritic cells (DCs), Langerhans cells, macrophages, B cells, and activated T cells, which are known to present proteinaceous antigens on their cell surface so as to be recognized by lymphocytes. Since DCs are representative APCs having the strongest CTL inducing activity among APCs, DCs are suitable for the APCs of the present invention.
  • DCs dendritic cells
  • Langerhans cells Langerhans cells
  • macrophages macrophages
  • B cells and activated T cells, which are known to present proteinaceous antigens on their cell surface so as to be recognized by lymphocytes. Since DCs are representative APCs having the strongest CTL inducing activity among APCs, DCs are suitable for the APCs of the present invention.
  • the APCs of the present invention can be obtained by inducing DCs from peripheral blood monocytes and then contacting (stimulating) them with the peptides of the present invention in vitro, ex vivo or in vivo.
  • the peptides of the present invention are administered to a subject, APCs that present the peptides of the present invention are induced in the body of the subject. Therefore, the APCs of the present invention can be obtained by collecting the APCs from a subject after administering the peptides of the present invention to the subject.
  • the APCs of the present invention can be obtained by contacting APCs which have been collected from a subject with a peptide of the present invention.
  • the APCs of the present invention can be administered to a subject for inducing immune response against cancer in the subject by themselves or in combination with other drugs including the peptides, exosomes or CTLs of the present invention.
  • the ex vivo administration can include steps of: a: collecting APCs from a first subject, b: contacting the APCs of step a, with a peptide of the present invention, and c: administering the APCs of step b to a second subject.
  • the first subject and the second subject can be the same individual, or may be different individuals.
  • the APCs obtained by step b can be formulated and administered as a vaccine for the treatment and/or prevention of cancer, examples of which includee, but are not limited to colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • the present invention may utilize the peptides of the present invention for manufacturing a pharmaceutical composition capable of inducing an APC.
  • the present invention also provides a method or process for manufacturing a pharmaceutical composition for inducing an APC wherein the method includes the step of admixing or formulating the peptide of the invention with a pharmaceutically acceptable carrier.
  • the present invention also provides for the use of the peptides of the present invention for inducing APCs.
  • the APCs of the present invention have CTL inducibility.
  • CTL inducibility refers to the ability of an APC to induce a CTL when contacted with a CD8 positive T cell.
  • CTL inducibility includes the ability of an APC to induce CTL activation, CTL proliferation, to promote lysis of a target cell by a CTL, and to increase IFN-gamma production by a CTL.
  • the APCs of the present invention have an ability to induce CTLs specific to SMYD3.
  • Such APCs having CTL inducibility can be prepared by a method that includes the step of transferring a polynucleotide encoding a peptide of the present invention to APCs in vitro as well as the method mentioned above.
  • the introduced gene can be in the form of DNA or RNA. Examples of methods for introduction include, without particular limitations, various methods conventionally performed in this field, such as lipofection, electroporation, and calcium phosphate method can be used.
  • APCs of the present invention can be prepared by a method that includes the step of simply contacting APCs with a peptide of the present invention.
  • the APCs of the present invention present complexes of HLA-A24 or HLA-A2 antigen and the peptide of the present invention on their surface.
  • the APC of the present invention presents a complex of a peptide having an amino acid sequence of SEQ ID NO: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 or 19 (or modified peptide thereof) and HLA-A24, or a complex of a peptide having an amino acid sequence of SEQ ID NO: 8, 16 or 22 (or modified peptide thereof) and HLA-A2 on its surface.
  • Cytotoxic T Lymphocytes A CTL induced against any one of the peptides of the present invention strengthens the immune response targeting cancer cells in vivo and thus can be used as vaccines, in a fashion similar to the peptides per se.
  • the present invention provides isolated CTLs that are specifically induced or activated by any one of the peptides of the present invention.
  • Such CTLs can be obtained by (1) administering the peptide(s) of the present invention to a subject, (2) contacting (stimulating) subject-derived APCs, and CD8 positive T cells, or peripheral blood mononuclear leukocytes in vitro with the peptide(s) of the present invention, (3) contacting CD8 positive T cells or peripheral blood mononuclear leukocytes in vitro with the APCs or exosomes presenting a complex of an HLA antigen and the peptide of the present invention on its surface or (4) introducing into a CD8 positive T cell a polynucleotide encoding both of T cell receptor (TCR) subunits or polynucleotides encoding each of TCR subunits, wherein the TCR formed by such subunits can bind a complex of a peptide of the present invention and an HLA antigen on a cell surface.
  • TCR T cell receptor
  • the CTLs of the present invention can be derived from patients who are subject to treatment and/or prevention, and can be administered by themselves or in combination with other drugs including the peptides, APCs or exosomes of the present invention for the purpose of regulating effects.
  • the obtained CTLs act specifically against target cells presenting the peptides of the present invention, for example, the same peptides used for induction.
  • the target cells can be cells that endogenously express SMYD3, such as cancer cells, or cells that are transfected with the SMYD3 gene; and cells that present a peptide of the present invention on the cell surface due to stimulation by the peptide can also serve as targets of activated CTL attack.
  • the CTLs of the present invention recognize cells presenting complexes of an HLA-A24 or an HLA-A2 antigen and a peptide of the present invention.
  • the phrase “recognize a cell” refers to binding a complex of an HLA-A24 or an HLA-A2 antigen and a peptide of the present invention on the cell surface via its TCR and showing specific cytotoxic activity against the cell.
  • specific cytotoxic activity refers to showing cytotoxic activity against the cell presenting a complex of an HLA-A24 or an HLA-A2 antigen and a peptide of the present invention but not other cells.
  • the CTLs that show specific cytotoxic activity against a cell presenting a peptide of the present invention are included in the present invention.
  • the CTL of the present invention can recognize a cell presenting a peptide having an amino acid sequence of SEQ ID NO: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 or 19 (or modified peptide thereof) via an HLA-A24, or a cell presenting a peptide having an amino acid sequence of SEQ ID NO: 8, 16 or 22 (or modified peptide thereof) via an HLA-A2.
  • such CTL of the present invention can recognize a cell expressing SMYD3 and an HLA-A24 (e.g., HLA-A24 positive cancer cell) or HLA-A2 (e.g., HLA-A2 positive cancer cell) and show cytotoxic activity against such cell.
  • HLA-A24 e.g., HLA-A24 positive cancer cell
  • HLA-A2 e.g., HLA-A2 positive cancer cell
  • T cell Receptor The present invention also provides a composition that includes one or more polynucleotide(s) encoding both of TCR subunits or polynucleotides encoding each of TCR subunits, wherein the TCR formed by such subunits can bind to a complex of an HLA antigen and the peptide of the present invention on a cell surface. Methods of using the same are also contemplated. Such TCR subunits have the ability to form TCRs that confer specificity to T cells against tumor cells expressing SMYD3.
  • the polynucleotides encoding each of alpha- and beta- chains of the TCR subunits of the CTL induced with one or more peptides of the present invention can be identified (WO2007/032255 and Morgan et al., J Immunol, 171, 3288 (2003)).
  • the PCR method is preferred to analyze the TCR.
  • the PCR primers for the analysis can be, for example, 5'-R primers (5'-gtctaccaggcattcgcttcat-3') as 5' side primers (SEQ ID NO: 65) and 3-TRa-C primers (5'-tcagctggaccacagccgcagcgt-3') specific to TCR alpha chain C region (SEQ ID NO: 66), 3-TRb-C1 primers (5'-tcagaaatcctttctcttgac-3') specific to TCR beta chain C1 region (SEQ ID NO: 67) or 3-TRb-C2 primers (5'- ctagcctctggaatcctttctcttt-3') specific to TCR beta chain C2 region (SEQ ID NO: 68) as 3' side primers, but not limited thereto.
  • the derivative TCRs can bind target cells presenting a peptide of the present invention with high avidity, and optionally
  • the polynucleotide encoding both of the TCR subunits or polynucleotides encoding each of the TCR subunits can be incorporated into suitable vectors, e.g., retroviral vectors. These vectors are well known in the art.
  • the polynucleotides or the vectors including them usefully can be transferred into a T cell (e.g., CD8 positive T cell), for example, a T cell from a patient.
  • a T cell e.g., CD8 positive T cell
  • the present invention provides an off-the-shelf composition allowing rapid modification of a patient's own T cells (or those of another mammal) to rapidly and easily produce modified T cells having excellent cancer cell killing properties.
  • Specific TCRs against peptides of the present invention should be capable of specifically recognizing a complex of a peptide of the present invention and an HLA molecule, giving a T cell specific activity against a target cell presenting a complex of a peptide of the present invention and an HLA antigen when the TCR is presented on the surface of the T cell.
  • a specific recognition of the above complex may be confirmed by any known methods, preferred examples of which include HLA multimer staining analysis using HLA molecules and peptides of the present invention, and ELISPOT assay. By performing the ELISPOT assay, it can be confirmed that a T cell expressing the TCR on the cell surface recognizes a cell by the TCR, and that the signals are transmitted intracellularly.
  • the confirmation that the above-mentioned TCR can give a T cell cytotoxic activity when the TCR exists on the T cell surface may also be carried out by a known method.
  • a preferred method includes, for example, the determination of cytotoxic activity against a target cell, such as chromium release assay.
  • the present invention provides CTLs which are prepared by transduction with the polynucleotides encoding both of the TCR subunits or polynucleotides encoding each of the TCR subunits wherein the TCR formed by such TCR subunits can bind to the SMYD3 peptide, e.g., SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17and 19 in the context of HLA-A24, and also the peptides of SEQ ID NOs: 8, 16 and 22 in the context of HLA-A2.
  • the SMYD3 peptide e.g., SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17and 19 in the context of HLA-A24, and also the peptides of SEQ ID NOs: 8, 16 and 22 in the context of HLA-A2.
  • the transduced CTLs are capable of homing to cancer cells in vivo, and can be expanded by well known culturing methods in vitro (e.g., Kawakami et al., J Immunol., 142, 3452-3461 (1989)).
