WO2014141434A1 - Facility design system, facility design method, and facility design program - Google Patents

Facility design system, facility design method, and facility design program Download PDF

Info

Publication number
WO2014141434A1
WO2014141434A1 PCT/JP2013/057197 JP2013057197W WO2014141434A1 WO 2014141434 A1 WO2014141434 A1 WO 2014141434A1 JP 2013057197 W JP2013057197 W JP 2013057197W WO 2014141434 A1 WO2014141434 A1 WO 2014141434A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
design
facility
year
distribution network
Prior art date
Application number
PCT/JP2013/057197
Other languages
French (fr)
Japanese (ja)
Inventor
賢司 小泉
信補 高橋
進吾 足立
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/057197 priority Critical patent/WO2014141434A1/en
Publication of WO2014141434A1 publication Critical patent/WO2014141434A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present invention relates to an equipment design system, an equipment design method, and an equipment design program, and more specifically, to a technology capable of minimizing investment and operation costs throughout a design period over a plurality of years when designing an equipment of a water distribution system.
  • Reclaimed water is treated water produced by collecting sewage generated in a city once at a sewage treatment facility and subjecting it to appropriate sewage treatment to purify it. Reclaimed water is distributed to each facility for the purpose of flushing toilets and watering roads.
  • Non-Patent Document 1 a method in which a pipeline connecting sources is selected and designed so that the overall investment cost and operation cost are minimized.
  • an object of the present invention is to provide a technology capable of minimizing the cost of investment and operation throughout the design period over a plurality of years when designing the facilities of a water distribution system.
  • the facility design system of the present invention that solves the above problems includes a storage device that holds at least data relating to components of the water distribution facility and data relating to restrictions on the design of the water distribution facility, and a water supply source including data relating to the component , A process for generating a distribution network pattern for connecting each of the water supply source and the customer facility with the water distribution means based on the data on the customer facility and the water distribution means, and a predetermined configuration including the data on the components Based on the data of the cost required for the introduction and operation of the elements and the data of the design period included in the data related to the constraint, under the condition satisfying the predetermined constraint included in the data related to the constraint between each year of the design period, Among the distribution network patterns, the distribution network that minimizes the total cost for each fiscal year is identified as facility design data, and the facility design data for the entire design period An arithmetic unit for executing a process of storing in the storage device, characterized in that it comprises a.
  • an information processing device including a storage device that holds at least data relating to components of the water distribution facility and data relating to restrictions on the water distribution facility design includes the data relating to the component.
  • a process for generating a distribution network pattern that connects the water supply source and the customer facility with the water distribution means, and data on the components are included.
  • the distribution network with the lowest total cost is identified as the facility design data for each fiscal year among the distribution network patterns, and the facility design data for the entire design period is specified. And executes the process of storing data in the storage device.
  • the facility design program of the present invention includes, in an information processing apparatus including a storage device that holds at least data relating to components of the water distribution facility and data relating to restrictions on the water distribution facility design, the data relating to the component includes Based on the data on the water supply source, the customer facility, and the water distribution means, a process for generating a distribution network pattern that connects the water supply source and the customer facility with the water distribution means, and data on the components are included.
  • the distribution network that minimizes the total cost for each fiscal year among the distribution network patterns is specified as facility design data, and the facilities for the entire design period are identified.
  • FIG. 1 is a diagram illustrating a configuration example of an equipment design system 100 according to the present embodiment
  • FIG. 2A is a diagram illustrating a usage relationship between functional units and data in the equipment design system according to the present embodiment.
  • the facility design system 100 shown in FIG. 1 is a computer system in which investment and operation costs can be minimized throughout the design period of a plurality of years when designing a water distribution system.
  • the facility design in the present embodiment is defined as determining water distribution means (for example, pipelines, water trucks, etc.) and supply source specifications (positions, supply capacities, etc.) for satisfying the demand for reclaimed water at consumers. .
  • the target for water distribution is not limited to reclaimed water, but includes various types of water and sewage in the concept.
  • the hardware configuration of the facility design system 100 in the present embodiment is as follows.
  • the facility design system 100 reads into the memory 103 a storage device 101 composed of a suitable non-volatile storage device such as a hard disk drive, a memory 103 composed of a volatile storage device such as a RAM, and a program 102 held in the storage device 101.
  • a CPU 104 (arithmetic unit) that performs overall control of the system itself and performs various determinations, calculations, and control processes.
  • the facility design system 100 is connected to an input device 105 such as a keyboard and a pointing device that receives instructions and data input from the user, a display device 106 such as a display that displays processing data, and an appropriate network, and is used by the user. It is preferable to provide a communication device 107 that performs communication processing with a terminal or the like.
  • the user input value received by the input device 105 is transmitted to the facility design control unit 10 described above.
  • the facility design control unit 10 starts various processes by transmitting the above-described user input values to the automatic design unit 13, the manual design unit 12, or the display device 106.
  • the display device 106 draws a layout of allocation of connection points, satellites, customers, pipelines, and water trucks according to facility design data 117 described later, contents of the facility design data 117, and evaluation of the facility design data 117.
  • the indicator will be displayed.
  • the display device 106 displays an interface when the user edits the facility design data 117 by the function of the manual design unit 12 described later.
  • the display device 106 displays an interface for receiving a user instruction regarding activation of the automatic design unit 13 or the manual design unit 12.
  • a facility design control unit 10 that controls a manual design unit 12 and an automatic design unit 13 described later, and design condition data 110 are stored in the storage device 101.
  • the manual design unit 12 for editing the equipment design data in accordance with the instruction from the user received by the input device 105, etc.
  • an automatic design unit 13 that automatically executes processing. Data transmission between the functional units and between the functional units and the data storage device is performed via the BUS.
  • the automatic design unit 13 includes a network construction function 301, an automatic design function 302, a discharge pressure determination function 303, and a constraint violation determination function 304 as described in FIG. 2B.
  • the manual design part 12 has the equipment edit function 401, the water tank allocation edit function 402, the constraint violation determination function 403, and the input reception function 404 as described in FIG. 2C. Detailed processing of each function will be described later.
  • the storage device 101 of the facility design system 100 stores design condition data 110, network data 116, and facility design data 117 in addition to the program 102 described above.
  • the design condition data 110 is a set of data such as preconditions and numerical information and constraints determined when the facility design system 100 calculates the facility design data.
  • the geographic information data 111, the construction candidate data 112, the customer data 113, the constraints Data 114 and numerical data 115 are included.
  • the network data 116 is a distribution network pattern generated by the automatic design unit 13 using the design condition data 110 and is data used as calculation conditions in the manual design unit 12 or the automatic design unit 13.
  • the equipment design data 117 is data of equipment design results calculated and output by the manual design unit 12 and the automatic design unit 13.
  • the geographic information data 111 is composed of map data relating to the area where reclaimed water is supplied by the water distribution equipment to be designed, road data, and elevation data of intersections on the road.
  • the table 31 in FIG. 3 is a table storing the start point and end point of each road
  • the table 32 is a table storing the altitude data of the road intersection. Accordingly, each record in the table 31 has an ID for each road on the map, and the road extends from a certain intersection (eg, “Xr1”) that means the start point to a certain intersection (eg, “Yr1”) that means the end point. It shows that it is.
  • Each record in the table 32 indicates that each intersection (eg, “Xr1”) has a predetermined elevation value (eg, “Ec1”) at the location where the intersection exists.
  • map data is not shown in FIG. 3, in the geographic information data 111, for example, it is assumed that general map data in which a road route map is described in a topographic map such as a river or a mountain is stored. .
  • the construction candidate data 112 includes a table 41 that stores pipeline candidate data, a table 42 that stores connection point candidate data, and a table 43 that stores satellite candidate data. ing.
  • the pipe candidate data is data indicating all candidate sites where the pipes can be laid out among the roads indicated by the geographic information data 111.
  • the connection point candidate data is data indicating all candidate sites on the map indicated by the geographic information data 111, where the connection points connecting the tubes can be arranged.
  • the satellite candidate data is data indicating all candidate sites where the satellite processing plant can be constructed on the map indicated by the geographic information data 111.
  • the satellite treatment plant (hereinafter simply referred to as satellite) is an intermediate facility that collects sewage from the sewage pipes before reaching the sewage treatment plant and performs sewage treatment.
  • the form which distributes the reclaimed water processed in the satellite to a consumer is assumed.
  • satellites are a source of recycled water.
  • reclaimed water can be produced not only in satellites but also in sewage treatment plants, all the candidates for construction of sewage treatment plants on the map indicated by the geographic information data 111 as the satellite candidate data described above. Data indicating the ground, that is, sewage treatment plant candidate data may be used.
  • connection point candidates are set at road intersections
  • satellite candidates are existing ones. It is assumed to be installed in a vacant lot along the pumping station and the sewer main line.
  • the pipe start point and the pipe end point in the pipe candidate table 41 correspond to a connection point candidate, a satellite candidate, or a customer.
  • FIG. 5 is an example in which the water distribution network pattern based on each candidate data described above is displayed on the display device 106 as the network 20.
  • the network 20 shown in FIG. 5 all broken lines indicate conduit candidates, white circles indicate connection point candidates, black squares indicate satellite candidates, and black circles indicate water consumers.
  • each symbol in the network 20 shown in FIG. 5 is an example, and other symbols may be used for each component such as a pipe line candidate, a connection point candidate, a satellite candidate, and a customer.
  • a water supply vehicle can be adopted as a water distribution means in addition to the pipeline. The form in which this water supply vehicle is included in the water distribution network will be described later.
  • a specific processing method for displaying the network 20 as shown in FIG. 5 on the display device 106 will also be described later.
  • the customer data 113 is data of a customer to be distributed, which appears in an area where reclaimed water is supplied by the above-described water distribution facility to be designed.
  • FIG. 6 shows an example of the table 51 included in the customer data 113.
  • the table 51 in the customer data 113 includes a unique customer ID for each customer, coordinates on the map indicated by the geographical information data 111, altitude at this coordinate, demand for reclaimed water requested by the customer, It is a collection of records consisting of each value of the year of appearance.
  • the facility design system 100 selects the connection point candidate closest to the coordinates at which the customer appears in the table 42 of the construction candidate data 112, and replaces the connection point candidate with the customer, thereby design condition data 110. To correct. The facility design system 100 corrects the customer's coordinates to be equal to the coordinates of the connection point candidate. At this time, the facility design system 100 deletes the connection point candidates that originally existed from the design condition data 110. Similarly, regarding the data of the pipe line candidates whose connection point candidates are the start point or end point of the pipe line, the pipe start point or the pipe end point is replaced from the original connection point candidate with the above-described consumer.
  • the constraint data 114 includes, as “restrictions”, assumptions at the time of facility design, conditions to be satisfied by the results of facility design, and prohibited items for operation when facility design or distribution facilities are laid.
  • FIG. 7 shows a table 61, a table 62, and a table 63 that constitute the constraint data 114.
  • the above-mentioned “premise” is, for example, the design period meaning the execution period of facility design, or the number of satellites to be constructed based on the result of facility design.
  • the table 61 in FIG. 7 indicates that the design period is 20 years.
  • the above-mentioned “conditions to be satisfied” are, for example, the minimum and maximum allowable water pressure at the customer or the connection point, the maximum value of the flow velocity in each pipeline, the flow rate that can be supplied from one satellite, This is the balance between the inflow and outflow of reclaimed water at the customer and connection points.
  • the minimum value of the allowable water pressure is “15”
  • the maximum value is “75”
  • the maximum value of the flow velocity in each pipeline is “3”
  • the flow rate that can be supplied from the satellite is “1000”. It is shown that.
  • the above-mentioned “prohibited items for operation” includes, for example, “laying a pipeline from a supply point by a water truck” as shown in the table 63.
  • the above-mentioned prohibited items are equivalent to prohibiting the construction of a network having a specific shape.
  • the restriction on the laying of pipelines in the design period such as not removing pipelines from the previous year's distribution network in order to construct a distribution network for a given year, is also included in the “operational prohibitions”.
  • the numerical data 115 is data for calculating edge weights to be described later. As shown in FIG. 8, the numerical data 115 is composed of unit cost values such as a laying cost per unit length of a certain pipeline, a fuel cost per unit moving distance of a water truck, and a driver labor cost. Yes.
  • the network data 116 is a distribution network pattern, that is, network data, which is constructed by the automatic design unit 13 described later by executing the network construction function 301.
  • the network data 116 includes tables 71A (vertex table) to 71B storing information on each vertex of the water distribution network in each year of the design period described above, and a table 72A (edge) storing information on each side of the water distribution network. Table) to 72B.
  • a customer, a connection point candidate, and a satellite candidate are set as the vertices of the network serving as the water distribution network, and the pipeline candidate and the water supply vehicle allocation are defined as the sides of the network serving as the water distribution network.
  • the table 71A and the table 72A are tables for the first year in the design period, and the table 71B and the table 72B are tables for the second year. Although omitted, the network data 116 holds a table for the 3rd year in the design period, a table for the 4th year, and so on, as well as a table for all the years in the design period. Only 71A and table 72A will be described.
  • the above-described table 71A is a collection of records that hold the vertex ID, coordinates, and elevation of each vertex as values.
  • the table 72A is a collection of records that hold the side ID, start point, and end point of each side as values.
  • the “edge weight” is used as the cost of the pipeline (CPp) or the cost of the water supply vehicle (CCc) when the automatic design unit 13 formulates the mathematical programming problem. (Details will be described later).
  • the ID of each vertex and each side described in the table 71A and the table 72A corresponds to each name of the corresponding part in the network 20 shown in FIG.
  • the equipment design data 117 is equipment design result data calculated by the automatic design unit 13 described later.
  • FIG. 10 shows an example of the facility design data 117.
  • the equipment design data 117 is a table 81 (vertex) configured by the automatic design unit 13 selecting, from the network data 116, records corresponding to connection points, satellites, pipelines, and water truck candidates that are actually arranged. Table) and table 82 (side table). Note that a discharge pressure column is added to the table 81 (vertex table), and a flow rate column and a pipe diameter column are added to the table 82 (side table).
  • the above-described table 81 is an example of a vertex table that holds the values of each vertex in one year in the design period.
  • each vertex corresponds to a connection point, a satellite, or a customer.
  • those including the vertex ID, coordinates, and elevation as values are related to “connection points”, and those including the vertex ID, coordinates, elevation, and discharge pressure as values are related to “satellite”.
  • those including the vertex ID, coordinates, altitude, and demand as values are related to “customers”.
  • information that can be used for pipe network calculation such as water pressure may be included in the record.
  • the discharge pressure means the discharge pressure of a water distribution pump that operates when supplying reclaimed water from a satellite treatment plant using a pipeline. Since it is a value that needs to be considered in order to distribute water to consumers while satisfying the above-described restrictions, it may be rephrased as the capacity of a necessary water distribution pump.
  • the table 82 is an example of a side table that holds values of each side of the same year as the table 81 described above.
  • each side indicates a pipe line or a water truck allocation.
  • each value of the side start point, side end point, side weight, flow rate, and pipe diameter is recorded using the side ID as a key.
  • the edge weight is a value that is used as the cost of the pipeline or the cost of the water supply vehicle when the automatic design unit 13 formulates the mathematical programming problem, which will be described later.
  • information that can be used for pipe network calculation such as the flow rate of water in the pipe, may be included in the record of the table 82.
  • each value of the discharge pressure mentioned above and a flow rate becomes a value for calculating the operation cost of water distribution equipment, for example, stores the average value per hour.
  • an average value per hour may be stored for 24 hours in order to perform more precise calculation.
  • a maximum value throughout the year may be stored.
  • the facility design data 117 is assumed to be composed of a vertex table 81 and an edge table 82 for all years in the design period.
  • the network 83 is included as the equipment design data 117.
  • the network 83 is layout data for displaying the configuration of the water distribution network based on the values in the table 81 and the table 82 described above.
  • a single arrow is an example of a symbol representing a pipe line
  • a double arrow is an example of a symbol representing a water truck assignment.
  • FIG. 11 is a flowchart showing a processing procedure example 1 of the facility design method in the present embodiment.
  • the facility design control unit 10 operates according to the flowchart.
  • the input device 2 receives a start instruction from the user, or the arrival of a predetermined time is detected by a clock function or the like provided in the equipment design system 100 that is an information processing apparatus, and the equipment design system 100 designs the equipment. It is assumed that the control unit 10 has been activated. In this case, the facility design control unit 10 transmits a signal instructing the data receiving unit 11 to receive the design condition data 110 (201).
  • the data receiving unit 11 that has received the above signal reads the design condition data 110 from, for example, the storage device 101 or receives it from the input device 105 and stores it in the memory 103 of the facility design system 100.
  • the facility design control unit 10 of the facility design system 100 receives an activation instruction for the automatic design unit 13 or the manual design unit 12 from the user via the input device 105 (211), and the automatic design unit 13 based on the activation instruction.
  • one of the manual design units 12 is activated (221).
  • the facility design control unit 10 starts the automatic design unit 13 and calculates the facility design data. Execute (231). Detailed processing contents at this time will be described later.
  • the facility design control unit 10 that has performed the calculation of the facility design data transmits the calculated facility design data to the display device 106 and displays it on the display device 106 (241). Thereafter, the facility design control unit 10 returns the step to the process (211) and stands by.
  • the facility design control unit 10 activates the manual design unit 12 to edit the facility design data. Etc. are executed (251). The detailed processing contents here will be described later.
  • the facility design control unit 10 that has performed the editing process of the facility design data transmits the data such as the editing result to the display device 106 and displays it on the display device 106 (241). Thereafter, the facility design control unit 10 returns the step to the process (211) and stands by.
  • processing (231) in the flow of FIG. 11, that is, processing executed by the automatic design unit 13 will be described.
  • the processing contents of the automatic design unit 13 are as shown in the flowchart of FIG.
  • the automatic design unit 13 generates facility design data 117 by executing each process and function in this flowchart.
  • the automatic design unit 13 reads the design condition data 110 of the storage device 101 and stores it in the memory 103 (310). Next, the automatic design unit 13 executes the network construction function 301, constructs network data 116 according to the flowchart shown in FIG. 13, and stores it in the storage device 101.
  • the automatic design unit 13 executes the automatic design function 302 and the discharge pressure determination function 303, and based on the network data 116 recorded in the storage device 101, the evaluation index, that is, the total cost (investment and operational costs related to water distribution equipment). ) Is calculated and stored in the storage device 101 so as to optimize (minimize in the case of cost).
  • the automatic design unit 13 executes the constraint violation determination function 304 and determines whether the facility design data 117 satisfies operational constraints. If the facility design data 117 satisfies operational restrictions (350: YES), the automatic design unit 13 ends the process. On the other hand, when the facility design data 117 does not satisfy operational restrictions (350: NO), the automatic design unit 13 executes a process (360) described later and returns the process to the step of executing the network construction function 301. .
  • FIG. 13 is a flowchart showing a processing procedure example 3 of the facility design method of the present embodiment.
  • the network construction function 301 of the automatic design unit 13 reads the design condition data 110 from the data reception unit 11 and inputs it in the process (311).
  • the network construction function 301 determines 1 as the value of the variable t representing the year that constitutes the design period.
  • the design period value includes the constraint data 114 in the design condition data 110.
  • the network construction function 301 uses the design condition data 110 obtained in the above-described processing (311) as an input in order to construct a network in the fiscal year t in the processing (331) and the processing (341), and appears by the fiscal year t.
  • the candidate (extracted from the construction candidate data 112), the candidate connection point (extracted from the construction candidate data 112), and the satellite candidate (extracted from the construction candidate data 112) as apexes. 9), the vertex table and the side table shown in FIG. 9 described above, that is, the network data 116 for the year t, are generated with the water tank allocation candidate (extracted from the construction candidate data 112) as the side.
  • the network construction function 301 is an alternative in which the demand is “0” at the same coordinates as the customer.
  • a connection point candidate is generated and set as a vertex of the network 116.
  • the vertex “Jd1” of the vertex table 71A in FIG. 9 is an alternative connection point candidate generated at the same coordinates as the customer in order to build a network even in a year in which the customer “D1” has not yet appeared. It is.
  • the network 601 shown in FIG. 14 is an example of a water distribution network, that is, a network constructed from a consumer, a connection point candidate, a satellite candidate, and a pipeline candidate generated by the above-described processing (331).
  • the names of connection points, pipeline candidates, consumers, and satellites shown in the network 601 in FIG. 14 are the same as those in the network 20 already shown in FIG.
  • the network construction function 301 includes, in the design condition data 110, “connection point candidate ID, coordinate, altitude”, “satellite candidate ID, coordinate, altitude”, “ 9) Output the vertex table based on “customer ID, coordinates, altitude, demand” and output the side table shown in FIG. 9 based on "pipe candidate ID, pipe start point, pipe end point” Obviously.
  • the network construction function 301 in the processing (331) calculates the weight of each side representing the pipeline candidate in order to calculate the investment and operation costs related to the water distribution facility.
  • the weight of the side is a cost consisting of a pipe purchase cost and a laying work cost required for laying the pipe, that is, a laying cost.
  • This laying cost can be calculated, for example, by the product of the distance of the pipe p (which can be calculated from the coordinates of the side start point and the side end point) and the pipe laying cost per unit length held in the numerical data 115.
  • the network construction function 301 constructs a network including water truck allocation candidates.
  • the network construction function 301 generates an edge with the satellite candidate as the start point and the consumer as the end point among all the satellite candidates and consumers, and obtains it as a water tank allocation candidate.
  • the network construction function 301 additionally outputs the data of each side generated in this way to the side table shown in FIG.
  • the network construction function 301 calculates the weight of each side representing the water tank allocation candidate in order to calculate the cost in the above-described process (341).
  • the weight of the side is the sum of the cost required for the introduction of the water supply vehicle and the operation cost such as the labor cost and fuel cost of the water supply vehicle driver.
  • the distance traveled by the water truck can be calculated from the corresponding road data recorded in the geographic information data 111.
  • the network construction function 301 includes the product of the travel distance of the above-mentioned water truck and the fuel cost per unit travel distance of the water truck retained by the numerical data 115, the labor cost per unit time retained by the numerical data 115, and the above-mentioned
  • the operation cost is calculated from the product of the travel distance and the travel time when the water truck moves.
  • a network 612 illustrated in FIG. 15 is an example of a network generated by the network construction function 301 from the vertex table and the side table for one year in the design period obtained in the above-described processing (331) and processing (341). .
  • the sides representing the water tank allocation candidates are described only from the satellite “S3”, and the sides representing the other water tank allocation candidates are omitted.
  • the network 622 and the network 632 are examples of networks generated from the tables obtained by the processing (331) and the processing (341) by the network construction function 301, similarly to the network 612 described above.
  • the network 622 indicates a network in the second year of the design period
  • the network 632 indicates a network in the final year.
  • the network construction function 301 determines whether the networks for all the years in the design period have been constructed.
  • the network construction function 301 adds 1 to “t” in the process (361), and the step is performed in the process (331). Return and re-execute the subsequent processing.
  • the network construction function 301 stores the network data 116 of all years in the storage device 101 in the process (371) and performs the process. finish.
  • the network data 116 includes a vertex table and an edge table (for example, the tables 71A, 72A, 71B, and 72B in FIG. 9).
  • apex tables and edge tables in each year within the design period exist after the tables 72 ⁇ / b> A and 72 ⁇ / b> B.
  • the example which builds the network data 116 in order from the 1st year of a design period to the last year was shown as the network construction function 301, there is no restriction
  • the automatic design function 302 is a function that receives the network data 116 stored in the storage device 101 and calculates the equipment design data 117 and stores it in the storage device 101.
  • the automatic design function 302 of the automatic design unit 13 is designed by using an algorithm corresponding to a predetermined mathematical programming method (a corresponding program is stored in the storage device 101 in advance as part of the automatic design function 302). Calculate facility design data that minimizes the total cost of the water distribution facility to be designed over the entire period. Specifically, the pipeline used for water distribution to the consumer, water supply vehicle allocation, and the satellite position are determined.
  • the automatic design function 302 determines the equipment design data 117 every year of the design period. In this case, each process in the automatic design function 302 executed by the automatic design unit 13 will be described in detail with reference to FIG.
  • the automatic design function 302 of the automatic design unit 13 reads the value of the design period held in the constraint data 114 in the storage device 101 and the network data 116 in the process (312). Subsequently, in the process (322), the automatic design function 302 determines the year in which the facility design is first performed as the final year in the corresponding design period.
  • the automatic design function 302 sets “t” as the final year determined in the above-described process (322), and inputs the vertex table and the edge table of the t-year in the network data 116 in the process (332).
  • the optimum facility design data 117 is calculated with respect to the evaluation index in year t.
  • the automatic design function 302 actually sets the pipeline candidate p connecting the vertices i to j in the network data 116 in the t-year.
  • Variables xp, t are defined to be “1” if adopted as a pipeline and “0” if not adopted. It is assumed that the automatic design function 302 includes a program corresponding to a processing algorithm for formulating such a mathematical programming problem.
  • the automatic design function 302 sets the variable yc, t to be “1” if the water supply vehicle allocation candidate c is adopted as a means for distributing water from the satellite candidate s to the customer d and “0” if not adopted.
  • the automatic design function 302 defines variables zs and t that are “1” if satellites are arranged in the satellite candidate s in year t, and “0” if they are not arranged.
  • the automatic design function 302 having made such a definition specifies an evaluation index by the following expression.
  • the automatic design function 302 determines all xp, t, yc, t, zs, t values so as to minimize the evaluation index of Formula 1 after satisfying the constraints described later, and the facility design data 117.
  • the first term of the evaluation index represents the sum of the laying cost of the pipeline (equal to the side weight of the pipeline), and the second term is the cost of all water trucks (sum of introduction and operation costs, the water truck) Represents the sum of the side weights of the allocation candidates).
  • the evaluation index is the sum of both. Note that zs and t are not included in the evaluation index, but are used as constraint expressions when formulating the mathematical programming problem.
  • Et ′ is a set of all pipeline candidates in the side table of network data for year t
  • Et ′′ is a set of all water tank allocation candidates in the side table of network data for year t.
  • CPp is the laying cost (for example, the side weight of the table 72A in FIG. 9) when laying the pipe line p connecting the vertex i and the vertex j, and is given in consideration of the distance, for example.
  • CCc means the cost of the water supply vehicle in the allocation of the water supply vehicle from the satellite s to the customer d (example: edge weight of the table 72A in FIG. 9).
  • the automatic design function 302 determines the values of xp, t, yc, t, and zs, t by applying a mathematical optimization method such as mixed integer programming, for example.
  • the automatic design function 302 expresses each constraint held by the constraint data 114 as a constraint expression and uses it during calculation.
  • the automatic design function 302 determines whether the facility design has been performed in all years in the process (342) after calculating the facility design data (corresponding to the network 643 in FIG. 17) in the final year t. When the result of the determination here is that the equipment design has been performed for all the years (342: YES), the automatic design function 302 stores the equipment design data 117 in the storage device 101 in the process (372).
  • the automatic design function 302 uses the equipment design data 117 in the process (352). 1 is subtracted from the year t to be calculated, and in the process (362), a constraint for limiting the laying position of the pipeline is added to the constraint data 114.
  • the automatic design function 302 to which the constraint is added returns the step to the process (332), and executes the calculation of the equipment design again.
  • facility design data for the year set in the process (352) is obtained in the same manner as described above.
  • the automatic design function 302 sequentially calculates the equipment design data 117 while going back from the last year to the first year in the design period, and at the end of the flow, all the equipment design data 117 from the last year to the first year of the design period. Is stored in the storage device 101.
  • FIG. 17 shows a display example of the network 633,..., The network 623, and the network 613 corresponding to each facility design data 117 from the last year to the first year.
  • the table 84 shown in FIG. 18 is a value of each variable corresponding to the allocation of pipelines and water trucks in one year calculated by the automatic design function 302 in the process (332), and is stored in the memory 103. Become.
  • the automatic design function 302 configures facility design data 117 from the variables xp, 1 and yc, 1 included in the table 84 described above. Specifically, each variable having a value of “1” is composed of a corresponding p or c side start point and side end point.
  • the design data 117 configured by the automatic design function 302 includes each value excluding the discharge pressure of the vertex table and each value excluding the flow rate of the side table (both values are the discharge values described later). Determined in the process of the pressure determination function 303).
  • the automatic design function 302 generates network display data corresponding to the equipment design data 117 by referring to the coordinates of each vertex and the start and end points of each side from the equipment design data 117 calculated as described above. For example, it can be output by the display device 106 in the form of the network 83 in the facility design data 117 described above.
  • the automatic design function 302 calculates the facility design data 117 that minimizes the sum of the investment cost and the operation cost related to the water distribution facility.
  • different facility design data is calculated by changing the evaluation index and constraints. can do. For example, by adding a constraint that limits the value of the sum of CPp ⁇ xp, t in a certain year t to an appropriate constant C (that is, the sum of the laying costs of pipes in year t is C at most) It is possible to calculate facility design data that sets the upper limit of investment in each year.
  • the automatic design unit 13 uses the discharge pressure determination function 303 to input the facility design data 117 and determines the discharge pressure of the water distribution pump of each satellite. At that time, the automatic design unit 13 performs pipe network calculation in the discharge pressure determination function 303, and simultaneously obtains the flow rate of the pipe line at the determined discharge pressure to update the facility design data 117.
  • FIG. 19 is a flowchart when the automatic design unit 13 executes the discharge pressure determination function 303 to determine the above-described variables. It is assumed that the flow rate in the water supply vehicle allocation is equal to the demand amount of the consumer located at the end point of the water supply vehicle allocation and is not considered in the discharge pressure determination function 303.
  • the discharge pressure determination function 303 of the automatic design unit 13 reads the restriction data 114 of the storage device 101 and the equipment design data 117 stored by the automatic design function 302 and writes them in the memory 103 in the process (313).
  • the above-described discharge pressure determination function 303 performs a formulation for determining the discharge pressure by optimization calculation in the process (323).
  • the discharge pressure determination function 303 includes a program corresponding to the algorithm for the formulation in advance.
  • the discharge pressure determination function 303 sets the discharge pressure of the water distribution pump in the satellite s in year t to the variables hs, t, and the flow rate of the pipe p connecting the vertex i and the vertex j.
  • Variables fp and t are defined.
  • the discharge pressure determination function 303 defines the pipe diameter of a certain pipe line p as a variable up.
  • the variable up is a discrete variable whose value is determined by selecting from a set of numerical values given in advance. For example, the variable up is selected from nominal diameters of 75 mm, 150 mm, 250 mm, and 350 mm. A set of numerical values used as such tube diameters is recorded in numerical data 115 in the storage device 101. However, the variable up may be a real variable having a value greater than zero.
  • each satellite s and pipeline p are each satellite and each pipeline recorded in the facility design data 117 read from the storage device 101 by the discharge pressure determination function 303 in the above.
  • the flow rates fp, t are defined for the calculation of the operation cost described later. Moreover, since the discharge pressure of the pump changes depending on each pipe diameter, it is defined as a variable so that the pipe diameter is determined simultaneously.
  • the discharge pressure determination function 303 performs optimization calculation in the process (333).
  • the pipe pressure is calculated at the same time as calculating the discharge pressure, and the flow rate in each pipeline is calculated.
  • the optimization calculation is performed by applying a metaheuristic such as a genetic algorithm (of course, the discharge pressure determination function 303 includes a program for this).
  • the discharge pressure determination function 303 determines the values of the variables hs, t, and up so that the following evaluation index is minimized while satisfying the constraint conditions described later in the above optimization calculation.
  • Et ′ ′′ is a set of all the pipelines in the facility design data 117 read from the storage device 101 by the discharge pressure determination function 303 in the process (313), and S is all the satellites in the vertex table. It is a set.
  • the first term in Formula 2 represents the total operating cost of the distribution pumps of each satellite.
  • the operation cost is represented by f (hs, t) when the discharge pressure of the water distribution pump of the satellite s is hs, t in year t.
  • f hs, t
  • the second term in the above formula represents an increase in the laying cost of the pipe line corresponding to the pipe diameter, which is not considered in the automatic design function 302.
  • ⁇ up is a coefficient corresponding to the tube diameter, and numerical data 115 is recorded.
  • the laying cost of the pipe line p whose pipe diameter is up can be expressed by ⁇ up ⁇ CPp. Since the automatic design function 302 adds the laying cost CPp corresponding to the distance of the pipe line p to the evaluation index, the discharge pressure determination function 303 adds only the amount depending on the pipe diameter.
  • the constraints include, for example, the minimum and maximum allowable water pressure at the customer or connection point, the maximum flow velocity at each pipeline, the flow rate that can be supplied from one satellite, and the reclaimed water at the customer and connection point.
  • the balance of inflow and outflow can be mentioned.
  • the calculation of the pipe network is a general technique, so the explanation is omitted.
  • the pipe diameter of each pipe p is set to the up determined by the discharge pressure determination function 303 in the above optimization calculation.
  • a general value “110” is set as the flow velocity coefficient indicating the ease of flow through the pipeline.
  • the discharge pressure determination function 303 additionally writes the discharge pressure of the pump of the satellite s determined in the above process (333) as the value of the discharge pressure in the facility design data 117 of the storage device 101, In addition, the value of each fp, t is added as the value of the flow rate in the pipeline, and the process is terminated.
  • the automatic design unit 13 determines in the constraint violation determination function 304 whether the facility design data 117 calculated above violates the constraints held by the constraint data 114.
  • constraints include the minimum and maximum water pressure at the customer and the connection point, the maximum flow velocity at each pipeline, the maximum flow rate that can be supplied from the satellite, and the inflow of reclaimed water at the customer and connection point. Satisfying the balance of runoff.
  • the water pressure and flow velocity are obtained by the discharge pressure determination function 303 of the automatic design unit 13 in the pipe network calculation in the above-described process (323).
  • the automatic design unit 13 determines that the calculated facility design data 117 satisfies the constraint indicated by the constraint data 114 from the determination result by the constraint violation determination function 304. To determine. When the facility design data 117 does not satisfy the constraint indicated by the constraint data 114 (350: NO), the automatic design unit 13 identifies the cause of the corresponding determination result in the process (360), for example, the number of satellites The restriction data 114 is additionally corrected, for example, by increasing (this makes up for a shortage of satellite supply capability).
  • the reason why the facility design data 117 cannot satisfy the constraints of the constraint data 114 is, for example, that the satellite exists in a low place (if the water is distributed from a low place to a high place, the minimum value and the maximum value of the water pressure may not be satisfied simultaneously. Or a lack of satellite supply capacity (may be supplied to more customers than supply capacity).
  • the automatic design unit 13 executes the network construction function 301 and executes the calculation of the equipment design data again. If the automatic design unit 13 determines that the facility design data 117 satisfies the constraint indicated by the constraint data 114 in the above-described process (350) (350: YES), the process automatically ends.
  • the automatic design unit 13 executes the processing.
  • the example which the automatic design part 13 calculated the equipment design data 117 which becomes the minimum cost through several years in a design period was shown.
  • shake will occur within the design period, for example, when the consumer stops using the reclaimed water at an unexpected timing.
  • Such a blur may be dealt with by adding a predetermined constraint to the constraint data 114.
  • the constraint data 114 holds the constraint that a water truck is always allocated to a consumer who is expected to stop using recycled water, so that the influence when the number of consumers decreases can be considered.
  • FIG. 20 is a flowchart of processing executed by the manual design unit 12.
  • the manual design unit 12 executes the input reception function 404, receives input from the user via the input device 105, and records it in the memory 103.
  • the manual design unit 12 edits the equipment design data 117 by executing functions 401 and 402 described later in accordance with the input obtained in the above-described processing (701).
  • edit means either deleting a vertex table or a side table row of the equipment design data 117 in the storage device 101, adding a row to either table, or both tables. It is defined as rewriting the value of the row.
  • Each function 401, 402, 403 will be described later.
  • the manual design unit 12 having undergone the processes of the functions 401 and 402 determines whether or not to continue editing in the process (721).
  • the input device 105 receives an instruction to continue editing from the user (721: NO)
  • the manual design unit 12 executes each step from the processing (701) again to activate each editing function.
  • the manual design unit 12 determines whether there is a constraint violation in the process (731).
  • the manual design unit 12 calls the constraint violation determination function 403, compares the facility design data 117 edited by executing the function 401 or 402 with the constraint data 114, and edits the facility design after editing. It is determined whether the data 117 does not violate the constraint content indicated by the constraint data 114.
  • the manual design unit 12 stores the edited equipment design data 117 in the storage device 101 in the process (741). Record and finish the process.
  • the manual design unit 12 notifies the display device 106 that the violation contents and re-editing are necessary. Send it for display and ask the user to re-edit.
  • FIG. 21 is an example of an input screen 90 presented to the user on the display device 106 for the editing described above.
  • an input format 91 is an example of an interface for inputting edit data when a user edits a side.
  • the side ID, type (pipeline or water supply vehicle) to be edited, operation (Deletion or addition or rewriting), edge start point, edge end point, and flow rate are accepted.
  • the input format 92 is an example of an interface for inputting edit data when the user edits a vertex.
  • the vertex ID to be edited the type (connection point, satellite, or discharge pressure), operation, post-editing Accepts input of coordinates, altitude and discharge pressure.
  • the vertex table includes customer data, the customer data cannot be edited because the input is given as the design condition data 110.
  • the manual design unit 12 executes the equipment editing function 401 to execute the above-mentioned edge in the equipment design data 117.
  • the line corresponding to the ID or vertex ID is changed or updated according to the user input.
  • the manual design unit 12 performs pipe network calculation in the equipment editing function 401, updates the equipment design data 117, and outputs it to the storage device 101.
  • the manual design unit 12 executes the water tank allocation editing function 402, and sets the side ID and vertex ID in the equipment design data 117 in the same manner as described above. Change or update the corresponding row. For example, in the process of deleting the side having the side ID “P10” shown in the table 82 of FIG. 10, the input device 105 has been input by the user as “P10, pipeline, delete, J4, D7, Fp10, Up10”. When executed. At this time, the manual design unit 12 activates the equipment editing function 401 from the character string “Pipe” and deletes the row of the side table in the equipment design data 117 from the character strings “Pipe” and “Delete”. Judged to be an operation.
  • the display device 106 is display data sent from the facility design system 100, for example, an interface for allowing the user to start the automatic design unit 13 or the manual design unit 12, and a network layout corresponding to the facility design data 117. (Data for displaying the layout of allocation of connection points, satellites, customers, pipelines, and water supply vehicles), each data included in the equipment design data 117, and evaluation indexes calculated by the equipment design system 100 (cost in each year of the design period ) Is displayed. Further, the display device 106 displays an interface when the user operates the facility editing function 401, the water tank assignment editing function 402, and the constraint violation determining function 403 included in the manual design unit 12.
  • FIG. 22 is a diagram showing a configuration example of a display screen 500 displayed on the display device 106.
  • the display screen 500 includes an equipment design layout display section 501, an equipment design data display section 502, an evaluation index display section 503, an interface section 504, and a year switching button 505 (year instruction receiving section).
  • the facility design system 100 determines the display position of each connection point, satellite, customer, pipeline, and water truck assignment from the coordinates of each vertex included in the facility design data 117, and displays the display data on the display device 106. It is generated and displayed on the equipment design layout display unit 501.
  • the facility design system 100 reads the table 81 (vertex table) in the facility design data 117 of FIG. 10 and acquires the record of the vertex “S3” held by the table 81. Since S3 has Xs3 and Ys3 as coordinates, data for displaying satellite symbols (black square icon data) at coordinate points corresponding to Xs3 and Ys3 in the coordinate space of the facility design layout display unit 501 is generated.
  • the facility design system 100 acquires each record of the vertex “D6” and the vertex “D7” recorded in the table 81 described above.
  • a customer symbol black circle icon data
  • a customer symbol black circle icon data
  • the facility design system 100 reads out the coordinates of “Jd8”, “J3”, and “J4” representing the connection points from the table 81 and corresponds to each coordinate in the coordinate space of the facility design layout display unit 501. Data for displaying a symbol (white circle icon data) at a coordinate point to be generated is generated.
  • the facility design system 100 generates data for displaying the sides connecting the vertices for which the display data has been generated as described above.
  • the facility design system 100 reads the record of the side “P9” recorded in the table 82 described above. Since the side start point is J3 and the side end point is J4 in P9, the facility design system 100 determines that the line connects J3 and J4 that have already generated display data. After this determination, the facility design system 100 generates data for displaying the pipeline with, for example, a single arrow so as to connect the two.
  • the facility design system 100 similarly processes the sides “P10”, “P13”, and “P16” representing the pipelines recorded in the table 82, and generates display data.
  • the facility design system 100 reads a record of “C1” that is recorded in the table 82 and that represents the allocation of the water truck. Also for C1, as in P9 described above, the facility design system 100 generates data for displaying a side so as to connect the side start point S3 and the side end point D6. For example, data for displaying a double arrow is used as the data for displaying the allocation of the water truck to distinguish it from the pipeline.
  • the facility design system 100 displays a part or all of the vertex table and the side table in the facility design data 117 on the facility design data display unit 502.
  • the range to be displayed here is determined by receiving an input designating the display range by the input device 105 from the user.
  • the facility design system 100 is a graph in which the evaluation index value in the facility design data 117 calculated by the facility design system 100, that is, the cost value is changed every year in the design period in the evaluation index display 503. Is displayed.
  • the value of the evaluation index is displayed in the form of a line graph, but other display methods such as a bar graph may be used.
  • the facility design system 100 receives, from the user, an interface for receiving an activation instruction for the automatic design unit 13 or the manual design unit 12 from the user or input data for editing processed by the manual design unit 12 from the user. Displays the interface for receiving.
  • the year switching button 505 displays the network layout corresponding to the equipment design data 117 displayed on the equipment design layout display section 501, that is, the layout of the reclaimed water supply system, and the equipment design data 117 displayed on the equipment design data display section 502. Is a button for receiving an instruction when the user switches in a desired predetermined year in the design period.
  • the year switching button 505 also serves as a button for receiving a year designation from the user when the editing process by the manual design unit 12 is performed.
  • an arrow-shaped year switching button 505 is arranged on the display screen 500. Then, when the layout corresponding to the facility design data 117 for year t is displayed on the facility design layout display section 501 of the screen 500, the user selects the right arrow button among the buttons 505 described above on the input device 105. Receive. In this case, an event of user selection of the right arrow button is transmitted to the facility design system 100 via the input device 105. Upon receiving this user selection, the facility design system 100 reads the facility design data 117 for the year t + 1 from the storage device 101, executes the display data generation processing described above, and displays the display data for the corresponding layout as a display device. 106 and displayed on the facility design layout display unit 501.
  • the facility design system 100 receives the user selection of the left arrow button, the same process is executed, and the layout of the t-1 year is displayed on the facility design layout display unit 501.
  • the facility design system 100 receives the numerical designation of the fiscal year from the user in the input device 105 and perform the layout display processing for the relevant fiscal year as described above based on the facility design data 117 of the fiscal year corresponding to the numerical designation.
  • the form in which the equipment design data 117 is calculated in the single equipment design system 100 is shown.
  • two or more equipment design systems 100 distribute or overlap the above-described functional units and data. It is possible to adopt a form in which each process is executed in parallel.
  • the automatic design unit 14 in this case has a network construction function 301 and an automatic design function 3022 as shown in FIG.
  • the network construction function 301 in the automatic design unit 14 and the network construction function 301 in the automatic design unit 13 are the same.
  • the automatic design function 3022 executed by the automatic design unit 14 will be described based on the difference from the automatic design function 302 in the automatic design unit 13.
  • the automatic design unit 13 calculates the equipment design data 117 of the connection points, satellites, pipelines, and water tanker assignments every year of the design period.
  • Function 302 discharge pressure determination function 303 for calculating discharge pressure and flow rate in facility design data 117, and constraint violation for determining whether there is a constraint violation in facility design data 117 calculated by automatic design function 302 and discharge pressure determination function 303
  • the facility design data 117 is approximately output.
  • the automatic design unit 14 has an automatic design function 3022 that simultaneously executes the functions 302, 303, and 304. By executing the automatic design function 3022, the automatic design unit 14 calculates optimal facility design data regarding the evaluation index over the entire design period.
  • FIG. 24 is a flowchart showing processing of the automatic design unit 14.
  • the automatic design unit 14 instructs the data receiving unit 11 to read the design condition data 110 from the storage device 101 in the process (3120).
  • the receiving unit 11 that has read the design condition data 110 from the recording device 101 records the design condition data 110 in the memory 103.
  • the automatic design unit 14 executes the network construction function 301 to read the design condition data 110 from the memory 103, construct the network data 116, and store it in the storage device 101.
  • the automatic design unit 14 executes the automatic design function 3022 to execute processing (3220) and processing (3320).
  • the automatic design function 3022 of the automatic design unit 14 reads the network data 116 onto the memory 103 of the equipment design system 100, and calculates the equipment design data 117 using the network data 116 as an input. Is formulated.
  • the automatic design function 3022 is “1” if the pipe candidate p having a pipe diameter u connecting the vertices i to j in the network data 116 described above is actually adopted as a pipe line in the t-year, and “0” if not.
  • Define variables xp, u, t that become ". u is selected from a set of pipe diameter candidates given in advance.
  • the automatic design function 3022 sets the variable yc, t to be “1” if the water supply vehicle allocation candidate c is adopted as a means for distributing water from the satellite candidate s to the customer d, and “0” if not.
  • the automatic design function 3022 defines variables zs and t that are “1” if a satellite is arranged in the satellite candidate s in year t and “0” if no satellite is arranged.
  • the automatic design function 3022 defines the discharge pressure of the water distribution pump in the satellite s in year t as variables hs and t.
  • the automatic design function 3022 defines a variable as described above, and specifies the following expression as an evaluation index.
  • the evaluation index represented by the above mathematical formula 4 is the sum of the three costs: the laying cost of the pipeline, the cost of the water supply vehicle, and the operation cost of the water distribution pump when the entire design period is passed. That is, it means the sum of the initial investment cost and the operation cost over the entire design period.
  • U is a set of numerical values that can be selected as the pipe diameter
  • CPp, u is the laying cost of the pipe line p with the pipe diameter u.
  • CPp, u is represented, for example, by the product of the coefficient ⁇ u for determining the laying cost when the pipe diameter is u and the laying cost CPp.
  • the automatic design function 3022 uses each of the variables xp, u, t, yc, t, zs, t, hs, t using, for example, a mathematical optimization method so as to minimize the above-described evaluation index. Determine the value of.
  • the restriction that only one pipe diameter of a certain pipe line p can be selected from U is added. That is, for a certain pipeline p in a certain t-year, It is necessary to satisfy.
  • a pipe diameter is defined in a certain fiscal year t, the tubular diameter cannot be changed after the fiscal year t + 1.
  • the automatic design function 3022 of the automatic design unit 14 constructs a vertex table and an edge table in the facility design data 117 from the values of the variables and stores them in the storage device 101 in the process (3420). To do.
  • the facility design can be performed in the same manner when the facility is expanded.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • the arithmetic device is based on the cost data required for the introduction and operation of a predetermined component included in the data related to the component, and the design period data included in the data related to the constraint.
  • the process of identifying the distribution network that minimizes the total cost in the final year of the design period as equipment design data, and pipes from the previous year's distribution network to build the distribution network for the final year Generate a restriction for pipe laying that does not remove the road, store it in the storage device as data related to the restriction, and before the final year of the distribution network pattern, under conditions that satisfy the restriction for pipe laying It is also possible to execute the process of identifying the distribution network with the lowest total cost in the fiscal year as equipment design data and store the equipment design data for the entire design period in the storage device. . According to this, in the result of the equipment design in which the pipeline is not removed between the fiscal years in the design period, it is possible to efficiently identify the one that minimizes the cost.
  • the arithmetic unit in the above-described facility design system generates a constraint for laying a pipeline that does not remove the pipeline from the distribution network of the previous year in order to construct the distribution network of the previous year, and
  • the first year of the design period is the process of identifying the distribution network with the lowest total cost in the previous fiscal year as equipment design data, stored in the storage device and satisfying the constraints of pipe laying.
  • the facility design data for the entire design period may be stored in the storage device. According to this, even if the design period is 3 years or more, it is possible to efficiently identify the one with the lowest cost in the result of the equipment design in which the pipeline is not removed between the years in the design period.
  • the arithmetic unit in the equipment design system described above is based on the data on the water supply source, the customer facility, the pipeline and the water supply truck that are the water distribution means, and the water supply source and the demand.
  • a distribution network pattern that connects each facility in the pipeline or water truck as a means of water distribution, and for the introduction and operation of pipes or water trucks that are predetermined components included in the data related to the components
  • each fiscal year in the distribution network pattern under the conditions that satisfy the predetermined constraints included in the constraint data between the design period years
  • the distribution network that minimizes the total cost is specified as facility design data for each time, and the facility design data for the entire design period is stored in the storage device. There. According to this, it is possible to efficiently specify the result of the equipment design that minimizes the cost for the form in which the water supply vehicle is adopted as the water distribution means.
  • the arithmetic unit in the facility design system described above is a water distribution system that minimizes the total cost for each fiscal year in the distribution network pattern under the condition that satisfies the predetermined constraints included in the data related to the constraints during each year of the design period.
  • formulate a mathematical programming problem for specifying water supply sources and distribution means according to a predetermined algorithm and solve the formulated mathematical programming problem with a predetermined algorithm, so that each year of the distribution network pattern.
  • the water supply source and the water distribution means that minimize the total cost may be specified, and the facility design data for the entire design period may be calculated. According to this, it is possible to efficiently solve a problem including a large number of variables, and as a result, it is possible to more efficiently identify the equipment design result that minimizes the cost.
  • the arithmetic unit in the facility design system described above is a water distribution system that minimizes the total cost for each fiscal year in the distribution network pattern under the condition that satisfies the predetermined constraints included in the data related to the constraints during each year of the design period.
  • a mathematical programming problem for specifying the water supply source, the water distribution means, and the discharge pressure value of the pump at the water supply source is formulated according to a predetermined algorithm, and the formulated mathematical programming problem is converted into a predetermined algorithm.
  • the water supply source, water distribution means, and pump discharge pressure value at the water supply source that minimize the total cost for each fiscal year in the distribution network pattern are identified, and the facility design data for the entire design period May be calculated. According to this, it is possible to efficiently solve the problem included in the variable regarding the discharge pressure at the water supply source, and thus to more efficiently identify the one with the lowest cost in the result of the equipment design.
  • the arithmetic unit in the facility design system described above solves the formulated mathematical programming problem with a predetermined algorithm, so that the operation cost of the water distribution pump in the water supply source is minimized when specifying the pump discharge pressure value. It is good also as what specifies the discharge pressure of a pump so that it may become. According to this, the operation cost of the water distribution pump in the case where the discharge pressure is set to a necessary value can be surely identified, and the cost that is the minimum in the result of the equipment design can be efficiently identified.
  • the arithmetic unit in the facility design system described above includes a year instruction reception unit that receives an instruction from the user for a year in which the facility design data display is desired in the design period, and a facility design data for the year that receives the user instruction from the year reception unit.
  • a display unit that reads and displays the data from the storage device, a display unit that displays the layout of the water distribution network based on the corresponding facility design data, and a display unit that displays the total cost in the facility design data for each year of the design period
  • the screen data may be generated and a process of displaying the screen data on the display device may be executed. According to this, it becomes possible for the user to visually recognize various data related to the equipment design in a form that can be easily recognized, leading to an improvement in the efficiency of the equipment design work.
  • the arithmetic device in the facility design system described above relates to a predetermined item indicated by the edit instruction received by the interface unit, including an interface unit that accepts an edit instruction from the user included in the screen data and displayed on the display device.
  • the process of changing the data of the corresponding item in the equipment design data stored in the storage device, and the equipment design data changed by the editing instruction are collated with data related to restrictions on water distribution equipment design. Then, it may be determined whether the equipment design data after the change satisfies the constraint, and if the equipment design data after the change does not satisfy the constraint, a re-editing notification is displayed on the interface unit. According to this, it is possible to determine the validity of the editing result of the facility design data by the user, and to secure the facility design data that always satisfies a predetermined constraint.

Abstract

[Problem] To minimize investment and operation costs through an entire design period extending over two or more years in designing the facility of a water distribution system. [Solution] A facility design system (100) is configured from: a storage device for holding at least data relating to constituent elements of a water distribution facility, and data relating to constraints on water distribution facility design; and an arithmetic-logic unit for executing a process for generating, on the basis of data relating to a water supply source, a customer facility, and a water distribution means included in the constituent element-related data, a pattern of a water distribution network linking between each of the water supply sources and customer facilities with the water distribution means, and a process for specifying, as facility design data, a water distribution network for which a total cost is minimum for each fiscal year from among the patterns of water distribution network, and storing the facility design data for an entire design period in the storage device, the specification being made on the basis of data on costs required for the introduction and operation of a prescribed constituent element included in the constituent element-related data, and data on a design period included in the constraint-related data, and on condition that a prescribed constraint included in the constraint-related data be satisfied between each fiscal year of a design period.

Description

設備設計システム、設備設計方法、および設備設計プログラムEquipment design system, equipment design method, and equipment design program
 本発明は、設備設計システム、設備設計方法、および設備設計プログラムに関し、具体的には、配水システムの設備設計に際し、複数年にわたる設計期間全体を通して投資や運用のコスト最小化が図られる技術に関する。 The present invention relates to an equipment design system, an equipment design method, and an equipment design program, and more specifically, to a technology capable of minimizing investment and operation costs throughout a design period over a plurality of years when designing an equipment of a water distribution system.
 近年、節水や渇水対策のために再生水の循環利用が注目されている。再生水とは、都市で発生した下水を下水処理施設にて一度収集し、これに適宜な下水処理を施して浄化することで製造される処理水である。再生水はトイレの洗浄用水や道路への散水目的で各施設に配水されている。 In recent years, circulation of reclaimed water has attracted attention as a measure for saving water and drought. Reclaimed water is treated water produced by collecting sewage generated in a city once at a sewage treatment facility and subjecting it to appropriate sewage treatment to purify it. Reclaimed water is distributed to each facility for the purpose of flushing toilets and watering roads.
 こうした再生水など各種上下水の配水には、管路を用いることが一般的である。また、管路を敷設するためには、敷設計画を事前に立案し、管路の敷設位置等を予め設計しておく必要がある。一方、上述の設計に際しては、敷設場所や資材サイズ等に依存して変化する管路敷設コストや、管路の径や延長、傾斜具合等により変化する配水用のポンプ消費電力など、様々な条件を併せて考慮する必要がある。 It is common to use pipelines to distribute various types of water such as recycled water. Moreover, in order to lay a pipeline, it is necessary to plan a layout design in advance and to design the laying position of the pipeline in advance. On the other hand, in the above design, there are various conditions such as pipe laying cost that varies depending on the laying location and material size, and the power consumption of the pump for water distribution that varies depending on the diameter, extension, and inclination of the pipe. It is necessary to consider together.
 そこで、管路に関する各種条件を踏まえ、コスト面で最適化を図る設計の技術として、供給源および需要家および管路候補を入力とし、水理的な制約の下で、全ての需要家と供給源を繋ぐ管路を、全体として投資コストと運用コストが最低となるよう選択し設計を行う手法(非特許文献1)が提案されている。 Therefore, as a design technology that optimizes cost in consideration of various conditions related to pipelines, supply sources, consumers, and pipeline candidates are input, and supply to all customers under hydraulic constraints. There has been proposed a method (Non-Patent Document 1) in which a pipeline connecting sources is selected and designed so that the overall investment cost and operation cost are minimized.
 ところで、実際の管路敷設は大規模な工事を伴うため、予め設計期間を定め、その期間内での管路の敷設位置に加えて、敷設のスケジュールを設計することが必要である。しかしながら、上述した従来技術においては、ある時点において存在する供給源および需要家を繋ぐよう管路のレイアウトを決定するのみであり、設計期間が複数年にまたがる場合について対応する手法ではない。 By the way, since actual pipe laying involves large-scale construction, it is necessary to set a design period in advance and design the laying schedule in addition to the pipe laying position within that period. However, in the above-described prior art, only the layout of the pipeline is determined so as to connect the supply source and the customer existing at a certain point in time, and it is not a method corresponding to the case where the design period extends over a plurality of years.
 そのため、従来技術を用い、複数年にわたる設計期間の全期間に関し設計を行おうとする場合、年度毎に設計を繰り返し行う必要がある。だが、そのようにして得た設計結果は、あくまで単年度毎の最適化を図ったものであり、全設計期間を通じて最適な設計結果となっているとは限らない。 Therefore, when using the conventional technology to design for the entire design period over multiple years, it is necessary to repeat the design every year. However, the design results obtained in such a manner are intended to be optimized for each single year, and the design results are not necessarily optimal throughout the entire design period.
 そこで本発明の目的は、配水システムの設備設計に際し、複数年にわたる設計期間全体を通して投資や運用のコスト最小化が図られる技術を提供することにある。 Therefore, an object of the present invention is to provide a technology capable of minimizing the cost of investment and operation throughout the design period over a plurality of years when designing the facilities of a water distribution system.
 上記課題を解決する本発明の設備設計システムは、配水設備の構成要素に関するデータと、配水設備設計上の制約に関するデータとを少なくとも保持する記憶装置と、前記構成要素に関するデータが含む、水供給源、需要家施設、及び配水手段に関するデータに基づいて、水供給源および需要家施設の各間を配水手段で結ぶ配水網のパターンを生成する処理と、前記構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理とを実行する演算装置と、を備えることを特徴とする。 The facility design system of the present invention that solves the above problems includes a storage device that holds at least data relating to components of the water distribution facility and data relating to restrictions on the design of the water distribution facility, and a water supply source including data relating to the component , A process for generating a distribution network pattern for connecting each of the water supply source and the customer facility with the water distribution means based on the data on the customer facility and the water distribution means, and a predetermined configuration including the data on the components Based on the data of the cost required for the introduction and operation of the elements and the data of the design period included in the data related to the constraint, under the condition satisfying the predetermined constraint included in the data related to the constraint between each year of the design period, Among the distribution network patterns, the distribution network that minimizes the total cost for each fiscal year is identified as facility design data, and the facility design data for the entire design period An arithmetic unit for executing a process of storing in the storage device, characterized in that it comprises a.
 また、本発明の設備設計方法は、配水設備の構成要素に関するデータと、配水設備設計上の制約に関するデータとを少なくとも保持する記憶装置を備えた情報処理装置が、前記構成要素に関するデータが含む、水供給源、需要家施設、及び配水手段に関するデータに基づいて、水供給源および需要家施設の各間を配水手段で結ぶ配水網のパターンを生成する処理と、前記構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理と、を実行することを特徴とする。 In addition, in the facility design method of the present invention, an information processing device including a storage device that holds at least data relating to components of the water distribution facility and data relating to restrictions on the water distribution facility design includes the data relating to the component. Based on the data on the water supply source, the customer facility, and the water distribution means, a process for generating a distribution network pattern that connects the water supply source and the customer facility with the water distribution means, and data on the components are included. Based on the cost data required for the introduction and operation of the predetermined component and the data of the design period included in the data related to the constraint, the conditions satisfying the predetermined constraint included in the data related to the constraint between each year of the design period Originally, the distribution network with the lowest total cost is identified as the facility design data for each fiscal year among the distribution network patterns, and the facility design data for the entire design period is specified. And executes the process of storing data in the storage device.
 また、本発明の設備設計プログラムは、配水設備の構成要素に関するデータと、配水設備設計上の制約に関するデータとを少なくとも保持する記憶装置を備えた情報処理装置に、前記構成要素に関するデータが含む、水供給源、需要家施設、及び配水手段に関するデータに基づいて、水供給源および需要家施設の各間を配水手段で結ぶ配水網のパターンを生成する処理と、前記構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理と、を実行させることを特徴とする。 In addition, the facility design program of the present invention includes, in an information processing apparatus including a storage device that holds at least data relating to components of the water distribution facility and data relating to restrictions on the water distribution facility design, the data relating to the component includes Based on the data on the water supply source, the customer facility, and the water distribution means, a process for generating a distribution network pattern that connects the water supply source and the customer facility with the water distribution means, and data on the components are included. Based on the cost data required for the introduction and operation of the predetermined component and the data of the design period included in the data related to the constraint, the conditions satisfying the predetermined constraint included in the data related to the constraint between each year of the design period Originally, the distribution network that minimizes the total cost for each fiscal year among the distribution network patterns is specified as facility design data, and the facilities for the entire design period are identified. A process of storing the total data in the storage device, characterized in that to the execution.
 本発明によれば、配水システムの設備設計に際し、複数年にわたる設計期間全体を通して投資や運用のコスト最小化が図られる。 According to the present invention, when designing the facilities of a water distribution system, investment and operation costs can be minimized throughout the design period over a plurality of years.
本実施形態の設備設計システムの構成例を示す図である。It is a figure which shows the structural example of the equipment design system of this embodiment. 本実施形態の設備設計システムにおける機能部とデータ類の利用関係を示す図である。It is a figure which shows the utilization relationship of a function part and data in the equipment design system of this embodiment. 本実施形態の自動設計部が備える機能を示す図である。It is a figure which shows the function with which the automatic design part of this embodiment is provided. 本実施形態の手動設計部が備える機能を示す図である。It is a figure which shows the function with which the manual design part of this embodiment is provided. 本実施形態の地理情報データのデータ構造例を示す図である。It is a figure which shows the example of a data structure of the geographic information data of this embodiment. 本実施形態の建設候補データのデータ構造例を示す図である。It is a figure which shows the example of a data structure of the construction candidate data of this embodiment. 配水システムにおけるネットワークの一例を示す図である。It is a figure which shows an example of the network in a water distribution system. 本実施形態の需要家データのデータ構造例を示す図である。It is a figure which shows the example of a data structure of the customer data of this embodiment. 本実施形態の制約データのデータ構造例を示す図である。It is a figure which shows the example of a data structure of the constraint data of this embodiment. 本実施形態の数値データのデータ構造例を示す図である。It is a figure which shows the example of a data structure of the numerical data of this embodiment. 本実施形態のネットワークデータのデータ構造例を示す図である。It is a figure which shows the data structure example of the network data of this embodiment. 本実施形態の設備設計データのデータ構造例を示す図である。It is a figure which shows the example of a data structure of the equipment design data of this embodiment. 本実施形態の設備設計方法の処理手順例1を示すフロー図である。It is a flowchart which shows the process procedure example 1 of the equipment design method of this embodiment. 本実施形態の設備設計方法の処理手順例2を示すフロー図である。It is a flowchart which shows the process procedure example 2 of the equipment design method of this embodiment. 本実施形態の設備設計方法の処理手順例3を示すフロー図である。It is a flowchart which shows process sequence example 3 of the equipment design method of this embodiment. 本実施形態における構成途中のネットワークの例を示す図である。It is a figure which shows the example of the network in the middle of a structure in this embodiment. 本実施形態において構成されたネットワークの例を示す図である。It is a figure which shows the example of the network comprised in this embodiment. 本実施形態の設備設計方法の処理手順例4を示すフロー図である。It is a flowchart which shows the process sequence example 4 of the equipment design method of this embodiment. 本実施形態において計算された設備設計データに対応するネットワークのレイアウト例を示す図である。It is a figure which shows the layout example of the network corresponding to the equipment design data calculated in this embodiment. 本実施形態の設備設計方法による計算結果例を示す図である。It is a figure which shows the example of a calculation result by the equipment design method of this embodiment. 本実施形態の設備設計方法の処理手順例5を示すフロー図である。It is a flowchart which shows the process sequence example 5 of the equipment design method of this embodiment. 本実施形態の設備設計方法の処理手順例6を示すフロー図である。It is a flowchart which shows the process sequence example 6 of the equipment design method of this embodiment. 本実施形態におけるユーザ入力形式の例を示す図である。It is a figure which shows the example of the user input format in this embodiment. 本実施形態における画面表示例を示す図である。It is a figure which shows the example of a screen display in this embodiment. 本実施形態の自動設計部が備える機能を示す図である。It is a figure which shows the function with which the automatic design part of this embodiment is provided. 本実施形態の設備設計方法の処理手順例7を示すフロー図である。It is a flowchart which shows the process sequence example 7 of the equipment design method of this embodiment.
---実施例1---
 以下に本発明の実施形態について図面を用いて詳細に説明する。図1は本実施形態の設備設計システム100の構成例を示す図であり、図2Aは本実施形態の設備設計システムにおける機能部とデータ類の利用関係を示す図である。図1に示す設備設計システム100は、配水システムの設備設計に際し、複数年にわたる設計期間全体を通して投資や運用のコスト最小化が図られるコンピュータシステムである。本実施形態における設備設計とは、需要家における再生水の需要を満たすための配水手段(例えば、管路、給水車など)および供給源の仕様(位置、供給能力など)を決定することと定義する。勿論、配水する対象は再生水に限定されず、各種の上下水を概念に含むものとする。
--- Example 1 ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of an equipment design system 100 according to the present embodiment, and FIG. 2A is a diagram illustrating a usage relationship between functional units and data in the equipment design system according to the present embodiment. The facility design system 100 shown in FIG. 1 is a computer system in which investment and operation costs can be minimized throughout the design period of a plurality of years when designing a water distribution system. The facility design in the present embodiment is defined as determining water distribution means (for example, pipelines, water trucks, etc.) and supply source specifications (positions, supply capacities, etc.) for satisfying the demand for reclaimed water at consumers. . Of course, the target for water distribution is not limited to reclaimed water, but includes various types of water and sewage in the concept.
 本実施形態における設備設計システム100のハードウェア構成は以下の如くとなる。設備設計システム100は、ハードディスクドライブなど適宜な不揮発性記憶装置で構成される記憶装置101、RAMなど揮発性記憶装置で構成されるメモリ103、記憶装置101に保持されるプログラム102をメモリ103に読み出すなどして実行しシステム自体の統括制御を行なうとともに各種判定、演算及び制御処理を行なうCPU104(演算装置)を少なくとも備えている。また、設備設計システム100は、ユーザからの指示やデータ入力を受け付けるキーボードやポインティングデバイス等の入力装置105、処理データを表示するディスプレイ等の表示装置106、適宜なネットワークと接続し、ユーザが利用する端末等との通信処理を担う通信装置107を備えるとすれば好適である。 The hardware configuration of the facility design system 100 in the present embodiment is as follows. The facility design system 100 reads into the memory 103 a storage device 101 composed of a suitable non-volatile storage device such as a hard disk drive, a memory 103 composed of a volatile storage device such as a RAM, and a program 102 held in the storage device 101. And at least a CPU 104 (arithmetic unit) that performs overall control of the system itself and performs various determinations, calculations, and control processes. The facility design system 100 is connected to an input device 105 such as a keyboard and a pointing device that receives instructions and data input from the user, a display device 106 such as a display that displays processing data, and an appropriate network, and is used by the user. It is preferable to provide a communication device 107 that performs communication processing with a terminal or the like.
 入力装置105が受けたユーザ入力値は、上述の設備設計制御部10に送信されることとなる。この場合、設備設計制御部10は、自動設計部13または手動設計部12または表示装置106へ上述のユーザ入力値を送信することで、種々の処理を開始する。 The user input value received by the input device 105 is transmitted to the facility design control unit 10 described above. In this case, the facility design control unit 10 starts various processes by transmitting the above-described user input values to the automatic design unit 13, the manual design unit 12, or the display device 106.
 また、表示装置106は、後述する設備設計データ117に従った接続点およびサテライトおよび需要家および管路および給水車割当てのレイアウトの描画と、設備設計データ117の内容と、設備設計データ117の評価指標を表示することとなる。また、表示装置106は、後述する手動設計部12の機能によりユーザが設備設計データ117の編集を行う際のインターフェイスを表示する。またその他に、表示装置106は自動設計部13または手動設計部12の起動についてユーザ指示を受けるインターフェイスを表示する。 In addition, the display device 106 draws a layout of allocation of connection points, satellites, customers, pipelines, and water trucks according to facility design data 117 described later, contents of the facility design data 117, and evaluation of the facility design data 117. The indicator will be displayed. The display device 106 displays an interface when the user edits the facility design data 117 by the function of the manual design unit 12 described later. In addition, the display device 106 displays an interface for receiving a user instruction regarding activation of the automatic design unit 13 or the manual design unit 12.
 設備設計システム100において、上述したプログラム102の実行により実装される機能部としては、後述する手動設計部12及び自動設計部13の制御を行う設備設計制御部10、設計条件データ110を記憶装置101から読み込むか或いは入力装置105から受信しメモリ103に格納するデータ受信部11、入力装置105にて受信したユーザからの指示等に応じた設備設計データを編集処理する手動設計部12、設備設計の処理を自動実行する自動設計部13がある。各機能部の間や、機能部とデータの記憶装置との間等のデータ伝送はBUSを介して行われることとなる。 In the facility design system 100, as functional units implemented by executing the above-described program 102, a facility design control unit 10 that controls a manual design unit 12 and an automatic design unit 13 described later, and design condition data 110 are stored in the storage device 101. From the input device 105 or received from the input device 105 and stored in the memory 103, the manual design unit 12 for editing the equipment design data in accordance with the instruction from the user received by the input device 105, etc. There is an automatic design unit 13 that automatically executes processing. Data transmission between the functional units and between the functional units and the data storage device is performed via the BUS.
 なお、自動設計部13は、図2Bに記載する通り、ネットワーク構築機能301および自動設計機能302および吐出圧決定機能303および制約違反判定機能304を有する。また、手動設計部12は、図2Cに記載する通り、設備編集機能401、給水車割当て編集機能402、制約違反判定機能403、入力受信機能404を有する。こうした各機能の詳細な処理については後述する。 The automatic design unit 13 includes a network construction function 301, an automatic design function 302, a discharge pressure determination function 303, and a constraint violation determination function 304 as described in FIG. 2B. Moreover, the manual design part 12 has the equipment edit function 401, the water tank allocation edit function 402, the constraint violation determination function 403, and the input reception function 404 as described in FIG. 2C. Detailed processing of each function will be described later.
 また、設備設計システム100の記憶装置101には、上述のプログラム102の他に、設計条件データ110、ネットワークデータ116、および設備設計データ117が格納されている。設計条件データ110は、設備設計システム100が設備設計データを計算するにあたり、定める前提および数値情報および制約等のデータの集合であり、地理情報データ111、建設候補データ112、需要家データ113、制約データ114、および数値データ115を含んでいる。また、ネットワークデータ116は、自動設計部13が設計条件データ110を利用して生成した配水網のパターンであり、手動設計部12または自動設計部13において計算条件として利用されるデータである。また、設備設計データ117は、手動設計部12および自動設計部13が計算し出力した設備設計結果のデータである。 In addition, the storage device 101 of the facility design system 100 stores design condition data 110, network data 116, and facility design data 117 in addition to the program 102 described above. The design condition data 110 is a set of data such as preconditions and numerical information and constraints determined when the facility design system 100 calculates the facility design data. The geographic information data 111, the construction candidate data 112, the customer data 113, the constraints Data 114 and numerical data 115 are included. The network data 116 is a distribution network pattern generated by the automatic design unit 13 using the design condition data 110 and is data used as calculation conditions in the manual design unit 12 or the automatic design unit 13. The equipment design data 117 is data of equipment design results calculated and output by the manual design unit 12 and the automatic design unit 13.
 このうち、地理情報データ111は、設計対象となる配水設備により再生水供給を行う地域に関する地図データ、道路のデータ、および、道路上の交差点の標高のデータから構成されている。図3におけるテーブル31は各道路の始点と終点、テーブル32は道路交差点の標高の各データを格納したテーブルである。従ってテーブル31の各レコードは、地図上における各道路はIDを持ち、その道路は始点を意味するある交差点(例:"Xr1")から終点を意味するある交差点(例:"Yr1")まで敷かれることを示している。また、テーブル32の各レコードは、各交差点(例:"Xr1")が、その存在箇所において所定の標高値(例:"Ec1")を有することを示している。なお、図3において地図データは示していないが、地理情報データ111において、例えば、道路路線図が河川や山等の地形図中に記載された一般的な地図データが格納されているものとする。 Of these, the geographic information data 111 is composed of map data relating to the area where reclaimed water is supplied by the water distribution equipment to be designed, road data, and elevation data of intersections on the road. The table 31 in FIG. 3 is a table storing the start point and end point of each road, and the table 32 is a table storing the altitude data of the road intersection. Accordingly, each record in the table 31 has an ID for each road on the map, and the road extends from a certain intersection (eg, “Xr1”) that means the start point to a certain intersection (eg, “Yr1”) that means the end point. It shows that it is. Each record in the table 32 indicates that each intersection (eg, “Xr1”) has a predetermined elevation value (eg, “Ec1”) at the location where the intersection exists. In addition, although map data is not shown in FIG. 3, in the geographic information data 111, for example, it is assumed that general map data in which a road route map is described in a topographic map such as a river or a mountain is stored. .
 また、建設候補データ112は、図4に示すように、管路候補のデータを格納したテーブル41、接続点候補のデータを格納したテーブル42、およびサテライト候補のデータを格納したテーブル43から構成されている。 Further, as shown in FIG. 4, the construction candidate data 112 includes a table 41 that stores pipeline candidate data, a table 42 that stores connection point candidate data, and a table 43 that stores satellite candidate data. ing.
 管路候補のデータは、地理情報データ111が示す各道路のうち管路敷設が可能な全ての候補地を示すデータである。また、接続点候補のデータは、地理情報データ111が示す地図上において、管同士を繋ぐ接続点の配置が可能な全ての候補地を示すデータである。また、サテライト候補のデータは、地理情報データ111が示す地図上において、サテライト処理場の建設が可能な全ての候補地を示すデータである。 The pipe candidate data is data indicating all candidate sites where the pipes can be laid out among the roads indicated by the geographic information data 111. Further, the connection point candidate data is data indicating all candidate sites on the map indicated by the geographic information data 111, where the connection points connecting the tubes can be arranged. The satellite candidate data is data indicating all candidate sites where the satellite processing plant can be constructed on the map indicated by the geographic information data 111.
 ここでサテライト処理場(以下、単にサテライト)とは、下水処理場に至る前の下水管から下水をくみ取り、下水処理を施す中間施設のことである。本実施形態では、サテライトにおいて処理した再生水を需要家に配水する形態を想定している。よって、サテライトは再生水の供給源となる。ただし、サテライトに限らず、下水処理場においても再生水の製造は可能であるため、上述のサテライト候補のデータとして、地理情報データ111が示す地図上において、下水処理場の建設が可能な全ての候補地を示すデータ、すなわち下水処理場候補のデータを用いてもよい。 Here, the satellite treatment plant (hereinafter simply referred to as satellite) is an intermediate facility that collects sewage from the sewage pipes before reaching the sewage treatment plant and performs sewage treatment. In this embodiment, the form which distributes the reclaimed water processed in the satellite to a consumer is assumed. Thus, satellites are a source of recycled water. However, since reclaimed water can be produced not only in satellites but also in sewage treatment plants, all the candidates for construction of sewage treatment plants on the map indicated by the geographic information data 111 as the satellite candidate data described above. Data indicating the ground, that is, sewage treatment plant candidate data may be used.
 このような建設候補データ112の各候補のデータにおいて、例えば、管路候補は地理情報データ111が示す各道路に沿って敷設され、接続点候補は道路の交差点に設定され、サテライト候補は既存のポンプ場や下水幹線沿いの空き地に設置されることを想定している。ここで、管路候補のテーブル41における管路始点および管路終点は、接続点候補またはサテライト候補または需要家に対応している。 In such candidate data of the construction candidate data 112, for example, pipeline candidates are laid along each road indicated by the geographic information data 111, connection point candidates are set at road intersections, and satellite candidates are existing ones. It is assumed to be installed in a vacant lot along the pumping station and the sewer main line. Here, the pipe start point and the pipe end point in the pipe candidate table 41 correspond to a connection point candidate, a satellite candidate, or a customer.
