WO2014141469A1 - Wavelength selection switch - Google Patents

Wavelength selection switch Download PDF

Info

Publication number
WO2014141469A1
WO2014141469A1 PCT/JP2013/057413 JP2013057413W WO2014141469A1 WO 2014141469 A1 WO2014141469 A1 WO 2014141469A1 JP 2013057413 W JP2013057413 W JP 2013057413W WO 2014141469 A1 WO2014141469 A1 WO 2014141469A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
signal light
wavelength selective
selective switch
light
Prior art date
Application number
PCT/JP2013/057413
Other languages
French (fr)
Japanese (ja)
Inventor
英久 田澤
学 塩崎
健一郎 高橋
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2013/057413 priority Critical patent/WO2014141469A1/en
Priority to JP2013250384A priority patent/JP6427869B2/en
Priority to US14/207,071 priority patent/US9116414B2/en
Priority to EP14159467.1A priority patent/EP2799918A1/en
Priority to CN201410096422.3A priority patent/CN104049305B/en
Publication of WO2014141469A1 publication Critical patent/WO2014141469A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/002Optical devices or arrangements for the control of light using movable or deformable optical elements the movement or the deformation controlling the frequency of light, e.g. by Doppler effect

Definitions

  • the present invention relates to a wavelength selective switch.
  • An optical device described in Patent Document 1 includes a plurality of input and output ports provided by a fiber coupling collimator, an anamorphic system that converts signal light from the input port into a beam having a predetermined beam profile, A diffraction grating for spatially separating the beam, a focusing optical device for converting the beam separated by the diffraction grating into a channel beam having an elongated beam profile, and an elongated shape adapted to the beam profile of the channel beam And an array of micromirrors and a control system that controls the rotation of the micromirrors to switch the channel beam to a predetermined output port.
  • the present invention has been made in view of such circumstances, and the aspect ratio of the beam size can be adjusted without complicating the structure, and a multi-port can be realized without increasing the size of the apparatus.
  • An object is to provide a wavelength selective switch.
  • the wavelength selective switch includes a port array configured by arranging an input port for inputting signal light and an output port for outputting signal light in a first direction, and the signal light input from the input port in the first direction.
  • a spectral element that splits light in a second direction different from the above, a condensing element that condenses each of the signal light dispersed by the spectroscopic element, and each of the signal light condensed by the condensing element toward the output port A deflecting optical deflection element, a relay optical system that adjusts the beam waist position of the signal light input from the input port in the first direction so as to substantially coincide with the front focal point of the condensing element, the relay optical system, and the optical Are arranged in front of or behind the relay optical system so as to be connected to each other, and the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element is expanded. Characterized in that it comprises the anamorphic optical system, a.
  • the relay optical system adjusts the beam waist position so that the beam waist position of the signal light substantially coincides with the front focal point of the condensing element in the first direction. For this reason, since the spread of the beam due to diffraction can be suppressed in the first direction (arrangement direction of the input port and the output port) of the signal light at the output port, the beam size at the output port can be reduced. Therefore, according to this wavelength selective switch, it is possible to increase the number of ports without increasing the size of the apparatus.
  • this wavelength selective switch the beam in the first direction with respect to the beam size in the second direction of the signal light in the optical deflection element is detected by the anamorphic optical system arranged at the front stage or the rear stage of the relay optical system.
  • the ratio of sizes (hereinafter sometimes referred to as aspect ratio) is enlarged.
  • this wavelength selective switch for example, the aspect ratio of the beam size of the signal light in the optical deflection element can be adjusted without increasing the optical path length and complicating the structure.
  • the relay optical system includes a first element having optical power in the first direction and the second direction, and a second element having optical power in at least the first direction. These elements may be included.
  • the input port and the output port include an optical fiber and a collimating lens optically connected to the optical fiber, and the front focal point of the first element is the rear focal point of the collimating lens with respect to the first direction.
  • the front focal point of the second element is arranged to substantially coincide with the rear focal point of the first element in the first direction, and the rear side of the second element
  • the focal point may be arranged so as to substantially coincide with the front focal point of the light collecting element. In this case, it becomes easy to adjust the beam waist position of the signal light so as to substantially coincide with the front focal point of the light collecting element in the first direction.
  • the second element has optical power only in the first direction, and the first element with respect to the beam size in the second direction of the signal light in the optical deflection element.
  • the ratio of beam sizes with respect to direction can be expanded.
  • the aspect ratio can be adjusted while adjusting the beam waist position in the first direction by providing the relay optical system also with a function of expanding the aspect ratio of the beam size of the signal light in the optical deflection element. It becomes easy.
  • the anamorphic optical system is arranged at the rear stage of the relay optical system, and the first element is signal light input from the input port and incident on the first element.
  • the beam size at the beam waist position of the signal light emitted from the first element can be made relatively larger than the beam size at the beam waist position. In this way, for example, even when the aspect ratio of the signal light beam size is increased in an anamorphic optical system, an increase in loss can be suppressed.
  • the relay optical system and the anamorphic optical system constitute a beam waist position adjusting optical system that adjusts the beam waist position of the signal light.
  • the system is arranged at the rear stage of the relay optical system, and the relay optical system adjusts the beam waist position of the signal light input from the input port in the second direction so as to be the rear stage of the anamorphic optical system. be able to.
  • the second element may have optical power in the first direction and the second direction. In this case, it is possible to make the aspect ratio of the beam size of the signal light in the optical deflection element different from the aspect ratio conversion magnification of the beam size in the anamorphic optical system. Therefore, according to this wavelength selective switch, for example, the aspect ratio of the beam size of the signal light can be adjusted without increasing the optical path length.
  • the relay optical system and the anamorphic optical system constitute a beam waist position adjusting optical system that adjusts the beam waist position of the signal light.
  • the system is arranged at the subsequent stage of the relay optical system, and the relay optical system can adjust the beam waist position of the signal light input from the input port in the second direction so as to be at the front stage of the collimating lens.
  • the second element may have optical power only in the first direction.
  • the aspect ratio of the beam size of the signal light in the optical deflection element can be made different from the aspect ratio conversion magnification of the beam size in the anamorphic optical system. Therefore, according to this wavelength selective switch, for example, the aspect ratio of the beam size of the signal light can be adjusted without increasing the optical path length.
  • the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element is the second direction in the anamorphic optical system. It is assumed that the signal beam beam size is about 3 times or more of the magnification of the signal light beam. Further, the distance between the beam waist position of the signal light input from the input port and entering the light collecting element and the light collecting element changes the beam size of the signal light in the light deflecting element when the distance is changed. It can be larger than the changing point distance. In this case, a beam having a sufficiently high aspect ratio can be formed in the optical deflection element.
  • the change point distance here is a threshold value of the distance between the beam waist position of the signal light input from the input port and incident on the light collecting element and the light collecting element, and the distance is gradually changed. This is the distance at which the beam size of the signal light in the optical deflection element starts to change.
  • the optical deflection element independently receives each of the signal lights dispersed by the spectral element by the plurality of optical deflection element elements arranged along the first direction.
  • the relay optical system and the anamorphic optical system are deflected toward the output port by performing phase modulation, and the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element Can be 30 or more.
  • the optical path of the signal light can be suitably controlled by the optical deflection element that controls the optical path of the signal light based on such a principle.
  • the anamorphic optical system may be composed of at least a pair of prisms.
  • the incident angle of the signal light input from the input port to the prism can be 70 ° or more.
  • the signal light in the anamorphic optical system, can be sufficiently expanded in the second direction, and the aspect ratio of the beam size of the signal light in the optical deflection element can be sufficiently increased.
  • the incident angle of the signal light input from the input port to the prism can be substantially equal to the Brewster angle. In this case, reflection of P-polarized light contained in the signal light can be reduced.
  • the refractive index of the prism can be 1.5 or more. In this case, even if the signal light is incident on the prism at a large incident angle, the reflected light can be relatively reduced. For this reason, it is easy to set the incident angle of the signal light to the prism as described above.
  • the refractive index of the prism may be 3 or more. In this case, it can be suitably realized that the incident angle of the signal light to the prism is as described above.
  • the wavelength selective switch according to one aspect of the present invention can further include a polarization diversity module disposed in the previous stage of the relay optical system.
  • polarization dependent loss can be reduced.
  • the polarization diversity module can be miniaturized by disposing it before the relay optical system.
  • the polarization diversity module includes a polarization beam splitter that separates the signal light in the second direction according to the polarization direction, and signal light separated by the polarization beam splitter.
  • a polarization rotation element that adjusts one polarization direction of the optical signal to the other polarization direction
  • an optical path adjustment element that adjusts one optical path length of the signal light separated by the polarization beam splitter to the other optical path length.
  • the present invention it is possible to provide a wavelength selective switch in which the aspect ratio of the beam size of signal light can be adjusted without complicating the structure and the number of ports can be increased without increasing the size of the apparatus. it can.
  • FIG. 1 is a schematic diagram showing a configuration of a first embodiment of a wavelength selective switch according to one aspect of the present invention.
  • an orthogonal coordinate system S is shown.
  • FIG. 1A is a diagram from the y-axis direction of the orthogonal coordinate system S, and is a diagram illustrating a schematic configuration of the wavelength selective switch in a plane (xz plane) including the x-axis and the z-axis.
  • FIG. 1B is a diagram from the x-axis direction of the orthogonal coordinate system S, and is a diagram illustrating a schematic configuration of the wavelength selective switch in a plane (xz plane) including the y-axis and the z-axis. .
  • the wavelength selective switch 1 includes a port array 14 configured by arranging input ports 12 and output ports 13 in the x-axis direction (first direction), and an input.
  • An optical deflection element 15 that deflects the signal light L1 input from the port 12 toward the output port 13 is provided.
  • the wavelength selective switch 1 includes a relay optical system 16, an anamorphic optical system 17, a spectroscopic element 18, and a condenser lens that are sequentially arranged on the optical path of the signal light L ⁇ b> 1 from the input port 12 toward the optical deflection element 15. (Condensing element) 19 is provided.
  • the input port 12 side on the optical path of the signal light L1 from the input port 12 toward the light deflection element 15 is referred to as a front stage and a front side
  • the light deflection element 15 side is referred to as a rear stage and a rear side.
  • the port array 14 includes, for example, one input port 12 and a plurality of output ports 13.
  • the input port 12 can include, for example, an optical fiber 12a and a collimating lens 12b optically connected to the optical fiber 12a.
  • the input port 12 receives the signal light L1 that is, for example, wavelength multiplexed light.
  • the output port 13 can include, for example, an optical fiber 13a and a collimating lens 13b optically connected to the optical fiber 13a.
  • the output port 13 outputs the signal light L1 of each wavelength component deflected by the light deflecting element 15.
  • the relay optical system 16 is optically connected to the collimating lenses 12 b and 13 b and the condenser lens 19.
  • the relay optical system 16 includes a first lens (first element) 16a and a second lens (second element) 16b.
  • the first lens 16a is a rotationally symmetric lens such as a convex spherical lens having optical power in the x-axis direction and the y-axis direction (second direction), for example.
  • the first lens 16a is disposed in front of the second lens 16b, and the front focal point of the first lens 16a is disposed so as to substantially coincide with the rear focal points of the collimating lenses 12b and 13b.
  • the first lens 16a is arranged at a position separated from the collimating lenses 12b and 13b by the focal length f1 of the collimating lenses 12b and 13b and the focal length f2 of the first lens 16a.
  • the first element and the second element have optical power (that is, refractive power) as described, and a reflection type element such as a mirror in addition to a transmission type element such as a lens. Can be applied.
  • the second lens 16b has optical power at least in the x-axis direction.
  • the second lens 16b is, for example, a cylindrical lens having optical power only in the x-axis direction.
  • the front focal point of the second lens 16b is disposed so as to substantially coincide with the rear focal point of the first lens 16a.
  • the rear focal point of the second lens 16 b is disposed so as to substantially coincide with the front focal point of the condenser lens 19. That is, the second lens 16b is located away from the first lens 16a by the focal length f2 of the first lens 16a and the focal length f3 of the second lens 16b, and is the position of the second lens 16b.
  • the signal light L1 emitted from the collimating lens 12b of the input port 12 enters the first lens 16a and then enters the second lens 16b.
  • the anamorphic optical system 17 is arranged in front of or behind the relay optical system 16.
  • an embodiment in which an anamorphic optical system 17 is arranged at the subsequent stage of the relay optical system 16 is shown.
  • the anamorphic optical system 17 receives the signal light L1 emitted from the relay optical system 16 (second lens 16b), and changes the beam size of the signal light L1 in the y-axis direction (in the yz plane). ) Enlarge and emit.
  • the anamorphic optical system 17 has a function of converting and outputting the aspect ratio of an input beam, and can be configured by combining a prism pair, a cylindrical lens, a cylindrical mirror, or the like. In the present embodiment, for example, a pair of prisms 17a and 17b is illustrated.
  • the incident angle of the signal light L1 emitted from the relay optical system 16 (that is, the signal light L1 emitted from the collimating lens 12b of the input port 12) to the prism 17a on the preceding stage can be set to, for example, 70 ° or more. .
  • the beam size can be sufficiently expanded in the y-axis direction.
  • the incident angle of the signal light L1 emitted from the relay optical system 16 that is, the signal light L1 emitted from the collimating lens 12b of the input port 12
  • the prism 17a on the front stage is substantially equal to, for example, the Brewster angle. can do.
  • the reflected light due to the polarization dependence of the signal light can be reduced (the reflection of the P-polarized light included in the signal light L1 can be reduced).
  • the refractive index of the prism 17a (prism 17b) can be, for example, 1.5 or more.
  • the refractive index of the prism 17a (prism 17b) can be set to 3 or more, for example. In these cases, even if the signal light L1 is incident on the prism 17a at a large incident angle, the reflected light can be relatively reduced. For this reason, it is easy to set the incident angle of the signal light L1 to the prism 17a as described above. In particular, if the refractive indexes of the prisms 17a and 17b are 3 or more, the incident angle of the signal light L1 to the prism 17a can be set to be 70 ° or more and substantially equal to the Brewster angle.
  • the spectroscopic element 18 receives the signal light L1 that has been input from the input port 12 and passed through the relay optical system 16 and the anamorphic optical system 17, and enters the y-axis direction (second direction) according to the wavelength (that is, the second direction). , In the yz plane).
  • the signal light L1 may be split into a plurality of signal lights L1 for each wavelength, but only a single signal light L1 is illustrated here.
  • a diffraction grating can be used as the spectroscopic element 18, for example.
  • the spectroscopic element 18 is disposed at the front focal point Pf of the condenser lens 19.
  • the spectroscopic element 18 is located away from the second lens 16b by the focal length f3 of the second lens 16b of the relay optical system 16 and has a focal length f4 of the condenser lens 19. It is arranged at a position away from the condenser lens 19 by the amount.
  • the condensing lens 19 receives the signal light L1 that is split and emitted by the spectroscopic element 18, and the light deflecting element 15 collimates the signal light L1 in the x-axis direction (that is, in the xz plane), for example. And condensing on the light deflection element 15 in the y-axis direction (that is, in the yz plane).
  • the condenser lens 19 may be a rotationally symmetric lens such as a convex spherical lens having optical power in the x-axis direction and the y-axis direction.
  • the light deflection element 15 is arranged at the rear focal point of the condenser lens 19. That is, the light deflection element 15 is arranged at a position separated from the condenser lens 19 by the focal length f4 of the condenser lens 19.
  • the light deflection element 15 receives the signal light L1 collected by the condenser lens 19 and deflects it toward a predetermined output port 13 corresponding to the wavelength, for example.
  • the light deflection element 15 has a plurality of light deflection element elements arranged along the x-axis direction. Then, the optical deflection element 15 deflects the signal light L1 split by the spectroscopic element 18 by the optical deflection element element toward the output port 13 by independently performing phase modulation.
  • an optical deflecting element 15 for example, LCOS (Liquid Cristal On Silicon) can be used.
  • LCOS Liquid Cristal On Silicon
  • a MEMS (Micro Electro Mechanical Systems) element may be used as the light deflection element 15.
  • the signal light L1 deflected by the light deflecting element 15 is incident on a predetermined output port 13 via the condenser lens 19, the spectroscopic element 18, the anamorphic optical system 17, and the relay optical system 16, and is output. .
  • the relay optical system 16 adjusts the beam waist position P1 of the signal light (that is, the signal light emitted from the collimating lens 12b) L1 input from the input port 12. More specifically, as described above, the relay optical system 16 includes the first lens 16a having optical power in the x-axis direction and the y-axis direction, and the second lens 16b having optical power in at least the x-axis direction. It is comprised including.
  • the first lens 16a is arranged so that the focal points thereof are substantially coincident with the collimating lenses 12b and 13b in the x-axis direction, and the second lens 16b is first in the x-axis direction.
  • the lens 16a and the condenser lens 19 are arranged so that their focal points are substantially coincident with each other.
  • the relay optical system 16 changes the beam waist position P1 of the signal light L1 input from the input port 12 in the x-axis direction (that is, in the xz plane) to the front focal point (that is, the condensing lens 19).
  • the spectral element 18 is adjusted so that it substantially coincides with the installation position Pf.
  • the second lens 16b has optical power only in the x-axis direction (that is, in the xz plane), and has optical power in the y-axis direction (that is, in the yz plane). Not. For this reason, the signal light L1 incident on the condenser lens 19 has a beam size that is relatively small with respect to the y-axis direction in the x-axis direction. Therefore, the signal light L1 irradiated to the light deflection element 15 via the condenser lens 19 has a relatively enlarged beam size in the x-axis direction with respect to the beam size in the y-axis direction.