  • the CTLs of the present invention can be used to form an immunogenic composition useful in either or both of the treatment and the prevention of cancer in a patient in need of therapy or protection (See WO2006/031221 the contents of which are incorporated by reference herein).
  • compositions The present invention also provides pharmaceutical agents or compositions including at least one active ingredient selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC of the present invention; (d) an exosome of the present invention; and (e) a CTL of the present invention.
  • SMYD3 expression is specifically elevated in cancers, examples of which include, but are not necessarily limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer as compared to normal tissues
  • the peptides or polynucleotides of the present invention may be used to induce an immune response against a cancer or tumor cell and thus serve in the treatment and/or prophylaxis of cancer, and/or for the prevention of a metastasis or post-operative recurrence thereof.
  • the present invention provides a pharmaceutical composition or agent formulated for the treatment and/or prophylaxis of a primary cancer, and/or for the prevention of a metastasis or post-operative recurrence thereof, such composition or agent including at least one of the peptides or polynucleotides of the present invention as an active ingredient.
  • the peptides of the present invention can be expressed on the surface of any of the foregoing exosomes or cells, such as APCs for the use as pharmaceutical compositions or agents.
  • the aforementioned CTLs which target any one of the peptides of the present invention can also be used as the active ingredient of the pharmaceutical compositions or agents of the present invention.
  • the present invention provides agents or compositions that include at least one active ingredient selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC or an exosome of the present invention; (d) an exosome of the present invention; and (e) a CTL of the present invention.
  • such peptide is present in a therapeutically or pharmaceutically effective amount.
  • compositions or agents of the present invention also find use as a vaccine.
  • the phrase "vaccine” also referred to as an "immunogenic composition” refers to an agent or a composition that has the function to improve, enhance and/or induce anti-tumor immunity upon inoculation into an animal.
  • the present invention provides the pharmaceutical agents or compositions for inducing an immune response against cancer in a subject.
  • compositions or agents of the present invention can be used to treat and/or prevent cancers, and/or prevent a metastasis or post-operativerecurrence thereof in subjects or patients including human and any other mammal including, but not limited to, mouse, rat, guinea-pig, rabbit, cat, dog, sheep, goat, pig, cattle, horse, monkey, baboon, and chimpanzee, particularly a commercially important animal or a domesticated animal.
  • the pharmaceutical agents or compositions of the present invention can be formulated for the administration to a subject whose HLA antigen is HLA-A24 or HLA-A2.
  • the present invention also provides the use of an active ingredient in manufacturing a pharmaceutical composition or agent for treating and/or preventing a cancerous or tumorous condition, and/or preventing a metastasis or post-operative recurrence thereof, wherein said active ingredient is selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the persent invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptide of the present invention on its surface; and (e) a CTL of the present invention.
  • the present invention further provides an active ingredient for use in the treatment and/or prevention of cancerous or timorous condition, and/or prevention of a metastasis or post-operative recurrence thereof, wherein said active ingredient is selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptide of the present invention on its surface; and (e) a CTL of the present invention.
  • active ingredient is selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptide of the present invention on its surface; and
  • the present invention further provides a method or process for manufacturing a pharmaceutical composition or agent for treating and/or preventing a cancerous or tumorous condition, and/or preventing a metastasis or post-operative recurrence thereof, wherein the method or process includes the step of formulating a pharmaceutically or physiologically acceptable carrier with an active ingredient selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptide of the present invention on its surface; and (e) a CTL of the present invention.
  • a pharmaceutically or physiologically acceptable carrier with an active ingredient selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting
  • the present invention also provides a method or process for manufacturing a pharmaceutical composition or agent for treating and/or preventing a cancerous or tumorous condition, and/or preventing a metastasis or post-operative recurrence thereof, wherein the method or process includes the steps of admixing an active ingredient with a pharmaceutically or physiologically acceptable carrier, wherein the active ingredient is selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptide of the present invention on its surface; and (e) a CTL T cell of the present invention.
  • a pharmaceutically or physiologically acceptable carrier wherein the active ingredient is selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in
  • the present invention also provides a method for treating and /or preventing a cancerous or tumorous condition, and/or preventing a metastasis or post-operative recurrence thereof, wherein the method includes the step of administering to a subject at least one active ingredient selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptide of the present invention on its surface; and (e) a CTL of the present invention.
  • active ingredient selected from among: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptid
  • peptides having an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19 have been shown to be HLA-A24 restricted epitope peptides that can induce potent and specific immune response against cancer expressing HLA-A24 and SMYD3 in a subject and also SEQ ID NOs: 8, 16 and 22 have been shown to be HLA-A2 restricted epitope peptides that can induce potent and specific immune response against cancer expressing HLA-A2 and SMYD3 in a subjec Therefore, the pharmaceutical compositions or agents including any of these peptides with the amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and19 are particularly suited for the administration to subjects whose HLA antigen is HLA-A24.
  • compositions or agents which include any of these peptides with the amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22 are particularly suited for the administration to subjects whose HLA antigen is HLA-A2.
  • the amount of the peptide in such agent or composition may be an amount that is effective in significantly inducing potent and specific immunological response in a subject carrying a cancer expressing SMYD3.
  • pharmaceutical compositions or agents that contain polynucleotides encoding any of these peptides i.e., the polynucleotides of the present invention.
  • Cancers to be treated and/ or prevented by the pharmaceutical compositions or agents of the present invention are not limited and include all kinds of cancers in which SMYD3 is involved, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • cancer expresses HLA-A24(i.e., HLA-A24 positive cancer) or HLA-A2 (i.e., HLA-A2 positive cancer).
  • compositions or agents of the present invention can contain in addition to the aforementioned active ingredients, other peptides that have the ability to induce CTLs against cancerous cells, other polynucleotides encoding the other peptides, other cells that present the other peptides, and the like.
  • other peptides having the ability to induce CTLs against cancerous cells include, but are not limited to, peptides derived from cancer specific antigens (e.g., identified TAAs).
  • the pharmaceutical compositions or agents of the present invention can optionally include other therapeutic substances as additional active ingredients, so long as the substance does not inhibit the antitumoral effect of the active ingredient of the present invention, e.g., any of the peptides, polynucleotides, exosomes, APCs or CTLs of the present invention.
  • formulations can include anti-inflammatory substances, pain killers, chemotherapeutics, and the like.
  • the medicaments of the present invention can also be administered sequentially or concurrently with the one or more other pharmacologic compositions.
  • the amounts of medicament and pharmacologic composition depend, for example, on what type of pharmacologic composition(s) is/are used, the disease being treated, and the scheduling and routes of administration.
  • compositions or agent of the present invention can include other substances conventional in the art having regard to the type of formulation in question.
  • the pharmaceutical compositions or agents of the present invention can be packaged in articles of manufacture and kits containing materials useful for treating the pathological conditions of the disease to be treated, e.g., cancer.
  • the article of manufacture can include a container of any of the present pharmaceutical compositions or agents with a label. Suitable containers include bottles, vials, and test tubes. The containers can be formed from a variety of materials, such as glass or plastic.
  • the label on the container should indicate the composition or agent is used for treating or prevention of one or more conditions of the disease.
  • the label can also indicate directions for administration and so on.
  • kits that includesa pharmaceutical composition or agent of the present invention can optionally further include a second container housing a pharmaceutically-acceptable diluent. It can further include other materials desirable from a commercial or user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
  • compositions or agents of the present invention can, if desired, be packaged in a pack or dispenser device that can contain one or more unit dosage forms containing the active ingredient.
  • the pack can, for example, include metal or plastic foil, such as a blister pack.
  • the pack or dispenser device can be accompanied by instructions for administration.
  • compositions containing the peptides as the active ingredient can be administered directly as pharmaceutical compositions or agents, or if necessary, may be formulated by conventional formulation methods.
  • carriers, excipients, and such that are ordinarily used for drugs can be included as appropriate without particular limitations. Examples of such carriers include, but are not limited to, sterilized water, physiological saline, phosphate buffer, culture fluid and such.
  • the pharmaceutical compositions or agents of the present invention can contain as necessary, stabilizers, suspensions, preservatives, surfactants and such.
  • the pharmaceutical compositions or agents of the present invention can be used for anticancer purposes.
  • the peptide of the present invention can be prepared in combination, which includes two or more of peptides of the present invention, to induce CTLs in vivo.
  • the peptides can be in a cocktail or can be conjugated to each other using standard techniques.
  • the peptides can be chemically linked or expressed as a single fusion polypeptide.
  • the peptides in the combination can be the same or different.
  • APCs e.g., DCs
  • APCs may be removed from a subject and then stimulated by the peptides of the present invention to obtain APCs that present any of the peptides of the present invention on their cell surface.
  • APCs can be re-administered to the subject to induce CTLs in the subject's body, and as a result, aggressiveness towards the tumor-associated endothelium can be increased.
  • compositions or agents for the treatment and/or prevention of cancer can also include an adjuvant so that cellular immunity will be established effectively.
  • the pharmaceutical compositions or agents of the present invention can be administered with other active ingredients, or can be administered by formulation into granules.
  • An adjuvant refers to any compound, substance or composition that enhances the immune response against the protein when administered together (or successively) with the protein having immunological activity. Adjuvants contemplated herein include those described in the literature (Johnson AG, Clin Microbiol Rev 1994, 7: 277-89).
  • Suitable adjuvants include, but are not limited to, aluminum phosphate, aluminum hydroxide, alum, cholera toxin, salmonella toxin, IFA (Incomplete Freund's adjuvant), CFA (Complete Freund's adjuvant), ISCOMATRIX, GM-CSF, CpG, O/W emulsion and the like.
  • liposome formulations may be conveniently used.
  • granular formulations in which the peptide is bound to few-micrometers diameter beads, and formulations in which a lipid is bound to the peptide may be conveniently used.
  • a peptide of the present invention may also be administered in the form of a pharmaceutically acceptable salt.
  • preferred salts include, but are not limited to, salts with an alkali metal, salts with a metal, salts with an organic base, salts with an amine, salts with an organic acid (e.g., acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid and so on) and salts with an inorganic acid (e.g., hydrochloric acid, phosphoric acid, hydrobromic acid , sulfuric acid, nitric acid, and so on).
  • an organic acid e.g., acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid,
  • the phrase "pharmaceutically acceptable salt” refers to those salts which retain the biological effectiveness and properties of the compound and which are obtained by reaction with inorganic or organic acids or bases such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • the pharmaceutical compositions or agents of the present invention may further include a component that primes CTLs.
  • Lipids have been identified as substances capable of priming CTLs in vivo against viral antigens.
  • palmitic acid residues can be attached to the epsilon- and alpha-amino groups of a lysine residue and then linked to a peptide of the present invention.
  • the lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant.
  • coli lipoproteins such as tripalmitoyl-S-glycerylcysteinyl-seryl-serine (P3CSS) can be used to prime CTLs when covalently attached to an appropriate peptide (see, e.g., Deres et al., Nature 1989, 342: 561-4).
  • P3CSS tripalmitoyl-S-glycerylcysteinyl-seryl-serine
  • suitable methods of administration include, but are not necessarily limited to, oral, intradermal, subcutaneous, intramuscular, intraosseous, peritoneal and intravenous injection, or such.
  • the administration may be systemic administration or local administration to the vicinity of the targeted sites (i.e., direct injection).
  • the administration can be performed by single administration or boosted by multiple administrations.
  • a pharmaceutically or therapeutically effective amount of the peptide of the present invention can be administered to a subject in need of treatment of cancer or tumor expressing SMYD3.
  • an amount of a peptide of the present invention sufficient to enhance or stimulate immunological response mediated with CTLs, and/or to induce CTLs against a cancer or tumor expressing SMYD3 can be administered to a subject having a cancer expressing SMYD3.
  • the dose of the peptides of the present invention can be adjusted appropriately according to the disease to be treated, age of the patient, weight, method of administration, and such, and is ordinarily 0.001 mg to 1000 mg, for example, 0.01 mg to 100 mg, for example, 0.1 mg to 30 mg, for example, 0.1 mg to 10 mg, for example, 0.5 mg to 5mg, and can be administered once in a few days to a few months, for example, once a week.
  • One skilled in the art can readily determine suitable and optimal dosages.
  • compositions containing polynucleotides as the active ingredient can also contain nucleic acids encoding the peptide(s) of the present invention in an expressible form.
  • the phrase "in an expressible form” means that the polynucleotide, when introduced into a cell, will be expressed in vivo as a polypeptide that induces anti-tumor immunity.
  • the nucleic acid sequence of the polynucleotide of interest includes regulatory elements necessary for expression of the polynucleotide.
  • the polynucleotide(s) can be equipped so to achieve stable insertion into the genome of the target cell (see, e.g., Thomas KR & Capecchi MR, Cell 1987, 51: 503-12 for a description of homologous recombination cassette vectors). See, e.g., Wolff et al., Science 1990, 247: 1465-8; U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; and WO 98/04720.
  • DNA-based delivery technologies include "naked DNA”, facilitated (bupivacaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated (“gene gun”) or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).
  • the peptides of the present invention can also be expressed by viral or bacterial vectors.
  • expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode the peptide. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response.
  • Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin).
  • BCG vectors are described in Stover et al., Nature 1991, 351: 456-60.
  • a wide variety of other vectors useful for therapeutic administration or immunization e.g., adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent. See, e.g., Shata et al., Mol Med Today 2000, 6: 66-71; Shedlock et al., J Leukoc Biol 2000, 68: 793-806; Hipp et al., In Vivo 2000, 14: 571-85.
  • Delivery of a polynucleotide into a patient's body can be either direct, in which case the patient is directly exposed to a polynucleotide-carrying vector, or indirect, in which case, cells are first transformed with the polynucleotide of interest in vitro, then the cells are transplanted into the patient.
  • two approaches are known, respectively, as in vivo and ex vivo gene therapies.
  • administration of polynucleotides may be performed by oral, intradermal, subcutaneous, intravenous, intramuscular, intraosseous, or peritoneal injection, or such.
  • the administration may be systemic administration or local administration (i.e., direct injection) to the vicinity of the targeted sites.
  • the administration can be performed by single administration or boosted by multiple administrations.
  • a pharmaceutically or therapeutically effective amount of the polynucleotide of the present inevention can be administered to a subject in need of treatment of cancer or tumor expressing SMYD3.
  • an amount of the polynucleotides of the present invention sufficient to enhance or stimulate immunological response mediated with CTLs, and/or to induce CTLs against a cancer or tumor expressing SMYD3 can be administered to a subject having a cancer or tumor expressing SMYD3.
  • the dose of the polynucleotide in the suitable carrier or cells transformed with the polynucleotide encoding the peptides of the present invention can be adjusted appropriately according to the disease to be treated, age of the patient, weight, method of administration, and such, and is ordinarily 0.001 mg to 1000 mg, for example, 0.01 mg to 100 mg,for example, 0.1 mg to 30 mg, for example, 0.1 mg to 10 mg, for example, 0.5 mg to 5 mg, and can be administered once every a few days to once every few months, for example, once a week.
  • One skilled in the art can readily determine suitable and optimal dosages.
  • the peptides and polynucleotides of the present invention can be used for preparing or inducing APCs and CTLs.
  • the exosomes and APCs of the present invention can be also used for preparing or inducing CTLs.
  • the peptides, polynucleotides, exosomes and APCs can be used in combination with any other compounds so long as the additional compounds do not inhibit CTL inducibility.
  • any of the aforementioned pharmaceutical compositions or agents of the present invention can be used for preparing or inducing CTLs.
  • those including the peptides or polynucleotides can be also used for preparing or inducing APCs as explained below.
  • the present invention provides methods of inducing APCs with CTL inducibility using the peptides or polynucleotides of the present invention.
  • the methods of the present invention include the step of contacting APCs with the peptides of the present invention in vitro, ex vivo or in vivo.
  • the method of contacting an APC with the peptide ex vivo can include steps of: a: collecting APCs from a subject, and b: contacting the APCs of step a with the peptide of the present invention.
  • the APCs are not limited to a particular kind of cells and include DCs, Langerhans cells, macrophages, B cells, and activated T cells, which are known to present proteinaceous antigens on their cell surface so as to be recognized by lymphocytes.
  • DCs can be used since they have the strongest CTL inducibility among APCs.
  • Any one of peptides of the present invention can be used by itself or in combination with one or more of other peptides of the present invention and/or one or more of CTL-inducible peptides derived from TAAs other than SMYD3.
  • the method of the present invention may include the step of administering a peptide of the present invention to a subject to induce an APC with CTL inducibility in the body of the subject.
  • the polynucleotide of the present invention is administered to a subject in an expressible form, the peptide is expressed and contacted with APCs in vivo, and consequently, an APC with CTL inducibility are induced in the body of the subject.
  • the methods of the present invention may also include the step of administering the polynucleotide of the present invention to a subject to induce an APC with CTL inducibility in the body of the subject.
  • the phrase "expressible form” is described above in section "IX.
  • the method of the present invention may further include the step of introducing a polynucleotide of the present invention into an APC to induce an APC with CTL inducibility.
  • the method can include steps of: a: collecting APCs from a subject, and b: introducing a polynucleotide encoding the peptide of the present invention into the APC collected in step a.
  • Step b can be performed as described above in section "VI. Antigen-Presenting Cells".
  • the methods of the present invention may include the step of preparing an APC that can specifically induce CTL showing cytotoxic activity against SMYD3, wherein the method can include one of the following steps: (a) contacting an APC with a peptide of the present invention in vitro, ex vivo or in vivo; and (b) introducing a polynucleotide encoding a peptide of the present invention into an APC.
  • the methods of the present invention may include the step of inducing an APC having CTL inducibility, such methods including a step selected from among: (a) contacting an APC with the peptide of the present invention; and (b) introducing the polynucleotide encoding the peptide of the present invention into an APC.
  • the present invention provides the method of inducing or preparing an APC having CTL inducibility, such method including one of the following steps: (a) contacting an APC expressing HLA-A24 with a peptide having an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19 or modified peptide thereof in vitro, ex vivo or in vivo; and (b) introducing a polynucleotide encoding a peptide having an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19 or modified peptide thereof into an APC expressing HLA-A24.
  • the present invention provides the method of inducing or preparing an APC having CTL inducibility, such method including one of the following steps: (a) contacting an APC expressing HLA-A2 with a peptide having an amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22 or modified peptide thereof in vitro, ex vivo or in vivo; and (b) introducing a polynucleotide encoding a peptide having an amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22 or modified peptide thereof into an APC expressing HLA-A2.
  • APCs induced by the above method present such peptides via HLA-A24 or HLA-A2 on their surface, and can induce CTLs having specific cytotoxic activity against cells expressing HLA-A24 and SMYD3 or cells expressing HLA-A2 and SMYD3.
  • APCs used for induction of APCs having CTL inducibility can be preferably APCs expressing an HLA-A24 or an HLA-A2 antigen (i.e., HLA-A24 positive APCs or HLA-A2 positive APCs).
  • Such APCs can be prepared by the methods well-known in the arts from peripheral blood mononuclear cells (PBMCs) obtained from a subject whose HLA antigen is HLA-A24 or HLA-A2.
  • PBMCs peripheral blood mononuclear cells
  • the APCs induced by the method of the present invention can be APCs that present a complex of a peptide of the present invention and an HLA antigen (HLA-A24 antigen or HLA-A2 antigen) on its surface.
  • HLA-A24 antigen or HLA-A2 antigen HLA-A24 antigen or HLA-A2 antigen
  • the subject is preferably the same one from whom APCs are derived.
  • the subject may be a different one from the APC donor so long as the subject has the same HLA type with the APC donor.
  • the present invention provide agents or compositions for use in inducing an APC having CTL inducibility, and such agents or compositions include one or more peptides or polynucleotides of the present invention.
  • the present invention provides the use of a peptide of the present invention or a polynucleotide encoding such a peptide in the manufacture of an agent or a composition formulated for inducing APCs.
  • the present invention further provides the peptide of the present invention or the polynucleotide encoding such a peptide for use in inducing an APC having CTL inducibility.
  • the present invention also provides methods for inducing CTLs using the peptides, polynucleotides, exosomes or APCs of the present invention.
  • the present invention also provides methods for inducing CTLs using a polynucleotide encoding both of TCR subunits or polynucleotides encoding each of TCR subunits, wherein the TCR formed by such subunits can recognize (i.e., bind to) a cell-surface complex of a peptide of the present invention and an HLA antigen.
  • the methods for inducing CTLs may include at least one step selected from among: a: contacting a CD8 positive T cell with an antigen-presenting cell that presents on its surface a complex of an HLA antigen and a peptide of the preset invention b: contacting a CD8 positive T cell with an exosome that presents on its surface a complex of an HLA antigen and a peptide of the preset invention; and c: introducing a polynucleotide encoding both of TCR subunits or polynucleotides encoding each of TCR subunits into a CD8 positive T cell, wherein the TCR formed by such subunits can recognize (bind to) a complex of a peptide of the present invention and an HLA antigen on a cell surface.
  • the methods of the present invention can include the step of administering the peptides, polynucleotides, APCs or exosomes of the present invention to a subject.
  • CTLs can be also induced by using them ex vivo or in vitro, and after inducing CTLs, the activated CTLs can be returned to the subject.
  • the method can include steps of : a: collecting APCs from a subject, b: contacting the APCs of step a, with a peptide of the present invention, and c: co-culturing the APCs of step b with CD8 positive T cells.
  • the APC to be co-cultured with the CD8 positive T cell in above step c can also be prepared by transferring a polynucleotide of the present invention into an APC as described above in section "VI. Antigen-Presenting Cells", although the present invention is not limited thereto and thus encompasses any APCs that effectively present on its surface a complex of an HLA antigen and a peptide of the present invention.
  • exosomes that present on the surface a complex of an HLA antigen and a peptide of the present invention instead of the aforementioned APCs.
  • the present invention can includes the step of co-culturing exosomes presenting on its surface a complex of an HLA antigen and a peptide of the present invention and CD8 positive T cells.
  • exosomes can be prepared by the methods described above in section "V. Exosomes”.
  • Suitable APCs and exosomes for the method of the present invention present a complex of a peptide of the present invention and HLA-A24 or HLA-A2 on the surface.
  • an APC or exosome that present a complex of an HLA-A24 and a peptide having an amino acid sequence selected from among SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 17 and 19 (or modified peptide thereof) on its surface can be preferably utilize for inducing a CTL having specific cytotoxic activity against a cell expressing HLA-A24 and SMYD3, and an APC or exosome that present a complex of an HLA-A2 and a peptide having an amino acid sequence selected from among SEQ ID NOs: 8, 16 and 22 (or modified peptide thereof) on its surface can be preferably utilize for inducing a CTL having specific cytotoxic activity against a cell expressing HLA-A2 and SMYD3.
  • the CTL can be induced by introducing a polynucleotide encoding both of the TCR subunits or polynucleotides encoding each of the TCR subunits into a CD8 positive T cell, wherein the TCR formed by such subunits can bind to a complex of a peptide of the present invention and an HLA antigen on a cell surface.
  • TCR T cell Receptor
  • CD8 positive T cells used for induction of CTLs can be prepared by well-known methods in the art from PBMCs obtained from a subject.
  • the donor for CD8 positive T cells can be a subject whose HLA antigen is HLA-A24 or HLA-A2.
  • the CTLs induced by the methods of the present invention can recognize cells presenting a complex of a peptide of the present invention and an HLA antigen (e.g., HLA-A24 or HLA-A2) on its surface.
  • Such CTLs can show specific cytotoxic activity against cells that present a peptide of the present invention on the surface, and therefore, can show specific cytotoxic activity against cells expressing SMYD3 (e.g., cancer cells).
  • SMYD3 e.g., cancer cells.
  • the subject is preferably the same one from whom CD8 positive T cells are derived.
  • the subject may be a different one from the CD8 positive T cell donor so long as the subject has the same HLA type with the CD8 positive T cell donor.
  • the present invention provides a method or process for the manufacture of a pharmaceutical composition or agent that induces a CTL, wherein the method or process includes the step of admixing or formulating a peptide of the present invention with a pharmaceutically acceptable carrier.
  • the present invention provides a composition or agent for inducing a CTL, wherein the composition or agent includes one or more peptide(s), one or more polynucleotide(s), one or more APC(s), and/or one or more exosome(s) of the present invention.
  • the present invention provides the use of the peptide, polynucleotide, APC or exosome of the present invention in the manufacture of a composition or agent formulated for inducing a CTL.
  • the present invention further provides the peptide, polynucleotide, APC or exosome of the present invention for use in inducing a CTL.
  • XI. Methods of Inducing Immune Response Moreover, the present invention provides methods of inducing immune responses against diseases related to SMYD3.
  • Contemplated diseases include cancer, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • cancer expresses HLA-A2 (i.e., HLA-A2 positive cancer) or HLA-A24 (i.e., HLA-A24 positive cancer).
  • the methods of the present invention may include the step of administering a composition containing any of the peptides of the present invention or polynucleotides encoding them.
  • inventive methods also contemplate the administration of exosomes or APCs presenting any of the peptides of the present invention on the surface.
  • IX. Pharmaceutical Compositions particularly the part describing the use of the pharmaceutical compositions of the present invention as vaccines.
  • exosomes and APCs that can be employed for the present methods for inducing immune response are described in detail under the items of "V. Exosomes", “VI. Antigen-Presenting Cells (APCs)", and (1) and (2) of "X. Methods using the Peptides, Exosomes, APCs and CTLs", supra.
  • the present invention also provides a method or process for the manufacture of a pharmaceutical composition or agent for use in induction of immune response against cancer, wherein the method or process may include the step of admixing or formulating a peptide of the present invention with a pharmaceutically acceptable carrier.
  • the method of the present invention may include the step of administrating a vaccine or a pharmaceutical composition or agent of the present invention that contains: (a) a peptide of the present invention; (b) a polynucleotide encoding a peptide of the present invention in an expressible form; (c) an APC presenting a peptide of the present invention on its surface; (d) an exosome presenting a peptide of the present invention on its surface; or (e) a CTL of the present invention.
  • a cancer over-expressing SMYD3 can be treated with these active ingredients.
  • examples of such cancer include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • the present invention provides a method for treating cancer (over)expressing SMYD3 in a patient in need thereof, such method including the steps of: i) determining the expression level of SMYD3 in a biological sample obtained from a subject with the cancer to be treated; ii) comparing the expression level of SMYD3 with normal control; and iii) administrating at least one component selected from among (a) to (e) described above to a subject with cancer over-expressing SMYD3 as compared with normal control.
  • the present invention provides a vaccine or pharmaceutical composition including at least one component selected from among (a) to (e) described above, to be administered to a subject having cancer over-expressing SMYD3.
  • the present invention further provides a method for identifying a subject to be treated with a peptide of the present invention, such method including the step of determining an expression level of SMYD3 in a subject-derived biological sample, wherein an increase of the expression level as compared to a normal control level of the SMYD3 indicates that the subject may have cancer which may be treated with a peptide of the present invention.
  • the HLA type of a subject may be identified before administering the peptides of the present invention.
  • HLA-A24 positive or HLA-A2 positive subjects can be preferably selected for the administration of a vaccine or pharmaceutical composition of the present invention.
  • any subject-derived cell or tissue can be used for the determination of the expression level of SMYD3 so long as it can include the transcription or translation product of SMYD3.
  • suitable samples include, but are not limited to, bodily tissues and fluids, such as blood, sputum and urine.
  • the subject-derived cell or tissue sample contains a cell population including an epithelial cell, more preferably a cancerous epithelial cell or an epithelial cell derived from cancerous tissue. Further, if necessary, the cell may be purified from the obtained bodily tissues and fluids, and then used as the subject-derived sample.
  • the expression level of SMYD3 in a biological sample obtained from a subject may be determined.
  • the expression level of SMYD3 can be determined at the transcription (nucleic acid) product level, using methods known in the art.
  • the mRNA of SMYD3 may be quantified using probes by hybridization methods (e.g., Northern hybridization).
  • the detection may be carried out on a chip or an array. The use of an array is preferable for detecting the expression level of SMYD3.
  • Those skilled in the art can prepare such probes utilizing the sequence information of SMYD3.
  • the cDNA of SMYD3 may be used as the probes.
  • the probes may be labeled with a suitable label, such as dyes, fluorescent substances and isotopes, and the expression level of SMYD3 may be detected as the intensity of the hybridized labels.
  • the transcription product of SMYD3 may be quantified using primers by amplification-based detection methods (e.g., RT-PCR).
  • primers may be prepared based on the available sequence information of SMYD3.
  • a probe or primer used for the present method hybridizes under stringent, moderately stringent, or low stringent conditions to the mRNA of SMYD3.
  • stringent (hybridization) conditions refers to conditions under which a probe or primer will hybridize to its target sequence, but not to other sequences. Stringent conditions are sequence-dependent and will be different under different circumstances. Specific hybridization of longer sequences is observed at higher temperatures than shorter sequences. Generally, the temperature of a stringent condition is selected to be about 5 degree Centigrade lower than the thermal melting point (Tm) for a specific sequence at a defined ionic strength and pH.
  • the Tm is the temperature (under a defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to their target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium.
  • stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 degree Centigrade for short probes or primers (e.g., 10 to 50 nucleotides) and at least about 60 degree Centigrade for longer probes or primers. Stringent conditions may also be achieved with the addition of destabilizing substances, such as formamide.
  • a probe or primer of the present invention is typically a substantially purified oligonucleotide.
  • the oligonucleotide typically includes a region of nucleotide sequence that hybridizes under stringent conditions to at least about 2000, 1000, 500, 400, 350, 300, 250, 200, 150, 100, 50, or 25 bases, consecutive sense strand nucleotide sequence of a nucleic acid including a SMYD3 sequence, or an anti-sense strand nucleotide sequence of a nucleic acid including a SMYD3 sequence, or of a naturally occurring mutant of these sequences.
  • an oligonucleotide having 5-50 bases in length can be used as a primer for amplifying the genes, to be detected. More preferably, mRNA or cDNA of a SMYD3 gene can be detected with oligonucleotide probe or primer of a specific size, generally 15- 30 bases in length.
  • the size may range from at least 10 nucleotides, at least 12 nucleotides, at least 15 nucleotides, at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides and the probes and primers may range in size from 5-10 nucleotides, 10-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides and 25-30 nucleotides.
  • length of the oligonucleotide probe or primer can be selected from 15-25 nucleotides.
  • Assay procedures, devices, or reagents for the detection of gene by using such oligonucleotide probe or primer are well known (e.g. oligonucleotide microarray or PCR).
  • probes or primers can also include tag or linker sequences. Further, probes or primers can be modified with detectable label or affinity ligand to be captured. Alternatively, in hybridization based detection procedures, a polynucleotide having a few hundreds (e.g., about 100-200) bases to a few kilo (e.g., about 1000-2000) bases in length can also be used for a probe (e.g., northern blotting assay or cDNA microarray analysis).
  • the translation product of SMYD3 may be detected for the identification of a subject to be treated by the method of the present invention.
  • the quantity of SMYD3 protein e.g., SEQ ID NO: 60, 62 or 64
  • methods for determining the quantity of the SMYD3 protein as the translation product include but not limited to, immunoassay methods using an antibody specifically recognizing the SMYD3 protein.
  • the antibody may be monoclonal or polyclonal.
  • any fragment or modification e.g., chimeric antibody, scFv, Fab, F(ab') 2 , Fv, etc.
  • any fragment or modification e.g., chimeric antibody, scFv, Fab, F(ab') 2 , Fv, etc.
  • Methods to prepare these kinds of antibodies are well known in the art, and any method may be employed to prepare such antibodies and equivalents thereof.
  • the intensity of staining may be measured via immunohistochemical analysis using an antibody against the SMYD3 protein. Namely, in this measurement, strong staining indicates increased presence/level of the SMYD3 protein and, at the same time, high expression level of SMYD3.
  • the expression level of the SMYD3 gene in a subject-derived sample can be determined to be increased if the expression level increases from the control level (e.g., the expression level in normal cells) of the SMYD3 by, for example, 10%, 25%, or 50%; or increases to more than 1.1 fold, more than 1.5 fold, more than 2.0 fold, more than 5.0 fold, more than 10.0 fold, or more.
  • control level e.g., the expression level in normal cells
  • the control level may be determined at the same time as the cancer cells by using a sample(s) previously collected and stored from a healthy subject/subjects.
  • normal cells obtained from non-cancerous regions of an organ that has the cancer to be treated may be used as normal control.
  • the control level may be determined by a statistical method based on the results obtained by analyzing previously determined expression level(s) of SMYD3 in samples from subjects whose disease states are known.
  • the control level can be derived from a database of expression patterns from previously tested cells.
  • the expression level of SMYD3 in a biological sample may be compared to multiple control levels, which are determined from multiple reference samples.
  • control level determined from a reference sample derived from a tissue type similar to that of the subject-derived biological sample.
  • standard value may be obtained by any method known in the art. For example, a range of mean +/- 2 S.D. or mean +/- 3 S.D. may be used as the standard value.
  • control level determined from a biological sample that is known to be non-cancerous is referred to as a "normal control level”.
  • control level is determined from a cancerous biological sample, it is referred to as a "cancerous control level”.
  • Difference between a sample expression level and a control level can be normalized to the expression level of control nucleic acids, e.g., housekeeping genes, whose expression levels are known not to differ depending on the cancerous or non-cancerous state of the cell.
  • control genes include, but are not limited to, beta-actin, glyceraldehyde 3 phosphate dehydrogenase, and ribosomal protein P1.
  • the subject When the expression level of SMYD3 is increased as compared to the normal control level, the subject may be identified as a subject with cancer to be treated by administration of a pharmaceutical composition or agent of the present invention.
  • the present invention also provides a method of selecting a subject for cancer treatment using aforementioned pharmaceutical compositions or agents of the present invention, such method including the steps of: a) determining the expression level of SMYD3 in biological sample(s) obtained from a subject with cancer; b) comparing the expression level of SMYD3 determined in step a) with a normal control level; and c) selecting the subject for cancer treatment by the pharmaceutical compositions or agents of the present invention, if the expression level of SMYD3 is increased as compared to the normal control level.
  • such a method may further comprise the step of identifying, after or before the steps a)-c) defined above, a subject having an HLA selected from the group consisting of HLA-A24 and HLA-A2.
  • Cancer therapy according to the present invention is preferable for a subject that suffers from cancer overexpressing SMYD3 and has HLA-A24 or HLA-A2.
  • Methods for HLA typing are well known in the art. For example, PCR-based methods for typing HLA alleles are well known. Antibodies specific for each HLA molecule are also appropriate tools for identifying HLA types of a subject.
  • the present invention further provides a diagnostic kit including one or more peptide of the present invention.
  • Cancer can be diagnosed by detecting antibodies against one or more peptides of the present invention in a subject-derived sample (e.g., blood, tissue) using a peptide of the present invention.
  • a subject-derived sample e.g., blood, tissue
  • the subject is suspected to be suffering from cancer, if a subject-derived sample (e.g., blood sample) contains antibodies against a peptide of the present invention and the quantity of the antibodies is determined to be more than the cut off value as compared to control level.
  • a subject-derived sample e.g., blood sample
  • the quantity of the antibodies is determined to be more than the cut off value as compared to control level.
  • a diagnostic kit of the present invention may include a peptide of the present invention and an HLA molecule binding thereto.
  • the method for detecting antigen specific CTLs using antigenic peptides and HLA molecules has already been established (for example, Altman JD et al., Science. 1996, 274(5284): 94-6).
  • the complex of the peptide of the present invention and the HLA molecule can be applied to the detection method to detect tumor antigen specific CTLs, thereby enabling earlier detection of recurrence and/or metastasis of cancer.
  • it can be employed for the selection of subjects applicable with the pharmaceutical compositions that include a peptide of the present invention as an active ingredient, or the assessment of the treatment effect of the pharmaceutical composition.
  • the oligomer complex such as tetramer, of the radiolabeled HLA molecule and a peptide of the present invention can be prepared.
  • the diagnosis can be done, for example, by quantifying the antigen-peptide specific CTLs in the peripheral blood lymphocytes derived from the subject suspected to be suffering from cancer.
  • the present invention further provides a diagnostic agents and method for evaluating immunological response of subject by using the peptide of the present invention.
  • the peptide of the present invention is used as reagents for evaluating or predicting an immune response of a subject.
  • the immune response to be evaluated is induced by contacting an immunogen (i.e., the peptide of the present invention) with immunocompetent cells in vitro or in vivo.
  • an immunogen i.e., the peptide of the present invention
  • the immunocompetent cells for evaluating an immunological response may be selected from among peripheral blood, peripheral blood lymphocyte (PBL), and peripheral blood mononuclear cell (PBMC). Methods for collecting or isolating such immunocompetent cells are well known in the arts.
  • any agent that may result in the production of antigen specific CTLs that recognize and bind to the peptide epitope (s) may be employed as the reagent.
  • the peptide reagent need not be used as the immunogen.
  • Assay systems that are used for such an analysis include relatively recent technical developments such as tetramer staining assay, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.
  • immunocompetent cells to be contacted with peptide reagent may be antigen presenting cells including dendritic cells.
  • peptides of the present invention may be used in tetramer staining assays to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to a tumor cell antigen or an immunogen.
  • the HLA tetrameric complex may be used to directly visualize antigen specific CTLs (see, e. g., Ogg et al., Science 279 : 2103-2106, 1998 ; and Altman et al, Science 174 : 94-96, 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells.
  • a tetramer reagent using a peptide of the invention may be generated as described below.
  • a peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and beta 2- microglobulin to generate a trimolecular complex.
  • carboxyl terminal of the heavy chain is biotinylated at a site that was previously engineered into the protein.
  • streptavidin is added to the complex to form tetramer composed of the trimolecular complex and streptavidin.
  • the tetramer can be used to stain antigen-specific cells.
  • the cells can then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes. Cells identified by the procedure can also be used for therapeutic purposes.
  • the peptides of the present invention may be also used to make antibodies, using techniques well known in the art (see, e. g. CURRENT PROTOCOLS IMMUNOLOGY, Wiley/Greene, NY ; and Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989), which may be useful as reagents to diagnose or monitor cancer.
  • Such antibodies may include those that recognize a peptide in the context of an HLA molecule, i. e., antibodies that bind to a peptide-MHC complex.
  • the present invention provides a method for diagnosing or detecting a disorder characterized by expression of a SMYD3 polypeptide.
  • the diagnosis can be done, by a method which allows direct quantification of antigen- specific T cells by staining with Fluorescein-labelled HLA multimeric complexes (for example, Altman, J. D. et al., 1996, Science 274 : 94; Altman, J. D. et al., 1993, Proc. Natl. Acad. Sci. USA 90 : 10330 ;).
  • Staining for intracellular lymphokines, and interferon-gamma release assays or ELISPOT assays also has been provided. Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Murali-Krishna, K. et al., 1998, Immunity 8 : 177; Lalvani, A. et al., 1997, J. Exp. Med. 186 : 859; Dunbar, P. R. et al., 1998, Curr. Biol. 8 : 413;). Pentamers (e.g., US 2004-209295A), dextramers (e.g., WO 02/072631), and streptamers (e.g., Nature medicine 6. 631-637 (2002)) may also be used.
  • Pentamers e.g., US 2004-209295A
  • dextramers e.g., WO 02
  • the present invention provides a method for diagnosing or evaluating an immunological response of a subject administered at least one of SMYD3 peptides of the present invention, the method including the steps of: (a) contacting an immunogen with immunocompetent cells under the condition suitable for induction of CTL specific to the immunogen; (b) detecting or determining induction level of the CTL induced in step (a); and (c) correlating the immunological response of the subject with the CTL induction level.
  • the immunogen preferably includes at least one of a SMYD3 peptide having the amino acid sequences of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 or 22, and peptides having in which such amino acid sequences have been modified with 1, 2 or more amino acid substitution(s).
  • immunocompetent cells may be cultured in vitro under the presence of immunogen(s) to induce immunogen specific CTLs.
  • any stimulating factors may be added to the cell culture.
  • IL-2 is preferable stimulating factors for the CTL induction.
  • the step of monitoring or evaluating immunological response of a subject to be treated with peptide cancer therapy may be performed before, during and/or after the treatment.
  • immunogenic peptides are administered repeatedly to a subject to be treated.
  • immunogenic peptides may be administered every week for 3-10 weeks.
  • the immunological response of the subject can be evaluated or monitored during the cancer therapy protocol.
  • the step of evaluation or monitoring of immunological response to the cancer therapy may at the completion of the therapy protocol.
  • enhanced induction of immunogen specific CTL as compared with a control indicates that the subject to be evaluated or diagnosed immunologically responded to the immunogen(s) that has/have been administered.
  • Suitable controls for evaluating the immunological response may include, for example, a CTL induction level when the immunocompetent cells are contacted with no peptide, or control peptide(s) having amino acid sequences other than any SMYD3 peptides. (e.g. random amino acid sequence).
  • the present invention further provides antibodies that bind to peptides of the present invention.
  • Preferred antibodies specifically bind to peptides of the present invention and will not bind (or will bind weakly) to other peptides.
  • Antibodies against peptides of the invention can find use in cancer diagnostic and prognostic assays. Similarly, such antibodies can find use in the treatment, diagnosis, and/or prognosis of cancers.
  • intracellularly expressed antibodies e.g., single chain antibodies
  • the present invention also provides various immunological assays for the detection and/or quantification of the SMYD3 protein (SEQ ID NO: 60, 62 or 64) or fragments thereof, including peptides consisting of an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22.
  • anti-SMYD3 antibodies binding to SMYD3 peptide preferably recognize peptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22.
  • the binding specificity of antibody can be confirmed by means of an inhibition test.
  • immunological assays are performed within various immunological assay formats well known in the art, including but not limited to, various types of radioimmunoassays, immuno-chromatograph technique, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like.
  • immunological but non-antibody assays may also include T cell immunogenicity assays (inhibitory or stimulatory) as well as MHC binding assays.
  • the present invention contemplates immunological imaging methods capable of detecting cancers expressing SMYD3, example of which include, but are not limited to, radioscintigraphic imaging methods using labeled antibodies of the present invention. Such assays find clinical use in the detection, monitoring, and prognosis of SMYD3 expressing cancers, examples of which include, but are not limited to, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.
  • An antibody of the present invention can be used in any form, for example as a monoclonal or polyclonal antibody, and may further include antiserum obtained by immunizing an animal such as a rabbit with the peptide of the invention, all classes of polyclonal and monoclonal antibodies, human antibodies and humanized antibodies produced by genetic recombination.
  • An antibody of the present invention can recognize peptides having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 19 and 22.
  • Methods for synthesizing oligopeptide are well known in the arts. After the synthesis, peptides may be optionally purified prior to use as immunogen.
  • the oligopeptide e.g., 9- or 10mer
  • the oligopeptide e.g., 9- or 10mer
  • the oligopeptide e.g., 9- or 10mer
  • KLH Keyhole-limpet hemocyanin
  • Method for conjugating KLH and peptide are also well known in the arts.
  • a gene encoding a peptide of the invention or fragment thereof may be inserted into a known expression vector, which is then used to transform a host cell as described herein.
  • the desired peptide may be recovered from the outside or inside of host cells by any standard method, and may subsequently be used as an antigen.
  • whole cells expressing the peptide or their lysates or a chemically synthesized peptide may be used as the antigen.
  • animals of the orders Rodentia, Lagomorpha and Primate may be used.
  • Animals of the order Rodentia include, for example, mouse, rat and hamster.
  • Animals of the order Lagomorpha include, for example, rabbit.
  • Animals of the Primate family include, for example, a monkey of Catarrhini (old world monkey) such as Macaca fascicularis, rhesus monkey, sacred baboon and chimpanzees.
  • antigens may be diluted and suspended in an appropriate amount of phosphate buffered saline (PBS), physiological saline, etc.
  • PBS phosphate buffered saline
  • the antigen suspension may be mixed with an appropriate amount of a standard adjuvant, such as Freund's complete adjuvant, made into emulsion and then administered to mammalian animals.
  • a standard adjuvant such as Freund's complete adjuvant
  • an appropriately amount of Freund's incomplete adjuvant every 4 to 21 days.
  • An appropriate carrier may also be used for immunization.
  • serum may be examined by a standard method for an increase in the amount of desired antibodies.
  • Polyclonal antibodies against the peptides of the present invention may be prepared by collecting blood from the immunized mammal examined for the increase of desired antibodies in the serum, and by separating serum from the blood by any conventional method.
  • Polyclonal antibodies may include serum containing the polyclonal antibodies, as well as the fraction containing the polyclonal antibodies may be isolated from the serum.
  • Immunoglobulin G or M can be prepared from a fraction which recognizes only the peptide of the present invention using, for example, an affinity column coupled with the peptide of the present invention, and further purifying this fraction using protein A or protein G column.
  • immune cells are collected from the mammal immunized with the antigen and checked for the increased level of desired antibodies in the serum as described above, and are subjected to cell fusion.
  • the immune cells used for cell fusion may preferably be obtained from spleen.
  • Other preferred parental cells to be fused with the above immunocyte include, for example, myeloma cells of mammalians, and more preferably myeloma cells having an acquired property for the selection of fused cells by drugs.
  • the above immunocyte and myeloma cells can be fused according to known methods, for example, the method of Milstein et al. (Galfre and Milstein, Methods Enzymol 73: 3-46 (1981)).
  • Resulting hybridomas obtained by cell fusion may be selected by cultivating them in a standard selection medium, such as HAT medium (hypoxanthine, aminopterin and thymidine containing medium).
  • HAT medium hyperxanthine, aminopterin and thymidine containing medium.
  • the cell culture is typically continued in the HAT medium for several days to several weeks, the time being sufficient to allow all the other cells, with the exception of the desired hybridoma (non-fused cells), to die.
  • the standard limiting dilution may be performed to screen and clone a hybridoma cell producing the desired antibody.
  • human lymphocytes such as those infected by EB virus may be immunized with a peptide, peptide expressing cells or their lysates in vitro. Then, the immunized lymphocytes may be fused with human-derived myeloma cells that are capable of indefinitely dividing, such as U266, to yield a hybridoma producing a desired human antibody that is able to bind to the peptide can be obtained (Unexamined Published Japanese Patent Application JPS 63-17688).
  • the obtained hybridomas may then be subsequently transplanted into the abdominal cavity of a mouse and the ascites are extracted.
  • the obtained monoclonal antibodies can be purified by, for example, ammonium sulfate precipitation, a protein A or protein G column, DEAE ion exchange chromatography or an affinity column to which a peptide of the present invention is coupled.
  • An antibody of the present invention can be used not only for purification and detection of a peptide of the present invention, but also as a candidate for agonists and/or antagonists of a peptide of the present invention.
  • Monoclonal antibodies thus obtained can be also recombinantly prepared using genetic engineering techniques (see, for example, Borrebaeck and Larrick, Therapeutic Monoclonal Antibodies, published in the United Kingdom by MacMillan Publishers LTD (1990)).
  • a DNA encoding an antibody may be cloned from an immune cell, such as a hybridoma or an immunized lymphocyte producing the antibody, inserted into an appropriate vector, and introduced into host cells to prepare a recombinant antibody.
  • the present invention also provides for recombinant antibodies prepared as described above.
  • an antibody of the present invention may be a fragment of an antibody or modified antibody, so long as it binds to the peptide of the invention.
  • the antibody fragment may be Fab, F(ab') 2 , Fv or single chain Fv (scFv), in which Fv fragments from H and L chains are ligated by an appropriate linker (Huston et al., Proc Natl Acad Sci USA 85: 5879-83 (1988)). More specifically, an antibody fragment may be generated by treating an antibody with an enzyme, such as papain or pepsin.
  • a gene encoding the antibody fragment may be constructed, inserted into an expression vector and expressed in an appropriate host cell (see, for example, Co et al., J Immunol 152: 2968-76 (1994); Better and Horwitz, Methods Enzymol 178: 476-96 (1989); Pluckthun and Skerra, Methods Enzymol 178: 497-515 (1989); Lamoyi, Methods Enzymol 121: 652-63 (1986); Rousseaux et al., Methods Enzymol 121: 663-9 (1986); Bird and Walker, Trends Biotechnol 9: 132-7 (1991)).
  • An antibody may be modified by conjugation with a variety of molecules, such as polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the present invention provides for such modified antibodies.
  • the modified antibody can be obtained by chemically modifying an antibody. These modification methods are conventional in the field.
  • an antibody of the present invention may be obtained as a chimeric antibody, between a variable region derived from nonhuman antibody and the constant region derived from human antibody, or as a humanized antibody, including the complementarity determining region (CDR) derived from nonhuman antibody, the frame work region (FR) and the constant region derived from human antibody.
  • CDR complementarity determining region
  • FR frame work region
  • Such antibodies can be prepared according to known technology. Humanization can be performed by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody (see, e.g., Verhoeyen et al., Science 239:1534-1536 (1988)). Accordingly, such humanized antibodies are chimeric antibodies, wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • Fully human antibodies including human variable regions in addition to human framework and constant regions can also be used. Such antibodies can be produced using various techniques known in the art. For example, in vitro methods involve use of recombinant libraries of human antibody fragments displayed on bacteriophage (e.g., Hoogenboom & Winter, J. Mol. Biol. 227:381 (1991)). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. This approach is described, e.g., in U.S. Patent Nos. 6,150,584, 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016.
  • Antibodies obtained as above may be purified to homogeneity.
  • the separation and purification of the antibody can be performed according to the separation and purification methods used for general proteins.
  • the antibody may be separated and isolated by the appropriately selected and combined use of column chromatographies, such as affinity chromatography, filter, ultrafiltration, salting-out, dialysis, SDS polyacrylamide gel electrophoresis and isoelectric focusing (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory (1988)), but are not limited thereto.
  • a protein A column and protein G column can be used as the affinity column.
  • Exemplary protein A columns to be used include, for example, Hyper D, POROS and Sepharose F.F. (Pharmacia).
  • chromatography techniques include, for example, ion-exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography and the like (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press (1996)).
  • the chromatographic procedures can be carried out by liquid-phase chromatography, such as HPLC and FPLC.
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • the antibody of the present invention is immobilized on a plate, a peptide of the invention is applied to the plate, and then a sample containing a desired antibody, such as culture supernatant of antibody producing cells or purified antibodies, is applied. Then, a secondary antibody that recognizes the primary antibody and is labeled with an enzyme, such as alkaline phosphatase, is applied, and the plate is incubated.
  • a desired antibody such as culture supernatant of antibody producing cells or purified antibodies
  • an enzyme substrate such as p-nitrophenyl phosphate
  • the absorbance is measured to evaluate the antigen binding activity of the sample.
  • BIAcore Pharmacia
  • the present invention also provides for vectors and host cell into which a polynucleotide encoding a peptide of the present invention is introduced.
  • a vector of the present invention finds utility as a carrier of polynucleotides, especially DNA, of the present invention in host cell, to express a peptide of the present invention, or to administer a polynucleotide of the present invention for gene therapy.
  • E. coli When E. coli is selected as the host cell and the vector is amplified and produced in a large amount in E. coli (e.g., JM109, DH5 alpha, HB101 or XL1Blue), the vector should have an "ori" suitable for amplification in E. coli and a marker gene for selecting transformed E. coli (e.g., a drug-resistance gene selected by a drug such as ampicillin, tetracycline, kanamycin, chloramphenicol or the like).
  • a marker gene for selecting transformed E. coli e.g., a drug-resistance gene selected by a drug such as ampicillin, tetracycline, kanamycin, chloramphenicol or the like.
  • M13-series vectors, pUC-series vectors, pBR322, pBluescript, pCR-Script, etc. can be used.
  • an expression vector can find use.
  • an expression vector to be expressed in E. coli should have the above characteristics to be amplified in E. coli.
  • the vector should have a promoter, for example, lacZ promoter (Ward et al., Nature 341: 544-6 (1989); FASEB J 6: 2422-7 (1992)), araB promoter (Better et al., Science 240: 1041-3 (1988)), T7 promoter or the like, that can efficiently express the desired gene in E. coli.
  • a promoter for example, lacZ promoter (Ward et al., Nature 341: 544-6 (1989); FASEB J 6: 2422-7 (1992)), araB promoter (Better et al., Science 240: 1041-3 (1988)), T7 promoter or the like, that can efficiently express the desired gene in E. coli.
  • the host is preferably BL21 which expresses T7 RNA polymerase
  • the vector may also contain a signal sequence for peptide secretion.
  • An exemplary signal sequence that directs the peptide to be secreted to the periplasm of the E. coli is the pelB signal sequence (Lei et al., J Bacteriol 169: 4379 (1987)).
  • Means for introducing of the vectors into the target host cells include, for example, the calcium chloride method, and the electroporation method.
  • expression vectors derived from mammals for example, pcDNA3 (Invitrogen) and pEGF-BOS (Nucleic Acids Res 18(17): 5322 (1990)
  • pEF for example, "Bac-to-BAC baculovirus expression system” (GIBCO BRL), pBacPAK8)
  • expression vectors derived from plants e.g., pMH1, pMH2
  • expression vectors derived from animal viruses e.g., pHSV, pMV, pAdexLcw
  • expression vectors derived from retroviruses e.g., pZIpneo
  • expression vector derived from yeast e.g., "Pichia Expression Kit” (Invitrogen), pNV11, SP-Q01
  • Bacillus subtilis e.g., pPL608, pKTH50
  • the vector In order to express the vector in animal cells, such as CHO, COS or NIH3T3 cells, the vector should have a promoter necessary for expression in such cells, for example, the SV40 promoter (Mulligan et al., Nature 277: 108 (1979)), the MMLV-LTR promoter, the EF1 alpha promoter (Mizushima et al., Nucleic Acids Res 18: 5322 (1990)), the CMV promoter and the like, and preferably a marker gene for selecting transformants (for example, a drug resistance gene selected by a drug (e.g., neomycin, G418)).
  • a promoter necessary for expression in such cells for example, the SV40 promoter (Mulligan et al., Nature 277: 108 (1979)), the MMLV-LTR promoter, the EF1 alpha promoter (Mizushima et al., Nucleic Acids Res 18: 5322 (1990)
  • TISI HLA-A*2402-positive B-lymphoblastoid cell line
  • IHWG Cell and Gene Bank Seattle, WA
  • T2 HLA-A*0201-positive B-lymphoblastoid cell line
  • COS7 African green monkey kidney cell line
  • peptide selection of peptides derived from SMYD3 9-mer and 10-mer peptides derived from SMYD3 that bind to HLA-A*2402 or HLA-A*0201 molecule were predicted using binding prediction software "BIMAS" (www-bimas.cit.nih.gov/molbio/hla_bind) (Parker et al., J Immunol 1994, 152(1): 163-75; Kuzushima et al., Blood 2001, 98(6): 1872-81). These peptides were synthesized by Biosynthesis (Lewisville, Texas) according to a standard solid phase synthesis method and purified by reversed phase high performance liquid chromatography (HPLC). The purity (>90%) and the identity of the peptides were determined by analytical HPLC and mass spectrometry analysis, respectively. Peptides were dissolved in dimethylsulfoxide at 20 mg/ml and stored at -80 degrees C.
  • DCs cytotoxic T lymphocyte
  • HLA human leukocyte antigen
  • DCs were generated in vitro as described elsewhere (Nakahara S et al., Cancer Res 2003 Jul 15, 63(14): 4112-8).
  • peripheral blood mononuclear cells isolated from a normal volunteer HLA-A*2402 or HLA-A*0201 positive
  • Ficoll-Paque plus (Pharmacia) solution were separated by adherence to a plastic tissue culture dish (Becton Dickinson) so as to enrich them as the monocyte fraction.
  • the monocyte-enriched population was cultured in the presence of 1000 IU/ml of granulocyte-macrophage colony-stimulating factor (R&D System) and 1000 IU/ml of interleukin (IL)-4 (R&D System) in AIM-V Medium (Invitrogen) containing 2% heat-inactivated autologous serum (AS). After 7 days of culture, the cytokine-induced DCs were pulsed with 20 micro g/ml of each of the synthesized peptides in the presence of 3 micro g/ml of beta 2-microglobulin for 3 hr at 37 degrees C in AIM-V Medium.
  • R&D System granulocyte-macrophage colony-stimulating factor
  • IL interleukin-4
  • AS heat-inactivated autologous serum
  • the generated cells appeared to express DC-associated molecules, such as CD80, CD83, CD86 and HLA class II, on their cell surfaces (data not shown).
  • DC-associated molecules such as CD80, CD83, CD86 and HLA class II
  • These peptide-pulsed DCs were then inactivated by X ray-irradiated (20 Gy) and mixed at a 1:20 ratio with autologous CD8+ T cells, obtained by positive selection with CD8 Positive Isolation Kit (Dynal). These cultures were set up in 48-well plates (Corning); each well contained 1.5 x 10 4 peptide-pulsed DCs, 3 x 10 5 CD8+ T cells and 10 ng/ml of IL-7 (R&D System) in 0.5 ml of AIM-V/2% AS medium.
  • CTL Expansion Procedure CTLs were expanded in culture using the method similar to the one described by Riddell et al. (Walter EA et al., N Engl J Med 1995 Oct 19, 333(16): 1038-44; Riddell SR et al., Nat Med 1996 Feb, 2(2): 216-23). A total of 5 x 10 4 CTLs were suspended in 25 ml of AIM-V/5% AS medium with 2 kinds of human B-lymphoblastoid cell lines, inactivated by Mitomycin C, in the presence of 40 ng/ml of anti-CD3 monoclonal antibody (Pharmingen). One day after initiating the cultures, 120 IU/ml of IL-2 were added to the cultures.
  • CTL clones The dilutions were made to have 0.3, 1, and 3 CTLs/well in 96 round-bottomed micro titer plate (Nalge Nunc International). CTLs were cultured with 1 x 10 4 cells/well of 2 kinds of human B-lymphoblastoid cell lines, 30ng/ml of anti-CD3 antibody, and 125 IU/ml of IL-2 in a total of 150 micro l/well of AIM-V Medium containing 5%AS. 50 micro l /well of IL-2 were added to the medium 10 days later so to reach a final concentration of 125 IU/ml IL-2.
  • CTL activity was tested on the 14th day, and CTL clones were expanded using the same method as described above (Uchida N et al., Clin Cancer Res 2004 Dec 15, 10(24): 8577-86; Suda T et al., Cancer Sci 2006 May, 97(5): 411-9; Watanabe T et al., Cancer Sci 2005 Aug, 96(8): 498-506).
  • IFN-gamma ELISPOT assays and IFN-gamma ELISA were performed. Peptide-pulsed TISI (1 x 10 4 /well) or T2 (1 x 10 4 /well) was prepared as stimulator cells. Cultured cells in 48 wells were used as responder cells. IFN-gamma ELISPOT assay and IFN-gamma ELISA were performed under manufacture procedure.
  • the cDNA encoding an open reading frame of target genes, HLA-A*2402 or HLA-A*0201 was amplified by PCR.
  • the PCR-amplified product was cloned into expression vector.
  • the plasmids were transfected into COS7, which is the target genes, HLA-A*2402-null and HLA-A*0201-null cell line, using lipofectamine 2000 (Invitrogen) according to the manufacturer's recommended procedures. After 2 days from transfection, the transfected cells were harvested with versene (Invitrogen) and used as the stimulator cells (5 x 10 4 cells/ well) for CTL activity assay.
  • Start position indicates the nunber of amino acid residue from the N-terminus of SMYD3. Binding score is derived from "BIMAS”.
  • Start position indicates the nunber of amino acid residue from the N-terminus of SMYD3. Binding score is derived from "BIMAS”.
  • HLA-A*0201 binding peptides derived from SMYD3 Table 2a and 2b show the HLA-A*0201 binding 9mer and 10mer peptides of SMYD3 in the order of high binding affinity. A total of 39 peptides having potential HLA- A*0201 binding ability were selected and examined to determine the epitope peptides.
  • Start position indicates the nunber of amino acid residue from the N-terminus of SMYD3. Binding score is derived from "BIMAS”.
  • Start position indicates the nunber of amino acid residue from the N-terminus of SMYD3. Binding score is derived from "BIMAS”.
  • CTL activity of these CTL lines was measured by IFN-gamma ELISA ( Figure 3).
  • Those CTL lines demonstrated potent IFN-gamma production against the target cells pulsed with the SMYD3-A24-9-197 (SEQ ID NO: 2), SMYD3-A24-9-130 (SEQ ID NO: 6), SMYD3-A24-9-192 (SEQ ID NO: 7), SMYD3-A24-9-118 (SEQ ID NO: 8), SMYD3-A24-10-86 (SEQ ID NO: 17) and SMYD3-A24-10-138 (SEQ ID NO: 19) peptide as compared to target cells without peptide pulse.
  • the CTL clones were established by limiting dilution from the CTL lines as described in "Materials and Methods", and IFN-gamma production from the CTL clones against target cells pulsed peptide was measured by IFN-gamma ELISA. Potent IFN-gamma production was observed from the CTL clones stimulated with SMYD3-A24-9-197 (SEQ ID NO: 2) (a), SMYD3-A24-9-118 (SEQ ID NO: 8) (b) and SMYD3-A24-10-138 (SEQ ID NO: 19) (c)( Figure 5).
  • the CTL clone was established by limiting dilution from the CTL line as described in "Materials and Methods", and IFN-gamma production from the CTL clone against target cells pulsed peptide was measured by IFN-gamma ELISA. Potent IFN-gamma production was observed from the CTL clone stimulated with SMYD3-A02-9-335 (SEQ ID NO: 22) ( Figure 6).
  • SMYD3-A24-9-197 SEQ ID NO: 2
  • SMYD3-A24-9-326 SEQ ID NO: 4
  • SMYD3-A24-9-138 SEQ ID NO: 5
  • SMYD3-A24-9-130 SEQ ID NO: 6
  • SMYD3-A24-9-192 SEQ ID NO: 7
  • SMYD3-A24-9-118 SEQ ID NO: 8
  • SMYD3-A24-9-301 SEQ ID NO: 9
  • SMYD3-A24-10-260 SEQ ID NO: 13
  • SMYD3-A24-10-266 SEQ ID NO: 14
  • SMYD3-A24-10-86 SEQ ID NO: 17
  • SMYD3-A24-10-138 SEQ ID NO: 19
  • homology analyses were performed for these peptide sequences using as queries the BLAST algorithm (http://www.ncbi.nlm.nih.gov/blast/blast.cgi) which revealed no sequence with significant homology.
  • the results of homology analyses indicate that the sequence of SMYD3-A24-9-197 (SEQ ID NO: 2), SMYD3-A24-9-326 (SEQ ID NO: 4), SMYD3-A24-9-138 (SEQ ID NO: 5), SMYD3-A24-9-130 (SEQ ID NO: 6), SMYD3-A24-9-192 (SEQ ID NO: 7), SMYD3-A24-9-118 (SEQ ID NO: 8), SMYD3-A24-9-301 (SEQ ID NO: 9), SMYD3-A24-10-260 (SEQ ID NO: 13), SMYD3-A24-10-266 (SEQ ID NO: 14), SMYD3-A24-10-86
  • novel HLA-A*2402 epitope peptides derived from SMYD3 identified herein may find utility in the field of cancer immunotherapy.
  • homology analyses were performed for these peptide sequences using as queries the BLAST algorithm (http://www.ncbi.nlm.nih.gov/blast/blast.cgi) which revealed no sequence with significant homology.
  • the results of homology analyses indicate that the sequence of SMYD3-A02-9-335 (SEQ ID NO: 22), SMYD3-A02-9-118 (SEQ ID NO: 8) and SMYD3-A02-10-76 (SEQ ID NO: 16) are unique and thus, there is little possibility, to our best knowledge, that these molecules will raise unintended immunologic response to some unrelated molecule.
  • novel HLA-A*0201 epitope peptides derived from SMYD3 identified herein may find utility in the field of cancer immunotherapy.
  • the present invention provides new epitope peptides derived from SMYD3 that may induce potent and specific anti-tumor immune responses and have applicability to a wide variety of cancer types.
  • Such peptides can find use as peptide vaccines against diseases associated with SMYD3, e.g., cancer, more particularly, colorectal cancer, hepatocellular carcinoma, breast cancer and bladder cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention concerne des vaccins peptidiques contre le cancer. En particulier, l'invention concerne des peptides épitopes isolés issus du gène SMYD3 qui stimulent les CTL et par conséquent sont appropriés pour l'utilisation dans le contexte de l'immunothérapie anticancéreuse. Les peptides de l'invention englobent à la fois des peptides issus de SMYD3 et les versions modifiées de ceux-ci, dans lesquels un, deux ou plusieurs acides aminés sont substitués, délétés, insérés ou ajoutés, à condition que de telles versions modifiées conservent la capacité d'induction de CTL nécessaire des séquences d'origine. L'invention concerne en outre des polynucléotides codant pour de tels peptides ainsi que des compositions pharmaceutiques qui comprennent n'importe lesquels de tels peptides ou polynucléotides en tant que principes actifs. L'invention concerne des cellules présentatrices d'antigène et des CTL isolés qui ciblent de tels peptides, ainsi que des procédés d'induction de la cellule présentatrice d'antigène ou des CTL. En outre, la présente invention concerne des méthodes de traitement et/ou de prophylaxie (à savoir la prévention) de cancers (tumeurs) et/ou de prévention d'une métastase ou d'une récurrence post-opératoire associée, ainsi que des procédés d'induction de CTL, des procédés d'induction de l'immunité anti-tumorale, à l'aide des peptides issus de SMYD3, des polynucléotides codant pour les peptides, ou des cellules présentatrices d'antigène présentant les peptides, ou les compositions pharmaceutiques de la présente invention.
PCT/JP2014/001276 2013-03-11 2014-03-07 Peptides smyd3 et vaccins les contenant WO2014141652A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361776455P 2013-03-11 2013-03-11
US61/776,455 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014141652A1 true WO2014141652A1 (fr) 2014-09-18

Family

ID=51536331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001276 WO2014141652A1 (fr) 2013-03-11 2014-03-07 Peptides smyd3 et vaccins les contenant

Country Status (2)

Country Link
TW (1) TW201512223A (fr)
WO (1) WO2014141652A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138110A1 (fr) 2017-01-25 2018-08-02 Ose Immunotherapeutics Procédé de fabrication d'une émulsion stable pour l'administration de peptides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027322A2 (fr) * 2001-09-25 2003-04-03 Japan As Represented By The President Of The University Of Tokyo Genes et polypeptides associes aux carcinomes hepatocellulaires, et methode de detection de carcinomes hepatocellulaires
WO2003027143A2 (fr) * 2001-09-25 2003-04-03 Japan As Represented By The President Of The University Of Tokyo Gene et proteine lies au carcinome hepatocellulaire
WO2008102557A1 (fr) * 2007-02-21 2008-08-28 Oncotherapy Science, Inc. Vaccins peptidiques pour les cancers exprimant des antigènes associés à une tumeur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027322A2 (fr) * 2001-09-25 2003-04-03 Japan As Represented By The President Of The University Of Tokyo Genes et polypeptides associes aux carcinomes hepatocellulaires, et methode de detection de carcinomes hepatocellulaires
WO2003027143A2 (fr) * 2001-09-25 2003-04-03 Japan As Represented By The President Of The University Of Tokyo Gene et proteine lies au carcinome hepatocellulaire
WO2008102557A1 (fr) * 2007-02-21 2008-08-28 Oncotherapy Science, Inc. Vaccins peptidiques pour les cancers exprimant des antigènes associés à une tumeur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138110A1 (fr) 2017-01-25 2018-08-02 Ose Immunotherapeutics Procédé de fabrication d'une émulsion stable pour l'administration de peptides
EP4029494A1 (fr) 2017-01-25 2022-07-20 OSE Immunotherapeutics Procédé de fabrication d'une émulsion stable pour l'administration de peptides

Also Published As

Publication number Publication date
TW201512223A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
US11266729B2 (en) UBE2T peptides and vaccines containing the same
AU2014232630B2 (en) KNTC2 peptides and vaccines containing the same
AU2017200530A1 (en) TOPK peptides and vaccines including the same
WO2011125334A1 (fr) Peptides cdca5 et vaccins les comprenant
US9187556B2 (en) SEMA5B peptides and vaccines including the same
WO2011089921A1 (fr) Peptides melk modifiés et vaccins associés
US8697631B2 (en) TMEM22 peptides and vaccines including the same
WO2012032764A1 (fr) Peptides ttll4 et vaccins les contenant
WO2011122022A1 (fr) Peptides d'ect2 et vaccins les comprenant
WO2014087626A1 (fr) Peptides sema5b et vaccins les contenant
WO2012053200A1 (fr) Peptides c18orf54 et vaccins les contenant
WO2012053206A1 (fr) Peptides wdhd1 et vaccins les contenant
WO2014141652A1 (fr) Peptides smyd3 et vaccins les contenant
WO2014136453A1 (fr) Peptides c12orf48 et vaccins les contenant
WO2014106886A1 (fr) Peptides cdca5 et vaccins les contenant
WO2012032763A1 (fr) Peptides vangl1 et vaccins les contenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765446

Country of ref document: EP

Kind code of ref document: A1