 図5は、上述した各候補のデータに基づく配水網のパターンをネットワーク20として表示装置106にて表示した例である。この図5に示すネットワーク20において、全ての破線は管路候補を、白い丸は接続点候補を、黒い四角はサテライト候補を、黒い丸は水の需要家を示している。勿論、図5で示したネットワーク20における各記号は一例であり、管路候補、接続点候補、サテライト候補、需要家といった構成要素毎に他の記号を用いてもよい。なお、図5には図示していないが、配水手段として管路の他に給水車を採用可能である。この給水車を配水網に含める形態については後述する。また、図5に示すようなネットワーク20を表示装置106にて表示する具体的な処理方法についても後述する。 FIG. 5 is an example in which the water distribution network pattern based on each candidate data described above is displayed on the display device 106 as the network 20. In the network 20 shown in FIG. 5, all broken lines indicate conduit candidates, white circles indicate connection point candidates, black squares indicate satellite candidates, and black circles indicate water consumers. Of course, each symbol in the network 20 shown in FIG. 5 is an example, and other symbols may be used for each component such as a pipe line candidate, a connection point candidate, a satellite candidate, and a customer. Although not shown in FIG. 5, a water supply vehicle can be adopted as a water distribution means in addition to the pipeline. The form in which this water supply vehicle is included in the water distribution network will be described later. A specific processing method for displaying the network 20 as shown in FIG. 5 on the display device 106 will also be described later.
 また、需要家データ113は、上述の設計対象となる配水設備により再生水供給を行う地域において出現する、配水対象となる需要家のデータである。図6に、需要家データ113が含むテーブル51の例を示している。需要家データ113におけるテーブル51は、各需要家で固有の需要家ID、地理情報データ111が示す地図上における座標、この座標における標高、該当需要家が要求する再生水の需要量、該当需要家の出現年度、の各値から成るレコードの集合体となっている。 Further, the customer data 113 is data of a customer to be distributed, which appears in an area where reclaimed water is supplied by the above-described water distribution facility to be designed. FIG. 6 shows an example of the table 51 included in the customer data 113. The table 51 in the customer data 113 includes a unique customer ID for each customer, coordinates on the map indicated by the geographical information data 111, altitude at this coordinate, demand for reclaimed water requested by the customer, It is a collection of records consisting of each value of the year of appearance.
 ところで、現実には、常に需要家が管路候補上に出現するとは限らない。その場合、設備設計システム100は、需要家が出現する座標から最も近い接続点候補を、建設候補データ112のテーブル42にて選択し、その接続点候補を需要家で置き換えることで設計条件データ110を修正する。設備設計システム100は、需要家の座標が、その接続点候補の座標と等しくなるよう修正する。このとき設備設計システム100は、元々存在していた接続点候補を設計条件データ110から削除する。また同様に、その接続点候補を管路の始点ないし終点としていた管路候補のデータについて、管路始点ないし管路終点を元々の接続点候補から上述の需要家に置き換えるものとする。 By the way, in reality, a consumer does not always appear on a pipeline candidate. In that case, the facility design system 100 selects the connection point candidate closest to the coordinates at which the customer appears in the table 42 of the construction candidate data 112, and replaces the connection point candidate with the customer, thereby design condition data 110. To correct. The facility design system 100 corrects the customer's coordinates to be equal to the coordinates of the connection point candidate. At this time, the facility design system 100 deletes the connection point candidates that originally existed from the design condition data 110. Similarly, regarding the data of the pipe line candidates whose connection point candidates are the start point or end point of the pipe line, the pipe start point or the pipe end point is replaced from the original connection point candidate with the above-described consumer.
 また、制約データ114は、設備設計時における前提、設備設計の結果が満たすべき条件、および、設備設計ないし配水設備敷設等に際しての運用上の禁止事項を、「制約」として含むものである。図7は制約データ114を構成するテーブル61、テーブル62、およびテーブル63を示している。 Further, the constraint data 114 includes, as “restrictions”, assumptions at the time of facility design, conditions to be satisfied by the results of facility design, and prohibited items for operation when facility design or distribution facilities are laid. FIG. 7 shows a table 61, a table 62, and a table 63 that constitute the constraint data 114.
 ここで、上述の「前提」とは、例えば、設備設計の実行期間を意味する設計期間や、設備設計の結果に基づいて建設するサテライト数となる。図7のテーブル61では、設計期間が20年であることを示している。 Here, the above-mentioned “premise” is, for example, the design period meaning the execution period of facility design, or the number of satellites to be constructed based on the result of facility design. The table 61 in FIG. 7 indicates that the design period is 20 years.
 また、上述の「満たすべき条件」とは、例えば、需要家または接続点において、許容される水圧の最小値および最大値、各管路における流速の最大値、一つのサテライトから供給可能な流量、需要家および接続点における再生水の流入量と流出量の収支バランス、となる。テーブル62の例では、許容される水圧の最小値が"15"、最大値が"75"であり、各管路における流速の最大値が"3"、サテライトから供給可能な流量が"1000"、であることを示している。 Moreover, the above-mentioned “conditions to be satisfied” are, for example, the minimum and maximum allowable water pressure at the customer or the connection point, the maximum value of the flow velocity in each pipeline, the flow rate that can be supplied from one satellite, This is the balance between the inflow and outflow of reclaimed water at the customer and connection points. In the example of the table 62, the minimum value of the allowable water pressure is “15”, the maximum value is “75”, the maximum value of the flow velocity in each pipeline is “3”, and the flow rate that can be supplied from the satellite is “1000”. It is shown that.
 また、上述の「運用上の禁止事項」とは、例えば、テーブル63に示すように「給水車による供給地点から、管路を敷設すること」などが挙げられる。詳細は後述するが、管路および給水車割当ては配水網たるネットワーク上の辺で表されるため、上述の禁止事項は特定の形状のネットワークの構築を禁止することと等しい。また、設計期間における、所定年度の配水網を構築するためにその前年度の配水網から管路撤去を行わないといった管路敷設上の制約も「運用上の禁止事項」に含まれる。 The above-mentioned “prohibited items for operation” includes, for example, “laying a pipeline from a supply point by a water truck” as shown in the table 63. Although details will be described later, since the allocation of pipelines and water trucks is represented by edges on the network serving as a water distribution network, the above-mentioned prohibited items are equivalent to prohibiting the construction of a network having a specific shape. In addition, the restriction on the laying of pipelines in the design period, such as not removing pipelines from the previous year's distribution network in order to construct a distribution network for a given year, is also included in the “operational prohibitions”.
 また、数値データ115は、後述する辺重みを計算するためのデータである。この数値データ115は、図8にて示すように、ある管路の単位長あたりの敷設コスト、給水車の単位移動距離あたりの燃料費、運転手の人件費といった単位コストの値から構成されている。 The numerical data 115 is data for calculating edge weights to be described later. As shown in FIG. 8, the numerical data 115 is composed of unit cost values such as a laying cost per unit length of a certain pipeline, a fuel cost per unit moving distance of a water truck, and a driver labor cost. Yes.
 また、ネットワークデータ116は、後述する自動設計部13がネットワーク構築機能301を実行することで構築する、配水網のパターンすなわちネットワークのデータとなる。このネットワークデータ116は、上述した設計期間の各年度における、配水網の各頂点の情報を格納したテーブル71A(頂点テーブル)~71B、および、配水網の各辺の情報を格納したテーブル72A(辺テーブル)~72Bから構成される。ここで、需要家、接続点候補、およびサテライト候補を配水網たるネットワークの頂点とし、管路候補および給水車割当てを配水網たるネットワークの辺とする。 Further, the network data 116 is a distribution network pattern, that is, network data, which is constructed by the automatic design unit 13 described later by executing the network construction function 301. The network data 116 includes tables 71A (vertex table) to 71B storing information on each vertex of the water distribution network in each year of the design period described above, and a table 72A (edge) storing information on each side of the water distribution network. Table) to 72B. Here, a customer, a connection point candidate, and a satellite candidate are set as the vertices of the network serving as the water distribution network, and the pipeline candidate and the water supply vehicle allocation are defined as the sides of the network serving as the water distribution network.
 テーブル71Aおよびテーブル72Aは、設計期間における1年度のテーブルであり、テーブル71Bおよびテーブル72Bは2年度のテーブルである。省略しているが、ネットワークデータ116は、設計期間における3年度のテーブル、4年度のテーブル、以下同様、と設計期間における全ての年度のテーブルを保持するが、ここでは説明の簡潔のためにテーブル71Aおよびテーブル72Aのみについて説明する。 The table 71A and the table 72A are tables for the first year in the design period, and the table 71B and the table 72B are tables for the second year. Although omitted, the network data 116 holds a table for the 3rd year in the design period, a table for the 4th year, and so on, as well as a table for all the years in the design period. Only 71A and table 72A will be described.
 上述のテーブル71Aは、各々の頂点の、頂点IDおよび座標および標高を値として保持するレコードの集合体である。同様に、テーブル72Aは、各々の辺の、辺IDおよび始点および終点を値として保持するレコードの集合体である。なお、「辺重み」とは、自動設計部13が数理計画問題を定式化する際に管路のコスト(CPpとする)、または、給水車のコスト(CCcとする)として利用するものとなる(詳細は後述)。ここで、テーブル71Aおよびテーブル72Aに記載の各頂点および各辺のIDは、上述の図5に示したネットワーク20における該当箇所の各名称と対応している。 The above-described table 71A is a collection of records that hold the vertex ID, coordinates, and elevation of each vertex as values. Similarly, the table 72A is a collection of records that hold the side ID, start point, and end point of each side as values. The “edge weight” is used as the cost of the pipeline (CPp) or the cost of the water supply vehicle (CCc) when the automatic design unit 13 formulates the mathematical programming problem. (Details will be described later). Here, the ID of each vertex and each side described in the table 71A and the table 72A corresponds to each name of the corresponding part in the network 20 shown in FIG.
 また、設備設計データ117は、後述する自動設計部13により計算される設備設計結果のデータである。図10にこの設備設計データ117の例を示す。設備設計データ117は、自動設計部13が、ネットワークデータ116から、実際に配置される接続点およびサテライトおよび管路および給水車候補に対応するレコードを選択することで構成される、テーブル81(頂点テーブル)およびテーブル82(辺テーブル)から構成される。なお、テーブル81(頂点テーブル)には吐出圧の列が、テーブル82(辺テーブル)には流量の列および管径の列が追加されている。 Also, the equipment design data 117 is equipment design result data calculated by the automatic design unit 13 described later. FIG. 10 shows an example of the facility design data 117. The equipment design data 117 is a table 81 (vertex) configured by the automatic design unit 13 selecting, from the network data 116, records corresponding to connection points, satellites, pipelines, and water truck candidates that are actually arranged. Table) and table 82 (side table). Note that a discharge pressure column is added to the table 81 (vertex table), and a flow rate column and a pipe diameter column are added to the table 82 (side table).
 上述のテーブル81は、設計期間における1年度の各頂点が持つ値を保持した頂点テーブルの例である。このテーブル81において、各頂点は、接続点またはサテライトまたは需要家に該当する。こうしたテーブル81のレコードのうち、頂点IDおよび座標および標高を値として含むものは「接続点」に関するものであり、頂点IDおよび座標および標高および吐出圧を値として含むものは「サテライト」に関するものであり、頂点IDおよび座標および標高および需要量を値として含むものは「需要家」に関するものである。その他に、例えば、水圧など管網計算に利用可能な情報がレコードに含まれるとしてもよい。 The above-described table 81 is an example of a vertex table that holds the values of each vertex in one year in the design period. In this table 81, each vertex corresponds to a connection point, a satellite, or a customer. Among the records in the table 81, those including the vertex ID, coordinates, and elevation as values are related to “connection points”, and those including the vertex ID, coordinates, elevation, and discharge pressure as values are related to “satellite”. Yes, those including the vertex ID, coordinates, altitude, and demand as values are related to “customers”. In addition, for example, information that can be used for pipe network calculation such as water pressure may be included in the record.
 ここで、吐出圧とは、サテライト処理場から管路を利用して再生水を供給する際に稼動する配水ポンプの吐出圧を意味している。上述した制約を充足しつつ需要家に配水するためには考慮が必要な値であるため、必要な配水ポンプの能力と言い換えてもよい。 Here, the discharge pressure means the discharge pressure of a water distribution pump that operates when supplying reclaimed water from a satellite treatment plant using a pipeline. Since it is a value that needs to be considered in order to distribute water to consumers while satisfying the above-described restrictions, it may be rephrased as the capacity of a necessary water distribution pump.
 一方、テーブル82は上述のテーブル81と同年度の各辺が持つ値を保持している辺テーブルの例である。この場合、各辺は管路または給水車割当を示している。管路および給水車割当ては、辺IDをキーとして、辺始点、辺終点、辺重み、流量、および管径の各値を記録する。辺重みは、後述する、自動設計部13が数理計画問題を定式化する際に管路のコスト又は給水車のコストとして利用する値となる。その他に、管路中の水の流速など管網計算に利用可能な情報をテーブル82のレコードに含めるとしてもよい。 On the other hand, the table 82 is an example of a side table that holds values of each side of the same year as the table 81 described above. In this case, each side indicates a pipe line or a water truck allocation. For pipe line and water tank allocation, each value of the side start point, side end point, side weight, flow rate, and pipe diameter is recorded using the side ID as a key. The edge weight is a value that is used as the cost of the pipeline or the cost of the water supply vehicle when the automatic design unit 13 formulates the mathematical programming problem, which will be described later. In addition, information that can be used for pipe network calculation, such as the flow rate of water in the pipe, may be included in the record of the table 82.
 なお、上述した吐出圧および流量の各値は、配水設備の運用コストを計算するための値となり、例えば一時間あたりの平均値を格納する。ただし、より精緻な計算を行うために一時間あたりの平均値を24時間分格納するとしてもよい。また、管路やポンプの能力の上限を見積もるために、例えば年間を通しての最大値を格納してもよい。 In addition, each value of the discharge pressure mentioned above and a flow rate becomes a value for calculating the operation cost of water distribution equipment, for example, stores the average value per hour. However, an average value per hour may be stored for 24 hours in order to perform more precise calculation. Further, in order to estimate the upper limit of the capacity of the pipe line or the pump, for example, a maximum value throughout the year may be stored.
 ネットワークデータ116と同様に省略しているが、設備設計データ117は設計期間における全ての年度の頂点テーブル81および辺テーブル82から構成されるものとする。なお、図10に示す例では、設備設計データ117として、ネットワーク83を含むものとしている。このネットワーク83は、上述のテーブル81およびテーブル82の各値に基づいて配水網の構成を表示するレイアウトデータである。このネットワーク83における、一重の矢印は管路を表す記号の例であり、二重の矢印は給水車割当てを表す記号の例である。 Although omitted as in the case of the network data 116, the facility design data 117 is assumed to be composed of a vertex table 81 and an edge table 82 for all years in the design period. In the example shown in FIG. 10, the network 83 is included as the equipment design data 117. The network 83 is layout data for displaying the configuration of the water distribution network based on the values in the table 81 and the table 82 described above. In this network 83, a single arrow is an example of a symbol representing a pipe line, and a double arrow is an example of a symbol representing a water truck assignment.
 続いて、本実施形態における設備設計方法の実際手順について図に基づき説明する。以下で説明する設備設計方法に対応する各種動作は、設備設計システム100がメモリ103に読み出して実行するプログラム102によって実現される。そしてプログラム102は、以下に説明される各種の動作を行うためのコードから構成されている。 Subsequently, the actual procedure of the facility design method in this embodiment will be described with reference to the drawings. Various operations corresponding to the facility design method described below are realized by a program 102 that the facility design system 100 reads into the memory 103 and executes. The program 102 is composed of codes for performing various operations described below.
 図11は、本実施形態における設備設計方法の処理手順例1を示すフロー図である。設備設計制御部10は同フローチャートに従い動作する。なお、このフローに先立ち、入力装置2でユーザからの起動指示を受けるか、或いは情報処理装置たる設備設計システム100が備える時計機能等により所定時期の到来を検知し、設備設計システム100が設備設計制御部10を起動したものとする。この場合、設備設計制御部10は、データ受信部11に対して設計条件データ110の受信を指示する信号を送信する(201)。 FIG. 11 is a flowchart showing a processing procedure example 1 of the facility design method in the present embodiment. The facility design control unit 10 operates according to the flowchart. Prior to this flow, the input device 2 receives a start instruction from the user, or the arrival of a predetermined time is detected by a clock function or the like provided in the equipment design system 100 that is an information processing apparatus, and the equipment design system 100 designs the equipment. It is assumed that the control unit 10 has been activated. In this case, the facility design control unit 10 transmits a signal instructing the data receiving unit 11 to receive the design condition data 110 (201).
 一方、上述の信号を受けたデータ受信部11は、設計条件データ110を、例えば記憶装置101から読み出し、或いは、入力装置105から受信し、設備設計システム100のメモリ103に格納する。また、設備設計システム100の設備設計制御部10は、入力装置105にてユーザからの自動設計部13ないし手動設計部12の起動指示を受信し(211)、この起動指示に基づき自動設計部13または手動設計部12のいずれかを起動する(221)。 On the other hand, the data receiving unit 11 that has received the above signal reads the design condition data 110 from, for example, the storage device 101 or receives it from the input device 105 and stores it in the memory 103 of the facility design system 100. In addition, the facility design control unit 10 of the facility design system 100 receives an activation instruction for the automatic design unit 13 or the manual design unit 12 from the user via the input device 105 (211), and the automatic design unit 13 based on the activation instruction. Alternatively, one of the manual design units 12 is activated (221).
 この時、上述の起動指示が「自動設計部13の起動」を指示するものである場合(221:自動)、設備設計制御部10は、自動設計部13を起動し、設備設計データの計算を実行する(231)。この際の詳細な処理内容は後述する。設備設計データの計算を行った設備設計制御部10は、計算した設備設計データを表示装置106に送信し、表示装置106にて表示させる(241)。その後、設備設計制御部10は、ステップを処理(211)へ戻し、待機する。 At this time, when the above-described start instruction is for instructing “start of the automatic design unit 13” (221: automatic), the facility design control unit 10 starts the automatic design unit 13 and calculates the facility design data. Execute (231). Detailed processing contents at this time will be described later. The facility design control unit 10 that has performed the calculation of the facility design data transmits the calculated facility design data to the display device 106 and displays it on the display device 106 (241). Thereafter, the facility design control unit 10 returns the step to the process (211) and stands by.
 一方、上述の起動指示が「手動設計部12の起動」を指示するものである場合(221:手動)、設備設計制御部10は、手動設計部12の起動を行い、設備設計データの編集処理等を実行する(251)。ここでの詳細な処理内容は後述する。設備設計データの編集処理等を行った設備設計制御部10は、編集結果等のデータを表示装置106に送信し、表示装置106にて表示させる(241)。その後、設備設計制御部10は、ステップを処理(211)へ戻し、待機する。 On the other hand, when the above-described activation instruction is an instruction for “activation of the manual design unit 12” (221: manual), the facility design control unit 10 activates the manual design unit 12 to edit the facility design data. Etc. are executed (251). The detailed processing contents here will be described later. The facility design control unit 10 that has performed the editing process of the facility design data transmits the data such as the editing result to the display device 106 and displays it on the display device 106 (241). Thereafter, the facility design control unit 10 returns the step to the process (211) and stands by.
 続いて、図11のフローにおける処理(231)、すなわち自動設計部13が実行する処理について説明する。この自動設計部13の処理内容は図12のフローチャートに示す通りである。自動設計部13がこのフローチャートにおける各処理および機能を実行することで、設備設計データ117を生成することとなる。 Subsequently, processing (231) in the flow of FIG. 11, that is, processing executed by the automatic design unit 13 will be described. The processing contents of the automatic design unit 13 are as shown in the flowchart of FIG. The automatic design unit 13 generates facility design data 117 by executing each process and function in this flowchart.
 この場合、自動設計部13は、記憶装置101の設計条件データ110を読み込み、メモリ103に格納する(310)。次に、自動設計部13は、ネットワーク構築機能301を実行し、図13に示すフローチャートに従ってネットワークデータ116を構築し、記憶装置101に格納する。 In this case, the automatic design unit 13 reads the design condition data 110 of the storage device 101 and stores it in the memory 103 (310). Next, the automatic design unit 13 executes the network construction function 301, constructs network data 116 according to the flowchart shown in FIG. 13, and stores it in the storage device 101.
 また、自動設計部13は、自動設計機能302および吐出圧決定機能303を実行し、記憶装置101に記録されたネットワークデータ116に基づいて、評価指標すなわち総コスト(配水設備に関する投資、運用のコスト)を最適化(コストの場合は最小化)するように設備設計データ117を計算し記憶装置101に格納する。 Further, the automatic design unit 13 executes the automatic design function 302 and the discharge pressure determination function 303, and based on the network data 116 recorded in the storage device 101, the evaluation index, that is, the total cost (investment and operational costs related to water distribution equipment). ) Is calculated and stored in the storage device 101 so as to optimize (minimize in the case of cost).
 次に、自動設計部13は、制約違反判定機能304を実行し、設備設計データ117が運用上の制約を満たすか判定を行う。設備設計データ117が運用上の制約を満たしている場合(350:YES)、自動設計部13は処理を終了する。他方、設備設計データ117が運用上の制約を満たしていない場合(350:NO)、自動設計部13は、後述する処理(360)を実行し、処理をネットワーク構築機能301の実行のステップに戻す。 Next, the automatic design unit 13 executes the constraint violation determination function 304 and determines whether the facility design data 117 satisfies operational constraints. If the facility design data 117 satisfies operational restrictions (350: YES), the automatic design unit 13 ends the process. On the other hand, when the facility design data 117 does not satisfy operational restrictions (350: NO), the automatic design unit 13 executes a process (360) described later and returns the process to the step of executing the network construction function 301. .
 続いて、上述した自動設計部13におけるネットワーク構築機能301での処理について説明する。図13は本実施形態の設備設計方法の処理手順例3を示すフロー図である。この場合、自動設計部13のネットワーク構築機能301は、処理(311)において、データ受信部11から設計条件データ110を読み込んで、これを入力とする。 Subsequently, processing in the network construction function 301 in the automatic design unit 13 described above will be described. FIG. 13 is a flowchart showing a processing procedure example 3 of the facility design method of the present embodiment. In this case, the network construction function 301 of the automatic design unit 13 reads the design condition data 110 from the data reception unit 11 and inputs it in the process (311).
 次に、ネットワーク構築機能301は、処理(321)において、設計期間を構成する年度を表す変数tの値を1と定める。設計期間の値は、設計条件データ110における制約データ114が含んでいる。 Next, in the process (321), the network construction function 301 determines 1 as the value of the variable t representing the year that constitutes the design period. The design period value includes the constraint data 114 in the design condition data 110.
 ネットワーク構築機能301は、処理(331)および処理(341)において、t年度におけるネットワークを構築するために、上述の処理(311)で得ている設計条件データ110を入力とし、t年度までに出現している需要家(需要家データ113から抽出)、接続点候補(建設候補データ112から抽出)、およびサテライト候補(建設候補データ112から抽出)を頂点とし、管路候補(建設候補データ112から抽出)、および、給水車割当て候補(建設候補データ112から抽出)を辺とした、上述の図9に記載の頂点テーブルおよび辺テーブル、すなわち、t年度のネットワークデータ116を生成する。 The network construction function 301 uses the design condition data 110 obtained in the above-described processing (311) as an input in order to construct a network in the fiscal year t in the processing (331) and the processing (341), and appears by the fiscal year t. The candidate (extracted from the construction candidate data 112), the candidate connection point (extracted from the construction candidate data 112), and the satellite candidate (extracted from the construction candidate data 112) as apexes. 9), the vertex table and the side table shown in FIG. 9 described above, that is, the network data 116 for the year t, are generated with the water tank allocation candidate (extracted from the construction candidate data 112) as the side.
 このとき、需要家データ113において、t年度までに出現しない需要家のデータが含まれている場合、ネットワーク構築機能301は、その需要家と同一座標に、需要量が「0」である代替の接続点候補を生成し、ネットワーク116の頂点とする。例えば、図9における頂点テーブル71Aの頂点"Jd1"は、需要家"D1"がまだ出現していない年度においてもネットワークを構築するために、その需要家と同一座標に生成した代替の接続点候補である。 At this time, if the customer data 113 includes data of a customer who does not appear by the year t, the network construction function 301 is an alternative in which the demand is “0” at the same coordinates as the customer. A connection point candidate is generated and set as a vertex of the network 116. For example, the vertex “Jd1” of the vertex table 71A in FIG. 9 is an alternative connection point candidate generated at the same coordinates as the customer in order to build a network even in a year in which the customer “D1” has not yet appeared. It is.
 図14に示したネットワーク601は、上記の処理(331)により生成された、需要家、接続点候補、サテライト候補、および、管路候補から構築される配水網、すなわちネットワークの例である。図14のネットワーク601で示した接続点、管路候補、需要家、およびサテライトの各名称は、既に図5で示したネットワーク20のものと同一である。 The network 601 shown in FIG. 14 is an example of a water distribution network, that is, a network constructed from a consumer, a connection point candidate, a satellite candidate, and a pipeline candidate generated by the above-described processing (331). The names of connection points, pipeline candidates, consumers, and satellites shown in the network 601 in FIG. 14 are the same as those in the network 20 already shown in FIG.
 処理(331)におけるネットワーク構築機能301は、設計条件データ110の、「接続点候補ID、座標、標高」、「サテライト候補ID、座標、標高」、「(出現年度がt以下である需要家の)需要家ID、座標、標高、需要量」を元に頂点のテーブルを、「管路候補ID、管路始点、管路終点」を元に、図9に記載の辺テーブルを出力することとなる。 In the process (331), the network construction function 301 includes, in the design condition data 110, “connection point candidate ID, coordinate, altitude”, “satellite candidate ID, coordinate, altitude”, “ 9) Output the vertex table based on "customer ID, coordinates, altitude, demand" and output the side table shown in FIG. 9 based on "pipe candidate ID, pipe start point, pipe end point" Become.
 さらに、処理(331)におけるネットワーク構築機能301は、配水設備に関する投資、運用のコストを算出するため、管路候補を表す各辺の重みを計算する。この、辺の重みは、管路を敷設するのに要する管路購入コストや敷設工事費などから成る費用、すなわち敷設コストである。この敷設コストは、例えば、管路pの距離(辺始点および辺終点の座標から計算可能)と、数値データ115が保持している単位長あたりの管路敷設コストとの積により計算できる。 Further, the network construction function 301 in the processing (331) calculates the weight of each side representing the pipeline candidate in order to calculate the investment and operation costs related to the water distribution facility. The weight of the side is a cost consisting of a pipe purchase cost and a laying work cost required for laying the pipe, that is, a laying cost. This laying cost can be calculated, for example, by the product of the distance of the pipe p (which can be calculated from the coordinates of the side start point and the side end point) and the pipe laying cost per unit length held in the numerical data 115.
 続いてネットワーク構築機能301は、処理(341)において、給水車割当て候補を含むネットワークを構築する。この場合、ネットワーク構築機能301は、サテライト候補を始点、需要家を終点とする辺を、全てのサテライト候補および需要家の間で生成し、これを給水車割当て候補として得る。ネットワーク構築機能301は、こうして生成した各辺のデータを、図9に記載の辺テーブルに追加出力する。 Subsequently, in the process (341), the network construction function 301 constructs a network including water truck allocation candidates. In this case, the network construction function 301 generates an edge with the satellite candidate as the start point and the consumer as the end point among all the satellite candidates and consumers, and obtains it as a water tank allocation candidate. The network construction function 301 additionally outputs the data of each side generated in this way to the side table shown in FIG.
 さらにネットワーク構築機能301は、上述の処理(341)において、コスト算出のために、給水車割当て候補を表す各辺の重みを計算する。この、辺の重みは給水車の導入に要する費用、および給水車運転手の人件費や燃料費等の運用コストの和とする。給水車による移動距離は地理情報データ111に記録された該当道路のデータから計算できる。ネットワーク構築機能301は、上述の給水車の移動距離と、数値データ115が保持する給水車単位移動距離あたりの燃料費との積や、数値データ115が保持する単位時間あたり人件費と、上述の移動距離を給水車が移動する際の走行時間との積、などから運用コストを計算する。 Further, the network construction function 301 calculates the weight of each side representing the water tank allocation candidate in order to calculate the cost in the above-described process (341). The weight of the side is the sum of the cost required for the introduction of the water supply vehicle and the operation cost such as the labor cost and fuel cost of the water supply vehicle driver. The distance traveled by the water truck can be calculated from the corresponding road data recorded in the geographic information data 111. The network construction function 301 includes the product of the travel distance of the above-mentioned water truck and the fuel cost per unit travel distance of the water truck retained by the numerical data 115, the labor cost per unit time retained by the numerical data 115, and the above-mentioned The operation cost is calculated from the product of the travel distance and the travel time when the water truck moves.
 図15に示すネットワーク612は、ネットワーク構築機能301が、上述の処理(331)および処理(341)にて得た、設計期間のうち1年度の頂点テーブルおよび辺テーブルから生成したネットワークの例である。ただし、図を簡略化するために、ネットワーク612において、給水車割当て候補を表す辺はサテライト"S3"からのみ記載し、他の給水車割当て候補を表す辺は省略している。 A network 612 illustrated in FIG. 15 is an example of a network generated by the network construction function 301 from the vertex table and the side table for one year in the design period obtained in the above-described processing (331) and processing (341). . However, in order to simplify the drawing, in the network 612, the sides representing the water tank allocation candidates are described only from the satellite “S3”, and the sides representing the other water tank allocation candidates are omitted.
 一方、ネットワーク622、ネットワーク632は、上述のネットワーク612と同様に、ネットワーク構築機能301が処理(331)および処理(341)にて得たテーブルから生成したネットワークの例である。このうち、ネットワーク622は設計期間のうち2年度のネットワークを、ネットワーク632は最終年度のネットワークを示している。 On the other hand, the network 622 and the network 632 are examples of networks generated from the tables obtained by the processing (331) and the processing (341) by the network construction function 301, similarly to the network 612 described above. Among these, the network 622 indicates a network in the second year of the design period, and the network 632 indicates a network in the final year.
 ここで図13のフローに説明を戻す。ネットワーク構築機能301は、処理(351)において、設計期間の全ての年度のネットワークを構築したか判定する。ここで、設計期間の全ての年度のネットワークを構築していない場合(351:NO)、ネットワーク構築機能301は、処理(361)において"t"に1を加算し、ステップを処理(331)に戻し、以降の処理を再実行する。他方、設計期間の全ての年度のネットワークを構築していた場合(351:YES)、ネットワーク構築機能301は、処理(371)において、全ての年度のネットワークデータ116を記憶装置101に格納し処理を終了する。 Here, the description returns to the flow of FIG. In the process (351), the network construction function 301 determines whether the networks for all the years in the design period have been constructed. Here, when the network of all the years of the design period is not constructed (351: NO), the network construction function 301 adds 1 to “t” in the process (361), and the step is performed in the process (331). Return and re-execute the subsequent processing. On the other hand, when the network of all years of the design period has been constructed (351: YES), the network construction function 301 stores the network data 116 of all years in the storage device 101 in the process (371) and performs the process. finish.
 上述した通り、ネットワークデータ116は頂点テーブルおよび辺テーブル(例えば、図9におけるテーブル71A、72A、71B、72B)から構成される。図9では図示を省略しているが、記憶装置101におけるネットワークデータ116として、テーブル72A、72Bの以降にも、設計期間内の各年度における頂点テーブルおよび辺テーブルが存在しているものとする。また、ネットワーク構築機能301として、ネットワークデータ116を設計期間の1年度から最終年度に向けて順に構築する例を示したが、ネットワークデータ116の構築順に制限はなく、任意の年度の順に構築するものとしてよい。 As described above, the network data 116 includes a vertex table and an edge table (for example, the tables 71A, 72A, 71B, and 72B in FIG. 9). Although not shown in FIG. 9, it is assumed that, as network data 116 in the storage device 101, apex tables and edge tables in each year within the design period exist after the tables 72 </ b> A and 72 </ b> B. Moreover, although the example which builds the network data 116 in order from the 1st year of a design period to the last year was shown as the network construction function 301, there is no restriction | limiting in the construction order of the network data 116, and it builds in order of arbitrary years As good as
 続いて、自動設計部13における自動設計機能302について説明する。この自動設計機能302は、記憶装置101に格納されたネットワークデータ116を入力とし、設備設計データ117を計算して記憶装置101に格納する機能となる。 Subsequently, the automatic design function 302 in the automatic design unit 13 will be described. The automatic design function 302 is a function that receives the network data 116 stored in the storage device 101 and calculates the equipment design data 117 and stores it in the storage device 101.
 こうした自動設計部13の自動設計機能302は、所定の数理計画法に対応するアルゴリズム(自動設計機能302の一部として、該当プログラムが記憶装置101に予め保持されている)を用いることにより、設計期間全体で、設計対象の配水設備に関する総コストが最小となる設備設計データを計算する。具体的には、需要家への配水に用いる管路、給水車割当て、および、サテライトの位置を決定する。 The automatic design function 302 of the automatic design unit 13 is designed by using an algorithm corresponding to a predetermined mathematical programming method (a corresponding program is stored in the storage device 101 in advance as part of the automatic design function 302). Calculate facility design data that minimizes the total cost of the water distribution facility to be designed over the entire period. Specifically, the pipeline used for water distribution to the consumer, water supply vehicle allocation, and the satellite position are determined.
 既に述べた通り、設備設計に際しては、需要家と供給源を結ぶための管路の敷設位置を決定しなければならない。また、他の配水手段として給水車を扱う場合、需要家への給水車の割当ても決定する必要がある。加えて、サテライト特有の事情として、従来用いられてきた浄水場や下水処理場などの施設と比較して小型であることにより、都市内での配置が比較的自由であることが挙げられる。そのため、最適な設備設計データ117を計算するためには、管路および給水車割当てと同時に、サテライトの位置も決定する必要がある。 As already mentioned, when designing the equipment, it is necessary to determine the laying position of the pipeline that connects the customer and the supply source. Moreover, when handling a water supply vehicle as another water distribution means, it is also necessary to determine allocation of the water supply vehicle to a consumer. In addition, as a situation peculiar to the satellite, it can be mentioned that the arrangement in the city is relatively free due to its small size as compared with conventionally used facilities such as water purification plants and sewage treatment plants. Therefore, in order to calculate the optimum facility design data 117, it is necessary to determine the position of the satellite at the same time as the assignment of the pipeline and the water supply vehicle.
 最適な設備設計データ117を得る近似的な解法として、本実施形態では自動設計機能302が設備設計データ117を設計期間の年度毎に決定する場合を想定する。この場合、自動設計部13が実行する自動設計機能302における各処理を、図16を用いて詳細に述べる。 As an approximate solution for obtaining the optimum equipment design data 117, in this embodiment, it is assumed that the automatic design function 302 determines the equipment design data 117 every year of the design period. In this case, each process in the automatic design function 302 executed by the automatic design unit 13 will be described in detail with reference to FIG.
 この場合、自動設計部13の自動設計機能302は、処理(312)において、記憶装置101における制約データ114が保持する設計期間の値と、ネットワークデータ116を読み込む。続いて自動設計機能302は、処理(322)において、最初に設備設計を行う年度を、該当設計期間における最終年度と定める。 In this case, the automatic design function 302 of the automatic design unit 13 reads the value of the design period held in the constraint data 114 in the storage device 101 and the network data 116 in the process (312). Subsequently, in the process (322), the automatic design function 302 determines the year in which the facility design is first performed as the final year in the corresponding design period.
 次に、自動設計機能302は、上述の処理(322)にて定めた最終年度を"t"とし、処理(332)において、ネットワークデータ116におけるt年度の頂点テーブルおよび辺テーブルを入力とし、下記に示す各変数を定義し、t年度において評価指標に関して最適な設備設計データ117を計算する。 Next, the automatic design function 302 sets “t” as the final year determined in the above-described process (322), and inputs the vertex table and the edge table of the t-year in the network data 116 in the process (332). The optimum facility design data 117 is calculated with respect to the evaluation index in year t.
 ここで、上述の設備設計データ117の計算を、数理計画問題として定式化するため、自動設計機能302は、ネットワークデータ116における、頂点iからjを結ぶ管路候補pを、t年度において実際に管路として採用するなら"1"、採用しないなら"0"となる変数xp,tを定義する。なお、自動設計機能302は、こうした数理計画問題として定式化するための処理アルゴリズムに対応したプログラムを備えているものとする。 Here, in order to formulate the calculation of the facility design data 117 described above as a mathematical programming problem, the automatic design function 302 actually sets the pipeline candidate p connecting the vertices i to j in the network data 116 in the t-year. Variables xp, t are defined to be “1” if adopted as a pipeline and “0” if not adopted. It is assumed that the automatic design function 302 includes a program corresponding to a processing algorithm for formulating such a mathematical programming problem.
 自動設計機能302は、同様に、t年度において、サテライト候補sから需要家dへの配水手段として給水車割当て候補cを採用するなら"1"、採用しないなら"0"となる変数yc,tを定義する。加えて自動設計機能302は、t年度においてサテライト候補sにサテライトを配置するなら"1"、配置しないなら"0"である変数zs,tを定義する。 Similarly, in the t-year, the automatic design function 302 sets the variable yc, t to be “1” if the water supply vehicle allocation candidate c is adopted as a means for distributing water from the satellite candidate s to the customer d and “0” if not adopted. Define In addition, the automatic design function 302 defines variables zs and t that are “1” if satellites are arranged in the satellite candidate s in year t, and “0” if they are not arranged.
 こうした定義を行った自動設計機能302は、評価指標を以下の式で特定する。 
Figure JPOXMLDOC01-appb-I000001
The automatic design function 302 having made such a definition specifies an evaluation index by the following expression.
Figure JPOXMLDOC01-appb-I000001
 自動設計機能302は、後述する制約条件を満たした上で、数式1の評価指標を最小とするように全てのxp,tおよびyc,tおよびzs,tの値を決定し、設備設計データ117を得る。評価指標の第一項は、管路の敷設コスト(その管路の辺重みと等しい)の総和を表し、第二項は全ての給水車のコスト(導入コストおよび運用コストの和、その給水車割当て候補の辺重みと等しい)の総和を表す。評価指標は両者の和である。なお、zs,tは評価指標に含まれていないが、数理計画問題を定式化する際の制約式に利用する。 The automatic design function 302 determines all xp, t, yc, t, zs, t values so as to minimize the evaluation index of Formula 1 after satisfying the constraints described later, and the facility design data 117. Get. The first term of the evaluation index represents the sum of the laying cost of the pipeline (equal to the side weight of the pipeline), and the second term is the cost of all water trucks (sum of introduction and operation costs, the water truck) Represents the sum of the side weights of the allocation candidates). The evaluation index is the sum of both. Note that zs and t are not included in the evaluation index, but are used as constraint expressions when formulating the mathematical programming problem.
 ここで、Et'は、t年度のネットワークデータの辺テーブルにおける全ての管路候補の集合、Et''は、t年度のネットワークデータの辺テーブルにおける全ての給水車割当て候補の集合である。 Here, Et ′ is a set of all pipeline candidates in the side table of network data for year t, and Et ″ is a set of all water tank allocation candidates in the side table of network data for year t.
 CPpは、頂点iと頂点jを結ぶ管路pを敷設する際の敷設コスト(例:図9におけるテーブル72Aの辺重み)であり、例えば、距離を考慮して与えられる。CCcはサテライトsから需要家dへの給水車割当てにおける、給水車のコスト(例:図9におけるテーブル72Aの辺重み)を意味する。 CPp is the laying cost (for example, the side weight of the table 72A in FIG. 9) when laying the pipe line p connecting the vertex i and the vertex j, and is given in consideration of the distance, for example. CCc means the cost of the water supply vehicle in the allocation of the water supply vehicle from the satellite s to the customer d (example: edge weight of the table 72A in FIG. 9).
 自動設計機能302は、各xp,t、各yc,t、およびzs,tの値を、例えば、混合整数計画法などの数理最適化手法などを適用することで決定する。 The automatic design function 302 determines the values of xp, t, yc, t, and zs, t by applying a mathematical optimization method such as mixed integer programming, for example.
 自動設計機能302における計算では、図7のテーブル63で説明したように、給水車により配水した需要家を経由して、他の需要家へ配水することを禁止する制約を設けている。具体的に数式で記述すると、あるサテライトs,ある需要家d,ある頂点j,あるt年度,を考えるとき、yc,t=1ならば、xp,t=0でなければならない。ただし、ここでのcはdを終点とする給水車割当て候補であり、pはdを始点とする管路候補である。その他、自動設計機能302は、制約データ114が保持する各制約を制約式として表現して計算時に利用する。 In the calculation in the automatic design function 302, as described with reference to the table 63 of FIG. 7, there is a restriction that prohibits the distribution of water to other consumers via the consumers distributed by the water truck. Specifically, when describing a certain satellite s, a certain customer d, a certain vertex j, and a certain t year, if yc, t = 1, xp, t = 0 must be satisfied. However, c here is a water supply allocation candidate with d as the end point, and p is a pipe line candidate with d as the start point. In addition, the automatic design function 302 expresses each constraint held by the constraint data 114 as a constraint expression and uses it during calculation.
 ここで図16のフローの説明に戻る。自動設計機能302は、最終年度たるt年度の設備設計データ(図17のネットワーク643に対応する)を計算後、処理(342)において、全ての年度において設備設計を行ったか判定する。ここでの判定の結果が、全ての年度に関して設備設計を行ったものである場合(342:YES)、自動設計機能302は、処理(372)において設備設計データ117を記憶装置101に格納する。 Returning to the description of the flow in FIG. The automatic design function 302 determines whether the facility design has been performed in all years in the process (342) after calculating the facility design data (corresponding to the network 643 in FIG. 17) in the final year t. When the result of the determination here is that the equipment design has been performed for all the years (342: YES), the automatic design function 302 stores the equipment design data 117 in the storage device 101 in the process (372).
 他方、処理(342)での判定の結果が、全ての年度に関して設備設計を行っていないものである場合(342:NO)、自動設計機能302は、処理(352)において、設備設計データ117を計算する年度tから1を減算し、処理(362)において、管路の敷設位置を制限する制約を制約データ114に追加する。 On the other hand, when the result of the determination in the process (342) is that equipment design is not performed for all years (342: NO), the automatic design function 302 uses the equipment design data 117 in the process (352). 1 is subtracted from the year t to be calculated, and in the process (362), a constraint for limiting the laying position of the pipeline is added to the constraint data 114.
 具体的には、t年度で管路が敷設されない箇所は、t-1年度における管路敷設を禁止する制約であり、ある管路p,あるt年度を考えたとき、xp,t=0ならば、xp,t-1=0であることとする。設計期間内では一度敷設した管路は撤去しないためである。これは、サテライトの配置を表す変数zs,tも同様であり、zs,t=0ならば、zs,t-1=0でなければならない。 Specifically, the place where the pipeline is not laid in year t is a restriction prohibiting the laying of the pipeline in year t-1, and if xp, t = 0 when considering a certain channel p and year t For example, xp, t-1 = 0. This is because the pipeline once laid is not removed during the design period. The same applies to the variables zs and t representing the satellite arrangement. If zs and t = 0, zs and t-1 = 0 must be satisfied.
 こうして制約を追加した自動設計機能302は、処理(332)にステップを戻し、設備設計の計算を再度実行する。この計算の結果、処理(352)で設定した年度における設備設計データが上述同様に得られる。 Thus, the automatic design function 302 to which the constraint is added returns the step to the process (332), and executes the calculation of the equipment design again. As a result of this calculation, facility design data for the year set in the process (352) is obtained in the same manner as described above.
 こうして自動設計機能302は、設計期間における年度を最終年度から初年度に向けてさかのぼりつつ設備設計データ117を順次計算し、フロー終了時には、設計期間の最終年度から1年度の全ての設備設計データ117が記憶装置101に格納されている。図17にて、最終年度から1年度の各設備設計データ117に対応した、ネットワーク633、…、ネットワーク623、ネットワーク613の表示例を示す。 In this way, the automatic design function 302 sequentially calculates the equipment design data 117 while going back from the last year to the first year in the design period, and at the end of the flow, all the equipment design data 117 from the last year to the first year of the design period. Is stored in the storage device 101. FIG. 17 shows a display example of the network 633,..., The network 623, and the network 613 corresponding to each facility design data 117 from the last year to the first year.
 なお、図18に示すテーブル84は、自動設計機能302が処理(332)において計算した、1年度の管路および給水車割当てに対応する各変数の値であり、メモリ103に格納されたものとなる。 The table 84 shown in FIG. 18 is a value of each variable corresponding to the allocation of pipelines and water trucks in one year calculated by the automatic design function 302 in the process (332), and is stored in the memory 103. Become.
 自動設計機能302は、上述のテーブル84が含む各変数xp,1およびyc,1から設備設計データ117を構成する。具体的には、値が"1"である各変数について、対応するpまたはcの辺始点および辺終点から構成する。自動設計機能302が構成した前記の設計データ117には、頂点テーブルの吐出圧を除いた各値、および、辺テーブルの流量を除いた各値が含まれている(両者の値は後述する吐出圧決定機能303の処理において決定する)。 The automatic design function 302 configures facility design data 117 from the variables xp, 1 and yc, 1 included in the table 84 described above. Specifically, each variable having a value of “1” is composed of a corresponding p or c side start point and side end point. The design data 117 configured by the automatic design function 302 includes each value excluding the discharge pressure of the vertex table and each value excluding the flow rate of the side table (both values are the discharge values described later). Determined in the process of the pressure determination function 303).
 また、自動設計機能302は、上述のように算定した設備設計データ117から各頂点の座標および各辺の始点と終点を参照することで、設備設計データ117に対応するネットワークの表示データを生成し、例えば、上述の設備設計データ117におけるネットワーク83の形態で、表示装置106にて出力することができる。 The automatic design function 302 generates network display data corresponding to the equipment design data 117 by referring to the coordinates of each vertex and the start and end points of each side from the equipment design data 117 calculated as described above. For example, it can be output by the display device 106 in the form of the network 83 in the facility design data 117 described above.
 なお、上述においては、配水設備に関する投資コストと運用コストの和が最小となる設備設計データ117を自動設計機能302が計算したが、評価指標や制約を変更することで、異なる設備設計データを計算することができる。例えば、あるt年度のCPp×xp,tの総和の値を適当な定数Cに限定する(すなわち、t年度における管路の敷設コストの総和を最大でCとする)制約を追加することで、各年度における投資の上限を定めた設備設計データを計算することができる。 In the above description, the automatic design function 302 calculates the facility design data 117 that minimizes the sum of the investment cost and the operation cost related to the water distribution facility. However, different facility design data is calculated by changing the evaluation index and constraints. can do. For example, by adding a constraint that limits the value of the sum of CPp × xp, t in a certain year t to an appropriate constant C (that is, the sum of the laying costs of pipes in year t is C at most) It is possible to calculate facility design data that sets the upper limit of investment in each year.
 続いて、自動設計部13が備える吐出圧決定機能303の処理について説明する。自動設計部13は、この吐出圧決定機能303により、設備設計データ117を入力とし、各サテライトの配水ポンプの吐出圧を決定する。その際、自動設計部13は、吐出圧決定機能303において管網計算を行い、決定した吐出圧における、管路の流量も同時に求めて設備設計データ117を更新する。 Subsequently, processing of the discharge pressure determination function 303 provided in the automatic design unit 13 will be described. The automatic design unit 13 uses the discharge pressure determination function 303 to input the facility design data 117 and determines the discharge pressure of the water distribution pump of each satellite. At that time, the automatic design unit 13 performs pipe network calculation in the discharge pressure determination function 303, and simultaneously obtains the flow rate of the pipe line at the determined discharge pressure to update the facility design data 117.
 図19は、自動設計部13が吐出圧決定機能303を実行し、上述の各変数を決定する際のフローチャートである。なお、給水車割当てにおける流量は、給水車割当ての終点に位置する需要家の需要量と等しいとし、吐出圧決定機能303においては考慮しないものとする。 FIG. 19 is a flowchart when the automatic design unit 13 executes the discharge pressure determination function 303 to determine the above-described variables. It is assumed that the flow rate in the water supply vehicle allocation is equal to the demand amount of the consumer located at the end point of the water supply vehicle allocation and is not considered in the discharge pressure determination function 303.
 まず、自動設計部13の吐出圧決定機能303は、処理(313)において、記憶装置101の制約データ114と、自動設計機能302により格納された設備設計データ117を読み込んで、メモリ103に書き込む。 First, the discharge pressure determination function 303 of the automatic design unit 13 reads the restriction data 114 of the storage device 101 and the equipment design data 117 stored by the automatic design function 302 and writes them in the memory 103 in the process (313).
 次に、上述の吐出圧決定機能303は、処理(323)において、最適化計算により吐出圧を決定するための定式化を行う。当然ながら、吐出圧決定機能303は、この定式化のためのアルゴリズムに対応したプログラムを予め備えている。この場合、吐出圧決定機能303は、例えば、上述の定式化のために、t年度のサテライトsにおける配水ポンプの吐出圧を変数hs,t、頂点iと頂点jを結ぶ管路pの流量を変数fp,tと定義する。加えて、吐出圧決定機能303は、ある管路pの管径を変数upと定義する。この変数upは、予め与えられた数値の集合から選択することで値が定まる離散変数とする。例えば、呼び径75mm、150mm、250mm、350mmから変数upを選択することとする。こうした管径として用いる数値の集合は、記憶装置101における数値データ115が記録している。ただし、変数upは、0より大きい値を持つ実数変数としてもよい。 Next, the above-described discharge pressure determination function 303 performs a formulation for determining the discharge pressure by optimization calculation in the process (323). Needless to say, the discharge pressure determination function 303 includes a program corresponding to the algorithm for the formulation in advance. In this case, for example, for the above-mentioned formulation, the discharge pressure determination function 303 sets the discharge pressure of the water distribution pump in the satellite s in year t to the variables hs, t, and the flow rate of the pipe p connecting the vertex i and the vertex j. Variables fp and t are defined. In addition, the discharge pressure determination function 303 defines the pipe diameter of a certain pipe line p as a variable up. The variable up is a discrete variable whose value is determined by selecting from a set of numerical values given in advance. For example, the variable up is selected from nominal diameters of 75 mm, 150 mm, 250 mm, and 350 mm. A set of numerical values used as such tube diameters is recorded in numerical data 115 in the storage device 101. However, the variable up may be a real variable having a value greater than zero.
 また、各サテライトsおよび管路pは、上記において吐出圧決定機能303が記憶装置101から読み込んだ設備設計データ117に記録されている、各サテライトおよび各管路である。 Also, each satellite s and pipeline p are each satellite and each pipeline recorded in the facility design data 117 read from the storage device 101 by the discharge pressure determination function 303 in the above.
 上述の変数において、流量fp,tは、後述する運用コストの計算のために定義している。また、ポンプの吐出圧は各管径に依存して変化するため、同時に管径を決定するよう変数として定義している。 In the above variables, the flow rates fp, t are defined for the calculation of the operation cost described later. Moreover, since the discharge pressure of the pump changes depending on each pipe diameter, it is defined as a variable so that the pipe diameter is determined simultaneously.
 このような場合、吐出圧決定機能303は、処理(333)において、最適化計算を実行する。この最適化計算においては、吐出圧を計算すると同時に管網計算を行い、各管路における流量を計算する。最適化計算は、例えば遺伝的アルゴリズムなどのメタヒューリスティクスを適用することで行う(勿論、そのためのプログラムを吐出圧決定機能303が備える)。吐出圧決定機能303は、上述の最適化計算において、後述する制約条件を満たす中で、以下の評価指標が最小となるよう上記変数hs,tおよびupの値を決定する。 
Figure JPOXMLDOC01-appb-I000002
In such a case, the discharge pressure determination function 303 performs optimization calculation in the process (333). In this optimization calculation, the pipe pressure is calculated at the same time as calculating the discharge pressure, and the flow rate in each pipeline is calculated. The optimization calculation is performed by applying a metaheuristic such as a genetic algorithm (of course, the discharge pressure determination function 303 includes a program for this). The discharge pressure determination function 303 determines the values of the variables hs, t, and up so that the following evaluation index is minimized while satisfying the constraint conditions described later in the above optimization calculation.
Figure JPOXMLDOC01-appb-I000002
 ここで、Et'''は吐出圧決定機能303が処理(313)において記憶装置101から読み込んだ設備設計データ117における、全ての管路から成る集合であり、Sは頂点テーブルにおける全てのサテライトの集合である。 Here, Et ′ ″ is a set of all the pipelines in the facility design data 117 read from the storage device 101 by the discharge pressure determination function 303 in the process (313), and S is all the satellites in the vertex table. It is a set.
 また、数式2における第一項は各サテライトの配水ポンプの運用コストの総和を表している。運用コストは、t年度にサテライトsの配水ポンプの吐出圧がhs,tであるときf(hs,t)で表される。ここでの最適化計算においては、各年度のネットワークの形状は固定されているため、年度毎に最適な吐出圧を求めればよい。 In addition, the first term in Formula 2 represents the total operating cost of the distribution pumps of each satellite. The operation cost is represented by f (hs, t) when the discharge pressure of the water distribution pump of the satellite s is hs, t in year t. In the optimization calculation here, since the network shape of each year is fixed, an optimal discharge pressure may be obtained for each year.
 ここで、psを、始点がサテライトsである全ての管路とし、fps,tを管網計算の結果として得られた管路psにおける流量とする。 Here, let ps be all the pipes starting at satellite s, and let fps, t be the flow rate in pipe ps obtained as a result of the pipe network calculation.
 また、運用コストは、t年度におけるサテライトsの吐出圧Ht(=hs,t)、および、sから流出する流量([数式3]で求める)、および、ポンプの効率を表す定数η、および、適切な係数C、を用いて次のように計算される。 
Figure JPOXMLDOC01-appb-I000003

 f(hs,t) = C × Ht × Qt/η
In addition, the operation cost includes the discharge pressure Ht (= hs, t) of the satellite s in year t, the flow rate flowing out from s (calculated by [Equation 3]), the constant η representing the efficiency of the pump, and Using the appropriate factor C, it is calculated as follows:
Figure JPOXMLDOC01-appb-I000003

f (hs, t) = C × Ht × Qt / η
 上記式における第二項は、自動設計機能302において考慮していない、管径に対応する管路の敷設コストの増加分を表す。αupは管径に対応した係数であり、数値データ115が記録している。ここで、管径がupである管路pの敷設コストは、αup×CPpで表せるとしている。自動設計機能302は、管路pの距離に応じた敷設コストCPpを評価指標に加算しているため、吐出圧決定機能303においては管径に依存する分だけ加算している。 The second term in the above formula represents an increase in the laying cost of the pipe line corresponding to the pipe diameter, which is not considered in the automatic design function 302. αup is a coefficient corresponding to the tube diameter, and numerical data 115 is recorded. Here, the laying cost of the pipe line p whose pipe diameter is up can be expressed by αup × CPp. Since the automatic design function 302 adds the laying cost CPp corresponding to the distance of the pipe line p to the evaluation index, the discharge pressure determination function 303 adds only the amount depending on the pipe diameter.
 制約条件としては、例えば、需要家または接続点における許容される水圧の最小値および最大値、各管路における流速の最大値、一つのサテライトから供給可能な流量、需要家および接続点における再生水の流入量と流出量の収支バランス、などを挙げることができる。 The constraints include, for example, the minimum and maximum allowable water pressure at the customer or connection point, the maximum flow velocity at each pipeline, the flow rate that can be supplied from one satellite, and the reclaimed water at the customer and connection point. The balance of inflow and outflow can be mentioned.
 なお、管網計算は一般的な技術であるため説明は省略する。管網計算において、各管路pの管径は吐出圧決定機能303が上記の最適化計算で決定したupとする。また、管路の流れやすさを示す流速係数は、例えば一般的な値「110」を設定する。 Note that the calculation of the pipe network is a general technique, so the explanation is omitted. In the pipe network calculation, the pipe diameter of each pipe p is set to the up determined by the discharge pressure determination function 303 in the above optimization calculation. In addition, for example, a general value “110” is set as the flow velocity coefficient indicating the ease of flow through the pipeline.
 次に吐出圧決定機能303は、処理(343)において、上述の処理(333)で決定したサテライトsのポンプの吐出圧を、記憶装置101の設備設計データ117における吐出圧の値として追記し、加えて、各fp,tの値を管路の流量の値として追記し、処理を終了する。 Next, in the process (343), the discharge pressure determination function 303 additionally writes the discharge pressure of the pump of the satellite s determined in the above process (333) as the value of the discharge pressure in the facility design data 117 of the storage device 101, In addition, the value of each fp, t is added as the value of the flow rate in the pipeline, and the process is terminated.
 次に、自動設計部13が備える制約違反判定機能304について説明する。自動設計部13は、制約違反判定機能304において、上記で計算した設備設計データ117が、制約データ114が保持する制約に違反しないか判定する。制約の例としては、需要家および接続点における水圧の最小値および最大値、各管路における流速の最大値、サテライトから供給可能な流量の最大値、需要家および接続点における再生水の流入量と流出量の収支バランスを満たすことが挙げられる。なお、水圧や流速は、自動設計部13の吐出圧決定機能303が上述の処理(323)における管網計算において求めている。 Next, the constraint violation determination function 304 provided in the automatic design unit 13 will be described. The automatic design unit 13 determines in the constraint violation determination function 304 whether the facility design data 117 calculated above violates the constraints held by the constraint data 114. Examples of constraints include the minimum and maximum water pressure at the customer and the connection point, the maximum flow velocity at each pipeline, the maximum flow rate that can be supplied from the satellite, and the inflow of reclaimed water at the customer and connection point. Satisfying the balance of runoff. The water pressure and flow velocity are obtained by the discharge pressure determination function 303 of the automatic design unit 13 in the pipe network calculation in the above-described process (323).
 この場合、図12で示したフローにおいて、自動設計部13は、処理(350)において、制約違反判定機能304による上述の判定結果から、算定した設備設計データ117が制約データ114が示す制約を満たすか判定する。設備設計データ117が制約データ114が示す制約を満たさない場合(350:NO)、自動設計部13は、処理(360)において、該当判定結果となった原因を特定し、例えば、サテライトの数を増やす(これにより、サテライトの供給能力不足を補える)など、制約データ114の追加修正を行う。 In this case, in the flow shown in FIG. 12, in the process (350), the automatic design unit 13 determines that the calculated facility design data 117 satisfies the constraint indicated by the constraint data 114 from the determination result by the constraint violation determination function 304. To determine. When the facility design data 117 does not satisfy the constraint indicated by the constraint data 114 (350: NO), the automatic design unit 13 identifies the cause of the corresponding determination result in the process (360), for example, the number of satellites The restriction data 114 is additionally corrected, for example, by increasing (this makes up for a shortage of satellite supply capability).
 なお、設備設計データ117が制約データ114の制約を満たせない原因は、例えば、サテライトが低所に存在すること(低所から高所に配水すると水圧の最小値および最大値を同時に満たせない場合がある)や、サテライトの供給能力不足(供給能力を上回る数の需要家へ供給する場合がある)が考えられる。 The reason why the facility design data 117 cannot satisfy the constraints of the constraint data 114 is, for example, that the satellite exists in a low place (if the water is distributed from a low place to a high place, the minimum value and the maximum value of the water pressure may not be satisfied simultaneously. Or a lack of satellite supply capacity (may be supplied to more customers than supply capacity).
 処理(360)の実行後、自動設計部13は、ネットワーク構築機能301を実行して設備設計データの計算を再度実行することとなる。また、自動設計部13は、上述の処理(350)において、設備設計データ117が制約データ114が示す制約を満たすと判定した場合(350:YES)、そのまま処理を終了する。 After the execution of the process (360), the automatic design unit 13 executes the network construction function 301 and executes the calculation of the equipment design data again. If the automatic design unit 13 determines that the facility design data 117 satisfies the constraint indicated by the constraint data 114 in the above-described process (350) (350: YES), the process automatically ends.
 以上が、自動設計部13が処理を実行した場合の処理詳細である。なお、上記では既存の接続点、サテライト、および管路から成る既存施設が存在しない場合を想定して説明を行った。ただし、以下のような制約を制約データ114に加えることで、自動設計部13は、既存施設が存在する場合に設備の拡張を行う際も同様に設備設計を行うことができる。すなわち、制約データ114において、既存施設が存在することを意味する制約を記録しているとする。例えば、既存の管路p'が存在するとき、p'に関する変数xp',1の値が、「xp',1=1でなければならない」、とする制約である。 The above is the processing details when the automatic design unit 13 executes the processing. In the above description, it is assumed that there is no existing facility consisting of existing connection points, satellites, and pipelines. However, by adding the following constraints to the constraint data 114, the automatic design unit 13 can perform the facility design in the same manner when the facility is expanded when an existing facility exists. That is, it is assumed that the constraint data 114 records a constraint meaning that an existing facility exists. For example, when there is an existing pipe line p ′, there is a constraint that the value of the variable xp ′, 1 relating to p ′ is “xp ′, 1 = 1”.
 また、上記においては、自動設計部13が、設計期間における複数年度を通してコスト最小となる設備設計データ117を計算した例を示した。しかしながら、例えば需要家が予期せぬタイミングで再生水利用を中止するなど、設計期間内でぶれが発生することも予想される。そのようなぶれは、所定の制約を制約データ114に追加することで対処できる可能性がある。例えば、制約データ114が、再生水利用の中止が予想される需要家へは必ず給水車を割当てる制約を保持することで、需要家数が減少した時の影響を考慮できる。 Moreover, in the above, the example which the automatic design part 13 calculated the equipment design data 117 which becomes the minimum cost through several years in a design period was shown. However, it is also expected that shake will occur within the design period, for example, when the consumer stops using the reclaimed water at an unexpected timing. Such a blur may be dealt with by adding a predetermined constraint to the constraint data 114. For example, the constraint data 114 holds the constraint that a water truck is always allocated to a consumer who is expected to stop using recycled water, so that the influence when the number of consumers decreases can be considered.
 続いて、図11のフローの処理221の以降、手動設計部12が処理を開始した場合の処理について説明する。図20は手動設計部12が実行する処理のフローチャートである。手動設計部12は、処理(701)および処理(711)において、入力受信機能404を実行し、入力装置105を介したユーザからの入力を受信してメモリ103へ記録する。その後、手動設計部12は、上述の処理(701)で得た入力に従い、後述の機能401、402を実行して設備設計データ117を編集する。 Subsequently, the processing when the manual design unit 12 starts processing after the processing 221 of the flow in FIG. 11 will be described. FIG. 20 is a flowchart of processing executed by the manual design unit 12. In the processing (701) and processing (711), the manual design unit 12 executes the input reception function 404, receives input from the user via the input device 105, and records it in the memory 103. Thereafter, the manual design unit 12 edits the equipment design data 117 by executing functions 401 and 402 described later in accordance with the input obtained in the above-described processing (701).
 ここで「編集」とは、記憶装置101における設備設計データ117の頂点テーブルまたは辺テーブルの行を削除すること、または、両テーブルのいずれかに行を追加すること、または、両テーブルのいずれかの行の値を書換えることと定義する。各機能401、402、403については後述する。 Here, “edit” means either deleting a vertex table or a side table row of the equipment design data 117 in the storage device 101, adding a row to either table, or both tables. It is defined as rewriting the value of the row. Each function 401, 402, 403 will be described later.
 機能401、402の処理を経た手動設計部12は、処理(721)において、編集を継続するか否かの判定を行う。入力装置105にて、編集継続の指示をユーザから受け付けた場合(721:NO)、手動設計部12は再度、各編集機能を起動するために処理(701)から各ステップを実行する。 The manual design unit 12 having undergone the processes of the functions 401 and 402 determines whether or not to continue editing in the process (721). When the input device 105 receives an instruction to continue editing from the user (721: NO), the manual design unit 12 executes each step from the processing (701) again to activate each editing function.
 一方、処理(721)おいて、編集終了の指示を入力装置2にて受信した場合(721:YES)、手動設計部12は処理(731)において制約違反の有無を判定する。手動設計部12は、この処理(731)において、制約違反判定機能403を呼び出し、上記の機能401または402の実行によって編集した設備設計データ117を、制約データ114と照合し、編集後の設備設計データ117が、制約データ114の示す制約内容に違反しないか判定する。 On the other hand, in the process (721), when an instruction to end editing is received by the input device 2 (721: YES), the manual design unit 12 determines whether there is a constraint violation in the process (731). In this process (731), the manual design unit 12 calls the constraint violation determination function 403, compares the facility design data 117 edited by executing the function 401 or 402 with the constraint data 114, and edits the facility design after editing. It is determined whether the data 117 does not violate the constraint content indicated by the constraint data 114.
 この判定において、編集後の設備設計データ117に制約違反がないと判定した場合(731:NO)、手動設計部12は、処理(741)において、編集後の設備設計データ117を記憶装置101に記録し処理を終了する。 In this determination, when it is determined that there is no constraint violation in the edited equipment design data 117 (731: NO), the manual design unit 12 stores the edited equipment design data 117 in the storage device 101 in the process (741). Record and finish the process.
 他方、編集後の設備設計データ117に制約違反があると判定した場合(731:YES)、手動設計部12は、表示装置106に対し、違反内容と再度の編集が必要である旨の通知を送信して表示させ、ユーザに再編集を要求する。 On the other hand, when it is determined that there is a constraint violation in the edited equipment design data 117 (731: YES), the manual design unit 12 notifies the display device 106 that the violation contents and re-editing are necessary. Send it for display and ask the user to re-edit.
 こうした制約違反は、例えば次の場合に起きる。機能401によりネットワーク83の管路"P10"を削除した場合を考える。そのまま終了すると、需要家"D7"への配水手段が存在しないことになる。そのため、手動設計部12は制約違反である内容を表示するよう表示装置106に信号を送信し、ユーザに対して管路について再度の入力を促す。 こ う し た Such constraint violation occurs in the following cases, for example. Consider a case where the pipeline “P10” of the network 83 is deleted by the function 401. If the process is terminated as it is, there is no means for distributing water to the customer “D7”. Therefore, the manual design unit 12 transmits a signal to the display device 106 so as to display the content that is a violation of the constraint, and prompts the user to input again about the pipeline.
 続いて、手動設計部12における各編集機能について詳細に説明する。手動設計部12は、上述の処理(711)においてユーザから得た入力に応じた機能を起動し、処理を開始することなる。図21は、上記の編集のために表示装置106にてユーザに提示される入力画面90の例である。図21に示す入力画面90において、入力形式91は、ユーザが辺を編集する場合の編集データを入力するインターフェイスの例であり、編集対象となる辺ID,種類(管路または給水車),操作(削除または追加または書換え),辺始点,辺終点,流量の記載を受け付ける。また、入力形式92は、ユーザが頂点を編集する場合の編集データを入力するインターフェイスの例であり、同様に編集対象の頂点ID,種類(接続点またはサテライトまたは吐出圧),操作,編集後の座標,標高,吐出圧の入力を受け付ける。なお、頂点テーブルは需要家のデータを含むが、需要家のデータは設計条件データ110として与えられた入力なので編集できないとしている。 Subsequently, each editing function in the manual design unit 12 will be described in detail. The manual design unit 12 activates the function according to the input obtained from the user in the above-described process (711), and starts the process. FIG. 21 is an example of an input screen 90 presented to the user on the display device 106 for the editing described above. In the input screen 90 shown in FIG. 21, an input format 91 is an example of an interface for inputting edit data when a user edits a side. The side ID, type (pipeline or water supply vehicle) to be edited, operation (Deletion or addition or rewriting), edge start point, edge end point, and flow rate are accepted. The input format 92 is an example of an interface for inputting edit data when the user edits a vertex. Similarly, the vertex ID to be edited, the type (connection point, satellite, or discharge pressure), operation, post-editing Accepts input of coordinates, altitude and discharge pressure. Although the vertex table includes customer data, the customer data cannot be edited because the input is given as the design condition data 110.
 ユーザによる編集用の入力が、管路、または、接続点、または、サテライトを編集する入力である場合、手動設計部12は、設備編集機能401を実行して設備設計データ117における、上述の辺IDや頂点IDに該当する行をユーザの入力に応じて変更、更新する。ここで、サテライトにおける吐出圧がユーザにより編集された場合、各管路の流量や接続点における圧力などが変化する。そのため、手動設計部12は、設備編集機能401において管網計算を行い、設備設計データ117を更新して記憶装置101に出力する。 When the input for editing by the user is an input for editing a pipe line, a connection point, or a satellite, the manual design unit 12 executes the equipment editing function 401 to execute the above-mentioned edge in the equipment design data 117. The line corresponding to the ID or vertex ID is changed or updated according to the user input. Here, when the discharge pressure in the satellite is edited by the user, the flow rate of each pipeline, the pressure at the connection point, and the like change. Therefore, the manual design unit 12 performs pipe network calculation in the equipment editing function 401, updates the equipment design data 117, and outputs it to the storage device 101.
 また、ユーザによる編集用の入力が、給水車割当ての情報である場合、手動設計部12は、給水車割当て編集機能402を実行し、上記と同様に設備設計データ117における辺IDや頂点IDに該当する行を変更、更新する。例えば、図10のテーブル82に示した辺ID"P10"を持つ辺を削除する処理は、入力装置105がユーザから「P10,管路,削除,J4,D7,Fp10,Up10」と入力されたときに実行される。このとき、手動設計部12が、「管路」という文字列から設備編集機能401を起動し、「管路」および「削除」という文字列から、設備設計データ117における辺テーブルの行を削除する操作であると判断する。 Further, when the input for editing by the user is information on water tank allocation, the manual design unit 12 executes the water tank allocation editing function 402, and sets the side ID and vertex ID in the equipment design data 117 in the same manner as described above. Change or update the corresponding row. For example, in the process of deleting the side having the side ID “P10” shown in the table 82 of FIG. 10, the input device 105 has been input by the user as “P10, pipeline, delete, J4, D7, Fp10, Up10”. When executed. At this time, the manual design unit 12 activates the equipment editing function 401 from the character string “Pipe” and deletes the row of the side table in the equipment design data 117 from the character strings “Pipe” and “Delete”. Judged to be an operation.
 続いて、表示装置106にて表示される画面構成等について説明する。表示装置106は、設備設計システム100から送られてくる表示用データである、例えば、自動設計部13または手動設計部12の起動をユーザに実行させるインターフェイス、設備設計データ117に対応するネットワークのレイアウト(接続点、サテライト、需要家、管路、および給水車割当てのレイアウトを表示するデータ)、設備設計データ117が含む各データ、設備設計システム100が計算した評価指標(設計期間の各年度におけるコスト)を表示する。さらに表示装置106は、手動設計部12が有する設備編集機能401、給水車割当て編集機能402、制約違反判定機能403をユーザが操作する際のインターフェイスを表示する。 Subsequently, a screen configuration and the like displayed on the display device 106 will be described. The display device 106 is display data sent from the facility design system 100, for example, an interface for allowing the user to start the automatic design unit 13 or the manual design unit 12, and a network layout corresponding to the facility design data 117. (Data for displaying the layout of allocation of connection points, satellites, customers, pipelines, and water supply vehicles), each data included in the equipment design data 117, and evaluation indexes calculated by the equipment design system 100 (cost in each year of the design period ) Is displayed. Further, the display device 106 displays an interface when the user operates the facility editing function 401, the water tank assignment editing function 402, and the constraint violation determining function 403 included in the manual design unit 12.
 図22は表示装置106で表示する表示画面500の構成例を示す図である。表示画面500は、設備設計レイアウト表示部501、設備設計データ表示部502、評価指標表示部503、インターフェイス部504、および、年度切り替えボタン505(年度指示受付部)を有する。設備設計システム100は、設備設計データ117が含む各頂点の座標から、各接続点、サテライト、需要家、管路、および給水車割当ての表示位置を判断し、表示装置106での表示用データを生成し、これを設備設計レイアウト表示部501にて表示させる。 FIG. 22 is a diagram showing a configuration example of a display screen 500 displayed on the display device 106. The display screen 500 includes an equipment design layout display section 501, an equipment design data display section 502, an evaluation index display section 503, an interface section 504, and a year switching button 505 (year instruction receiving section). The facility design system 100 determines the display position of each connection point, satellite, customer, pipeline, and water truck assignment from the coordinates of each vertex included in the facility design data 117, and displays the display data on the display device 106. It is generated and displayed on the equipment design layout display unit 501.
 この場合、設備設計システム100は、例えば、図10の設備設計データ117におけるテーブル81(頂点テーブル)を読み込み、このテーブル81が保持する頂点"S3"のレコードを取得する。このS3は座標としてXs3,Ys3を持つため、設備設計レイアウト表示部501の座標空間における、Xs3,Ys3と対応する座標地点にサテライトの記号(黒い四角のアイコンデータ)を表示するデータを生成する。 In this case, for example, the facility design system 100 reads the table 81 (vertex table) in the facility design data 117 of FIG. 10 and acquires the record of the vertex “S3” held by the table 81. Since S3 has Xs3 and Ys3 as coordinates, data for displaying satellite symbols (black square icon data) at coordinate points corresponding to Xs3 and Ys3 in the coordinate space of the facility design layout display unit 501 is generated.
 同様に、設備設計システム100は、上述のテーブル81に記録されている頂点"D6"および頂点"D7"の各レコードを取得する。ここでも、上述のS3の場合と同様に、設備設計レイアウト表示部501の座標空間における、各々の座標Xd6,Yd6およびXd7,Yd7と対応する座標地点に需要家の記号(黒い丸のアイコンデータ)を表示するデータを生成する。 Similarly, the facility design system 100 acquires each record of the vertex “D6” and the vertex “D7” recorded in the table 81 described above. Here too, as in the case of S3 described above, a customer symbol (black circle icon data) at the coordinate point corresponding to each coordinate Xd6, Yd6 and Xd7, Yd7 in the coordinate space of the facility design layout display unit 501. Generate data to display.
 また同様に、設備設計システム100は、接続点を表す"Jd8"および"J3"および"J4"の各座標をテーブル81から読み出し、設備設計レイアウト表示部501の座標空間における、各々の座標に対応する座標地点に記号(白い丸のアイコンデータ)を表示するデータを生成する。 Similarly, the facility design system 100 reads out the coordinates of “Jd8”, “J3”, and “J4” representing the connection points from the table 81 and corresponds to each coordinate in the coordinate space of the facility design layout display unit 501. Data for displaying a symbol (white circle icon data) at a coordinate point to be generated is generated.
 次に設備設計システム100は、上述のように表示用のデータを生成した各頂点を繋ぐ辺の表示を行うデータを生成する。この時、設備設計システム100は、上述のテーブル82に記録されている辺"P9"のレコードを読み出す。このP9において辺始点がJ3であり、かつ、辺終点がJ4であることから、設備設計システム100は、既に表示用のデータを生成しているJ3およびJ4を繋ぐ管路であると判断する。この判断後、設備設計システム100は、両者の間を繋ぐように、例えば一重の矢印で管路を表示するデータを生成する。設備設計システム100は、テーブル82に記録されている管路を表す辺"P10"、"P13"、および"P16"も同様に処理し、表示用のデータを生成する。 Next, the facility design system 100 generates data for displaying the sides connecting the vertices for which the display data has been generated as described above. At this time, the facility design system 100 reads the record of the side “P9” recorded in the table 82 described above. Since the side start point is J3 and the side end point is J4 in P9, the facility design system 100 determines that the line connects J3 and J4 that have already generated display data. After this determination, the facility design system 100 generates data for displaying the pipeline with, for example, a single arrow so as to connect the two. The facility design system 100 similarly processes the sides “P10”, “P13”, and “P16” representing the pipelines recorded in the table 82, and generates display data.
 次いで、設備設計システム100は、テーブル82に記録されている、給水車割当てを表す"C1"のレコードを読み込む。このC1についても、上述のP9と同様に、設備設計システム100が、辺始点S3および辺終点D6の間を繋ぐように辺を表示するデータを生成する。給水車割当てを表示するデータは、管路と区別するために、例えば二重の矢印を表示するデータを用いる。 Next, the facility design system 100 reads a record of “C1” that is recorded in the table 82 and that represents the allocation of the water truck. Also for C1, as in P9 described above, the facility design system 100 generates data for displaying a side so as to connect the side start point S3 and the side end point D6. For example, data for displaying a double arrow is used as the data for displaying the allocation of the water truck to distinguish it from the pipeline.
 また、設備設計システム100は、設備設計データ117における頂点テーブルおよび、辺テーブルの一部または全ての内容を、設備設計データ表示部502にて表示する。ここで表示する範囲は、入力装置105にて表示範囲を指定する入力をユーザから受信することで決定される。 In addition, the facility design system 100 displays a part or all of the vertex table and the side table in the facility design data 117 on the facility design data display unit 502. The range to be displayed here is determined by receiving an input designating the display range by the input device 105 from the user.
 また、設備設計システム100は、評価指標表示503において、当該設備設計システム100が計算した各年度の設備設計データ117における評価指標の値すなわちコストの値を、設計期間の年度毎に推移させたグラフを表示する。図22の例では、評価指標の値を線グラフの形式で表示しているが、棒グラフなど他の表示方法でもよい。 Further, the facility design system 100 is a graph in which the evaluation index value in the facility design data 117 calculated by the facility design system 100, that is, the cost value is changed every year in the design period in the evaluation index display 503. Is displayed. In the example of FIG. 22, the value of the evaluation index is displayed in the form of a line graph, but other display methods such as a bar graph may be used.
 また、設備設計システム100は、インターフェイス部504において、上述の自動設計部13または手動設計部12の起動指示をユーザから受けるインターフェイス、または、手動設計部12で処理する編集用の入力データをユーザから受けるためのインターフェイスを表示する。 In addition, the facility design system 100 receives, from the user, an interface for receiving an activation instruction for the automatic design unit 13 or the manual design unit 12 from the user or input data for editing processed by the manual design unit 12 from the user. Displays the interface for receiving.
 また、年度切り替えボタン505は、設備設計レイアウト表示部501に表示する、設備設計データ117に対応するネットワークのレイアウトすなわち再生水供給システムのレイアウト、および、設備設計データ表示部502に表示する設備設計データ117を、設計期間のうち所望の所定年度にユーザが切り替える際の指示を受けるボタンとなる。また、この年度切り替えボタン505は、手動設計部12による編集処理を行う際の年度指定をユーザから受けるボタンともなる。 The year switching button 505 displays the network layout corresponding to the equipment design data 117 displayed on the equipment design layout display section 501, that is, the layout of the reclaimed water supply system, and the equipment design data 117 displayed on the equipment design data display section 502. Is a button for receiving an instruction when the user switches in a desired predetermined year in the design period. The year switching button 505 also serves as a button for receiving a year designation from the user when the editing process by the manual design unit 12 is performed.
 例えば、表示画面500に矢印型の年度切り替えボタン505を配置したとする。そして、画面500の設備設計レイアウト表示部501において、t年度の設備設計データ117に対応したレイアウトを表示している時に、入力装置105にて、上述のボタン505のうち右矢印ボタンのユーザ選択を受信する。この場合、右矢印ボタンのユーザ選択の事象が入力装置105を介して設備設計システム100に送信される。設備設計システム100は、このユーザ選択を受けて、t+1年度の設備設計データ117を記憶装置101から読み出して、上述した表示用のデータの生成処理を実行し、該当レイアウトの表示用データを表示装置106に送信し、設備設計レイアウト表示部501にて表示させる。他方、設備設計システム100が、左矢印ボタンのユーザ選択を受信した場合、同様の処理を実行し、t-1年度のレイアウトを設備設計レイアウト表示部501にて表示させる。勿論、入力装置105において年度の数値指定をユーザから受信し、その数値指定に対応した年度の設備設計データ117に基づいて、上述したような該当年度のレイアウト表示の処理を行うとしてもよい。 For example, assume that an arrow-shaped year switching button 505 is arranged on the display screen 500. Then, when the layout corresponding to the facility design data 117 for year t is displayed on the facility design layout display section 501 of the screen 500, the user selects the right arrow button among the buttons 505 described above on the input device 105. Receive. In this case, an event of user selection of the right arrow button is transmitted to the facility design system 100 via the input device 105. Upon receiving this user selection, the facility design system 100 reads the facility design data 117 for the year t + 1 from the storage device 101, executes the display data generation processing described above, and displays the display data for the corresponding layout as a display device. 106 and displayed on the facility design layout display unit 501. On the other hand, when the facility design system 100 receives the user selection of the left arrow button, the same process is executed, and the layout of the t-1 year is displayed on the facility design layout display unit 501. Of course, it is also possible to receive the numerical designation of the fiscal year from the user in the input device 105 and perform the layout display processing for the relevant fiscal year as described above based on the facility design data 117 of the fiscal year corresponding to the numerical designation.
 なお、本実施形態では、単体の設備設計システム100において設備設計データ117を計算する形態を示したが、2つ以上の設備設計システム100が、上述の各機能部および各データを分散または重複して備え、各処理を並行して実行する形態を採用するとしてもよい。 In the present embodiment, the form in which the equipment design data 117 is calculated in the single equipment design system 100 is shown. However, two or more equipment design systems 100 distribute or overlap the above-described functional units and data. It is possible to adopt a form in which each process is executed in parallel.
---実施例2---
 次に、上述の実施例1で示した設備設計システム100における自動設計部13が、図23に示す構成の自動設計部14である場合の形態について説明する。この場合の自動設計部14は、図23に示すように、ネットワーク構築機能301、および、自動設計機能3022を有している。なお、自動設計部14におけるネットワーク構築機能301と、自動設計部13におけるネットワーク構築機能301は同一である。
--- Example 2 ---
Next, the form in the case where the automatic design unit 13 in the facility design system 100 shown in the first embodiment is the automatic design unit 14 having the configuration shown in FIG. 23 will be described. The automatic design unit 14 in this case has a network construction function 301 and an automatic design function 3022 as shown in FIG. The network construction function 301 in the automatic design unit 14 and the network construction function 301 in the automatic design unit 13 are the same.
 そこで、自動設計部14が実行する自動設計機能3022について、自動設計部13における自動設計機能302との差異を踏まえて説明する。既に述べた形態においては、設備設計データ117を計算する際、自動設計部13が、接続点、サテライト、管路、および給水車割当ての設備設計データ117を設計期間の年度ごとに計算する自動設計機能302と、設備設計データ117における吐出圧および流量を計算する吐出圧決定機能303と、自動設計機能302および吐出圧決定機能303の計算した設備設計データ117における制約違反の有無を判定する制約違反判定機能304を逐次的に実行することで、近似的に設備設計データ117を出力していた。 Therefore, the automatic design function 3022 executed by the automatic design unit 14 will be described based on the difference from the automatic design function 302 in the automatic design unit 13. In the form already described, when the equipment design data 117 is calculated, the automatic design unit 13 calculates the equipment design data 117 of the connection points, satellites, pipelines, and water tanker assignments every year of the design period. Function 302, discharge pressure determination function 303 for calculating discharge pressure and flow rate in facility design data 117, and constraint violation for determining whether there is a constraint violation in facility design data 117 calculated by automatic design function 302 and discharge pressure determination function 303 By sequentially executing the determination function 304, the facility design data 117 is approximately output.
 一方、ここでの例においては、自動設計部14がそれらの機能302、303、304を同時に実行する自動設計機能3022を有する。こうした自動設計部14は、自動設計機能3022を実行することにより、設計期間全体で評価指標に関して最適な設備設計データを計算する。 On the other hand, in the example here, the automatic design unit 14 has an automatic design function 3022 that simultaneously executes the functions 302, 303, and 304. By executing the automatic design function 3022, the automatic design unit 14 calculates optimal facility design data regarding the evaluation index over the entire design period.
 続いて自動設計部14における処理を説明する。図24は、自動設計部14の処理を示すフローチャートである。この場合、自動設計部14は、処理(3120)において、データ受信部11に対し、記憶装置101からの設計条件データ110の読み込みを指示する。設計条件データ110を記録装置101から読み込んだ受信部11は、この設計条件データ110をメモリ103に記録する。 Subsequently, processing in the automatic design unit 14 will be described. FIG. 24 is a flowchart showing processing of the automatic design unit 14. In this case, the automatic design unit 14 instructs the data receiving unit 11 to read the design condition data 110 from the storage device 101 in the process (3120). The receiving unit 11 that has read the design condition data 110 from the recording device 101 records the design condition data 110 in the memory 103.
 次に、自動設計部14は、ネットワーク構築機能301を実行してメモリ103から設計条件データ110を読み込み、ネットワークデータ116を構築し、これを記憶装置101に格納する。 Next, the automatic design unit 14 executes the network construction function 301 to read the design condition data 110 from the memory 103, construct the network data 116, and store it in the storage device 101.
 続いて自動設計部14は、自動設計機能3022を実行し、処理(3220)および処理(3320)を実行する。処理(3220)において、自動設計部14の自動設計機能3022は、設備設計システム100のメモリ103上に、ネットワークデータ116を読み込み、このネットワークデータ116を入力として設備設計データ117を計算する数理計画問題を定式化する。 Subsequently, the automatic design unit 14 executes the automatic design function 3022 to execute processing (3220) and processing (3320). In the process (3220), the automatic design function 3022 of the automatic design unit 14 reads the network data 116 onto the memory 103 of the equipment design system 100, and calculates the equipment design data 117 using the network data 116 as an input. Is formulated.
 自動設計機能3022は、上述のネットワークデータ116における、頂点iからjを結ぶ管径がuの管路候補pを、t年度において実際に管路として採用するなら"1"、採用しないなら"0"となる変数xp,u,tを定義する。uは予め与えられた管径の候補の集合から選択される。 The automatic design function 3022 is “1” if the pipe candidate p having a pipe diameter u connecting the vertices i to j in the network data 116 described above is actually adopted as a pipe line in the t-year, and “0” if not. Define variables xp, u, t that become ". u is selected from a set of pipe diameter candidates given in advance.
 自動設計機能3022は、同様にt年度において、サテライト候補sから需要家dへの配水手段として給水車割当て候補cを採用するなら"1"、採用しないなら"0"、となる変数yc,tを定義する。加えて自動設計機能3022は、t年度においてサテライト候補sにサテライトを配置するなら"1"、配置しないなら"0"、である変数zs,tを定義する。さらに自動設計機能3022は、t年度のサテライトsにおける配水ポンプの吐出圧を変数hs,tと定義する。 Similarly, in the year t, the automatic design function 3022 sets the variable yc, t to be “1” if the water supply vehicle allocation candidate c is adopted as a means for distributing water from the satellite candidate s to the customer d, and “0” if not. Define In addition, the automatic design function 3022 defines variables zs and t that are “1” if a satellite is arranged in the satellite candidate s in year t and “0” if no satellite is arranged. Furthermore, the automatic design function 3022 defines the discharge pressure of the water distribution pump in the satellite s in year t as variables hs and t.
 自動設計機能3022は、上述のように変数を定義し、評価指標として次の式を特定する。 
Figure JPOXMLDOC01-appb-I000004

 上記の数式4で示される評価指標は、設計期間全体を通したときの、管路の敷設コスト、、給水車のコスト、および配水ポンプの運用コスト、の3つのコストの総和である。すなわち、設計期間全体での初期投資コストと運用コストの和を意味する。
The automatic design function 3022 defines a variable as described above, and specifies the following expression as an evaluation index.
Figure JPOXMLDOC01-appb-I000004

The evaluation index represented by the above mathematical formula 4 is the sum of the three costs: the laying cost of the pipeline, the cost of the water supply vehicle, and the operation cost of the water distribution pump when the entire design period is passed. That is, it means the sum of the initial investment cost and the operation cost over the entire design period.
 ここで、Uは管径として選べる数値の集合であり、CPp,uは管径がuの管路pの敷設コストである。CPp,uは既に述べたように、例えば、管径がuのときの敷設コストを定めるための係数αuと、敷設コストCPpの積で表される。 Here, U is a set of numerical values that can be selected as the pipe diameter, and CPp, u is the laying cost of the pipe line p with the pipe diameter u. As described above, CPp, u is represented, for example, by the product of the coefficient αu for determining the laying cost when the pipe diameter is u and the laying cost CPp.
 自動設計機能3022は、処理(3320)において、上述の評価指標を最小化するように、例えば数理最適化手法を用いて各変数xp,u,t、yc,t、zs,t、hs,tの値を決定する。このとき、実施例1で考慮した制約に加えて、ある管路pの管径はUから丁度一つのみ選択可能である制約を加える。すなわち、あるt年度の、ある管路pについて、
Figure JPOXMLDOC01-appb-I000005

を満たす必要がある。また、あるt年度において管径を定めると、t+1年度以降は管径を変更できない。また、例えば、設置を行わないサテライト候補s'(すなわち、zs',t=0)においては、吐出圧hs',t=0であるなど、制約の追加を行う。
In the process (3320), the automatic design function 3022 uses each of the variables xp, u, t, yc, t, zs, t, hs, t using, for example, a mathematical optimization method so as to minimize the above-described evaluation index. Determine the value of. At this time, in addition to the restriction considered in the first embodiment, the restriction that only one pipe diameter of a certain pipe line p can be selected from U is added. That is, for a certain pipeline p in a certain t-year,
Figure JPOXMLDOC01-appb-I000005

It is necessary to satisfy. Moreover, if a pipe diameter is defined in a certain fiscal year t, the tubular diameter cannot be changed after the fiscal year t + 1. Further, for example, in a satellite candidate s ′ that is not installed (that is, zs ′, t = 0), a restriction is added such that the discharge pressure is hs ′, t = 0.
 実施例1の場合と同様に、自動設計部14の自動設計機能3022は、処理(3420)において、各変数の値から設備設計データ117における頂点テーブルおよび辺テーブルを構築し、記憶装置101に格納する。なお、実施例1のときと同様に、以下のように制約を加えることで、既存施設が存在する場合に、設備の拡張を行う際も同様に設備設計を行うことができる。 As in the case of the first embodiment, the automatic design function 3022 of the automatic design unit 14 constructs a vertex table and an edge table in the facility design data 117 from the values of the variables and stores them in the storage device 101 in the process (3420). To do. As in the case of the first embodiment, when the following facilities are added, when an existing facility exists, the facility design can be performed in the same manner when the facility is expanded.
 制約データ114の制約データが、既存施設が存在することを意味する制約を記録しているとする。例えば、既存の管路p'に関する変数xp',1の値が、「xp',1=1でなければならない」、とする制約である。 Suppose that the constraint data of the constraint data 114 records a constraint meaning that an existing facility exists. For example, there is a constraint that the value of the variable xp ′, 1 relating to the existing pipe p ′ is “xp ′, 1 = 1”.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
 こうした本実施形態によれば、配水システムの設備設計に際し、複数年にわたる設計期間全体を通して投資や運用のコスト最小化を図ることが出来る。 According to this embodiment, when designing the water distribution system, it is possible to minimize the cost of investment and operation throughout the entire design period over several years.
 本明細書の記載により、少なくとも次のことが明らかにされる。すなわち、本実施形態の設備設計システムにおいて、演算装置は、構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、制約に関するデータが含む設計期間のデータとに基づいて、生成した配水網のパターンのうち、設計期間の最終年度で総コスト最小となる配水網を設備設計データとして特定する処理と、最終年度の配水網を構築するために前年度の配水網から管路撤去を行わないとの管路敷設の制約を生成して、制約に関するデータとして記憶装置に格納し、管路敷設の制約を満たす条件のもと、配水網のパターンのうち、最終年度の前年度で総コスト最小となる配水網を設備設計データとして特定する処理とを実行し、全設計期間の設備設計データを記憶装置に格納するものである、としてもよい。これによれば、設計期間における年度間で管路撤去が行われない設備設計の結果において、コスト最小となるものを効率的に特定出来る。 記載 At least the following will be made clear by the description in this specification. That is, in the facility design system of the present embodiment, the arithmetic device is based on the cost data required for the introduction and operation of a predetermined component included in the data related to the component, and the design period data included in the data related to the constraint. Among the generated distribution network patterns, the process of identifying the distribution network that minimizes the total cost in the final year of the design period as equipment design data, and pipes from the previous year's distribution network to build the distribution network for the final year Generate a restriction for pipe laying that does not remove the road, store it in the storage device as data related to the restriction, and before the final year of the distribution network pattern, under conditions that satisfy the restriction for pipe laying It is also possible to execute the process of identifying the distribution network with the lowest total cost in the fiscal year as equipment design data and store the equipment design data for the entire design period in the storage device. . According to this, in the result of the equipment design in which the pipeline is not removed between the fiscal years in the design period, it is possible to efficiently identify the one that minimizes the cost.
 また、上述の設備設計システムにおける演算装置は、前年度の配水網を構築するために前々年度の配水網から管路撤去を行わないとの管路敷設の制約を生成して、制約に関するデータとして記憶装置に格納し、管路敷設の制約を満たす条件のもと、配水網のパターンのうち、前々年度で総コスト最小となる配水網を設備設計データとして特定する処理を、設計期間の初年度に至るまで繰り返し実行し、全設計期間の設備設計データを記憶装置に格納するものである、としてもよい。これによれば、設計期間が3年以上にわたる場合であっても、設計期間における年度間で管路撤去が行われない設備設計の結果において、コスト最小となるものを効率的に特定出来る。 In addition, the arithmetic unit in the above-described facility design system generates a constraint for laying a pipeline that does not remove the pipeline from the distribution network of the previous year in order to construct the distribution network of the previous year, and The first year of the design period is the process of identifying the distribution network with the lowest total cost in the previous fiscal year as equipment design data, stored in the storage device and satisfying the constraints of pipe laying. The facility design data for the entire design period may be stored in the storage device. According to this, even if the design period is 3 years or more, it is possible to efficiently identify the one with the lowest cost in the result of the equipment design in which the pipeline is not removed between the years in the design period.
 また、上述の設備設計システムにおける演算装置は、構成要素に関するデータが含む、水供給源と、需要家施設と、配水手段である管路及び給水車とに関するデータに基づいて、水供給源および需要家施設の各間を配水手段である管路ないし給水車で結ぶ配水網のパターンを生成する処理と、構成要素に関するデータが含む、所定の構成要素である管路ないし給水車の導入及び運用に要するコストのデータと、制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、制約に関するデータが含む所定制約を満たす条件のもと、配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理とを実行するものである、としてもよい。これによれば、給水車を配水手段に採用する形態についてもコスト最小となる設備設計の結果を効率的に特定出来る。 In addition, the arithmetic unit in the equipment design system described above is based on the data on the water supply source, the customer facility, the pipeline and the water supply truck that are the water distribution means, and the water supply source and the demand. For the process of generating a distribution network pattern that connects each facility in the pipeline or water truck as a means of water distribution, and for the introduction and operation of pipes or water trucks that are predetermined components included in the data related to the components Based on the cost data required and the design period data included in the constraint data, each fiscal year in the distribution network pattern under the conditions that satisfy the predetermined constraints included in the constraint data between the design period years The distribution network that minimizes the total cost is specified as facility design data for each time, and the facility design data for the entire design period is stored in the storage device. There. According to this, it is possible to efficiently specify the result of the equipment design that minimizes the cost for the form in which the water supply vehicle is adopted as the water distribution means.
 また、上述の設備設計システムにおける演算装置は、設計期間の各年度間で、制約に関するデータが含む所定制約を満たす条件のもと、配水網のパターンのうち各年度毎に総コスト最小となる配水網として、水供給源及び配水手段を特定するための数理計画問題を所定のアルゴリズムに従って定式化し、定式化した数理計画問題を所定のアルゴリズムにて解くことにより、配水網のパターンのうち各年度毎に総コスト最小となる水供給源及び配水手段を特定し、全設計期間の設備設計データを計算するものである、としてもよい。これによれば、多くの変数が含まれる問題を効率的に解き、ひいては設備設計の結果において、コスト最小となるものをより効率的に特定出来る。 In addition, the arithmetic unit in the facility design system described above is a water distribution system that minimizes the total cost for each fiscal year in the distribution network pattern under the condition that satisfies the predetermined constraints included in the data related to the constraints during each year of the design period. As a network, formulate a mathematical programming problem for specifying water supply sources and distribution means according to a predetermined algorithm, and solve the formulated mathematical programming problem with a predetermined algorithm, so that each year of the distribution network pattern. The water supply source and the water distribution means that minimize the total cost may be specified, and the facility design data for the entire design period may be calculated. According to this, it is possible to efficiently solve a problem including a large number of variables, and as a result, it is possible to more efficiently identify the equipment design result that minimizes the cost.
 また、上述の設備設計システムにおける演算装置は、設計期間の各年度間で、制約に関するデータが含む所定制約を満たす条件のもと、配水網のパターンのうち各年度毎に総コスト最小となる配水網として、水供給源、配水手段、及び水供給源でのポンプの吐出圧の値、を特定するための数理計画問題を所定のアルゴリズムに従って定式化し、定式化した数理計画問題を所定のアルゴリズムにて解くことにより、配水網のパターンのうち各年度毎に総コスト最小となる水供給源、配水手段、及び水供給源でのポンプの吐出圧の値を特定し、全設計期間の設備設計データを計算するものである、としてもよい。これによれば、水供給源での吐出圧についても変数に含む問題を効率的に解き、ひいては設備設計の結果において、コスト最小となるものをより効率的に特定出来る。 In addition, the arithmetic unit in the facility design system described above is a water distribution system that minimizes the total cost for each fiscal year in the distribution network pattern under the condition that satisfies the predetermined constraints included in the data related to the constraints during each year of the design period. As a network, a mathematical programming problem for specifying the water supply source, the water distribution means, and the discharge pressure value of the pump at the water supply source is formulated according to a predetermined algorithm, and the formulated mathematical programming problem is converted into a predetermined algorithm. The water supply source, water distribution means, and pump discharge pressure value at the water supply source that minimize the total cost for each fiscal year in the distribution network pattern are identified, and the facility design data for the entire design period May be calculated. According to this, it is possible to efficiently solve the problem included in the variable regarding the discharge pressure at the water supply source, and thus to more efficiently identify the one with the lowest cost in the result of the equipment design.
 また、上述の設備設計システムにおける演算装置は、定式化した数理計画問題を所定のアルゴリズムにて解くことにより、ポンプの吐出圧の値を特定するに際し、水供給源における配水ポンプの運用コストが最小となるようポンプの吐出圧を特定するものである、としてもよい。これによれば、吐出圧を必要な値とする場合の配水ポンプの運用コストを確実に踏まえ、設備設計の結果においてコスト最小となるものを効率的に特定出来る。 In addition, the arithmetic unit in the facility design system described above solves the formulated mathematical programming problem with a predetermined algorithm, so that the operation cost of the water distribution pump in the water supply source is minimized when specifying the pump discharge pressure value. It is good also as what specifies the discharge pressure of a pump so that it may become. According to this, the operation cost of the water distribution pump in the case where the discharge pressure is set to a necessary value can be surely identified, and the cost that is the minimum in the result of the equipment design can be efficiently identified.
 また、上述の設備設計システムにおける演算装置は、設計期間のうち設備設計データ表示を所望する年度の指示をユーザから受け付ける年度指示受付部と、年度受付部でユーザ指示を受けた年度の設備設計データを記憶装置より読み出して表示する表示部と、該当設備設計データに基づく配水網のレイアウトを表示する表示部と、設計期間各年度毎の設備設計データにおける総コストを表示する表示部と、を含む画面データを生成し、当該画面データを表示装置に表示する処理を実行するものである、としてもよい。これによれば、設備設計に関する各種データをユーザが、認識しやすい形で視認可能となり、設備設計業務の効率改善につながる。 The arithmetic unit in the facility design system described above includes a year instruction reception unit that receives an instruction from the user for a year in which the facility design data display is desired in the design period, and a facility design data for the year that receives the user instruction from the year reception unit. A display unit that reads and displays the data from the storage device, a display unit that displays the layout of the water distribution network based on the corresponding facility design data, and a display unit that displays the total cost in the facility design data for each year of the design period The screen data may be generated and a process of displaying the screen data on the display device may be executed. According to this, it becomes possible for the user to visually recognize various data related to the equipment design in a form that can be easily recognized, leading to an improvement in the efficiency of the equipment design work.
 また、上述の設備設計システムにおける演算装置は、設備設計データに関する、ユーザからの編集指示を受け付けるインターフェイス部を画面データに含めて表示装置に表示し、インターフェイス部で受けた編集指示が示す所定項目に関する編集内容に応じて、記憶装置に格納されている設備設計データのうちの該当項目のデータを変更する処理と、編集指示により変更された設備設計データを、配水設備設計上の制約に関するデータに照合して、変更後の設備設計データが制約を満たすか判定し、変更後の設備設計データが制約を満たさない場合、編集のやり直し通知をインターフェイス部に表示するものである、としてもよい。これによれば、ユーザによる設備設計データの編集結果の妥当性を判断し、予め定めてある制約を常に満たすような設備設計データを確保することができる。 Further, the arithmetic device in the facility design system described above relates to a predetermined item indicated by the edit instruction received by the interface unit, including an interface unit that accepts an edit instruction from the user included in the screen data and displayed on the display device. Depending on the content of the edit, the process of changing the data of the corresponding item in the equipment design data stored in the storage device, and the equipment design data changed by the editing instruction are collated with data related to restrictions on water distribution equipment design. Then, it may be determined whether the equipment design data after the change satisfies the constraint, and if the equipment design data after the change does not satisfy the constraint, a re-editing notification is displayed on the interface unit. According to this, it is possible to determine the validity of the editing result of the facility design data by the user, and to secure the facility design data that always satisfies a predetermined constraint.
10 設備設計制御部
11 データ受信部
12 手動設計部
13 自動設計部
100 設備設計システム
101 記憶装置
102 プログラム
103 メモリ
104 CPU(演算装置)
105 入力装置
106 表示装置
110 設計条件データ
111 地理情報データ
112 建設候補データ
113 需要家データ
114 制約データ
115 数値データ
116 ネットワークデータ
117 設備設計データ
DESCRIPTION OF SYMBOLS 10 Equipment design control part 11 Data receiving part 12 Manual design part 13 Automatic design part 100 Equipment design system 101 Storage device 102 Program 103 Memory 104 CPU (arithmetic unit)
105 Input Device 106 Display Device 110 Design Condition Data 111 Geographic Information Data 112 Construction Candidate Data 113 Customer Data 114 Constraint Data 115 Numerical Data 116 Network Data 117 Facility Design Data

Claims (11)

  1.  配水設備の構成要素に関するデータと、配水設備設計上の制約に関するデータとを少なくとも保持する記憶装置と、
     前記構成要素に関するデータが含む、水供給源、需要家施設、及び配水手段に関するデータに基づいて、水供給源および需要家施設の各間を配水手段で結ぶ配水網のパターンを生成する処理と、
     前記構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理とを実行する演算装置と、
     を備えることを特徴とする設備設計システム。
    A storage device that holds at least data relating to components of the water distribution facility and data relating to restrictions on the design of the water distribution facility;
    A process of generating a distribution network pattern that connects each of the water supply source and the customer facility with the water distribution means, based on the data regarding the water supply source, the customer facility, and the water distribution means included in the data regarding the component;
    Data related to the constraint between each year of the design period based on data on the cost required for introduction and operation of the predetermined component included in the data related to the component and data on the design period included in the data related to the constraint Under the conditions satisfying the predetermined constraints included in the distribution network, the distribution network having the minimum total cost is identified as facility design data for each fiscal year, and the facility design data for the entire design period is stored in the storage device. An arithmetic unit for performing processing;
    An equipment design system characterized by comprising:
  2.  前記演算装置は、
     前記構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、前記生成した配水網のパターンのうち、前記設計期間の最終年度で総コスト最小となる配水網を設備設計データとして特定する処理と、前記最終年度の配水網を構築するために前年度の配水網から管路撤去を行わないとの管路敷設の制約を生成して、前記制約に関するデータとして記憶装置に格納し、前記管路敷設の制約を満たす条件のもと、前記配水網のパターンのうち、前記最終年度の前年度で総コスト最小となる配水網を設備設計データとして特定する処理とを実行し、全設計期間の設備設計データを記憶装置に格納するものである、
     ことを特徴とする請求項1に記載の設備設計システム。
    The arithmetic unit is:
    Of the generated distribution network patterns, the design is based on the cost data required for the introduction and operation of the predetermined component included in the data related to the component and the data of the design period included in the data related to the constraint. Processing to identify the distribution network that minimizes the total cost in the final year of the period as facility design data, and laying the pipeline not to remove the pipeline from the previous year's distribution network in order to construct the distribution network for the final year Is generated and stored in a storage device as data relating to the constraint, and the total cost is minimum in the previous year of the final year among the patterns of the water distribution network under the condition satisfying the constraint of the pipeline laying. To identify the water distribution network as equipment design data, and store the equipment design data for the entire design period in the storage device.
    The facility design system according to claim 1.
  3.  前記演算装置は、
     前記前年度の配水網を構築するために前々年度の配水網から管路撤去を行わないとの管路敷設の制約を生成して、前記制約に関するデータとして記憶装置に格納し、前記管路敷設の制約を満たす条件のもと、前記配水網のパターンのうち、前記前々年度で総コスト最小となる配水網を設備設計データとして特定する処理を、設計期間の初年度に至るまで繰り返し実行し、全設計期間の設備設計データを記憶装置に格納するものである、
     ことを特徴とする請求項2に記載の設備設計システム。
    The arithmetic unit is:
    In order to construct the water distribution network of the previous year, a restriction of pipe laying that the pipe removal is not performed from the water distribution network of the previous year is generated, and stored in a storage device as data relating to the restriction, the pipe laying Under the conditions satisfying the restrictions of the above, the process of identifying the distribution network that minimizes the total cost in the previous year as the facility design data among the distribution network patterns is repeatedly executed until the first year of the design period, The facility design data for the entire design period is stored in the storage device.
    The facility design system according to claim 2.
  4.  前記演算装置は、
     前記構成要素に関するデータが含む、水供給源と、需要家施設と、配水手段である管路及び給水車とに関するデータに基づいて、水供給源および需要家施設の各間を配水手段である管路ないし給水車で結ぶ配水網のパターンを生成する処理と、
     前記構成要素に関するデータが含む、所定の構成要素である管路ないし給水車の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理とを実行するものである、
     ことを特徴とする請求項1に記載の設備設計システム。
    The arithmetic unit is:
    A pipe that is a water distribution means between each of the water supply source and the customer facility, based on the data about the water supply source, the customer facility, and the pipelines and water supply trucks that are the water distribution means included in the data related to the component. Processing to generate a distribution network pattern connected by roads or water trucks;
    Each year of the design period based on the data of the cost required for the introduction and operation of pipelines or water trucks that are the predetermined components included in the data on the components and the data on the design period included in the data on the constraints The distribution network that minimizes the total cost for each fiscal year among the distribution network patterns is identified as facility design data under the conditions that satisfy the predetermined constraints included in the data related to the constraints, and the facility design for the entire design period A process of storing data in a storage device,
    The facility design system according to claim 1.
  5.  前記演算装置は、
     前記設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網として、前記水供給源及び前記配水手段を特定するための数理計画問題を所定のアルゴリズムに従って定式化し、前記定式化した数理計画問題を所定のアルゴリズムにて解くことにより、前記配水網のパターンのうち各年度毎に総コスト最小となる前記水供給源及び配水手段を特定し、全設計期間の設備設計データを計算するものである、
     ことを特徴とする請求項1に記載の設備設計システム。
    The arithmetic unit is:
    Under each condition of the design period, the water supply source and the water supply source and the water supply network, as a water distribution network that minimizes the total cost for each year among the patterns of the water distribution network, under the condition that satisfies the predetermined constraints included in the data related to the constraints Formulating a mathematical programming problem for specifying a water distribution means according to a predetermined algorithm, and solving the formulated mathematical programming problem with a predetermined algorithm, the total cost is minimized for each year of the distribution network pattern. The water supply source and the water distribution means are specified, and the facility design data for the entire design period is calculated.
    The facility design system according to claim 1.
  6.  前記演算装置は、
     前記設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網として、前記水供給源、前記配水手段、及び前記水供給源でのポンプの吐出圧の値、を特定するための数理計画問題を所定のアルゴリズムに従って定式化し、前記定式化した数理計画問題を所定のアルゴリズムにて解くことにより、前記配水網のパターンのうち各年度毎に総コスト最小となる前記水供給源、配水手段、及び前記水供給源でのポンプの吐出圧の値を特定し、全設計期間の設備設計データを計算するものである、
     ことを特徴とする請求項5に記載の設備設計システム。
    The arithmetic unit is:
    Under each condition of the design period, satisfying a predetermined constraint included in the data relating to the constraint, as a distribution network that minimizes the total cost for each year among the patterns of the distribution network, the water supply source, Formulating a mathematical programming problem for specifying the water distribution means and the discharge pressure value of the pump at the water supply source according to a predetermined algorithm, and solving the formulated mathematical programming problem with a predetermined algorithm, Identify the water supply source, water distribution means, and pump discharge pressure value at the water supply source that minimize the total cost for each fiscal year in the distribution network pattern, and calculate facility design data for the entire design period To do,
    The facility design system according to claim 5.
  7.  前記演算装置は、
     前記定式化した数理計画問題を所定のアルゴリズムにて解くことにより、前記ポンプの吐出圧の値を特定するに際し、前記水供給源における配水ポンプの運用コストが最小となるようポンプの吐出圧を特定するものである、
     ことを特徴とする請求項6に記載の設備設計システム。
    The arithmetic unit is:
    By solving the formulated mathematical programming problem with a predetermined algorithm, the pump discharge pressure is specified so that the operation cost of the water distribution pump at the water supply source is minimized when the pump discharge pressure value is specified. To do,
    The facility design system according to claim 6.
  8.  前記演算装置は、
     前記設計期間のうち設備設計データ表示を所望する年度の指示をユーザから受け付ける年度指示受付部と、前記年度受付部でユーザ指示を受けた年度の設備設計データを前記記憶装置より読み出して表示する表示部と、該当設備設計データに基づく配水網のレイアウトを表示する表示部と、設計期間各年度毎の前記設備設計データにおける前記総コストを表示する表示部と、を含む画面データを生成し、当該画面データを表示装置に表示する処理を実行するものである、
     ことを特徴とする請求項1に記載の設備設計システム。
    The arithmetic unit is:
    A year instruction receiving unit that receives an instruction from the user for the year in which the facility design data display is desired in the design period, and a display that reads and displays the equipment design data for the year that the user received in the year receiving unit from the storage device Generating screen data including a display unit that displays the layout of the water distribution network based on the corresponding facility design data, and a display unit that displays the total cost in the facility design data for each year of the design period, A process for displaying screen data on a display device is executed.
    The facility design system according to claim 1.
  9.  前記演算装置は、
     前記設備設計データに関する、ユーザからの編集指示を受け付けるインターフェイス部を前記画面データに含めて表示装置に表示し、前記インターフェイス部で受けた編集指示が示す所定項目に関する編集内容に応じて、前記記憶装置に格納されている設備設計データのうちの該当項目のデータを変更する処理と、
     前記編集指示により変更された設備設計データを、前記配水設備設計上の制約に関するデータに照合して、変更後の設備設計データが前記制約を満たすか判定し、前記変更後の設備設計データが前記制約を満たさない場合、編集のやり直し通知を前記インターフェイス部に表示するものである、
     ことを特徴とする請求項8に記載の設備設計システム。
    The arithmetic unit is:
    An interface unit that accepts an editing instruction from a user regarding the facility design data is included in the screen data and displayed on a display device, and the storage device according to the editing content related to a predetermined item indicated by the editing instruction received by the interface unit Processing to change the data of the corresponding item in the equipment design data stored in
    The facility design data changed by the editing instruction is collated with data relating to the constraints on the water distribution facility design, it is determined whether the facility design data after the change satisfies the constraints, and the facility design data after the change is the If the constraint is not satisfied, a notification of re-editing is displayed on the interface unit.
    The equipment design system according to claim 8, wherein:
  10.  配水設備の構成要素に関するデータと、配水設備設計上の制約に関するデータとを少なくとも保持する記憶装置を備えた情報処理装置が、
     前記構成要素に関するデータが含む、水供給源、需要家施設、及び配水手段に関するデータに基づいて、水供給源および需要家施設の各間を配水手段で結ぶ配水網のパターンを生成する処理と、
     前記構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理と、
     を実行することを特徴とする設備設計方法。
    An information processing apparatus having a storage device that holds at least data relating to components of water distribution equipment and data relating to restrictions on water distribution equipment design,
    A process of generating a distribution network pattern that connects each of the water supply source and the customer facility with the water distribution means, based on the data regarding the water supply source, the customer facility, and the water distribution means included in the data regarding the component;
    Data related to the constraint between each year of the design period based on data on the cost required for introduction and operation of the predetermined component included in the data related to the component and data on the design period included in the data related to the constraint Under the conditions satisfying the predetermined constraints included in the distribution network, the distribution network having the minimum total cost is identified as facility design data for each fiscal year, and the facility design data for the entire design period is stored in the storage device. Processing,
    The facility design method characterized by performing.
  11.  配水設備の構成要素に関するデータと、配水設備設計上の制約に関するデータとを少なくとも保持する記憶装置を備えた情報処理装置に、
     前記構成要素に関するデータが含む、水供給源、需要家施設、及び配水手段に関するデータに基づいて、水供給源および需要家施設の各間を配水手段で結ぶ配水網のパターンを生成する処理と、
     前記構成要素に関するデータが含む、所定の構成要素の導入及び運用に要するコストのデータと、前記制約に関するデータが含む設計期間のデータとに基づいて、設計期間の各年度間で、前記制約に関するデータが含む所定制約を満たす条件のもと、前記配水網のパターンのうち各年度毎に総コスト最小となる配水網を設備設計データとして特定し、全設計期間の設備設計データを記憶装置に格納する処理と、
     を実行させることを特徴とする設備設計プログラム。
    In an information processing apparatus equipped with a storage device that holds at least data relating to components of water distribution equipment and data relating to restrictions on water distribution equipment design,
    A process of generating a distribution network pattern that connects each of the water supply source and the customer facility with the water distribution means, based on the data regarding the water supply source, the customer facility, and the water distribution means included in the data regarding the component;
    Based on the cost data required for the introduction and operation of a predetermined component included in the data related to the component and the data related to the design period included in the data related to the constraint, the data related to the constraint during each year of the design period Under the conditions satisfying the predetermined constraints included in the above, the distribution network having the minimum total cost is identified as facility design data for each fiscal year among the distribution network patterns, and the facility design data for the entire design period is stored in the storage device Processing,
    A facility design program characterized in that
PCT/JP2013/057197 2013-03-14 2013-03-14 Facility design system, facility design method, and facility design program WO2014141434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057197 WO2014141434A1 (en) 2013-03-14 2013-03-14 Facility design system, facility design method, and facility design program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057197 WO2014141434A1 (en) 2013-03-14 2013-03-14 Facility design system, facility design method, and facility design program

Publications (1)

Publication Number Publication Date
WO2014141434A1 true WO2014141434A1 (en) 2014-09-18

Family

ID=51536129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057197 WO2014141434A1 (en) 2013-03-14 2013-03-14 Facility design system, facility design method, and facility design program

Country Status (1)

Country Link
WO (1) WO2014141434A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106897824A (en) * 2017-02-16 2017-06-27 浙江省水利河口研究院 Small water storage works water supply calculation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344296A (en) * 2000-05-30 2001-12-14 Ffc:Kk System for providing pipe network calculation service
JP2002266380A (en) * 2001-03-08 2002-09-18 Toshiba Corp Water operation evaluation equipment for waterworks
JP2004127178A (en) * 2002-10-07 2004-04-22 Mitsubishi Chemicals Corp Equipment plan optimization method and system
JP2008168185A (en) * 2007-01-09 2008-07-24 Toshiba Corp Equipment renewal plan support system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344296A (en) * 2000-05-30 2001-12-14 Ffc:Kk System for providing pipe network calculation service
JP2002266380A (en) * 2001-03-08 2002-09-18 Toshiba Corp Water operation evaluation equipment for waterworks
JP2004127178A (en) * 2002-10-07 2004-04-22 Mitsubishi Chemicals Corp Equipment plan optimization method and system
JP2008168185A (en) * 2007-01-09 2008-07-24 Toshiba Corp Equipment renewal plan support system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106897824A (en) * 2017-02-16 2017-06-27 浙江省水利河口研究院 Small water storage works water supply calculation method

Similar Documents

Publication Publication Date Title
CN101589417B (en) Map information managing system and map information distribution system
EP2534446B1 (en) Map update data supply device and map update data supply program
US9086290B2 (en) Map data distribution server, map data distribution system, and map data distribution method
Taher et al. Optimal design of water-distribution networks with GIS
CN103250031A (en) Routing system, routing method, and routing program
CN103295464B (en) Electronic map data management method, device and electronic map generating method, device
CN104978755A (en) Raph generating device, graph generating method and graph generating program
JP2011158339A (en) Map update data supply device and map update data supply program
Benoist et al. Randomized local search for real-life inventory routing
JP6079400B2 (en) Map difference data distribution device, map difference data distribution method, vehicle navigation device
CN103577906A (en) Workflow generation method, workflow execution method and workflow execution system
CN102270226A (en) Budget data summarization system
Kale et al. Optimal design of pressurized irrigation subunit
Gullotta et al. A simplified methodology for optimal location and setting of valves to improve equity in intermittent water distribution systems
US9046377B2 (en) Method and system for generating fixed transit routes
WO2014141434A1 (en) Facility design system, facility design method, and facility design program
CN103080696B (en) For calculating navigation system and the method for route totle drilling cost
Muller et al. Methodological approach for the compilation of a water distribution network model using QGIS and EPANET
CN104680782A (en) Traffic control cloud system
CN105378766A (en) Method, system, and computer program product for providing CNG filling station optimizations and proposals
CN111461586B (en) Dual-objective optimization method, device and medium for transportation cost and transportation time
JP4946095B2 (en) Information processing method and apparatus related to special green space conservation area
JP6902488B2 (en) Water supply planning support device
JP2008015653A (en) Specifications data generation system and specifications data generation method
Davidson et al. Optimization of investments in natural gas distribution networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP