WO2014141392A1 - Method for producing regular fibrous connective tissue - Google Patents

Method for producing regular fibrous connective tissue Download PDF

Info

Publication number
WO2014141392A1
WO2014141392A1 PCT/JP2013/056867 JP2013056867W WO2014141392A1 WO 2014141392 A1 WO2014141392 A1 WO 2014141392A1 JP 2013056867 W JP2013056867 W JP 2013056867W WO 2014141392 A1 WO2014141392 A1 WO 2014141392A1
Authority
WO
WIPO (PCT)
Prior art keywords
prelp
mesenchymal stem
ligament
stem cells
connective tissue
Prior art date
Application number
PCT/JP2013/056867
Other languages
French (fr)
Japanese (ja)
Inventor
美智代 津留
見生 永田
Original Assignee
Tsuru Michiyo
Nagata Kensei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuru Michiyo, Nagata Kensei filed Critical Tsuru Michiyo
Priority to JP2015505133A priority Critical patent/JP6198199B2/en
Priority to PCT/JP2013/056867 priority patent/WO2014141392A1/en
Publication of WO2014141392A1 publication Critical patent/WO2014141392A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/22Zinc; Zn chelators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/25Tumour necrosing factors [TNF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/99Coculture with; Conditioned medium produced by genetically modified cells

Definitions

  • the present invention relates to a method for producing parallel fibrous connective tissue, and more particularly, to a method for producing parallel fibrous connective tissue, including culturing mesenchymal stem cells in contact with PRELP.
  • the present invention also relates to cells, combinations and kits useful for the production of parallel fibrous connective tissue.
  • the present invention provides a therapeutic agent for ligament injury and the like.
  • Ligament damage is damage that occurs when an abnormal force is applied to a ligament supporting a joint due to a sports injury or a traffic accident, and the ligament is torn or cut.
  • severe ligament damage it is necessary to transplant the ligament to the damaged part, but since a technique to artificially regenerate the ligament has not been developed yet, a part of other normal ligaments is removed. Therefore, it is necessary to use for transplantation, and as a result, a normal ligament is also damaged. Therefore, development of a technique for artificially regenerating a ligament in vitro is desired.
  • Proline / arginine-rich-end-leucine-rich-repeat-protein is a protein contained in the connective tissue extracellular matrix.
  • PRELP is known to function as a molecule that anchors the basement membrane to the underlying connective tissue.
  • PRELP has been shown to bind type I collagen to the basement membrane and type II collagen to cartilage.
  • PRELP has also been reported to bind to perlecan, a basement membrane heparan sulfate proteoglycan.
  • PRELP has been suggested to be involved in the pathology of Hutchinson-Gilford progeria (HGP), and it has been reported that patients with this disease lack collagen binding in the basement membrane and cartilage.
  • HGP Hutchinson-Gilford progeria
  • An object of the present invention is to provide a technique for producing a parallel fibrous connective tissue such as a ligament in vitro.
  • the present inventors compared the two-dimensional electrophoresis pattern of human vertebral ligament ossification tissue with that of human bone tissue, and found PRELP as a protein specifically expressed in the ligament. .
  • this gene was introduced into a mouse mesenchymal stem cell and the obtained transfectant was cultured on a 3D gel, surprisingly, a parallel fibrous connective tissue like a ligament tissue containing type I collagen was formed. As a result, the present invention was completed.
  • the present invention is as follows.
  • [1] A method for producing parallel fibrous connective tissue, comprising culturing mesenchymal stem cells in contact with PRELP, and isolating parallel fibrous connective tissue from the culture.
  • [2] The production method according to [1], wherein the mesenchymal stem cells are cultured in a state of being contacted with PRELP by culturing the mesenchymal stem cells into which the PRELP expression vector has been introduced.
  • [4] The production method according to any one of [1] to [3], wherein the mesenchymal stem cells are cultured in a medium containing TNF- ⁇ in contact with PRELP.
  • [5] The production method according to any one of [1] to [4], wherein the mesenchymal stem cells are cultured in a medium containing zinc ions in contact with PRELP.
  • [6] A parallel fibrous connective tissue produced by the production method according to any one of [1] to [5].
  • [7] Mesenchymal stem cells into which a PRELP expression vector has been introduced.
  • [8] A combination comprising a mesenchymal stem cell into which a PRELP expression vector has been introduced, and a three-dimensional culture carrier.
  • a combination comprising (1) PRELP or an expression vector thereof; and (2) a mesenchymal stem cell.
  • a kit for producing parallel fibrous connective tissue comprising a mesenchymal stem cell according to [7] or a combination according to any of [8] to [10].
  • a therapeutic agent for ligament injury comprising the parallel fibrous connective tissue according to [6] or the mesenchymal stem cell according to [7].
  • a parallel fibrous connective tissue formation promoter comprising PRELP or an expression vector thereof.
  • the agent according to [13], wherein the parallel fibrous connective tissue is a ligament.
  • a therapeutic agent for ligament injury comprising PRELP or an expression vector thereof.
  • a method of treating ligament injury in a mammal comprising transplanting the parallel fibrous connective tissue according to [6] or the mesenchymal stem cell according to [7] to a mammal.
  • a method for promoting the formation of parallel fibrous connective tissue in a mammal comprising administering PRELP or an expression vector thereof to the mammal.
  • a method for treating ligament injury in a mammal comprising administering PRELP or an expression vector thereof to the mammal.
  • a ligament-like parallel fibrous connective tissue can be produced in an in vitro system. This makes it possible to produce an artificial ligament, which is useful for treating movement disorders caused by ligament rupture in athletes and the like.
  • Detection of PRELP in the culture supernatant of mesenchymal stem cells introduced with a PRELP expression vector by Western blotting C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells ( ⁇ 4) transfected with pCAGGS-PRELP before the start of PuraMatrix culture. C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells ( ⁇ 4) transfected with pCAGGS-PRELP on day 1 after PuraMatrix culture.
  • C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells ( ⁇ 4) transfected with pCAGGS-PRELP on the second day after PuraMatrix culture. Electron micrograph of parallel fibrous connective tissue formed by C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells transfected with pCAGGS-PRELP. Immunohistochemically stained images of C3H / 10T1 / 2 mouse mesenchymal stem cells transfected with pCAGGS-PRELP vector. Type I collagen: Alexa Fluor 488, phalloidin: Alexa Fluor 568, and DAPI.
  • type I collagen in mesenchymal stem cells and human and mouse ligament-like tissues derived therefrom. Expression of type I collagen in mesenchymal stem cells and human and mouse ligament-like tissues derived therefrom (real-time PCR). Inhibition of expression of PDGF-AA, MMP-13 and type I collagen (ELISA) by introduction of shRNA targeting PRELP (shRNA-PRELP). Bars indicate PDGF, type I collagen and PDGF from the left. * P ⁇ 0.001, ** P ⁇ 0.001. Suppression of MMP-13 and type I collagen expression by introduction of shRNA targeting PRELP (shRNA-PRELP).
  • PRELP Alexa Fluor 488
  • type II collagen Alexa Fluor 555
  • array-GCH Gene expression analysis by array-GCH for mouse mesenchymal stem cells, ligament tissue of wild-type mice, ligament tissue of PRELP transgenic mice, and ligament tissue of mouse mesenchymal stem cells.
  • NF ⁇ B p65 Alexa Fluor 488 and DAPI fluorescence images of mouse mesenchymal stem cells transfected with PRELP gene treated with 10 ⁇ M (F), 30 ⁇ M (G), and 50 ⁇ M (H) ZnCl 2 .
  • NF ⁇ B p65 Alexa Fluor 488 and DAPI fluorescence image of mouse mesenchymal stem cells introduced with PRELP gene treated with TNF- ⁇ (I) or ZnCl 2 (J).
  • the present invention provides a method for producing parallel fibrous connective tissue, comprising culturing mesenchymal stem cells in contact with PRELP and isolating fibrous tissue from the culture.
  • Proline / arginine-rich-end-leucine-rich-repeat protein is a known polypeptide contained in the connective tissue extracellular matrix in vivo.
  • PRELP usually means a mammal-derived one.
  • mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees.
  • PRELP is preferably derived from primates (such as humans) or rodents (such as mice).
  • “derived from organism X” means that the polypeptide or polynucleotide is the same or substantially the same as the polypeptide or polynucleotide naturally expressed in organism X. It is meant to contain the same amino acid sequence or polynucleotide sequence. “Substantially the same” means that the focused amino acid sequence or nucleic acid sequence is 70% or more (preferably 80% or more, more preferably 90%) of the amino acid sequence or nucleic acid sequence of the factor naturally expressed in the organism X Or more, more preferably 95% or more, most preferably 99% or more), and the activity of the protein is maintained.
  • nucleotide sequence and amino acid sequence of PRELP are known.
  • Representative amino acid sequences of human PRELP and mouse PRELP and polynucleotide sequences (cDNA sequences) encoding the same are as follows.
  • the parentheses indicate GENBANK accession numbers provided by NCBI.
  • SEQ ID NO: 2 (NP_002716): encoded by the polynucleotide of SEQ ID NO: 1 (NM_002725 REGION: 201..1349)
  • SEQ ID NO: 4 (NP_958505): encoded by the polynucleotide of SEQ ID NO: 3 (NM_201348 REGION: 191..1339) 6 (signal sequence (1-20) was deleted from SEQ ID NO: 2 (mature type)): encoded by SEQ. ID.
  • the activity of PRELP means the activity of inducing the formation of parallel fibrous connective tissue by culturing the cells in contact with the mesenchymal stem cells.
  • meenchymal stem cell broadly means a population of stem cells or progenitor cells that proliferate in an undifferentiated state and can differentiate into all or some of bone cells, chondrocytes and adipocytes. Means to.
  • a mesenchymal stem cell usually means a mammal-derived one.
  • mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees.
  • the mesenchymal stem cells are preferably derived from primates (human etc.) or rodents (mouse etc.).
  • mesenchymal stem cells are present at low frequency in tissues such as bone marrow, peripheral blood, umbilical cord blood, and adipose tissue.
  • Mesenchymal stem cells can be isolated from these tissues by a known method.
  • mesenchymal stem cells can be isolated from bone marrow fluid by the Percoll gradient method (Hum. Cell, vol.10, p.45-50, 1997).
  • mesenchymal stem cells can be isolated by culture and passage of hematopoietic stem cells after bone marrow puncture (Journalourof Autoimmunity, 30 (2008) 163e171).
  • mesenchymal stem cells from human synovium, meniscus, intra-articular ligament, muscle, adipose tissue, and bone marrow using a cell sorter has been reported (Journal of Orthopaedic Research, 27: 435-441, 2009). Commercially available mesenchymal stem cells may also be used.
  • the mesenchymal stem cells used in the present invention are preferably isolated. “Isolated” means that the artificially placed in a state different from the naturally occurring state, for example, an operation to remove components other than the target component from the naturally occurring state. Means.
  • the purity of the isolated mesenchymal stem cells is usually 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably substantially 100. %.
  • the individual that is the source from which the mesenchymal stem cells are collected is not particularly limited. However, when the obtained fibrous tissue is used for transplantation medicine, the patient itself or the MHC type is the same or not from the viewpoint that rejection does not occur. It is preferable to collect mesenchymal stem cells from substantially the same individual.
  • the type of MHC is “substantially the same” means that cells contained in the transplanted fibrous tissue when the fibrous tissue obtained from the mesenchymal stem cells is transplanted into a patient by using an immunosuppressant or the like. This means that the MHC types match to such an extent that can be engrafted.
  • allogeneic mesenchymal stem cells having a genetic background that forms a strong parallel fibrous connective tissue (for example, black in the case of humans) It is also preferred to use mesenchymal stem cells).
  • Mesenchymal stem cells can be pre-cultured in a medium known per se suitable for the culture.
  • a medium known per se suitable for the culture.
  • a medium include a minimum essential medium (MEM) containing about 5 to 20% fetal bovine serum, Dulbecco's modified Eagle medium (DMEM), Basal Medium Eagle, RPMI 1640 medium, 199 medium, F12 medium, and the like.
  • MEM minimum essential medium
  • DMEM Dulbecco's modified Eagle medium
  • Basal Medium Eagle Basal Medium Eagle
  • RPMI 1640 medium Basal Medium Eagle
  • the method for culturing mesenchymal stem cells in contact with PRELP is not particularly limited, and any method may be used as long as it can induce the formation of fibrous tissue.
  • a method for culturing a mesenchymal stem cell into which a PRELP expression vector has been introduced (B) a sufficient amount of PRELP (preferably isolated PRELP) to induce the formation of fibrous tissue
  • a method of culturing mesenchymal stem cells in a medium to be used can be employed.
  • PRELP expressed from the introduced expression vector is released into the microenvironment of the mesenchymal stem cell or into the medium, and this contacts the mesenchymal stem cell.
  • mesenchymal stem cells into which a PRELP expression vector has been introduced are cultured.
  • the PRELP expression vector includes a promoter and a polynucleotide encoding PRELP, and the promoter is operably linked to the polynucleotide.
  • the promoter is not particularly limited as long as it can initiate transcription in a mesenchymal stem cell as a host.
  • retrovirus including lentivirus
  • adenovirus including lentivirus
  • adeno-associated virus Sendai virus
  • herpes virus including vaccinia virus, pox virus, poliovirus, silbis virus, rhabdovirus
  • Virus vectors such as paramyxoviruses, orthomyxoviruses
  • artificial chromosome vector plasmids such as YAC (Yeast artificial chromosome) vector, BAC (Bacterial artificial chromosome) vector, PAC (P1-derived artificial chromosome) vector
  • Examples include an episomal vector capable of autonomous replication.
  • a lipofection method When introducing the vector into mesenchymal stem cells, a lipofection method, a microinjection method, a DEAE dextran method, a gene gun method, an electroporation method, a calcium phosphate method, or the like can be used.
  • a packaging cell when a viral vector is used as an expression vector, a packaging cell can also be used.
  • a packaging cell refers to a cell into which a gene encoding a viral structural protein has been introduced, which produces the recombinant virus particle when a recombinant viral DNA incorporating the target gene is introduced into the cell. Therefore, any cell can be used as the packaging cell as long as it is a cell that replenishes the recombinant virus vector with a protein necessary for the construction of the virus particles.
  • HEK293 cells derived from human kidney or mouse fibroblasts can be used.
  • Plat-E cells designed to express Ecotropic virus-derived envelope glycoproteins
  • Plato-A cells designed to express Amphotropic virus-derived envelope glycoproteins
  • Plato-GP cells designed to express vesicular stomatitis virus-derived envelope glycoprotein
  • the method for introducing the viral vector into the packaging cell is not particularly limited, and a conventionally known method such as lipofection, electroporation, or calcium phosphate method can be used.
  • a marker gene when a gene is introduced using an expression vector, a marker gene can be used simultaneously to confirm the introduction of the gene.
  • the marker gene refers to all genes that enable selection and selection of cells by introducing the marker gene into cells, such as drug resistance genes, fluorescent protein genes, luminescent enzyme genes, chromogenic enzyme genes, etc. Is mentioned.
  • drug resistance genes include neomycin resistance gene, tetracycline resistance gene, kanamycin resistance gene, zeocin resistance gene, hygromycin resistance gene and the like
  • fluorescent protein genes include green fluorescent protein (GFP) gene, yellow fluorescent protein (YFP).
  • GFP green fluorescent protein
  • YFP yellow fluorescent protein
  • RFP red fluorescent protein
  • examples of the luminescent enzyme gene include a luciferase gene
  • examples of the chromogenic enzyme gene include a ⁇ -galactosidase gene, a ⁇ -glucuronidase gene, and an alkaline phosphatase gene.
  • These marker genes can be used singly or in combination of two or more, and also include a fusion containing two or more marker genes such as a ⁇ geo gene that is a fusion gene of a neomycin resistance gene and a ⁇ -galactosidase gene. Genes can also be used.
  • the expression vector may contain an enhancer, a splicing signal, a poly A addition signal, an SV40 replication origin (hereinafter sometimes abbreviated as SV40ori) and the like in a functional manner as desired.
  • the present invention also provides mesenchymal stem cells into which the PRELP expression vector thus obtained has been introduced.
  • the introduced expression vector may be integrated into the genome.
  • Such mesenchymal stem cells can be clearly distinguished from the original mesenchymal stem cells and mesenchymal stem cells isolated from natural mammals in the genome structure.
  • PRELP is genetically stably present in mesenchymal stem cells and can be expressed.
  • Mesenchymal stem cells obtained using such vectors are also encompassed within the scope of the present invention.
  • a medium used for culturing mesenchymal stem cells can be prepared using a medium used for culturing animal cells as a basal medium.
  • a basal medium for example, BME medium, BGJb medium, CMRL61066 medium, Glasgow MEM medium, Improve MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham F12 medium, RPMI 1640
  • the medium is not particularly limited as long as it can be used for culturing animal cells, such as a medium, Fischer's medium, and mixed medium thereof.
  • the medium can be a serum-containing medium or a serum-free medium.
  • a serum-free medium means a medium that does not contain unadjusted or unpurified serum, and is a medium or serum replacement reagent (for example, a purified blood-derived component or animal tissue-derived component (eg, growth factor)). , KSR (Invitrogen) etc.) is added to the serum-free medium.
  • the medium used for culturing mesenchymal stem cells contains TNF- ⁇ . It is expected that the formation of parallel fibrous connective tissue is promoted by culturing mesenchymal stem cells in the presence of TNF- ⁇ in contact with PRELP. For example, by culturing mesenchymal stem cells in contact with PRELP in the presence of TNF- ⁇ , the formation of parallel fibrous connective tissue is promoted, compared with the conditions in the absence of TNF- ⁇ . The parallel fibrous connective tissue is expected to be formed in a shorter time. In one embodiment, parallel fibrous connective tissue is formed by culturing mesenchymal stem cells in the presence of TNF- ⁇ in contact with PRELP for at least 24 hours.
  • TNF- ⁇ usually means a mammal-derived one.
  • mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees.
  • PRELP is preferably derived from primates (such as humans) or rodents (such as mice).
  • TNF- ⁇ The nucleotide sequence and amino acid sequence of TNF- ⁇ are known. Representative amino acid sequences of human TNF- ⁇ and mouse TNF- ⁇ and polynucleotide sequences (cDNA sequences) encoding the same are as follows. The parentheses indicate GENBANK accession numbers provided by NCBI.
  • SEQ ID NO: 14 (NP_000585.2): encoded by the polynucleotide of SEQ ID NO: 13 (NM_000594.3 REGION: 176..877)
  • SEQ ID NO: 16 (NP_038721.1): encoded by the polynucleotide of SEQ ID NO: 15 (NM_013693.2 REGION: 157..864)
  • the concentration of TNF- ⁇ in the medium can be appropriately set by those skilled in the art within the range of promoting the formation of parallel fibrous connective tissue, but is usually 0.5 to 500 ng / mL, preferably 1 to It is about 100 ng / mL.
  • TNF- ⁇ is preferably isolated.
  • the purity of the isolated TNF- ⁇ (percentage of the weight of TNF- ⁇ in the total protein weight) is usually 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 100%. .
  • the medium used for culturing mesenchymal stem cells contains zinc ions (Zn 2+ ). It is expected that the formation of parallel fibrous connective tissue is promoted by culturing mesenchymal stem cells in the presence of Zn 2+ in contact with PRELP.
  • the concentration of Zn 2+ in the medium can be appropriately set by those skilled in the art within the range of promoting the formation of parallel fibrous connective tissue, but is usually about 1 to 100 ⁇ M, preferably about 10 to 50 ⁇ M.
  • the medium used for culturing mesenchymal stem cells comprises culturing mesenchymal stem cells in contact with PRELP in the presence of TNF- ⁇ and zinc ions, including TNF- ⁇ and zinc ions.
  • TNF- ⁇ and zinc ions including TNF- ⁇ and zinc ions.
  • the concentration of each factor in the combined use of TNF- ⁇ and zinc ions can be appropriately set by those skilled in the art within the range of promoting the formation of parallel fibrous connective tissue. It can be illustrated.
  • the medium can contain additives known per se.
  • the additive is not particularly limited, but for example, growth factors (such as insulin), iron sources (such as transferrin), minerals (such as sodium selenate), saccharides (such as glucose), organic acids (such as pyruvic acid, Lactic acid etc.), serum proteins (eg albumin etc.), amino acids (eg non-essential amino acids), reducing agents (eg 2-mercaptoethanol etc.), antioxidants, vitamins (eg ascorbic acid, d-biotin etc.), fatty acids Alternatively, lipids, antibiotics (for example, streptomycin, penicillin, gentamicin, etc.), buffers (for example, HEPES, etc.), inorganic salts and the like can be mentioned.
  • Each of the additives is preferably contained within a concentration range known per se.
  • the mesenchymal stem cells are adherently cultured in a culture container such as a petri dish, a plate, or a bottle.
  • the mesenchymal stem cells are cultured by three-dimensional culture.
  • three-dimensional culture means that a polymer compound having a sol-gel transition temperature and reversibly showing a sol state at a temperature lower than the transition temperature is used as a culture carrier.
  • a physiologically active substance for cell culture is mixed with the culture support as a culture composition, and the polymer compound in the culture support or culture composition is gelled using the culture support. It means that the cells and / or tissues to be cultured in the gel material are embedded in the prepared medium.
  • polymer compound used as a carrier for three-dimensional culture examples include polyalkylene oxide block copolymers represented by block copolymers of polypropylene oxide and polyethylene oxide; etherified celluloses such as methyl cellulose and hydroxypropyl cellulose Modified polysaccharides such as chitosan derivatives (K. R. Holme. Et al. Macromolecules, 24, 3828 (1991)); pullulan derivatives (Shigeru Deguchi, Polymer Preprints. Japan.
  • poly N- Conjugates of temperature-sensitive polymers such as substituted (meth) acrylamide derivatives, polyvinyl alcohol partial acetylated products, polyvinyl methyl ether and water-soluble polymer compounds (for example, Takehisa Matsuda et al., Polymer Preprints. Japan Japan 39 (8 ), 2559 (1990)), a hydrogel that self-polymerizes under physiological conditions and has a fine fiber structure.
  • temperature-sensitive polymers such as substituted (meth) acrylamide derivatives, polyvinyl alcohol partial acetylated products, polyvinyl methyl ether and water-soluble polymer compounds (for example, Takehisa Matsuda et al., Polymer Preprints. Japan Japan 39 (8 ), 2559 (1990)), a hydrogel that self-polymerizes under physiological conditions and has a fine fiber structure.
  • Commercial products such as PuraMatrix can be used as appropriate.
  • the mesenchymal stem cells are cultured in a state of being contacted with PRELP for a sufficient period (usually 1 day or more, preferably 2 days or more) to form a fibrous tissue.
  • the culture conditions in the step (b) of the present invention can be appropriately set according to normal animal cell culture conditions.
  • the culture temperature is usually about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is usually about 1-10%, preferably about 2-5%.
  • parallel fibrous connective tissue refers to a dense connective tissue in which collagen fibers are arranged in parallel in one direction.
  • Close connective tissue refers to connective tissue formed by collagen fibers forming fiber bundles and densely arranged. Collagen fibers usually contain type I collagen.
  • the parallel fibrous connective tissue can be ligament tissue.
  • the culture refers to a result obtained by culturing cells, and includes cells, culture media, cell secretory components, and the like.
  • the parallel fibrous connective tissue After confirming the formation of parallel fibrous connective tissue by visual observation or microscopic observation, the parallel fibrous connective tissue can be obtained by isolating the parallel fibrous connective tissue from the culture.
  • the parallel fibrous connective tissue thus obtained is useful as an artificial ligament for the treatment of movement disorders due to ligament rupture in athletes and the like.
  • the present invention also provides a parallel fibrous connective tissue produced by the method of the present invention. Since the parallel fibrous connective tissue produced by the method of the present invention has bone healing activity, it is preferably used for the treatment of ligament damage.
  • the present invention also provides a combination (combination I) comprising mesenchymal stem cells into which a PRELP expression vector has been introduced, and a carrier for three-dimensional culture.
  • the present invention provides Provided is a combination (Combination II) comprising (1) PRELP or an expression vector thereof; and (2) a mesenchymal stem cell.
  • the combination II can further contain a carrier for three-dimensional culture.
  • each of the mesenchymal stem cells and the combinations I and II into which the PRELP expression vector has been introduced can be used as a kit for producing a parallel fibrous connective tissue.
  • kits of the present invention are adjusted to an appropriate concentration in water or an appropriate buffer (eg, TE buffer, PBS, etc.) separately (or in a mixed state if possible). It can be dissolved or suspended and stored at about -20 ° C to 4 ° C.
  • an appropriate buffer eg, TE buffer, PBS, etc.
  • the kit of the present invention can contain various reagents (medium, reagent for gene introduction, etc.) used in the production method of the present invention, culture vessels, instructions describing the test protocol, and the like.
  • Therapeutic agent I for ligament injury I When the parallel fibrous connective tissue produced by the production method of the present invention is transplanted into the living body of a recipient mammal suffering from ligament injury, the parallel fibrous connective tissue is engrafted at the recipient's ligament injury site. The ligament is regenerated at the site and the ligament injury is treated.
  • the mesenchymal stem cells into which the PRELP expression vector has been introduced are transplanted into the living body of a recipient mammal suffering from ligament injury, the mesenchymal stem cells engraft at the recipient's ligament injury site, To produce parallel fibrous connective tissue at which the ligament is regenerated and the ligament injury is treated.
  • the present invention provides a therapeutic agent for ligament injury comprising a parallel fibrous connective tissue produced by the production method of the present invention or a mesenchymal stem cell into which a PRELP expression vector has been introduced (the present invention).
  • a therapeutic agent for ligament injury of I comprising a parallel fibrous connective tissue produced by the production method of the present invention or a mesenchymal stem cell into which a PRELP expression vector has been introduced (the present invention).
  • Ligament damage means a state in which the ligament is damaged by external force or infection.
  • ligament damage include joint ligament damage (eg, knee ligament damage (lateral collateral ligament damage, medial collateral ligament damage, anterior cruciate ligament damage, posterior cruciate ligament damage, etc.); ankle, instep, elbow, finger, etc.
  • Ligament damage, etc. periodontal ligament damage; damage of tough connective tissue (rubber band) that keeps internal organs such as the ligament supporting the eyeball in place, but is not limited thereto.
  • recipient mammals include laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, and pets such as dogs and cats. , Primates such as humans, monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans, chimpanzees, and the like, but are not limited thereto.
  • PRELP is preferably derived from primates (such as humans) or rodents (such as mice).
  • cells obtained by introducing a PRELP expression vector into the mesenchymal stem cells are preferably used for transplantation.
  • allogeneic mesenchymal stem cells having a genetic background to form a strong ligament for example, black mesenchymal stem cells in the case of humans
  • parallel fibrous connective tissue produced by the method of the present invention or cells obtained by introducing a PRELP expression vector into the mesenchymal stem cells for transplantation.
  • the parallel fibrous connective tissue or mesenchymal stem cells are engrafted in the ligament injury site of the recipient, As long as the ligament is regenerated at the site and the ligament injury is treated, the parallel fibrous connective tissue and mesenchymal stem cells are preferably transplanted directly to the ligament injury site of the recipient.
  • the transplantation of parallel fibrous connective tissue can be carried out, for example, by sticking a sheet of parallel fibrous connective tissue obtained by the production method of the present invention to a ligament injury site.
  • Transplantation of the mesenchymal stem cells into which the PRELP expression vector has been introduced can be carried out, for example, by embedding the mesenchymal stem cells in a carrier such as a biocompatible gel and transplanting the mesenchymal stem cells to the site of ligament injury. I can do it.
  • the ligament rupture site in a partially ruptured joint For example, the ligament rupture site in a partially ruptured joint; the suture operation site for ligament rupture treatment; the above-mentioned parallel fibrous connective tissue in a periodontal pocket or the like damaged or retracted due to dental surgery, infection, aging, etc.
  • mesenchymal stem cells into which a PRELP expression vector has been introduced are transplanted.
  • the dose of mesenchymal stem cells into which the parallel fibrous connective tissue or PRELP expression vector has been introduced can be appropriately set based on the degree of ligament injury, the site, and the like.
  • each term relating to the therapeutic agent I for ligament injury is the same as the definition of each term in the above-mentioned “Method for producing parallel fibrous connective tissue” and “Combination product, kit”.
  • the present invention provides a therapeutic agent for ligament injury (the therapeutic agent II for ligament injury of the present invention II) comprising PRELP or an expression vector thereof.
  • the therapeutic agent II for ligament injury of the present invention is also useful as an agent for promoting the formation of parallel fibrous connective tissue in vivo.
  • the therapeutic agent II for ligament injury of the present invention can contain any carrier, for example, a pharmaceutically acceptable carrier, in addition to PRELP or an expression vector thereof.
  • Examples of pharmaceutically acceptable carriers include sucrose, starch, mannitol, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, and other excipients, cellulose, methylcellulose, hydroxypropylcellulose, polypropylpyrrolidone.
  • Gelatin gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, carboxymethylcellulose, hydroxypropyl starch, sodium-glycol starch, sodium bicarbonate, calcium phosphate, calcium citrate and other disintegrants, magnesium stearate , Aerosil, Talc, Lubricant such as sodium lauryl sulfate, Citric acid, Menthol, Glycyrrhizin / Ammonium salt, Glycine, Orange powder and other fragrances, Benzoic acid Preservatives such as thorium, sodium bisulfite, methylparaben, propylparaben, stabilizers such as citric acid, sodium citrate, acetic acid, suspensions such as methylcellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, Examples include, but are not limited to, water, physiological saline, diluents such as orange juice, base waxes such as cacao butter,
  • the ligament injury therapeutic agent II of the present invention can further contain a nucleic acid introduction reagent in order to promote introduction of nucleic acid into cells.
  • the nucleic acid introduction reagent include lipofectin, lipofectamine, lipofectamine RNAiMAX (LipofectamineRNAiMAX), in vivofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDAB, HDAB, polybrene, or polybrene Cationic lipids such as (ethyleneimine) (PEI) can be used.
  • a retrovirus is used as an expression vector, retronectin, fibronectin, polybrene, or the like can be used as an introduction reagent.
  • Examples of the dosage unit form of the therapeutic agent II for ligament injury according to the present invention include liquids, tablets, pills, drinking liquids, powders, suspensions, emulsions, granules, extracts, fine granules, syrups, dip, and decoction.
  • Eye drops, lozenges, poultices, liniments, lotions, eye ointments, plasters, capsules, suppositories, enemas, injections (solutions, suspensions, etc.), patches, ointments, jelly Examples include agents, pastes, inhalants, creams, sprays, nasal drops, aerosols and the like.
  • the content of PRELP or its expression vector in the therapeutic agent is not particularly limited and is appropriately selected within a wide range, and is, for example, about 0.01 to 100% by weight of the entire pharmaceutical composition.
  • the therapeutic agent II for ligament injury of the present invention is administered by a method according to various forms when used.
  • it is administered at the site of ligament damage, intraarticular cavity, intravenous, intramuscular, intradermal, subcutaneous or intraperitoneal, and in the case of external preparations, it is sprayed directly on the required site such as the skin or mucous membrane.
  • it is orally administered, and in the case of suppositories, it is administered rectum.
  • the dosage of the agent of the present invention includes the activity and type of the active ingredient, the mode of administration (eg, oral and parenteral), the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age Usually, it is about 0.001 mg to about 2.0 g as an active ingredient amount per day for adults.
  • the therapeutic agent II for ligament injury of the present invention is usually a mammal (for example, such that PRELP or an expression vector thereof is delivered to a ligament injury site (preferably, a mesenchymal stem cell present in the ligament injury site).
  • a mammal for example, such that PRELP or an expression vector thereof is delivered to a ligament injury site (preferably, a mesenchymal stem cell present in the ligament injury site).
  • a ligament injury site preferably, a mesenchymal stem cell present in the ligament injury site.
  • PRELP acts on mesenchymal stem cells at the site of ligament injury, thereby promoting the formation of parallel fibrous connective tissue (eg, ligament) at the site of ligament injury, Ligament injury healing response and ligament reconstruction are promoted.
  • Example 1 Human PRELP cDNA was cloned.
  • the cloned PRELP cDNA was treated with Xhol and inserted into the Xhol site of the pCAGGS expression vector.
  • the constructed vector was digested with restriction enzymes, and the electrophoresis pattern was confirmed. As a result, an electrophoretogram of the expected pattern was confirmed.
  • region was conducted, it confirmed that it corresponded with the target arrangement
  • C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells (JCRB0003) are cultured in Basal Medium Eagle (Wako) containing 10% FBS and then repeatedly detached with 0.25% Trypsin and 0.02% EDTA. By subcultivation culture was performed. After culturing C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells in a 3.5 mm petri dish (BD) until 70% confluent, the culture solution was adjusted to 500 ⁇ L.
  • FIG. 2 shows C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells transfected with pCAGGS-PRELP before the start of PuraMatrix culture.
  • Example 2 In the same manner as in Example 1, C3H / 10T1 / 2 mouse mesenchymal stem cells were transfected with the pCAGGS-PRELP vector. The obtained transfectants were subjected to immunostaining using Alexa Fluor 488-labeled anti-type I collagen antibody, Alexa Fluor 568 phalloidin, and DAPI (FIG. 6).
  • PRELP expression in human anterior cruciate ligament (ACL), human posterior cruciate ligament (PCL), human OPLL tissue and human tendon was examined by real-time PCR and Western blotting. CBB staining was used as a control. High expression of PRELP was not observed in ACL, PCL and OPLL, but expression of PRELP was low in tendons (FIG. 9).
  • Example 3 As in Example 1, a pCAGGS-PRELP vector was introduced into human mesenchymal stem cells and mouse mesenchymal stem cells and cultured to form a ligament-like tissue. The expression of type I collagen was examined by ELISA and real-time PCR. The ELISA used EC1-E205, which can measure atelocollagen from degraded atelopeptide in type I collagen. Real-time PCR was performed with TaqMan Gene Expression Assay kit using StepOnePlus real-time PCR system.
  • sequences used for TaqMan PCR are as follows (sequences from mouse collagen, type I, alpha 1Col1a1: Mm00801666_g1; human collagen, type I, alpha 2: Hs00164099_m1; mouse 18S ribosomal RNA, hypothetical LOC790964: Mm03928990_g1; human eukaryotic 18S rRNA: Hs99999901_s1).
  • expression of type I collagen was higher in the induced ligament-like tissue than in the mesenchymal stem cells in any of the methods (FIGS. 10 and 11).
  • Example 4 The effect of shRNA targeting PRELP on the expression of PDGF and MMP-13 in mouse mesenchymal stem cells introduced with the pCAGGS-PRELP vector was examined.
  • shRNA targeting PRELP four gene fragments were cloned into pRNAi / LV-RNAi vector (Biosettia, Inc), and suppression of PRELP expression was confirmed, followed by collagen and PDGF receptor expression in the supernatant.
  • Suppressed sh-NM_054077 5'- AAAAGGATTAGGCGTAAACCCAATTGGATCCAATTGGGTTTACGCCTAATCC-3 '(SEQ ID NO: 17) was used.
  • shRNA-lacZ AAAAGCAGTTATCTGGAAGATCAGGTTGGATCCAACCTGATCTTCCAGATAACTGC (SEQ ID NO: 18), and sh-scramble, AAAAGCTACACTATCGAGCAATTTTGGATCCAAAATTGCTCGATAGTGTAGC (SEQ ID NO: 19) was made as a control.
  • Lipofectamine 2000 Life Technology
  • Gene Porter Gene Porter
  • PRELP expression in the culture supernatant was confirmed by Western blotting, and secretion of the product in the culture medium was confirmed every 2 days.
  • the culture solution was changed every two days. After 7 days, the cells had transformed into ligament fiber-like structures.
  • Transfected cells were cultured in PuraMatrix Peptide Hydrogel, and images obtained with BioStation ID (GE Healthcare) after 24 hours confirmed that the cells were converted to ligament fiber-like structures.
  • ELISA was performed for PDGF-AA (R & D systems), MMP-13 (GE Healthcare) and type I collagen (ACEL, Japan).
  • shRNA targeting PRELP suppressed the expression of PDGF-AA, MMP-13 and type I collagen (FIGS. 12 and 13).
  • Example 5 As in Example 1, the expression of type I collagen in ligament-like tissue prepared by introducing the pCAGGS-PRELP vector into human mesenchymal stem cells was analyzed by Western blotting to human PCL tissue, human OPLL tissue and human ACL tissue. Compared with. Like PCL, OPLL, and ACL, the ligament-like tissue expressed type I collagen (FIG. 14).
  • Example 6 Expression of type I collagen and stem cell marker (CD34) in a ligament-like tissue derived from mouse mesenchymal stem cells prepared in the same manner as in Example 1 was compared with mouse mesenchymal stem cells.
  • Mouse mesenchymal stem cells highly expressed CD34, but their expression decreased after the introduction of the pCAGGS-PRELP vector and conversion to ligament-like tissue.
  • the expression of type I collagen was higher after conversion to ligament-like tissue (FIG. 15).
  • Example 7 Production and genotyping of PRELP transgenic mice
  • the PRELP gene (3.4 kb) was ligated into the XhoI site of pCAGGS and injected into the pronuclei of C57BL / 6 fertilized eggs using a microcapillary and an inverted microscope. It was confirmed that a transgenic mouse was produced by PCR amplification of the DNA extracted from the tail tissue of the obtained newborn mouse and genotyping.
  • the PRELP gene was synthesized using the phosphoramidite method and ligated to the XhoI site of pCAGGS-XhoI.
  • the expression vector was digested with Xho-I and the electrophoresis pattern was confirmed. It was confirmed that the sequence of the inserted cDNA region matched the intended sequence (GenBank accession number: EAW91481.1).
  • a section of tail tissue was cut out from the 20 newborn mice obtained, and DNA was extracted with DNA Mini Kit (Qiagen). PCR was performed using the following primer set to determine whether the sample contained a foreign gene.
  • mice and wild-type littermates were fixed with 70% ethanol, and the skin and internal tissues were separated. Mice were fixed with 70% ethanol for an additional 2 days. Dehydration was performed in 99.5% ethanol for 2 days. Mice were incubated for 55 hours at 37 ° C. in alcian blue 8GX (JANSSEN, 40% acetic acid and 60% ethanol volume ratio), a staining solution containing Alcian blue at a final concentration of 0.05%. Mice were immersed in 99.5% ethanol for 2 days at room temperature and then in 2% potassium hydroxide for 24 hours at room temperature until clear.
  • alcian blue 8GX JANSSEN, 40% acetic acid and 60% ethanol volume ratio
  • Fig. 16A wild type
  • B PRELP Tg
  • Three-dimensional computed tomography bone density analysis During inhalation anesthesia of transgenic mice, bone density and bone mineral density measurement is performed using 3D micro-computed tomography (Rigaku), using RATOC software (RATOC System Engineering). Analyzed. A phantom (S / N: 1101-52) was used as a control. Bone density analysis was performed by performing 3D-CT of the femur, but no differences in BMD, BMC and TV were observed between wild type mice and PRELP transgenic mice. No changes in bone tissue were observed for skeletal samples from transgenic mice (FIG. 17).
  • Example 8 Bone adhesion and ligament reconstruction Since the ligament is connected to the bone tissue to form a bone-bone connection, the mouse mesenchymal stem cell-derived ligament-like tissue produced by the same method as in Example 1 was combined with human osteoblasts. By combining, bone fusion of PRELP-derived ligament-like tissue was examined. Chromosome fluorescence staining showed fusion of human chromosome (rhodamine) and mouse chromosome (FITC) (FIG. 21). Karyotype analysis confirmed that mouse mesenchymal stem cell-derived ligament tissue was fused with human osteoblasts.
  • rhodamine human chromosome
  • FITC mouse chromosome
  • PRELP Alexa Fluor 488
  • type II collagen Alexa Fluor 555
  • the anterior cruciate ligament was removed from the chicken and cut into many pieces. After culturing in a culture medium containing pPyCAG-cHA-IpacflexEGFP-PRELP, the destroyed ligament tissue was restored. GFP expression in the repaired tissue was confirmed by fluorescence microscopy (FIG. 23). After one week, collagen fiber ligation was observed by Azan staining. The GFP fluorescence of the new ligament tissue after repair revealed that the stem cells retained pPyCAG-cHA-IpacflexEGFP-PRELP (FIG. 23 left).
  • Array-CGH RNA was extracted using AllPrep DNA / RNA mini kit (Qiagen), and RNA integrity was analyzed (Agilent 2100 Bioanalyzer). RNA with a value of 9.0 or greater was reverse transcribed using Superscript VILO cDNA synthesis kit (Life Technologies) and array-CGH was performed using Agilent Human Genome Microarray Kit 244 K (Agilent Technologies).
  • the Array-CGH platform is a high-resolution 60-mer oligonucleotide-based microarray containing approximately 244400 probes spanning 7.4 kb and 16.5 kb of median length and non-coding genomic sequences, respectively.
  • Example 1 Analyzing gene expression of stem cell-derived ligament tissue prepared by introducing PRELP into mouse mesenchymal stem cells, ligament tissue of wild-type mice, ligament tissue of PRELP transgenic mice, and mouse mesenchymal stem cells did.
  • FIG. 27C Three hours after addition of TNF- ⁇ , the boundary of the intracellular ER was demarcated (FIG. 27C), 6 hours later, PRELP protein expression was confirmed in the ER (FIG. 27D), and 12 hours later, fibrillation Conversion occurred and PRELP expression was confirmed (FIG. 27E). Presence of Nf ⁇ B expression suggests that PRELP functions as a nuclear transcription factor affected by 30 ⁇ m / mL ZnCl 2 .
  • 27F, G, and H show NF ⁇ B p65 (Alexa Fluor 488) and DAPI fluorescence images when 10 ⁇ M, 30 ⁇ M, and 50 ⁇ M ZnCl 2 were added to mouse mesenchymal stem cells into which the PRELP gene had been introduced.
  • a ligament-like tissue appears 12 hours after adding 10 ng / mL TNF- ⁇ to mouse mesenchymal stem cells into which the PRELP gene has been introduced (I), and the same ligament-like tissue is also observed when 30 ⁇ M ZnCl 2 is added Conversion to (J) occurred.
  • NF-kBIA, MEKK3, TAK-1 and TRAF6 gene expression in ligament-like tissues derived from human mesenchymal stem cells introduced with pCAGGS-PRELP was analyzed by real-time PCR. The expression of these genes was increased by 30 ⁇ M ZnCl 2 and TNF- ⁇ (FIG. 28).
  • NF- ⁇ B-p65, -p52, -p50, and c-Rel were measured by ELISA.
  • Nf ⁇ B family Transcription factor assay kit (Active Motif, Inc., USA) was used for signal transduction study, and Western blotting with anti-PRELP antibody and anti-NF- ⁇ B-p65 antibody was used. CBB staining was used as a control.
  • the expression of NF- ⁇ B-p65, -p52, -p50, and c-Rel increased by ZnCl 2 was not canceled by LY294002 (FIG. 29).
  • TAK1, TRAF6, MEKK3, and NF ⁇ Bp65 expression in human mesenchymal stem cells expressing PRELP by TNF- ⁇ were analyzed by Western blotting.
  • PRELP Western blotting confirmed that PRELP protein was present in cells treated with control sh-Lac Z and sh-scramble and that PRELP was rapidly knocked down by shRNA-PRELP (FIG. 30).
  • Example 10 Similar to Example 1, ligament-like tissue was produced from mouse mesenchymal stem cells into which PRELP had been introduced. When this was transplanted into the destroyed periodontal pocket, the periodontal pocket was reconstructed (FIG. 31).
  • a ligament-like parallel fibrous connective tissue can be produced in an in vitro system. This makes it possible to produce an artificial ligament, which is useful for treating movement disorders caused by ligament rupture in athletes and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention provides a method for producing a regular fibrous connective tissue, which comprises culturing a mesenchymal stem cell while contacting the mesenchymal stem cell with PRELP and then isolating a regular fibrous connective tissue from the culture. In one embodiment, the culturing of the mesenchymal stem cell while contacting the mesenchymal stem cell with PRELP is achieved by culturing a mesenchymal stem cell having a PRELP expression vector introduced therein. In one embodiment, the culturing of the mesenchymal stem cell is achieved by means of three-dimensional culturing.

Description

平行線維性結合組織の製造方法Method for producing parallel fibrous connective tissue
 本発明は、平行線維性結合組織の製造方法に関し、詳しくは、PRELPと接触させた状態で間葉系幹細胞を培養することを含む、平行線維性結合組織の製造方法に関する。また、本発明は、平行線維性結合組織の製造に有用な、細胞、組み合わせ物、キットに関する。更に、本発明は、靭帯損傷の治療剤等を提供する。 The present invention relates to a method for producing parallel fibrous connective tissue, and more particularly, to a method for producing parallel fibrous connective tissue, including culturing mesenchymal stem cells in contact with PRELP. The present invention also relates to cells, combinations and kits useful for the production of parallel fibrous connective tissue. Furthermore, the present invention provides a therapeutic agent for ligament injury and the like.
 靭帯損傷は、関節を支える靭帯へ、スポーツ外傷や交通事故等によって異常な力が加わり、靭帯が裂けたり、切断したりすることにより生じる損傷である。重度の靭帯損傷を治療する場合には、損傷した箇所へ靭帯を移植する必要があるが、靭帯を人工的に再生する技術は未だ開発されていないため、正常な他の靭帯の一部を摘出して移植に供する必要があり、結果として正常な靭帯をも傷めてしまうことになる。そのため、人工的にインビトロで靭帯を再生する技術の開発が望まれている。 Ligament damage is damage that occurs when an abnormal force is applied to a ligament supporting a joint due to a sports injury or a traffic accident, and the ligament is torn or cut. When treating severe ligament damage, it is necessary to transplant the ligament to the damaged part, but since a technique to artificially regenerate the ligament has not been developed yet, a part of other normal ligaments is removed. Therefore, it is necessary to use for transplantation, and as a result, a normal ligament is also damaged. Therefore, development of a technique for artificially regenerating a ligament in vitro is desired.
 一方、Proline/arginine-rich end leucine-rich repeat protein(PRELP)は、結合組織細胞外マトリクスに含まれるタンパク質である。PRELPは、基底膜をその下層の結合組織にアンカーする分子として機能することが知られている。PRELPは、I型コラーゲンを基底膜に、II型コラーゲンを軟骨へ結合させることが示されている。PRELPは、基底膜ヘパラン硫酸プロテオグリカンであるパールカンへも結合することが報告されている。PRELPは、Hutchinson-Gilford progeria (HGP)の病態に関与することが示唆されており、この疾患の患者では、基底膜及び軟骨におけるコラーゲンの結合が欠失していることが報告されている。 On the other hand, Proline / arginine-rich-end-leucine-rich-repeat-protein (PRELP) is a protein contained in the connective tissue extracellular matrix. PRELP is known to function as a molecule that anchors the basement membrane to the underlying connective tissue. PRELP has been shown to bind type I collagen to the basement membrane and type II collagen to cartilage. PRELP has also been reported to bind to perlecan, a basement membrane heparan sulfate proteoglycan. PRELP has been suggested to be involved in the pathology of Hutchinson-Gilford progeria (HGP), and it has been reported that patients with this disease lack collagen binding in the basement membrane and cartilage.
 PRELPは、関節内の間葉系幹細胞において発現が亢進していることが報告されている(非特許文献1)。 PRELP has been reported to be highly expressed in mesenchymal stem cells in the joint (Non-patent Document 1).
 本発明は、靱帯等の平行線維性結合組織をインビトロで製造する技術を提供することを目的とする。 An object of the present invention is to provide a technique for producing a parallel fibrous connective tissue such as a ligament in vitro.
 前記課題を解決すべく本発明者らは鋭意検討した結果、ヒト脊柱靭帯骨化組織の二次元電気泳動パターンをヒト骨組織のそれと比較し、靭帯に特異的に発現するタンパク質としてPRELPを見出した。この遺伝子をマウス間葉系幹細胞に導入し、得られたトランスフェクタントを3Dゲル上で培養したところ、驚くべきことにI型コラーゲンを含む、靱帯組織様の平行線維性結合組織が形成されることを見出し、更に検討を進めた結果、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors compared the two-dimensional electrophoresis pattern of human vertebral ligament ossification tissue with that of human bone tissue, and found PRELP as a protein specifically expressed in the ligament. . When this gene was introduced into a mouse mesenchymal stem cell and the obtained transfectant was cultured on a 3D gel, surprisingly, a parallel fibrous connective tissue like a ligament tissue containing type I collagen was formed. As a result, the present invention was completed.
 即ち、本発明は、下記の通りである。
[1]PRELPと接触させた状態で間葉系幹細胞を培養すること、及び培養物から平行線維性結合組織を単離することを含む、平行線維性結合組織の製造方法。
[2]PRELPと接触させた状態での間葉系幹細胞の培養が、PRELP発現ベクターが導入された間葉系幹細胞を培養することにより行われる、[1]記載の製造方法。
[3]間葉系幹細胞の培養が、3次元培養により行われる、[1]又は[2]記載の製造方法。
[4]PRELPと接触させた状態での間葉系幹細胞の培養が、TNF-αを含む培地中で行われる、[1]~[3]のいずれかに記載の製造方法。
[5]PRELPと接触させた状態での間葉系幹細胞の培養が、亜鉛イオンを含む培地中で行われる、[1]~[4]のいずれかに記載の製造方法。
[6][1]~[5]のいずれかに記載の製造方法により製造された、平行線維性結合組織。
[7]PRELP発現ベクターが導入された間葉系幹細胞。
[8]PRELP発現ベクターが導入された間葉系幹細胞、及び3次元培養用担体を含む組み合わせ物。
[9](1)PRELP、又はその発現ベクター;及び
(2)間葉系幹細胞
を含む組み合わせ物。
[10]更に、3次元培養用担体を含む、[9]記載の組み合わせ物。
[11][7]記載の間葉系幹細胞、又は[8]~[10]のいずれかに記載の組み合わせ物を含む、平行線維性結合組織製造用キット。
[12][6]記載の平行線維性結合組織、又は[7]記載の間葉系幹細胞を含む、靭帯損傷治療剤。
[13]PRELP、又はその発現ベクターを含む、平行線維性結合組織形成促進剤。
[14]平行線維性結合組織が靭帯である、[13]記載の剤。
[15]PRELP、又はその発現ベクターを含む、靭帯損傷治療剤。
[16]哺乳動物へ、[6]記載の平行線維性結合組織、又は[7]記載の間葉系幹細胞を移植することを含む、当該哺乳動物における靭帯損傷の治療方法。
[17]哺乳動物へ、PRELP、又はその発現ベクターを投与することを含む、当該哺乳動物における平行線維性結合組織の形成を促進する方法。
[18]平行線維性結合組織が靭帯である、[17]記載の方法。
[19]哺乳動物へ、PRELP、又はその発現ベクターを投与することを含む、当該哺乳動物における靭帯損傷の治療方法。
[20]靭帯損傷の治療において使用するための、[6]記載の平行線維性結合組織、又は[7]記載の間葉系幹細胞。
[21]平行線維性結合組織の形成促進において使用するための、PRELP、又はその発現ベクター。
[22]平行線維性結合組織が靭帯である、[21]記載のPRELP、又はその発現ベクター。
[23]靭帯損傷の治療において使用するための、PRELP、又はその発現ベクター。
That is, the present invention is as follows.
[1] A method for producing parallel fibrous connective tissue, comprising culturing mesenchymal stem cells in contact with PRELP, and isolating parallel fibrous connective tissue from the culture.
[2] The production method according to [1], wherein the mesenchymal stem cells are cultured in a state of being contacted with PRELP by culturing the mesenchymal stem cells into which the PRELP expression vector has been introduced.
[3] The production method according to [1] or [2], wherein the mesenchymal stem cells are cultured by three-dimensional culture.
[4] The production method according to any one of [1] to [3], wherein the mesenchymal stem cells are cultured in a medium containing TNF-α in contact with PRELP.
[5] The production method according to any one of [1] to [4], wherein the mesenchymal stem cells are cultured in a medium containing zinc ions in contact with PRELP.
[6] A parallel fibrous connective tissue produced by the production method according to any one of [1] to [5].
[7] Mesenchymal stem cells into which a PRELP expression vector has been introduced.
[8] A combination comprising a mesenchymal stem cell into which a PRELP expression vector has been introduced, and a three-dimensional culture carrier.
[9] A combination comprising (1) PRELP or an expression vector thereof; and (2) a mesenchymal stem cell.
[10] The combination according to [9], further comprising a three-dimensional culture carrier.
[11] A kit for producing parallel fibrous connective tissue, comprising a mesenchymal stem cell according to [7] or a combination according to any of [8] to [10].
[12] A therapeutic agent for ligament injury comprising the parallel fibrous connective tissue according to [6] or the mesenchymal stem cell according to [7].
[13] A parallel fibrous connective tissue formation promoter comprising PRELP or an expression vector thereof.
[14] The agent according to [13], wherein the parallel fibrous connective tissue is a ligament.
[15] A therapeutic agent for ligament injury comprising PRELP or an expression vector thereof.
[16] A method of treating ligament injury in a mammal, comprising transplanting the parallel fibrous connective tissue according to [6] or the mesenchymal stem cell according to [7] to a mammal.
[17] A method for promoting the formation of parallel fibrous connective tissue in a mammal, comprising administering PRELP or an expression vector thereof to the mammal.
[18] The method according to [17], wherein the parallel fibrous connective tissue is a ligament.
[19] A method for treating ligament injury in a mammal, comprising administering PRELP or an expression vector thereof to the mammal.
[20] The parallel fibrous connective tissue according to [6] or the mesenchymal stem cell according to [7] for use in the treatment of ligament injury.
[21] PRELP or an expression vector thereof for use in promoting the formation of parallel fibrous connective tissue.
[22] PRELP of [21], or an expression vector thereof, wherein the parallel fibrous connective tissue is a ligament.
[23] PRELP or an expression vector thereof for use in the treatment of ligament injury.
 本発明によれば、インビトロの系で靱帯様の平行線維性結合組織を製造することができる。これにより、人工靱帯の作製が可能となり、スポーツ選手などの靭帯断裂による運動障害などの治療に有用である。 According to the present invention, a ligament-like parallel fibrous connective tissue can be produced in an in vitro system. This makes it possible to produce an artificial ligament, which is useful for treating movement disorders caused by ligament rupture in athletes and the like.
ウェスタンブロッティングによる、PRELP発現ベクターを導入した間葉系幹細胞の培養上清中のPRELPの検出。Detection of PRELP in the culture supernatant of mesenchymal stem cells introduced with a PRELP expression vector by Western blotting. PuraMatrix培養開始前のpCAGGS-PRELPトランスフェクションしたC3H/10T1/2-clone8マウス間葉系幹細胞(×4)。C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells (× 4) transfected with pCAGGS-PRELP before the start of PuraMatrix culture. PuraMatrix培養後、1日目のpCAGGS-PRELPトランスフェクションしたC3H/10T1/2-clone8マウス間葉系幹細胞(×4)。C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells (× 4) transfected with pCAGGS-PRELP on day 1 after PuraMatrix culture. PuraMatrix培養後、2日目のpCAGGS-PRELPトランスフェクションしたC3H/10T1/2-clone8マウス間葉系幹細胞(×4)。C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells (× 4) transfected with pCAGGS-PRELP on the second day after PuraMatrix culture. pCAGGS-PRELPトランスフェクションしたC3H/10T1/2-clone8マウス間葉系幹細胞により形成された平行線維性結合組織の電子顕微鏡写真。Electron micrograph of parallel fibrous connective tissue formed by C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells transfected with pCAGGS-PRELP. pCAGGS-PRELPベクターをトランスフェクトしたC3H/10T1/2マウス間葉系幹細胞の免疫組織染色像。I型コラーゲン:Alexa Fluor 488、ファロイジン:Alexa Fluor 568、及びDAPI。Immunohistochemically stained images of C3H / 10T1 / 2 mouse mesenchymal stem cells transfected with pCAGGS-PRELP vector. Type I collagen: Alexa Fluor 488, phalloidin: Alexa Fluor 568, and DAPI. pCAGGS-PRELPベクターをトランスフェクトしたC3H/10T1/2マウス間葉系幹細胞から誘導された線維状の靭帯様組織の免疫組織染色像。PRELP:Alexa Fluor 488、及びDAPI。An immunohistochemically stained image of a fibrous ligament-like tissue derived from a C3H / 10T1 / 2 mouse mesenchymal stem cell transfected with the pCAGGS-PRELP vector. PRELP: Alexa Fluor 488, and DAPI. pCAGGS-PRELPベクターをトランスフェクトしたC3H/10T1/2マウス間葉系幹細胞から誘導された靭帯様組織の透過型電子顕微鏡像。Transmission electron micrograph of ligament-like tissue derived from C3H / 10T1 / 2 mouse mesenchymal stem cells transfected with pCAGGS-PRELP vector. ヒト前十字靭帯(ACL)、ヒト後十字靭帯(PCL)、ヒトOPLL組織及びヒト腱におけるPRELPの発現。*P<0.05、**P<0.05、***P<0.05。PRELP expression in human anterior cruciate ligament (ACL), human posterior cruciate ligament (PCL), human OPLL tissue and human tendon. * P <0.05, ** P <0.05, *** P <0.05. 間葉系幹細胞、並びにそれから誘導されたヒト靭帯様組織及びマウス靭帯様組織におけるI型コラーゲンの発現(ELISA)。Expression of type I collagen (ELISA) in mesenchymal stem cells and human and mouse ligament-like tissues derived therefrom. 間葉系幹細胞、並びにそれから誘導されたヒト靭帯様組織及びマウス靭帯様組織におけるI型コラーゲンの発現(リアルタイムPCR)。Expression of type I collagen in mesenchymal stem cells and human and mouse ligament-like tissues derived therefrom (real-time PCR). PRELPを標的とするshRNA(shRNA-PRELP)の導入による、PDGF-AA、MMP-13及びI型コラーゲンの発現の抑制(ELISA)。バーは、左からPDGF、I型コラーゲン及びPDGFを示す。*P<0.001、**P<0.001。Inhibition of expression of PDGF-AA, MMP-13 and type I collagen (ELISA) by introduction of shRNA targeting PRELP (shRNA-PRELP). Bars indicate PDGF, type I collagen and PDGF from the left. * P <0.001, ** P <0.001. PRELPを標的とするshRNA(shRNA-PRELP)の導入により、MMP-13及びI型コラーゲンの発現の抑制。Suppression of MMP-13 and type I collagen expression by introduction of shRNA targeting PRELP (shRNA-PRELP). ヒト靭帯様組織、ヒトPCL組織、ヒトOPLL組織及びヒトACL組織におけるI型コラーゲンの発現(ウェスタンブロッティング)。Expression of type I collagen in human ligament-like tissue, human PCL tissue, human OPLL tissue and human ACL tissue (Western blotting). マウス間葉系幹細胞、及び該幹細胞から誘導された靭帯様組織におけるI型コラーゲンの発現(フローサイトメトリー)。Expression of type I collagen in mouse mesenchymal stem cells and ligament-like tissues derived from the stem cells (flow cytometry). 野生型マウス(WT)及びPRELPトランスジェニックマウス(Tg)の骨格標本(A及びB)及び大腿骨像(C及びD)。Skeletal specimens (A and B) and femur images (C and D) of wild-type mice (WT) and PRELP transgenic mice (Tg). 野生型マウス(WT)及びPRELPトランスジェニックマウス(Tg)の大腿骨のBMD(左)、BMC(右)及びTV(中)。*P=0.063、**P=0.058、*** P=0.071。BMD (left), BMC (right) and TV (middle) of the femurs of wild-type mice (WT) and PRELP transgenic mice (Tg). * P = 0.063, ** P = 0.058, *** P = 0.071. 野生型マウス(WT)及びPRELPトランスジェニックマウス(Tg)の脊髄靭帯、膝靭帯、歯周靭帯、及び皮膚組織の抗PRELP抗体による免疫組織染色像。Immunohistochemical staining images of spinal ligament, knee ligament, periodontal ligament, and skin tissue of wild type mouse (WT) and PRELP transgenic mouse (Tg) with anti-PRELP antibody. 野生型マウス(WT)及びPRELPトランスジェニックマウス(Tg)の靭帯のストレッチング解析。*P<0.05。Stretching analysis of ligaments of wild type mice (WT) and PRELP transgenic mice (Tg). * P <0.05. 野生型マウス(WT)及びPRELPトランスジェニックマウス(Tg)の血及び尿中のI型コラーゲン及びMMP-13濃度。バーは、左からI型コラーゲン、MMP-13を示す。*P<0.05。Type I collagen and MMP-13 concentrations in blood and urine of wild type mice (WT) and PRELP transgenic mice (Tg). Bars indicate type I collagen, MMP-13 from the left. * P <0.05. PRELPを導入したマウス間葉系幹細胞から調製した、靭帯様組織とヒト骨芽細胞との融合。セルサイクルの静止期(A)及び分裂中期(B)を示す。Fusion of ligament-like tissue and human osteoblasts prepared from mouse mesenchymal stem cells introduced with PRELP. The stationary phase (A) and metaphase (B) of the cell cycle are shown. ニワトリの靭帯と骨組織との間の癒着領域における、PRELP(Alexa Fluor 488)及びII型コラーゲン(Alexa Fluor 555)の発現。Expression of PRELP (Alexa Fluor 488) and type II collagen (Alexa Fluor 555) in the adhesion region between chicken ligament and bone tissue. pPyCAG-cHA-IpacflexEGFP-PRELPを含む培養液中で培養し、修復されたニワトリから前十時靭帯。GFP蛍光(左)、ヘマトキシリン-エオシン染色(右)。Anterior ten-thousand ligament from a chicken that has been cultured and repaired in a culture medium containing pPyCAG-cHA-IpacflexEGFP-PRELP. GFP fluorescence (left), hematoxylin-eosin staining (right). マウス間葉系幹細胞、野生型マウスの靭帯組織、PRELPトランスジェニックマウスの靭帯組織、及びマウス間葉系幹細胞由来靭帯組織についての、アレイ-GCHによる遺伝子発現解析。Gene expression analysis by array-GCH for mouse mesenchymal stem cells, ligament tissue of wild-type mice, ligament tissue of PRELP transgenic mice, and ligament tissue of mouse mesenchymal stem cells. マウス間葉系幹細胞、野生型マウスの靭帯組織、PRELPトランスジェニックマウスの靭帯組織、及びマウス間葉系幹細胞由来靭帯組織についての、アレイ-GCHによる遺伝子発現解析。Gene expression analysis by array-GCH for mouse mesenchymal stem cells, ligament tissue of wild-type mice, ligament tissue of PRELP transgenic mice, and ligament tissue of mouse mesenchymal stem cells. PRELPについてのIPA。IPA for PRELP. PRELPの発現ルートの解析。(A)ZnClで処理したマウス間葉系幹細胞のNF-κB-p65発現。(B)PRELP遺伝子を導入したマウス間葉系幹細胞をTNF-αで処理することにより形成された靭帯様組織。PRELP遺伝子を導入したマウス間葉系幹細胞をTNF-αで処理してから3時間後(C)、6時間後(D)及び12時間後(E)におけるNFκB(Alexa Fluor 555)及びPRELP(Alexa Fluor 350)の細胞内分布。Analysis of PRELP expression route. (A) NF-κB-p65 expression in mouse mesenchymal stem cells treated with ZnCl 2 . (B) A ligament-like tissue formed by treating mouse mesenchymal stem cells introduced with the PRELP gene with TNF-α. NFκB (Alexa Fluor 555) and PRELP (Alexa) at 3 hours (C), 6 hours (D) and 12 hours (E) after treatment of mouse mesenchymal stem cells introduced with the PRELP gene with TNF-α Intracellular distribution of Fluor 350). PRELPの発現ルートの解析。10 μM(F)、30 μM(G)、及び50 μM(H)のZnCl2で処理した、PRELP遺伝子を導入したマウス間葉系幹細胞のNFκB p65(Alexa Fluor 488)及びDAPI蛍光イメージ。TNF-α(I)又はZnCl2(J)で処理した、PRELP遺伝子を導入したマウス間葉系幹細胞のNFκB p65(Alexa Fluor 488)及びDAPI蛍光イメージ。Analysis of PRELP expression route. NFκB p65 (Alexa Fluor 488) and DAPI fluorescence images of mouse mesenchymal stem cells transfected with PRELP gene treated with 10 μM (F), 30 μM (G), and 50 μM (H) ZnCl 2 . NFκB p65 (Alexa Fluor 488) and DAPI fluorescence image of mouse mesenchymal stem cells introduced with PRELP gene treated with TNF-α (I) or ZnCl 2 (J). 各種の処理を施した、pCAGGS-PRELPを導入したヒト間葉系幹細胞に由来する靭帯様組織におけるNF-kBIA、MEKK3、TAK-1及びTRAF6遺伝子発現。バーは左から、NF-kBIA、MEKK3、TAK-1及びTRAF6を示す。NF-kBIA, MEKK3, TAK-1 and TRAF6 gene expression in ligament-like tissues derived from human mesenchymal stem cells introduced with pCAGGS-PRELP after various treatments. Bars indicate NF-kBIA, MEKK3, TAK-1 and TRAF6 from the left. 各種の処理を施した、pCAGGS-PRELPを導入したヒト間葉系幹細胞に由来する靭帯様組織におけるNF-κB-p65、-p52、-p50、及びc-Relの発現。バーは左から、NF-κB-p65、-p52、-p50、及びc-Relを示す。Expression of NF-κB-p65, -p52, -p50, and c-Rel in ligament-like tissue derived from human mesenchymal stem cells introduced with pCAGGS-PRELP after various treatments. Bars indicate NF-κB-p65, -p52, -p50, and c-Rel from the left. TNF-αによりPRELPを発現したヒト間葉系幹細胞におけるTAK1、TRAF6、MEKK3、及びNFκB p65の発現。Expression of TAK1, TRAF6, MEKK3, and NFκB p65 in human mesenchymal stem cells expressing PRELP by TNF-α. PRELPを導入したマウス間葉系幹細胞から調製した靭帯様組織による歯周ポケットの再建。Periodontal pocket reconstruction with ligament-like tissue prepared from mouse mesenchymal stem cells introduced with PRELP.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(平行線維性結合組織の製造方法)
 本発明は、PRELPと接触させた状態で間葉系幹細胞を培養すること、及び培養物から線維組織を単離することを含む、平行線維性結合組織の製造方法を提供する。
(Method for producing parallel fibrous connective tissue)
The present invention provides a method for producing parallel fibrous connective tissue, comprising culturing mesenchymal stem cells in contact with PRELP and isolating fibrous tissue from the culture.
 Proline/arginine-rich end leucine-rich repeat protein(PRELP)は、生体内において結合組織細胞外マトリクスに含まれる公知のポリペプチドである。 Proline / arginine-rich-end-leucine-rich-repeat protein (PRELP) is a known polypeptide contained in the connective tissue extracellular matrix in vivo.
 本明細書中、PRELPは通常、哺乳動物由来のものを意味する。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ、ミンク等の家畜、イヌ、ネコ等のペット、ヒト、サル、カニクイザル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来るが、これらに限定されるものではない。PRELPは、好ましくは霊長類(ヒト等)又はげっ歯類(マウス等)由来のものである。 In the present specification, PRELP usually means a mammal-derived one. Examples of mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees. PRELP is preferably derived from primates (such as humans) or rodents (such as mice).
 本明細書中、ポリペプチドやポリヌクレオチド等の因子について、「生物X由来」とは、該ポリペプチド又はポリヌクレオチドが、生物Xにおいて天然に発現しているポリペプチド又はポリヌクレオチドと同一又は実質的に同一のアミノ酸配列又はポリヌクレオチド配列を含むことを意味する。「実質的に同一」とは、着目したアミノ酸配列又は核酸配列が、生物Xにおいて天然に発現している因子のアミノ酸配列又は核酸配列と70%以上(好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、最も好ましくは99%以上)の同一性を有しており、且つ当該タンパク質の活性が維持されていることを意味する。 In the present specification, with respect to factors such as polypeptides and polynucleotides, “derived from organism X” means that the polypeptide or polynucleotide is the same or substantially the same as the polypeptide or polynucleotide naturally expressed in organism X. It is meant to contain the same amino acid sequence or polynucleotide sequence. “Substantially the same” means that the focused amino acid sequence or nucleic acid sequence is 70% or more (preferably 80% or more, more preferably 90%) of the amino acid sequence or nucleic acid sequence of the factor naturally expressed in the organism X Or more, more preferably 95% or more, most preferably 99% or more), and the activity of the protein is maintained.
 PRELPのヌクレオチド配列やアミノ酸配列は公知である。ヒトPRELP及びマウスPRELPの代表的なアミノ酸配列及びそれをコードするポリヌクレオチド配列(cDNA配列)は以下の通りである。尚、かっこ内は、NCBIが提供するGENBANKのアクセッション番号を示す。
[ヒトPRELP アミノ酸配列]
配列番号2(NP_002716):配列番号1(NM_002725 REGION: 201..1349)のポリヌクレオチドによりコード
配列番号4(NP_958505):配列番号3(NM_201348 REGION: 191..1339)のポリヌクレオチドによりコード
配列番号6(配列番号2からシグナル配列(1-20)を削除した(成熟型)):配列番号5(配列番号1からシグナル配列コード領域を削除)のポリヌクレオチドによりコード
配列番号8(配列番号4からシグナル配列(1-20)を削除した(成熟型)):配列番号7(配列番号3からシグナル配列コード領域を削除)のポリヌクレオチドによりコード
[マウスPRELP アミノ酸配列]
配列番号10(NP_473418):配列番号9(NM_054077 REGION: 164..1300)のポリヌクレオチドによりコード
配列番号12(配列番号10からシグナル配列(1-21)を削除した(成熟型)):配列番号11(配列番号9からシグナル配列コード領域を削除)のポリヌクレオチドによりコード
The nucleotide sequence and amino acid sequence of PRELP are known. Representative amino acid sequences of human PRELP and mouse PRELP and polynucleotide sequences (cDNA sequences) encoding the same are as follows. The parentheses indicate GENBANK accession numbers provided by NCBI.
[Human PRELP amino acid sequence]
SEQ ID NO: 2 (NP_002716): encoded by the polynucleotide of SEQ ID NO: 1 (NM_002725 REGION: 201..1349) SEQ ID NO: 4 (NP_958505): encoded by the polynucleotide of SEQ ID NO: 3 (NM_201348 REGION: 191..1339) 6 (signal sequence (1-20) was deleted from SEQ ID NO: 2 (mature type)): encoded by SEQ. ID. Signal sequence (1-20) was deleted (mature type)): encoded by polynucleotide of SEQ ID NO: 7 (signal sequence coding region deleted from SEQ ID NO: 3) [Mouse PRELP amino acid sequence]
SEQ ID NO: 10 (NP_473418): Coding SEQ ID NO: 12 (signal sequence (1-21) was deleted from SEQ ID NO: 10 (mature)) with the polynucleotide of SEQ ID NO: 9 (NM_054077 REGION: 164..1300): SEQ ID NO: 11 (deleting the signal sequence coding region from SEQ ID NO: 9)
 本明細書中、PRELPの活性とは、間葉系幹細胞へ接触させた状態で該細胞を培養することにより、平行線維性結合組織の形成を誘導する活性を意味する。 In this specification, the activity of PRELP means the activity of inducing the formation of parallel fibrous connective tissue by culturing the cells in contact with the mesenchymal stem cells.
 本明細書中、「間葉系幹細胞」とは、未分化の状態で増殖し、骨細胞、軟骨細胞及び脂肪細胞の全て又はいくつかへの分化が可能な幹細胞又はその前駆細胞の集団を広義に意味する。 In the present specification, the term “mesenchymal stem cell” broadly means a population of stem cells or progenitor cells that proliferate in an undifferentiated state and can differentiate into all or some of bone cells, chondrocytes and adipocytes. Means to.
 本明細書中、間葉系幹細胞は、通常、哺乳動物由来のものを意味する。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ、ミンク等の家畜、イヌ、ネコ等のペット、ヒト、サル、カニクイザル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来るが、これらに限定されるものではない。間葉系幹細胞は、好ましくは霊長類(ヒト等)又はげっ歯類(マウス等)由来のものである。 In the present specification, a mesenchymal stem cell usually means a mammal-derived one. Examples of mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees. The mesenchymal stem cells are preferably derived from primates (human etc.) or rodents (mouse etc.).
 生体においては、間葉系幹細胞は骨髄、末梢血、臍帯血、脂肪組織等の組織中に低頻度で存在する。間葉系幹細胞は、これらの組織から公知の方法で単離することが出来る。例えば、間葉系幹細胞は、パーコールグラディエント法により骨髄液から単離することができる(Hum. Cell, vol.10, p.45-50, 1997)。或いは、骨髄穿刺後の造血幹細胞等の培養、継代により間葉系幹細胞を単離することができる(Journal of Autoimmunity, 30 (2008) 163e171)。ヒト滑膜、半月板、関節内靭帯、筋肉、脂肪組織、及び骨髄からセルソーターで間葉系幹細胞を単離する方法が報告されている(Journal of Orthopaedic Research, 27:435-441, 2009)。また、市販された間葉系幹細胞を用いてもよい。 In the living body, mesenchymal stem cells are present at low frequency in tissues such as bone marrow, peripheral blood, umbilical cord blood, and adipose tissue. Mesenchymal stem cells can be isolated from these tissues by a known method. For example, mesenchymal stem cells can be isolated from bone marrow fluid by the Percoll gradient method (Hum. Cell, vol.10, p.45-50, 1997). Alternatively, mesenchymal stem cells can be isolated by culture and passage of hematopoietic stem cells after bone marrow puncture (Journalourof Autoimmunity, 30 (2008) 163e171). A method for isolating mesenchymal stem cells from human synovium, meniscus, intra-articular ligament, muscle, adipose tissue, and bone marrow using a cell sorter has been reported (Journal of Orthopaedic Research, 27: 435-441, 2009). Commercially available mesenchymal stem cells may also be used.
 本発明において用いられる間葉系幹細胞は、好ましくは単離されている。「単離」とは、天然に存在する状態とは異なる状態に人為的に置かれること、例えば、天然に存在する状態から、目的とする成分以外の成分を除去する操作が施されていることを意味する。 The mesenchymal stem cells used in the present invention are preferably isolated. “Isolated” means that the artificially placed in a state different from the naturally occurring state, for example, an operation to remove components other than the target component from the naturally occurring state. Means.
 単離された間葉系幹細胞の純度(総細胞数に占める間葉系幹細胞の百分率)は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは実質的に100%である。 The purity of the isolated mesenchymal stem cells (percentage of mesenchymal stem cells in the total number of cells) is usually 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably substantially 100. %.
 間葉系幹細胞を採取するソースとなる個体は特に制限されないが、得られる線維組織が移植医療に使用される場合には、拒絶反応が起こらないという観点から、患者自身又はMHCの型が同一もしくは実質的に同一の他個体から間葉系幹細胞を採取することが好ましい。ここでMHCの型が「実質的に同一」とは、免疫抑制剤等の使用により、該間葉系幹細胞から得られた線維組織を患者に移植した場合に移植した線維組織中に含まれる細胞が生着可能な程度にMHCの型が一致していることをいう。 The individual that is the source from which the mesenchymal stem cells are collected is not particularly limited. However, when the obtained fibrous tissue is used for transplantation medicine, the patient itself or the MHC type is the same or not from the viewpoint that rejection does not occur. It is preferable to collect mesenchymal stem cells from substantially the same individual. Here, the type of MHC is “substantially the same” means that cells contained in the transplanted fibrous tissue when the fibrous tissue obtained from the mesenchymal stem cells is transplanted into a patient by using an immunosuppressant or the like. This means that the MHC types match to such an extent that can be engrafted.
 また、製造する平行線維性結合組織の機能の強化という観点から、強靭な平行線維性結合組織を形成する遺伝的なバックグラウンドを有する同種異系の間葉系幹細胞(例えば、ヒトの場合、黒人の間葉系幹細胞)を用いることも、また好ましい。 In addition, from the viewpoint of enhancing the function of the parallel fibrous connective tissue to be produced, allogeneic mesenchymal stem cells having a genetic background that forms a strong parallel fibrous connective tissue (for example, black in the case of humans) It is also preferred to use mesenchymal stem cells).
 間葉系幹細胞は、その培養に適した自体公知の培地で前培養することができる。そのような培地としては、例えば、約5~20%の胎仔ウシ血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、Basal Medium Eagle、RPMI1640培地、199培地、F12培地等が挙げられるが、それらに限定されない。 Mesenchymal stem cells can be pre-cultured in a medium known per se suitable for the culture. Examples of such a medium include a minimum essential medium (MEM) containing about 5 to 20% fetal bovine serum, Dulbecco's modified Eagle medium (DMEM), Basal Medium Eagle, RPMI 1640 medium, 199 medium, F12 medium, and the like. However, it is not limited to them.
 本発明において、PRELPと接触させた状態での間葉系幹細胞の培養方法は、特に限定されることはなく、線維組織の形成を誘導可能であればいかなる方法であってもよい。例えば、(A)PRELP発現ベクターが導入された間葉系幹細胞を培養する方法、(B)線維組織の形成を誘導するのに十分な量のPRELP(好ましくは、単離されたPRELP)を含有する培地中で間葉系幹細胞を培養する方法等を採用することができる。(A)においては、導入された発現ベクターから発現したPRELPが間葉系幹細胞の微小環境中や培地中に放出され、これが間葉系幹細胞へ接触する。好ましくは、PRELP発現ベクターが導入された間葉系幹細胞を培養する。 In the present invention, the method for culturing mesenchymal stem cells in contact with PRELP is not particularly limited, and any method may be used as long as it can induce the formation of fibrous tissue. For example, (A) a method for culturing a mesenchymal stem cell into which a PRELP expression vector has been introduced, (B) a sufficient amount of PRELP (preferably isolated PRELP) to induce the formation of fibrous tissue A method of culturing mesenchymal stem cells in a medium to be used can be employed. In (A), PRELP expressed from the introduced expression vector is released into the microenvironment of the mesenchymal stem cell or into the medium, and this contacts the mesenchymal stem cell. Preferably, mesenchymal stem cells into which a PRELP expression vector has been introduced are cultured.
 PRELP発現ベクターは、プロモーター及びPRELPをコードするポリヌクレオチドを含み、当該プロモーターは作動可能に当該ポリヌクレオチドに連結されている。当該プロモーターは、宿主である間葉系幹細胞内で転写を開始可能なものであれば特に限定されない。 The PRELP expression vector includes a promoter and a polynucleotide encoding PRELP, and the promoter is operably linked to the polynucleotide. The promoter is not particularly limited as long as it can initiate transcription in a mesenchymal stem cell as a host.
 発現ベクターとしては、特に限定されないが、例えば、レトロウイルス(レンチウイルスを含む)、アデノウイルス、アデノ随伴ウイルス、センダイウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シルビスウイルス、ラブドウイルス、パラミクソウイルス、オルソミクソウイルス等のウイルスベクター;YAC(Yeast artificial chromosome)ベクター、BAC(Bacterial artificial chromosome)ベクター、PAC(P1-derived artificial chromosome)ベクター等の人工染色体ベクター;プラスミドベクター;宿主細胞内で自律複製可能なエピゾーマルベクター等が挙げられる。該ベクターを間葉系幹細胞に導入する場合は、リポフェクション法、マイクロインジェクション法、DEAEデキストラン法、遺伝子銃法、エレクトロポレーション法、リン酸カルシウム法等の方法を用いることができる。 Although it does not specifically limit as an expression vector, For example, retrovirus (including lentivirus), adenovirus, adeno-associated virus, Sendai virus, herpes virus, vaccinia virus, pox virus, poliovirus, silbis virus, rhabdovirus, Virus vectors such as paramyxoviruses, orthomyxoviruses; artificial chromosome vector plasmids such as YAC (Yeast artificial chromosome) vector, BAC (Bacterial artificial chromosome) vector, PAC (P1-derived artificial chromosome) vector; Examples include an episomal vector capable of autonomous replication. When introducing the vector into mesenchymal stem cells, a lipofection method, a microinjection method, a DEAE dextran method, a gene gun method, an electroporation method, a calcium phosphate method, or the like can be used.
 また、発現ベクターとしてウイルスベクターを用いる場合は、パッケージング細胞を利用することもできる。パッケージング細胞とは、ウイルスの構造タンパク質をコードする遺伝子を導入した細胞であって、この細胞に目的遺伝子を組み込んだ組換えウイルスDNAを導入すると、該組換えウイルス粒子を産生するものをいう。それゆえパッケージング細胞としては、ウイルス粒子の構成に必要なタンパク質を組換えウイルスベクターに対して補給する細胞であればいかなるものも用いることができ、例えば、ヒト腎臓由来のHEK293細胞やマウス線維芽細胞由来のNIH3T3細胞をベースにしたパッケージング細胞;Ecotropic virus由来エンベロープ糖タンパク質を発現するよう設計されているPlat-E細胞、Amphotropic virus由来エンベロープ糖タンパク質を発現するよう設計されているPlat-A細胞、及び水疱性口内炎ウイルス由来エンベロープ糖タンパク質を発現するよう設計されているPlat-GP細胞等を用いることができる(Plat-E細胞、Plat-A細胞及びPlat-GP細胞は、CELL BIOLABS社より購入することができる)。該パッケージング細胞へのウイルスベクターの導入方法としては、特に限定されるものではなく、リポフェクション、エレクトロポレーション、リン酸カルシウム法等の従来公知の方法を利用することができる。 Further, when a viral vector is used as an expression vector, a packaging cell can also be used. A packaging cell refers to a cell into which a gene encoding a viral structural protein has been introduced, which produces the recombinant virus particle when a recombinant viral DNA incorporating the target gene is introduced into the cell. Therefore, any cell can be used as the packaging cell as long as it is a cell that replenishes the recombinant virus vector with a protein necessary for the construction of the virus particles. For example, HEK293 cells derived from human kidney or mouse fibroblasts can be used. Cell-derived NIH3T3 cell-based packaging cells; Platro-E cells designed to express Ecotropic virus-derived envelope glycoproteins, Plato-A cells designed to express Amphotropic virus-derived envelope glycoproteins And Plato-GP cells designed to express vesicular stomatitis virus-derived envelope glycoprotein can be used (Plat-E cells, Plat-A cells and Plat-GP cells are CEL It can be purchased from L BIOLABS). The method for introducing the viral vector into the packaging cell is not particularly limited, and a conventionally known method such as lipofection, electroporation, or calcium phosphate method can be used.
 また、発現ベクターを用いて遺伝子を導入する場合は、該遺伝子の導入を確認するため同時にマーカー遺伝子を利用することもできる。マーカー遺伝子とは、該マーカー遺伝子を細胞に導入することにより、細胞の選別や選択を可能とするような遺伝子全般をいい、例えば、薬剤耐性遺伝子、蛍光タンパク質遺伝子、発光酵素遺伝子、発色酵素遺伝子等が挙げられる。薬剤耐性遺伝子としては、ネオマイシン耐性遺伝子、テトラサイクリン耐性遺伝子、カナマイシン耐性遺伝子、ゼオシン耐性遺伝子、ハイグロマイシン耐性遺伝子等が挙げられ、蛍光タンパク質遺伝子としては、緑色蛍光タンパク質(GFP)遺伝子、黄色蛍光タンパク質(YFP)遺伝子、赤色蛍光タンパク質(RFP)遺伝子等が挙げられる。また、発光酵素遺伝子としては、ルシフェラーゼ遺伝子等が挙げられ、発色酵素遺伝子としては、βガラクトシターゼ遺伝子、βグルクロニダーゼ遺伝子、アルカリフォスファターゼ遺伝子等が挙げられる。これらのマーカー遺伝子については一種又は二種以上を組み合わせて用いることができ、また、ネオマイシン耐性遺伝子とβガラクトシダーゼ遺伝子との融合遺伝子であるβgeo遺伝子等のような、二種以上のマーカー遺伝子を含む融合遺伝子も用いることができる。 In addition, when a gene is introduced using an expression vector, a marker gene can be used simultaneously to confirm the introduction of the gene. The marker gene refers to all genes that enable selection and selection of cells by introducing the marker gene into cells, such as drug resistance genes, fluorescent protein genes, luminescent enzyme genes, chromogenic enzyme genes, etc. Is mentioned. Examples of drug resistance genes include neomycin resistance gene, tetracycline resistance gene, kanamycin resistance gene, zeocin resistance gene, hygromycin resistance gene and the like, and fluorescent protein genes include green fluorescent protein (GFP) gene, yellow fluorescent protein (YFP). ) Gene, red fluorescent protein (RFP) gene and the like. Further, examples of the luminescent enzyme gene include a luciferase gene, and examples of the chromogenic enzyme gene include a β-galactosidase gene, a β-glucuronidase gene, and an alkaline phosphatase gene. These marker genes can be used singly or in combination of two or more, and also include a fusion containing two or more marker genes such as a βgeo gene that is a fusion gene of a neomycin resistance gene and a β-galactosidase gene. Genes can also be used.
 発現ベクターは、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、SV40複製オリジン(以下、SV40oriと略称する場合がある)などを、それぞれ機能可能な態様で含有していてもよい。 The expression vector may contain an enhancer, a splicing signal, a poly A addition signal, an SV40 replication origin (hereinafter sometimes abbreviated as SV40ori) and the like in a functional manner as desired.
 本発明は、このようにして得られたPRELP発現ベクターが導入された間葉系幹細胞をも提供する。当該間葉系幹細胞においては、導入された発現ベクターがゲノム内に組み込まれていてもよい。このような間葉系幹細胞は、ゲノム構造において、もとの間葉系幹細胞や、天然の哺乳動物から単離された間葉系幹細胞と明確に区別され得る。また、染色体外で自律複製可能なエピゾーマルベクターを用いた場合、ゲノム上には組み込まれないが、PRELPは遺伝的に安定に間葉系幹細胞内に存在し、発現され得るので、このようなベクターを用いて得られる間葉系幹細胞もまた、本発明の範囲に包含される。 The present invention also provides mesenchymal stem cells into which the PRELP expression vector thus obtained has been introduced. In the mesenchymal stem cell, the introduced expression vector may be integrated into the genome. Such mesenchymal stem cells can be clearly distinguished from the original mesenchymal stem cells and mesenchymal stem cells isolated from natural mammals in the genome structure. In addition, when an episomal vector capable of autonomous replication outside the chromosome is used, PRELP is genetically stably present in mesenchymal stem cells and can be expressed. Mesenchymal stem cells obtained using such vectors are also encompassed within the scope of the present invention.
 間葉系幹細胞の培養に用いられる培地は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、ハムF12培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地等、動物細胞の培養に用いることのできる培地であれば特に限定されない。 A medium used for culturing mesenchymal stem cells can be prepared using a medium used for culturing animal cells as a basal medium. As the basal medium, for example, BME medium, BGJb medium, CMRL61066 medium, Glasgow MEM medium, Improve MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, αMEM medium, DMEM medium, Ham F12 medium, RPMI 1640 The medium is not particularly limited as long as it can be used for culturing animal cells, such as a medium, Fischer's medium, and mixed medium thereof.
 また、該培地は、血清含有培地又は無血清培地とすることができる。無血清培地とは、無調整又は未精製の血清を含まない培地を意味し、精製された血液由来成分や動物組織由来成分(例えば、増殖因子)が混入している培地や血清代替試薬(例えば、KSR(Invitrogen社)等)が添加されている培地などは無血清培地に該当するものとする。 The medium can be a serum-containing medium or a serum-free medium. A serum-free medium means a medium that does not contain unadjusted or unpurified serum, and is a medium or serum replacement reagent (for example, a purified blood-derived component or animal tissue-derived component (eg, growth factor)). , KSR (Invitrogen) etc.) is added to the serum-free medium.
 一態様において、間葉系幹細胞の培養に用いられる培地はTNF-αを含む。TNF-αの存在下で、PRELPと接触させた状態で間葉系幹細胞を培養することにより、平行線維性結合組織の形成が促進されることが期待される。例えば、TNF-αの存在下で、PRELPと接触させた状態で間葉系幹細胞を培養することにより、平行線維性結合組織の形成が促進され、TNF-αの非存在下条件と比較して、平行線維性結合組織がより短時間で形成されることが期待される。一態様において、TNF-αの存在下で、PRELPと接触させた状態で間葉系幹細胞を少なくとも24時間培養することにより、平行線維性結合組織が形成される。 In one embodiment, the medium used for culturing mesenchymal stem cells contains TNF-α. It is expected that the formation of parallel fibrous connective tissue is promoted by culturing mesenchymal stem cells in the presence of TNF-α in contact with PRELP. For example, by culturing mesenchymal stem cells in contact with PRELP in the presence of TNF-α, the formation of parallel fibrous connective tissue is promoted, compared with the conditions in the absence of TNF-α. The parallel fibrous connective tissue is expected to be formed in a shorter time. In one embodiment, parallel fibrous connective tissue is formed by culturing mesenchymal stem cells in the presence of TNF-α in contact with PRELP for at least 24 hours.
 本明細書中、TNF-αは通常、哺乳動物由来のものを意味する。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ、ミンク等の家畜、イヌ、ネコ等のペット、ヒト、サル、カニクイザル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来るが、これらに限定されるものではない。PRELPは、好ましくは霊長類(ヒト等)又はげっ歯類(マウス等)由来のものである。 In the present specification, TNF-α usually means a mammal-derived one. Examples of mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, pets such as dogs and cats, humans, Examples include, but are not limited to, primates such as monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees. PRELP is preferably derived from primates (such as humans) or rodents (such as mice).
 TNF-αのヌクレオチド配列やアミノ酸配列は公知である。ヒトTNF-α及びマウスTNF-αの代表的なアミノ酸配列及びそれをコードするポリヌクレオチド配列(cDNA配列)は以下の通りである。尚、かっこ内は、NCBIが提供するGENBANKのアクセッション番号を示す。
[ヒトTNF-α アミノ酸配列]
配列番号14(NP_000585.2):配列番号13(NM_000594.3 REGION: 176..877)のポリヌクレオチドによりコード
[マウスPRELP アミノ酸配列]
配列番号16(NP_038721.1):配列番号15(NM_013693.2 REGION: 157..864)のポリヌクレオチドによりコード
The nucleotide sequence and amino acid sequence of TNF-α are known. Representative amino acid sequences of human TNF-α and mouse TNF-α and polynucleotide sequences (cDNA sequences) encoding the same are as follows. The parentheses indicate GENBANK accession numbers provided by NCBI.
[Human TNF-α amino acid sequence]
SEQ ID NO: 14 (NP_000585.2): encoded by the polynucleotide of SEQ ID NO: 13 (NM_000594.3 REGION: 176..877) [mouse PRELP amino acid sequence]
SEQ ID NO: 16 (NP_038721.1): encoded by the polynucleotide of SEQ ID NO: 15 (NM_013693.2 REGION: 157..864)
 培地中のTNF-α濃度は、平行線維性結合組織の形成を促進する範囲で、当業者であれば適宜設定することが可能であるが、通常0.5~500ng/mL、好ましくは1~100ng/mL程度である。 The concentration of TNF-α in the medium can be appropriately set by those skilled in the art within the range of promoting the formation of parallel fibrous connective tissue, but is usually 0.5 to 500 ng / mL, preferably 1 to It is about 100 ng / mL.
 TNF-αは、好ましくは単離されている。単離されたTNF-αの純度(総タンパク質重量に占めるTNF-αの重量の百分率)は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは100%である。 TNF-α is preferably isolated. The purity of the isolated TNF-α (percentage of the weight of TNF-α in the total protein weight) is usually 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 100%. .
 一態様において、間葉系幹細胞の培養に用いられる培地は亜鉛イオン(Zn2+)を含む。Zn2+の存在下で、PRELPと接触させた状態で間葉系幹細胞を培養することにより、平行線維性結合組織の形成が促進されることが期待される。 In one embodiment, the medium used for culturing mesenchymal stem cells contains zinc ions (Zn 2+ ). It is expected that the formation of parallel fibrous connective tissue is promoted by culturing mesenchymal stem cells in the presence of Zn 2+ in contact with PRELP.
 培地中のZn2+濃度は、平行線維性結合組織の形成を促進する範囲で、当業者であれば適宜設定することが可能であるが、通常1~100μM、好ましくは10~50μM程度である。 The concentration of Zn 2+ in the medium can be appropriately set by those skilled in the art within the range of promoting the formation of parallel fibrous connective tissue, but is usually about 1 to 100 μM, preferably about 10 to 50 μM.
 一態様において、間葉系幹細胞の培養に用いられる培地は、TNF-α及び亜鉛イオンを含む、TNF-α及び亜鉛イオンの存在下で、PRELPと接触させた状態で間葉系幹細胞を培養することにより、平行線維性結合組織の形成が強力に促進されることが期待される。 In one embodiment, the medium used for culturing mesenchymal stem cells comprises culturing mesenchymal stem cells in contact with PRELP in the presence of TNF-α and zinc ions, including TNF-α and zinc ions. Thus, it is expected that the formation of parallel fibrous connective tissue is strongly promoted.
 TNF-α及び亜鉛イオンを併用する際の各因子の濃度は、平行線維性結合組織の形成を促進する範囲で、当業者であれば適宜設定することが可能であるが、上述の濃度範囲を例示することができる。 The concentration of each factor in the combined use of TNF-α and zinc ions can be appropriately set by those skilled in the art within the range of promoting the formation of parallel fibrous connective tissue. It can be illustrated.
 該培地は、自体公知の添加物を含むことができる。添加物としては、特に限定されないが、例えば増殖因子(例えばインスリン等)、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えば、非必須アミノ酸)、還元剤(例えば2-メルカプトエタノール等)、抗酸化剤、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、脂肪酸又は脂質、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)、無機塩類等が挙げられる。当該添加物は、それぞれ自体公知の濃度範囲内で含まれることが好ましい。 The medium can contain additives known per se. The additive is not particularly limited, but for example, growth factors (such as insulin), iron sources (such as transferrin), minerals (such as sodium selenate), saccharides (such as glucose), organic acids (such as pyruvic acid, Lactic acid etc.), serum proteins (eg albumin etc.), amino acids (eg non-essential amino acids), reducing agents (eg 2-mercaptoethanol etc.), antioxidants, vitamins (eg ascorbic acid, d-biotin etc.), fatty acids Alternatively, lipids, antibiotics (for example, streptomycin, penicillin, gentamicin, etc.), buffers (for example, HEPES, etc.), inorganic salts and the like can be mentioned. Each of the additives is preferably contained within a concentration range known per se.
 一態様において、間葉系幹細胞は、シャーレ、プレート、ボトル等の培養容器中で、接着培養される。 In one embodiment, the mesenchymal stem cells are adherently cultured in a culture container such as a petri dish, a plate, or a bottle.
 好ましい態様において、間葉系幹細胞の培養は、3次元培養により行われる。3次元培養を行うことにより、平面での接着培養と比較して平行線維性結合組織の形成が促進される。本発明で「3次元培養」とは、ゾル-ゲル転移温度を有し、該転移温度より低い温度で可逆的にゾル状態を示すような高分子化合物を培養用の担体として使用し、必要に応じて、当該培養用担体に、細胞培養用生理活性物質を配合せしめて培養用の組成物として、それを用いて、当該培養用担体又は培養用組成物中の該高分子化合物をゲル状態にした培地中で、該ゲル物質に培養されるべき細胞及び/又は組織が包埋された状態で培養することを意味する。 In a preferred embodiment, the mesenchymal stem cells are cultured by three-dimensional culture. By performing the three-dimensional culture, the formation of parallel fibrous connective tissue is promoted as compared to the adhesion culture on a flat surface. In the present invention, “three-dimensional culture” means that a polymer compound having a sol-gel transition temperature and reversibly showing a sol state at a temperature lower than the transition temperature is used as a culture carrier. Accordingly, a physiologically active substance for cell culture is mixed with the culture support as a culture composition, and the polymer compound in the culture support or culture composition is gelled using the culture support. It means that the cells and / or tissues to be cultured in the gel material are embedded in the prepared medium.
 3次元培養用の担体として使用する高分子化合物としては、例えば、ポリプロピレンオキサイドとポリエチレンオキサイドのブロック共重合体などに代表されるポリアルキレンオキサイドブロック共重合体;メチルセルロース、ヒドロキシプロピルセルロースなどのエーテル化セルロース;キトサン誘導体(K. R. Holme. et al. Macromolecules, 24, 3828(1991));プルラン誘導体(出口茂ら、Polymer Preprints. Japan. 19, 936(1990))などの変性多糖類;ポリN-置換(メタ)アクリルアミド誘導体、ポリビニルアルコール部分酢化物、ポリビニルメチルエーテルなどに代表される温度感応性高分子と水溶性高分子化合物との結合体(例えば松田武久ら、Polymer Preprints. Japan. 39(8), 2559(1990))、生理的な条件下で自己重合し、微小な線維構造を有するハイドロゲルを形成するペプチドなどがあげられるが、これらに限定されるものではない。PuraMatrix等の市販品を適宜使用することができる。 Examples of the polymer compound used as a carrier for three-dimensional culture include polyalkylene oxide block copolymers represented by block copolymers of polypropylene oxide and polyethylene oxide; etherified celluloses such as methyl cellulose and hydroxypropyl cellulose Modified polysaccharides such as chitosan derivatives (K. R. Holme. Et al. Macromolecules, 24, 3828 (1991)); pullulan derivatives (Shigeru Deguchi, Polymer Preprints. Japan. 19, 936 (1990)); poly N- Conjugates of temperature-sensitive polymers such as substituted (meth) acrylamide derivatives, polyvinyl alcohol partial acetylated products, polyvinyl methyl ether and water-soluble polymer compounds (for example, Takehisa Matsuda et al., Polymer Preprints. Japan Japan 39 (8 ), 2559 (1990)), a hydrogel that self-polymerizes under physiological conditions and has a fine fiber structure. Such peptides formed and the like, but not limited thereto. Commercial products such as PuraMatrix can be used as appropriate.
 本発明においては、線維組織を形成するのに十分な期間(通常1日以上、好ましくは2日以上)、PRELPと接触させた状態で間葉系幹細胞が培養される。 In the present invention, the mesenchymal stem cells are cultured in a state of being contacted with PRELP for a sufficient period (usually 1 day or more, preferably 2 days or more) to form a fibrous tissue.
 本発明の工程(b)における培養条件は、通常の動物細胞の培養条件に準じ適宜設定することができる。例えば、培養温度は、通常約30~40℃、好ましくは約37℃である。CO濃度は、通常、約1~10%、好ましくは約2~5%である。 The culture conditions in the step (b) of the present invention can be appropriately set according to normal animal cell culture conditions. For example, the culture temperature is usually about 30 to 40 ° C., preferably about 37 ° C. The CO 2 concentration is usually about 1-10%, preferably about 2-5%.
 培養の結果、培養物中に平行線維性結合組織が形成される。本明細書中、「平行線維性結合組織」とは、膠原線維が一方向に並列配列した密性結合組織をいう。密性結合組織とは、膠原線維が線維束を作って密に配列することにより形成された結合組織をいう。膠原線維は、通常I型コラーゲンを含有する。平行線維性結合組織は靭帯組織であり得る。 As a result of the culture, parallel fibrous connective tissue is formed in the culture. In the present specification, “parallel fibrous connective tissue” refers to a dense connective tissue in which collagen fibers are arranged in parallel in one direction. Close connective tissue refers to connective tissue formed by collagen fibers forming fiber bundles and densely arranged. Collagen fibers usually contain type I collagen. The parallel fibrous connective tissue can be ligament tissue.
 培養物とは、細胞を培養することにより得られる結果物をいい、細胞、培地、細胞分泌性成分等が含まれる。 The culture refers to a result obtained by culturing cells, and includes cells, culture media, cell secretory components, and the like.
 肉眼観察や顕微鏡観察等によって、平行線維性結合組織の形成を確認した後、培養物から平行線維性結合組織を単離することにより、平行線維性結合組織を得ることができる。 After confirming the formation of parallel fibrous connective tissue by visual observation or microscopic observation, the parallel fibrous connective tissue can be obtained by isolating the parallel fibrous connective tissue from the culture.
 こうして得られる平行線維性結合組織は、人工靱帯として、スポーツ選手などの靭帯断裂による運動障害などの治療に有用である。本発明は、上記本発明の方法により製造された平行線維性結合組織をも提供する。本発明の方法により製造された平行線維性結合組織は、骨癒合活性を有しているため、靭帯損傷の治療に好適に用いられる。 The parallel fibrous connective tissue thus obtained is useful as an artificial ligament for the treatment of movement disorders due to ligament rupture in athletes and the like. The present invention also provides a parallel fibrous connective tissue produced by the method of the present invention. Since the parallel fibrous connective tissue produced by the method of the present invention has bone healing activity, it is preferably used for the treatment of ligament damage.
(組み合わせ物、キット)
 また、本発明は、PRELP発現ベクターが導入された間葉系幹細胞、及び3次元培養用の担体を含む組み合わせ物(組み合わせ物I)を提供する。
(Combination, kit)
The present invention also provides a combination (combination I) comprising mesenchymal stem cells into which a PRELP expression vector has been introduced, and a carrier for three-dimensional culture.
 更に、本発明は、
(1)PRELP、又はその発現ベクター;及び
(2)間葉系幹細胞
を含む組み合わせ物(組み合わせ物II)を提供する。
Furthermore, the present invention provides
Provided is a combination (Combination II) comprising (1) PRELP or an expression vector thereof; and (2) a mesenchymal stem cell.
 組み合わせ物IIは、更に3次元培養用の担体を含むことができる。 The combination II can further contain a carrier for three-dimensional culture.
 PRELP発現ベクターが導入された間葉系幹細胞、組み合わせ物I及びIIを用いれば、上記本発明の製造方法により容易に平行線維性結合組織を製造することができる。従って、PRELP発現ベクターが導入された間葉系幹細胞、組み合わせ物I及びIIのそれぞれを、平行線維性結合組織製造用キットとすることもできる。 Using mesenchymal stem cells into which PRELP expression vectors have been introduced, combinations I and II, parallel fibrous connective tissue can be easily produced by the production method of the present invention. Therefore, each of the mesenchymal stem cells and the combinations I and II into which the PRELP expression vector has been introduced can be used as a kit for producing a parallel fibrous connective tissue.
 本発明のキットに含まれる各構成要素は、各々別個に(あるいは可能であれば混合した状態で)水もしくは適当な緩衝液(例:TEバッファー、PBSなど)中に適当な濃度となるように溶解又は懸濁し、約-20℃~4℃で保存することができる。 Each component contained in the kit of the present invention is adjusted to an appropriate concentration in water or an appropriate buffer (eg, TE buffer, PBS, etc.) separately (or in a mixed state if possible). It can be dissolved or suspended and stored at about -20 ° C to 4 ° C.
 本発明のキットには、上記本発明の製造方法に用いた種々の試薬(培地、遺伝子導入用試薬等)、培養容器、試験プロトコールを記載した指示書等を含めることができる。 The kit of the present invention can contain various reagents (medium, reagent for gene introduction, etc.) used in the production method of the present invention, culture vessels, instructions describing the test protocol, and the like.
 本発明の組み合わせ物及びキットに関する各用語の定義は、上述の「平行線維性結合組織の製造方法」の項における各用語の定義と同一である。 The definition of each term relating to the combination and kit of the present invention is the same as the definition of each term in the above-mentioned “Method for producing parallel fibrous connective tissue”.
(靭帯損傷の治療剤I)
 上記本発明の製造方法により製造された平行線維性結合組織を、靭帯損傷を罹患したレシピエント哺乳動物の生体内に移植すると、該平行線維性結合組織がレシピエントの靭帯損傷部位に生着し、該部位において靭帯が再生され、靭帯損傷が治療される。また、PRELP発現ベクターが導入された間葉系幹細胞を、靭帯損傷を罹患したレシピエント哺乳動物の生体内に移植すると、該間葉系幹細胞がレシピエントの靭帯損傷部位に生着し、該部位において平行線維性結合組織を生産することにより該部位において靭帯が再生され、靭帯損傷が治療される。従って、本発明は、上記本発明の製造方法により製造された平行線維性結合組織、又はPRELP発現ベクターが導入された間葉系幹細胞を含む、靭帯損傷治療剤を提供するものである(本発明の靭帯損傷の治療剤I)。
(Therapeutic agent I for ligament injury I)
When the parallel fibrous connective tissue produced by the production method of the present invention is transplanted into the living body of a recipient mammal suffering from ligament injury, the parallel fibrous connective tissue is engrafted at the recipient's ligament injury site. The ligament is regenerated at the site and the ligament injury is treated. In addition, when the mesenchymal stem cells into which the PRELP expression vector has been introduced are transplanted into the living body of a recipient mammal suffering from ligament injury, the mesenchymal stem cells engraft at the recipient's ligament injury site, To produce parallel fibrous connective tissue at which the ligament is regenerated and the ligament injury is treated. Accordingly, the present invention provides a therapeutic agent for ligament injury comprising a parallel fibrous connective tissue produced by the production method of the present invention or a mesenchymal stem cell into which a PRELP expression vector has been introduced (the present invention). A therapeutic agent for ligament injury of I).
 靭帯損傷とは、靭帯が外力や感染等によって損傷を受けた状態を意味する。靭帯損傷としては、関節の靭帯損傷(例えば、膝靭帯損傷(外側側副靭帯損傷、内側側副靭帯損傷、前十字靭帯損傷、後十字靭帯損傷など);足首、足の甲、肘、指等における靭帯損傷など)、歯周靭帯の損傷;眼球を支える靭帯等の体内の臓器をその場所にとどめる強靭な結合組織(ゴムバンド)の損傷などを挙げることができるが、これらに限定されない。 Ligament damage means a state in which the ligament is damaged by external force or infection. Examples of ligament damage include joint ligament damage (eg, knee ligament damage (lateral collateral ligament damage, medial collateral ligament damage, anterior cruciate ligament damage, posterior cruciate ligament damage, etc.); ankle, instep, elbow, finger, etc. Ligament damage, etc.), periodontal ligament damage; damage of tough connective tissue (rubber band) that keeps internal organs such as the ligament supporting the eyeball in place, but is not limited thereto.
 レシピエントの哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ、ミンク等の家畜、イヌ、ネコ等のペット、ヒト、サル、カニクイザル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来るが、これらに限定されるものではない。PRELPは、好ましくは霊長類(ヒト等)又はげっ歯類(マウス等)由来のものである。 Examples of recipient mammals include laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep and minks, and pets such as dogs and cats. , Primates such as humans, monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans, chimpanzees, and the like, but are not limited thereto. PRELP is preferably derived from primates (such as humans) or rodents (such as mice).
 拒絶反応が起こらないという観点から、患者自身又はMHCの型が同一もしくは実質的に同一の他個体から採取された間葉系幹細胞を用いて、本発明の方法により製造された平行線維性結合組織、又は、当該間葉系幹細胞にPRELP発現ベクターを導入することにより得られる細胞が、移植に好適に用いられる。 From the viewpoint that rejection does not occur, parallel fibrous connective tissue produced by the method of the present invention using mesenchymal stem cells collected from the patient himself or another individual having the same or substantially the same type of MHC Alternatively, cells obtained by introducing a PRELP expression vector into the mesenchymal stem cells are preferably used for transplantation.
 また、形成される靭帯の機能の強化という観点から、強靭な靭帯を形成する遺伝的なバックグラウンドを有する同種異系の間葉系幹細胞(例えば、ヒトの場合、黒人の間葉系幹細胞)を用いて、本発明の方法により製造された平行線維性結合組織、又は、当該間葉系幹細胞にPRELP発現ベクターを導入することにより得られる細胞を移植に用いることも、また好ましい。 In addition, from the viewpoint of strengthening the function of the formed ligament, allogeneic mesenchymal stem cells having a genetic background to form a strong ligament (for example, black mesenchymal stem cells in the case of humans) It is also preferable to use parallel fibrous connective tissue produced by the method of the present invention or cells obtained by introducing a PRELP expression vector into the mesenchymal stem cells for transplantation.
 上記平行線維性結合組織や、PRELP発現ベクターが導入された間葉系幹細胞を移植する方法としては、該平行線維性結合組織や間葉系幹細胞がレシピエントの靭帯損傷部位に生着し、該部位において靭帯が再生され、靭帯損傷が治療される限り、特に限定されないが、好ましくは、該平行線維性結合組織や間葉系幹細胞は、レシピエントの靭帯損傷部位に直接移植される。平行線維性結合組織の移植は、例えば、上記本発明の製造方法により得られた平行線維性結合組織のシートを、靭帯損傷部位に貼り付けることにより実施することができる。PRELP発現ベクターが導入された間葉系幹細胞の移植は、例えば、当該間葉系幹細胞を生体適合性のゲル等の担体に包埋し、これを靭帯損傷部位に移植することにより実施することが出来る。 As a method for transplanting the parallel fibrous connective tissue and the mesenchymal stem cells into which the PRELP expression vector has been introduced, the parallel fibrous connective tissue or mesenchymal stem cells are engrafted in the ligament injury site of the recipient, As long as the ligament is regenerated at the site and the ligament injury is treated, the parallel fibrous connective tissue and mesenchymal stem cells are preferably transplanted directly to the ligament injury site of the recipient. The transplantation of parallel fibrous connective tissue can be carried out, for example, by sticking a sheet of parallel fibrous connective tissue obtained by the production method of the present invention to a ligament injury site. Transplantation of the mesenchymal stem cells into which the PRELP expression vector has been introduced can be carried out, for example, by embedding the mesenchymal stem cells in a carrier such as a biocompatible gel and transplanting the mesenchymal stem cells to the site of ligament injury. I can do it.
 例えば、一部が断裂した関節における靭帯の断裂部位;靭帯断裂治療のための縫合手術部位;歯科手術、感染、加齢等により、損傷や退縮した歯周ポケット等に、上記平行線維性結合組織や、PRELP発現ベクターが導入された間葉系幹細胞が移植される。 For example, the ligament rupture site in a partially ruptured joint; the suture operation site for ligament rupture treatment; the above-mentioned parallel fibrous connective tissue in a periodontal pocket or the like damaged or retracted due to dental surgery, infection, aging, etc. Alternatively, mesenchymal stem cells into which a PRELP expression vector has been introduced are transplanted.
 上記平行線維性結合組織や、PRELP発現ベクターが導入された間葉系幹細胞の投与量は、靭帯損傷の程度、部位等に基づき、適宜設定することができる。 The dose of mesenchymal stem cells into which the parallel fibrous connective tissue or PRELP expression vector has been introduced can be appropriately set based on the degree of ligament injury, the site, and the like.
 本発明の靭帯損傷の治療剤Iに関する各用語の定義は、上述の「平行線維性結合組織の製造方法」、「組み合わせ物、キット」の項における各用語の定義と同一である。 The definition of each term relating to the therapeutic agent I for ligament injury according to the present invention is the same as the definition of each term in the above-mentioned “Method for producing parallel fibrous connective tissue” and “Combination product, kit”.
(靭帯損傷の治療剤II)
 後述の実施例に示すように、生体内においてPRELPを過剰発現させることにより、インビトロのみならず、生体内においても靭帯の形成が促進される。従って、本発明は、PRELPまたはその発現ベクターを含む、靭帯損傷の治療剤(本発明の靭帯損傷の治療剤II)を提供するものである。本発明の靭帯損傷の治療剤IIは、生体内における平行線維性結合組織の形成促進剤としても有用である。
(Therapeutic agent for ligament injury II)
As shown in Examples described later, by overexpressing PRELP in vivo, the formation of ligaments is promoted not only in vitro but also in vivo. Therefore, the present invention provides a therapeutic agent for ligament injury (the therapeutic agent II for ligament injury of the present invention II) comprising PRELP or an expression vector thereof. The therapeutic agent II for ligament injury of the present invention is also useful as an agent for promoting the formation of parallel fibrous connective tissue in vivo.
 本発明の靭帯損傷の治療剤IIは、PRELPまたはその発現ベクターに加え、任意の担体、例えば医薬上許容される担体を含むことができる。 The therapeutic agent II for ligament injury of the present invention can contain any carrier, for example, a pharmaceutically acceptable carrier, in addition to PRELP or an expression vector thereof.
 医薬上許容され得る担体としては、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、セルロース、タルク、リン酸カルシウム、炭酸カルシウム等の賦形剤、セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリコール、ショ糖、デンプン等の結合剤、デンプン、カルボキシメチルセルロース、ヒドロキシプロピルスターチ、ナトリウム-グリコール-スターチ、炭酸水素ナトリウム、リン酸カルシウム、クエン酸カルシウム等の崩壊剤、ステアリン酸マグネシウム、エアロジル、タルク、ラウリル硫酸ナトリウム等の滑剤、クエン酸、メントール、グリチルリチン・アンモニウム塩、グリシン、オレンジ粉等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水、オレンジジュース等の希釈剤、カカオ脂、ポリエチレングリコール、白灯油等のベースワックスなどが挙げられるが、それらに限定されるものではない。 Examples of pharmaceutically acceptable carriers include sucrose, starch, mannitol, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, and other excipients, cellulose, methylcellulose, hydroxypropylcellulose, polypropylpyrrolidone. , Gelatin, gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, carboxymethylcellulose, hydroxypropyl starch, sodium-glycol starch, sodium bicarbonate, calcium phosphate, calcium citrate and other disintegrants, magnesium stearate , Aerosil, Talc, Lubricant such as sodium lauryl sulfate, Citric acid, Menthol, Glycyrrhizin / Ammonium salt, Glycine, Orange powder and other fragrances, Benzoic acid Preservatives such as thorium, sodium bisulfite, methylparaben, propylparaben, stabilizers such as citric acid, sodium citrate, acetic acid, suspensions such as methylcellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, Examples include, but are not limited to, water, physiological saline, diluents such as orange juice, base waxes such as cacao butter, polyethylene glycol, and white kerosene.
 有効成分として、PRELPの発現ベクターを用いる場合、核酸の細胞内への導入を促進するために、本発明の靭帯損傷の治療剤IIは更に核酸導入用試薬を含むことができる。また、核酸導入試薬としては、リポフェクチン、リポフェクタミン(lipofectamine)、リポフェクタミンRNAiMAX(LipofectamineRNAiMAX)、インビボフェクタミン(Invivofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質を用いることが出来る。また、発現ベクターとしてレトロウイルスを用いる場合には、導入試薬としてレトロネクチン、ファイブロネクチン、ポリブレン等を用いることができる。 When a PRELP expression vector is used as an active ingredient, the ligament injury therapeutic agent II of the present invention can further contain a nucleic acid introduction reagent in order to promote introduction of nucleic acid into cells. Examples of the nucleic acid introduction reagent include lipofectin, lipofectamine, lipofectamine RNAiMAX (LipofectamineRNAiMAX), in vivofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDAB, HDAB, polybrene, or polybrene Cationic lipids such as (ethyleneimine) (PEI) can be used. When a retrovirus is used as an expression vector, retronectin, fibronectin, polybrene, or the like can be used as an introduction reagent.
 本発明の靭帯損傷の治療剤IIの投与単位形態としては、液剤、錠剤、丸剤、飲用液剤、散剤、懸濁剤、乳剤、顆粒剤、エキス剤、細粒剤、シロップ剤、浸剤、煎剤、点眼剤、トローチ剤、パップ剤、リニメント剤、ローション剤、眼軟膏剤、硬膏剤、カプセル剤、坐剤、浣腸剤、注射剤(液剤、懸濁剤など)、貼付剤、軟膏剤、ゼリー剤、パスタ剤、吸入剤、クリーム剤、スプレー剤、点鼻剤、エアゾール剤などが例示される。 Examples of the dosage unit form of the therapeutic agent II for ligament injury according to the present invention include liquids, tablets, pills, drinking liquids, powders, suspensions, emulsions, granules, extracts, fine granules, syrups, dip, and decoction. , Eye drops, lozenges, poultices, liniments, lotions, eye ointments, plasters, capsules, suppositories, enemas, injections (solutions, suspensions, etc.), patches, ointments, jelly Examples include agents, pastes, inhalants, creams, sprays, nasal drops, aerosols and the like.
 治療剤(医薬組成物)中のPRELPまたはその発現ベクターの含有量は、特に限定されず広範囲に適宜選択されるが、例えば、医薬組成物全体の約0.01ないし100重量%である。 The content of PRELP or its expression vector in the therapeutic agent (pharmaceutical composition) is not particularly limited and is appropriately selected within a wide range, and is, for example, about 0.01 to 100% by weight of the entire pharmaceutical composition.
 本発明の靭帯損傷の治療剤IIは、その使用に際し各種形態に応じた方法で投与される。例えば、注射剤の場合には、靭帯損傷部位、関節腔内、静脈内、筋肉内、皮内、皮下もしくは腹腔内投与され、外用剤の場合には、皮膚ないしは粘膜などの所要部位に直接噴霧、貼付または塗布され、錠剤、丸剤、飲用液剤、懸濁剤、乳剤、顆粒剤およびカプセル剤の場合には経口投与され、坐剤の場合には直腸内投与される。 The therapeutic agent II for ligament injury of the present invention is administered by a method according to various forms when used. For example, in the case of injections, it is administered at the site of ligament damage, intraarticular cavity, intravenous, intramuscular, intradermal, subcutaneous or intraperitoneal, and in the case of external preparations, it is sprayed directly on the required site such as the skin or mucous membrane. In the case of tablets, pills, drinking liquids, suspensions, emulsions, granules and capsules, it is orally administered, and in the case of suppositories, it is administered rectum.
 本発明の剤の投与量は、有効成分の活性や種類、投与様式(例、経口、非経口)、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、体重、年齢等によって異なり一概に云えないが、通常、成人1日あたり有効成分量として約0.001mg~約2.0gである。 The dosage of the agent of the present invention includes the activity and type of the active ingredient, the mode of administration (eg, oral and parenteral), the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age Usually, it is about 0.001 mg to about 2.0 g as an active ingredient amount per day for adults.
 本発明の靭帯損傷の治療剤IIは、通常、PRELPまたはその発現ベクターが、靭帯損傷部位(好ましくは、靭帯損傷部位に存在する間葉系幹細胞)に送達されるように、哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル、ヒト)に対して安全に投与される。 The therapeutic agent II for ligament injury of the present invention is usually a mammal (for example, such that PRELP or an expression vector thereof is delivered to a ligament injury site (preferably, a mesenchymal stem cell present in the ligament injury site). Rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys, humans).
 本発明の靭帯損傷の治療剤IIを投与すると、PRELPが靭帯損傷部位の間葉系幹細胞へ作用することにより、該靭帯損傷部位における平行線維性結合組織(例えば、靭帯)の形成が促進され、靭帯損傷治癒反応及び靭帯の再構築が促進される。 When the therapeutic agent II for ligament injury of the present invention is administered, PRELP acts on mesenchymal stem cells at the site of ligament injury, thereby promoting the formation of parallel fibrous connective tissue (eg, ligament) at the site of ligament injury, Ligament injury healing response and ligament reconstruction are promoted.
 本発明の靭帯損傷の治療剤IIに関する各用語の定義は、上述の「平行線維性結合組織の製造方法」、「組み合わせ物、キット」、「靭帯損傷の治療剤I」の項における各用語の定義と同一である。 The definition of each term regarding the therapeutic agent II for ligament injury according to the present invention is as follows. Same as definition.
 以下に実施例を挙げて本発明をさらに具体的に説明するが、これらは単なる例示であって、本発明の範囲を何ら限定するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, these are merely examples and do not limit the scope of the present invention.
[実施例1]
 ヒトPRELP cDNAをクローニングした。クローニングしたPRELP cDNAをXhol処理し、pCAGGS発現ベクターのXholサイトに挿入した。発現ベクターがデザイン通りに構築されているか確認するために、構築後のベクターを制限酵素で消化し、電気泳動パターンを確認した。その結果、予想されたパターンの泳動図が確認された。また、挿入されたcDNA領域のシーケンス解析を行ったところ、目的とする配列(GENBANKアクセッション番号:EAW91481.1)と一致することを確認した。
[Example 1]
Human PRELP cDNA was cloned. The cloned PRELP cDNA was treated with Xhol and inserted into the Xhol site of the pCAGGS expression vector. In order to confirm whether the expression vector was constructed as designed, the constructed vector was digested with restriction enzymes, and the electrophoresis pattern was confirmed. As a result, an electrophoretogram of the expected pattern was confirmed. Moreover, when the sequence analysis of the inserted cDNA area | region was conducted, it confirmed that it corresponded with the target arrangement | sequence (GENBANK accession number: EAW91481.1).
 C3H/10T1/2-clone8マウス間葉系幹細胞(JCRB0003)を10%FBS含むBasal Medium Eagle(Wako)にて培養後、0.25% Trypsin and 0.02% EDTAにて剥離することを繰り返すことにより、継代増殖培養をおこなった。C3H/10T1/2-clone8マウス間葉系幹細胞を3.5mmシャーレ(BD)に70%コンフルエントとなるまで培養後、培養液を500μLに調整した。20mMTris-HCL(pH7.4)バッファー(DAKO)100μLに、pCAGGS-PRELPベクター2.0μgを加え、Multi Fectam(Promega)50.0μLを添加、混合後、室温にて30分間静置させ、Opti-MEM培養液(invitrogen)50μLを加え、混合後、室温にて5分静置させた。3.5mmウェル1枚に200μLのMulti Fectam、pCAGGS-PRELPプラスミドDNA複合体を加え、均一となるようにプレートを揺らし、37℃、5%COにて4時間培養した。培地を、新しい培養液(10%FBS含むBasal Medium Eagle)に交換し、更に96時間培養後、上清中にPRELPタンパク質が発現していることをウエスタンブロットにて確認した(図1)。2日に1度の頻度で、培養液を交換した。PuraMatrix培養開始前のpCAGGS-PRELPトランスフェクションしたC3H/10T1/2-clone8マウス間葉系幹細胞を図2に示す。 C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells (JCRB0003) are cultured in Basal Medium Eagle (Wako) containing 10% FBS and then repeatedly detached with 0.25% Trypsin and 0.02% EDTA. By subcultivation culture was performed. After culturing C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells in a 3.5 mm petri dish (BD) until 70% confluent, the culture solution was adjusted to 500 μL. To 100 μL of 20 mM Tris-HCL (pH 7.4) buffer (DAKO), add 2.0 μg of pCAGGS-PRELP vector, add 50.0 μL of Multi Fectam (Promega), mix, and let stand at room temperature for 30 minutes. MEM culture solution (invitrogen) 50 μL was added, mixed, and allowed to stand at room temperature for 5 minutes. 200 μL of Multi Fectam and pCAGGS-PRELP plasmid DNA complex was added to one 3.5 mm well, and the plate was shaken to be uniform and cultured at 37 ° C., 5% CO 2 for 4 hours. The medium was replaced with a new culture solution (Basal Medium Eagle containing 10% FBS), and after further culturing for 96 hours, it was confirmed by Western blot that the PRELP protein was expressed in the supernatant (FIG. 1). The culture medium was changed once every two days. FIG. 2 shows C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells transfected with pCAGGS-PRELP before the start of PuraMatrix culture.
 1週間後、シャーレに張り付いたC3H/10T1/2-clone8マウス間葉系幹細胞を0.25% Trypsin and 0.02% EDTAにて剥離し、遠心回収し、細胞ペレットを5.0×10個に調整し、20%スクロース溶液1mLにて洗浄し、超音波処理したPuraMatrix(BD)1mLを加え、素早く混合し、新たなウェル中で培養した。 One week later, the C3H / 10T1 / 2-clone8 mouse mesenchymal stem cells attached to the petri dish were detached with 0.25% Trypsin and 0.02% EDTA, and centrifuged to collect the cell pellet at 5.0 × 10. 4 to adjust, washed with a 20% sucrose solution 1 mL, sonicated PuraMatrix (BD) 1 mL was added, rapidly mixed, and cultured in fresh wells.
 PuraMatrix中で培養を開始してから1日後において、線維状の形態を示した(図3)。PuraMatrix中で培養を開始してから2日後には、ウェル全体が線維状の形態を示した(図4)。 1 day after the start of culture in PuraMatrix, it showed a fibrous morphology (FIG. 3). Two days after the start of culture in PuraMatrix, the whole well showed a fibrous morphology (FIG. 4).
 顕微鏡観察の結果、膠原線維が一方向に並列配列した構造が確認された(図3及び4)。電子顕微鏡下での観察でも同じ構造が確認された(図5)。形成された線維組織をI型コラーゲンに対する抗体を用いて免疫組織染色した結果、I型コラーゲンの発現が確認された。以上の結果から、得られた線維状の組織は、靭帯等の平行線維性結合組織であることが示唆された。 As a result of microscopic observation, a structure in which collagen fibers were arranged in parallel in one direction was confirmed (FIGS. 3 and 4). The same structure was confirmed by observation under an electron microscope (FIG. 5). As a result of immunohistochemical staining of the formed fibrous tissue with an antibody against type I collagen, expression of type I collagen was confirmed. From the above results, it was suggested that the obtained fibrous tissue is a parallel fibrous connective tissue such as a ligament.
[実施例2]
 実施例1と同様に、C3H/10T1/2マウス間葉系幹細胞に、pCAGGS-PRELPベクターをトランスフェクトした。得られたトランスフェクタントをAlexa Fluor 488標識抗I型コラーゲン抗体、Alexa Fluor 568ファロイジン、及びDAPIを用いた免疫染色に付した(図6)。
[Example 2]
In the same manner as in Example 1, C3H / 10T1 / 2 mouse mesenchymal stem cells were transfected with the pCAGGS-PRELP vector. The obtained transfectants were subjected to immunostaining using Alexa Fluor 488-labeled anti-type I collagen antibody, Alexa Fluor 568 phalloidin, and DAPI (FIG. 6).
 また、培養の結果、培養ディッシュから浮いた細胞において、線維状の形態が観察された(図7)。靭帯様組織の厚さは15μm、細胞の厚さは30μmであった。Alexa Fluor 488標識抗PRELP抗体及びDAPIにより染色した。 Further, as a result of the culture, a fibrous form was observed in the cells floating from the culture dish (FIG. 7). The thickness of the ligament-like tissue was 15 μm, and the thickness of the cells was 30 μm. Stained with Alexa Fluor 488 labeled anti-PRELP antibody and DAPI.
 また、透過型電子顕微鏡により観察した結果、コラーゲン線維構造の存在が確認された(図8)。 Further, as a result of observation with a transmission electron microscope, the presence of a collagen fiber structure was confirmed (FIG. 8).
[参考例1]
 ヒト前十字靭帯(ACL)、ヒト後十字靭帯(PCL)、ヒトOPLL組織及びヒト腱におけるPRELPの発現を、リアルタイムPCR及びウェスタンブロッティングによりPRELPの発現を調べた。CBB染色をコントロールとして用いた。ACL、PCL及びOPLLにおいてPRELPの高発現が観察されなかったが、腱においてはPRELPの発現は低かった(図9)。
[Reference Example 1]
PRELP expression in human anterior cruciate ligament (ACL), human posterior cruciate ligament (PCL), human OPLL tissue and human tendon was examined by real-time PCR and Western blotting. CBB staining was used as a control. High expression of PRELP was not observed in ACL, PCL and OPLL, but expression of PRELP was low in tendons (FIG. 9).
[実施例3]
 実施例1と同様に、ヒト間葉系幹細胞及びマウス間葉系幹細胞にpCAGGS-PRELPベクターを導入し、培養することにより、靭帯様組織を形成させた。ELISA及びリアルタイムPCRによりI型コラーゲンの発現を調べた。
 ELISAは、I型コラーゲン中の分解されたアテロペプチドからのアテロコラーゲンを測定できるEC1-E205を用いた。
 リアルタイムPCRは、StepOnePlus real-time PCR systemを用いたTaqMan Gene Expression Assay kitにより実施した。TaqMan PCRに用いた配列は次の通り(sequences from mouse collagen, type I, alpha 1Col1a1: Mm00801666_g1; human collagen, type I, alpha 2: Hs00164099_m1; mouse 18S ribosomal RNA, hypothetical LOC790964: Mm03928990_g1; human eukaryotic 18S rRNA: Hs99999901_s1)。それぞれのサンプルについて、Mouse 18S ribosomal RNA及びhuman eukaryotic 18S rRNA mRNAをスタンダードとして用いて、マウスCol1a1(n=21)及びヒトCol1a1(n=24)を定量した。
 その結果、いずれの方法においても、間葉系幹細胞よりも、誘導された靭帯様組織においてI型コラーゲンの発現が高いことが示された(図10及び11)。
[Example 3]
As in Example 1, a pCAGGS-PRELP vector was introduced into human mesenchymal stem cells and mouse mesenchymal stem cells and cultured to form a ligament-like tissue. The expression of type I collagen was examined by ELISA and real-time PCR.
The ELISA used EC1-E205, which can measure atelocollagen from degraded atelopeptide in type I collagen.
Real-time PCR was performed with TaqMan Gene Expression Assay kit using StepOnePlus real-time PCR system. The sequences used for TaqMan PCR are as follows (sequences from mouse collagen, type I, alpha 1Col1a1: Mm00801666_g1; human collagen, type I, alpha 2: Hs00164099_m1; mouse 18S ribosomal RNA, hypothetical LOC790964: Mm03928990_g1; human eukaryotic 18S rRNA: Hs99999901_s1). For each sample, mouse Col1a1 (n = 21) and human Col1a1 (n = 24) were quantified using Mouse 18S ribosomal RNA and human eukaryotic 18S rRNA mRNA as standards.
As a result, it was shown that expression of type I collagen was higher in the induced ligament-like tissue than in the mesenchymal stem cells in any of the methods (FIGS. 10 and 11).
[実施例4]
 pCAGGS-PRELPベクターを導入したマウス間葉系幹細胞におけるPDGF及びMMP-13の発現に対する、PRELPを標的とするshRNAの効果を調べた。
 PRELPを標的とするshRNAのために、4つの遺伝子断片をpRNAi/LV-RNAiベクター(Biosettia, Inc)にクローニングし、PRELP発現の抑制を確認した後、上清中のコラーゲン及びPDGF受容体発現を抑制した
sh-NM_054077 5′- AAAAGGATTAGGCGTAAACCCAATTGGATCCAATTGGGTTTACGCCTAATCC-3′(配列番号17)
を用いた。
shRNA-lacZ, AAAAGCAGTTATCTGGAAGATCAGGTTGGATCCAACCTGATCTTCCAGATAACTGC(配列番号18)、及び
sh-scramble, AAAAGCTACACTATCGAGCAATTTTGGATCCAAAATTGCTCGATAGTGTAGC(配列番号19)
をコントロールとして作った。トランスフェクションについては、過剰発現のためにLipofectamine 2000 (Life Technology)を製造者のプロトコールに従い用い、shRNAのためにGene Porter (Genlantis)を用いた。ベクターが均一に分散するようにプレートをゆすり、4時間、37℃、5% COにて培養した。培養液を新鮮な培地に交換し、混合物をさらに96時間培養した。培養上清中のPRELP発現をウェスタンブロッティングにより確認し、培養液中の産物の分泌を2日毎に確認した。培養液は2日毎に交換した。7日後、細胞は靭帯線維様構造へと変換していた。
 トランスフェクトした細胞はPuraMatrix Peptide Hydrogel中で培養し、24時間後にBioStation ID (GE Healthcare)で得た画像から、細胞が靭帯線維様構造に変換したことが確認された。
 ELISAは、PDGF-AA(R&D systems)、MMP-13(GE Healthcare) 及びI型コラーゲン(ACEL, Japan)について行った。
 その結果、PRELPを標的とするshRNA(shRNA-PRELP)の導入により、PDGF-AA、MMP-13及びI型コラーゲンの発現が抑制された(図12及び13)。
[Example 4]
The effect of shRNA targeting PRELP on the expression of PDGF and MMP-13 in mouse mesenchymal stem cells introduced with the pCAGGS-PRELP vector was examined.
For shRNA targeting PRELP, four gene fragments were cloned into pRNAi / LV-RNAi vector (Biosettia, Inc), and suppression of PRELP expression was confirmed, followed by collagen and PDGF receptor expression in the supernatant. Suppressed
sh-NM_054077 5'- AAAAGGATTAGGCGTAAACCCAATTGGATCCAATTGGGTTTACGCCTAATCC-3 '(SEQ ID NO: 17)
Was used.
shRNA-lacZ, AAAAGCAGTTATCTGGAAGATCAGGTTGGATCCAACCTGATCTTCCAGATAACTGC (SEQ ID NO: 18), and
sh-scramble, AAAAGCTACACTATCGAGCAATTTTGGATCCAAAATTGCTCGATAGTGTAGC (SEQ ID NO: 19)
Was made as a control. For transfection, Lipofectamine 2000 (Life Technology) was used for overexpression according to the manufacturer's protocol and Gene Porter (Genlantis) was used for shRNA. The plate was shaken so that the vector was uniformly dispersed and cultured at 37 ° C., 5% CO 2 for 4 hours. The culture medium was replaced with fresh medium and the mixture was incubated for a further 96 hours. PRELP expression in the culture supernatant was confirmed by Western blotting, and secretion of the product in the culture medium was confirmed every 2 days. The culture solution was changed every two days. After 7 days, the cells had transformed into ligament fiber-like structures.
Transfected cells were cultured in PuraMatrix Peptide Hydrogel, and images obtained with BioStation ID (GE Healthcare) after 24 hours confirmed that the cells were converted to ligament fiber-like structures.
ELISA was performed for PDGF-AA (R & D systems), MMP-13 (GE Healthcare) and type I collagen (ACEL, Japan).
As a result, the introduction of shRNA targeting PRELP (shRNA-PRELP) suppressed the expression of PDGF-AA, MMP-13 and type I collagen (FIGS. 12 and 13).
[実施例5]
 実施例1と同様に、pCAGGS-PRELPベクターをヒト間葉系幹細胞へ導入することにより作成した靭帯様組織におけるI型コラーゲンの発現を、ウェスタンブロッティングにより、ヒトPCL組織、ヒトOPLL組織及びヒトACL組織と比較した。
 PCL、OPLL、ACLと同様に、靭帯様組織はI型コラーゲンを発現していた(図14)。
[Example 5]
As in Example 1, the expression of type I collagen in ligament-like tissue prepared by introducing the pCAGGS-PRELP vector into human mesenchymal stem cells was analyzed by Western blotting to human PCL tissue, human OPLL tissue and human ACL tissue. Compared with.
Like PCL, OPLL, and ACL, the ligament-like tissue expressed type I collagen (FIG. 14).
[実施例6]
 実施例1と同様にして作成した、マウス間葉系幹細胞由来の靭帯様組織におけるI型コラーゲン及び幹細胞マーカー(CD34)の発現を、マウス間葉系幹細胞と比較した。マウス間葉系幹細胞はCD34を高発現したが、pCAGGS-PRELPベクターを導入し、靭帯様組織に転換した後は、その発現は低下した。一方、I型コラーゲンの発現は、靭帯様組織に転換した後の方が高かった(図15)。
[Example 6]
Expression of type I collagen and stem cell marker (CD34) in a ligament-like tissue derived from mouse mesenchymal stem cells prepared in the same manner as in Example 1 was compared with mouse mesenchymal stem cells. Mouse mesenchymal stem cells highly expressed CD34, but their expression decreased after the introduction of the pCAGGS-PRELP vector and conversion to ligament-like tissue. On the other hand, the expression of type I collagen was higher after conversion to ligament-like tissue (FIG. 15).
[実施例7]
PRELPトランスジェニックマウスの製造及びゲノタイピング
 PRELP遺伝子(3.4kb)をpCAGGSのXhoIサイトにライゲートし、マイクロキャピラリー及び倒立顕微鏡を用いて、C57BL/6の受精卵の前核中に注入した。得られた新生マウスの尾組織から抽出したDNAをPCR増幅し、ゲノタイピングを行うことによりトランスジェニックマウスが製造されたことを確認した。
[Example 7]
Production and genotyping of PRELP transgenic mice The PRELP gene (3.4 kb) was ligated into the XhoI site of pCAGGS and injected into the pronuclei of C57BL / 6 fertilized eggs using a microcapillary and an inverted microscope. It was confirmed that a transgenic mouse was produced by PCR amplification of the DNA extracted from the tail tissue of the obtained newborn mouse and genotyping.
 PRELP遺伝子は、ホスホロアミダイト法を用いて合成し、pCAGGS-XhoIのXhoIサイトにライゲートした。発現ベクターをXho-Iで消化し、電気泳動パターンを確認した。挿入されたcDNA領域の配列が、意図した配列(GenBank accession number: EAW91481.1)と一致することを確認した。得られた20匹の新生マウスから尾組織の切片を切り出し、DNA Mini Kit (Qiagen)により、DNAを抽出した。以下のプライマーセットを用いて、PCRを行い、試料が外来遺伝子を含むか否か決定した。
R5′-GTCGAGGGATCTCCATAAGAGAAGAGGGACA-3′(配列番号20)
F5′-GTCGACATTGATTATTGACTAGTTATTAATAGTAATC-3′(配列番号21)
以下のPCR条件を用いた:94℃を2分間、98℃を10秒、及び68℃を4分間を30サイクル。
The PRELP gene was synthesized using the phosphoramidite method and ligated to the XhoI site of pCAGGS-XhoI. The expression vector was digested with Xho-I and the electrophoresis pattern was confirmed. It was confirmed that the sequence of the inserted cDNA region matched the intended sequence (GenBank accession number: EAW91481.1). A section of tail tissue was cut out from the 20 newborn mice obtained, and DNA was extracted with DNA Mini Kit (Qiagen). PCR was performed using the following primer set to determine whether the sample contained a foreign gene.
R5′-GTCGAGGGATCTCCATAAGAGAAGAGGGACA-3 ′ (SEQ ID NO: 20)
F5′-GTCGACATTGATTATTGACTAGTTATTAATAGTAATC-3 ′ (SEQ ID NO: 21)
The following PCR conditions were used: 94 ° C for 2 minutes, 98 ° C for 10 seconds, and 68 ° C for 4 minutes for 30 cycles.
骨格サンプル
 トランスジェニックマウス及び野生型の同腹仔を70%エタノールで固定し、皮膚及び内組織を分離した。マウスを更に2日間70%エタノールで固定した。99.5%エタノール中で2日間脱水を行った。マウスを、アルシアンブルーを0.05%の最終濃度で含む染色溶液である、alcian blue 8GX (JANSSEN、40%酢酸及び60%エタノール 容量比)中で37℃にて55時間インキュベートした。マウスを、99.5%エタノール中に、室温にて2日間、浸漬し、次に2%水酸化カリウム中に、室温にて24時間、透明になるまで浸漬した。アリザリンレッドを0.005%の最終濃度で含む染色溶液であるalizarin red S (Kodak, C1051) 1% KOH中で、室温にて4時間インキュベートし、次に脱色液(1% KOH、20% グリセロール)中に、室温にて一晩浸漬した。マウスは保存液(50%エタノール及び50%グリセロール)中で保存した。エタノール、酢酸、グリセロール、及び水酸化カリウムの高級試薬は岸田化学から購入した。
Skeletal sample Transgenic mice and wild-type littermates were fixed with 70% ethanol, and the skin and internal tissues were separated. Mice were fixed with 70% ethanol for an additional 2 days. Dehydration was performed in 99.5% ethanol for 2 days. Mice were incubated for 55 hours at 37 ° C. in alcian blue 8GX (JANSSEN, 40% acetic acid and 60% ethanol volume ratio), a staining solution containing Alcian blue at a final concentration of 0.05%. Mice were immersed in 99.5% ethanol for 2 days at room temperature and then in 2% potassium hydroxide for 24 hours at room temperature until clear. Incubate 4 hours at room temperature in alizarin red S (Kodak, C1051) 1% KOH, a staining solution containing alizarin red at a final concentration of 0.005%, then decolorizing solution (1% KOH, 20% glycerol) ) And soaked overnight at room temperature. Mice were stored in stock solution (50% ethanol and 50% glycerol). Higher reagents for ethanol, acetic acid, glycerol, and potassium hydroxide were purchased from Kishida Chemical.
 アルシアンブルー及びアリザリンレッドで染色した4週齢マウスの骨格標本を図16A(野生型)及びB(PRELP Tg)に示す。 Fig. 16A (wild type) and B (PRELP Tg) show skeleton specimens of 4-week-old mice stained with Alcian Blue and Alizarin Red.
三次元計算断層撮影骨密度解析
 トランスジェニックマウスを吸入麻酔している間に、骨密度及び骨ミネラル密度計測を、3D微計算断層撮影(Rigaku)を用いて行い、RATOCソフトウェア(RATOC System Engineering)により解析した。ファントム(S/N: 1101-52)を、コントロールとして用いた。骨密度解析を大腿骨の3D-CTを行うことにより実施したが、野生型マウスとPRELPトランスジェニックマウスとの間に、BMD、BMC及びTVの差は認められなかった。トランスジェニックマウスからの骨格サンプルについては、骨組織の変化は観察されなかった(図17)。
Three-dimensional computed tomography bone density analysis During inhalation anesthesia of transgenic mice, bone density and bone mineral density measurement is performed using 3D micro-computed tomography (Rigaku), using RATOC software (RATOC System Engineering). Analyzed. A phantom (S / N: 1101-52) was used as a control. Bone density analysis was performed by performing 3D-CT of the femur, but no differences in BMD, BMC and TV were observed between wild type mice and PRELP transgenic mice. No changes in bone tissue were observed for skeletal samples from transgenic mice (FIG. 17).
靭帯組織の解析
 本発明者らは、PRELP遺伝子トランスジェニックマウスを作出した(n=4)。脊髄靭帯、膝靭帯、歯周靭帯、及び皮膚組織の画像から、PRELP遺伝子トランスジェニックマウスにおいては、対応する野生型マウスからの組織よりも、より完全な靭帯であることが明らかとなった(図18)。ウサギ抗PRELP抗体(Sigma Aldrich; SAB1100370)を一次抗体、Alexa Fluor 488標識ヤギ抗ウサギIgG抗体を二次抗体として用いた免疫組織染色を行った。DAPIを核染色に用いた。染色後、組織をCSLM(Olympus FluoView FV 1000-D)下で観察した。
Analysis of ligament tissue The present inventors created PRELP gene transgenic mice (n = 4). Spinal ligament, knee ligament, periodontal ligament, and skin tissue images revealed that PRELP gene transgenic mice are more complete ligaments than tissues from corresponding wild-type mice (Fig. 18). Immunohistochemical staining was performed using a rabbit anti-PRELP antibody (Sigma Aldrich; SAB1100370) as a primary antibody and Alexa Fluor 488-labeled goat anti-rabbit IgG antibody as a secondary antibody. DAPI was used for nuclear staining. After staining, the tissue was observed under CSLM (Olympus FluoView FV 1000-D).
靭帯ストレッチング解析
 トランスジェニックマウス及び野生型マウスからの脊髄靭帯組織をSTB-CH-10ストレッチングシステム(Strex Inc)を用いて、固定負荷条件下で伸ばし、三分の一、二分の一、及び完全に靭帯断裂するまでの時間を計測した。靭帯断裂までの時間は、野生型マウスの靭帯線維よりも、トランスジェニックの方が長く、トランスジェニックマウスの靭帯組織の方がより強かった(図19)。
Ligament Stretching Analysis Spinal ligament tissue from transgenic and wild-type mice is stretched under fixed loading conditions using the STB-CH-10 stretching system (Strex Inc), one third, one half, and The time until complete ligament tearing was measured. The time to ligament rupture was longer in the transgenic and stronger in the ligament tissue of the transgenic mouse than the ligament fiber of the wild type mouse (FIG. 19).
 トランスジェニックマウス及び野生型マウスの血中及び尿中I型コラーゲン及びMMP-13
 血液及び尿解析の結果、血液中のI型コラーゲンの量はトランスジェニックマウスと野生型マウスとで同等であることが判明した。しかしながら、トランスジェニックマウスの尿においてアテロコラーゲン濃度が高かった(図20)。この結果から、PRELPの過剰発現により、I型コラーゲンの高発現が生じ、尿への排泄が増えたことが示唆された。また、MMP-13の濃度は、血中及び尿中とも、トランスジェニックマウスの方が高かった(図20)。
Transgenic and wild type mouse blood and urine type I collagen and MMP-13
As a result of blood and urine analysis, it was found that the amount of type I collagen in the blood was equivalent between the transgenic mouse and the wild type mouse. However, atelocollagen concentration was high in urine of transgenic mice (FIG. 20). From these results, it was suggested that PRELP overexpression resulted in high expression of type I collagen and increased urinary excretion. In addition, the concentration of MMP-13 was higher in the transgenic mice in both blood and urine (FIG. 20).
[実施例8]
骨性癒着及び靭帯再構築
 靭帯は骨組織と連結し、骨-骨連結を形成するので、実施例1と同様の方法により製造されたマウス間葉系幹細胞由来靭帯様組織をヒト骨芽細胞と組み合わせることにより、PRELP由来靭帯様組織の骨癒合を調べた。染色体蛍光染色により、ヒト染色体(ロダミン)とマウス染色体(FITC)との融合が示された(図21)。核型分析により、マウス間葉系幹細胞由来靭帯組織がヒト骨芽細胞と融合したことが確認された。プローブとしては、ヒトCot-1 DNA(ジゴキシゲニン、ロダミンスペクトラムオレンジ標識)及びマウスCot-1 DNA(ビオチン、FITCスペクトラムグリーン標識)を用いた。セルサイクルの静止期(A)及び分裂中期(B)を示す(図21)。
[Example 8]
Bone adhesion and ligament reconstruction Since the ligament is connected to the bone tissue to form a bone-bone connection, the mouse mesenchymal stem cell-derived ligament-like tissue produced by the same method as in Example 1 was combined with human osteoblasts. By combining, bone fusion of PRELP-derived ligament-like tissue was examined. Chromosome fluorescence staining showed fusion of human chromosome (rhodamine) and mouse chromosome (FITC) (FIG. 21). Karyotype analysis confirmed that mouse mesenchymal stem cell-derived ligament tissue was fused with human osteoblasts. As the probe, human Cot-1 DNA (digoxigenin, rhodamine spectrum orange label) and mouse Cot-1 DNA (biotin, FITC spectrum green label) were used. The stationary phase (A) and metaphase (B) of the cell cycle are shown (FIG. 21).
 ニワトリの靭帯と骨組織との間の癒着領域における、PRELP及びII型コラーゲンの発現を調べた。PRELP(Alexa Fluor 488)及びII型コラーゲン(Alexa Fluor 555)の蛍光染色により、PRELP発現は靭帯組織においてのみ生じ、靭帯組織と骨との間にII型コラーゲンが明確に発現することが示された(図22)。 The expression of PRELP and type II collagen in the adhesion region between chicken ligament and bone tissue was examined. PRELP (Alexa Fluor 488) and type II collagen (Alexa Fluor 555) fluorescent staining showed that PRELP expression occurred only in ligament tissue and that type II collagen was clearly expressed between ligament tissue and bone (FIG. 22).
 ニワトリから前十字靭帯を摘出し、多数に切断した。pPyCAG-cHA-IpacflexEGFP-PRELPを含む培養液中で培養した後に、破壊された靭帯組織を元に戻した。修復された組織におけるGFP発現を蛍光顕微鏡により確認した(図23)。1週間後、コラーゲン線維の連結が、アザン染色により観察された。修復後の新たな靭帯組織のGFP蛍光から、幹細胞がpPyCAG-cHA-IpacflexEGFP-PRELPを保持していることが明らかとなった(図23左)。 The anterior cruciate ligament was removed from the chicken and cut into many pieces. After culturing in a culture medium containing pPyCAG-cHA-IpacflexEGFP-PRELP, the destroyed ligament tissue was restored. GFP expression in the repaired tissue was confirmed by fluorescence microscopy (FIG. 23). After one week, collagen fiber ligation was observed by Azan staining. The GFP fluorescence of the new ligament tissue after repair revealed that the stem cells retained pPyCAG-cHA-IpacflexEGFP-PRELP (FIG. 23 left).
[参考例2]
アレイ-CGH
 RNAをAllPrep DNA/RNA mini kit (Qiagen)を用いて抽出し、RNAの完全性を解析した(Agilent 2100 Bioanalyzer)。9.0以上の値の完全性を有するRNAをSuperscript VILO cDNA synthesis kit(Life Technologies)を用いて逆転写し、Agilent Human Genome Microarray Kit 244 K (Agilent Technologies)を用いてアレイ-CGHを実施した。アレイ-CGHプラットフォームは、それぞれ、メジアン長が7.4kb及び16.5kbのコーディング及びノンコーディングゲノム配列に及ぶ約244400個のプローブを含む、高解像度60merオリゴヌクレオチドベースのマイクロアレイである。標識化及びハイブリダイゼーションは、Agilentにより提供されたプロトコール(Protocol v4.0, June 2006)に従って実施した。アレイは、Agilent DNA microarray scannerを用いて解析した。マウス間葉系幹細胞、野生型マウスの靭帯組織、PRELPトランスジェニックマウスの靭帯組織、及びマウス間葉系幹細胞にPRELPを導入することにより調製した(実施例1)幹細胞由来靭帯組織について遺伝子発現を解析した。
[Reference Example 2]
Array-CGH
RNA was extracted using AllPrep DNA / RNA mini kit (Qiagen), and RNA integrity was analyzed (Agilent 2100 Bioanalyzer). RNA with a value of 9.0 or greater was reverse transcribed using Superscript VILO cDNA synthesis kit (Life Technologies) and array-CGH was performed using Agilent Human Genome Microarray Kit 244 K (Agilent Technologies). The Array-CGH platform is a high-resolution 60-mer oligonucleotide-based microarray containing approximately 244400 probes spanning 7.4 kb and 16.5 kb of median length and non-coding genomic sequences, respectively. Labeling and hybridization were performed according to the protocol provided by Agilent (Protocol v4.0, June 2006). The array was analyzed using an Agilent DNA microarray scanner. Example 1 Analyzing gene expression of stem cell-derived ligament tissue prepared by introducing PRELP into mouse mesenchymal stem cells, ligament tissue of wild-type mice, ligament tissue of PRELP transgenic mice, and mouse mesenchymal stem cells did.
 全ての遺伝子の解析結果から、細胞外マトリクスからの幹細胞と比較した場合の遺伝子発現の変化は、野生型マウスの靭帯組織、PRELPトランスジェニックマウスの靭帯組織、及び幹細胞由来靭帯組織との間で一致していることが示された(図24及び25)。 From the results of all gene analyses, changes in gene expression compared to stem cells from the extracellular matrix are consistent between the ligament tissue of wild-type mice, the ligament tissue of PRELP transgenic mice, and the stem cell-derived ligament tissue. It was shown (Figures 24 and 25).
[参考例3]
PRELPタンパク質及び遺伝子相互作用
 IPAソフトウェアを用いてRNA遺伝子発現及びPRELPタンパク質相互作用に基づき、新たなパスウェイの解析を行った。これらのネットワークは機能的及び遺伝子的関連を明らかにする。IPAツールは、公知の生物学的パスウェイとのつながりを示さなかった。この試験から、PRELPと有意に関連する新たなネットワークの可能性が明らかとなった(図26)。
[Reference Example 3]
PRELP protein and gene interaction Based on RNA gene expression and PRELP protein interaction, IPA software was used to analyze new pathways. These networks reveal functional and genetic associations. The IPA tool showed no connection with known biological pathways. This study revealed the possibility of a new network significantly associated with PRELP (FIG. 26).
[実施例9]
PRELPの発現ルート
 マウス間葉系幹細胞をZnClで処理すると、高いNF-κB-p65発現を示したが、LY294002の影響はほとんど無かった。*P < 0.001, n = 4(図27A)。PRELP遺伝子を導入したマウス間葉系幹細胞に10 ng/mLのTNF-αを加えると、24時間後に靭帯様組織が現れた。10 ng/mLのTNF-α及びLY294002を加えても、同様に靭帯様組織への転換が生じた(図27B)。NFκB(Alexa Fluor 555)及びPRELP(Alexa Fluor 350)について、免疫蛍光組織染色を実施した。TNF-αを加えて3時間後、細胞内ERの境界が画定し(図27C)、6時間後、PRELPタンパク質発現が、ER内で確認され(図27D)、12時間後に、線維状への転換が生じ、PRELP発現が確認された(図27E)。NfκB発現があるので、PRELPは30 μm/mL ZnCl2により影響される核内転写因子として機能することが示唆された。PRELP遺伝子を導入したマウス間葉系幹細胞に、10 μM, 30 μM, 及び50 μMのZnCl2を加えたときのNFκB p65(Alexa Fluor 488)及びDAPI蛍光イメージを図27F、G及びHに示す。PRELP遺伝子を導入したマウス間葉系幹細胞に10 ng/mL TNF-αを加えて12時間後に靭帯様組織が現れ(I)、30 μMのZnCl2を加えた場合にも、同様の靭帯様組織への転換が生じた(J)。
[Example 9]
When the expression route mouse mesenchymal stem cells PRELP treated with ZnCl 2, it showed high NF-κB-p65 expression but, the influence of LY294002 was little. * P <0.001, n = 4 (FIG. 27A). When 10 ng / mL TNF-α was added to mouse mesenchymal stem cells into which the PRELP gene had been introduced, a ligament-like tissue appeared 24 hours later. Addition of 10 ng / mL TNF-α and LY294002 also resulted in conversion to ligament-like tissue (FIG. 27B). Immunofluorescence tissue staining was performed on NFκB (Alexa Fluor 555) and PRELP (Alexa Fluor 350). Three hours after addition of TNF-α, the boundary of the intracellular ER was demarcated (FIG. 27C), 6 hours later, PRELP protein expression was confirmed in the ER (FIG. 27D), and 12 hours later, fibrillation Conversion occurred and PRELP expression was confirmed (FIG. 27E). Presence of NfκB expression suggests that PRELP functions as a nuclear transcription factor affected by 30 μm / mL ZnCl 2 . 27F, G, and H show NFκB p65 (Alexa Fluor 488) and DAPI fluorescence images when 10 μM, 30 μM, and 50 μM ZnCl 2 were added to mouse mesenchymal stem cells into which the PRELP gene had been introduced. A ligament-like tissue appears 12 hours after adding 10 ng / mL TNF-α to mouse mesenchymal stem cells into which the PRELP gene has been introduced (I), and the same ligament-like tissue is also observed when 30 μM ZnCl 2 is added Conversion to (J) occurred.
[参考例4]
 pCAGGS-PRELPを導入したヒト間葉系幹細胞に由来する靭帯様組織におけるNF-kBIA、MEKK3、TAK-1及びTRAF6遺伝子発現をリアルタイムPCRにより解析した。これらの遺伝子の発現は、30 μM ZnCl2、TNF-αにより上昇した(図28)。
[Reference Example 4]
NF-kBIA, MEKK3, TAK-1 and TRAF6 gene expression in ligament-like tissues derived from human mesenchymal stem cells introduced with pCAGGS-PRELP was analyzed by real-time PCR. The expression of these genes was increased by 30 μM ZnCl 2 and TNF-α (FIG. 28).
 ヒト間葉系幹細胞にPRELPを導入後、ZnCl2及びLY294002(PI3 キナーゼ阻害剤)を加え、ELISAによりNF-κB-p65、-p52、-p50、及びc-Relを測定した。シグナル伝達経路研究のためNfκB family Transcription factor assay kit (Active Motif, Inc., USA)を用い、抗PRELP抗体及び抗NF-κB-p65抗体によるウェスタンブロッティングを用いた。CBB染色をコントロールとして用いた。ZnCl2により上昇したNF-κB-p65、-p52、-p50、及びc-Relの発現は、LY294002によりキャンセルされなかった(図29)。 After introducing PRELP into human mesenchymal stem cells, ZnCl 2 and LY294002 (PI3 kinase inhibitor) were added, and NF-κB-p65, -p52, -p50, and c-Rel were measured by ELISA. NfκB family Transcription factor assay kit (Active Motif, Inc., USA) was used for signal transduction study, and Western blotting with anti-PRELP antibody and anti-NF-κB-p65 antibody was used. CBB staining was used as a control. The expression of NF-κB-p65, -p52, -p50, and c-Rel increased by ZnCl 2 was not canceled by LY294002 (FIG. 29).
 TNF-αによりPRELPを発現したヒト間葉系幹細胞におけるTAK1、TRAF6、MEKK3、及びNFκB p65発現を、ウェスタンブロッティングにより解析した。PRELPを導入し、TNF-αで処理した幹細胞はTRAF6、MEKK3及びNFκB p65を発現した。PRELPのウェスタンブロッティングにより、コントロールsh-Lac Z及びsh-scrambleで処理した細胞にはPRELPタンパク質が存在し、shRNA-PRELPにより速やかにPRELPがノックダウンされることが確認された(図30)。 TAK1, TRAF6, MEKK3, and NFκBp65 expression in human mesenchymal stem cells expressing PRELP by TNF-α were analyzed by Western blotting. Stem cells transfected with PRELP and treated with TNF-α expressed TRAF6, MEKK3 and NFκB p65. PRELP Western blotting confirmed that PRELP protein was present in cells treated with control sh-Lac Z and sh-scramble and that PRELP was rapidly knocked down by shRNA-PRELP (FIG. 30).
[実施例10]
 実施例1と同様に、PRELPを導入したマウス間葉系幹細胞から靭帯様組織を製造した。これを破壊された歯周ポケットに移植すると、歯周ポケットが再建された(図31)。
[Example 10]
Similar to Example 1, ligament-like tissue was produced from mouse mesenchymal stem cells into which PRELP had been introduced. When this was transplanted into the destroyed periodontal pocket, the periodontal pocket was reconstructed (FIG. 31).
 本発明によれば、インビトロの系で靱帯様の平行線維性結合組織を製造することができる。これにより、人工靱帯の作製が可能となり、スポーツ選手などの靭帯断裂による運動障害などの治療に有用である。 According to the present invention, a ligament-like parallel fibrous connective tissue can be produced in an in vitro system. This makes it possible to produce an artificial ligament, which is useful for treating movement disorders caused by ligament rupture in athletes and the like.

Claims (23)

  1.  PRELPと接触させた状態で間葉系幹細胞を培養すること、及び培養物から平行線維性結合組織を単離することを含む、平行線維性結合組織の製造方法。 A method for producing parallel fibrous connective tissue, comprising culturing mesenchymal stem cells in contact with PRELP and isolating parallel fibrous connective tissue from the culture.
  2.  PRELPと接触させた状態での間葉系幹細胞の培養が、PRELP発現ベクターが導入された間葉系幹細胞を培養することにより行われる、請求項1記載の製造方法。 The production method according to claim 1, wherein the mesenchymal stem cells are cultured in contact with PRELP by culturing the mesenchymal stem cells into which the PRELP expression vector has been introduced.
  3.  間葉系幹細胞の培養が、3次元培養により行われる、請求項1又は2記載の製造方法。 The production method according to claim 1 or 2, wherein the mesenchymal stem cells are cultured by three-dimensional culture.
  4.  PRELPと接触させた状態での間葉系幹細胞の培養が、TNF-αを含む培地中で行われる、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the mesenchymal stem cells are cultured in a medium containing TNF-α while being in contact with PRELP.
  5.  PRELPと接触させた状態での間葉系幹細胞の培養が、亜鉛イオンを含む培地中で行われる、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the mesenchymal stem cells are cultured in a medium containing zinc ions while being in contact with PRELP.
  6.  請求項1~5のいずれか1項に記載の製造方法により製造された、平行線維性結合組織。 A parallel fibrous connective tissue produced by the production method according to any one of claims 1 to 5.
  7.  PRELP発現ベクターが導入された間葉系幹細胞。 Mesenchymal stem cells into which a PRELP expression vector has been introduced.
  8.  PRELP発現ベクターが導入された間葉系幹細胞、及び3次元培養用担体を含む組み合わせ物。 A combination comprising a mesenchymal stem cell into which a PRELP expression vector has been introduced, and a three-dimensional culture carrier.
  9. (1)PRELP、又はその発現ベクター;及び
    (2)間葉系幹細胞
    を含む組み合わせ物。
    (1) PRELP, or an expression vector thereof; and (2) a combination comprising mesenchymal stem cells.
  10.  更に、3次元培養用担体を含む、請求項9記載の組み合わせ物。 The combination according to claim 9, further comprising a three-dimensional culture carrier.
  11.  請求項7記載の間葉系幹細胞、又は請求項8~10のいずれか1項に記載の組み合わせ物を含む、平行線維性結合組織製造用キット。 A kit for producing a parallel fibrous connective tissue, comprising the mesenchymal stem cell according to claim 7 or the combination according to any one of claims 8 to 10.
  12.  請求項6記載の平行線維性結合組織、又は請求項7記載の間葉系幹細胞を含む、靭帯損傷治療剤。 A therapeutic agent for ligament injury comprising the parallel fibrous connective tissue according to claim 6 or the mesenchymal stem cell according to claim 7.
  13.  PRELP、又はその発現ベクターを含む、平行線維性結合組織形成促進剤。 A parallel fibrous connective tissue formation promoter comprising PRELP or an expression vector thereof.
  14.  平行線維性結合組織が靭帯である、請求項13記載の剤。 The agent according to claim 13, wherein the parallel fibrous connective tissue is a ligament.
  15.  PRELP、又はその発現ベクターを含む、靭帯損傷治療剤。 A therapeutic agent for ligament injury comprising PRELP or an expression vector thereof.
  16.  哺乳動物へ、請求項6記載の平行線維性結合組織、又は請求項7記載の間葉系幹細胞を移植することを含む、当該哺乳動物における靭帯損傷の治療方法。 A method for treating ligament injury in a mammal, comprising transplanting the parallel fibrous connective tissue according to claim 6 or the mesenchymal stem cell according to claim 7 to a mammal.
  17.  哺乳動物へ、PRELP、又はその発現ベクターを投与することを含む、当該哺乳動物における平行線維性結合組織の形成を促進する方法。 A method of promoting the formation of parallel fibrous connective tissue in a mammal, comprising administering PRELP or an expression vector thereof to the mammal.
  18.  平行線維性結合組織が靭帯である、請求項17記載の方法。 The method according to claim 17, wherein the parallel fibrous connective tissue is a ligament.
  19.  哺乳動物へ、PRELP、又はその発現ベクターを投与することを含む、当該哺乳動物における靭帯損傷の治療方法。 A method for treating ligament injury in a mammal, comprising administering PRELP or an expression vector thereof to the mammal.
  20.  靭帯損傷の治療において使用するための、請求項6記載の平行線維性結合組織、又は請求項7記載の間葉系幹細胞。 The parallel fibrous connective tissue according to claim 6 or the mesenchymal stem cell according to claim 7 for use in the treatment of ligament injury.
  21.  平行線維性結合組織の形成促進において使用するための、PRELP、又はその発現ベクター。 PRELP or its expression vector for use in promoting the formation of parallel fibrous connective tissue.
  22.  平行線維性結合組織が靭帯である、請求項21記載のPRELP、又はその発現ベクター。 23. The PRELP of claim 21, or an expression vector thereof, wherein the parallel fibrous connective tissue is a ligament.
  23.  靭帯損傷の治療において使用するための、PRELP、又はその発現ベクター。 PRELP or its expression vector for use in the treatment of ligament injury.
PCT/JP2013/056867 2013-03-12 2013-03-12 Method for producing regular fibrous connective tissue WO2014141392A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015505133A JP6198199B2 (en) 2013-03-12 2013-03-12 Method for producing parallel fibrous connective tissue
PCT/JP2013/056867 WO2014141392A1 (en) 2013-03-12 2013-03-12 Method for producing regular fibrous connective tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056867 WO2014141392A1 (en) 2013-03-12 2013-03-12 Method for producing regular fibrous connective tissue

Publications (1)

Publication Number Publication Date
WO2014141392A1 true WO2014141392A1 (en) 2014-09-18

Family

ID=51536095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056867 WO2014141392A1 (en) 2013-03-12 2013-03-12 Method for producing regular fibrous connective tissue

Country Status (2)

Country Link
JP (1) JP6198199B2 (en)
WO (1) WO2014141392A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532973A (en) * 2014-10-29 2017-11-09 アール バイオ カンパニー リミテッドR Bio Co., Ltd. Medium composition for stem cell culture
JP2018522251A (en) * 2015-05-08 2018-08-09 ウニベルシテ カソリーク デ ルーベン A method for assessing the purity of a mesenchymal stem cell preparation.
JP2019508147A (en) * 2016-03-02 2019-03-28 ザ リージェンツ オブ ザ ユニバーシティー オブ ミシガン Designed tendon graft for rotator cuff repair

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240538B1 (en) 2022-02-17 2023-03-15 東芝プラントシステム株式会社 Protective device, method and program for brushless exciter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GROVER,J. ET AL.: "The consequence of PRELP overexpression on skin.", MATRIX BIOL., vol. 26, no. 2, March 2007 (2007-03-01), pages 140 - 3 *
RUCCI,N. ET AL.: "The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-kappaB inhibitor that impairs osteoclastogenesis.", J. CELL BIOL., vol. 187, no. 5, 30 November 2009 (2009-11-30), pages 669 - 83 *
TSURU,M. ET AL.: "Proline/Arginine-Rich End Leucine-Rich Repeat Protein Converts Stem Cells to Ligament Tissue and Zn(II) Influences Its Nuclear Expression.", STEM CELLS DEV., 27 April 2013 (2013-04-27) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532973A (en) * 2014-10-29 2017-11-09 アール バイオ カンパニー リミテッドR Bio Co., Ltd. Medium composition for stem cell culture
US10287551B2 (en) 2014-10-29 2019-05-14 R Bio Co., Ltd. Medium composition for culturing stem cells
JP2018522251A (en) * 2015-05-08 2018-08-09 ウニベルシテ カソリーク デ ルーベン A method for assessing the purity of a mesenchymal stem cell preparation.
JP2020173265A (en) * 2015-05-08 2020-10-22 ウニベルシテ カソリーク デ ルーベン Methods of assessing purity of mesenchymal stem cell preparations
JP2019508147A (en) * 2016-03-02 2019-03-28 ザ リージェンツ オブ ザ ユニバーシティー オブ ミシガン Designed tendon graft for rotator cuff repair
US11547551B2 (en) 2016-03-02 2023-01-10 The Regents Of The University Of Michigan Engineered tendon graft for rotator cuff repair
JP7330700B2 (en) 2016-03-02 2023-08-22 ザ リージェンツ オブ ザ ユニバーシティー オブ ミシガン Engineered tendon grafts for rotator cuff repair
US11944532B2 (en) 2016-03-02 2024-04-02 The Regents Of The University Of Michigan Engineered tendon graft for rotator cuff repair

Also Published As

Publication number Publication date
JPWO2014141392A1 (en) 2017-02-16
JP6198199B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
AU2022200207B2 (en) Compositions and methods for induced tissue regeneration in mammalian species
NZ534540A (en) Described is the development of a stem cell bank for teeth or teeth derived tissues, as well as the development of membrane-like meso/endodermal matrices which can be used in regenerative medicine
US9725737B2 (en) Chondrocyte-like cell, and method for producing same
JP7419347B2 (en) Improved methods for inducing tissue regeneration and senolysis in mammalian cells
CN102459576B (en) Compositions and methods for modulating stem cells and uses thereof
JP6198199B2 (en) Method for producing parallel fibrous connective tissue
US20240066070A1 (en) Methods for the ex vivo induction of tissue regeneration in microbiopsies
JP5904358B2 (en) Method for producing parallel fibrous connective tissue
WO2023064577A1 (en) Methods for modulating the regenerative phenotype in mammalian cells
US20240350553A1 (en) Methods for modulating the regenerative phenotype in mammalian cells
CA3212381A1 (en) Methods and compositions used to modify chromatin architecture to regulate phenotype in aging and cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878313

Country of ref document: EP

Kind code of ref document: A1