  • the anamorphic optical system 17 is disposed upstream or downstream (in the present embodiment) of the relay optical system 16 and optically connected to the relay optical system 16.
  • the anamorphic optical system 17 relatively enlarges the beam size in the y-axis direction. Note that the beam shapes of the signal light L1 in the x-axis direction and the y-axis direction are reversed by the condenser lens 19, so that the anamorphic optical system 17 results in the y of the signal light L1 in the light deflecting element 15 as a result.
  • the ratio (aspect ratio) of the beam size in the x-axis direction to the beam size in the axial direction is enlarged.
  • the relay optical system 16 has a function of expanding the ratio of the beam size in the x-axis direction to the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15. If it is given, it becomes easy to increase the aspect ratio of the beam size.
  • the first lens 16a of the relay optical system 16 has a beam waist position of the signal light L1 input from the input port 12 (collimator lens 12b) and incident on the first lens 16a in the x-axis direction and the y-axis direction.
  • the beam size at the beam waist position Pe of the signal light L1 emitted from the first lens 16a is relatively larger than the beam size at P1. In this way, for example, even when the aspect ratio of the beam size of the signal light L1 is increased in the relay optical system 16 and the anamorphic optical system 17, an increase in loss can be suppressed.
  • the relay optical system 16 makes the beam waist position P1 of the signal light L1 input from the input port 12 coincide with the front focal point of the condenser lens 19 in the x-axis direction. adjust. Therefore, according to the wavelength selective switch 1, it is possible to increase the number of ports without increasing the size of the device.
  • the relay optical system 16 is also provided with a function of expanding the aspect ratio of the beam size of the signal light L ⁇ b> 1 in the optical deflection element 15. For this reason, according to the wavelength selective switch 1, it is possible to adjust (enlarge) the aspect ratio of the beam size without increasing the optical path length and complicating the structure, for example.
  • this wavelength selective switch 1 if the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 is made smaller by the relay optical system 16 and the anamorphic optical system 17 (the previous stage of the condenser lens 19). If the beam size in the y-axis direction is made larger), the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 can be made sufficiently high. More specifically, the relay optical system 16 and the anamorphic optical system 17 can set the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 to 30 or more. Therefore, for example, it is suitable when a high aspect ratio is required in the beam size at the optical deflection element 15 such as when LCOS is used as the optical deflection element 15.
  • the optical deflection element 15 when the optical deflection element 15 requires an aspect ratio of about 40 (that is, in the optical deflection element 15, the beam size in the x-axis direction of the signal light L1 is a beam in the y-axis direction).
  • the magnification of the beam size in the y-axis direction of the anamorphic optical system 17 is about 8 times, it is given to the relay optical system 16.
  • the magnification of the function of enlarging the beam size in the x-axis direction with respect to the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 may be about 5 times.
  • FIG. 2 is a schematic diagram showing the configuration of the second embodiment of the wavelength selective switch according to one aspect of the present invention.
  • the wavelength selective switch 1A according to the present embodiment is different from the wavelength selective switch 1 according to the first embodiment in that a beam waist position adjusting optical system 20A is provided.
  • the beam waist position adjusting optical system 20A adjusts the beam waist position P1 of the signal light L1 input from the input port 12.
  • the illustration of the beam size expansion in the y-axis direction in the anamorphic optical system 17 is omitted.
  • the beam waist position adjusting optical system 20A includes a relay optical system 16A and an anamorphic optical system 17.
  • the relay optical system 16 ⁇ / b> A is disposed in front of the anamorphic optical system 17. Further, the relay optical system 16A is optically connected to the collimating lenses 12b and 13b and the condenser lens 19.
  • the relay optical system 16A is different from the relay optical system 16 in that it includes a second lens 16c instead of the second lens 16b.
  • the second lens 16c is, for example, a rotating contrast lens having optical power in the x-axis direction and the y-axis direction.
  • the front focal point of the second lens 16c is disposed so as to substantially coincide with the rear focal point of the first lens 16a.
  • the rear focal point of the second lens 16 c is disposed so as to substantially coincide with the front focal point of the condenser lens 19. That is, the second lens 16c is located away from the first lens 16a by the focal length f2 of the first lens 16a and the focal length f3 of the second lens 16c, and is the position of the second lens 16c. They are arranged at positions separated from the condensing lens 19 by the focal length f3 and the focal length f4 of the condensing lens 19.
  • Such a relay optical system 16A adjusts the beam waist position P1 of the signal light L1 input from the input port 12 in the y-axis direction so as to be positioned at the subsequent stage of the anamorphic optical system 17.
  • the beam waist position adjustment optical system 20A adjusts the beam waist position P1 of the signal light (that is, the signal light emitted from the collimator lens 12b) L1 input from the input port 12. More specifically, the beam waist position adjusting optical system 20A is configured to change the beam waist position P1 of the signal light L1 input from the input port 12 in the x-axis direction (that is, in the xz plane) to the relay optical system. By relaying using 16A, adjustment is made so as to substantially coincide with the front focal point of the condenser lens 19 (that is, the installation position of the spectroscopic element 18) Pf.
  • the beam waist position adjusting optical system 20A uses the relay optical system 16A and the anamorphic optical system 17 in the y-axis direction (that is, in the yz plane) to input signal light from the input port 12.
  • the beam waist position P1 of L1 is adjusted. The adjustment of the beam waist position in the y-axis direction will be described in detail.
  • the following relationship is known for the light L2, which is a Gaussian beam propagating through the lens A having a focal length f (for example, “Sidney A. Self,“ Focusing of spherical Gaussian ”). beams, ”Applied Optics, vol.22, No.5, pp.658 (1983) ").
  • S 1 is a distance from the beam waist position A 1 of the light L 2 incident on the lens A to the lens A
  • S 2 is a distance from the beam waist position A 2 of the light L 2 emitted from the lens A to the lens A. It is the distance to.
  • D 1 is the beam radius at the beam waist position A 1 of the light L2
  • D 2 is the beam radius at the beam waist position A 2 of the light L2.
  • is the wavelength of the light L2.
  • the distance S 2 from the beam waist position A 2 of the light L 2 emitted from the lens A to the lens A is from the beam waist position A 1 of the light L 2 incident on the lens A to the lens. it can be adjusted by adjusting the distance S 1 to a.
  • the beam radius D 2 at the beam waist position A 2 of the light L 2 emitted from the lens A is also changed from the beam waist position A 1 of the light L 2 incident on the lens A to the lens A. it can be adjusted by adjusting the distance S 1 to.
  • the present inventors have found that such a relationship is useful not only in the lens A as shown in FIG.
  • the beam waist position adjustment optical system 20A is, by utilizing their relationships, the y-axis direction, to adjust the distance S 1L from the beam waist position P1 of the signal light L1 input from the input port 12 to the condenser lens 19 .
  • Figure 4 is a diagram for explaining a distance S 1P from the beam waist relay position P2 is a parameter to the prism installation position PP used for adjusting the distance S 1L.
  • FIG. 4 shows the state of beam propagation in terms of wave optics.
  • the beam waist position adjusting optical system 20A first converts the beam waist position P1 of the signal light L1 input from the input port 12 into the prism of the anamorphic optical system 17 by the relay optical system 16A.
  • the beam waist position adjusting optical system 20A substantially relays the beam waist position P1 of the signal light L1 input from the input port 12 by the relay optical system 16, thereby substantially setting the prism installation position PP (anamorphic optical). Adjust so that it is located in the latter part of the system 17).
  • Distance S 1P from the beam waist relay position P2 to the prism installation position PP is considered to correspond to the distance S 1 of the relationships in the lens A described above (however, the beam waist relay position P2, later than the prism installation position PP Therefore, the distance S1P is a negative value).
  • the distance S 1P is a negative value.
  • the beam waist position adjusting optical system 20A sets the beam waist position P1 of the signal light L1 incident on the anamorphic optical system 17 to the beam waist relay position P2 by the relay optical system 16A, and the distance from the prism installation position PP.
  • the distance S 1L from the beam waist position of the signal light L1 incident on the condenser lens 19 to the condenser lens 19 is adjusted by adjusting S 1P .
  • f1 is the focal length of the collimating lens 12b
  • f4 is the focal length of the condenser lens 19.
  • f2 is the focal length of the first lens 16a
  • f3 is the focal length of the second lens 16c.
  • the beam waist position adjusting optical system 20 ⁇ / b> A sets the beam waist position P ⁇ b> 3 of the signal light L ⁇ b> 1 incident on the condensing lens 19 to the subsequent stage of the light deflection element 15, as indicated by a one-dot chain line in FIG. To be located.
  • the distance S 1L from the beam waist position P3 to the condensing lens 19 is a negative value.
  • the condenser lens 19 (corresponding to 2 times the beam radius D 2 of the relationships in the lens a described above) the beam size at the beam waist position of the signal light L1 emitted from the can be adjusted. That is, the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 can be adjusted.
  • the broken line indicates the spread of the signal light L1 when the anamorphic optical system 17 is not provided.
  • the beam waist position P3 of the signal light L1 incident on the condenser lens 19 is, for example, It substantially coincides with the front focal point Pf.
  • FIG. 5 shows the distance S 1L from the beam waist position P3 of the signal light L1 incident on the condenser lens 19 to the condenser lens 19 and the light, with the distance S 1p from the beam waist relay position P2 to the prism installation position PP as a parameter.
  • 6 is a table showing a result of calculating a beam size in the y-axis direction in the deflection element 15.
  • FIG. 6 is a graph showing the relationship between the distance S 1L and the beam size (diameter) in the y-axis direction in the optical deflection element 15.
  • the y-axis direction beam size is the beam size in the y-axis direction of the signal light L1 emitted from the condensing lens 19 in the light deflection element 15.
  • the beam waist diameter is the beam size at the beam waist position P3 of the signal light L1 incident on the condensing lens 19, which corresponds to twice the beam radius D 1 described above.
  • the beam waist position P3 of the signal light L1 incident distance S 1P from the beam waist relay position P2 to the prism mounting position PP from 25mm to the condensing lens 19 is gradually increased by 10mm intervals If the absolute value of the distance S1L to the condensing lens 19 is adjusted so as to increase, the beam size (diameter) in the y-axis direction in the light deflection element 15 gradually decreases. For example, as shown in FIG. 6, the absolute value of the y-axis direction of the beam size in the vicinity of 450mm distance S 1L is gradually beginning to decrease.
  • the change point distance at which the beam size in the y-axis direction changes is about 450 mm.
  • the relay optical system 16A by adjusting the distance S 1P from the beam waist relay position P2 to the prism installation position PP by the relay optical system 16A, consequently, to adjust the beam size in the y-axis direction of the light deflector 15 it can.
  • the beam expansion magnification in the y-axis direction of the anamorphic optical system 17 is set to 8 times
  • the beam size in the x-axis direction of the light deflection element 15 is expanded by 8 times by the anamorphic optical system 17.
  • the aspect ratio of the beam size in the optical deflection element 15 can be made 8 times or more.
  • the aspect ratio of the beam size in the light deflection element 15 is about 30. it can.
  • FIG. Another calculation result is shown in FIG.
  • the following conditions are used for the calculation shown in FIG. [Prism (Anamorphic Optical System 17)] Magnification 8 times (2 prisms (prisms 17a and 17b)), glass material is Si [lens]
  • Focal length f3 of the second lens 16c 65 mm
  • Focal length f4 of the condensing lens 19 100 mm
  • Beam waist diameter 0.133mm [wavelength] Wavelength of signal light
  • L1 0.001548 mm
  • the beam size in the y-axis direction of the light deflection element 15 is gradually reduced.
  • the beam size in the y-axis direction starts to gradually decrease when the absolute value of the distance S 1L is around 180 mm. That is, the changing point distance at which the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 changes when the distance S1L is changed is about 180 mm here.
  • the conversion magnification of the beam size in the y-axis direction of the anamorphic optical system 17 is 8.
  • the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 can be 8 times or more by making the beam size in the y-axis direction in the optical deflection element 15 relatively small. For example, in the example shown in FIG. 7, when the distance S 1P is adjusted by the relay optical system 16A so that the distance S 1L is about 1900 mm, an aspect ratio of about 30 can be realized.
  • the magnitude (change point distance) of the distance S 1L at which the beam size in the y-axis direction of the light deflecting element 15 starts to decrease is that of the signal light L 1 incident on the condenser lens 19. It also varies depending on the beam waist diameter. Therefore, in the wavelength selective switch 1A according to the present embodiment, the distance S1L between the beam waist position P3 of the signal light L1 input from the input port 12 and incident on the condenser lens 19 and the condenser lens 19 is determined as follows.
  • the beam size of the signal light L1 in the optical deflection element 15 in the y-axis direction changes (becomes smaller) and becomes larger than the change point distance (for example, about 450 mm or 180 mm described above). It is preferable to set as follows.
  • each of the signal light L1 dispersed by the spectroscopic element 18 is independently phase-modulated by a plurality of light deflecting element elements arranged along the x-axis direction, such as LCOS, as the optical deflecting element 15.
  • the beam waist position adjusting optical system 20A preferably sets the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 to 30 or more.
  • the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 is set in the y-axis direction in the anamorphic optical system 17 (that is, in the x-axis direction in the optical deflection element 15). It is preferable that the magnification of the beam size of the signal light L1 is three times or more.
  • the beam waist position adjusting optical system 20A sets the beam waist position P1 of the signal light L1 input from the input port 12 in the x-axis direction and the y-axis direction, respectively. adjust.
  • the beam waist position adjusting optical system 20A adjusts the beam waist position P1 so that the beam waist position P1 of the signal light L1 substantially coincides with the front focal point Pf of the condenser lens 19 in the x-axis direction. For this reason, the beam size of the signal light L1 at the output port 13 in the x-axis direction (the arrangement direction of the input port 12 and the output port 13) can be reduced. Therefore, according to this wavelength selective switch 1, it is possible to increase the number of ports without increasing the size of the apparatus.
  • the beam waist position P1 of the signal light L1 input from the input port 12 is set on the spectroscopic element 18 by the beam waist position adjusting optical system 20A (relay optical system 16A) in the x-axis direction. To be located. For this reason, the spectroscopic element 18 can be reduced in size in the x-axis direction.
  • the beam waist position adjusting optical system 20A adjusts the beam waist position P1 of the signal light L1 input from the input port 12 in the y-axis direction so as to be the latter stage of the anamorphic optical system 17 (that is, adjust the distance S 1P described above), as a result, to adjust the distance S 1L from the beam waist position P3 of the signal light L1 incident on the condenser lens 19 to the condenser lens 19.
  • the beam size of the signal light L1 in the y-axis direction in the optical deflection element 15 is adjusted, and the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 is adjusted.
  • the aspect ratio of the beam size of the signal light L1 in the optical deflector 15 can be set, for example, in the y-axis direction of the anamorphic optical system 17 without complicating the structure.
  • the beam size enlargement magnification that is, the beam size enlargement magnification in the x-axis direction of the light deflection element 15 via the condenser lens 19
  • the beam size enlargement magnification can be adjusted.
  • the wavelength selective switch according to the present invention is not limited to the wavelength selective switches 1 and 1A described above.
  • the wavelength selective switch according to the present invention can be arbitrarily modified from the wavelength selective switches 1 and 1A described above without departing from the scope of the claims.
  • the wavelength selective switch 1 can further include a polarization diversity module 30 as shown in FIG.
  • the polarization diversity module 30 is disposed in front of the relay optical system 16 (relay optical system 16A).
  • the polarization diversity module 30 includes a polarization beam splitter 31 that separates the signal light L1 in the y-axis direction according to the polarization direction (s / p polarization), and the signal light DL1 and DL2 separated by the polarization beam splitter 31.
  • a wave plate (polarization rotating element) 32 that matches the polarization direction of one signal light DL2 with the polarization direction of the other signal light DL1, and one of the signal lights DL1 and DL2 separated by the polarization beam splitter 31.
  • an optical path adjusting element 33 that matches the optical path length of the other signal light DL2 with the optical path length.
  • the signal light DL ⁇ b> 2 separated by the polarization beam splitter 31 is reflected by the mirror 34 and then enters the wave plate 32.
  • the wavelength selective switch 1 includes the polarization diversity module 30 and can reduce the polarization dependent loss.
  • the polarization diversity module 30 can be miniaturized by disposing it in front of the relay optical system 16 (relay optical system 16A).
  • the signal light DL1 and the signal light DL2 follow different paths.
  • the paths through which the signal lights DL1 and DL2 pass are reversed in the forward path and the return path.
  • the signal light DL1 that travels toward the optical deflection element 15 through the upper path in the figure passes through the lower path in the figure when returning from the optical deflection element 15.
  • the above-described functions of the relay optical system 16 (16A) and the anamorphic optical system 17 are important. Therefore, in the forward and return paths of the signal lights DL1 and DL2 It is necessary to align the optical path length. For this reason, for example, it is more effective to arrange the optical path adjusting element 33 constituted by a cylindrical lens or a prism assembly.
  • the beam radius D 2 at the beam waist position A 2 of the light L 2 emitted from the lens A is equal to the beam waist position A 1 of the light L 2 incident on the lens A. it can also be adjusted by adjusting the beam radius D 1 in. Therefore, also in the wavelength selective switch 1A described above, in the y-axis direction, for example, the beam waist position adjusting optical system 20A is used to adjust the beam size at the beam waist position P3 of the signal light L1 incident on the condenser lens 19.
  • the aspect ratio of the beam size of the signal light L1 on the optical deflection element 15 may be adjusted by adjusting the beam size in the y-axis direction of the signal light L1 on the optical deflection element 15.
  • the relay optical system 16A is set so that the beam waist position P1 of the signal light L1 input from the input port 12 in the y-axis direction is in front of the collimating lenses 12b and 13b. It is good also as a mode to adjust. In that case, it is desirable that the second lens 16c of the relay optical system 16A be a cylindrical lens having optical power only in the x-axis direction. According to such a configuration, the distance S1P has a positive value, but the same effect can be achieved as shown in the above formula.
  • the wavelength selective switches 1 and 1A are applied when wavelength multiplexed light is input from the input port 12 and light of each wavelength component after spectroscopy is output from the output port 13.
  • the wavelength selective switches 1, 1 ⁇ / b> A may be applied when light of each wavelength component is input from the plurality of input ports 12 and wavelength-multiplexed light after being combined is output from the output port 13.
  • the ports 12 and 13 of the port array 14 are configured to include the optical fibers 12a and 13a and the collimating lenses 12b and 13b. It is not limited.
  • the present invention it is possible to provide a wavelength selective switch in which the aspect ratio of the beam size of signal light can be adjusted without complicating the structure and the number of ports can be increased without increasing the size of the apparatus. it can.

Abstract

A wavelength selection switch is provided with: a port array (14) in which an input port (12) and an output port (13) are arranged in the direction of the x-axis; a light dispersion element (18) that disperses signal light (L1) input from the input port (12) in the y-axis direction according to wavelength; a light collecting lens (19) that collects light of each of the signal light beams (L1) dispersed by the light dispersion element (18); a light polarizing element (15) that polarizes each of the signal light beams (L1) collected by the light collecting lens (19) toward the output port (13); a relay optical system (16) that makes the beam waist position (P1) for the signal light (L1) for the x-axis direction substantially match the front side focal point of the collecting lens (19); and an anamorphic optical system (17) that expands the beam size ratio of the signal light (L1) in the light polarizing element (15) for the x-axis direction with respect to the beam size for the y-axis direction.

Description

波長選択スイッチWavelength selective switch
 本発明は、波長選択スイッチに関する。 The present invention relates to a wavelength selective switch.
 特許文献1に記載の光学装置は、ファイバ結合コリメータによって提供される複数の入力及び出力ポートと、入力ポートからの信号光を所定のビームプロファイルを有するビームへ変換するアナモルフィックなシステムと、該ビームを空間的に分離するための回折格子と、回折格子によって分離されたビームを細長いビームプロファイルを有するチャネルビームに変換するための合焦光学装置と、該チャネルビームのビームプロファイルに適合する細長い形状を有するマイクロミラーのアレイと、チャネルビームを所定の出力ポートに切り替えるためにマイクロミラーの回転を制御する制御システムと、を備えている。 An optical device described in Patent Document 1 includes a plurality of input and output ports provided by a fiber coupling collimator, an anamorphic system that converts signal light from the input port into a beam having a predetermined beam profile, A diffraction grating for spatially separating the beam, a focusing optical device for converting the beam separated by the diffraction grating into a channel beam having an elongated beam profile, and an elongated shape adapted to the beam profile of the channel beam And an array of micromirrors and a control system that controls the rotation of the micromirrors to switch the channel beam to a predetermined output port.
特表2008-536168号公報Special table 2008-536168
 特許文献1に記載の光学デバイスにおいては、マイクロミラー上において細長いビームプロファイルを提供するためのアナモルフィックなシステムの一例として、両円錐状、円筒状、又は円環状の複数のレンズ等を用いることが提案されている。しかしながら、その場合には、ビームスサイズのアスペクト比を高くするためには上述したレンズ等を多数用いる必要があり、光路長が長くなって構造が複雑になる。したがって、構造を複雑化することなくビームスサイズのアスペクト比を調整可能とすることが望ましい。その一方で、上記技術分野においては、装置を大型化することなく多ポート化を実現することが望まれている。 In the optical device described in Patent Document 1, as an example of an anamorphic system for providing an elongated beam profile on a micromirror, a plurality of biconical, cylindrical, or annular lenses are used. Has been proposed. However, in that case, in order to increase the aspect ratio of the beam size, it is necessary to use a large number of the above-described lenses and the like, and the optical path length becomes long and the structure becomes complicated. Therefore, it is desirable to be able to adjust the aspect ratio of the beam size without complicating the structure. On the other hand, in the above technical field, it is desired to realize a multi-port without increasing the size of the apparatus.
 本発明は、そのような事情に鑑みてなされたものであり、構造を複雑化することなくビームサイズのアスペクト比を調整可能であると共に、装置を大型化することなく多ポート化を実現可能な波長選択スイッチを提供することを目的とする。 The present invention has been made in view of such circumstances, and the aspect ratio of the beam size can be adjusted without complicating the structure, and a multi-port can be realized without increasing the size of the apparatus. An object is to provide a wavelength selective switch.
 本発明の一側面は、波長選択スイッチに関する。この波長選択スイッチは、信号光を入力する入力ポート及び信号光を出力する出力ポートを第1の方向に配列して構成されるポートアレイと、入力ポートから入力された信号光を第1の方向と異なる第2の方向に分光する分光素子と、分光素子で分光された信号光のそれぞれを集光する集光素子と、集光素子で集光された信号光のそれぞれを出力ポートに向けて偏向する光偏向素子と、第1の方向について、入力ポートから入力された信号光のビームウエスト位置を集光素子の前側焦点と略一致させるように調整するリレー光学系と、リレー光学系と光学的に接続されるようにリレー光学系の前段又は後段に配置され、光偏向素子における信号光の第2の方向についてのビームサイズに対する第1の方向についてのビームサイズの比を拡大するアナモルフィック光学系と、を備えることを特徴とする。 One aspect of the present invention relates to a wavelength selective switch. The wavelength selective switch includes a port array configured by arranging an input port for inputting signal light and an output port for outputting signal light in a first direction, and the signal light input from the input port in the first direction. A spectral element that splits light in a second direction different from the above, a condensing element that condenses each of the signal light dispersed by the spectroscopic element, and each of the signal light condensed by the condensing element toward the output port A deflecting optical deflection element, a relay optical system that adjusts the beam waist position of the signal light input from the input port in the first direction so as to substantially coincide with the front focal point of the condensing element, the relay optical system, and the optical Are arranged in front of or behind the relay optical system so as to be connected to each other, and the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element is expanded. Characterized in that it comprises the anamorphic optical system, a.
 この波長選択スイッチにおいては、リレー光学系が、第1の方向について、信号光のビームウエスト位置が集光素子の前側焦点と略一致するように、ビームウエスト位置を調整する。このため、出力ポートにおける信号光の第1の方向(入力ポート及び出力ポートの配列方向)について、回折によるビームの広がりを抑制できるので、出力ポートにおけるビームサイズを小さくすることができる。よって、この波長選択スイッチによれば、装置を大型化することなく多ポート化することが可能となる。一方、この波長選択スイッチにおいては、リレー光学系の前段又は後段に配置されたアナモルフィック光学系によって、光偏向素子における信号光の第2の方向についてのビームサイズに対する第1の方向についてのビームサイズの比(以下、アスペクト比と称する場合がある)を拡大する。このようにすると、集光素子によって集光された信号光の光偏向素子におけるビームサイズのアスペクト比を、柔軟に設計することが可能となる。よって、この波長選択スイッチによれば、例えば光路長が大きくなり構造が複雑化することなく、光偏向素子における信号光のビームサイズのアスペクト比を調整することが可能となる。 In this wavelength selective switch, the relay optical system adjusts the beam waist position so that the beam waist position of the signal light substantially coincides with the front focal point of the condensing element in the first direction. For this reason, since the spread of the beam due to diffraction can be suppressed in the first direction (arrangement direction of the input port and the output port) of the signal light at the output port, the beam size at the output port can be reduced. Therefore, according to this wavelength selective switch, it is possible to increase the number of ports without increasing the size of the apparatus. On the other hand, in this wavelength selective switch, the beam in the first direction with respect to the beam size in the second direction of the signal light in the optical deflection element is detected by the anamorphic optical system arranged at the front stage or the rear stage of the relay optical system. The ratio of sizes (hereinafter sometimes referred to as aspect ratio) is enlarged. In this way, it is possible to flexibly design the aspect ratio of the beam size in the optical deflecting element of the signal light condensed by the condensing element. Therefore, according to this wavelength selective switch, for example, the aspect ratio of the beam size of the signal light in the optical deflection element can be adjusted without increasing the optical path length and complicating the structure.
 本発明の一側面に係る波長選択スイッチにおいては、リレー光学系は、第1の方向及び第2の方向に光パワーを有する第1の要素と、少なくとも第1の方向に光パワーを有する第2の要素とを含んで構成されるものとすることができる。さらに、入力ポート及び前記出力ポートは、光ファイバと該光ファイバに光学的に接続されたコリメートレンズとを含み、第1の要素の前側焦点は、第1の方向について、コリメートレンズの後側焦点と略一致するように配置されており、第2の要素の前側焦点は、第1の方向について、第1の要素の後側焦点と略一致するように配置され、第2の要素の後側焦点は、集光素子の前側焦点と略一致するように配置されているものとすることができる。この場合、第1の方向について、信号光のビームウエスト位置を集光素子の前側焦点と略一致するように調整することが容易となる。 In the wavelength selective switch according to one aspect of the present invention, the relay optical system includes a first element having optical power in the first direction and the second direction, and a second element having optical power in at least the first direction. These elements may be included. Furthermore, the input port and the output port include an optical fiber and a collimating lens optically connected to the optical fiber, and the front focal point of the first element is the rear focal point of the collimating lens with respect to the first direction. And the front focal point of the second element is arranged to substantially coincide with the rear focal point of the first element in the first direction, and the rear side of the second element The focal point may be arranged so as to substantially coincide with the front focal point of the light collecting element. In this case, it becomes easy to adjust the beam waist position of the signal light so as to substantially coincide with the front focal point of the light collecting element in the first direction.
 本発明の一側面に係る波長選択スイッチにおいては、第2の要素は、第1の方向のみに光パワーを有し、光偏向素子における信号光の第2の方向についてのビームサイズに対する第1の方向についてのビームサイズの比を拡大することができる。この場合、リレー光学系にも光偏向素子における信号光のビームサイズのアスペクト比を拡大する機能を付与することで、第1の方向についてのビームウエスト位置を調整しつつアスペクト比を調整することが容易となる。 In the wavelength selective switch according to one aspect of the present invention, the second element has optical power only in the first direction, and the first element with respect to the beam size in the second direction of the signal light in the optical deflection element. The ratio of beam sizes with respect to direction can be expanded. In this case, the aspect ratio can be adjusted while adjusting the beam waist position in the first direction by providing the relay optical system also with a function of expanding the aspect ratio of the beam size of the signal light in the optical deflection element. It becomes easy.
 本発明の一側面に係る波長選択スイッチにおいては、アナモルフィック光学系は、リレー光学系の後段に配置され、第1の要素は、入力ポートから入力され当該第1の要素に入射する信号光のビームウエスト位置におけるビームサイズよりも、当該第1の要素から出射した信号光のビームウエスト位置におけるビームサイズを相対的に大きくすることができる。このようにすると、例えばアナモルフィック光学系において信号光のビームサイズのアスペクト比を大きくする場合にも、ロスの増加を抑制することができる。 In the wavelength selective switch according to one aspect of the present invention, the anamorphic optical system is arranged at the rear stage of the relay optical system, and the first element is signal light input from the input port and incident on the first element. The beam size at the beam waist position of the signal light emitted from the first element can be made relatively larger than the beam size at the beam waist position. In this way, for example, even when the aspect ratio of the signal light beam size is increased in an anamorphic optical system, an increase in loss can be suppressed.
 本発明の一側面に係る波長選択スイッチにおいては、リレー光学系とアナモルフィック光学系とは、信号光のビームウエスト位置を調整するビームウエスト位置調整光学系を構成しており、アナモルフィック光学系は、リレー光学系の後段に配置され、リレー光学系は、第2の方向について、入力ポートから入力された信号光のビームウエスト位置を、アナモルフィック光学系の後段となるように調整することができる。さらに、第2の要素は、第1の方向及び第2の方向に光パワーを有するものとすることができる。この場合、光偏向素子における信号光のビームサイズのアスペクト比と、アナモルフィック光学系におけるビームサイズのアスペクト比変換倍率とを異ならせることが可能となる。よって、この波長選択スイッチによれば、例えば光路長を大きくすることなく、信号光のビームサイズのアスペクト比を調整することが可能となる。 In the wavelength selective switch according to one aspect of the present invention, the relay optical system and the anamorphic optical system constitute a beam waist position adjusting optical system that adjusts the beam waist position of the signal light. The system is arranged at the rear stage of the relay optical system, and the relay optical system adjusts the beam waist position of the signal light input from the input port in the second direction so as to be the rear stage of the anamorphic optical system. be able to. Further, the second element may have optical power in the first direction and the second direction. In this case, it is possible to make the aspect ratio of the beam size of the signal light in the optical deflection element different from the aspect ratio conversion magnification of the beam size in the anamorphic optical system. Therefore, according to this wavelength selective switch, for example, the aspect ratio of the beam size of the signal light can be adjusted without increasing the optical path length.
 本発明の一側面に係る波長選択スイッチにおいては、リレー光学系とアナモルフィック光学系とは、信号光のビームウエスト位置を調整するビームウエスト位置調整光学系を構成しており、アナモルフィック光学系は、リレー光学系の後段に配置され、リレー光学系は、第2の方向について、入力ポートから入力された信号光のビームウエスト位置を、コリメートレンズの前段となるように調整することができる。さらに、第2の要素は、第1の方向にのみ光パワーを有するものとすることができる。この場合にも、光偏向素子における信号光のビームサイズのアスペクト比を、アナモルフィック光学系におけるビームサイズのアスペクト比変換倍率と異ならせることが可能となる。よって、この波長選択スイッチによれば、例えば光路長を大きくすることなく、信号光のビームサイズのアスペクト比を調整することが可能となる。 In the wavelength selective switch according to one aspect of the present invention, the relay optical system and the anamorphic optical system constitute a beam waist position adjusting optical system that adjusts the beam waist position of the signal light. The system is arranged at the subsequent stage of the relay optical system, and the relay optical system can adjust the beam waist position of the signal light input from the input port in the second direction so as to be at the front stage of the collimating lens. . Furthermore, the second element may have optical power only in the first direction. Also in this case, the aspect ratio of the beam size of the signal light in the optical deflection element can be made different from the aspect ratio conversion magnification of the beam size in the anamorphic optical system. Therefore, according to this wavelength selective switch, for example, the aspect ratio of the beam size of the signal light can be adjusted without increasing the optical path length.
 本発明の一側面に係る波長選択スイッチにおいては、光偏向素子における信号光の第2の方向についてのビームサイズに対する第1の方向についてのビームサイズの比は、アナモルフィック光学系における第2方向についての信号光のビームサイズの拡大倍率の3倍以上であるものとすることができる。また、入力ポートから入力され集光素子に入射する信号光のビームウエスト位置と集光素子との間の距離は、当該距離を変化させたときに前記光偏向素子における信号光のビームサイズが変化する変化点距離よりも大きいものとすることができる。この場合、光偏向素子において、十分に高いアスペクト比を有するビームを形成可能である。なお、ここでの変化点距離とは、入力ポートから入力され集光素子に入射する信号光のビームウエスト位置と集光素子との間の距離の閾値であって、当該距離を徐々に変化させたときに光偏向素子における信号光のビームサイズが変化し始める距離である。 In the wavelength selective switch according to one aspect of the present invention, the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element is the second direction in the anamorphic optical system. It is assumed that the signal beam beam size is about 3 times or more of the magnification of the signal light beam. Further, the distance between the beam waist position of the signal light input from the input port and entering the light collecting element and the light collecting element changes the beam size of the signal light in the light deflecting element when the distance is changed. It can be larger than the changing point distance. In this case, a beam having a sufficiently high aspect ratio can be formed in the optical deflection element. The change point distance here is a threshold value of the distance between the beam waist position of the signal light input from the input port and incident on the light collecting element and the light collecting element, and the distance is gradually changed. This is the distance at which the beam size of the signal light in the optical deflection element starts to change.
 本発明の一側面に係る波長選択スイッチにおいては、光偏向素子は、第1の方向に沿って配列された複数の光偏向要素素子によって、分光素子で分光された信号光のそれぞれを独立して位相変調することにより出力ポートに向けて偏向し、リレー光学系及びアナモルフィック光学系は、光偏向素子における信号光の第2の方向についてのビームサイズに対する第1の方向についてのビームサイズの比を30以上とすることができる。この場合、かかる原理によって信号光の光路を制御する光偏向素子によって、信号光の光路を好適に制御することができる。 In the wavelength selective switch according to one aspect of the present invention, the optical deflection element independently receives each of the signal lights dispersed by the spectral element by the plurality of optical deflection element elements arranged along the first direction. The relay optical system and the anamorphic optical system are deflected toward the output port by performing phase modulation, and the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element Can be 30 or more. In this case, the optical path of the signal light can be suitably controlled by the optical deflection element that controls the optical path of the signal light based on such a principle.
 本発明の一側面に係る波長選択スイッチにおいては、アナモルフィック光学系は、少なくとも一対のプリズムから構成されるものとすることができる。このとき、本発明の一側面に係る波長選択スイッチにおいては、入力ポートから入力された信号光のプリズムへの入射角度は、70°以上であるものとすることができる。この場合、アナモルフィック光学系において、第2の方向に信号光を十分に拡大することができ、光偏向素子における信号光のビームサイズのアスペクト比を十分に大きくすることができる。 In the wavelength selective switch according to one aspect of the present invention, the anamorphic optical system may be composed of at least a pair of prisms. At this time, in the wavelength selective switch according to one aspect of the present invention, the incident angle of the signal light input from the input port to the prism can be 70 ° or more. In this case, in the anamorphic optical system, the signal light can be sufficiently expanded in the second direction, and the aspect ratio of the beam size of the signal light in the optical deflection element can be sufficiently increased.
 本発明の一側面に係る波長選択スイッチにおいては、入力ポートから入力された信号光のプリズムへの入射角度は、ブリュースター角に略等しいものとすることができる。この場合、信号光に含まれるP偏光の反射を低減させることができる。 In the wavelength selective switch according to one aspect of the present invention, the incident angle of the signal light input from the input port to the prism can be substantially equal to the Brewster angle. In this case, reflection of P-polarized light contained in the signal light can be reduced.
 本発明の一側面に係る波長選択スイッチにおいては、プリズムの屈折率は、1.5以上であるものとすることができる。この場合、信号光を大きな入射角度でプリズムに入射させた場合であっても、反射光を比較的少なくすることができる。このため、信号光のプリズムへの入射角度を上述したように設定することが容易である。 In the wavelength selective switch according to one aspect of the present invention, the refractive index of the prism can be 1.5 or more. In this case, even if the signal light is incident on the prism at a large incident angle, the reflected light can be relatively reduced. For this reason, it is easy to set the incident angle of the signal light to the prism as described above.
 本発明の一側面に係る波長選択スイッチにおいては、プリズムの屈折率は、3以上であるものとすることができる。この場合、信号光のプリズムへの入射角度を上述したものとすることを好適に実現可能である。 In the wavelength selective switch according to one aspect of the present invention, the refractive index of the prism may be 3 or more. In this case, it can be suitably realized that the incident angle of the signal light to the prism is as described above.
 本発明の一側面に係る波長選択スイッチは、リレー光学系の前段に配置された偏波ダイバーシティモジュールをさらに備えることができる。この場合、偏波依存損失を低減することができる。特に、リレー光学系の前段に配置することで、偏波ダイバーシティモジュールを小型化できる。 The wavelength selective switch according to one aspect of the present invention can further include a polarization diversity module disposed in the previous stage of the relay optical system. In this case, polarization dependent loss can be reduced. In particular, the polarization diversity module can be miniaturized by disposing it before the relay optical system.
 本発明の一側面に係る波長選択スイッチにおいては、偏波ダイバーシティモジュールは、信号光を偏光方向に応じて第2の方向に分離する偏光ビームスプリッタと、偏光ビームスプリッタで分離された信号光のうちの一方の偏光方向を他方の偏光方向に合わせる偏光回転素子と、偏光ビームスプリッタで分離された信号光のうちの一方の光路長を他方の光路長に合わせる光路調整素子と、を含むことができる。この場合、信号光が分光方向に偏光分離されるので、波長選択スイッチの第1の方向におけるサイズが大きくなることを防止することができる。 In the wavelength selective switch according to one aspect of the present invention, the polarization diversity module includes a polarization beam splitter that separates the signal light in the second direction according to the polarization direction, and signal light separated by the polarization beam splitter. A polarization rotation element that adjusts one polarization direction of the optical signal to the other polarization direction, and an optical path adjustment element that adjusts one optical path length of the signal light separated by the polarization beam splitter to the other optical path length. . In this case, since the signal light is polarized and separated in the spectral direction, the size of the wavelength selective switch in the first direction can be prevented from increasing.
 本発明によれば、構造を複雑にすることなく信号光のビームサイズのアスペクト比が調整可能であると共に、装置を大型化することなく多ポート化を実現可能な波長選択スイッチを提供することができる。 According to the present invention, it is possible to provide a wavelength selective switch in which the aspect ratio of the beam size of signal light can be adjusted without complicating the structure and the number of ports can be increased without increasing the size of the apparatus. it can.
本発明の一側面に係る波長選択スイッチの第1実施形態の構成を示す模式図である。It is a schematic diagram which shows the structure of 1st Embodiment of the wavelength selective switch which concerns on 1 side of this invention. 本発明の一側面に係る波長選択スイッチの第2実施形態の構成を示す模式図である。It is a schematic diagram which shows the structure of 2nd Embodiment of the wavelength selective switch which concerns on 1 side of this invention. レンズを介して伝搬するガウシアンビームを示す図である。It is a figure which shows the Gaussian beam which propagates through a lens. ビームウエストリレー位置P2からプリズム設置位置PPまでの距離S1Pを示す図である。It is a diagram illustrating a distance S 1P from the beam waist relay position P2 to the prism installation position PP. ビームウエストリレー位置P2からプリズム設置位置PPまでの距離S1Pをパラメータとして、光偏向素子におけるy軸方向ビームサイズを計算した結果を示す図である。The distance S 1P from the beam waist relay position P2 to the prism installation position PP as a parameter, a graph showing the results of calculating the y-axis direction beam size in the optical deflection element. ビームウエスト位置から集光レンズまでの距離S1Lと光偏向素子におけるy軸方向ビームサイズとの関係を示すグラフである。It is a graph which shows the relationship between distance S1L from a beam waist position to a condensing lens, and the y-axis direction beam size in an optical deflection element. ビームウエスト位置から集光レンズまでの距離S1Lと光偏向素子におけるy軸方向ビームサイズとの関係を示すグラフである。It is a graph which shows the relationship between distance S1L from a beam waist position to a condensing lens, and the y-axis direction beam size in an optical deflection element. 図1,2に示された波長選択スイッチの変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the wavelength selective switch shown by FIG.
 以下、本発明の一側面に係る波長選択スイッチの一実施形態について、図面を参照して詳細に説明する。なお、図面の説明において、同一の要素同士、或いは相当する要素同士には互いに同一の符号を付し、重複する説明を省略する。
[第1実施形態]
Hereinafter, an embodiment of a wavelength selective switch according to an aspect of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
[First Embodiment]
 図1は、本発明の一側面に係る波長選択スイッチの第1実施形態の構成を示す模式図である。なお、以下の図面には直交座標系Sが示されている。図1の(a)は、直交座標系Sのy軸方向からの図であり、x軸及びz軸を含む平面(x-z平面)における波長選択スイッチの模式的な構成を示す図である。図1の(b)は、直交座標系Sのx軸方向からの図であり、y軸及びz軸を含む平面(x-z平面)における波長選択スイッチの模式的な構成を示す図である。 FIG. 1 is a schematic diagram showing a configuration of a first embodiment of a wavelength selective switch according to one aspect of the present invention. In the following drawings, an orthogonal coordinate system S is shown. FIG. 1A is a diagram from the y-axis direction of the orthogonal coordinate system S, and is a diagram illustrating a schematic configuration of the wavelength selective switch in a plane (xz plane) including the x-axis and the z-axis. . FIG. 1B is a diagram from the x-axis direction of the orthogonal coordinate system S, and is a diagram illustrating a schematic configuration of the wavelength selective switch in a plane (xz plane) including the y-axis and the z-axis. .
 図1に示されるように、第1実施形態に係る波長選択スイッチ1は、入力ポート12及び出力ポート13をx軸方向(第1の方向)に配列して構成されるポートアレイ14と、入力ポート12から入力された信号光L1を出力ポート13に向けて偏向する光偏向素子15とを備えている。また、波長選択スイッチ1は、入力ポート12から光偏向素子15に向かう信号光L1の光路上に順に配置されたリレー光学系16、アナモルフィック光学系17、分光素子18、及び、集光レンズ(集光素子)19を備えている。以下では、入力ポート12から光偏向素子15に向かう信号光L1の光路上における入力ポート12側を前段、前側と称し、光偏向素子15側を後段、後側と称する。 As shown in FIG. 1, the wavelength selective switch 1 according to the first embodiment includes a port array 14 configured by arranging input ports 12 and output ports 13 in the x-axis direction (first direction), and an input. An optical deflection element 15 that deflects the signal light L1 input from the port 12 toward the output port 13 is provided. The wavelength selective switch 1 includes a relay optical system 16, an anamorphic optical system 17, a spectroscopic element 18, and a condenser lens that are sequentially arranged on the optical path of the signal light L <b> 1 from the input port 12 toward the optical deflection element 15. (Condensing element) 19 is provided. Hereinafter, the input port 12 side on the optical path of the signal light L1 from the input port 12 toward the light deflection element 15 is referred to as a front stage and a front side, and the light deflection element 15 side is referred to as a rear stage and a rear side.
 ポートアレイ14は、例えば、1つの入力ポート12と複数の出力ポート13とを含む。入力ポート12は、例えば、光ファイバ12aと、光ファイバ12aに光学的に接続されたコリメートレンズ12bとを含むことができる。入力ポート12は、例えば波長多重光である信号光L1を入力する。出力ポート13は、例えば、光ファイバ13aと、光ファイバ13aに光学的に接続されたコリメートレンズ13bとを含むことができる。出力ポート13は、例えば、光偏向素子15によって偏向された各波長成分の信号光L1を出力する。 The port array 14 includes, for example, one input port 12 and a plurality of output ports 13. The input port 12 can include, for example, an optical fiber 12a and a collimating lens 12b optically connected to the optical fiber 12a. The input port 12 receives the signal light L1 that is, for example, wavelength multiplexed light. The output port 13 can include, for example, an optical fiber 13a and a collimating lens 13b optically connected to the optical fiber 13a. For example, the output port 13 outputs the signal light L1 of each wavelength component deflected by the light deflecting element 15.
 リレー光学系16は、コリメートレンズ12b,13b及び集光レンズ19に光学的に接続されている。リレー光学系16は、第1のレンズ(第1の要素)16aと第2レンズ(第2の要素)16bとを含む。第1のレンズ16aは、例えば、x軸方向及びy軸方向(第2の方向)に光パワーを有する凸状の球面レンズといった回転対称レンズである。第1のレンズ16aは、第2のレンズ16bよりも前段に配置され、第1のレンズ16aの前側焦点はコリメートレンズ12b,13bの後側焦点と略一致するように配置されている。つまり、第1のレンズ16aは、コリメートレンズ12b,13bの焦点距離f1及び第1のレンズ16aの焦点距離f2の分だけコリメートレンズ12b,13bから離れた位置に配置されている。なお、第1の要素及び第2の要素は、記載のような光パワー(すなわち屈折力)を有するものであり、レンズのような透過型の要素の他、ミラーのような反射型の要素が適用され得る。 The relay optical system 16 is optically connected to the collimating lenses 12 b and 13 b and the condenser lens 19. The relay optical system 16 includes a first lens (first element) 16a and a second lens (second element) 16b. The first lens 16a is a rotationally symmetric lens such as a convex spherical lens having optical power in the x-axis direction and the y-axis direction (second direction), for example. The first lens 16a is disposed in front of the second lens 16b, and the front focal point of the first lens 16a is disposed so as to substantially coincide with the rear focal points of the collimating lenses 12b and 13b. That is, the first lens 16a is arranged at a position separated from the collimating lenses 12b and 13b by the focal length f1 of the collimating lenses 12b and 13b and the focal length f2 of the first lens 16a. Note that the first element and the second element have optical power (that is, refractive power) as described, and a reflection type element such as a mirror in addition to a transmission type element such as a lens. Can be applied.
 第2のレンズ16bは、少なくともx軸方向に光パワーを有する。第2のレンズ16bは、例えば、x軸方向のみに光パワーを有するシリンドリカルレンズである。第2のレンズ16bの前側焦点は、第1のレンズ16aの後側焦点と略一致するように配置されている。また、第2のレンズ16bの後側焦点は、集光レンズ19の前側焦点と略一致するように配置されている。つまり、第2のレンズ16bは、第1のレンズ16aの焦点距離f2及び第2のレンズ16bの焦点距離f3の分だけ第1のレンズ16aから離れた位置であって、第2のレンズ16bの焦点距離f3及び集光レンズ19の焦点距離f4の分だけ集光レンズ19から離れた位置に配置されている。したがって、入力ポート12のコリメートレンズ12bから出射された信号光L1は、第1のレンズ16aに入射した後に第2のレンズ16bに入射する。 The second lens 16b has optical power at least in the x-axis direction. The second lens 16b is, for example, a cylindrical lens having optical power only in the x-axis direction. The front focal point of the second lens 16b is disposed so as to substantially coincide with the rear focal point of the first lens 16a. Further, the rear focal point of the second lens 16 b is disposed so as to substantially coincide with the front focal point of the condenser lens 19. That is, the second lens 16b is located away from the first lens 16a by the focal length f2 of the first lens 16a and the focal length f3 of the second lens 16b, and is the position of the second lens 16b. They are arranged at positions separated from the condensing lens 19 by the focal length f3 and the focal length f4 of the condensing lens 19. Accordingly, the signal light L1 emitted from the collimating lens 12b of the input port 12 enters the first lens 16a and then enters the second lens 16b.
 アナモルフィック光学系17は、リレー光学系16の前段又は後段に配置されている。本実施形態においては、リレー光学系16の後段にアナモルフィック光学系17が配置された形態を示す。アナモルフィック光学系17は、リレー光学系16(第2のレンズ16b)から出射された信号光L1を入射すると共に、その信号光L1のビームサイズをy軸方向について(y-z平面内において)拡大して出射する。アナモルフィック光学系17は、入力されたビームのアスペクト比を変換して出力する機能を有するものであり、プリズムペアやシリンドリカルレンズ、シリンドリカルミラー等を単独又は組み合わせて構成され得る。本実施形態では、例えば1対のプリズム17a,17bを例示する。 The anamorphic optical system 17 is arranged in front of or behind the relay optical system 16. In the present embodiment, an embodiment in which an anamorphic optical system 17 is arranged at the subsequent stage of the relay optical system 16 is shown. The anamorphic optical system 17 receives the signal light L1 emitted from the relay optical system 16 (second lens 16b), and changes the beam size of the signal light L1 in the y-axis direction (in the yz plane). ) Enlarge and emit. The anamorphic optical system 17 has a function of converting and outputting the aspect ratio of an input beam, and can be configured by combining a prism pair, a cylindrical lens, a cylindrical mirror, or the like. In the present embodiment, for example, a pair of prisms 17a and 17b is illustrated.
 リレー光学系16から出射された信号光L1(すなわち、入力ポート12のコリメートレンズ12bから出射された信号光L1)の前段側のプリズム17aへの入射角度は、例えば70°以上とすることができる。その場合には、ビームサイズをy軸方向に十分に拡大することができる。 The incident angle of the signal light L1 emitted from the relay optical system 16 (that is, the signal light L1 emitted from the collimating lens 12b of the input port 12) to the prism 17a on the preceding stage can be set to, for example, 70 ° or more. . In that case, the beam size can be sufficiently expanded in the y-axis direction.
 また、リレー光学系16から出射された信号光L1(すなわち、入力ポート12のコリメートレンズ12bから出射された信号光L1)の前段側のプリズム17aへの入射角度は、例えばブリュースター角に略等しくすることができる。その場合には、信号光の偏光依存による反射光を低減させることができる(信号光L1に含まれるP偏光の反射を低減させることができる)。 Further, the incident angle of the signal light L1 emitted from the relay optical system 16 (that is, the signal light L1 emitted from the collimating lens 12b of the input port 12) to the prism 17a on the front stage is substantially equal to, for example, the Brewster angle. can do. In that case, the reflected light due to the polarization dependence of the signal light can be reduced (the reflection of the P-polarized light included in the signal light L1 can be reduced).
 プリズム17a(プリズム17b)の屈折率は、例えば1.5以上とすることができる。また、プリズム17a(プリズム17b)の屈折率は、例えば3以上とすることができる。これらの場合、信号光L1を大きな入射角度でプリズム17aに入射させた場合であっても、反射光を比較的少なくすることができる。このため、信号光L1のプリズム17aへの入射角度を上述したように設定することが容易である。特に、プリズム17a,17bの屈折率を3以上とすれば、信号光L1のプリズム17aへの入射角度を70°以上で且つブリュースター角と略等しくなるように設定することができる。 The refractive index of the prism 17a (prism 17b) can be, for example, 1.5 or more. The refractive index of the prism 17a (prism 17b) can be set to 3 or more, for example. In these cases, even if the signal light L1 is incident on the prism 17a at a large incident angle, the reflected light can be relatively reduced. For this reason, it is easy to set the incident angle of the signal light L1 to the prism 17a as described above. In particular, if the refractive indexes of the prisms 17a and 17b are 3 or more, the incident angle of the signal light L1 to the prism 17a can be set to be 70 ° or more and substantially equal to the Brewster angle.
 分光素子18は、入力ポート12から入力されてリレー光学系16及びアナモルフィック光学系17を通過した信号光L1を入射し、その波長に応じてy軸方向(第2の方向)に(すなわち、y-z平面内において)分光して出射する。なお、分光素子18においては、信号光L1が波長ごとに複数の信号光L1に分光される場合があるが、ここでは、単一の信号光L1のみを図示する。分光素子18としては、例えば回折格子を用いることができる。分光素子18は、集光レンズ19の前側焦点Pfに配置されている。より具体的には、分光素子18は、リレー光学系16の第2のレンズ16bの焦点距離f3の分だけ第2のレンズ16bから離れた位置であって、集光レンズ19の焦点距離f4の分だけ集光レンズ19から離れた位置に配置されている。 The spectroscopic element 18 receives the signal light L1 that has been input from the input port 12 and passed through the relay optical system 16 and the anamorphic optical system 17, and enters the y-axis direction (second direction) according to the wavelength (that is, the second direction). , In the yz plane). In the spectroscopic element 18, the signal light L1 may be split into a plurality of signal lights L1 for each wavelength, but only a single signal light L1 is illustrated here. As the spectroscopic element 18, for example, a diffraction grating can be used. The spectroscopic element 18 is disposed at the front focal point Pf of the condenser lens 19. More specifically, the spectroscopic element 18 is located away from the second lens 16b by the focal length f3 of the second lens 16b of the relay optical system 16 and has a focal length f4 of the condenser lens 19. It is arranged at a position away from the condenser lens 19 by the amount.
 集光レンズ19は、分光素子18によって分光されて出射された信号光L1を入射し、その信号光L1を、x軸方向について(すなわちx-z平面内において)例えばコリメートしつつ光偏向素子15に向けて偏向すると共に、y軸方向について(すなわち、y-z平面内において)光偏向素子15上に集光する。集光レンズ19は、例えば、x軸方向及びy軸方向に光パワーを有する凸状の球面レンズといった回転対称レンズとすることができる。 The condensing lens 19 receives the signal light L1 that is split and emitted by the spectroscopic element 18, and the light deflecting element 15 collimates the signal light L1 in the x-axis direction (that is, in the xz plane), for example. And condensing on the light deflection element 15 in the y-axis direction (that is, in the yz plane). The condenser lens 19 may be a rotationally symmetric lens such as a convex spherical lens having optical power in the x-axis direction and the y-axis direction.
 光偏向素子15は、集光レンズ19の後側焦点に配置されている。つまり、光偏向素子15は、集光レンズ19の焦点距離f4の分だけ集光レンズ19から離れた位置に配置されている。光偏向素子15は、集光レンズ19によって集光された信号光L1を入射し、例えば、その波長に応じた所定の出力ポート13に向けて偏向する。そのために、光偏向素子15は、x軸方向に沿って配列された複数の光偏向要素素子を有している。そして、光偏向素子15は、その光偏向要素素子によって、分光素子18で分光された信号光L1のそれぞれを独立して位相変調することにより出力ポート13に向けて偏向する。 The light deflection element 15 is arranged at the rear focal point of the condenser lens 19. That is, the light deflection element 15 is arranged at a position separated from the condenser lens 19 by the focal length f4 of the condenser lens 19. The light deflection element 15 receives the signal light L1 collected by the condenser lens 19 and deflects it toward a predetermined output port 13 corresponding to the wavelength, for example. For this purpose, the light deflection element 15 has a plurality of light deflection element elements arranged along the x-axis direction. Then, the optical deflection element 15 deflects the signal light L1 split by the spectroscopic element 18 by the optical deflection element element toward the output port 13 by independently performing phase modulation.
 そのような光偏向素子15として、例えば、LCOS(Liquid Cristal On Silicon)を用いることができる。その場合には、x軸及びy軸に沿って2次元アレイ状に配列された複数の画素のうち、x軸方向に配列された複数の画素の単位が信号光L1の偏向に寄与する光偏向要素素子として機能する。なお、光偏向素子15として、MEMS(Micro Electro Mechanical Systems)素子を用いてもよい。 As such an optical deflecting element 15, for example, LCOS (Liquid Cristal On Silicon) can be used. In that case, among the plurality of pixels arranged in a two-dimensional array along the x-axis and the y-axis, the light deflection in which the unit of the plurality of pixels arranged in the x-axis direction contributes to the deflection of the signal light L1. It functions as an element element. Note that a MEMS (Micro Electro Mechanical Systems) element may be used as the light deflection element 15.
 光偏向素子15によって偏向された信号光L1は、集光レンズ19、分光素子18、アナモルフィック光学系17、及び、リレー光学系16を介して所定の出力ポート13に入射して出力される。 The signal light L1 deflected by the light deflecting element 15 is incident on a predetermined output port 13 via the condenser lens 19, the spectroscopic element 18, the anamorphic optical system 17, and the relay optical system 16, and is output. .
 引き続いて、リレー光学系16及びアナモルフィック光学系17について詳細に説明する。リレー光学系16は、入力ポート12から入力された信号光(すなわちコリメートレンズ12bから出射された信号光)L1のビームウエスト位置P1を調整する。より具体的には、リレー光学系16は、上述したように、x軸方向及びy軸方向に光パワーを有する第1のレンズ16aと、少なくともx軸方向に光パワーを有する第2のレンズ16bとを含んで構成される。本実施形態においては、第1のレンズ16aは、x軸方向について、コリメートレンズ12b,13bと焦点が略一致するように配置されており、第2のレンズ16bは、x軸方向について、第1のレンズ16a及び集光レンズ19と焦点が略一致するように配置されている。これにより、リレー光学系16は、x軸方向について(すなわち、x-z平面内において)、入力ポート12から入力された信号光L1のビームウエスト位置P1を、集光レンズ19の前側焦点(すなわち分光素子18の設置位置)Pfと略一致するように調整する。 Subsequently, the relay optical system 16 and the anamorphic optical system 17 will be described in detail. The relay optical system 16 adjusts the beam waist position P1 of the signal light (that is, the signal light emitted from the collimating lens 12b) L1 input from the input port 12. More specifically, as described above, the relay optical system 16 includes the first lens 16a having optical power in the x-axis direction and the y-axis direction, and the second lens 16b having optical power in at least the x-axis direction. It is comprised including. In the present embodiment, the first lens 16a is arranged so that the focal points thereof are substantially coincident with the collimating lenses 12b and 13b in the x-axis direction, and the second lens 16b is first in the x-axis direction. The lens 16a and the condenser lens 19 are arranged so that their focal points are substantially coincident with each other. Thereby, the relay optical system 16 changes the beam waist position P1 of the signal light L1 input from the input port 12 in the x-axis direction (that is, in the xz plane) to the front focal point (that is, the condensing lens 19). The spectral element 18 is adjusted so that it substantially coincides with the installation position Pf.
 また、第2のレンズ16bは、x軸方向(すなわち、x-z平面内において)のみ光パワーを有しており、y軸方向について(すなわち、y-z平面において)は光パワーを有していない。このため、集光レンズ19に入射する信号光L1は、そのビームサイズがx軸方向についてはy軸方向に対して相対的に小さくなる。したがって、集光レンズ19を介して光偏向素子15に照射される信号光L1は、y軸方向についてのビームサイズに対するx軸方向についてのビームサイズが相対的に拡大される。 The second lens 16b has optical power only in the x-axis direction (that is, in the xz plane), and has optical power in the y-axis direction (that is, in the yz plane). Not. For this reason, the signal light L1 incident on the condenser lens 19 has a beam size that is relatively small with respect to the y-axis direction in the x-axis direction. Therefore, the signal light L1 irradiated to the light deflection element 15 via the condenser lens 19 has a relatively enlarged beam size in the x-axis direction with respect to the beam size in the y-axis direction.
 アナモルフィック光学系17は、リレー光学系16の前段又は後段(本実施形態では後段)に配置されてリレー光学系16に光学的に接続されている。そして、アナモルフィック光学系17は、y軸方向についてビームサイズを相対的に拡大する。なお、信号光L1のx軸方向とy軸方向のビーム形状は、集光レンズ19によって逆転されるため、アナモルフィック光学系17は、結果的に、光偏向素子15における信号光L1のy軸方向についてのビームサイズに対するx軸方向についてのビームサイズの比(アスペクト比)を拡大することとなる。 The anamorphic optical system 17 is disposed upstream or downstream (in the present embodiment) of the relay optical system 16 and optically connected to the relay optical system 16. The anamorphic optical system 17 relatively enlarges the beam size in the y-axis direction. Note that the beam shapes of the signal light L1 in the x-axis direction and the y-axis direction are reversed by the condenser lens 19, so that the anamorphic optical system 17 results in the y of the signal light L1 in the light deflecting element 15 as a result. The ratio (aspect ratio) of the beam size in the x-axis direction to the beam size in the axial direction is enlarged.
 このように、アナモルフィック光学系17のみならず、リレー光学系16にも光偏向素子15における信号光L1のy軸方向についてのビームサイズに対するx軸方向についてのビームサイズの比を拡大する機能を付与すれば、ビームサイズのアスペクト比を高くすることが容易となる。 Thus, not only the anamorphic optical system 17 but also the relay optical system 16 has a function of expanding the ratio of the beam size in the x-axis direction to the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15. If it is given, it becomes easy to increase the aspect ratio of the beam size.
 なお、リレー光学系16の第1のレンズ16aは、x軸方向及びy軸方向について、入力ポート12(コリメートレンズ12b)から入力され当該第1のレンズ16aに入射する信号光L1のビームウエスト位置P1におけるビームサイズよりも、当該第1のレンズ16aから出射した信号光L1のビームウエスト位置Peにおけるビームサイズを相対的に大きくする。このようにすると、例えばリレー光学系16及びアナモルフィック光学系17において信号光L1のビームサイズのアスペクト比を大きくする場合にも、ロスの増加を抑制することができる。 The first lens 16a of the relay optical system 16 has a beam waist position of the signal light L1 input from the input port 12 (collimator lens 12b) and incident on the first lens 16a in the x-axis direction and the y-axis direction. The beam size at the beam waist position Pe of the signal light L1 emitted from the first lens 16a is relatively larger than the beam size at P1. In this way, for example, even when the aspect ratio of the beam size of the signal light L1 is increased in the relay optical system 16 and the anamorphic optical system 17, an increase in loss can be suppressed.
 以上のような波長選択スイッチ1においては、リレー光学系16が、x軸方向について、入力ポート12から入力される信号光L1のビームウエスト位置P1を集光レンズ19の前側焦点に一致するように調整する。したがって、波長選択スイッチ1によれば、装置を大型することなく多ポート化することが可能となる。 In the wavelength selective switch 1 as described above, the relay optical system 16 makes the beam waist position P1 of the signal light L1 input from the input port 12 coincide with the front focal point of the condenser lens 19 in the x-axis direction. adjust. Therefore, according to the wavelength selective switch 1, it is possible to increase the number of ports without increasing the size of the device.
 また、波長選択スイッチ1においては、リレー光学系16に対しても、光偏向素子15における信号光L1のビームサイズのアスペクト比を拡大する機能が付与されている。このため、この波長選択スイッチ1によれば、例えば光路長が大きくなり構造が複雑化することなく、ビームサイズのアスペクト比を調整する(拡大する)ことが可能となる。 In the wavelength selective switch 1, the relay optical system 16 is also provided with a function of expanding the aspect ratio of the beam size of the signal light L <b> 1 in the optical deflection element 15. For this reason, according to the wavelength selective switch 1, it is possible to adjust (enlarge) the aspect ratio of the beam size without increasing the optical path length and complicating the structure, for example.
 特に、この波長選択スイッチ1においては、リレー光学系16及びアナモルフィック光学系17によって、光偏向素子15における信号光L1のy軸方向のビームサイズをより小さくすれば(集光レンズ19の前段におけるy軸方向のビームサイズをより大きくすれば)、光偏向素子15における信号光L1のビームサイズのアスペクト比を十分に高くすることができる。より具体的には、リレー光学系16及びアナモルフィック光学系17は、光偏向素子15における信号光L1のビームサイズのアスペクト比を30以上とすることができる。したがって、例えば、光偏向素子15としてLCOSを用いる場合等、光偏向素子15でのビームサイズにおいて高いアスペクト比が要求される場合に好適である。 In particular, in this wavelength selective switch 1, if the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 is made smaller by the relay optical system 16 and the anamorphic optical system 17 (the previous stage of the condenser lens 19). If the beam size in the y-axis direction is made larger), the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 can be made sufficiently high. More specifically, the relay optical system 16 and the anamorphic optical system 17 can set the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 to 30 or more. Therefore, for example, it is suitable when a high aspect ratio is required in the beam size at the optical deflection element 15 such as when LCOS is used as the optical deflection element 15.
 例えば、波長選択スイッチ1において、光偏向素子15で40程度のアスペクト比が要求される場合(すなわち、光偏向素子15において、信号光L1のx軸方向についてのビームサイズがy軸方向についてのビームサイズの40倍以上であることが要求される場合)であって、アナモルフィック光学系17のy軸方向におけるビームサイズの拡大倍率が8倍程度である場合には、リレー光学系16に付与する光偏向素子15における信号光L1のy軸方向についてのビームサイズに対するx軸方向についてのビームサイズの拡大機能の倍率を5倍程度とすればよい。
[第2実施形態]
For example, in the wavelength selective switch 1, when the optical deflection element 15 requires an aspect ratio of about 40 (that is, in the optical deflection element 15, the beam size in the x-axis direction of the signal light L1 is a beam in the y-axis direction). In the case where the magnification of the beam size in the y-axis direction of the anamorphic optical system 17 is about 8 times, it is given to the relay optical system 16. The magnification of the function of enlarging the beam size in the x-axis direction with respect to the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 may be about 5 times.
[Second Embodiment]
 図2は、本発明の一側面に係る波長選択スイッチの第2実施形態の構成を示す模式図である。図2に示されるように、本実施形態に係る波長選択スイッチ1Aは、第1実施形態に係る波長選択スイッチ1と比較して、ビームウエスト位置調整光学系20Aを備える点で相違している。ビームウエスト位置調整光学系20Aは、入力ポート12から入力された信号光L1のビームウエスト位置P1を調整する。なお、図1と異なり、図2においては信号光L1のビームウエスト位置を説明するために、アナモルフィック光学系17におけるy軸方向にビームサイズ拡大の図示を省略している。 FIG. 2 is a schematic diagram showing the configuration of the second embodiment of the wavelength selective switch according to one aspect of the present invention. As shown in FIG. 2, the wavelength selective switch 1A according to the present embodiment is different from the wavelength selective switch 1 according to the first embodiment in that a beam waist position adjusting optical system 20A is provided. The beam waist position adjusting optical system 20A adjusts the beam waist position P1 of the signal light L1 input from the input port 12. Unlike FIG. 1, in FIG. 2, in order to explain the beam waist position of the signal light L1, the illustration of the beam size expansion in the y-axis direction in the anamorphic optical system 17 is omitted.
 ビームウエスト位置調整光学系20Aは、リレー光学系16Aとアナモルフィック光学系17とによって構成されている。リレー光学系16Aは、アナモルフィック光学系17の前段に配置されている。また、リレー光学系16Aは、コリメートレンズ12b,13b及び集光レンズ19に光学的に接続されている。リレー光学系16Aは、リレー光学系16と比較して、第2のレンズ16bに代えて第2のレンズ16cを含む点で相違している。 The beam waist position adjusting optical system 20A includes a relay optical system 16A and an anamorphic optical system 17. The relay optical system 16 </ b> A is disposed in front of the anamorphic optical system 17. Further, the relay optical system 16A is optically connected to the collimating lenses 12b and 13b and the condenser lens 19. The relay optical system 16A is different from the relay optical system 16 in that it includes a second lens 16c instead of the second lens 16b.
 第2のレンズ16cは、例えば、x軸方向及びy軸方向に光パワーを有する回転対照レンズである。第2のレンズ16cの前側焦点は、第1のレンズ16aの後側焦点に略一致するように配置されている。また、第2のレンズ16cの後側焦点は、集光レンズ19の前側焦点と略一致するように配置されている。つまり、第2のレンズ16cは、第1のレンズ16aの焦点距離f2及び第2のレンズ16cの焦点距離f3の分だけ第1のレンズ16aから離れた位置であって、第2のレンズ16cの焦点距離f3及び集光レンズ19の焦点距離f4の分だけ集光レンズ19から離れた位置に配置されている。 The second lens 16c is, for example, a rotating contrast lens having optical power in the x-axis direction and the y-axis direction. The front focal point of the second lens 16c is disposed so as to substantially coincide with the rear focal point of the first lens 16a. Further, the rear focal point of the second lens 16 c is disposed so as to substantially coincide with the front focal point of the condenser lens 19. That is, the second lens 16c is located away from the first lens 16a by the focal length f2 of the first lens 16a and the focal length f3 of the second lens 16c, and is the position of the second lens 16c. They are arranged at positions separated from the condensing lens 19 by the focal length f3 and the focal length f4 of the condensing lens 19.
 このような、リレー光学系16Aは、y軸方向について、入力ポート12から入力された信号光L1のビームウエスト位置P1を、アナモルフィック光学系17の後段に位置するように調整する。 Such a relay optical system 16A adjusts the beam waist position P1 of the signal light L1 input from the input port 12 in the y-axis direction so as to be positioned at the subsequent stage of the anamorphic optical system 17.
 引き続いて、ビームウエスト位置調整光学系20Aの詳細について説明する。ビームウエスト位置調整光学系20Aは、上述したように、入力ポート12から入力された信号光(すなわち、コリメートレンズ12bから出射された信号光)L1のビームウエスト位置P1を調整する。より具体的には、ビームウエスト位置調整光学系20Aは、x軸方向について(すなわち、x-z平面内において)、入力ポート12から入力された信号光L1のビームウエスト位置P1を、リレー光学系16Aを用いてリレーすることにより、集光レンズ19の前側焦点(すなわち、分光素子18の設置位置)Pfに略一致するように調整する。 Subsequently, details of the beam waist position adjusting optical system 20A will be described. As described above, the beam waist position adjustment optical system 20A adjusts the beam waist position P1 of the signal light (that is, the signal light emitted from the collimator lens 12b) L1 input from the input port 12. More specifically, the beam waist position adjusting optical system 20A is configured to change the beam waist position P1 of the signal light L1 input from the input port 12 in the x-axis direction (that is, in the xz plane) to the relay optical system. By relaying using 16A, adjustment is made so as to substantially coincide with the front focal point of the condenser lens 19 (that is, the installation position of the spectroscopic element 18) Pf.
 一方、ビームウエスト位置調整光学系20Aは、y軸方向について(すなわち、y-z平面内において)、リレー光学系16A及びアナモルフィック光学系17を用いて、入力ポート12から入力された信号光L1のビームウエスト位置P1を調整する。このy軸方向についてのビームウエスト位置の調整について、詳細に説明する。 On the other hand, the beam waist position adjusting optical system 20A uses the relay optical system 16A and the anamorphic optical system 17 in the y-axis direction (that is, in the yz plane) to input signal light from the input port 12. The beam waist position P1 of L1 is adjusted. The adjustment of the beam waist position in the y-axis direction will be described in detail.
 図3に示されるように、焦点距離fのレンズAを介して伝搬するガウシアンビームである光L2について、以下のような関係が知られている(例えば「Sidney A. Self, “Focusing of spherical Gaussian beams,” Applied
Optics, vol.22, No.5, pp.658 (1983)」等参照)。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
As shown in FIG. 3, the following relationship is known for the light L2, which is a Gaussian beam propagating through the lens A having a focal length f (for example, “Sidney A. Self,“ Focusing of spherical Gaussian ”). beams, ”Applied
Optics, vol.22, No.5, pp.658 (1983) ").
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003
 ここで、Sは、レンズAに入射する光L2のビームウエスト位置AからレンズAまでの距離であり、Sは、レンズAから出射された光L2のビームウエスト位置AからレンズAまでの距離である。また、Dは、光L2のビームウエスト位置Aにおけるビーム半径であり、Dは、光L2のビームウエスト位置Aにおけるビーム半径である。なお、λは、光L2の波長である。 Here, S 1 is a distance from the beam waist position A 1 of the light L 2 incident on the lens A to the lens A, and S 2 is a distance from the beam waist position A 2 of the light L 2 emitted from the lens A to the lens A. It is the distance to. Also, D 1 is the beam radius at the beam waist position A 1 of the light L2, D 2 is the beam radius at the beam waist position A 2 of the light L2. Note that λ is the wavelength of the light L2.
 図3及び上記式(1)によれば、レンズAから出射した光L2のビームウエスト位置AからレンズAまでの距離Sは、レンズAに入射する光L2のビームウエスト位置AからレンズAまでの距離Sを調整することによって調整することができる。また、図2及び上記式(2)によれば、レンズAから出射した光L2のビームウエスト位置Aにおけるビーム半径Dも、レンズAに入射する光L2のビームウエスト位置AからレンズAまでの距離Sを調整することによって調整することができる。本発明者らは、このような関係が、図3に示されるようなレンズAのみならず、プリズム等においても有用であるとの知見を得た。 According to FIG. 3 and the above formula (1), the distance S 2 from the beam waist position A 2 of the light L 2 emitted from the lens A to the lens A is from the beam waist position A 1 of the light L 2 incident on the lens A to the lens. it can be adjusted by adjusting the distance S 1 to a. Further, according to FIG. 2 and the above equation (2), the beam radius D 2 at the beam waist position A 2 of the light L 2 emitted from the lens A is also changed from the beam waist position A 1 of the light L 2 incident on the lens A to the lens A. it can be adjusted by adjusting the distance S 1 to. The present inventors have found that such a relationship is useful not only in the lens A as shown in FIG.
 ビームウエスト位置調整光学系20Aは、それらの関係を利用して、y軸方向について、入力ポート12から入力された信号光L1のビームウエスト位置P1から集光レンズ19までの距離S1Lを調整する。図4は、距離S1Lを調整するために用いるパラメータであるビームウエストリレー位置P2からプリズム設置位置PPまでの距離S1Pを説明するための図である。図4では、ビーム伝搬の様子を波動光学的に示す。図4に示されるように、ビームウエスト位置調整光学系20Aは、まず、入力ポート12から入力された信号光L1のビームウエスト位置P1を、リレー光学系16Aによって、アナモルフィック光学系17のプリズム設置位置PPよりも後段の位置(ビームウエストリレー位置)P2とする。すなわち、ビームウエスト位置調整光学系20Aは、入力ポート12から入力された信号光L1のビームウエスト位置P1を、リレー光学系16によってリレーすることにより、実質的にプリズム設置位置PP(アナモルフィック光学系17)の後段に位置するように調整する。 The beam waist position adjustment optical system 20A is, by utilizing their relationships, the y-axis direction, to adjust the distance S 1L from the beam waist position P1 of the signal light L1 input from the input port 12 to the condenser lens 19 . Figure 4 is a diagram for explaining a distance S 1P from the beam waist relay position P2 is a parameter to the prism installation position PP used for adjusting the distance S 1L. FIG. 4 shows the state of beam propagation in terms of wave optics. As shown in FIG. 4, the beam waist position adjusting optical system 20A first converts the beam waist position P1 of the signal light L1 input from the input port 12 into the prism of the anamorphic optical system 17 by the relay optical system 16A. Let it be a position (beam waist relay position) P2 subsequent to the installation position PP. That is, the beam waist position adjusting optical system 20A substantially relays the beam waist position P1 of the signal light L1 input from the input port 12 by the relay optical system 16, thereby substantially setting the prism installation position PP (anamorphic optical). Adjust so that it is located in the latter part of the system 17).
 ビームウエストリレー位置P2からプリズム設置位置PPまでの距離S1Pは、上述したレンズAにおける関係の距離Sに相当すると考えられる(ただし、ビームウエストリレー位置P2が、プリズム設置位置PPよりも後段であることから、距離S1Pは負の値となる)。この距離S1Pを適宜調整することにより、アナモルフィック光学系17から出射される信号光L1のビームウエスト位置からプリズム設置位置PPまでの距離(上述したレンズAにおける関係の距離Sに相当すると考えられる)を調整することができる。 Distance S 1P from the beam waist relay position P2 to the prism installation position PP is considered to correspond to the distance S 1 of the relationships in the lens A described above (however, the beam waist relay position P2, later than the prism installation position PP Therefore, the distance S1P is a negative value). By adjusting the distance S 1P appropriate, to correspond to the distance S 2 relationship of the lens A, which distance (described above from the beam waist position of the signal light L1 emitted from the anamorphic optical system 17 to the prism installation position PP Can be adjusted).
 アナモルフィック光学系17から出射された信号光L1は、集光レンズ19に入射するので、アナモルフィック光学系17から出射された信号光L1のビームウエスト位置を調整することは、集光レンズ19に入射する信号光L1のビームウエスト位置から集光レンズ19までの距離S1L(すなわち集光レンズ19に対する距離S)を調整することである。このように、ビームウエスト位置調整光学系20Aは、アナモルフィック光学系17に入射する信号光L1のビームウエスト位置P1をリレー光学系16Aによってビームウエストリレー位置P2とし、プリズム設置位置PPからの距離S1Pを調整することにより、結果として、集光レンズ19に入射する信号光L1のビームウエスト位置から集光レンズ19までの距離S1Lを調整する。なお、図4の(b)において、f1はコリメートレンズ12bの焦点距離であり、f4は集光レンズ19の焦点距離である。また、図4の(a)において、f2は第1のレンズ16aの焦点距離であり、f3は第2のレンズ16cの焦点距離である。 Since the signal light L1 emitted from the anamorphic optical system 17 is incident on the condensing lens 19, adjusting the beam waist position of the signal light L1 emitted from the anamorphic optical system 17 is not possible. distance S 1L from the beam waist position of the signal light L1 incident on 19 to the condenser lens 19 (i.e., the distance S 1 for the condensing lens 19) is to be adjusted. As described above, the beam waist position adjusting optical system 20A sets the beam waist position P1 of the signal light L1 incident on the anamorphic optical system 17 to the beam waist relay position P2 by the relay optical system 16A, and the distance from the prism installation position PP. As a result, the distance S 1L from the beam waist position of the signal light L1 incident on the condenser lens 19 to the condenser lens 19 is adjusted by adjusting S 1P . In FIG. 4B, f1 is the focal length of the collimating lens 12b, and f4 is the focal length of the condenser lens 19. In FIG. 4A, f2 is the focal length of the first lens 16a, and f3 is the focal length of the second lens 16c.
 ここでは、ビームウエスト位置調整光学系20Aは、図2の(b)において一点鎖線で示されるように、集光レンズ19に入射する信号光L1のビームウエスト位置P3を、光偏向素子15の後段に位置させる。この場合、ビームウエスト位置P3から集光レンズ19までの距離S1Lは、負の値となる。 Here, the beam waist position adjusting optical system 20 </ b> A sets the beam waist position P <b> 3 of the signal light L <b> 1 incident on the condensing lens 19 to the subsequent stage of the light deflection element 15, as indicated by a one-dot chain line in FIG. To be located. In this case, the distance S 1L from the beam waist position P3 to the condensing lens 19 is a negative value.
 このように、集光レンズ19に入射する信号光L1のビームウエスト位置P3から集光レンズ19までの距離S1Lを調整すれば、上述した関係の式(3)に示されるように、集光レンズ19から出射される信号光L1のビームウエスト位置におけるビームサイズ(上述したレンズAにおける関係のビーム半径Dの2倍に相当する)を調整することができる。すなわち、光偏向素子15における信号光L1のy軸方向のビームサイズを調整することができる。なお、図2の(b)において、破線は、アナモルフィック光学系17がない場合の信号光L1の広がりを示している。図2の(b)の破線で示されるように、アナモルフィック光学系17がない場合には、集光レンズ19に入射する信号光L1のビームウエスト位置P3は、例えば、集光レンズ19の前側焦点Pfに略一致する。 Thus, by adjusting the distance S 1L from the beam waist position P3 of the signal light L1 incident on the condenser lens 19 to condenser lens 19, as shown in equation (3) of the above-described relationship, the condenser lens 19 (corresponding to 2 times the beam radius D 2 of the relationships in the lens a described above) the beam size at the beam waist position of the signal light L1 emitted from the can be adjusted. That is, the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 can be adjusted. In FIG. 2B, the broken line indicates the spread of the signal light L1 when the anamorphic optical system 17 is not provided. As shown by the broken line in FIG. 2B, when there is no anamorphic optical system 17, the beam waist position P3 of the signal light L1 incident on the condenser lens 19 is, for example, It substantially coincides with the front focal point Pf.
 図5は、ビームウエストリレー位置P2からプリズム設置位置PPまでの距離S1pをパラメータとして、集光レンズ19に入射する信号光L1のビームウエスト位置P3から集光レンズ19までの距離S1L及び光偏向素子15におけるy軸方向ビームサイズを計算した結果を示す表である。また、図6は、距離S1Lと光偏向素子15におけるy軸方向方向ビームサイズ(直径)との関係を示すグラフである。なお、ここでのy軸方向ビームサイズは、集光レンズ19から出射される信号光L1の光偏向素子15でのy軸方向におけるビームサイズである。図5,6に示される計算には、以下の条件を用いている。なお、以下のビームウエスト直径は、集光レンズ19に入射する信号光L1のビームウエスト位置P3におけるビームサイズであり、上述したビーム半径Dの2倍に相当する。 FIG. 5 shows the distance S 1L from the beam waist position P3 of the signal light L1 incident on the condenser lens 19 to the condenser lens 19 and the light, with the distance S 1p from the beam waist relay position P2 to the prism installation position PP as a parameter. 6 is a table showing a result of calculating a beam size in the y-axis direction in the deflection element 15. FIG. 6 is a graph showing the relationship between the distance S 1L and the beam size (diameter) in the y-axis direction in the optical deflection element 15. Here, the y-axis direction beam size is the beam size in the y-axis direction of the signal light L1 emitted from the condensing lens 19 in the light deflection element 15. The following conditions are used for the calculations shown in FIGS. In the following the beam waist diameter is the beam size at the beam waist position P3 of the signal light L1 incident on the condensing lens 19, which corresponds to twice the beam radius D 1 described above.
[プリズム(アナモルフィック光学系17)]
   倍率8倍(プリズム2個(プリズム17a,17b))、硝材はSi
[レンズ]
   コリメートレンズ12bの焦点距離f1:1.4mm
   第1のレンズ16aの焦点距離f2:65mm
   第2のレンズ16cの焦点距離f3:65mm
   集光レンズ19の焦点距離f4:100mm
   ビームウエスト直径:0.2654mm
[波長]
   信号光L1の波長:0.001548mm
[Prism (Anamorphic Optical System 17)]
Magnification 8 times (2 prisms ( prisms 17a and 17b)), glass material is Si
[lens]
The focal length f1: 1.4 mm of the collimating lens 12b
Focal length f2 of the first lens 16a: 65 mm
Focal length f3 of the second lens 16c: 65 mm
Focal length f4 of the condensing lens 19: 100 mm
Beam waist diameter: 0.2654mm
[wavelength]
Wavelength of signal light L1: 0.001548 mm
 図5に示されるように、ビームウエストリレー位置P2からプリズム設置位置PPまでの距離S1Pを25mmから10mm間隔で徐々に大きくして集光レンズ19に入射する信号光L1のビームウエスト位置P3から集光レンズ19までの距離S1Lの絶対値が大きくなるように調整すれば、光偏向素子15におけるy軸方向ビームサイズ(直径)が徐々に小さくなる。例えば、図6に示されるように、距離S1Lの絶対値が450mm付近でy軸方向のビームサイズが徐々に小さくなり始めている。つまり、入力ポート12から入力され集光レンズ19に入射する信号光L1のビームウエスト位置P3と集光レンズ19との間の距離S1Lを変化させたときに光偏向素子15における信号光L1のy軸方向のビームサイズが変化する変化点距離は、ここでは450mm程度である。 As shown in FIG. 5, the beam waist position P3 of the signal light L1 incident distance S 1P from the beam waist relay position P2 to the prism mounting position PP from 25mm to the condensing lens 19 is gradually increased by 10mm intervals If the absolute value of the distance S1L to the condensing lens 19 is adjusted so as to increase, the beam size (diameter) in the y-axis direction in the light deflection element 15 gradually decreases. For example, as shown in FIG. 6, the absolute value of the y-axis direction of the beam size in the vicinity of 450mm distance S 1L is gradually beginning to decrease. That is, when the distance S 1L between the beam waist position P 3 of the signal light L 1 input from the input port 12 and entering the condenser lens 19 and the condenser lens 19 is changed, the signal light L 1 in the light deflection element 15 is changed. Here, the change point distance at which the beam size in the y-axis direction changes is about 450 mm.
 このように、リレー光学系16Aによってビームウエストリレー位置P2からプリズム設置位置PPまでの距離S1Pを調整することにより、結果的に、光偏向素子15におけるy軸方向のビームサイズを調整することができる。例えば、アナモルフィック光学系17のy軸方向におけるビーム拡大倍率を8倍とした場合には、アナモルフィック光学系17により光偏向素子15でのx軸方向のビームサイズを8倍に拡大すると共に、ビームウエスト位置調整光学系20Aによってy軸方向ビームサイズを相対的に小さくすることにより、光偏向素子15におけるビームサイズのアスペクト比を8倍以上とすることができる。例えば、図6に示される例では、リレー光学系16Aによって距離S1Pを調整して距離S1Lを3000mm程度としたときに、光偏向素子15におけるビームサイズのアスペクト比を30程度とすることができる。 Thus, by adjusting the distance S 1P from the beam waist relay position P2 to the prism installation position PP by the relay optical system 16A, consequently, to adjust the beam size in the y-axis direction of the light deflector 15 it can. For example, when the beam expansion magnification in the y-axis direction of the anamorphic optical system 17 is set to 8 times, the beam size in the x-axis direction of the light deflection element 15 is expanded by 8 times by the anamorphic optical system 17. At the same time, by making the beam size in the y-axis direction relatively small by the beam waist position adjusting optical system 20A, the aspect ratio of the beam size in the optical deflection element 15 can be made 8 times or more. For example, in the example shown in FIG. 6, when the distance S 1P is adjusted by the relay optical system 16A so that the distance S 1L is about 3000 mm, the aspect ratio of the beam size in the light deflection element 15 is about 30. it can.
 さらに、別の計算結果を図7に示す。図7に示される計算には、以下の条件を用いている。
[プリズム(アナモルフィック光学系17)]
   倍率8倍(プリズム2個(プリズム17a,17b))、硝材はSi
[レンズ]
   コリメートレンズ12bの焦点距離f1:0.7mm
   第1のレンズ16aの焦点距離f2:65mm
   第2のレンズ16cの焦点距離f3:65mm
   集光レンズ19の焦点距離f4:100mm
   ビームウエスト直径:0.133mm
[波長]
   信号光L1の波長:0.001548mm
Furthermore, another calculation result is shown in FIG. The following conditions are used for the calculation shown in FIG.
[Prism (Anamorphic Optical System 17)]
Magnification 8 times (2 prisms ( prisms 17a and 17b)), glass material is Si
[lens]
The focal length f1: 0.7 mm of the collimating lens 12b
Focal length f2 of the first lens 16a: 65 mm
Focal length f3 of the second lens 16c: 65 mm
Focal length f4 of the condensing lens 19: 100 mm
Beam waist diameter: 0.133mm
[wavelength]
Wavelength of signal light L1: 0.001548 mm
 図7に示される例からもわかるように、距離S1Lの絶対値を大きくなるように調整すれば、光偏向素子15におけるy軸方向のビームサイズが徐々に小さくなる。例えば、図7に示される例では、距離S1Lの絶対値が180mm付近でy軸方向のビームサイズが徐々に小さくなり始めている。つまり、距離S1Lを変化させたときに光偏向素子15における信号光L1のy軸方向のビームサイズが変化する変化点距離は、ここでは180mm程度である。 As can be seen from the example shown in FIG. 7, when the absolute value of the distance S 1L is adjusted to be large, the beam size in the y-axis direction of the light deflection element 15 is gradually reduced. For example, in the example shown in FIG. 7, the beam size in the y-axis direction starts to gradually decrease when the absolute value of the distance S 1L is around 180 mm. That is, the changing point distance at which the beam size in the y-axis direction of the signal light L1 in the optical deflection element 15 changes when the distance S1L is changed is about 180 mm here.
 特に、この場合にも、アナモルフィック光学系17のy軸方向におけるビームサイズの変換倍率(すなわち、集光レンズ19を介した光偏向素子15におけるx軸方向のビームサイズの拡大倍率)は8倍としたが、光偏向素子15におけるy軸方向のビームサイズを相対的に小さくすることにより、光偏向素子15における信号光L1のビームサイズのアスペクト比は8倍以上を実現することができる。例えば、図7に示される例では、リレー光学系16Aによって距離S1Pを調整して距離S1Lを1900mm程度としたときに、30程度のアスペクト比を実現することができる。 Particularly in this case as well, the conversion magnification of the beam size in the y-axis direction of the anamorphic optical system 17 (that is, the enlargement magnification of the beam size in the x-axis direction in the light deflection element 15 via the condenser lens 19) is 8. However, the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 can be 8 times or more by making the beam size in the y-axis direction in the optical deflection element 15 relatively small. For example, in the example shown in FIG. 7, when the distance S 1P is adjusted by the relay optical system 16A so that the distance S 1L is about 1900 mm, an aspect ratio of about 30 can be realized.
 なお、図6,7に示されるように、光偏向素子15におけるy軸方向ビームサイズが小さくなり始める距離S1Lの大きさ(変化点距離)は、集光レンズ19に入射する信号光L1のビームウエスト直径によっても変動する。そこで、本実施形態に係る波長選択スイッチ1Aにおいては、入力ポート12から入力され集光レンズ19に入射する信号光L1のビームウエスト位置P3と集光レンズ19との間の距離S1Lを、当該距離S1Lを変化させたときに光偏向素子15における信号光L1のy軸方向についてのビームサイズが変化する(小さくなり始める)変化点距離(例えば上述した450mmや180mm程度等)よりも大きくなるように設定されることが好ましい。 As shown in FIGS. 6 and 7, the magnitude (change point distance) of the distance S 1L at which the beam size in the y-axis direction of the light deflecting element 15 starts to decrease is that of the signal light L 1 incident on the condenser lens 19. It also varies depending on the beam waist diameter. Therefore, in the wavelength selective switch 1A according to the present embodiment, the distance S1L between the beam waist position P3 of the signal light L1 input from the input port 12 and incident on the condenser lens 19 and the condenser lens 19 is determined as follows. When the distance S1L is changed, the beam size of the signal light L1 in the optical deflection element 15 in the y-axis direction changes (becomes smaller) and becomes larger than the change point distance (for example, about 450 mm or 180 mm described above). It is preferable to set as follows.
 さらに、光偏向素子15として、LCOSのように、x軸方向に沿って配列された複数の光偏向要素素子によって、分光素子18で分光された信号光L1のそれぞれを独立して位相変調することにより出力ポート13に向けて偏向する光偏向素子を用いる場合には、ビームウエスト位置調整光学系20Aは、光偏向素子15における信号光L1のビームサイズのアスペクト比を30以上とすることが好ましい。これを実現するためには、光偏向素子15における信号光L1のビームサイズのアスペクト比を、アナモルフィック光学系17におけるy軸方向についての(すなわち、光偏向素子15におけるx軸方向についての)信号光L1のビームサイズの拡大倍率の3倍以上とすることが好ましい。 Further, each of the signal light L1 dispersed by the spectroscopic element 18 is independently phase-modulated by a plurality of light deflecting element elements arranged along the x-axis direction, such as LCOS, as the optical deflecting element 15. When the optical deflection element that deflects toward the output port 13 is used, the beam waist position adjusting optical system 20A preferably sets the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 to 30 or more. In order to realize this, the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 is set in the y-axis direction in the anamorphic optical system 17 (that is, in the x-axis direction in the optical deflection element 15). It is preferable that the magnification of the beam size of the signal light L1 is three times or more.
 以上説明したように、この波長選択スイッチ1Aにおいては、ビームウエスト位置調整光学系20Aが、入力ポート12から入力された信号光L1のビームウエスト位置P1を、x軸方向とy軸方向とにおいてそれぞれ調整する。特に、ビームウエスト位置調整光学系20Aは、x軸方向について、信号光L1のビームウエスト位置P1が集光レンズ19の前側焦点Pfと略一致するように、ビームウエスト位置P1を調整する。このため、出力ポート13における信号光L1のx軸方向(入力ポート12及び出力ポート13の配列方向)についてのビームサイズを小さくすることができる。よって、この波長選択スイッチ1によれば、装置を大型化することなく多ポート化することが可能となる。 As described above, in this wavelength selective switch 1A, the beam waist position adjusting optical system 20A sets the beam waist position P1 of the signal light L1 input from the input port 12 in the x-axis direction and the y-axis direction, respectively. adjust. In particular, the beam waist position adjusting optical system 20A adjusts the beam waist position P1 so that the beam waist position P1 of the signal light L1 substantially coincides with the front focal point Pf of the condenser lens 19 in the x-axis direction. For this reason, the beam size of the signal light L1 at the output port 13 in the x-axis direction (the arrangement direction of the input port 12 and the output port 13) can be reduced. Therefore, according to this wavelength selective switch 1, it is possible to increase the number of ports without increasing the size of the apparatus.
 また、この波長選択スイッチ1Aにおいては、x軸方向について、ビームウエスト位置調整光学系20A(リレー光学系16A)によって、入力ポート12から入力された信号光L1のビームウエスト位置P1を分光素子18上に位置させる。このため、x軸方向において分光素子18を小型化することが可能となる。 In the wavelength selective switch 1A, the beam waist position P1 of the signal light L1 input from the input port 12 is set on the spectroscopic element 18 by the beam waist position adjusting optical system 20A (relay optical system 16A) in the x-axis direction. To be located. For this reason, the spectroscopic element 18 can be reduced in size in the x-axis direction.
 一方、ビームウエスト位置調整光学系20Aは、y軸方向について、入力ポート12から入力された信号光L1のビームウエスト位置P1を、アナモルフィック光学系17の後段となるように調整し(すなわち、上述した距離S1Pを調整し)、結果として、集光レンズ19に入射する信号光L1のビームウエスト位置P3から集光レンズ19までの距離S1Lを調整する。これにより、光偏向素子15における信号光L1のy軸方向についてのビームサイズが調整され、光偏向素子15における信号光L1のビームサイズのアスペクト比が調整される。このように、この波長選択スイッチ1Aによれば、構造を複雑化することなく、光偏向素子15における信号光L1のビームサイズのアスペクト比を、例えば、アナモルフィック光学系17のy軸方向におけるビームサイズ拡大倍率(すなわち、集光レンズ19を介した光偏向素子15におけるx軸方向のビームサイズ拡大倍率)以上とする等、調整することができる。 On the other hand, the beam waist position adjusting optical system 20A adjusts the beam waist position P1 of the signal light L1 input from the input port 12 in the y-axis direction so as to be the latter stage of the anamorphic optical system 17 (that is, adjust the distance S 1P described above), as a result, to adjust the distance S 1L from the beam waist position P3 of the signal light L1 incident on the condenser lens 19 to the condenser lens 19. Thereby, the beam size of the signal light L1 in the y-axis direction in the optical deflection element 15 is adjusted, and the aspect ratio of the beam size of the signal light L1 in the optical deflection element 15 is adjusted. Thus, according to the wavelength selective switch 1A, the aspect ratio of the beam size of the signal light L1 in the optical deflector 15 can be set, for example, in the y-axis direction of the anamorphic optical system 17 without complicating the structure. The beam size enlargement magnification (that is, the beam size enlargement magnification in the x-axis direction of the light deflection element 15 via the condenser lens 19) or more can be adjusted.
 以上の第1及び第2実施形態は、本発明の一側面に係る波長選択スイッチの一側面を説明したものである。したがって、本発明に係る波長選択スイッチは、上述した波長選択スイッチ1,1Aに限定されない。本発明に係る波長選択スイッチは、各請求項の要旨を変更しない範囲において、上述した波長選択スイッチ1,1Aを任意に変形したものとすることができる。 The above first and second embodiments describe one aspect of the wavelength selective switch according to one aspect of the present invention. Therefore, the wavelength selective switch according to the present invention is not limited to the wavelength selective switches 1 and 1A described above. The wavelength selective switch according to the present invention can be arbitrarily modified from the wavelength selective switches 1 and 1A described above without departing from the scope of the claims.
 例えば、上述した波長選択スイッチ1(波長選択スイッチ1A)は、図8に示されるように、偏波ダイバーシティモジュール30をさらに備えることができる。偏波ダイバーシティモジュール30は、リレー光学系16(リレー光学系16A)の前段に配置されている。偏波ダイバーシティモジュール30は、信号光L1を偏光方向(s/p偏光)に応じてy軸方向に分離する偏光ビームスプリッタ31と、偏光ビームスプリッタ31で分離された信号光DL1,DL2のうちの一方の信号光DL2の偏光方向を他方の信号光DL1の偏光方向に合わせる波長板(偏光回転素子)32と、偏光ビームスプリッタ31で分離された信号光DL1,DL2のうちの一方の信号光DL1の光路長を他方の信号光DL2光路長に合わせる光路調整素子33とを含む。なお、偏波ダイバーシティモジュール30においては、偏光ビームスプリッタ31で分離された信号光DL2は、ミラー34で反射された後に波長板32に入射する。このように、波長選択スイッチ1(波長選択スイッチ1A)は、偏波ダイバーシティモジュール30を備えることにより、偏波依存損失を低減することができる。特に、リレー光学系16(リレー光学系16A)の前段に配置することで、偏波ダイバーシティモジュール30を小型化できる。 For example, the wavelength selective switch 1 (wavelength selective switch 1A) described above can further include a polarization diversity module 30 as shown in FIG. The polarization diversity module 30 is disposed in front of the relay optical system 16 (relay optical system 16A). The polarization diversity module 30 includes a polarization beam splitter 31 that separates the signal light L1 in the y-axis direction according to the polarization direction (s / p polarization), and the signal light DL1 and DL2 separated by the polarization beam splitter 31. A wave plate (polarization rotating element) 32 that matches the polarization direction of one signal light DL2 with the polarization direction of the other signal light DL1, and one of the signal lights DL1 and DL2 separated by the polarization beam splitter 31. And an optical path adjusting element 33 that matches the optical path length of the other signal light DL2 with the optical path length. In the polarization diversity module 30, the signal light DL <b> 2 separated by the polarization beam splitter 31 is reflected by the mirror 34 and then enters the wave plate 32. As described above, the wavelength selective switch 1 (wavelength selective switch 1A) includes the polarization diversity module 30 and can reduce the polarization dependent loss. In particular, the polarization diversity module 30 can be miniaturized by disposing it in front of the relay optical system 16 (relay optical system 16A).
 ここで、このような偏波ダイバーシティモジュール30を備える波長選択スイッチ1(波長選択スイッチ1A)においては、信号光DL1と信号光DL2とが別々の経路をたどる。信号光DL1,DL2の通る経路は、往路及び復路において逆になる。例えば、図示上側の経路で光偏向素子15に向かう信号光DL1は、光偏向素子15から戻る際には図示下側の経路を通る。このとき、波長選択スイッチ1(波長選択スイッチ1A)においては、リレー光学系16(16A)及びアナモルフィック光学系17の上述した機能が重要となるので、信号光DL1,DL2の往路及び復路における光路長を揃える必要がある。このため、例えばシリンドリカルレンズやプリズムアセンブリで構成される光路調整素子33を配置することがより有効である。 Here, in the wavelength selective switch 1 (wavelength selective switch 1A) including such a polarization diversity module 30, the signal light DL1 and the signal light DL2 follow different paths. The paths through which the signal lights DL1 and DL2 pass are reversed in the forward path and the return path. For example, the signal light DL1 that travels toward the optical deflection element 15 through the upper path in the figure passes through the lower path in the figure when returning from the optical deflection element 15. At this time, in the wavelength selective switch 1 (wavelength selective switch 1A), the above-described functions of the relay optical system 16 (16A) and the anamorphic optical system 17 are important. Therefore, in the forward and return paths of the signal lights DL1 and DL2 It is necessary to align the optical path length. For this reason, for example, it is more effective to arrange the optical path adjusting element 33 constituted by a cylindrical lens or a prism assembly.
 ところで、図3及び上記式(2)で示されるように、レンズAから出射される光L2のビームウエスト位置Aにおけるビーム半径Dは、レンズAに入射する光L2のビームウエスト位置Aにおけるビーム半径Dを調整することによっても調整することができる。したがって、上述した波長選択スイッチ1Aにおいても、y軸方向について、例えばビームウエスト位置調整光学系20Aを用いて、集光レンズ19に入射する信号光L1のビームウエスト位置P3におけるビームサイズを調整して、光偏向素子15上における信号光L1のy軸方向についてのビームサイズを調整することにより、光偏向素子15上での信号光L1のビームサイズのアスペクト比を調整してもよい。 By the way, as shown in FIG. 3 and the above equation (2), the beam radius D 2 at the beam waist position A 2 of the light L 2 emitted from the lens A is equal to the beam waist position A 1 of the light L 2 incident on the lens A. it can also be adjusted by adjusting the beam radius D 1 in. Therefore, also in the wavelength selective switch 1A described above, in the y-axis direction, for example, the beam waist position adjusting optical system 20A is used to adjust the beam size at the beam waist position P3 of the signal light L1 incident on the condenser lens 19. The aspect ratio of the beam size of the signal light L1 on the optical deflection element 15 may be adjusted by adjusting the beam size in the y-axis direction of the signal light L1 on the optical deflection element 15.
 また、上述した波長選択スイッチ1Aにおいては、リレー光学系16Aを、y軸方向について、入力ポート12から入力された信号光L1のビームウエスト位置P1を、コリメートレンズ12b,13bの前段となるように調整する態様としてもよい。その場合には、リレー光学系16Aの第2のレンズ16cは、x軸方向にのみ光パワーを有するシリンドリカルレンズとすることが望ましい。このような構成によれば、距離S1Pが正の値となるが、上記式に示されるように、同様の効果を奏することができる。 Further, in the wavelength selective switch 1A described above, the relay optical system 16A is set so that the beam waist position P1 of the signal light L1 input from the input port 12 in the y-axis direction is in front of the collimating lenses 12b and 13b. It is good also as a mode to adjust. In that case, it is desirable that the second lens 16c of the relay optical system 16A be a cylindrical lens having optical power only in the x-axis direction. According to such a configuration, the distance S1P has a positive value, but the same effect can be achieved as shown in the above formula.
 また、上記実施形態においては、波長選択スイッチ1,1Aを、入力ポート12から波長多重光を入力し、出力ポート13から分光後の各波長成分の光を出力する場合に適用する例ついて説明したが、波長選択スイッチ1,1Aは、複数の入力ポート12から各波長成分の光を入力し、出力ポート13から合波後の波長多重光を出力する場合に適用してもよい。 In the above-described embodiment, an example is described in which the wavelength selective switches 1 and 1A are applied when wavelength multiplexed light is input from the input port 12 and light of each wavelength component after spectroscopy is output from the output port 13. However, the wavelength selective switches 1, 1 </ b> A may be applied when light of each wavelength component is input from the plurality of input ports 12 and wavelength-multiplexed light after being combined is output from the output port 13.
 さらに、上記実施形態においては、ポートアレイ14の各ポート12,13が、光ファイバ12a,13aとコリメートレンズ12b,13bとを含んで構成されるものとしたが、ポートアレイ14の態様はこれに限定されない。 Furthermore, in the above-described embodiment, the ports 12 and 13 of the port array 14 are configured to include the optical fibers 12a and 13a and the collimating lenses 12b and 13b. It is not limited.
 本発明によれば、構造を複雑にすることなく信号光のビームサイズのアスペクト比が調整可能であると共に、装置を大型化することなく多ポート化を実現可能な波長選択スイッチを提供することができる。 According to the present invention, it is possible to provide a wavelength selective switch in which the aspect ratio of the beam size of signal light can be adjusted without complicating the structure and the number of ports can be increased without increasing the size of the apparatus. it can.
 1,1A…波長選択スイッチ、12…入力ポート、12a,13a…光ファイバ、12b,13b…コリメートレンズ、14…ポートアレイ、16,16A…リレー光学系、16a…第1のレンズ(第1の要素)、16b…第2のレンズ(第2の要素)、16c…第2のレンズ(第2の要素)、17…アナモルフィック光学系、17a,17b…プリズム、18…分光素子、19…集光レンズ(集光素子)、20A…ビームウエスト位置調整光学、30…偏波ダイバーシティモジュール、31…偏光ビームスプリッタ、32…波長板(偏光回転素子)、33…光路調整素子。 DESCRIPTION OF SYMBOLS 1,1A ... Wavelength selection switch, 12 ... Input port, 12a, 13a ... Optical fiber, 12b, 13b ... Collimating lens, 14 ... Port array, 16, 16A ... Relay optical system, 16a ... 1st lens (1st Element), 16b ... second lens (second element), 16c ... second lens (second element), 17 ... anamorphic optical system, 17a, 17b ... prism, 18 ... spectroscopic element, 19 ... Condensing lens (condensing element), 20A ... beam waist position adjusting optics, 30 ... polarization diversity module, 31 ... polarizing beam splitter, 32 ... wavelength plate (polarization rotating element), 33 ... optical path adjusting element.

Claims (19)

  1.  信号光を入力する入力ポート及び信号光を出力する出力ポートを第1の方向に配列して構成されるポートアレイと、
     前記入力ポートから入力された信号光を前記第1の方向と異なる第2の方向に分光する分光素子と、
     前記分光素子で分光された信号光のそれぞれを集光する集光素子と、
     前記集光素子で集光された信号光のそれぞれを前記出力ポートに向けて偏向する光偏向素子と、
     前記第1の方向について、前記入力ポートから入力された信号光のビームウエスト位置を前記集光素子の前側焦点と略一致させるように調整するリレー光学系と、
     前記リレー光学系と光学的に接続されるように前記リレー光学系の前段又は後段に配置され、前記光偏向素子における信号光の前記第2の方向についてのビームサイズに対する前記第1の方向についてのビームサイズの比を拡大するアナモルフィック光学系と、を備える、
     ことを特徴とする波長選択スイッチ。
    A port array configured by arranging an input port for inputting signal light and an output port for outputting signal light in a first direction;
    A spectroscopic element that splits the signal light input from the input port in a second direction different from the first direction;
    A condensing element that condenses each of the signal lights dispersed by the spectroscopic element;
    An optical deflecting element that deflects each of the signal lights condensed by the condensing element toward the output port;
    A relay optical system that adjusts the beam waist position of the signal light input from the input port so as to substantially coincide with the front focal point of the light collecting element with respect to the first direction;
    It is arranged at the front stage or the rear stage of the relay optical system so as to be optically connected to the relay optical system, and the signal light in the light deflection element is in the first direction with respect to the beam size in the second direction. An anamorphic optical system that expands the ratio of beam sizes,
    A wavelength selective switch characterized by that.
  2.  前記リレー光学系は、前記第1の方向及び前記第2の方向に光パワーを有する第1の要素と、少なくとも前記第1の方向に光パワーを有する第2の要素とを含んで構成される、ことを特徴とする請求項1に記載の波長選択スイッチ。 The relay optical system includes a first element having optical power in the first direction and the second direction, and a second element having optical power in at least the first direction. The wavelength selective switch according to claim 1, wherein:
  3.  前記入力ポート及び前記出力ポートは、光ファイバと該光ファイバに光学的に接続されたコリメートレンズとを含み、
     前記第1の要素の前側焦点は、前記第1の方向について、前記コリメートレンズの後側焦点と略一致するように配置されており、
     前記第2の要素の前側焦点は、前記第1の方向について、前記第1の要素の後側焦点と略一致し、前記第2の要素の後側焦点は、前記集光素子の前側焦点と略一致するように配置されている、
     ことを特徴とする請求項2に記載の波長選択スイッチ。
    The input port and the output port include an optical fiber and a collimating lens optically connected to the optical fiber,
    The front focal point of the first element is arranged to substantially coincide with the rear focal point of the collimating lens in the first direction;
    The front focal point of the second element substantially coincides with the rear focal point of the first element in the first direction, and the rear focal point of the second element is the front focal point of the light collecting element. Are arranged so that they match,
    The wavelength selective switch according to claim 2.
  4.  前記第2の要素は、前記第1の方向のみに光パワーを有し、前記光偏向素子における信号光の前記第2の方向についてのビームサイズに対する前記第1の方向についてのビームサイズの比を拡大する、ことを特徴とする請求項3に記載の波長選択スイッチ。 The second element has optical power only in the first direction, and the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element is The wavelength selective switch according to claim 3, wherein the wavelength selective switch is expanded.
  5.  前記アナモルフィック光学系は、前記リレー光学系の後段に配置され、
     前記第1の要素は、前記入力ポートから入力され前記第1の要素に入射する信号光のビームウエスト位置におけるビームサイズよりも、前記第1の要素から出射した信号光のビームウエスト位置におけるビームサイズを相対的に大きくする、
     ことを特徴とする請求項2~4のいずれか一項に記載の波長選択スイッチ。
    The anamorphic optical system is disposed at a subsequent stage of the relay optical system,
    The first element has a beam size at the beam waist position of the signal light emitted from the first element, rather than a beam size at the beam waist position of the signal light input from the input port and incident on the first element. Is relatively large,
    The wavelength selective switch according to any one of claims 2 to 4, wherein:
  6.  前記リレー光学系と前記アナモルフィック光学系とは、前記信号光のビームウエスト位置を調整するビームウエスト位置調整光学系を構成しており、
     前記アナモルフィック光学系は、前記リレー光学系の後段に配置され、
     前記リレー光学系は、前記第2の方向について、前記入力ポートから入力された信号光のビームウエスト位置を、前記アナモルフィック光学系の後段となるように調整する、
     ことを特徴とする請求項3に記載の波長選択スイッチ。
    The relay optical system and the anamorphic optical system constitute a beam waist position adjusting optical system that adjusts a beam waist position of the signal light,
    The anamorphic optical system is disposed at a subsequent stage of the relay optical system,
    The relay optical system adjusts the beam waist position of the signal light input from the input port in the second direction so as to be a subsequent stage of the anamorphic optical system.
    The wavelength selective switch according to claim 3.
  7.  前記第2の要素は、前記第1の方向及び前記第2の方向に光パワーを有する、ことを特徴とする請求項6に記載の波長選択スイッチ。 The wavelength selective switch according to claim 6, wherein the second element has optical power in the first direction and the second direction.
  8.  前記リレー光学系と前記アナモルフィック光学系とは、前記信号光のビームウエスト位置を調整するビームウエスト位置調整光学系を構成しており、
     前記アナモルフィック光学系は、前記リレー光学系の後段に配置され、
     前記リレー光学系は、前記第2の方向について、前記入力ポートから入力された信号光のビームウエスト位置を、前記コリメートレンズの前段となるように調整する、ことを特徴とする請求項3に記載の波長選択スイッチ。
    The relay optical system and the anamorphic optical system constitute a beam waist position adjusting optical system that adjusts a beam waist position of the signal light,
    The anamorphic optical system is disposed at a subsequent stage of the relay optical system,
    The said relay optical system adjusts the beam waist position of the signal beam | light input from the said input port so that it may become a front | former stage of the said collimating lens about the said 2nd direction. Wavelength selective switch.
  9.  前記第2の要素は、前記第1の方向にのみ光パワーを有する、ことを特徴とする請求項8に記載の波長選択スイッチ。 The wavelength selective switch according to claim 8, wherein the second element has optical power only in the first direction.
  10.  前記光偏向素子における信号光の前記第2の方向についてのビームサイズに対する前記第1の方向についてのビームサイズの比は、前記アナモルフィック光学系における前記第2の方向についての信号光のビームサイズの拡大倍率の3倍以上である、ことを特徴とする請求項6~9のいずれか一項に記載の波長選択スイッチ。 The ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element is the beam size of the signal light in the second direction in the anamorphic optical system. The wavelength selective switch according to any one of claims 6 to 9, characterized in that the magnification is 3 times or more of the magnification.
  11.  前記入力ポートから入力され前記集光素子に入射する信号光のビームウエスト位置と前記集光素子との間の距離は、当該距離を変化させたときに前記光偏向素子における信号光のビームサイズが変化する変化点距離よりも大きい、ことを特徴とする請求項6~9のいずれか一項に記載の波長選択スイッチ。 The distance between the beam waist position of the signal light input from the input port and incident on the light condensing element and the light condensing element are such that the beam size of the signal light in the light deflecting element is changed when the distance is changed. The wavelength selective switch according to any one of claims 6 to 9, wherein the wavelength selective switch is larger than a changing point distance to be changed.
  12.  前記光偏向素子は、前記第1の方向に沿って配列された複数の光偏向要素素子によって、前記分光素子で分光された信号光のそれぞれを独立して位相変調することにより前記出力ポートに向けて偏向し、
     前記リレー光学系及び前記アナモルフィック光学系は、前記光偏向素子における信号光の前記第2の方向についてのビームサイズに対する前記第1の方向についてのビームサイズの比を30以上とする、
     ことを特徴とする請求項1~11のいずれか一項に記載の波長選択スイッチ。
    The light deflecting element is directed to the output port by independently phase-modulating each of the signal lights dispersed by the spectroscopic element by a plurality of light deflecting element elements arranged along the first direction. And deflect
    In the relay optical system and the anamorphic optical system, the ratio of the beam size in the first direction to the beam size in the second direction of the signal light in the optical deflection element is 30 or more.
    The wavelength selective switch according to any one of claims 1 to 11, wherein:
  13.  前記アナモルフィック光学系は、少なくとも一対のプリズムから構成される、ことを特徴とする請求項1~12のいずれか一項に記載の波長選択スイッチ。 The wavelength selective switch according to any one of claims 1 to 12, wherein the anamorphic optical system includes at least a pair of prisms.
  14.  前記入力ポートから入力された信号光の前記プリズムへの入射角度は、70°以上である、ことを特徴とする請求項13に記載の波長選択スイッチ。 The wavelength selective switch according to claim 13, wherein an incident angle of the signal light input from the input port to the prism is 70 ° or more.
  15.  前記入力ポートから入力された信号光の前記プリズムへの入射角度は、ブリュースター角に略等しい、ことを特徴とする請求項13又は14に記載の波長選択スイッチ。 The wavelength selective switch according to claim 13 or 14, wherein an incident angle of the signal light input from the input port to the prism is substantially equal to a Brewster angle.
  16.  前記プリズムの屈折率は、1.5以上である、ことを特徴とする請求項14又は15に記載の波長選択スイッチ。 The wavelength selective switch according to claim 14 or 15, wherein a refractive index of the prism is 1.5 or more.
  17.  前記プリズムの屈折率は、3以上である、ことを特徴とする請求項16に記載の波長選択スイッチ。 The wavelength selective switch according to claim 16, wherein the refractive index of the prism is 3 or more.
  18.  前記リレー光学系の前段に配置された偏波ダイバーシティモジュールをさらに備える、ことを特徴とする請求項1~17のいずれか一項に記載の波長選択スイッチ。 The wavelength selective switch according to any one of claims 1 to 17, further comprising a polarization diversity module disposed in front of the relay optical system.
  19.  前記偏波ダイバーシティモジュールは、信号光を偏光方向に応じて前記第2の方向に分離する偏光ビームスプリッタと、前記偏光ビームスプリッタで分離された信号光のうちの一方の偏光方向を他方の偏光方向に合わせる偏光回転素子と、前記偏光ビームスプリッタで分離された信号光のうちの一方の光路長を他方の光路長に合わせる光路調整素子と、を含むことを特徴とする請求項18に記載の波長選択スイッチ。
     
    The polarization diversity module includes: a polarization beam splitter that separates signal light in the second direction according to a polarization direction; and one polarization direction of the signal light separated by the polarization beam splitter is converted to the other polarization direction. The wavelength rotation device according to claim 18, further comprising: a polarization rotation element that adjusts the optical path length of the signal light, and an optical path adjustment element that adjusts one optical path length of the signal light separated by the polarization beam splitter to the other optical path length. Select switch.
PCT/JP2013/057413 2013-03-15 2013-03-15 Wavelength selection switch WO2014141469A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/057413 WO2014141469A1 (en) 2013-03-15 2013-03-15 Wavelength selection switch
JP2013250384A JP6427869B2 (en) 2013-03-15 2013-12-03 Wavelength selective switch
US14/207,071 US9116414B2 (en) 2013-03-15 2014-03-12 Wavelength selective switch
EP14159467.1A EP2799918A1 (en) 2013-03-15 2014-03-13 Wavelength selective swith
CN201410096422.3A CN104049305B (en) 2013-03-15 2014-03-14 Wavelength selective switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057413 WO2014141469A1 (en) 2013-03-15 2013-03-15 Wavelength selection switch

Publications (1)

Publication Number Publication Date
WO2014141469A1 true WO2014141469A1 (en) 2014-09-18

Family

ID=51536163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057413 WO2014141469A1 (en) 2013-03-15 2013-03-15 Wavelength selection switch

Country Status (1)

Country Link
WO (1) WO2014141469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138989A (en) * 2015-01-27 2016-08-04 日本電信電話株式会社 Wavelength selection switch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541187A (en) * 2005-05-19 2008-11-20 エクステラス インコーポレイテッド Monopolar optical wavelength selector
JP2009276747A (en) * 2008-02-28 2009-11-26 Olympus Corp Wavelength selective switch having distinct planes of operation
JP2010072339A (en) * 2008-09-18 2010-04-02 National Institute Of Advanced Industrial Science & Technology Waveguide type wavelength domain optical switch
JP2011065023A (en) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> Wavelength selection switch
JP2012220924A (en) * 2011-04-14 2012-11-12 National Institute Of Advanced Industrial & Technology N×n wavelength selection switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541187A (en) * 2005-05-19 2008-11-20 エクステラス インコーポレイテッド Monopolar optical wavelength selector
JP2009276747A (en) * 2008-02-28 2009-11-26 Olympus Corp Wavelength selective switch having distinct planes of operation
JP2010072339A (en) * 2008-09-18 2010-04-02 National Institute Of Advanced Industrial Science & Technology Waveguide type wavelength domain optical switch
JP2011065023A (en) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> Wavelength selection switch
JP2012220924A (en) * 2011-04-14 2012-11-12 National Institute Of Advanced Industrial & Technology N×n wavelength selection switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138989A (en) * 2015-01-27 2016-08-04 日本電信電話株式会社 Wavelength selection switch

Similar Documents

Publication Publication Date Title
JP6427869B2 (en) Wavelength selective switch
US9632391B2 (en) Wavelength selective switch employing a LCoS device and having reduced crosstalk
JP5184637B2 (en) Wavelength selective switch
JP6668229B2 (en) Wavelength selection switch with reduced crosstalk using LCOS device and wavelength selection method
US10126556B2 (en) Light operation device
CN107003534B (en) Emitting optics with optical path compensation for wavelength selective switches
JP2015031787A (en) Wavelength selection switch and method for manufacturing the same
WO2014141469A1 (en) Wavelength selection switch
JP6251202B2 (en) Wavelength selective switch
JP2009009073A (en) Wavelength selecting switch
JP6117158B2 (en) Optical operation device and control method thereof
JP2004271743A (en) Optical device
JP5959466B2 (en) Optical operation device
JP2005321480A (en) Wavelength selection device
WO2014061103A1 (en) Optical path control device
JP2010237377A (en) Prism, prism pair, and wavelength selection device with the prism pair
KR101929472B1 (en) Wavelength selective switch
JP2017142465A (en) Optical operation device and light source device
JP2015055781A (en) Wavelength selection switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP